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ABSTRACT OF THE DISSERTATION

Flexible Schemes and Beyond: Experimental Enumeration

of Pattern Avoidance Classes

By YONAH BIERS-ARIEL

Dissertation Director: Doron Zeilberger

This thesis demonstrates several applications of experimental methods to the enumer-

ation of pattern-avoiding permutations. First, we introduce flexible schemes – a new

extension of enumeration schemes. We show how a computer can find flexible schemes

and use them to count permutations. We establish sufficient conditions for the exis-

tence of finite flexible schemes, and in particular show that they exist whenever finite

enumeration schemes or regular insertion encodings do. Next, we combine enumeration

schemes with structural arguments to give a new algorithm for counting 1342-avoiding

permutations. We find a recurrence for the number of permutations avoiding four

dashed patterns, and finally generalize Claude Lenormand’s “raboter” sequence. We

have implemented all the algorithms described here in Maple and provide links to the

Maple code in each section.
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Chapter 1

Introduction

What an exciting time to be a combinatorialist! Nearly a century of advances in com-

putation has made mathematical experimentation easier than ever. It has inspired new

questions and given new tools to answer them. It has even caused us to rethink what

an answer is [28]. However, while our computers are able assistants, they have not yet

outgrown the need for their fleshy, fallible masters. There is still a great deal for us

humans to do in collaboration with them.

This collaboration, which we refer to as experimental math, takes many forms. Its

most common and fundamental form happens when mathematicians computationally

generate many, many objects and then make conjectures about the objects’ properties

based on this huge supply of data. Once we know what to prove, proving it is often

not so difficult. The most obvious instance of this sort of experimental math in this

thesis is in Chapter 4, but in a looser sense every result here was conceived of through

experimentation.

This collaboration can also be reversed, with a human supplying the conjecture and

the start of a proof, and the computer finishing it. Often these proofs involve a human

showing that a minimal counterexample must have a specific form, and the computer

showing that no objects of that form are counterexamples. This sort of experimental

math famously proved the four color theorem [4][5].

A more specialized kind of experimental math occurs when a computer is responsible

both for conjecturing and proving its own theorems. A human explains to a computer

what sort of object would constitute an answer, and then sets the computer to work.

This sort of experimental math can be as simple as interpolating a degree-d polynomial

through d + 1 points, but can be applied to much more difficult problems as well.
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Zeilberger’s algorithm for finding hypergeometric sum identities [18] is a classic example

of this. Chapters 2 and 5 of this thesis are concerned with this sort of experimental

math, and contain additional examples of it.

While experimental math is a powerful methodology with many deep results, this

thesis focuses mainly on its applications to pattern avoidance. The modern study of

pattern avoidance began in The Art of Computer Programming where Knuth asked

which permutations can be sorted using only a single stack, and how many of them are

there [16]? The field has grown tremendously since then (see [25] for a detailed survey),

but our focus is on Knuth’s classic question: given some class of permutations, how

many are there?

More is known about this question than we could possibly describe in this introduc-

tion, but we will cover a few highlights. The answer to Knuth’s original question is that

the stack-sortable permutations are precisely those that avoid the pattern 231, and they

are counted by the Catalan numbers [16]. In fact, Knuth showed that for any pattern

σ of length 3, the number of length-n permtuations avoiding σ is the nth Catalan num-

ber. Of the seven symmetry classes of length 4 patterns, six have known enumeration

sequences [15][26][12], while the 1324-avoiding permutations are so far unenumerated.

Wikipedia is an excellent reference for the enumeration sequences and (when known)

generating functions of individual classes [27].

Not only do we have enumeration sequences for many permutation classes, we have

some asymptotic knowledge of how every class grows. Letting Av(σ;n) be the number

of length-n permutations avoiding σ, we know that limn→∞ |Av(σ;n)|1/n = cσ [17] and

that cσ is generally exponentially large in the pattern length [14].

The first part of this thesis is concerned with experimental strategies for enumer-

ating pattern avoiding permutations. We introduce a few existing strategies including

enumeration schemes and the insertion encoding, and then develop a new method with

the power of both of these. Additionally, we provide the (to our knowledge) first ex-

perimental conditions to establish the nonexistence of an enumeration scheme.

The second part of this thesis looks at two individual permutation classes. The

first class consists of the permutations avoiding the pattern 1342 which were famously
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enumerated by Bóna [12] using a bijection with a certain class of labeled trees. Here,

we prove a recurrence which we can justify directly in terms of the permutation class’

avoidance properties. This recurrence uses elements both from enumeration schemes

and from the structure paradigm for automatic enumeration. Next, we consider the

permutations avoiding the dashed patterns 1− 32− 4, 1− 42− 3, 2− 31− 4, 2− 41− 3

for which we prove a recurrence conjectured by Callan [22]. Finally, we leave the world

of pattern avoidance to generalize Claude Lenormand’s “Raboter” sequence.

The material in Section 4 has been previously published in the Journal of Integer

Sequences [10]. We also intend to publish the material in Section 2. All other material

appears only in this thesis.
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Chapter 2

Automatic Avoidance Class Enumeration

2.1 Background

In the last twenty years, an increasing amount of research has focused on the experi-

mental enumeration of permutation classes. Rather than the traditional approach of

considering a single avoidance class (or family of avoidance classes), these algorithms

seek to input any set of patterns and then (hopefully) return some certificate which

gives a polynomial-time algorithm to generate the enumeration sequence of the permu-

tations which avoid these patterns. By polynomial-time, we mean that the time to find

the nth term of the sequence is a polynomial in n; what Wilf calls a p-solution [28].

The first of these were enumeration schemes, developed by Zeilberger [29] and ex-

panded by Vatter [23]. The idea is to separate permutations into groups by their

prefixes and then attempt to reduce these classes to simpler groups by deleting prefix

elements. Of course, we can ask about much more than just classical patterns in permu-

tations. The dashed patterns created by Babson and Steingŕımsson [6] can be counted

by schemes of Baxter and Pudwell [7], and the pattern-avoiding words introduced by

Burstein [13] can be counted by schemes of Pudwell [19] and Shar and Zeilberger [20].

This thesis is concerned with both classical and dashed patterns, but only in permu-

tations. Vatter’s enumeration schemes are described in greater detail in Section 2.1.2;

Baxter and Pudwell’s schemes, while not described explicitly, provide some of the key

ideas of Section 2.5.

The other enumeration algorithm which we are interested in is the insertion encod-

ing developed by Albert, Linton, and Ruškuc [3]. The strategy here is to consider a

finite automaton which moves between states, each state specifying which elements are
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already included in the permutation and where new elements will be inserted. It is

described in greater detail in section 2.1.3.

Both of these algorithms, along with the new enumeration scheme that we propose

in this paper, follow the paradigm of building a permutation element by element and

finding rules to reduce partially-completed permutations to simpler ones. Another

paradigm began with Albert and Atkinson [1] and has been developed further by, among

others, Bean, Gudmundsson, and Ulfarsson [8]. The general idea is to decompose

pattern-avoiding permutations into component structures which can more easily be

counted. While we don’t describe this algorithm in detail, and it isn’t needed for our

original work in Section 2.2, it is a powerful strategy, and is able to enumerate all classes

of pattern-avoiding permutations with a regular insertion encoding, all classes where

the number of elements of length n is polynomial in n, and all classes avoiding at least

six patterns of length four.

The object of this section is to answer a question posed by Vatter [23]: Is there

an automatic enumeration algorithm that applies to all permutation classes with finite

enumeration schemes and all classes with regular insertion encodings? Here we provide

an algorithm to produce what we will call flexible schemes. Finite flexible schemes exist

for every class with a finite enumeration scheme or a regular insertion encoding (and

many classes with neither). Like traditional schemes, flexible schemes do not provide

generating functions – indeed, they exist for avoidance classes which are believed not

to have any D-finite generating function [2] – but they do provide polynomial-time

enumeration of their permutation classes.

We begin by presenting two existing strategies for the automatic enumeration of

pattern-avoiding permutations: traditional enumeration schemes and the insertion en-

coding. In Section 2.2, we describe how flexible schemes differ from traditional ones,

and present an automatic way to find them. In Section 2.2.4 we show that a finite

flexible scheme exists whenever either a finite traditional scheme or regular insertion

encoding does. In Section 2.3, we present some of the successes we have had on specific

avoidance classes, and in Section 2.5 we adapt flexible schemes to count permutations

avoiding vincular patterns.



6

2.1.1 Definitions

In general, we use standard definitions for permutation patterns and related objects.

A permutation is some reordering of the numbers in [n] = {1, 2, . . . , n}. Permutations

are written as a string of ordered values (like 24513), and the length-0 permutation is

written as ∅. A string s of k distinct elements of [n] can be turned into a permutation

by taking its reduction, the unique permutation of length k whose elements occur in

the same order as s.

A permutation σ = σ1σ2 . . . σn contains a pattern p = p1p2 . . . pk if there exists a se-

quence i1, i2, . . . , ik such that σi1σi2 . . . σik reduces to p. In this case, we call σi1σi2 . . . σik

an occurrence of p in σ; if there is no occurrence of p in σ, then σ avoids p. The following

example illustrates these definitions.

Example 2.1.1. The permutation 24513 contains the pattern 132 because 253 reduces

to 132 (and hence is an occurrence of 132). However, 24513 avoids 321 because it does

not contain three elements in decreasing order.

When discussing Zeilberger’s enumeration schemes, we need to categorize permu-

tations by their prefixes. A prefix of a permutation is the reduction of one of the

permutation’s initial segments. When we turn to Vatter’s enumeration schemes and

then the new ones introduced in this thesis, we will instead categorize permutations

by their downfixes. A downfix of a permutation consists of the permutation’s elements

which lie below a particular value kept in their proper order.

Example 2.1.2. The permutation 24513 has six prefixes: ∅, 1, 12, 123, 2341, and 24513.

It also has six downfixes: ∅, 1, 21, 213, 2413, and 24513.

When discussing Vatter’s enumerations schemes, we will also need to categorize

permutations by their gap vectors. A permutation σ1σ2 . . . σn with downfix σi1σi2 . . . σil

has corresponding gap vector [i1 − 1, i2 − i1 − 1, . . . , il − il−1 − 1, n − il]. We are

particularly interested in gap vectors whose components are larger than those of some

other vector, and so we say a gap vector g = [g1, g2, . . . , gl+1] satisfies a gap condition

h = [h1, h2, . . . , hl+1] if gi ≥ hi for all 1 ≤ i ≤ l+1. When g satisfies h, we write g � h.
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Example 2.1.3. Consider the permutation 24513 and its downfix 21. It has corre-

sponding gap vector [0, 2, 1] which satisfies [0, 1, 1] and [0, 2, 0], but not [1, 1, 1]. Notice

if a permutation has length n and its downfix has length l, then the corresponding gap

vector must have length l + 1, and its elements must sum to n− l.

We will often want to talk about the set of permutations avoiding some set of

patterns B with downfix π and corresponding gap vector g. We call this set Z(B, π,g).

When this set is nonempty, we say that g is viable for B and π and when it is empty

we say that g is nonviable for B and π.

Sometimes, we also want to talk about the set of permutations with downfix π and

corresponding gap vector g without worrying about what patterns they avoid. We call

this set Y (π,g).

Example 2.1.4. The gap vector [2, 1, 0] is viable for pattern set {123} and downfix 12

because

Z({123}, 12, [2, 1, 0]) = {35142, 43152, 45132, 53142, 54132}.

On the other hand, the gap vector [0, 0, 1] is nonviable. When we don’t worry about

avoiding 123, we find that

Y (12, [2, 1, 0]) = {34152, 35142, 43152, 45132, 53142, 54132}.

The key operation at the heart of enumeration schemes is that of deleting a downfix

element to yield a simpler permutation. When a permutation with downfix π and gap

vector g has the ith element of its downfix deleted, it yields a permutation with downfix

di(π) and gap vector di(g). Precisely, we define di(π1π2 . . . πk) to be the reduction of

π1 . . . πi−1πi+1 . . . πk, and di([g1, g2, . . . , gk+1]) = [g1, . . . , gi−1, gi + gi+1, gi+2, . . . , gk+1].

We also need to consider the refinements of π, that is all the permutations formed

by inserting the element |π| + 1 somewhere in π. When we refine π, we also need to

change [g1, g2, . . . gk+1] by deleting 1 from gi (representing the element which is now in

the downfix), inserting a new element g′ between gi and gi+1, and splitting the mass of

gi between it and g′ (representing the elements that were between the πi and πi+1, but
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are now between πi+1 and πi+2). Precisely, we let

fi(π1π2 . . . πk) = π1 . . . πi(k + 1)πi+1 . . . πk, and

fi,j([g1, g2, . . . , gk+1]) = [g1, . . . , gi−1, j, gi − j − 1, gi+1, . . . , gk+1].

Example 2.1.5. Let π = 24513 and g = [1, 2, 1, 2, 1, 2]. Then d1(π) = 3412 and

d1(g) = [3, 1, 2, 1, 2]. Similarly, f2(π) = 264513 and f2,1(g) = [1, 1, 0, 1, 2, 1, 2].

2.1.2 Enumeration Schemes

The history and basic idea of enumeration schemes have already been discussed; here

we illustrate the schemes with an extended example due to Vatter in [23].

Example 2.1.6. Suppose we want an algorithm to enumerate the permutations which

avoid the two patterns 1342 and 1432. We begin by considering all permutations with

the downfix 1 (i.e. all permutations). Our goal is to find elements of the downfix such

that if an occurrence of a forbidden pattern uses the element, then there is a different

occurrence of a forbidden pattern which does not use the element. When we find such

an element, we can delete it, secure in the knowledge that the resulting permutation

contains a forbidden pattern if and only if the original one did. These elements are

called reversely deletable (in [29]) or ES-reducible (in [23]). We follow the more recent

source and call them ES-reducible. When a downfix has an ES-reducible element, we

will also call the downfix itself ES-reducible. When a downfix is not ES-reducible, we

say that it is ES-irreducible.

One can easily find permutations with the downfix 1 which contain either the pattern

1342 or 1432 but which contain neither pattern when the 1 is removed (for example,

1342 itself is such a permutation). Therefore, we consider the refinements of 1, that is

all the length-2 permutations for which 1 is a downfix. These refinements are 12 and 21.

Looking at 21, we see that the second element is ES-reducible; if any permutation uses

the 1 in an occurrence of 1342 or 1432, the pattern could just as easily be formed using

the 2 instead. Turning to 12, though, we find that neither element is ES-reducible;

indeed we can form forbidden subpatterns which use both of them.
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We are saved, though, by considering gap vectors. If a permutation has at least two

elements between the 1 and the 2 (i.e. if its gap vector corresponding to 12 satisfies

[0, 2, 0]) , then either a 1342 or 1432 pattern must occur. On, the other hand, if it has

fewer than two elements between the 1 and the 2 (i.e. if the gap vector fails to satisfy

[0, 2, 0]), then 2 is ES-reducible. Therefore, we either replace 12 with a shorter downfix,

or else we can ignore it entirely.

In Section 2.2.2, we explain precisely how a computer could record these rules,

and how it would use them to generate terms of the permutation class’ enumeration

sequence.

2.1.3 Insertion Encoding

The insertion encoding encodes a process in which a permutation is built up by inserting

its elements from smallest to largest, but only in designated slots. These slots, indicated

by �, are the only places in which a new element can be added, and they must end

up containing an element. Each permutation is constructed by a unique sequence of

insertions. The following example shows how 24513 is constructed.

Example 2.1.7.

�

�1�

2 � 1�

2 � 13

24 � 13

24513

Albert et al. in [3] describe this sequence by recording at each step which slot an

element is inserted into, numbering them beginning with 1 on the left. They also record

where in its slot each new element is added. An m represents inserting an element in

the middle of a slot (leaving �s on both sides), an r represents inserting it on the right

of a slot (leaving a � on its left), an l represents inserting it on the left of a slot (leaving
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a � on the right), and an f represents filling the slot (leaving no � at all). So, 24513 is

recorded as m1l1f2l1f1.

When the strings that represent valid permutations in the avoidance class form

a regular language, we say the insertion encoding is regular, and the avoidance class

can be efficiently enumerated. The authors were able to precisely characterize classes

with regular insertion encodings: they are the classes which contain only finitely many

vertical alternations, i.e. permutations where each odd element is greater than each

even element or vice-versa. Later, Vatter showed in [24] that the these classes could

also be characterized as those for which any sufficiently long partial permutation has

an insertion encoding reducible element, i.e. an element which can be removed without

affecting the set of insertion sequences that could finish the permutation.

2.2 Flexible Schemes

2.2.1 Motivation

In this section, we introduce a new idea to extend traditional enumeration schemes and

enable them to count many more avoidance classes. It is motivated by the following

question: What if there is a downfix and gap condition which do not guarantee that

all permutations with that downfix and satisfying that condition contain a forbidden

pattern, but which do allow some element of the downfix to be deleted?

If a downfix has such an element for every possible gap vector, then we always are

able to reduce it to a simpler downfix. Of course, this is not very useful if it is hard to

tell, for a given gap vector, which element is the reducible one. However, if a downfix

contains such an element for every possible gap vector, and if we can determine which

element that is by comparing the gap vector to finitely many gap conditions, then

we can efficiently reduce the downfix. Because we allow the element being deleted to

change based on the gap vector, we call such a downfix Flexible Scheme reducible (or

FS-reducible).

The following example shows how this lets us count the avoidance class

Av(1423, 2314).
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Example 2.2.1. Note that a (moderately) quick calculation with Vatter’s Maple pack-

age WILFPLUS reveals that 3214 and 4321 are both irreducible using traditional schemes.

In fact, k . . . 21 is ES-irreducible for all k (this can be proven using the main theorem

of Section 2.4), and no finite scheme exists.

However, 321 is FS-reducible, and thus so are its refinements 3214 and 4321. Sup-

pose that g is a gap vector satisfying the condition [0,1,0,0], i.e. g has length 4

and g2 ≥ 1. It is not true that any permutation with prefix 321 and gap vector

g must contain a forbidden pattern; for instance, g = [0, 1, 0, 0] yields the permu-

tation 3421. It is true, however, that as long as this gap condition is satisfied, the

third element of the downfix is deleteable, i.e. |Z({1423, 2314}, 321, [g1, g2, g3, g4])| =

|Z({1342, 3124}, d3(321), d3([g1, g2, g3, g4]))|.

To see this, suppose that a permutation σ has downfix 321 and gap vector

[g1, g2, g3, g4] (thus, σg1+1 = 3, σg1+g2+2 = 2, and σg1+g2+g3+3 = 3). By way of con-

tradiction, suppose that g2 ≥ 1, but the 1 in σ is not FS-reducible. In other words σ

contains either a 1423 or 2314 pattern when the 1 is present, but contains no forbidden

pattern when it is removed. Suppose that the 1 participates in a 1423 pattern. When

the 1 is removed, either the 2 or 3 can fill in for it in the 1423 pattern, so a forbidden

pattern still occurs.

The more difficult case is if 1 participates in a 2314 pattern. Obviously, 1 serves as

the 1 in this pattern. We consider three subcases based on which element of σ serves

as the 2. First, suppose that 2 serves as the 2. To complete the pattern, we find σi, σj

with 3 < σi < σj such that g1 + g2 + 2 < i < g1 + g2 + g3 + 3 < j. Choose k such that

g1 +1 < k < g1 +g2 +2 (we know this is possible since g2 ≥ 1). If σk < σj , then 3σk2σj

form a 2314 pattern, while if σk > σj , then 3σkσiσj for a 1423 pattern.

In the second case, some σl with l ≤ g1 + 1 serves as the 2. As before, complete

the pattern, this time by finding σi, σj such that l < i < g1 + g2 + g3 + 3 < j. If

i < g1 + g2 + 2 (in other words, if σi occurs before 2) then σlσi2σj is a 2314 pattern.

Otherwise, g1 + g2 + 2 < i, and we are back in case 1.

In the third case, some σl with g1+1 < l < g1+g2+g3+3 serves as the 2. Complete

the pattern by finding σi, σj with l < σi < g1 + g2 + g3 + 3 < σj , and note that 3σi1σj
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is also a 2314 pattern and so we are back in case 2.

We have now dealt with the difficult case when g2 ≥ 1, and we are left with the

easier case when g2 = 0. Let σ be a permutation with a 321 downfix and gap vector

[g1, 0, g3, g4]. Since 2 and 3 are consecutive both in terms of their position in σ and their

values, but neither 1423 nor 2314 contain decreasing elements which are consecutive

in both senses, it follows that no occurrence of a forbidden pattern uses both 2 and 3.

Further, 3 can be replaced in any forbidden pattern with 2 (or vice-versa) and so 3 is

deletable.

As the previous example shows, verifying one of these reducibility rules by hand is

largely a matter of making simple arguments for many tedious special cases. We will

see in Section 2.2.3 how a computer can do all this work for us.

2.2.2 Counting with Schemes

In this section, we describe flexible schemes from the perspective of a computer, begin-

ning with the data structure in which they are stored and then showing that a scheme

allows for polynomial-time enumeration of a permutation class.

A scheme is a collection of replacement rules which allow any sufficiently long per-

mutation downfix to be replaced by a shorter one. As much as possible, we model these

rules after Zeilberger’s VZ-triples defined in [30].

A replacement rule is a pair [π,H], where π is a downfix and H =[
[h1, r1], . . . , [hk, rk]

]
is a list of pairs. In each pair, hk is a gap condition and rk

is either 0 (if every gap vector satisfying hk is nonviable for π) or a positive integer i

(if the ith downfix element is deletable whenever hk is satisfied). If H is an empty list,

then π is not FS-reducible, otherwise the final hk should be the list of all zeros so that

every possible gap vector satisfies some hk.

In order for a scheme to be complete, it should have replacement rules for downfixes

of every length up to d (called the depth of the downfix), and none of the rules for

length d downfixes should have empty H, i.e. every downfix of length d should be

FS-reducible. It’s worth noting that it’s not strictly necessary to have a replacement
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rule for every downfix; if some downfix π has a downfix of its own that already has a

replacement rule, we can use that to reduce π, and we don’t need a rule specifically for

π. On the other hand, in this scenario we definitely can find a replacement rule for π,

and so we might as well.

Example 2.2.2. Suppose we are trying to avoid the pattern 123. We obtain the scheme{[[]
,
[]]

,
[
[1],
[]]

,
[
[1, 2],

[
[[0, 0, 1], 0], [[0, 0, 0], 2]

]]
,
[
[2, 1],

[
[[0, 0, 0], 2]

]]}
of depth is 2.

This scheme is interpreted as follows. If a permutation has the empty downfix, we

do not know how to reduce it, and so we consider its refinement 1. But, we also don’t

know how to reduce 1, so we next consider both refinements of 1: 12 and 21. If a

permutation has the downfix 12, we check to see if it satisfies the gap condition [0,0,1],

i.e. if it has at least one element following the 2. If so, the permutation cannot possibly

avoid 123 (this is indicated by the 0 following the gap condition). If not, we check to

see if it satisfies the gap condition [0,0,0]; since every permutation always does, we find

that the second element of the downfix is FS-reducible. Finally, if a permutation has

the downfix 21, we check to see if it satisfies the gap condition [0,0,0]; again it must,

and so the second element of the downfix is FS-reducible.

We call the algorithm which follows these rules FindTerm. This algorithm inputs a

scheme S, a downfix π, and a gap vector g, and it outputs the number of elements in

Y (π,g) which are in the permutation class that S describes. Pseudocode for FindTerm

is given in Algorithm 1.

Given a scheme S for a permutation class, we find the number of permutations of

length n which avoid it as FindTerm(S, [], [n]). We claim that the runtime is polynomial

in n.

Proposition 2.2.3. Let S be a scheme with depth d. Then, FindTerm(S, [], [n]) runs

in O(nd+2) time.

Proof. Note that in every recursive call, g has no more than d+1 elements, each of which

is in [0, n − 1]. Similarly, π has no more than d elements. Based on these (extremely
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Algorithm 1: FindTerm

1 Find r ∈ S such that r[1] = π
2 H := r[2]
3 if H = [] then
4 if g = [0, 0, . . . , 0] then
5 return (1)

6 output := 0
7 for i := 1 to length (g) + 1 do
8 for j := 0 to g[i]− 1 do
9 output += (FindTerm(S, fi(π), fi,j(g)))

10 return (output)

11 FindFirst h ∈ H such that h[1] � g
12 i := h[2]
13 if i = 0 then
14 return (0)

15 else
16 return (FindTerm(S, di(π), di(g)))

rough) bounds, we conclude that we need to call FindTerm recursively at most d!nd+1

times. Within each call, if H = [], we loop first over all i ∈ [1, length(g) + 1] (≤ d+ 2

values), and then over all j ∈ g[i] (≤ n values). On the other hand, if H 6= [], we need

to look through some fixed number of possible hs (making ≤ n comparisons each time)

to find the first one with h[1] � g, and then make a single recursive call.

Notice that this will not run in polynomial time if S is not finite. In particular,

suppose that S contains just one downfix of length m for each positive integer m.

Then, we can enumerate the permutations of length n in the class described by S by

using the partial scheme of consisting of the n downfixes with length ≤ n. While there

are very few downfixes, each one comes with many gap vectors; in particular there are

O
(
(
n

2
)
n
2
)

gap vectors corresponding to the downfix of length n
2 , and so we must call

FindTerm recursively exponentially many times.

2.2.3 Automatic Scheme Discovery

Of course, a scheme is only useful if we can find it in the first place. Given some downfix

π, the idea is to test every possible gap condition h to see if it either guarantees
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a forbidden pattern or has some element r which is FS-reducible for all gap vectors

satisfying h. Once we find such an h, we know how to reduce π whenever its gap vector

satisfies h, so for future h′, we only need to find r which is FS-reducible for all gap

vectors satisfying h′ and failing to satisfy h (or have h′ guarantee a forbidden pattern).

The following proposition, based on Proposition 6.2 from [23], lets a computer verify

that r is FS-reducible for all gap vectors satisfying h and not satisfying h1,h2, . . . ,hk

by checking only a finite number of gap vectors. Note that ||B||∞ is the length of the

largest element of B and ||g||1 is the sum of the elements of g.

Proposition 2.2.4. Let B be a set of forbidden patterns, π be a downfix, and

h,h1,h2, . . . ,hk be gap conditions. Suppose that

|Z(B;π; g)| = |Z(B; dr(π); dr(g))|

for all g with ||g||1 ≤ ||B||∞ − 1 + ||h||1 which satisfy h but fail to satisfy any of

h1,h2, . . . ,hk. Then the equality holds for all g which satisfy h but fail to satisfy any

of h1,h2, . . . ,hk.

Proof. Choose some g satisfying h and no other hi. It is clear that |Z(B;π; g)| ≤

|Z(B; dr(π); dr(g))| always holds since each permutation in Z(B;π; g) can have the

downfix element r removed to yield a distinct permutation in Z(B; dr(π); dr(g)).

To see that ≥ also holds, fix g satsifying h but not h1,h2, . . . ,hk. Our strategy

is to show that if there is any σ 6∈ Z(B;π; g) such that removing the downfix element

r gives a permutation in Z(B; dr(π); dr(g)), then there is such a σ corresponding to a

small gap vector.

Consider a permutation σ ∈ Y (π,g) but not in Z(B;π; g); that is a permutation

with downfix π and corresponding gap vector g which contains a pattern of B. Suppose

further that removing the r in the downfix of σ eliminates the forbidden pattern so that

the resulting permutation is in Z(B; dr(π); dr(g)). Choose an occurrence of a pattern

b ∈ B in σ, and suppose it uses the elements σi1 , σi2 , . . . , σik (where k ≤ ||B||∞). Form

σ′ by removing from σ all the elements which do not participate in this pattern; since

at least one element from the pattern (r) came from the downfix, we have at most

||B||∞ − 1 elements not in the downfix.
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Up until this point, the proof has been identical to the proof of Proposition 6.2 in

[23], but now we need to ensure that σ′ has a gap vector g′ � h. This can be done

by replacing the elements of σ which ensured that g � h; in the worst case we have

removed all the elements of σ which lay in gaps with positive minimum sizes, and so

we need to replace ||h||1 elements. Altogether, σ′ has ≤ ||B||∞ − 1 + ||h||1 elements

following its prefix.

To complete the proof, we note that by construction σ′ has gap vector g′ satisfying

||g′||1 ≤ ||B||∞−1+ ||h||1. Also by construction, g′ satisfies h, and since g′ � g, it also

fails to satisfy any of h1,h2, . . . ,hk. Finally, when the r in the downfix is removed, σ′

ceases to contain any pattern of B.

There are two ways to possible good outcomes when considering a potential gap

condition: some downfix element is deletable for all gap vectors satisfying the gap

condition or all gap vectors satisfying the gap condition are nonviable. Proposition

2.2.4 shows how to check for the first good outcome, and checking for the second is

even easier. Since h is a gap vector satisfying itself, it must be nonviable if all gap

vectors satisfying it are nonviable. Conversely, if some other gap vector is viable,

then there exists σ ∈ Z(B, π,g) for g � h, and removing elements from σ will give

σ′ ∈ Z(B, π,h). Therefore, it is enough to check if Z(B, π,h) is empty.

We can now precisely describe how to determine if a downfix has a reduction rule.

Algorithm 2 inputs a set B of forbidden patterns, a downfix π, and a maximum l1 norm

for gap conditions l. Let Comp(i,m) be the set of nonnegative, length-m vectors whose

components sum to i.

There is a subtlety here in that the order in which we choose h ∈ gap restricts

matters. It may be that there is a way to reduce π whenever its gap vector satisfies

h1 and doesn’t satisfy h2, but not when it satisfies h1 and h2. Therefore, we could

miss a reduction rule if we consider h1 before h2. As a result, after every new addition

to the reduction rule Algorithm 2 is building, we have to start over and consider every

potential h again to be sure that we find every possible reduction rule.

Now that we have an algorithm to see if a particular downfix is FS-reducible, we
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Algorithm 2: HasReductionRule

1 k := length (π)

2 gap restricts :=
⋃l
i=0 Comp (i, k + 1)

3 used gap restricts := {}
4 partial reduction := []
5 for h ∈ gap restricts\used gap restricts do
6 if Z(B, π,h) = ∅ then
7 append

[
h, 0
]

to partial reduction
8 used gap restricts := used gap restricts ∪ {h}
9 go to(5)

10 else
11 for i := 1 to k do
12 if |Z(B, π,g)| = |Z(B, di(π), di(g)| for all g ∈ {x : ||x||1 ≤

||B||∞ + ||h||1 − 1, x � h, x 6� h′ for all h′ ∈ used gap restricts then
13 append

[
h, i] to partial reduction

14 used gap restricts := used gap restricts ∪ {h}
15 go to(5)

16 if [0, 0, . . . , 0] ∈ used gap restricts then
17 return (partial reduction)

18 else
19 return ([π, []])

can describe the overall algorithm HasScheme. This algorithm inputs a set of forbid-

den subpatterns B, a maximum depth M and a maximum l1 norm for gap condi-

tions l. This is a recursive algorithm, and so it also inputs three sets partial scheme,

downfixes reduced and downfixes needed to keep track of the rules found so far, the

downfixes which have reduction rules, and the downfixes that need reduction rules re-

spectively. In the initial function call, partial scheme := ∅, downfixes reduced := ∅,

and downfixes needed := {[]}. Pseudocode is given in Algorithm 3.

We conclude this section with a caveat regarding the performance of flexible schemes.

In the next section we will show that flexible schemes provide polynomial-time enumer-

ation for any permutation class with a finite traditional scheme or a regular insertion

encoding, and many other classes besides. However, there is no free lunch. Compared

with regular insertion encodings, enumeration is much slower because flexible schemes

simply do not recognize the underlying C-finite structure of the enumeration sequences

they produce. As a result, instead of enumeration in linear time, we have to settle for
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Algorithm 3: HasScheme

1 k := length (π)
2 if downfixes needed = ∅ then
3 return (partial scheme)

4 for π ∈ downfixes needed do
5 new rule := HasReductionRule (B, π, l)
6 if new rule[2] 6= [] then
7 partial scheme := partial scheme ∪ {new rule}
8 downfixes reduced := downfixes reduced ∪ {π}
9 if new rule[2] > 0 then

10 downfixes needed := downfixes needed ∪ {dnew rule[2](π)}

11 else if k = M then
12 return (FAIL)

13 else
14 partial scheme := partial scheme ∪ {new rule}
15 downfixes reduced := downfixes reduced ∪ {π}
16 downfixes needed := downfixes needed ∪ {fi(π) : 0 ≤ i ≤ k}

17 downfixes needed := downfixes needed\downfixes reduced
18 return (HasScheme

(B,M, l, partial scheme, downfixes reduced, downfixes needed))

enumeration in O(nd+2) time. Compared to traditional schemes, meanwhile, flexible

schemes may require much longer gap conditions, and so may be more difficult to build.

With traditional schemes, we need only consider gap conditions of size ≤ ||B||∞ − 1,

and so it is reasonable to simply try all possible gap conditions. Here, we may need

much longer gap conditions, and so we must impose an artificial limit on the ones we

will consider. In practice, though, this seems to be only a minor disadvantage (see

Section 2.3).

2.2.4 Sufficient Conditions for Flexible Schemes

For some automatic enumeration algorithms, we know precisely when they will succeed.

As noted earlier, permutation classes have regular insertion encodings if and only if

they contain finitely many vertical alternations. Enumeration schemes have proven

more difficult to analyze, however. For all but a handful of special cases, we can only

conclude that a finite enumeration scheme exists when we find one, and we can only

conjecture that one does not exist when we do a lot of work and still fail to find one.
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In this section, we prove that finite flexible schemes exist whenever a finite traditional

scheme or regular insertion encoding does.

First, we show that every downfix which is ES-reducible is also FS-reducible. As

defined in [23], a downfix is ES-reducible if and only if there exists r such that for all

g either |Z(B, π,g)| = 0 or |Z(B, π,g)| = |Z(B, dr(π), dr(g))|.

A downfix is FS-reducible, meanwhile, if and only if there exists a finite list of gap-

conditions h1,h2, . . . ,hk with hk = [0, 0, . . . , 0] and a corresponding list of integers

r1, r2, . . . rk (where each integer is in {0, 1, . . . , |π|}) such that for all g, if i is chosen

minimally so that g � hi, then

|Z(B, π,g)| =


0 if ri = 0

|Z(B, dri(π), dri(g))| otherwise

We claim that if a downfix is ES-reducible, then that downfix is also FS-reducible.

As noted in [23], the set {g : |Z(B, π,g)| 6= 0} is a lower order ideal in the lattice N|π|+1

and has a finite basis h1,h2, . . . ,hk such that |Z(B, π,g)| = 0 if and only if g � hi

for some i. Therefore, we can simply use these hs along with hk+1 = [0, 0, . . . , 0] and

(ri)
k+1
i=1 where ri = 0 for i ≤ k and rk+1 = r to fulfill the conditions for FS-reducibility.

Next, we show that a regular insertion encoding also guarantees a finite flexible

scheme.

Theorem 2.2.5. Let B be a set of forbidden patterns, and suppose the class of permu-

tations avoiding B has a regular insertion encoding. Then, that class also has a finite

flexible scheme.

Proof. Recall that the permutation classes with regular insertion encodings are exactly

those with finitely many vertical alternations. For such a class, we can find k such that

no vertical alternation in the class is longer than 2k, and so, for every downfix π, any

gap vector g with k+1 positive entries is nonviable (because every σ ∈ Y (π,g) contains

as a subsequence a vertical alternation of length 2k + 1).

Fix some sufficiently long π; our strategy is as follows. Our first gap conditions are

the ones with k + 1 1s and all other entries 0. As noted earlier, any vector satisfying
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one of these conditions is nonviable, and so we now only need to consider gap vectors

with at most k positive entries. We next show that every gap condition h consisting

of k 1 entries and (length(h)− k) 0 entries has an element r which is FS-reducible for

every g satisfying h. Then, for every gap condition h′ consisting of (k−1) 1 entries and

(length(h)− k + 1) 0 entries, we find an r which is FS-reducible for every g satisfying

h′ and not satisfying any of the earlier h with k 1 entries. We continue in this way

until we have found an r which is FS-reducible for every g satisfying [0, 0, . . . , 0] but

not satisfying any h which contains a 1. Every g with j positive entries satisfies an h

with j 1 entries but not any h with more than j 1 entries, and so this will show that π

is FS-reducible.

Let π be a downfix and h be a gap condition with k ones. Consider some element

i of π, and suppose it is not FS-reducible. Then, there exists some σ with downfix π

and gap vector g � h which contains a pattern of B, but which does not contain such

a pattern when i is removed. Furthermore, by Proposition 2.2.4 we can assume that

||g||1 ≤ ||B||∞ − 1 + k. Following Vatter in [24], we say that σ witnesses i. Note that i

is present in every occurrence in σ of every pattern of B, and so σ can witness at most

||B||∞ elements i.

Now, we just need to show that only finitely many σs can witness elements. Since

g � h but has no more than k positive entries, all entries of g are 0 except for the

k which h forced to be positive. Thus, there are finitely many possible gs which can

provide witnesses (the precise number is the number of ordered integer partitions of

numbers less than or equal to ||B||∞ − 1 + k into k parts). For some fixed g there

are ||g||1! possible permutations σ with downfix π and gap vector g. Therefore, only a

fixed number of downfix elements can be witnessed, and this number is independent of

the length of π. So, we can take π large enough, and there will be a downfix element

which is not witnessed and hence is FS-reducible.

At this point, we have shown that for all sufficiently long π and gap conditions h

with k ones, there exists an element r which is FS-reducible for every viable g � h.

The proof is essentially the same for any j < k, but we will write it out anyway for the

sake of completeness.
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Let π be a downfix and h be a gap condition with j ones for some 0 ≤ j < k.

Consider some element i of π, and suppose it is not FS-reducible. Then, there exists

some σ which contains a pattern of B, but which does not contain such a pattern when

i is removed. This σ has downfix π and gap vector g satisfying h but not satisfying h′

for any h′ with more than j positive entries. Again Proposition 2.2.4 lets us assume

that ||g||1 ≤ ||B||∞ − 1 + j. Also as before, σ can witness at most ||B||∞ elements i.

We know that all entries of g are 0 except for the j which h forced to be positive

(otherwise, g would satisfy some other h′ with more 1s). Again, this means that only

finitely many gs can provide witnesses, and each g provides at most ||g||1! witnesses.

Thus, if π is large enough, there is a downfix element which is FS-reducible. As noted

at the end of the second paragraph of this proof, that is enough to show that π is FS-

reducible. Since this is true for all sufficiently large π, a finite flexible scheme exists.

While Theorem 2.2.5 shows that a finite scheme does exist, it could, in principle,

be extremely deep and thus practically impossible to find. In our experiments recorded

in Section 2.3, though, we considered 48 permutation classes with a regular insertion

encoding and found finite flexible schemes for all but 3 of them.

2.2.5 Maple Implementation

The algorithms described in this section have been implemented in the Maple pack-

age Flexible Scheme, available at the author’s website. To use the package, down-

load and save this text file. Then, open a Maple worksheet and run the command

read ‘Flexible Scheme.mpl‘;. To display the two main functions (HasScheme and

FindTerm), call the help function by running the command Help();, and then to learn

more about a function, say HasScheme, call help again with HasScheme as its argument.

The function HasScheme takes four arguments. The first is the set of forbidden

subpatterns that define the permutation class it is trying to find a scheme for. The

second is the maximum depth it will search, if it cannot reduce the downfixes at this

depth, then it will give up. The third argument is the maximum gap size, that is

the largest l1 norm we allow putative gap restrictions to have. The final argument is

https://sites.math.rutgers.edu/~yb165/Flexible_Scheme.mpl
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a boolean called quick fail which, when set to true, will cause HasScheme to look for

irreducible downfix in a depth-first manner. If no scheme of sufficiently small depth

exists, this strategy provides a substantial speed-up in proving that no such scheme

exists. If a scheme is found, HasScheme returns it, and if no scheme is found, HasScheme

returns the reduction rules that it was able to find along with the downfixes it was unable

to reduce.

The second function SeqS takes two arguments. The first is a scheme describing a

permutation class, and the second is an integer n. The function returns the nth term

of the enumeration sequence of the permutation class.

2.3 Empirical Results

We tried to find regular insertion encodings, traditional schemes, and flexible schemes

for several different permutation classes. In particular we looked at the avoidance classes

of pattern sets B where B consisted of either a single pattern of length 3, 4, or 5, a

pair of patterns of length 3, a pair of patterns of length 4, or a pattern of length 4 and

another of length 5.

For each of these possible pattern lengths, Table 2.1 shows how many classes have

regular insertion encodings, how many have finite traditional schemes, how many have

finite flexible schemes, and how many of those with finite flexible schemes did not have

either a regular insertion encoding or a finite traditional scheme. For finding regu-

lar insertion encodings, we used Vatter’s package InsEnc from [24], for finding tradi-

tional schemes we used both Zeilberger’s package VATTER from [30] and Vatter’s package

WILFPLUS from [23], and for finding flexible schemes we used our own Flexible Scheme.

While we can safely conclude that we found regular insertion encodings whenever

they exist, the same is not true of schemes. When finding traditional schemes using

WILFPLUS, we only considered downfixes of length ≤ 8; it is conceivable that finite

schemes exist, but simply require longer downfixes, and so we did not find them. When

finding traditional schemes using VATTER and flexible schemes using Flexible Scheme,

we only considered downfixes of length ≤ 8 and gap conditions with l1 norm ≤ 2. In
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addition, if we could not determine whether an avoidance class had a finite scheme after

36 hours of computation, we recorded it as not having a scheme.

Because of these constraints, it is conceivable that either InsEnc or WILFPLUS

could have found a regular insertion encoding or a finite scheme for some class that

Flexible Scheme failed to find one for. In practice, this happened for three of the

avoidance classes we considered (all of which were avoiding a length 4 and length 5

pattern).

Table 2.1: Empirical Results

Pat length1 Sym Classes2 Ins. Enc. ES FS New with FS

[3] 2 0 2 2 0

[4] 7 0 2 2 0

[5] 23 0 2 2 0

[3], [3] 5 5 5 5 0

[4], [4] 56 13 33 44 9

[4], [5] 434 30 112 173 59

The permutation classes avoiding two length four permutations have been particu-

larly well studied by previous authors. Generating functions are known for all but three

of them, and these are conjectured not to have any D-finite generating functions in [2].

Two of these (avoiding {4321, 4231} and {4312, 4123}) have finite traditional schemes,

and the remaining one (avoiding {4231, 4123}) has a finite flexible scheme. As indi-

cated in Table 2.1, 12 of the 56 symmetry classes lack finite flexible schemes as far as

we can tell. These are the classes avoiding {1234, 3412}, {1324, 2143}, {1324, 3412},

{1324, 2341}, {1324, 4231}, {1324, 2413}, {1324, 2431}, {1342, 1423}, {1342, 2413},

{1432, 2413}, {2143, 2413}, and {2413, 3142}. The interested reader can find links to

the enumeration sequences and generating functions of all of these avoidance classes at

[27].

1[n], [m] refers to classes avoiding one pattern of length n and one of length m, [n] refers to patterns
avoiding one pattern of length n

2Every permutation class has up to 8 symmetries given by inverting, reversing, and complementing
its patterns. Every class has the same enumeration sequence as its symmetries, so we really only care
about the number of symmetry classes which can be enumerated, not the total number of permutation
classes
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2.4 Necessary Conditions for Schemes

We next consider when we can safely give up on finding a traditional enumeration

scheme (unfortunately the results do not yet extend to flexible schemes). While a few

pattern avoidance classes have been proven to lack finite enumeration schemes (for

example {1234, 4231} and {2413, 3142} in [23]), there is in general no way to tell if a

class has a finite scheme without simply trying to find one and eventually giving up.

Here, we show that if 12 . . . k is ES-irreducible for sufficiently large k (k = 4 is sufficient

in some cases of interest), then no finite traditional scheme exits.

Before proving our result, we need to introduce a new (but standard) definition:

an interval of a permutation π is a set of indices I such that both I and {πi : i ∈ I}

are contiguous. An increasing interval, then, is simply an interval where πi < πj ⇐⇒

i < j for all i, j ∈ I. Sometimes, we will abuse this definition by referring to the

subpermutation of π whose elements have indices in I as an interval as well.

Example 2.4.1. Consider the permutation 51243. Its intervals are

∅, {1}, {2}, {3}, {4}, {5}, {2, 3}, {2, 3, 4, 5} and {1, 2, 3, 4, 5}. Its increasing inter-

vals are ∅, {1}, {2}, {3}, {4}, {5}, and {2, 3}.

Note that a downfix π is ES-irreducible for a set of patterns B if and only if for each

i ∈ π there exists gi satisfying the following conditions:

Conditions 1.

1. Z(B, π,gi) 6= ∅.

2. There exists σ ∈ Y (π,gi)\Z(B, π,gi) such that every occurrence in σ of a pattern

in B involves the element i.

By Proposition 6.2 in [23], we can further assume that ||gi||1 ≤ ||B||∞ − 1.

The idea behind the following two proofs is simple: if the longest increasing interval

in a pattern has length l, then any occurrence of that pattern can use at most l elements

from any increasing interval in a permutation. Therefore, if that permutation has an
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increasing interval with more than l elements, one of them can be ignored. Conditions

1 essentially require us to find two permutations for a given downfix element and gap

vector; one to witness that the gap vector is viable, and one to witness that the element

is not deletable. If we have these two permutations for each element of the downfix

12 . . . k − 1, and they have sufficiently long increasing intervals, we can turn them into

witnesses for each element of the downfix 12 . . . k by extending their increasing intervals

by a single element.

Before giving an actual theorem, we motivate it with the following example:

Example 2.4.2. Consider the pattern set B = {3241, 4132}), and note that 1234 is ES-

irreducible for the set of patterns (this can be checked using WILFPLUS, for instance).

To show that 12345 is also ES-irreducible, we need to show that Conditions 1 hold for

each of the five elements; in this example we will show that they hold for 1. Notice

that, because 1234 is ES-irreducible, there exists a g′1 satisfying Conditions 1 for the 1

in 1234, for instance [1, 1, 0, 0, 0] will do the job, since 516234 ∈ Z(B, 1234, [1, 1, 0, 0, 0]),

and 615234 ∈ Y (1234, [1, 1, 0, 0, 0])\Z(B, 1234, [1, 1, 0, 0, 0]) has three 4132 patterns all

using the 1 and no 3241 patterns.

Now, we’ll show that g1 = [1, 1, 0, 0, 0, 0] satsifies Conditions 1 for the 1 in 12345.

Take 516234, increase all elements larger than 1 by 1, and insert a 2 between the new 7

and 3 to get 6172345, and note that this permutation is in Z(B, 12345, [1, 1, 0, 0, 0, 0]).

Similarly, take 615234, increase all elements larger than 1 by 1 and insert a 2

between the new 6 and 3 to get 7162345, and note that this permutation is in

Y (12345, [1, 1, 0, 0, 0, 0])\Z(B, 12345, [1, 1, 0, 0, 0, 0]), and the four 4132 patterns all use

the 1 (and there are still no 3241 patterns).

Lemma 2.4.3. Let B be a set of patterns. Suppose that the longest increasing interval

of a pattern in B has length l. Then, two related statements hold:

1. Suppose that g′ satisfies Conditions 1 for an element i − 1 of the downfix π′ =

12 . . . k−1. Suppose further that g′j , g
′
j+1, . . . g

′
j+l−2 are all 0 for some j ≥ 2 where

i > j + l − 1. Form g by inserting a 0 into g′ immediately before entry g′j. Then

g satisfies Conditions 1 for the element i of π = 12 . . . k.
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2. Suppose that g′ satisfies Conditions 1 for an element i of the downfix π′ =

12 . . . k − 1. Suppose further that g′j , g
′
j+1, . . . g

′
j+l−2 are all 0 for some j > i + 1

where j + l− 1 ≤ k. Form g by inserting a 0 into g′ immediately before entry g′j.

Then g satisfies Conditions 1 for the element i of π = 12 . . . k.

Proof. We begin with the first statement. There is a bijection F between permutations

σ′ ∈ Y (π′,g′) and permutations σ ∈ Y (π,g) given by inserting a copy of the element

j − 1 immediately before the existing j − 1 ∈ σ′ and then increasing all elements of σ′

greater than or equal to j−1 (except for the new copy) by one. Choose σ′ ∈ Z(B, π′,g′),

let a =
∑j−1

p=1 g
′
p, and note that

{
a + j − 1, a + j, . . . , a + j + l − 2

}
is an increasing

interval of σ′. Let σ = F (σ′) (now I =
{
a+j−1, a+j, . . . , a+j+ l−1

}
is an increasing

interval of σ), and suppose by way of contradiction that σ 6∈ Z(B, π,g). There must be

an occurrence of a pattern of B in σ which uses j, but j is in I which has length l+1, and

this pattern can use at most l elements in I. Since it doesn’t matter which l elements

are used, the pattern can just as well be formed with the l elements of the increasing

interval that aren’t j. Thus, this pattern already existed in σ′ and σ′ 6∈ Z(B, π′,g′).

This contradicts our choice of σ′, so we conclude that σ ∈ Z(B, π,g).

Next, we verify that g satisfies the second of Conditions 1 for i. Let σ′ ∈

Y (π′,g′)\Z(B, π′,g′) be the permutation promised by the second condition, and set

σ = F (σ′). We immediately have that σ ∈ Y (π,g)\Z(B, π,g). Consider some occur-

rence p1 in σ of a pattern in B. Again, let I be the increasing interval of length l + 1

beginning with j− 1. As noted in the preceding paragraph, this occurrence p1 contains

≤ l elements of I, and, so we can find an occurrence p2 of the same pattern using all the

same elements of σ outside of I, but not using j − 1. This occurrence p2 corresponds

to an occurrence p3 of the same pattern in σ′ which must have used i − 1 (because σ′

satisfies Conditions 1 for i − 1). When we turn σ′ into σ, we increase all elements at

least as large as j − 1 by 1; since i− 1 ≥ j − 1 it is increased to i. Therefore, p2 used i,

and so did p1 since i lies outside I and p1 and p2 use all the same elements except for

the ones with indices in I. Thus, σ satisfies Conditions 1 for i.

The proof of the second statement is essentially the same, except now I falls after
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i.

Proposition 2.4.4. Let B be a set of patterns whose longest increasing interval has

length l. Suppose that
⌊
k/2
⌋
− 1 ≥ (l − 1)(||B||∞ − 1) + l, and π′ = 12 . . . (k − 1) is

ES-irreducible for B. Then π = 12 . . . k is also ES-irreducible for B.

Proof. We claim that π is ES-irreducible for B, so we will find g satisfying Conditions 1

for every i ∈ π. Choose such an i ∈ π, and suppose i ≥ bk/2c+ 1. Let π′ = 12 . . . k− 1;

by our hypothesis, π′ is ES-irreducible for B, and so there exists g′ which satisfies

Conditions 1 for i− 1. Now, π′ has at least bk/2c− 1 elements less than i− 1, which by

assumption is at least (l − 1)(||B||∞ − 1) + l. Since ||g′||1 ≤ ||B||∞ − 1, even if all the

positive entries in g′ are placed before i−1, we can find at least l entries of π′ occurring

before i − 1 such that the l − 1 g′j corresponding to the gaps between them are all 0.

Thus the conditions of Lemma 2.4.3 part 1 are satisfied, and if we form σ as per the

lemma, we find that σ satisfies Conditions 1 for i.

Now suppose that i ≤ bk/2c. Then, π′ has at least bk/2c−1 elements greater than i,

so we can find at least l entries of π occurring after i such that the l−1 g′j corresponding

to the gaps between them are all 0. Thus the conditions of Lemma 2.4.3 part 2 are

satisfied, and if we form σ as per the lemma, we find that σ satsifies Conditions 1 for

i.

This result shows that as long as 12 . . . k is irreducible for k large enough (when

l = 1, k = 4 will do), then B has no finite traditional scheme. A similar argument shows

that the same is true if k . . . 21 is irreducible (and thus that {1423, 2314} from Example

2.2.1 has no such scheme). While we have not been able to prove the corresponding

result for flexible schemes, we suspect that it is also true.

2.5 Flexible Schemes For Covincular Patterns

The purpose of this section is to extend the work of Baxter and Pudwell [7] on enumer-

ation schemes for vincular patterns to flexible schemes. A vincular, or dashed, pattern

is much like a classical pattern, except in an occurrence of a vincular pattern some of
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the permutation elements participating in the pattern may be required to occur con-

secutively in the permutation. In Section 4 we talk more about vincular patterns, but

in this section we are actually interested in a related object: what Bean et al. [9] call

covincular patterns.

The reason for this is that the previous authors count with prefix schemes and we

count with downfix schemes, and so we are essentially counting the inverses of the

permutations that they count. The inverse of a vincular pattern is not another vincular

pattern, but rather a covincular patterns. This is a pair τ = (σ,X) where σ is the

underlying permutation which must be avoided and X indicates which elements in an

occurrence of σ must be consecutive values (rather than having consecutive indices like

a vincular pattern). Similarly, a spaced permutation is a pair ρ = (π, Y ) where π is the

underlying permutation and Y indicates which elements of π should not be treated as

occurring consecutively. If X = ∅, then τ is just an ordinary pattern, and if Y = ∅,

then ρ is an ordinary permutation.

Containment of covincular patterns is slightly more complicated than classical con-

tainment. Let π = π1π2 . . . πn and σ = σ1σ2 . . . σk be permutations. For π to contain

the covincular pattern (σ,X), we first must find a classical occurrence of σ in π, i.e.

we need i1 < i2 < · · · < ik such that πi1πi2 . . . πik has the same relative order as σ

(ignoring dots). This occurrence must have the further property that for all σl, σm with

σl + 1 = σm, if σl ∈ X, then πim is one larger than πil and πil /∈ Y .

Finding a downfix of a spaced permutation is done more or less how one would

expect. A downfix of (π, Y ) is a pair (π′, Y ′) where π′ is the subpermutation of π

consisting of elements ≤ l for some integer l, and Y ′ is the subset of Y whose elements

are no greater than (the same integer) l.

We define S(B, π,g) similarly to how we defined Z(B, π,g). Just like Z(B, π,g),

it is the set of permutations with downfix π and corresponding gap vector g, the only

difference is that both π and the elements of S(B, π,g) are spaced permutations.
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Example 2.5.1.

S({(123, {2})}, (21, {1}), [0, 1, 1]) ={
(2413, {1}), (2413, {1, 3}), (2413, {1, 4}),

(2413, {1, 3, 4}), (2314, {1, 3}), (2314, {1, 3, 4})
}

Notice that (2314, {1, 3}) avoids (123, {2}) because, although 234 is an occurrence of

123 and are all consecutive values, we pretend that there is some placeholder value

between 3 and 4 (since 3 ∈ {1, 3}). Since the 2 and 3 in any occurrence of (123, {2})

can’t have any values between them, this is not a valid occurrence.

As with classical pattern avoidance, the key operation here will be deleting a downfix

element to get a smaller permutation. Unlike with classical pattern avoidance, though,

when we delete a downfix element, we need to add a placeholder element to Y to mark

where the element used to be, while retaining all previous placeholders as well. Let

dr((π, Y )) = τ ′ = (π′, Y ′). We define π′ = dr(π) (we abuse notation by treating dr

as a function both on classical and spaced permutations), and Y ′ = {y : y ∈ Y, y <

r} ∪ {y − 1 : y ∈ Y, y ≥ r} ∪ {r − 1}. (Notice that if r = 1, then we add the element

0 to Y ′ which has no effect on whether a permutation contains τ ′; this makes sense

since 1 can’t prevent a pattern by separating two pattern elements, and so we don’t

actually need to add a placeholder when deleting it.) Since gap vectors are the same

for spaced permutations as for classical ones, we do not need to redefine dr(g). Lemma

2.5.2 shows that we cannot create a new pattern when we delete a permutation element

in this way.

Lemma 2.5.2. Suppose (π, Y ) is a permutation which does not contain the pattern

(σ,X). Then, dr((π, Y )) does not contain (σ,X) either.

Proof. Let (π′, Y ′) = dr((π, Y )). Suppose (π′, Y ′) contains (σ,X), and suppose this oc-

currence uses the elements π′i1 , π
′
i2
, . . . , π′ik . These elements correspond to the elements

πj1 , πj2 , . . . , πjk of π (note that πjx 6= r for all x), and these elements form a (classical)

occurrence of σ. Since (π, Y ) doesn’t contain (σ,X), we can find πjl , πjm corresponding

to σl, σm such that σl + 1 = σm, σl ∈ X and either πjl + 1 < πjm or πjl ∈ Y .
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First, suppose πjl + 1 < πjm . Either π′jl + 1 < π′jm , in which case we didn’t actually

have an occurrence of (σ,X) in (π′, Y ), or πjl = r − 1 and πjm = r + 1. In this case,

Y ′ contains πjl = r − 1, and so again we didn’t actually have an occurrence of (σ,X).

Next, suppose that πjl ∈ Y . If r < πjl , then πjl − 1 = π′jl ∈ Y
′, and if r > πjl , then

π′jl = πjl ∈ Y and so again we didn’t actually have an occurrence of (σ,X).

We can now proceed much as we did in Section 2.2.3. As before, we need to know

two things: when we can delete downfix elements, and when every permutation with a

particular downfix and gap vector contains a forbidden pattern.

2.5.1 Deleting Downfix Elements

There is a simple bijection Fr between S(∅, ρ,g) and S(∅, dr(ρ), dr(g)) given by deleting

the r in the permutation’s downfix, and adding an appropriate place holder. Let fr

be the restriction of Fr to S(B, ρ,g); in the classical case, it was obvious that fr was

an injection into S(B, dr(ρ), dr(g)); in the covincular case, this is a consequence of

Lemma 2.5.2. Sometimes, fr is not just an injection, but is a bijection; we would like

some analogue of Proposition 2.2.4 which tells us when that is the case. Luckily, this

proposition is easily adapted to our new situation.

Proposition 2.5.3. Let B be a set of forbidden patterns, ρ = (π, Y ) be a downfix, and

h,h1,h2, . . . ,hk be gap conditions. Suppose that

|S(B, ρ,g)| = |S(B, dr(ρ), dr(g))|

for all g with ||g||1 ≤ ||B||∞ − 1 + ||h||1 which satisfy h but fail to satisfy any of

h1,h2, . . . ,hk. Then the equality holds for all g which satisfy h but fail to satisfy any

of h1,h2, . . . ,hk.

Proof. Choose some g satisfying h and no other hi. The observation in the previous

paragraph is enough to show that |S(B, ρ,g)| ≤ |S(B, dr(ρ), dr(g)|, so we just need to

show the reverse inequality.

Suppose that there is some spaced permutation (σ,X) ∈ S(∅, ρ,g), but which isn’t

in S(B, ρ,g) because it contains some pattern of B. Suppose further that when the
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r in the downfix is deleted (and r − 1 added to X), it ceases to contain any pattern

of B. Choose some occurrence of a pattern b ∈ B in (σ,X), and suppose that it

uses the elements σi1 , σi2 , . . . , σik (where k ≤ ||B||∞). Form σ′ by iteratively finding

non-downfix elements s which do not participate in this occurrence and which are not

necessary to ensure that σ′ has a gap vector satisfying h, and then deleting these

elements by replacing (σ,X) with ds((σ,X)). Since there are ≤ ||B||∞ − 1 elements

other than r participating in the forbidden occurrence and ≤ ||h||1 elements needed to

have a gap vector satisfy h, we can delete all by ||B||∞−1+ ||h||1 non-downfix elements

in this way. Reduce the resulting permutation.

At this point, we have a permutation (σ′, X ′) ∈ S(∅, ρ,g)\S(B, ρ,g) with ||g||1 ≤

||B||∞− 1 + ||h||1 where g satisfies h and no other hi. All that remains is to show that

dr((σ
′, X ′)) ∈ S(B, dr(ρ), dr(g)). To do this, notice that we can form dr((σ

′, X ′)) by

first finding dr((σ,X)), which we assumed has no forbidden pattern, and deleting all

the s’s that we deleted from (σ,X) in the previous paragraph. By Lemma 2.5.2 these

deletions cannot create any forbidden pattern, and so dr((σ
′, X ′)) ∈ S(B, dr(ρ), dr(g))

as required.

Strictly speaking, |S(B, ρ,g)| = |S(B, dr(ρ), dr(g))| is not exactly the equality we

want. This is an equality between sets of spaced permutations where placeholders can

occur anywhere, but we actually want an equality between sets of spaced permutations

where placeholders can only occur in the downfix. Precisely, the equality we want is

|R(B, ρ,g)| = |R(B, dr(ρ), dr(g))| where R(B, ρ,g) is the set of spaced patterns (σ,X)

with downfix ρ = (π, Y ) and corresponding gap vector g such that X = Y . Fortunately,

the equality we have is stronger than the one we actually want.

Corollary 2.5.4. Under the same hypotheses as Proposition 2.5.3, we also have that

|R(B, ρ,g)| = |R(B, dr(ρ), dr(g))|

for all g which satisfy h but fail to satisfy any of h1,h2, . . . ,hk.

Proof. Let ρ = (π, Y ), and by way of contradiction, suppose there is some (σ′, X ′) ∈

R(B, dr(ρ), dr(g)) whose preimage (σ, Y ) under Fr is not in R(B, ρ,g). It follows that
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either (σ,X) 6∈ R(∅, ρ,g) or (σ,X) 6∈ S(B, ρ,g). That (σ,X) ∈ R(∅, ρ,g) is clear

simply from the definition of R, and that (σ,X) ∈ S(B, ρ,g) follows from Proposition

2.5.3. Therefore, (σ,X) ∈ R(∅, ρ,g) ∩ S(B, ρ,g) = R(B, ρ,g) and we have obtained a

contradiction.

Notice that while the conclusion of Proposition 2.5.3 implies that of Corollary 2.5.4,

the converse is not true. This opens up the possibility that we could verify Proposition

2.5.3 for just some subset of permutations in S(B, ρ,g) and find a condition which is

true more often and which still implies Corollary 2.5.4.

Specifically, we would like to find a subset

S′r
(
B, ρ,h, (hi)

k
i=1

)
⊆

⋃
||g||1≤||B||∞+||h||1−1

S(B, ρ,g)

which contains exactly those spaced permutations resulting from taking a permutation

in R(B, ρ,g) (for any g) and performing the deletions described in the proof of Propo-

sition 2.5.3 to check if r is deletable for permutations with gap vectors satisfying h and

not any hi. Our next step is to build such an S′r, based on the containment scenarios

of Baxter and Pudwell [7]. While we do not prove that this S′r is minimal, it is much

smaller than S.

We define S′r
(
B, (π, Y ),h, (hi)

m
i=1

)
to be the set of spaced permutations (σ,X) sat-

isfying the following conditions:

1. (π, Y ) is a downfix of (σ,X).

2. (σ,X) contains an occurrence of a pattern (µ,Z) ∈ B. Let this occurrence be

σi1σi2 . . . σik , it must be that r = σil for some l.

3. The gap vector corresponding to (σ,X) (i.e. g such that (σ,X) ∈ S(∅, (π, Y ),g))

satisfies h but not hi for any i.

4. X contains all elements except possibly those in {1, 2, . . . , |π| − 1} and {σil : µl ∈

Z}. In other words, X contains all elements except the ones that would violate

conditions 1 or 2.

5. (σ,X) is minimal.
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Note that S′r is actually missing some of the spaced permutations resulting from

taking a permutation in R(B, ρ,g) and performing the deletions described in the proof

of Proposition 2.5.3. In particular, condition 4 demands that X contain every element

that it can hold without violating conditions 1 or 2, but some resulting permutations

may have a smaller (or even empty) X. It is enough, though, to check the spaced

permutations with maximal X; we want to know if there is a spaced permutation such

that deleting r erases all occurrences of a forbidden pattern, and if that’s true of a spaced

permutation with more adjacent elements, it is certainly true of a spaced permutation

with fewer adjacent elements.

The following is an example of S′r:

Example 2.5.5.

S′2({(123, {1})}, 21, [1, 0, 0]) =
{

(52341, {3, 4}), (52314, {3, 4}),

(42351, {3, 4}), (42315, {3, 4}),

(52134, {3, 4}), (42135, {3, 4})
}
.

This set is built as follows. The downfix element 2 must participate in a forbidden sub-

pattern, and the only role it can fill in such a pattern is the smallest element. Therefore,

it must be followed by a 3 and then some larger element, and these elements can occur

either before or after the 1 in the downfix. This gives us three options: 2341, 2314,

and 2134. However, these have gap vectors [0, 2, 0], [0, 1, 1], and [0, 0, 2], none of which

satisfy [1, 0, 0], so we need to add an extra element before the 2. This element can’t

be between the 2 and 3, but can either be larger than the 3 and smaller than the 4 or

larger than the 4. This gives us the six permutations 42351, 52341, 42315, 52314, 42135,

and 52134. To find Y for each permutation, we note that 1 6∈ Y because it and 2 are

both in the downfix and 2 /∈ y because it serves as the 1 in a (123, {1}) pattern, but

both 3 and 4 can be in Y .

2.5.2 Guaranteeing Forbidden Patterns

We now can tell when some downfix element r can be deleted from every permutation

in R(B, ρ,g) with g satisfying h but not h1,h2, . . . ,hk. Our next task is to determine
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when R(B, ρ,g) = ∅ for every g satisfying h. Just like how we defined R(B, ρ,g) to be

all (σ,X) ∈ S(B, (π, Y ),g) where X = Y (i.e. contains as few elements as possible),

we can define T (B, ρ,g) to be all (σ,X) ∈ S(B, (π, Y ),g) where X = Y ∪ {|π|, |π| +

1, . . . , |π|+ ||g||1 − 1} (i.e. contains as many elements as possible).

Proposition 2.5.6. Suppose that T (B, ρ,h) = ∅. Then, R(B, ρ,g) = ∅ for all g � h.

Proof. We prove the contrapositive. Choose some (σ,X) ∈ R(B, (π, Y ),g) where g � h.

Form (σ′, X ′) by deleting non-downfix elements from σ until the only non-downfix

elements left are those forced to be present by h. As in the proof of Proposition

2.5.3, put a placeholder element in X ′ for each deletion. The resulting permutation

avoids all the patterns in B by Lemma 2.5.2. Add more elements to X ′ until X ′ =

Y ∪{|π|, |π|+ 1, . . . , |π|+ ||g||1− 1}; adding more elements to X ′ can’t cause to contain

a pattern that it didn’t already, and so (σ′, X ′) ∈ T (B, ρ,h).

Much like Theorem 4 in [7], Proposition 2.5.6 gives only a sufficient condition for

R(B, ρ,g) = ∅. Example 2.5.7 illustrates the non-necessity of the condition.

Example 2.5.7. We will show that R({(312, {2})}, (12, ∅),g) = ∅ for all g � [1, 0, 0]

even though (312, {2}) ∈ T (B, ρ, [1, 0, 0]). It is clear that (312, {2}) ∈ T (B, ρ, [1, 0, 0])

since the 2 in the permutation can’t serve as the 2 in the pattern since there is a

placeholder element between it and the 3.

However, it still holds that R({(312, {2})}, (12, ∅),g) = ∅ for all g � [1, 0, 0]. Choose

some (σ,X) ∈ R(∅, (12, ∅),g) (note that X = ∅). Because g � [1, 0, 0], there is at least

one element of σ greater than 2 preceding the 1. Let σi1 be the smallest such element.

This choice forces σi1 − 1 to occur after the 1, and so σi11(σi1 − 1) forms a (312, {2})

pattern.

2.5.3 Finding a Scheme

Now that we can determine when a downfix element is deletable and when all permu-

tations with a certain downfix and gap vector are non-viable, we are ready to define

the covincular versions of FindTerm, HasReductionRule, and HasScheme. We do so
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in much the same way that we did for classical patterns. In fact, both FindTerm and

HasScheme do not even need to be rewritten. The pseudocode provided in Algorithms 1

and 3 works just as well in the covincular case; all that is necessary is to remember that

π is now a spaced permutation and dr(π) and fi(π) are slightly different when π is a

spaced permutation. Further, HasReductionRule needs only slight modification; specif-

ically Z(B, π,h) in Algorithm 2 needs to be replaced with T (B, π,h) and Z(B, π,g)

and Z(B, dr(π), dr(g)) need to be replaced with S(B, π,g) and S(B, dr(π), dr(g)) re-

spectively.

All these functions are implemented in the Maple package

Flexible Covincular Scheme, available on the author’s website. As with

Flexible Scheme, the main two functions are HasScheme which attempts to

find a enumeration scheme for a set of forbidden patterns and SeqS which uses a

scheme to generate as many terms of the enumeration sequence as the user requests.

Our method of building schemes is a bit different than that of Baxter and Pudwell

[7]. There, the authors don’t add placeholders to downfixes when deleting elements,

but instead check whether deleting an element can introduce a new pattern (we just

check whether deleting an element can eliminate a pattern). Our primary reason for

this difference is that we wanted our framework to be as analogous as possible to our

framework for finding schemes for classical pattern avoidance. Both frameworks have

advantages in terms of which sets of forbidden patterns they can find schemes for; in

fact we found some pattern sets which could be enumerated using existing vincular

schemes but not using flexible ones.

2.5.4 Empirical Results

We tried to find schemes for enumerating the permutations avoiding covincular permu-

tations of length 4 as well as pairs of covincular permutations of length 4. In both cases,

we compared the successes of our new flexible schemes (FS) with existing enumeration

schemes (ES). We allowed both types of schemes to have depth up to 5, and use gap

restrictions with l1 norm up to 2. As Table 2.2 shows, we found that both types of

schemes managed to enumerate the same permutation classes avoiding a single pattern

https://sites.math.rutgers.edu/~yb165/Flexible_Covincular_Scheme.mpl
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of length 4. For pairs of length-4 patterns, flexible schemes were able to enumerate sig-

nificantly more classes than existing schemes, but there were a handful of classes that

flexible schemes couldn’t enumerate even though previous ones could. As in Section

2.3, we record a permutation class as not having a scheme if we couldn’t find on after

36 hours of computation.

Table 2.2: Empirical Results
Pat length Sym Classes ES Only FS Only Both ES and FS Neither ES nor FS

[4] 56 0 0 35 21

[4],[4] 4776 9 269 1649 2849

2.6 Future Work

There are a number of potential avenues for future research. As noted in the intro-

duction, traditional schemes have been extended beyond pattern avoidance in permu-

tations to pattern avoidance in words [19]. We believe that flexible schemes can also

be extended to cover this case just as Section 2.5 extends them to covincular pattern

avoidance.

Another tempting possibility is to unite flexible schemes (or traditional schemes

for that matter) with the structure paradigm exemplified by the TileScope algorithm

[8]. In Section 3, we do this in a special case by attempting to find a scheme for the

permutations that avoid 1423 and then, once we find an ES-irreducible downfix, finding

its structural properties to complete the enumeration. Unfortunately, Section 3 does

this in an ad hoc way which only works for the specific class under consideration. It

would be very interesting to build a general algorithm for many different permutation

classes.

Finally, this section only partially answers Vatter’s original question [23] which

was to build a framework capable of enumerating any permutation class with a finite

enumeration scheme, a regular insertion encoding, or finitely many simple permutations.

While we have made partial progress to an answer the whole question remains open.
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Chapter 3

Permutations avoiding 1423 (and Equivalently 1342)

The permutations avoiding 1342 have the generating function

32x

1 + 20x− 8x2 − (1− 8z)3/2
and are also given by the formula

|Av({1342};n)| = (7n2 − 3n− 2)

2
·(−1)n−1+3

n∑
i=2

2i+1 · (2i− 4)!

i!(i− 2)!
·
(
n− i+ 2

2

)
·(−1)n−i.

These results were originally found by Bóna [12] through a bijection between Av({1342})

and a certain class of labelled trees. Later, the generating function was rederived by

Bloom and Elizalde through a bijection from the permutations in Av({3124}) to specific

board minimal rook placements, and from there to certain Dyck paths [11]. In this

section, we derive a fast recurrence to count the 1342-avoiding permutations in the

style of enumeration schemes.

Like Bloom and Elizalde, we find it more convenient to actually count a different

class of permutations. In our case, we will enumerate permutations avoiding 1423, but

counting one class is equivalent to counting the other since 1423 and 1342 are inverses.

We will find it convenient to talk about permutations with particular downfixes

and index vectors (rather than gap vectors like in Section 2). An index vector gives

the index of each downfix element in the permutation. We define A(B, π, i, n) to be

the set of permutations of length n avoiding the patterns in B with downfix π and

corresponding index vector i. For example, A({123}, 21, [1, 3], 4) = {2413}.

Note that we could equivalently express this set as Z({123}, 21, [0, 1, 1]), and, in fact,

it is simple to translate any set of permutations defined using an index vector to one

defined using a gap vector. The arguments which we will be making, however, are much

more natural when expressed using index vectors, and so we choose that convention.
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3.1 Structure of 1423 Avoiders

We are trying to find |A({1423}, ∅, [], n)|, and we begin with the standard enumeration

scheme trick of separating the permutations into classes by where their 1 element occurs.

Algebraically,

|A({1423}, ∅, [], n)| =
n∑
i=1

|A({1423}, 1, [i], n)|. (3.1)

Next, we separate them further by where their 2 element occurs, and find:

|A({1423, 1, [i], n)| =
n∑

j=i+1

|A({1423}, 12, [i, j], n)|+
i−1∑
j=0

|A({1423}, 21, [j, i], n)|.

The second element of the downfix 21 is ES-reducible, and so we can actually write

|A({1423, 1, [i], n)| =
n∑

j=i+1

|A({1423}, 12, [i, j], n)|+
i−1∑
j=0

|A({1423}, 1, [j], n− 1)| (3.2)

Now it gets tricky, though. Not only is 12 not ES-reducible, there appears to be no

finite traditional (or flexible) scheme for 1423. Luckily, we still know a great deal about

the structure of a permutation with a 12 prefix, as shown in the following observation.

Observation 3.1.1. If π avoids 1423 and has a 12 downfix, then all the elements in π

occurring between the 1 and 2 are smaller than all the elements occurring after the 2.

In fact, much more is true.

Lemma 3.1.2. For all π ∈ A({1423}, 12, [i, j], n) there exists k ≤ i such that

{πk, πk+1, . . . , πj} = {1, 2, . . . , j − k + 1}; that is the j − k + 1 elements between πk

and πj are smaller than all other elements of π.

Proof. We proceed by induction on i. If i = j− 1, then the lemma is trivial. Otherwise

the open interval (i, j) is nonempty. Let πk1 be the first (left-most) element in π which

is less than an element whose index is in (i, j) and let πj1 = max{πl : l ∈ (i, j)}. If

k1 = i, then the lemma follows from Observation 3.1.1, so assume k1 < i. Form π′

by taking the subpermutation of π consisting of πk1 , πj1 , and all πl > πj1 , and then

reducing this subpermutation. Note that π′ is a permutation avoiding 1423 which has a

12 downfix (provided by k1 and j1); let i′ and j′ be the indices of the 1 and 2 elements



39

respectively. Note also that i′ < i, and so the induction hypothesis promises an index

k′ ≤ i′ < i such that the elements of π′ between πk′ and πj′ are smaller than all other

elements of π′.

Let k be the index of the element from π which was reduced to πk′ . We claim that,

in π, every element between πk and πj is smaller than all other elements of π. Suppose

this is not the case, then there exist x ∈ [k, j], y 6∈ [k, j] with πx > πy. If y > j, then

πy > πj1 by Observation 3.1.1, and if y < k then πy > πj1 by the choice of k1 (since

k ≤ k1). Once we have πy > πj1 , we get that πx > πj1 , and so π′ contains elements π′y′

and π′x′ corresponding to both πy and πx respectively with π′x′ > π′y′ . But, x′ ∈ [k′, j′]

and y 6∈ [k′, j′] which contradicts the last sentence of the previous paragraph. Thus,

the lemma holds.

Lemma 3.1.2 suggests dividing a permutation π with a 12 downfix into two pieces:

πdown consisting of the elements with indices in [k, j] and πup consisting of all the others

(reduced so that it is also a permutation). The following lemma establishes conditions

on πdown and πup that guarantee that π will avoid 1423.

Lemma 3.1.3. Let πdown and πup be defined as in the previous paragraph, and let πup′

be the reduced subpermutation of π consisting of all the elements with indices not in

[k + 1, j] (so πup′ has one more element than πup). Then, π avoids 1423 if and only if

πdown and πup′ both avoid 1423.

Proof. The only if direction is easy; πdown and πup are both subpermutations of π, and

so if either contains 1423, π does as well.

To show the if direction, suppose that π contains 1423 and write this occurrence

as πi1πi2πi3πi4 . We claim that either πi1πi2πi3πi4 ∈ πdown, πi1πi2πi3πi4 ∈ πup, or

πi2πi3πi4 ∈ πup and i2 > k. (Note that the element of πup′ corresponding to the k

in π is the smallest element of πup′ and so can replace πi1 as the 1 in the 1423 occur-

rence.)

Suppose that πi1πi2πi3πi4 6∈ πdown and πi1πi2πi3πi4 6∈ πup, it follows that πi1 ∈ πdown

and πi2 ∈ πup. Since πi1πi2πi3πi4 is an occurrence of 1423, we can conclude that

i2, i3, i4 > j, so pii2πi3πi4 ∈ πup, and, since j > k, i2 > k. Thus, πup′ contains 1423.
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3.2 Recurrences for 1423 Avoiders

Combining Lemmas 3.1.2 and 3.1.3 suggests we compute the number of permutations

with a 12 downfix by finding the number of possible πdown and multiplying by the

number of possible πup, which would give the (incorrect) recurrence

|A({1423}, 12, [i, j], n)| =
i∑

k=1

|A({1423}, 1, [i−k+1], j−k)| · |A({1423}, 1, [k], n−j+k)|

(3.3)

A few elements of this recurrence require explanation. The first term represents all

possible πdown; these are 1423-avoiding permutations with 12 downfixes where the 2 is

the final element of the permutation. These permutations have j − k+ 1 elements, but

since we know that the last element must be a 2, we can just ignore it and treat it as a

length j − k permutation. For the second term, we need to count all πup which avoid

1423 even when they are turned into πup′ , i.e. even when a 1 is inserted in the kth

position. Even though the πup only have length n − j + k − 1, and no restrictions on

where their first element can be, we actually count the permutations of length n− j+k

with a 1 in their kth position.

Unfortunately, Equation 3.3 is incorrect because the right-hand side counts permu-

tations once for every k such that the permutation can be separated into πdown and πup

with πdown containing all the elements at most j − k + 1 and πup containing all other

elements. This leads to a lot of double-counting!

To fix this, we will count permutations only once, corresponding to the maximal

k that allows them to be appropriately broken up. If we separate π into πdown and

πup and find that πdown can be broken into two parts where the second part has at

least j − i + 1 elements and all elements in the first part are larger than all elements

in the last part, that would imply that we could have taken just that second part as

πdown and included the first part in πup. In this decomposition πdown starts later in the

permutation, so k is larger.

When a permutation can be broken up in this way we say it is decomposable.

Precisely, we say that a suffix whose elements are all smaller than all the other elements

of the permutation is a small suffix, and a permutation with a proper small suffix of
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length ≥ p is p-decomposable. Similarly, a permutation which is not p-decomposable

is p-indecomposable. This is definition is reminiscent of but not exactly the same as

Bóna’s definition of decomposable in [12].

Now, we can define A({1423}, 12, [i, j], n, p) to be the subset of A({1423}, 12, [i, j], n)

consisting of p-indecomposable permutations. Similarly, A({1423}, 1, [i], n, p) is the

subset of A({1423}, 1, [i], n) consisting of p-indecomposable permutations.

This leads us to the final and correct system of recurrences.

Theorem 3.2.1. The following system of recurrences holds:

|A({1423}, ∅, [], n)| =
n∑
i=1

|A({1423}, 1, [i], n, n)|

|A({1423}, 1, [i], n, p)| =


i−1∑

j=n−p
|A({1423}, 1, [j], n− 1, p)| if p ≥ 2 or (p = 1, n 6= i)

0 otherwise

+


n−p−1∑
j=1

|A({1423}, 1, [j], n− 1, n− j)| if p ≥ 2 or (p = 1, n 6= i)

0 otherwise

+
n∑

j=i+1

|A({1423}, 12, [i, j], n, p− 1)|

|A({1423}, 12, [i, j], n, p)| =
n−p−1∑
k=1

|A({1423}, 1, [i− k + 1], j − k, j − i− 1)|

· |A({1423}, 1, [k], n− j + k, n− j + 1)|

+
i∑

k=n−p
|A({1423}, 1, [i− k + 1], j − k, j − i− 1)|

· |A({1423}, 1, [k], n− j + k, p− j + k)|.

Proof. The first equation is almost identical to the Equation 3.1. Note that

A({1423}, 1, [i], n) = A({1423}, 1, [i], n, n) because a length-n permutation has no

proper suffix of length n.

The second equation is closely related to Equation 3.2. The first sum in Equation

3.2 is exactly the same as the final term in this new equation, except we have to
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ensure that the p-indecomposibility which the left-hand side requires is also respected

by the left-hand side. The second sum in Equation 3.2 gives rise to the first two sums

in this new equation. These two are indexed by the second downfix element being

added to a permutation in A({1423}, 1, [i], n, p). If p = 0 or p = 1 and n = i, then

|A({1423}, 1, [i], n, p)| = 0 since there is a (possibly empty) proper small suffix of every

permutation in A({1423}, 1, [i], n). Otherwise, any such proper small suffix would have

to include the new downfix element. Note that (just like in Equation 3.2) we drop the

old downfix element since it is ES-reducible.

Now, there are two cases based on how close to the end of the permutation the

new downfix element occurs. If it occurs far away from the end of the permutation

(specifically by element n− p− 1) then any proper small suffix which is long enough to

include this new element (i.e. has length ≥ n− j) already has length p. On the other

hand, any proper suffix which doesn’t include this new element is not small. Therefore,

permutations obey the left-hand side’s p-indecomposibility condition if and only if they

lack a proper small suffix of length ≥ n− j.

The other case is when j is close to the end of the permutation (i.e. ≥ n− p). Any

small suffix which is long enough to cause a permutation counted by the left-hand side

to be p-decomposable is already long enough to include j, and so we just need to check

for proper suffixes of length ≥ p− 1 (p is not necessary because we’re ignoring the 1 in

the downfix which, when added back in, would add one to the small suffix’s length.)

We’re now ready to consider the third equation. This equation is based on Equation

3.3. Recall that this equation describes breaking a permutation π into πdown and πup

where πdown includes all the elements with indices between k (the index of the right-

hand side sum) and j, while πup includes all other elements. To count all possible πdown,

we see that they are length j−k permutations (we know that the last element of πdown

is 2, and so we ignore it) avoiding 1423 where the 1 occurs in position i − k + 1. As

noted earlier, to ensure that k is chosen maximally, we also insist that no πdown have a

small suffix of length ≥ j − i− 1.

To count all possible πup, though, we need two cases based on the value of k. If k

is small (i.e. ≤ n− p− 1), then any small suffix long enough to reach the point where



43

πdown starts (as any small suffix of length ≥ 1 must) will give a small suffix of length

≥ p. Therefore, we just need to ensure that πup has no small suffix of length n− j + 1.

On the other hand, if k is large, then merely reaching πdown is not enough to give a

small suffix of length-p. To do so, πup must have a small suffix long enough that it’s

length, when added to the length of πdown, gives a small suffix of length p. So, we need

to ensure that πup has no small suffix of length p−j+k to prevent this from happening.

Once we have the number of possible πdown and πup for each k, we multiply them and

sum over all k to find the number of possible π.

With these recurrences in hand, we only need the initial conditions

|A({1423}, 1, [i], 1, p)| =


1 if p > 0

0 if p = 0

to have a fast algorithm to compute the number of length-n permutations which avoid

1423 (and equivalently 1342).

3.3 Maple Implementaion

An implementation of this recurrence is available on the author’s website here.

This package has three functions: a(n), b(i,n,p), and c(i,j,n,p) which calcu-

ate |A({1423}, ∅, n)|, |A({1423}, 1, [i], n, p)|, and |A({1423}, 12, [i, j], n, p)| respectively.

Users can see all these functions by calling the Help() function or can call this function

with either a, b, or c as an argument to see descriptions of these functions.

https://sites.math.rutgers.edu/~yb165/1423Avoid.mpl
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Chapter 4

A New Quantity Counted by OEIS Sequence A006012

In this section, we prove a conjecture of Callan in [22] that OEIS sequence A006012

counts a certain kind of permutation. Call this sequence (an)∞n=1; then an is defined by

a1 = 1, a2 = 2, and an = 4an−1 − 2an−2 (the actual sequence in the OEIS is offset by

one, so a0 = 1, a1 = 2, and the recursion is the same). The conjecture states that an is

equal to the number of permutations of length n for which no subsequence abcd has the

following two properties: b and c occur consecutively and max{a, c} < min{b, d}. As

noted in the introduction, this work was originally published in the Journal of Integer

Sequences [10].

We can rewrite this conjecture in the language of pattern avoidance, in particular,

using the dashed notation for vincular pattern avoidance introduced by Babson and

Steingŕımsson [6]. They define a dashed pattern to be a permutation π1...πk, some

of whose elements may be separated by dashes. A subsequence of a permutation is

an occurrence of a pattern if (i) all the elements have the same relative order as the

elements of the pattern, and (ii) if there is no dash between the ith and i+ 1th elements

of the pattern, then the ith and i+ 1th element of the subsequence occur consecutively

in the permutation. Just like in ordinary pattern avoidance, a permutation avoids a

pattern if it does not contain any occurrence of the pattern, and a permutation avoids a

set of patterns if it does not contain any occurrence of any of them. As in the previous

section, Av(B) is the set of permutations avoiding all the patterns in a set B, and

Av(B;n) is the set of length n permutations in Av(B). The following two examples

should help clarify these definitions.

Example 4.0.1. The permutation 251346 contains the subsequence 5146 which is an

occurrence of the pattern 3-1-24 because the elements of the subsequence occur in the
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same relative order as 3124, and the 4 and 6 are consecutive in the original permutation

(the 5 and 1 are also consecutive - that is allowed but not necessary).

Example 4.0.2. The permutation 251346 avoids 32-1-4 (i.e. 251346 ∈

Av({32-1-4}; 6) ⊆ Av({32-1-4})).

We are now ready to rewrite the conjecture using this notation. To express it and

the theorems in the next section concisely, we let A = {1-32-4, 1-42-3, 2-31-4, 2-41-3}

and B = {1-3-2-4, 1-4-2-3, 2-3-1-4, 2-4-1-3}.

Proposition 4.0.3. A subsequence of a permutation abcd has the properties that b and

c occur consecutively in the permutation and max{a, c} < min{b, d} if and only if that

subsequence is an occurrence of a pattern in A.

Proof. Let abcd be a subsequence with the two indicated properties. Suppose that a < c

and b < d. Because max{a, c} < min{b, d}, it follows that a < c < b < d, and so abcd

is an occurrence of 1-3-2-4. Also, because b and c occur consecutively, we can remove

the middle dash and say that abcd is an occurrence of 1-32-4. If a > c or b > d, we

can apply the same argument as long as we switch 1-32-4 with another appropriately

chosen member of A.

Conversely, suppose that abcd is an occurrence of a pattern in A. In every pattern

in A, the first and third elements are 1 and 2, while the second and fourth are 3 and

4. Therefore, we have max{a, c} < min{b, d}. Further, since there is no dash between

the second and third elements of any pattern in A, it must be that b and c occur

consecutively.

Using Proposition 4.0.3, we rewrite the conjecture as

an = |Av(A;n)|. (4.1)

We will prove two theorems. The first is that Av(A) and Av(B) are the same set. In

particular, this theorem establishes that |Av(A;n)| = |Av(B;n)| for n ≥ 1. The second

theorem is that an = |Av(B;n)| for n ≥ 1, so together these two theorems prove that

Equation 4.1 holds.
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Theorem 4.0.4. The equality Av(A) = Av(B) holds.

Proof. It is immediately clear that any permutation containing an occurrence of an

element of A must contain an occurrence of an element of B, so we only need to show

that the converse is also true. Let π be a permutation. As established by Proposition

4.0.3, subpermutation πaπbπcπd of π is an occurrence of a pattern in A if and only if

c = b + 1 and max{πa, πc} < min{πb, πd}. Similarly, a subpermutation πaπbπcπd of π

is an occurrence of a pattern in B if and only if max{πa, πc} < min{πb, πd}.

Choose any element of B, and suppose that π contains an occurrence of this element.

Find a < b < c < d such that max{πa, πc} < min{πb, πd}. Let e be the largest index

less than c such that πe > max{πa, πc}, i.e., e = max{i : i < c, πi > max{πa, πc}}.

Because b is an element of {i : i < c, πi > max{πa, πc}}, it follows that e exists and

a < b ≤ e < e + 1 ≤ c < d. Now, we claim that πaπeπe+1πd is an occurrence of a

pattern in A. Obviously, e+1 = e+1, and so it remains to check that max{πa, πe+1} <

min{πe, πd}. Because max{πa, πc} < min{πb, πd}, we conclude that πa < πd, and by

the choice of e, we also have πa < πe. Now, either e+1 = c, in which case πe+1 = πc, or

else πe+1 < max{πa, πc} because otherwise we would have chosen e+ 1 as the max{i :

i < c, πi > max{πa, πc}} instead of e. It follows that πe+1 ≤ max{πa, πc} < πd, πe for

the same reasons as πa. Therefore, max{πa, πe+1} < min{πe, πd} and πaπeπe+1πd is an

occurrence of a pattern in A. We conclude that the permutations avoiding the patterns

of A are the same as the permutations avoiding the patterns of B.

Armed with this theorem, we now need only show that
(
|Av(B;n)|

)
n≥1 satisfies the

same recurrence as (an)n≥1. Our strategy will be as follows: given Av(B;n− 1), define

four maps which, when all of them are applied to all the permutations of Av(B;n −

1), will generate all of the permutations of Av(B;n). Then we will count how many

permutations of Av(B;n) are double-counted in this way, and find that there are two

for every element of Av(B;n− 2), thereby establishing the recurrence.

Note that, for a permutation to avoid all the patterns of A, it must be the case that

either 1 and 2 occur consecutively (not necessarily in that order) or either 1 or 2 is the

last element of the permutation. This observation motivates the following definitions
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of the four maps fbefore, fafter, fend, and fbump. Let fbefore be the function that inputs

a permutation and outputs that permutation with all elements increased by 1 and a

1 inserted immediately before the new 2. Let fafter be the function that also inputs a

permutation and outputs that permutation with all the elements increased by 1 and a

1 inserted immediately after the new 2. Similarly, let fend be the function that inputs

a permutation, increases all its elements by 1 and puts a 1 at the end of it, and let

fbump be the function that inputs a permutation, increases all its elements by 1, replaces

the new 2 with a 1 and puts a 2 at the end. The following example gives a concrete

illustration of the four functions.

Example 4.0.5. Let π = 31542. Then fbefore(π) = 412653, fafter(π) = 421653,

fend(π) = 426531, and fbump(π) = 416532. Note that π ∈ Av(B), and so are all

its images.

Suppose n ≥ 2. The following two lemmas will together establish that

fbefore(Av(B;n− 1)) ∪ fafter(Av(B;n− 1)) ∪ fend(Av(B;n− 1)) ∪ fbump(Av(B;n− 1))

= Av(B;n).

(4.2)

Lemma 4.0.6. The functions fbefore, fafter, fend, and fbump all map elements of

Av(B;n− 1) to elements of Av(B;n).

Proof. Choose some σ ∈ Av(B;n− 1), and consider each function in turn. If fbefore(σ)

or fafter(σ) contains an occurrence τ of a pattern in B, then this occurrence must use

the element 1 or else τ would already be an offending pattern in σ. But then replacing 1

by 2 would again give an offending pattern in σ. Thus, no such occurrence is possible in

either fbefore(σ) or fafter(σ). In addition, if fend(σ) or fbump(σ) contains an occurrence

of a pattern in B, then this occurrence cannot use the last element because that element

is either a 1 or a 2, and patterns in B only end with 3 or 4. So, this occurrence would

already be an occurrence of the pattern in σ, and therefore cannot exist.

Lemma 4.0.7. Every permutation in Av(B;n) is the image of a permutation in

Av(B;n− 1) under at least one of the functions fbefore, fafter, fend, or fbump.
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Proof. Choose some π ∈ Av(B;n). As previously noted, either 1 and 2 occur con-

secutively in π, or else either 1 or 2 is the final element of π. Let π′ be π with the

1 removed and each element decreased by 1. We have introduced no new patterns,

and so π′ ∈ Av(B;n − 1). Suppose that 1 occurs immediately before 2 in π, then

fbefore(π
′) = π. If the 1 occurs immediately after 2 in π, then fafter(π

′) = π. If the 1

occurs at the end of π, then fend(π′) = π. If the 2 occurs at the end of π, then we need

to define π′′, which is π with the 1 removed, the 2 moved the position where the 1 used

to be, and each element decreased by 1. Again, we have introduced no new patterns,

and so π′′ ∈ Av(B;n− 1), and fbump(π′′) = π.

Now that we have established Equation 4.2, we can prove the main result.

Theorem 4.0.8. The sequence
(
|Av(B;n)|

)
n≥1 satisfies the same recurrence as

(an)n≥1.

Proof. Since Av1(B) = {1} and Av2(B) = {12, 21}, the initial conditions hold. If the

four functions fbefore, fafter, fend, and fbump all had disjoint ranges, we could conclude

from Equation 4.2 that |Av(B;n)| = 4 · |Av(B;n− 1)|. Unfortunately, some permuta-

tions are counted in the range of multiple functions. Each f outputs a certain kind of

permutation: fbefore outputs permutations where 1 immediately precedes 2, fafter out-

puts permutations where 2 immediately precedes 1, fend outputs permutations where

1 occurs at the end, and fbump outputs permutations where 2 occurs at the end. A

permutation in Av(B;n) that fulfills two of these criteria will be hit twice, hence double-

counted. Such permutations must be counted once by either fbefore or fafter and again

by either fend or fbump because no permutation can be hit by both fbefore and fafter

or both fend and fbump. Thus, the final two elements of such permutations are 1 and

2 (not necessarily in that order). Let g : Av(B;n) → Av(B;n − 2) be defined as the

function that takes a permutation, removes from it the elements 1 and 2, and reduces

all other elements by 2. If we restrict g to those permutations that end in either 12 or

21, g becomes a 2-to-1 map from the double-counted permutations of Av(B;n) to the

permutations of Av(B;n − 2), and so the number of double-counted permutations is

twice |Av(B;n− 2)|. It follows that |Av(B;n)| = 4 · |Av(B;n− 1)| − 2 · |Av(B;n− 2)|
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for n ≥ 3.
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Chapter 5

A Generalization of the “Raboter” Operation

In a 2018 talk at Rutgers’ Experimental Math Seminar, Neil Sloane described Claude

Lenormand’s “raboter” operation for the base two representation of a number [21].

From this representation, one reduces by one the length of each run of consecutive

1s and 0s. Denote this operation by r(n); so, for example, r(12) = 2 because 12 is

represented in binary as 1100, and reducing the length of each run by one yields 10.

Sloane also defined L(k) =
∑2k+1−1

n=2k r(n) and conjectured that L(k) = 2·3k−1−2k−1,

a fact which was quickly proven by Doron Zeilberger [31] and Chai Wah Wu [22].

In Section 5.1, we generalize this theorem to bases other than 2. Let r(b, n) be the the

number whose base-b representation is generated by taking the base-b representation

of n and shortening each run of consecutive identical elements by one. Further, let

L(b, n) =
∑bk+1−1

n=bk r(b, n). We will prove that

L(b, k) =
b(b− 1)

2b− 1
(2b− 1)k − b− 1

2
bk.

In Section 5.2, we raise r(b, n) to various powers. Define L(p, b, k) =∑bk+1−1
n=bk r(b, n)p; we develop an algorithm in Maple to rigorously compute L(p, b, k)

as an expression in terms of k for any fixed p, b. In addition, for any fixed p, we can

conjecture an expression for L(p, b, k) in terms of b and k.

5.1 More General Bases

Following the example of Zeilberger, we find a recurrence satisfied by L(b, k) and then

find a closed form expression satisfying the same recurrence.

Theorem 5.1.1. L(b, k) = (2b− 1) · L(b, k − 1) + bk−1
(b− 1)2

2
for k ≥ 2.
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Proof. The bk+1 − bk = bk(b − 1) numbers which contribute to L(b, k) are exactly

those numbers whose base-b representations use k + 1 digits, so each can be written

as Ab1b2 where A ∈ {1, . . . , b − 1} × {0, . . . , b − 1}k−2 and b1, b2 ∈ {0, . . . , b − 1}. If

b1 6= b2, then b2 is a run of just one element, so the raboter operation eliminates it

and r(b, Ab1b2) = r(b, Ab1). Numbers with representations Ab1 are exactly those which

were counted in the calculation of L(b, k−1), and each is counted b−1 times here, once

for each b2 6= b1.

If b2 = b1, then the base-b representation of r(b, Ab1b2) is the representation of

r(b, Ab1) with b2 appended to the end, and so r(b, Ab1b2) = b · r(b, Ab1) + b2. Thus,

L(b, k) =
∑
A

(∑
b1

r(b, Ab1b1) +
∑
b2 6=b1

r(b, Ab1b2)
)

=
∑
A

(∑
b1

(
b · r(b, Ab1) + b1

)
+
∑
b2 6=b1

r(b, Ab1)
)

=
∑
A

∑
b1

(2b− 1)r(b, Ab1) +
∑
A

∑
b1

b1

= (2b− 1)L(b, k − 1) + (b− 1)bk−2
b(b− 1)

2

= (2b− 1)L(b, k − 1) + bk−1
(b− 1)2

2
.

Together with initial condition L(b, 1) = b(b−1)
2 , this determines the sequence

(L(b, k))∞k=1. Finding an explicit formula for L(b, k) is now just a matter of finding

a formula which obeys this same recurrence.

Corollary 5.1.2. L(b, k) = b(b−1)
2b−1 (2b− 1)k − b−1

2 bk.

Proof. With some help from Doron Zeilberger’s Maple package Cfinite, we conjecture

that the formula for L(b, k) has the form α1(2b− 1)k + α2b
k, so we solve the system of

equations

α1(2b− 1) + α2b =
b(b− 1)

2

α1(2b− 1)2 + α2b
2 = (2b− 1)

b(b− 1)

2
+ b

(b− 1)2

2
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for α1, α2 and find α1 = b(b−1)
2b−1 and α2 = − b

2 + 1
2 . Let L′(b, k) =

b(b− 1)

2b− 1
(2b − 1)k −

b− 1

2
bk. Proving that L(b, k) = L′(b, k) is simply a matter of verifying that L′(b, 1) =

b(b−1)
2 and L′(b, k) = (2b− 1) ·L′(b, k− 1) + bk−1

(b− 1)2

2
for k ≥ 2, which can easily be

done using Maple or any other computer algebra system.

5.2 Higher Moments

With a formula for L(b, k) found, we consider the following additional generalization:

L(p, b, k) =

2k+1−1∑
n=2k

r(b, n)p;

that is the sum of r(b, n)p taken over all numbers n whose base-b representation has

k + 1-digits. The trick in this case is to work inductively beginning with the (solved)

p = 1 case, and along the way compute L(l, p, b, k) which we define to be the sum of

r(b, n)p taken over all numbers n whose base-b representation has k + 1-digits, the last

of which is l.

In order to compute L(l, p, b, k), we use the following recurrence:

Theorem 5.2.1. L(l, p, b, k) = (bp − 1) · L(l, p, b, k − 1) + L(p, b, k − 1) +∑p
i=1 l

ibp−i
(
p
i

)
L(l, p− i, b, k − 1).

Proof. The numbers with length-(k + 1) base-b representations ending in l are exactly

those which can be written as Ab1b2 with A ∈ {1, . . . , b − 1} × {0, . . . , b − 1}k−2, b1 ∈
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{0, . . . , b− 1}, and b2 = l. Therefore,

L(l, p, b, k) =
∑
A

(∑
b1 6=l

r(b, Ab1l)
p + r(b, All)p

)
=
∑
A

(∑
b1 6=l

r(b, Ab1)
p + (b · r(b, Al) + l)p

)
= L(p, b, k − 1)− L(l, p, b, k − 1) +

∑
A

p∑
i=0

(
p

i

)
bp−ir(b, Al)p−ili

= L(p, b, k − 1)− L(l, p, b, k − 1) + bpL(l, p, b, k − 1)

+

p∑
i=1

(
p

i

)
bp−iL(l, p− i, b, k − 1)p−ili

= (bp − 1) · L(l, p, b, k − 1) + L(p, b, k − 1) +

p∑
i=1

libp−i
(
p

i

)
L(l, p− i, b, k − 1).

We find a similar recurrence for L(p, b, k).

Theorem 5.2.2. L(p, b, k) = (bp + b − 1)L(p, b, k − 1) +
∑b−1

l=0

∑p
i=1 b

p−ili
(
p
i

)
L(l, p −

i, b, k − 1).

Proof. Again, note that the numbers counted by L(p, b, k) are those which can be

written as Ab1b2 with A ∈ {1, . . . , b− 1}× {0, . . . , b− 1}k−2, and b1, b2 ∈ {0, . . . , b− 1}.

Therefore, the following equations hold:

L(p, b, k) =
∑
A

( ∑
b1 6=b2

r(b, Ab1b2)
p +

∑
b1

r(b, Ab1b1)
p
)

=
∑
A

(b− 1)
∑
b1

r(b, Ab1)
p +

∑
A

∑
b1

(br(Ab1) + b1)
p

= (b− 1)L(p, b, k − 1) +
∑
A

∑
b1

p∑
i=0

(
p

i

)
bp−ir(Ab1)

p−ibi1

= (b− 1)L(p, b, k − 1) +
∑
A

∑
b1

bpr(Ab1)
p +

∑
b1

p∑
i=1

∑
A

(
p

i

)
bp−ir(Ab1)

p−ibi1

= (bp + b− 1)L(p, b, k − 1) +
∑
b1

p∑
i=1

bi1b
p−i
(
p

i

)
L(b1, p− i, b, k − 1).

Change the name of b1 to l to maintain consistent notation, and we have derived the

claimed equation.
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5.3 Maple Implementation

The Maple package raboter.txt available here contains functions to implement this

recurrence. The most important are SumPowers(b,k,p) which finds an expression

in terms of k for L(p, b, k) (for fixed b and p) and GuessGeneralForm(b,n,p) which

conjectures an expression in terms of k and b for L(p, b, k) (for fixed p).

For example, this package proves that

L(2, 2, k) =
2

3
5k − 1

6
2k − 2

3
3k

and conjectures that

L(2, b, k) =
(1

6
b2 − 1

6
b− 1

3

)
(b− 1)k +

(
− 1

6
b2 +

1

3
b− 1

6

)
bk

− b(b− 1)

2b− 1
(2b− 1)k +

2b3 + 3b2 − 3b− 2

6(b2 + b− 1)
(b2 + b− 1)k.

http://sites.math.rutgers.edu/~yb165/raboter.txt
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Combinatorics, pages 754–833. CRC Press, Boca Raton, Florida, 2015.

[26] J. West. Permutations with forbidden subsequences, and, stack-sortable permuta-
tions. PhD thesis, Massachusetts Institute of Technology, 1990.

[27] Wikipedia. Enumerations of specific permutation classes, 2019.

[28] H. S. Wilf. What is an answer? American Mathematical Monthly, 89:289–292,
1982.

[29] D. Zeilberger. Enumeration schemes and, more importantly, their automatic gen-
eration. Annals of Combinatorics, 2:185–195, 1998.

[30] D. Zeilberger. On Vince Vatter’s brilliant extension of Doron Zeilberger’s enumer-
ation schemes for counting Herb Wilf’s classes. Personal J. of Shalosh B. Ekhad
and Doron Zeilberger, 2007.

[31] D. Zeilberger. Proof of a conjecture of Neil Sloane concerning Claude Lenormand’s
“Raboter” operation (OEIS sequence A318921). The Personal Journal of Shalosh
B. Ekhad and Doron Zeilberger, 2018.


	Abstract
	Acknowledgements
	Introduction
	Automatic Avoidance Class Enumeration
	Background
	Flexible Schemes
	Empirical Results
	Necessary Conditions for Schemes
	Flexible Schemes For Covincular Patterns
	Future Work

	Permutations avoiding 1423 (and Equivalently 1342)
	Structure of 1423 Avoiders
	Recurrences for 1423 Avoiders
	Maple Implementaion

	A New Quantity Counted by OEIS Sequence A006012
	A Generalization of the ``Raboter" Operation
	More General Bases
	Higher Moments
	Maple Implementation

	References

