Quantum K-theory of Incidence Varieties

Summary

We prove a conjecture of Buch and Mihalcea in the case of the incidence variety $X=\operatorname{Fl}(1, n-1 ; n)$ and determine the structure of its (\boldsymbol{T}-equivariant) quantum K-theory ring. Our results are an interplay between geometry and combinatorics. The geometric side concerns Gromov-Witten varieties of 3-pointed genus 0 stable maps to \boldsymbol{X} with markings sent to Schubert varieties, while on the combinatorial side are formulas for the (equivariant) quantum \boldsymbol{K}-theory ring of \boldsymbol{X}. We prove that the Gromov-Witten variety is rationally connected when one of the defining Schubert varieties is a divisor and another is a point. This implies that the (equivariant) \boldsymbol{K}-theoretic Gromov-Witten invariants defined by two Schubert classes and a Schubert divisor class can be computed in the ordinary (equivariant) \boldsymbol{K} theory ring of \boldsymbol{X}. We derive a positive Chevalley formula for the equivariant quantum \boldsymbol{K}-theory ring of \boldsymbol{X} and a positive LittleRichardson rule for the non-equivariant quantum \boldsymbol{K}-theory ring of \boldsymbol{X}. The Little-Richardson rule in turn implies that non-empty Gromov-Witten varieties given by Schubert varieties in general position have arithmetic genus 0 .

The Incidence Variety

$$
\begin{aligned}
X & =\mathrm{Fl}(1, n-1 ; n)=\mathrm{SL}\left(\mathbb{C}^{n}\right) / P \\
& =\left\{U \subset V \subset \mathbb{C}^{n}: \operatorname{dim} U=1, \operatorname{dim} V=n-1\right\} \\
& =\left\{x_{1} y_{1}+\cdots+x_{n} y_{n}=0\right\} \subset \mathbb{P}\left(\mathbb{C}^{n}\right) \times \mathbb{P}\left(\mathbb{C}^{n *}\right)
\end{aligned}
$$

Schubert varieties in \boldsymbol{X} are indexed by

$$
W^{P}:=\{[i, j]: 1 \leq i \neq j \leq n\} .
$$

$X_{[i, j]}=\left\{x_{i+1}=\cdots=x_{n}=y_{1}=\cdots=y_{j-1}=0\right\} \subseteq X$,
$X^{[i, j]}=\left\{x_{1}=\cdots=x_{i-1}=y_{j+1}=\cdots=y_{n}=0\right\} \subseteq X$,
$D^{[1]}:=X^{[2, n]}=\left\{x_{1}=0\right\}, D^{[2]}:=X^{[1, n-1]}=\left\{y_{n}=0\right\}$.

$\bar{M}_{0,3}(X, d)$ and Related Constructions

Fix $d \in H_{2}(X)^{+}=\mathbb{Z}_{\geq 0}^{2}$.
$M_{d}:=\bar{M}_{0,3}(X, d):=\overline{\left\{f: \mathbb{P}^{1} \rightarrow X \mid f_{*}\left[\mathbb{P}^{1}\right]=d\right\}}$.
$\mathrm{ev}_{1}, \mathrm{ev}_{2}, \mathrm{ev}_{3}: M_{d} \rightarrow X$ (evaluate at markings $0,1, \infty \in \mathbb{P}^{1}$)
For $u, v, w \in W^{P}$,
$M_{d}\left(X_{u}, X^{v}\right):=\mathrm{ev}_{1}^{-1}\left(X_{u}\right) \cap \mathrm{ev}_{2}^{-1}\left(X^{v}\right) \subseteq M_{d}$,
$\Gamma_{d}\left(X_{u}, X^{v}\right):=\operatorname{ev}_{3}\left(M_{d}\left(X_{u}, X^{v}\right)\right) \subseteq X$
$\Gamma_{d}\left(X_{u}\right):=\operatorname{ev}_{2}\left(\mathrm{ev}_{1}^{-1}\left(X_{u}\right)\right)$ is again a Schubert variety,
$M_{d}\left(X_{u}, X^{v}, g . X^{w}\right):=\mathrm{ev}_{1}^{-1}\left(X_{u}\right) \cap \mathrm{ev}_{2}^{-1}\left(X^{v}\right) \cap \mathrm{ev}_{3}^{-1}\left(g . X^{w}\right)$.
Assume $g \in \operatorname{SL}\left(\mathbb{C}^{n}\right)$ general, then
the cohomological Gromov-Witten Invariant

$$
\boldsymbol{I}_{d}\left(\left[\boldsymbol{X}_{u}\right],\left[\boldsymbol{X}^{v}\right],\left[\boldsymbol{X}^{w}\right]\right)=\# M_{d}\left(X_{u}, \boldsymbol{X}^{v}, \boldsymbol{g} \cdot \boldsymbol{X}^{w}\right) ;
$$

the K-theoretic Gromov-Witten Invariant

$\boldsymbol{I}_{d}\left(\left[\mathcal{O}_{X_{u}}\right],\left[\mathcal{O}_{X^{v}}\right],\left[\mathcal{O}_{\left.X^{w}\right]}\right]\right)=\chi\left(\mathcal{O}_{M_{d}\left(X_{u}, X^{v}, g \cdot X^{w}\right)}\right)$

$$
=\chi_{M_{d}}\left(\mathrm{ev}_{1}^{*}\left[\mathcal{O}_{X_{u}}\right] \cdot \mathrm{ev}_{2}^{*}\left[\mathcal{O}_{X^{v}}\right] \cdot \operatorname{ev}_{3}^{*}\left[\mathcal{O}_{X^{w}}\right]\right) \in \boldsymbol{K}(\mathrm{pt}) ;
$$

the T-equivariant K-theoretic Gromov-Witten Invarian

$\boldsymbol{I}_{d}^{T}\left(\left[\mathcal{O}_{X_{u}}\right],\left[\mathcal{O}_{X^{v}}\right],\left[\mathcal{O}_{X^{w}}\right]\right)$

$$
=\chi_{M_{d}}^{T}\left(\mathrm{ev}_{1}^{*}\left[\mathcal{O}_{X_{u}}\right] \cdot \operatorname{ev}_{2}^{*}\left[\mathcal{O}_{X^{v}}\right] \cdot \operatorname{ev}_{3}^{*}\left[\mathcal{O}_{X^{w}}\right]\right) \in K^{T}(\mathrm{pt}),
$$

where $T \subset \mathrm{SL}\left(\mathbb{C}^{n}\right)$ is the maximal torus of diagonal matrices. $K^{T}(\mathrm{pt})$ can be identified with the representation ring of T. $\left[\mathcal{O}_{X_{u}}\right]$ and $\left[\mathcal{O}_{X^{v}}\right]$ form $\boldsymbol{K}^{T}(\mathrm{pt})$-bases for $\boldsymbol{K}_{\boldsymbol{T}}(\boldsymbol{X})$.
X can be replaced by any flag variety G / P.

Results Part 1

Theorem 1 (X '21). The general fibre of

$$
\mathrm{ev}_{3}: M_{d}\left(X_{[i, j]}, D^{[k]}\right) \rightarrow \Gamma_{d}\left(X_{[i, j]}, D^{[k]}\right)
$$

is rationally connected.
Using a result of Kollár, this implies that

$$
\mathbf{e v}_{3 *}\left[\mathcal{O}_{M_{d}\left(X_{[i, j)}, D^{[k]}\right)}\right]=\left[\mathcal{O}_{\Gamma_{d}\left(X_{[, j, j}, D^{k k}\right)}\right]
$$

in (equivariant) \boldsymbol{K}-theory, proving a conjecture of Buch and Mihalcea for \boldsymbol{X}.

In the following, $\mathcal{O}_{[i, j]}:=\left[\mathcal{O}_{\left.X_{[i, j}\right]}\right], \mathcal{O}^{[k]}:=\left[\mathcal{O}_{\left.D^{k k}\right]}\right] \in \boldsymbol{K}_{\boldsymbol{T}}(\boldsymbol{X})$.

Corollary: "quantum equals classical" formula ($\mathrm{X}^{\prime} 21$).

$$
\begin{aligned}
\boldsymbol{I}_{d}^{T}\left(\mathcal{O}_{[i, j]}, \mathcal{O}^{[k]}, \sigma\right) & =\chi_{X}^{T}\left(\left[\mathcal{O}_{\Gamma_{d}\left(X_{[i, j}, D^{[k]}\right)}\right] \cdot \sigma\right) \\
& =\left\{\begin{array}{l}
\chi_{X}^{T}\left(\left[\mathcal{O}_{\Gamma_{d}\left(X_{[i, j)}\right)}\right] \cdot \sigma\right) \text { if } d_{k}>0 \\
\chi_{X}^{T}\left(\left[\mathcal{O}_{\Gamma_{d}\left(X_{i, j]}\right)}\right] \cdot \mathcal{O}^{[k]} \cdot \sigma\right) \text { if } d_{k}=0
\end{array}\right.
\end{aligned}
$$

The right hand side is easily computable using Lenart and Postnikov's Chevalley formula for $\boldsymbol{K}_{\boldsymbol{T}}(\boldsymbol{X})$.

QUANTUM K-THEORY

Quantum K-theory was introduced by Givental and Lee as a \boldsymbol{K}-theoretic analogue of quantum cohomology.
The (small) \boldsymbol{T}-equivariant quantum \boldsymbol{K}-theory ring of \boldsymbol{X} is an algebra $Q K_{T}(X)$ over $K^{T}(\mathrm{pt}) \llbracket q_{1}, q_{2} \rrbracket$ with a $K^{T}(\mathrm{pt}) \llbracket q_{1}, q_{2} \rrbracket$ basis consisting of \mathcal{O}^{w} for $\boldsymbol{w} \in \boldsymbol{W}^{P}$. Multiplication in $Q K_{\boldsymbol{T}}(\boldsymbol{X})$ is defined using $I_{d}^{T}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.
$\widetilde{W^{P}}:=\{[i, j] \in \mathbb{Z} \times \mathbb{Z}: i \not \equiv j \bmod n\}$. For $w \in \widetilde{W^{P}}$, $\bar{w}:=[\bar{i}, \bar{j}] \in W^{P}$ is defined by $\bar{i} \equiv i, \bar{j} \equiv j$,

$$
d(w):=\left(\frac{i-\bar{i}}{n}, \frac{\bar{j}-j}{n}\right),
$$

$\mathcal{O}^{w}:=q^{d(w)}\left[\mathcal{O}_{X^{\bar{w}}}\right] \in Q K_{T}(X)_{q}:=Q K_{T}(X) \otimes_{\mathbb{Z}[q]} \mathbb{Z}\left[q, q^{-1}\right]$.
We write $\mathbb{C}_{\varepsilon_{i}}$ for the 1-dimensional representation of \boldsymbol{T} given by the character ε_{i} which records the i-th diagonal entry.
We let $\varepsilon_{i}:=\varepsilon_{\bar{i}}$ for $i \in \mathbb{Z}$.

Results Part 2

Equivariant Chevalley Formula ($\mathrm{X}^{\prime} 21$).

In $Q K_{T}(X)_{q}$, for $[i, j] \in \widetilde{W^{P}}, \mathcal{O}^{[i, j]} \star \mathcal{O}^{[1]}$ equals
$\left(1-\left[\mathbb{C}_{\varepsilon_{i}-\varepsilon_{1}}\right]\right) \mathcal{O}^{[i, j]}+\left[\mathbb{C}_{\left.\varepsilon_{i}-\varepsilon_{1}\right]} \mathcal{O}^{[i+1, j]}\right.$ when $i+1 \not \equiv j \bmod n$,
$\left(1-\left[\mathbb{C}_{\left.\varepsilon_{i}-\varepsilon_{1}\right]}\right) \mathcal{O}^{[i, j]}+\left[\mathbb{C}_{\left.\varepsilon_{i}-\varepsilon_{i}\right]}\right]\left(\mathcal{O}^{[i+1, j-1]}+\mathcal{O}^{[i+2, j]}-\mathcal{O}^{[i+2, j-1]}\right)\right.$
when $i+1 \equiv j \bmod n$.
The formula for $\mathcal{O}^{[i, j]} \star \mathcal{O}^{[2]}$ is analogous.
The non-equivariant case ($\left[\mathbb{C}_{\varepsilon}\right]=1$) is in Rosset's thesis ('20). A formula for two-step varieties is in Kouno-Lenart-Naito-Sagaki ('21).

Non-equivariant Little-Richardson Rule ($\mathrm{X}^{\prime 21}$). In $\boldsymbol{Q K}(\boldsymbol{X})$, for $[i, j],[k, l] \in W^{P}, \mathcal{O}^{[i, j]} \star \mathcal{O}^{[k, l]}$ equals

$$
\begin{aligned}
& \quad \mathcal{O}^{[x, y]} \text { when } x-y<n[\chi(i>j)+\chi(k>l)], \\
& \mathcal{O}^{[x, y-1]}+\mathcal{O}^{[x+1, y]}-\mathcal{O}^{[x+1, y-1]} \text { otherwise, } \\
& \text { where } x=i+k-1, y=j+l-n .
\end{aligned}
$$

Corollary $2\left(\mathrm{X}\right.$ '21). For $\boldsymbol{d} \in \boldsymbol{H}_{2}(\boldsymbol{X})^{+}$, a general $\boldsymbol{g} \in \mathrm{SL}\left(\mathbb{C}^{n}\right)$, and $u, v, w \in \boldsymbol{W}^{P}, M_{d}\left(\boldsymbol{g} \cdot \boldsymbol{X}^{u}, \boldsymbol{X}^{v}, \boldsymbol{X}_{w}\right)$ has arithmetic genus 0 whenever it is non-empty.

