Consider a strongly connected Directed Weighted Multigraph \(G \) on a finite set of vertices.

\[\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
\text{d} & \text{e} & \text{f} \\
\text{g} & \text{h} & \text{i} \\
\end{array} \]

Let \(N_{ij}(x) \) count the number of paths from vertex \(v_i \) to vertex \(v_j \) of length at most \(x \).

Question What is the asymptotic behavior of \(N_{ij}(x) \)?

Main Result

A graph \(G \) is called **Incommensurable** if there exist two closed orbits of lengths \(A \) and \(B \) such that \(A \not\equiv QB \).

Theorem Let \(G \) be an incommensurable graph, and let \(M_G(s) \) and \(\lambda_G \) be as above, then

\[
N_{ij}(x) = \frac{1}{\lambda_G} \left(\frac{\text{det}(I_n - M_G(s))_{ij}}{\text{det}(I_n - M_G(s)) \cdot \lambda_G} \right) e^{\lambda_G x} + o(e^{\lambda_G x})
\]

as \(x \to \infty \), where \(M_G' \) is the entry-wise derivative of \(M_G \).

Applications

I Mathematical Models of Quasicrystals

The **Multiscale Substitution** construction is a generalization of the classical substitution tiling construction:

Let \(\mathcal{A} = T_1, \ldots, T_n \) be a finite collection of basic tiles in \(\mathbb{R}^d \), such that each basic tile can be tiled by isometric copies of elements of \(\mathcal{A} \) contracted by possibly different factors.

For example, in \(\mathbb{R}^2 \) let \(T_1 \) be the unit square with the following substitution rule:

\[
\begin{array}{c}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{array}
\]

When done carefully, repeated substitutions and rescalings produce an infinite tiling of the space as a limit object in the topology of all closed subsets. Such a tiling is typically of infinite local complexity.

Questions regarding the asymptotic density of tiles and the frequency of local patterns can be approached using the **Accompanying Graph**:

\[
\begin{array}{c}
\text{a} \quad \text{b} \\
\text{c} \quad \text{d} \\
\end{array}
\]

For graphs accompanying a multiscale substitution tiling in \(\mathbb{R}^d \) we have \(\lambda_G = d \).

Tools and Methods

I The Perron-Frobenius theory for primitive matrices.

II The Laplace Transform of the counting function

\[
f_{ij}(s) = \int_0^\infty N_{ij}(x) e^{-sx} dx = \frac{1}{\text{det}(I_n - M_G(s))} \frac{\text{det}(I_n - M_G(s))_{ij}}{\text{det}(I_n - M_G(s))} e^{\lambda_G x} + o(e^{\lambda_G x})
\]

III The Weiner-Ikehara Tauberian theorem which is used to deduce the main result from the pole structure of the Laplace transform.

Applications

I Distribution of Transit Times Through Quantum Graphs

See separate poster for details.

Related Topics

I Closed Orbits of a Suspension of a Shift of Finite Type

Let \(X \) be the unit interval, \(\mathcal{T} \) be the circle-doubling map \(\mathcal{T}(x) = 2x \mod 1 \) and \(f \) a piecewise constant function assuming the values \(a \) and \(b \).

The \(f \)- suspension \(X^f \) is the space \(\{(x,t) \mid x \in X, 0 \leq t \leq f(x)\} \) with the points \((x,f(x)) \) and \((\mathcal{T}(x),0) \) identified, and the suspension flow \(\mathcal{T}^f \) is as described in the figure. The flow is weakly mixing if \(a \) and \(b \) are incommensurable.

II Summation in Pascal’s Triangle

This well known triangular array of binomial coefficients contains many patterns of numbers and properties of combinatorial interest.

Counting the number of closed orbits of \(\mathcal{T}^f \) and summing the binomial coefficients in the triangle \(OBA \) of sides \(OA = \frac{a}{2} \) and \(OB = \frac{b}{2} \) with angle \(\angle COAB = \arctan \frac{b}{a} \) are both equivalent to counting paths in

\[
\begin{array}{c}
a \quad b \\
\end{array}
\]