
Experimental Mathematics in Word Puzzles

Yonah Biers-Ariel, Matt Hohertz, Jingze Li, and Lauren Squillace

May 13, 2019

We wrote code to randomly generate complete crossword puzzles; i.e. m×n
matrices where the entries in each row and column form a word. In this writeup,
we describe our algorithms to generate these puzzles.

Let VOC1 be a set of words of length n, VOC2 be a set of words of length
m, and let Trunc(VOC,k) be the set of length−k prefixes of words in VOC. Let
RS(VOC) denote a random sample from VOC. Our most basic algorithm inputs
VOC1 and VOC2 (across clues will all come from VOC1 and down clues will
all come from VOC2) as well as a constant GIVEUP which measures how many
times the algorithm will try to add a word into a partial grid before giving and
starting the grid over. It works as shown in Algorithm 1.

Algorithm 1: GenPuzzle1

output:=[]
count:=0
while Length (output) < m do

v := RS (VOC1)
k:=Length (output)
viable:=true for i = 1 : n do

if [output[1][i] . . . output[k][i]v[i]] 6∈ Trunc(V OC2, k + 1) then
viable:=false

if viable then
Append v to output

count++
if count = GIVEUP then

output:=[]
count:=0:

return (output)

As written, GenPuzzle1 looks at random potential across entries, determines
whether all the partial down words that they form are valid prefixes, and, if so,
adds that across entry to the puzzle. A better algorithm, though, might be one
that is more likely to choose across entries when their partial down words are
prefixes for many words, and would be less likely to choose across entries when
their partial down words are prefixes for only a few words.

1



Thus, we will randomly sample many potential across entries, and assign
to each one a score based on how many words their partial down words are
prefixes for. The probability that we choose any potential across entry is then
proportional to this score. This idea is implemented in Algorithm 2. Note that
TruncN(VOC,pref) is the number of words in VOC with prefix pref.

As it turns out, Algorithm 2 is significantly faster than Algorithm 1, and we
can use it to generate grids of size up to 5x6.

In addition to the changes seen in Algorithm 2, we also tried to change the
restart condition. As it is, both algorithms restart completely with a blank
grid once they have tried going through some number of putative across entries
without forming a complete grid. One could imagine, though, an algorithm
in which we instead simply deleted the most recent across entry after some
number of failures, but kept the ones before it. When we implemented this
change, though, we found that it ran significantly slower than either Algorithms
1 or 2.

Finally, we add the warning that, while these algorithms do terminate with
probability 1 as long as a viable grid with the necessary dimensions exists, both
algorithms can run for arbitrarily long periods of time.

Algorithm 2: GenPuzzle2

output:=[]
count:=0
while Length (output) < m do

Vs := [RS (VOC1),. . . , RS (VOC1)]
k:=Length (output)
scores:=[1,...,1]
for j = 1 : Length(V s) do

v:=Vs[j]
for i = 1 : n do

if [output[1][i] . . . output[k][i]v[i]] 6∈ Trunc(V OC2, k + 1) then
score[j] = 0

else
score[j]× = TruncN(V OC2, [output[1][i] . . . output[k][i]v[i]])

if scores 6= [0, 0, . . . , 0] then
Choose j ∈ {1, 2, . . . , Length(scores)} such that each entry is
chosen with probability scores[i]/

∑
j scores[j]

Append Vs[j] to output
count++
if count = GIVEUP then

output:=[]
count:=0:

return (output)

2


