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There are two flavors of K-theory for a pointed monoid A in the
literature; see [D], [CLS], [M] and [Sz] for example. One is K(A), the
K-theory of the category of finitely generated projective A–sets; the
other is G(A), the K-theory of the category of all finitely generated A–
sets. While K(A) is quite simple, G(A) turns out to be complicated,
even when A is N = {∗, 1, t, t2, ...}; see Example 2.1.2.
One important class of monoids is the class of partially cancellative

monoids (or pc monoids); see Definition 1.2. This class includes can-
cellative monoids (such as N and the polyhedral cones underlying affine
toric varieties) as well as the quotients A/I of cancellative monoids by
an ideal, which are useful in studying blow-ups of toric varieties; see
[CHWW].
In this paper, we study K ′(A), the K-theory of the category of

finitely generated partially cancellative A–sets over a pc monoid (see
Definition 1.2). Such A–sets are well-behaved, include free A–sets, and
quotients A/I of A by an ideal, such as N/tNN ={1, t, ..., tN−1, tN = ∗}.
Our main result is an analogue of the “Fundamental Theorem” in

algebraic K-theory (Theorem 4.6): if A is an abelian partially cancella-
tive monoid then

K ′(A) ≃ K ′(A ∧ N) and K ′(A ∧ Z+) ≃ K ′(A) ∨ Ω−1K ′(A).

In particular, K ′(N) ≃ S, the sphere spectrum. The corresponding
result fails dramatically for G-theory; see Example 2.1.2. We establish
similar results for the K ′-theory of pc monoid schemes in Section 5.
Our key tools are the additivity, devissage and localization theorems

for “CGW”-categories, developed by Campbell and Zakharevich [CZ].
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We define partially cancellative monoids in Section 1. In Section 2
we describe the K-theory of various categories of A–sets, using the con-
structions and techniques of [CZ]. In Section 3 we establish a number
of structural theorems. In Section 4 we prove the FundamentalTheo-
rem alluded to above, as well as a monoid version of the Farrell–Hsiang
computation of the K-theory of twisted polynomial rings [FH]. Fi-
nally, in Section 5 we discuss the K ′-theory of monoid schemes and in
particular compute it for projective spaces.
We shall always assume all categories are skeletally small. We shall

write S for the sphere spectrum and S∞X for the suspension spectrum
of a space X.

1. Partially cancellative monoids

Definition 1.1. By a monoid A we mean a pointed set with an asso-
ciative product and distinguished elements ∗, 1 such that a·1 = a = 1·a
and a · ∗ = ∗ = ∗ · a for all a ∈ A; these are sometimes called “pointed
monoids.” It is left noetherian if it has the ascending chain condition
on left ideals; right noetherian monoids are defined similarly.
The units (i.e., invertible elements) of A form a group. We note that

the initial monoid {∗, 1} is called F1 in [CLS].

A (left) A–set is a pointed set X with an action of A; in particular,
1 · x = x and ∗ · x = ∗ for all x ∈ X. For example, a free A–set is just
a wedge of copies of A.

Definition 1.2. A (left) noetherian monoid A is partially cancellative,
or pc for short, if ac = bc 6= ∗ (or ca = cb 6= ∗) implies a = b for all
a, b, c in A. A prototype finite pc monoid is {1, t, ..., tN , tN+1 = ∗}.
If A is a pc monoid, we say that a pointed (left) A–set X is partially

cancellative if for every x ∈ X and a, b in A, if ax = bx 6= ∗ then a = b.
(We allow ax = ay 6= ∗ for x 6= y in X.) Note that pc A–sets form a
subcategory of A–sets which is closed under subobjects and quotients,
and contains A.

Remark 1.2.1. If A is a pc monoid, then the subset m of non-units in
A is a two-sided ideal, and is the unique maximal (two-sided) ideal of
A. Indeed, if xy = 1, then xyx = x and therefore yx = 1.

Example 1.3. Let N denote the pointed monoid {∗, 1, t, t2, ...}. A
(pointed) N–set is just a pointed set X with a successor function x 7→
tx. Thus we may identify a finite N–set with a (pointed) directed graph
such that every vertex has outdegree 1. Every finite rooted tree is a
pc N–set; the successor of a vertex x is the adjacent vertex closer to
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the root vertex ∗. In fact, a finite N–set is partially cancellative if
and only if it is a rooted tree, because for every x ∈ X, the sequence
{x, tx, t2x, ...} terminates at the basepoint.
An N–set is not pc if and only if it contains a loop, i.e., there is an

element x 6= ∗ and an integer d such that tdx = x. A typical non-pc
N–set is {∗, 1, t, ..., td, ..., tN−1 | tN = td} (a loop with a tail).

Example 1.4. If G is a group, we write G+ for the pointed monoid
G
∐
{∗} (with the evident product). Then every G+–set is a wedge of

copies of cosets (G/H)+. If H is a proper subgroup of G, then (G/H)+
is not pc because h ·H = 1 ·H for h ∈ H. Thus a G+–set is pc if and
only if it is free.

2. Quasi-exact categories

Definition 2.1. ([D], [WK, Ex. IV.6.14]) A quasi-exact category is
a category C with a distinguished zero object, and a coproduct ∨,
equipped with a family S of sequences of the form

0 → Y
i

−→X
j

−→Z → 0,

called “admissible,” such that: (i) any sequence isomorphic to an ad-
missible sequence is admissible;
(ii) for any admissible sequence, j is a cokernel for i and i is a kernel
for j;
(iii) S contains all split sequences (those with X ∼= Y ∨ Z); and
(iv) the class of admissible epimorphisms (resp., admissible monics) is
closed under composition and pullback along admissible monics (resp.,
pullback along admissible epimorphisms).
We will often write X/Y for the cokernel of Y  X.
Quillen’s construction in [Q] yields a category QC, and K(C) is the

connective spectrum with initial space ΩBQC; we write Kn(C) for
πnK(C). The group K0(C) is generated by the objects of C, modulo
the relations that [X] = [Y ] + [Z] for every admissible sequence.

Remark. Dyckerhoff and Kapranov [DK] have a similar construction
for the weaker notion of “proto-exact categories.”

Example 2.1.1. The category Setsf of finite pointed sets is quasi-
exact; every admissible sequence is split exact. It is well known that
the Barratt–Priddy–Quillen theorem implies that K(Setsf) ≃ S (see
[D], [CLS], [WK, Ex. IV.6.15].)
More generally, the category of finitely generated projective1 A–sets

is quasi-exact for any monoid A; every admissible exact sequence is

1i.e., A-sets with the projective lifting property
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split. The K-theory of the category of finitely generated projective
A–sets is written as K(A). Following [D, 3.1] and [CLS, 2.27], we see
that if A has no idempotents or units then K(A) ≃ S.

Example 2.1.2. If A is a left noetherian monoid, the category of
finitely generated pointed left A–sets is quasi-exact; a sequence (2.1)
is admissible if Y  X is an injection, and Z is isomorphic to the
quotient A–set X/Y . (See [WK, Ex. IV.6.16].)
Following [CLS], we define G(A) to be the K-theory of this category.

For example, the group G0(N) = π0G(N) is the free abelian group on
[N] and the infinite set of loops of varying lengths.
If A = G+ for a group G, then G0(A) is the Burnside ring of G; for

example, G0(Z+) is free abelian on the classes of the (pointed) cyclic
groups Z+ and the loops (Z/nZ)+. By [CDD, 5.2], the spectrum G(A)
is the G–fixed points of the equivariant sphere spectrum, at least if G
is an abelian group.

Example 2.1.3. If A is a pc monoid, the category A−Setspc of finitely
generated pc A–sets is quasi-exact. We write K ′(A) for K(A−Setspc)
and set K ′

n(A) = πnK
′(A).

Example 2.1.4. When A = G+ for a group G, we saw in Example
1.4 that every pc A–set is a free A–set. Therefore K(G+) = K ′(G+).
Note that K0(G+) = Z differs from G0(G+) when G is not simple.
If X = (G+)

∨r, then Aut(X) is the wreath product G ≀ Σr. By
the Barratt–Priddy–Quillen theorem, K(A) is the group completion of∐

B(G ≀ Σr), which is Ω∞S∞(BG+). In particular when A = Z+ (i.e.,
G = Z), we have

K ′(Z+) ≃ K(Z+) ≃ S ∨ Ω−1S, K ′
n(Z+) ∼= πs

n ⊕ πs
n−1

This calculation of K(G+) is well known; see [CLS, 5.9].2

If C is a quasi-exact category, we can form a double category (M, E)
with the same objects as C; the horizontal and vertical maps are the
admissible monics and epis (composed backwards), respectively, and
the 2–cells are commutative diagrams of the form

(2.2)

Y // // X

Y ′ // //

OOOO

X ′.

OOOO

We say that a square (2.2) is distinguished if the natural map of coker-
nels X ′/Y ′ → X/Y is an isomorphism. Thus distinguished squares are

2The formula in [D, p. 146] is incorrect, as Aut(G∨n

+ ) is the wreath product G≀Σn.
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both pushout squares and pullback squares. Note that C is an “ambient
category” for (M, E) in the sense of [CZ, 2.2]. We define k(X ։ X/Y )
to be (Y  X) and c(Y  X) = (X ։ X/Y ).

Lemma 2.3. If C is a quasi-exact category, (M, E) is a CGW-category
in the sense of [CZ, 2.4].

Proof. We need to verify the axioms in loc. cit. The isomorphism
iso(E) ∼= iso(M) is [CZ, 2.2]. Axiom (Z) holds because C has a zero
object; Axiom (I) follows from (i) and (iii); and axiom (A) is (iii). Ax-
iom (K) is immediate from the definitions of c and k, and Axiom (M)
is (ii). �

Remark 2.3.1. In [CZ], Campbell and Zakharevich define the K-theory
of a CGW-category using an appropriate version of the Q-construction.
If C is a quasi-exact category with associated CGW-category (M, E),
then QC and Q(M, E) are isomorphic categories, and thus the two
possible definitions of the K-theory coincide.
With this in mind, we will abuse notation and consider a quasi-exact

category as a CGW-category.

Lemma 2.4. If X is a pointed A–set and Y, Z are pointed A–subsets,
then Y/(Y ∩Z)  X/Z ։ X/(Y ∪Z) is an admissible sequence. That

is, Y/(Y ∩ Z)
∼=
→ (Y ∪ Z)/Z.

The proof of Lemma 2.4 is standard, and left to the reader.

Theorem 2.5. Let A be a pointed monoid, and C a quasi-exact sub-
category of A−Sets closed under pushouts and pullbacks. Then the
associated double category (M, E) is an ACGW-category in the sense
of [CZ, 5.2–5.3].

Proof. We let “commutative square” mean a 2–cell of the form (2.2).
For this, we need to check the axioms (P), (U), (S) and (PP). Axiom
(P) is the evident assertion that M is closed under pullbacks, and E is
closed under pushouts.
Given Lemma 2.4, Axiom (U) is equivalent to the following assertion:

given a pointed A–set X and pointed A–subsets Y, Z (i.e., a diagram
Y  X ։ X/Z), the pushout (X/Z)∪X (X/Y ) and pullback Y ×XZ =
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Y ∩ Z fit into a commutative diagram:

� // // X/Z // // (X/Z) ∪X (X/Y )

Y

OOOO

// // X

OOOO

// // X/Y

OOOO

Y ∩ Z
OO

OO

// // Z
OO

OO

// // D
OO

OO

(The object � is Y/(Y ∩ Z) ∼= (Y ∪ Z)/Z.)
Axiom (S) says that given a pullback square in M of the form

Y ∩ Z // //

��

��

Z
��

��

Y // // X,

the pushout P = Y ∪Y ∩ZZ exists, and X/P is the pushout of X/Y and
X/Z along X/K. Dually, given a pushout square in E , of X ։ X/Y
and X ։ X/Z, the pullback L = X/(Y ∪ Z) of X/Y and X/Z along
(X/Y ) ∪X (X/Z) exists, and the kernel of X → L is Y ∪ Z. Both of
these assertions are elementary, in the spirit of Lemma 2.4.
Axiom (PP) says that if V is an A–subset of both X and Y, then

V is the intersection of X and Y in X ∪V Y . (The pushout X ∪V Y
of X and Y along V is the quotient of the wedge X ∨ Y, modulo the
equivalence relation identifying the two copies of V ; it is the object
X⋆V Y of [CZ, 5.3].) Dually, given epis X ։ Z and Y ։ Z, the same
argument shows that the kernel of (X×Z Y ) ։ X is isomorphic to the
kernel of Y ։ Z. �

Remark 2.5.1. It would suffice to prove Theorem 2.5 for pointed sets,
because the forgetful functor from A−Sets to pointed sets creates col-
imits and limits; its left adjoint is the free functor, and its right adjoint
sends a pointed set X to its co-induced A–set Hom(A,X). However,
the proof would be no shorter.

Corollary 2.6. If A is a left noetherian monoid, the associated dou-
ble category (M, E) associated to A−Setsfg (fin. gen.A–sets) is an
ACGW–category. The same is true for any subcategory closed under
pushouts and pullbacks, such as the categories of pc A–sets (if A is pc)
and finite A–sets.

Proof. It is straightforward that finitely generated (or pc, if A is pc, or
finite) A–sets are closed under pushouts and pullbacks in the category
A−Sets when A is left noetherian. Thus Theorem 2.5 applies. �
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3. K ′-theory of a monoid

We recall the following definition from Example 2.1.3.

Definition 3.1. If A is a pc monoid, K ′(A) denotes the K-theory of
the category of finitely generated, partially cancellative A–sets.

Remark 3.1.1. K ′-theory is contravariantly functorial for normal monoid
maps betweeen pc monoids, as these maps preserve the condition ax =
bx 6= ∗. (Recall from [CLS] that a monoid map f : A → B is normal if
it is the composition of a quotient by an ideal and an injection.) Since
B is pc, f is normal iff B is a pc A-set.
K ′-theory is covariantly functorial for flat monoid maps (a monoid

map A → B is flat if the base extension functor X 7→ B∧AX is exact),
as flat base extensions preserve distinguished squares.

We will need the following theorem, taken from [CZ, 6.1] and based
on [Q, Thm. 5.4].

Theorem 3.2 (Devissage). Let A be a full pre-ACGW subcategory of
a pre-ACGW category B, closed under subobjects and quotient objects,
and such that EA → EB creates pushouts. Suppose that every object of
B has a finite filtration

1  F1B  · · ·  FnB = B

such that each FiB/Fi−1B is in A. Then K(A) ∼= K(B).

Remark 3.2.1. The hypothesis that EA → EB creates pushouts will be
satisfied in our applications.

Lemma 3.3. If A is a pointed pc monoid of finite length3 with units
G, then

K ′(A) ≃ K ′(A/m) ≃ S∞(BG+).

In particular, if A has no nontrivial units then K ′(A) ≃ S. In partic-
ular, K ′(N/tnN) ≃ S for all n ≥ 1.

Proof. The unique maximal ideal m of A (see Remark 1.2.1) defines a
finite filtration of any finitely generated A–set X: if mn = ∗ then

X ⊃ mX ⊃ m
2X ⊃ · · ·miX ⊃ · · · ⊃ m

nX = ∗.

The lemma follows by Devissage (3.2), and the fact that A/m = G+.
�

Remark 3.3.1. If A is any pointed monoid of finite length, the same
proof shows that G(A) ≃ G(A/m). However, if A has nontrivial units
then G(A/m) 6≃ S∞(BG+); see Example 2.1.4.

3the length of A is the length of the longest chain of ideals
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The following Additivity Theorem is a special case of [CZ, 7.14].
Recall from Theorem 2.5 that the double category (M, E) associated to
a quasi-exact category is an ACGW-category in many cases of interest.

Theorem 3.4 (Additivity). If B is a quasi-exact category such that
(M, E) is an ACGW-category, and s  t ։ q is an admissible se-
quence of exact functors B → A, then

t∗ = s∗ + q∗ : K(B) → K(A).

Proof. By [CZ, 7.5, 7.11], there is a CGW-category S2 B of admissible
sequences B0  B1 ։ B2. The given admissible sequence defines
exact functors s, q, t : S2 B → A, and if ∐ : B × B → S2 B is the
coproduct functor then the following compositions agree:

B × B
∐

−→S2 B
t

⇒
s∨q

A.

Hence they give the same map on K-theory. By [CZ, 7.14], the source
and target functors yield an equivalence

K(B) ∨K(B)
≃

−→K(S2B).

Hence t∗ = (s ∨ q)∗ = s∗ + q∗, as required. �

If i : A → A/I is a surjection of pointed monoids, there is an exact
functor (A/I)−Sets → A−Sets. If A is a pc monoid, we have a map
i∗ : K

′(A/I) → K ′(A).

Theorem 3.5. Let A be a pc monoid. Suppose that s ∈ A is such
that the set {sn}n≥0 is a 2–sided denominator set (that is, s-left frac-
tions and s-right fractions coincide, see [WK, II.A]). Then we have a
fibration sequence

K ′(A/sA)
i∗−→K ′(A)−→K ′(A[s−1]).

Proof. Consider the category T of (pc) s-torsion A–sets; by Corollary
2.6, T is an ACGW-category. In fact, it is a sub ACGW-category of
A−Setspc. Since every s-torsion A–set X is finitely generated, X has a
finite filtration by the subsets snX. By Devissage, K ′(A/sA) ≃ K(T ).
We will apply the localization theorem [CZ, 8.5] to T ⊂ A−Setspc.

The argument of [CZ, 8.6] shows that the category A−Setspc\T is
equivalent to A[1/s]−Setspc, and hence is a CGW category, so axiom
(CGW) holds. Axiom (W) holds: T is “m-negligible” in A−Setspc be-
cause every pc A–set N contains snN (which is s-torsion-free for suffi-

ciently large n), and if the kernel of M ։ N is in T , then snM
∼

−→ snN



THE K
′
–THEORY OF MONOID SETS 9

for n large enough. Moreover, T is “e-well represented” because, given
pc A–sets N1, N2 and V , and A–set maps

N1 → N1[s
−1]

∼
−→V [s−1] and N2 → N2[s

−1]
∼

−→V [s−1]

the pullback N = N1 ×V [s−1] N2 is a pc A–set and N [s−1] → V [s−1]
is an isomorphism. Finally, axiom (E) holds because every morphism
A → B in A−Setspc\T is represented as A ։ A/(s−torsion)  snB
for some n. �

Remark 3.5.1. The same proof works to show that if A is left noetherian
there is a fibration sequence

G(A/sA)
i∗−→G(A)−→G(A[s−1]).

The following corollary is an analogue of [WK, Ex.V.6.4], [Q, Exer-
cise in §6] and [FH].

Corollary 3.6. Let A be a pc monoid and φ : A → A an automorphism.
Write A⋊N and A⋊Z, respectively, for the corresponding semi-direct
product monoids (in which ta = φ(a)t). Write i : A → A ⋊ N for the
inclusion. Then there is a fibration sequence

K ′(A)
i∗−i∗φ∗

// K ′(A⋊N) // K ′(A⋊ Z).

In particular (taking φ to be the identity), we get a fibration sequence

K ′(A)
0

−→K ′(A ∧ N)→K ′(A ∧ Z).

Thus K ′(A ∧ Z) ≃ K ′(A ∧ N) ∨ Ω−1K ′(A).

Proof. Apply Theorem 3.5 to A⋊N and s = t. The fact that K ′(A) →
K ′(A⋊N) is i∗ − i∗φ∗ follows from additivity applied to the character-

istic exact sequence of an A–set: φ∗(X)∧N
t
 X ∧N

i
։ X, where the

action of A⋊N on φ∗(X) ∧ N is twisted by φ. �

Remark 3.6.1. Again, the same proof works if A is (left) noetherian to

yield a fibration sequence G(A)
0

−→G(A ∧ N)→G(A ∧ Z), and hence
that

G(A ∧ Z) ≃ G(A ∧ N) ∨ Ω−1G(A).

4. Fundamental Theorem

We now apply the results in the previous section to prove Theorems
4.6 and 4.7.

Lemma 4.1. Let R, S and T be spectra, with S and T of finite type.
Given an equivalence f : S ∨ T → R ∨ S ∨ T , which is an equivalence
on S, then f induces an equivalence T ≃ T and R ≃ 0.
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Proof. Localizing at Q, a dimension count shows that the homotopy
groups of R are finite abelian groups. Taking coefficients modulo a
prime, a cardinality argument shows that all homotopy groups of R
vanish. Hence R ≃ 0, and the result follows easily. �

Lemma 4.2. The composition K ′(A)
f∗

−→K ′(A ∧ N)
j∗

−→K ′(A ∧ Z+)
splits, where f ∗ and j∗ are induced from the base change X 7→ X ∧A N

and localization functor X 7→ X[1/t].

Proof. Since both f ∗ and j∗ are exact, the composition is defined. Con-
sider the orbit functor γ from A∧Z+−Setspc to A−Setspc, sending X
to X/∼, where x ∼ y if y = tnx for some integer n. It is easy to see
that γ is an exact functor, and that γj∗f ∗ is the identity. �

Theorem 4.3. K ′(N) ≃ S.

The conclusion of Theorem 4.3 fails for G(N); see Example 2.1.2.

Proof. Let C denote the category of finite pc N–sets; it is an ACGW
category by Theorem 2.5. Since each finite pc N–set X has a finite
filtration by tnX, Devissage 3.2 and Example 2.1.1 imply that K(C) ≃
K(Setsf) ≃ S. Then the localization sequence 3.6 yields a fibration
sequence

K(Setsf)
0

−→K ′(N)−→K ′(Z+).

Hence K ′(Z+) ≃ K ′(N) ∨ Ω−1K(Setsf). By Example 2.1.4, we see
that K ′(Z+) ≃ S ∨ Ω−1K(Setsf). Since the inclusion (given by base
extension) S ≃ K(Setsf) → K ′(Z+) factors through K ′(N), Lemma
4.2 implies that there is a spectrum R such that K ′(N) ≃ R ∨ S. By
Lemma 4.1, K ′(Setsf) ≃ K ′(N). �

Porism 4.4. If G is a group, then the proof of Theorem 4.3 applies,
using Lemma 3.3, to show that K ′(G+ ∧ N) ≃ K ′(G+) ≃ S∞(BG+).

Theorem 4.5. If A is a pc monoid of finite length with units G, then

K ′(A ∧ Z+) ∼= K ′(G× Z+) ≃ S∞(BG+) ∨ Ω−1S∞(BG+).

In particular, if G = {1} then K ′(A ∧ Z+) ∼= K ′(Z+) ≃ S ∨ Ω−1S.

Proof. A ∧ Z+ has finite length, and its units are G × Z. By Lemma
3.3, we conclude that K ′(A ∧ Z+) ∼= K ′(G × Z+). By Example 2.1.4,
this is S∞B(G× Z)+, and

S∞B(G× Z)+ ≃ S∞(BG+) ∨ Ω−1S∞(BG+). �

Theorem 4.6. If A is a pc abelian monoid, then

K ′(A) ≃ K ′(A ∧ N) and K ′(A ∧ Z+) ≃ K ′(A) ∨ Ω−1K ′(A).
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Proof. It suffices to prove the first equivalence, as the second equiva-
lence follows from it, using Theorem 3.5. If A = G+ then K ′(G+) ≃
K ′(G+ ∧ N) by Porism 4.4. Inductively, suppose that the result holds
for pc monoids with n generators over its group of units, and that A
is generated by s = s0, ..., sn, where s is in mA. Then the result holds
for the monoids A/sA and A[1/s] (which are both pc by [CHWW,
Prop. 9.1]), so by naturality and Theorem 3.5 (which applies as A is
abelian) we have a map of fibration sequences whose outside maps are
equivalences:

K ′(A/sA) //

≃

��

K ′(A) //

��

K ′(A[1/s])

≃

��

K ′(A/sA ∧ N) // K ′(A ∧ N) // K ′(A[1/s] ∧ N).

By the 5–lemma, the middle mapK ′(A) → K ′(A∧N) is an equivalence.
�

Theorem 4.7. Let G be a group, φ : G → G an automorphism, and
G+ ⋊ N and G+ ⋊ Z the corresponding semidirect product monoids.
Then the base extension map K ′(G+) → K ′(G+ ⋊N) is an equivalence

and we have a fibration sequence K ′(G+)
1−φ∗

−→K ′(G+) → K ′(G+ ⋊ Z).

Proof. We consider the diagram

K ′(G+)
1−φ∗

//

=
��

K ′(G+) //

i∗
��

K ′(G+ ⋊ Z)

=
��

K ′(G+)
i∗−i∗φ∗

// K ′(G+ ⋊N) // K ′(G+ ⋊ Z),

where i∗ is the base extension map along the inclusion G+ → G+ ⋊N.
The bottom sequence is the localization sequence of Corollary 3.6,
and the whole diagram commutes by inspection. It therefore suffices
to show that the top row is a cofibration sequence; it is canonically
equivalent to the sequence of suspension spectra of classifying spaces

S∞BG+
1−φ∗

−→ S∞BG+ → S∞B(G ⋊ Z)+. This last sequence is a cofi-
bration sequence by the mapping torus construction: unstably, the
homotopy coequalizer of 1 and φ∗ is computed by the mapping torus
T = BG × I/{(x, 0) ∼ (φ∗(x), 1)}. This mapping torus has BG × R

as a covering space with deck transformation group Z. It follows that
πn(T ) = 0 for n ≥ 2, and it is easy to verify that π1(T ) ∼= G⋊Z. Thus
T ≃ B(G⋊ Z), and stabilisation yields the desired conclusion. �
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5. Monoid schemes

The constructions of Section 3 can be generalized to define the K ′-
theory of noetherian partially cancellative monoid schemes. For rel-
evant definitions see [CHWW]. In particular, given an abelian pc
monoid A, we have an affine pc monoid scheme MSpec(A); a general
pc monoid scheme is a noetherian ringed space locally isomorphic to

such an affine pc monoid scheme. Since any A–set F defines a sheaf F̃
on MSpec(A), we can replace A-sets by sheaves on MSpec(A). Recall
as well from [CHWW, Defn. 2.5] that an equivariant closed subscheme
of a monoid scheme X is one that is defined by a sheaf of ideals.

Definition 5.1. Let X be a pc monoid scheme. A pc set on X is

a sheaf that is locally of the form F̃ for a finitely generated pc A–
set F ; compare [CLS, 3.3]. We write X−Setspc for the (quasi-exact)
category of pc sets on X; its admissible sequences are those that are
locally admissible in the sense of Example 2.1.2. We define K ′(X) to
be the K-theory of X−Setspc.

Remark 5.1.1. If X = MSpec(A), then there is a natural equivalence of
quasi-exact categories X−Setspc ∼= A−Setspc (see [CLS, Cor. 3.13]),
and therefore K ′(X) ≃ K ′(A).

Remark 5.1.2. The K ′-theory of pc monoid schemes is contravariantly
functorial for flat morphisms, and covariantly functorial for equivariant
closed immersions. This is immediate from Remark 3.1.1.

As pushouts and pullbacks of sheaves, and admissible sequences, are
all detected locally, the following result is an immediate consequence
of Corollary 2.6.

Theorem 5.2. Let X be a pc monoid scheme. Then any quasi-exact
subcategory of X−Setspc that is closed under pushouts and pullbacks
is an ACGW-category.

Here is the analogue of Quillen’s localisation theorem [Q, 7.3.2].

Theorem 5.3. Let X be a pc monoid scheme and Z
i

−→X an equi-

variant closed subscheme with open complement U
j

−→X. Then there
is a fibration sequence of spectra

K ′(Z)
i∗−→K ′(X)

j∗

−→K ′(U).

Proof. Let J be the ideal sheaf defining Z. The proof of Theorem 3.5
applies mutatis mutandis, with T the subcategory of X−Setspc con-
sisting of those sheaves supported on Z, or equivalently, the subcate-
gory of J-torsion sheaves. By Devissage, K(T ) is equivalent to K ′(Z).
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The localized (bi-)category X−Setspc\T is equivalent to U−Setspc; in
particular, axiom (CGW) of [CZ, Theorem 8.5] holds. The remaining
axioms are checked as in the proof of Theorem 3.5. �

Remark 5.3.1. The localisation sequence of the theorem is natural for
flat pullbacks X ′ → X. In particular, if V ⊂ X is an open subscheme
containing Z, then

K ′(Z) //

=
��

K ′(X) //

��

K ′(U)

��

K ′(Z) // K ′(V ) // K ′(U ∪ V ).

is a map of fibration sequences of spectra.

The global version of the Fundamental Theorem is now easily de-
rived. As in [CHWW], we writee A1 for MSpec(N).

Theorem 5.4. Let X be a pc monoid scheme. Then the pullback map
K ′(X) → K ′(X × A1) is an equivalence, and

K ′(X ∧ Z+) ≃ K ′(X) ∨ Ω−1K ′(X).

Proof. Note that MSpec(A) × A1 = MSpec(A ∧ N). By Theorem 4.6
the assertion holds for affine pc monoid schemes, and in particular for
pc monoid schemes of dimension 0. The general case is now proved
using induction on the dimension of X using Theorem 5.3. �

Corollary 5.5. Let ξ : E → X be a vector bundle over a pc monoid
scheme. Then ξ∗ : K ′(X) → K ′(E) is an equivalence.

Proof. For a trivial vector bundle, this follows from the theorem by
induction on the rank. Now the general case follows from localization
5.3, applied to an open cover of X trivializing E. �

Theorem 5.6. Let X be a pc monoid scheme. Then there is a natural
equivalence K ′(X × P1) ≃ K ′(X) ∨K ′(X).

Proof. We have an open covering X × P1 = U1 ∪ U2, with each Ui
∼=

X×A1 and U1∩U2
∼= X∧Z+. The complement of each Ui is isomorphic

to X. Applying Remark 5.3.1 and the Fundamental Theorem 5.4, we
obtain a homotopy cocartesian square of spectra

K ′(X × P1) //

��

K ′(X)

��

K ′(X) // K ′(X) ∨ Ω−1K ′(X).
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The right vertical and bottom map are isomorphisms onto the first
summand; the assertion follows. �

Theorem 5.7. Let X be a pc monoid scheme, and n a non-negative
integer. Then there is a natural equivalence

K ′(X × Pn) ≃ K ′(X)∨n+1.

In particular, K ′(Pn) ≃ S ∨ S ∨ · · · ∨ S (n+ 1 copies of S).

Proof. We proceed by induction on n, the case n = 0 being tautological.
Suppose n > 0 and we have proved the assertion for n − 1. Applying
Theorem 5.3 to the equivariant closed immersion X × Pn−1 → X × Pn

with open complement U ∼= X × An we obtain a fibration sequence of
spectra

K ′(X × Pn−1) → K ′(X × Pn) → K ′(X × An) ≃ K ′(X).

Because K ′(X) → K ′(X × Pn) → K ′(X × An) is an equivalence by
Corollary 5.5, this sequence is split; the assertion for n follows. �

Remark 5.7.1. In particular, K ′
0(P

1) ∼= Z ⊕ Z ∼= Z × Pic(P1), and the
isomorphism is given by the rank and determinant. See [FW] for the
computation of the Picard group of monoid schemes.

Acknowledgements. The authors would like to thank Inna Zakhare-
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