Order and Disorder in Multiscale Substitution Tilings

Yotam Smilansky, Rutgers

UCLA Analysis & PDE Seminar, 2022

joint with Caltech and USC

Partially based on joint work with Yaar Solomon
Plan of Talk

• Introduction

• Multiscale substitution tilings

• Main results
Delone Sets

A uniformly discrete and relatively dense set $\Lambda \subseteq \mathbb{R}^d$ is called Delone.
Delone Sets

A uniformly discrete and relatively dense set $\Lambda \subseteq \mathbb{R}^d$ is called Delone.

Examples Lattices, sets induced by tilings and cut-and-project sets

A basic problem is to classify and measure how ordered or disordered a given Delone set is, compared to a lattice.
Lattice-like Properties

For \(x \in \Lambda \), \(r > 0 \) the \(r \)-patch of \(\Lambda \) at \(x \) is \(P_{\Lambda, r}(x) = (\Lambda - x) \cap B(0, r) \)

- Finite local complexity (FLC):
 \[\forall \, r > 0 \, \#\{P_{\Lambda, r}(x) \mid x \in \Lambda\} < \infty \]

From Baake and Grimm's *Aperiodic Order Vol. I*
Lattice-like Properties

For $x \in \Lambda$, $r > 0$ the r-patch of Λ at x is $P_{\Lambda,r}(x) = (\Lambda - x) \cap B(0,r)$.

- **Finite local complexity (FLC):**
 \[\forall r > 0 \quad \#\{ P_{\Lambda,r}(x) \mid x \in \Lambda \} < \infty \]

- **Repetitivity:** $\forall r > 0 \exists R = R(r)$ so that every R-ball contains a copy of every r-patch. Linear repetitivity: $R(r)$ is linear. Uniform patch frequency: patches appear in well-defined frequencies.
Lattice-like Properties

For $x \in \Lambda$, $r > 0$ the r-patch of Λ at x is $P_{\Lambda,r}(x) = (\Lambda - x) \cap B(0,r)$

- Finite local complexity (FLC):
 $$\forall r > 0 \ # \{ P_{\Lambda,r}(x) \mid x \in \Lambda \} < \infty$$

- Repetitiveness: $\forall r > 0 \ \exists R = R(r)$ so that every R-ball contains a copy of every r-patch. Linear repetitiveness: $R(r)$ is linear. Uniform patch frequency: patches appear in well-defined frequencies.

- Self-similarity: $\exists \alpha > 1$ so that $\alpha \Lambda \subset \Lambda$
Spaces and Dynamical Systems of Delone Sets

Set $X_{\Lambda} = \{ \Lambda + t | t \in \mathbb{R}^d \}$, where the closure is with respect to a natural topology on Delone sets (induced by the Hausdorff metric restricted to centered balls).

- Λ is (almost) repetitive \Rightarrow The dynamical system $(X_{\Lambda}, \mathbb{R}^d)$ is minimal (every orbit is dense).

- (almost) linear repetitivity \Rightarrow unique ergodicity (unique invariant measure)

(Radin '92, Solomyak '97, Damanik '01, Lagarias '03, Frettloeh '14)
Plan of Talk

• Introduction

• Multiscale substitution tilings

• Main results
Substitution Tilings

A tiling is a collection of tiles with disjoint interiors that covers \mathbb{R}^d.

A substitution rule on a set of prototiles is a tessellation of each prototile by rescaled prototiles, with a fixed scale $c \in (0,1)$.

Repeated applications of the substitution rule followed by a rescaling define larger and larger patches.
Incommensurable Multiscale Substitution Tilings

A multiscale substitution scheme σ in \mathbb{R}^d consists of a substitution rule on unit volume prototiles T_1, \ldots, T_n, where various different scales appear and satisfy a simple incommensurability condition.

A time-dependent substitution semiflow F_t defines a family of patches: At time $t=0$ $F_t(T) = T$, and as t increases the patch is inflated by e^t and tiles of volume >1 are substituted.
Some Predecessors

- Rauzy’s fractal ’81
 - multiple (but commensurable) scales
- Conway and Radin’s pinwheel tiling ’94
 - $\theta = \arctan \frac{1}{2} \implies$ same triangle incommensurable directions
- Sadun’s generalized pinwheel tilings ’98
- α-Kakutani sequences in $[0,1]$ ’76
 - always split longest interval
- S ’20: multiscale substitution Kakutani sequences of partitions
The Associated Graph \mathcal{G}_0

A directed weighted graph is defined according to \mathcal{G}_0

Vertices model the prototiles

Edges model the tiles appearing in the substitution rule with

Lengths $= \log(1/\text{scale})$

\mathcal{G}_0 is incommensurable if \mathcal{G}_0 contains two closed paths of lengths $\frac{a}{6} \notin \mathbb{Q}$. Incommensurable multiscale substitution schemes generate a new distinct class of tilings of \mathbb{R}^d.
Plan of Talk

• Introduction
• Multiscale substitution tilings
• Main results
Counting in Multiscale Substitution Tilings

Substitution \# tiles in patches = entries of powers of the substitution matrix \(S \)

\[\Rightarrow S = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \]

Multiscale \{ Tiles in \(F_t(T_i) \) \} \leftrightarrow \{ Directed walks of length \(t \) in \(G_6 \) originating at vertex \(i \) \}

Example the \(\frac{1}{3} \)-Kakutani scheme in \(\mathbb{R} \):

the patches \(F_0(I), F_{\log_{\frac{3}{2}}}(I), F_{2\log_{\frac{3}{2}}}(I) \) and their respective walks
Counting in Multiscale Substitution Tilings

Theorem (SS121, $S \geq 21$, relying on Kiro, Smilansky x2 '20)

\[
\# \{ \text{tiles in } F_t(T) \} = \frac{v^T(S_\sigma - V_\sigma) 1}{v^T H_\sigma 1} \cdot \frac{e^{dt}}{\text{vol}(F_t(T))} + \text{ERROR}\text{TERM}, \quad t \to \infty
\]

- **combinatorics** matrix

\[
(S_\sigma)_{ij} = \sum_{T \text{ of type } j} 1 \quad \# \text{reds in white}
\]

\[
S_\sigma = \begin{pmatrix} 8 & 5 \\ 1 & 3 \end{pmatrix}
\]

- **volume** matrix

\[
(V_\sigma)_{ij} = \sum_{T \text{ of type } j} \text{vol}(T) \quad \text{total red area in white}
\]

\[
V_\sigma = \begin{pmatrix} \frac{15}{25} & \frac{8}{25} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}
\]

- **entropy** matrix

\[
(H_\sigma)_{ij} = \sum_{T \text{ of type } j} \text{vol}(T) \cdot \log \text{vol}(T) \quad \text{contribution of reds to entropy of white}
\]

\[
H_\sigma = \begin{pmatrix} -\frac{12}{5} \log \frac{1}{2} & \frac{6}{5} \log \frac{1}{2} \\ -\frac{1}{4} \log \frac{1}{4} & -\frac{3}{4} \log \frac{1}{4} \end{pmatrix}
\]

and $v^T = \text{left Perron-Frobenius eigenvector of } V_\sigma$

Theorem (SS121) $\exists k \in \mathbb{N} \quad \forall t_0 > 0 \exists t \geq t_0 : \frac{\text{ERRORTERM}}{c} \geq \frac{e^{dt}}{t^k}$
Bounded Displacement Equivalence

- Delone sets $\Lambda, \Gamma \subset \mathbb{R}^d$ are bounded displacement (BD) equivalent if \exists bijection $\varphi : \Lambda \to \Gamma$ that moves every point a bounded distance.

- Λ is uniformly spread if it is BD to $\alpha \mathbb{Z}^d$ for some $\alpha > 0$

- Not all Delone sets are uniformly spread
Bounded Displacement Equivalence

- Delone sets $\Lambda, \Gamma \subseteq \mathbb{R}^d$ are bounded displacement (BD) equivalent if \exists bijection $\varphi : \Lambda \rightarrow \Gamma$ that moves every point a bounded distance.

- Λ is uniformly spread if it is BD to $\alpha \mathbb{Z}^d$ for some $\alpha > 0$.

- Sets associated with tilings with a single tile are uniformly spread \Rightarrow lattices & periodic sets (Duneau, Oguey '90, Hall's marriage theorem)
Bounded Displacement Equivalence

Laczkovich '92 For a Delone set $A \subseteq \mathbb{R}^d$ the following are equivalent:

- A is uniformly spread
- There exist $\alpha, C > 0$ so that $\forall A \in \mathbb{Q}_d = \{\text{finite unions of lattice cubes}\}$

$\text{discrepancy} \sim |\#(A \cap \Lambda) - \alpha \cdot \text{vol}(A)| \leq C \cdot \text{vol}_{d-1}(\partial A)$

\Rightarrow Incommensurable multiscale substitution tilings are never uniformly spread.
Bounded Displacement Equivalence

Laczkovich '92 For a Delone set $\Lambda \subseteq \mathbb{R}^d$ the following are equivalent:

- Λ is uniformly spread
- There exist $\alpha, C > 0$ so that $\forall \Lambda \subseteq \mathbb{Q}^d = \{\text{finite unions of lattice cubes}\}$
 $\text{discrepancy} \sim |\#(A \cap \Lambda) - \alpha \cdot \text{vol}(A)| \leq C \cdot \text{vol}_{d-1}(\partial A)$

\Rightarrow Incommensurable multiscale substitution tilings are never uniformly spread.

Theorem (SS2 '21) Let X be a minimal space of Delone sets.
- Either $\exists \Lambda \subseteq X$ uniformly spread, and then every $\Lambda \subseteq X$ is such.
- Or X contains continuously many distinct BD class representatives.

\Rightarrow Incommensurable tiling spaces contain continuously many BD classes.
Dynamics in Multiscale Substitution Tilings

Theorem (SS121) Let T be an incommensurable tiling in \mathbb{R}^d and (X_T, \mathbb{R}^d) with \mathbb{R}^d acting by translations.

- $F_t(T-x) = F_t(T) - e^t x$ for $t \geq 0, x \in \mathbb{R}^d$ (horospheric and geodesic)
- (X_T, \mathbb{R}^d) is minimal $\Rightarrow T$ is almost repetitive
- almost repetitivity is not linear (SS321)
- (X_T, \mathbb{R}^d) is uniquely ergodic
- T has uniform patch frequencies
- Lee-Solomyak's 19 "pixelization"
Dynamics in Multiscale Substitution Tilings

Theorem (SS322) Let T be an incommensurable tiling in \mathbb{R}^d and consider the semiflow F_t on X_T (scenery flow)

- there exist dense orbits.
- periodic orbits of $F_t \Rightarrow$ self similar tilings
- Prime orbit theorem $\pi_\sigma(t) \sim \frac{e^{dt}}{dt}$, $t \to \infty$

where $\pi_\sigma(t) = \{\text{orbits } \tau \text{ with minimal period } \lambda(\tau) \leq t\}$ \textit{(à la Parry, Pollicott)}

- tiling zeta function $\zeta_\sigma(s) = \prod_\tau (1 - e^{-\lambda(\tau)s})^{-1} \cdot \frac{1}{\det (I - M_\sigma(s))}$

where $(M_\sigma(s))_{ij} = \sum_{T \text{ of type } j \text{ in } T_i} \forall \ell(T)^s$
Counting in Multiscale Substitution Tilings

Theorem (SS121, $S \geq 21$, relying on Kiro, Smilansky $\times 2$ ’20)

Tiles and patches appear in a dense set of scales \Rightarrow not FLC

Moreover, we give explicit formulas for asymptotic densities of:

- $\# \{\text{tiles of type } r \text{ and } \text{vol} \in [a,b] \text{ in } F_t(T)\}$

- $\text{volume}(U \{\text{tiles of type } r \text{ and } \text{vol} \in [a,b] \text{ in } F_t(T)\})$

- Expected values for random partitions
Theorem \((S \geq 21,\) relying on Kiro, Smilansky \(x 2 \ '20\))

- **Gap distribution** \(\Lambda\) - Delone set of tile boundaries in a 1-dim tiling

\[
\frac{\# \{\text{Neighbors in } \Lambda \cap [N, N] \text{ of distance } e [a, b]\}}{\# \{\Lambda \cap [N, N]\}} \to \int_a^b \frac{\nu^T C_\sigma(x) 1}{\nu^T H_\sigma 1} \, dx
\]

where \((C_\sigma(x))_{ij} = \sum_{T \text{ of type } j} \left\{ \begin{array}{ll} \frac{\text{vol } T}{x^2} & \text{for } \text{vol } T < x \leq 1 \\ 0 & \text{otherwise} \end{array} \right. \)

- **Numerics** for pair correlations are consistent with Poisson process
Thank You!