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SUMMARY

We prove a conjecture of Buch and Mihalcea in the case of the
incidence variety X = Fl(1, n−1;n) and determine the struc-
ture of its (T -equivariant) quantum K-theory ring. Our results
are an interplay between geometry and combinatorics. The
geometric side concerns Gromov-Witten varieties of 3-pointed
genus 0 stable maps to X with markings sent to Schubert
varieties, while on the combinatorial side are formulas for the
(equivariant) quantum K-theory ring of X. We prove that the
Gromov-Witten variety is rationally connected when one of the
defining Schubert varieties is a divisor and another is a point.
This implies that the (equivariant) K-theoretic Gromov-Witten
invariants defined by two Schubert classes and a Schubert di-
visor class can be computed in the ordinary (equivariant) K-
theory ring of X. We derive a positive Chevalley formula for the
equivariant quantum K-theory ring of X and a positive Little-
Richardson rule for the non-equivariant quantum K-theory ring
of X. The Little-Richardson rule in turn implies that non-empty
Gromov-Witten varieties given by Schubert varieties in general
position have arithmetic genus 0.

THE INCIDENCE VARIETY

X =Fl(1, n − 1;n) = SL(Cn)/P

={U ⊂ V ⊂ Cn : dimU = 1, dimV = n − 1}
={x1y1 + · · · + xnyn = 0} ⊂ P(Cn) × P(Cn∗)

Schubert varieties in X are indexed by

W P := {[i, j] : 1 ≤ i ̸= j ≤ n}.
X[i,j] = {xi+1 = · · · = xn = y1 = · · · = yj−1 = 0} ⊆ X,
X [i,j] = {x1 = · · · = xi−1 = yj+1 = · · · = yn = 0} ⊆ X,
D[1] := X [2,n] = {x1 = 0}, D[2] := X [1,n−1] = {yn = 0}.

M0,3(X, d) AND RELATED CONSTRUCTIONS

Fix d ∈ H2(X)+ = Z2
≥0.

Md := M0,3(X, d) := {f : P1 → X | f∗[P1] = d}.
ev1, ev2, ev3 : Md → X (evaluate at markings 0, 1, ∞ ∈ P1)

For u, v, w ∈ W P ,
Md(Xu, X

v) := ev−1
1 (Xu) ∩ ev−1

2 (Xv) ⊆ Md,
Γd(Xu, X

v) := ev3(Md(Xu, X
v)) ⊆ X,

Γd(Xu) := ev2(ev
−1
1 (Xu)) is again a Schubert variety,

Md(Xu, X
v, g.Xw) := ev−1

1 (Xu)∩ ev−1
2 (Xv)∩ ev−1

3 (g.Xw).

Assume g ∈ SL(Cn) general, then
the cohomological Gromov-Witten Invariant

Id([Xu], [X
v], [Xw]) = #Md(Xu, X

v, g.Xw);

the K-theoretic Gromov-Witten Invariant

Id([OXu
], [OXv], [OXw]) = χ(OMd(Xu,Xv,g.Xw))

= χMd
(ev∗

1[OXu
] · ev∗

2[OXv] · ev∗
3[OXw]) ∈ K(pt);

the T -equivariant K-theoretic Gromov-Witten Invariant

IT
d ([OXu

], [OXv], [OXw])

= χT
Md

(ev∗
1[OXu

] · ev∗
2[OXv] · ev∗

3[OXw]) ∈ KT(pt),

where T ⊂ SL(Cn) is the maximal torus of diagonal matrices.
KT(pt) can be identified with the representation ring of T .
[OXu

] and [OXv] form KT(pt)-bases for KT(X).

X can be replaced by any flag variety G/P .

RESULTS PART 1

Theorem 1 (X ’21). The general fibre of

ev3 : Md(X[i,j], D
[k]) → Γd(X[i,j], D

[k])

is rationally connected.

Using a result of Kollár, this implies that

ev3∗[OMd(X[i,j],D[k])] = [OΓd(X[i,j],D[k])]

in (equivariant) K-theory, proving a conjecture of Buch and Mi-
halcea for X.

In the following, O[i,j] := [OX[i,j]
], O[k] := [OD[k]] ∈ KT(X).

Corollary: “quantum equals classical” formula (X ’21).

IT
d (O[i,j],O[k], σ) = χT

X([OΓd(X[i,j],D[k])] · σ)

=

{
χT

X([OΓd(X[i,j])] · σ) if dk > 0

χT
X([OΓd(X[i,j])] · O[k] · σ) if dk = 0

.

The right hand side is easily computable using Lenart and Post-
nikov’s Chevalley formula for KT(X).

QUANTUM K-THEORY

Quantum K-theory was introduced by Givental and Lee as a
K-theoretic analogue of quantum cohomology.
The (small) T -equivariant quantum K-theory ring of X is an
algebra QKT(X) over KT(pt)[[q1, q2]] with a KT(pt)[[q1, q2]]-
basis consisting of Ow for w ∈ W P . Multiplication in QKT(X)

is defined using IT
d (σ1, σ2, σ3).

W̃ P := {[i, j] ∈ Z × Z : i ̸≡ j mod n}. For w ∈ W̃ P ,

w := [i, j] ∈ W P is defined by i ≡ i, j ≡ j,

d(w) := (
i − i

n
,
j − j

n
),

Ow := qd(w)[OXw] ∈ QKT(X)q := QKT(X) ⊗Z[q] Z[q, q−1].

We write Cεi for the 1-dimensional representation of T given by
the character εi which records the i-th diagonal entry.
We let εi := εi for i ∈ Z.

RESULTS PART 2

Equivariant Chevalley Formula (X ’21).
In QKT(X)q, for [i, j] ∈ W̃ P , O[i,j] ⋆ O[1] equals

(1 − [Cεi−ε1])O[i,j] + [Cεi−ε1]O[i+1,j] when i + 1 ̸≡ j mod n,

(1− [Cεi−ε1])O[i,j]+[Cεi−ε1](O[i+1,j−1]+O[i+2,j]−O[i+2,j−1])

when i + 1 ≡ j mod n.
The formula for O[i,j] ⋆ O[2] is analogous.

The non-equivariant case ([Cε] = 1) is in Rosset’s thesis (’20).
A formula for two-step varieties is in Kouno-Lenart-Naito-Sagaki
(’21).

Non-equivariant Little-Richardson Rule (X ’21).
In QK(X), for [i, j], [k, l] ∈ W P , O[i,j] ⋆ O[k,l] equals

O[x,y] when x − y < n[χ(i > j) + χ(k > l)],

O[x,y−1] + O[x+1,y] − O[x+1,y−1] otherwise,

where x = i + k − 1, y = j + l − n.

Corollary 2 (X ’21). For d ∈ H2(X)+, a general g ∈ SL(Cn),
and u, v, w ∈ W P , Md(g.X

u, Xv, Xw) has arithmetic
genus 0 whenever it is non-empty.
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