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Summary. We show that there is a natural decomposition 

Pic(A It, t -  1]) .~ Pic (A) �9 N Pic(A) (~ N Pic(A) G H 1 (A) 

for any commutative ring A, where Pic(A) is the Picard group of invertible 
A-modules, and H 1 (A) is the &ale cohomology group H 1 (Spec(A), 7Z). A similar 
decomposition of Pic(X[t, t - l ] )  holds for any scheme X. This makes Pic a 
"contracted functor" in the sense of Bass. H 1 (A) is always a torsionfree group, 
and is zero if A is normal. For pseudo-geometric rings, Hi(A) is an effectively 
computable, finitely generated free abelian group. We also show that 
HI(A[t, t-1])~-HI(A), i.e., N H  1 = L H  ~ =0. This yields the formula for group 
rings: 

m m 

Pic(A[tl ,  t~ 1 . . . . .  tin, t2,1)-~Pic(A)O [ I  H~(A)@ [I  L[ N~Pic(A) �9 
i = 1  k = l  i = 1  

Introduction 

In this paper we solve one of the problems left over from the "classical" period 
of algebraic K-theory: analyzing the Picard group of the Laurent polynomial 
ring over a commutative ring. (See [Bass, p. 670].) The Picard group Pic(A) 
is the group of isomorphism classes of rank one projective A-modules (i.e., invert- 
ible ideals of A). We prove that Pic is a "contracted functor" (on schemes) 
in the sense of Bass, so there is a natural decomposition 

Pic(A [t, t -  1]) ~ Pic(A) • N Pic(A) G N Pic (A) G L Pic (A), 

and we identify the mystery term LPic(A). The surprise is that the solution 
requires 6tale cohomology, because for any scheme X: 

L Pic (X) = Hit (X, Z). 

* Partially supported by NSF grant DMS-8803497 
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The other term in the decomposition, N Pic(A), is the quotient Pic(A [t])/Pic(A). 
Its structure is fairly well understood; for example, N Pic (A)= 0 iff A red is seminor- 
mal [Swan], and N Pic(A) is a module over the ring W(A) of Witt vectors 
[DW]. 

A secondary goal of this paper is to give an elementary description of the 
mystery group LPic and when it vanishes. For example, LPic(X)=0 if X is 
normal. Our proofs here are more elementary for rings than for schemes; we 
cite the result (7.6.1) that LPic(X)=LPic(Xreo), a result that is trivial for rings 
but subtle for schemes because Pic(X)4:Pic(Xred) in general. For this reason, 
and in order to make the paper more accessible, we restrict ourselves to commu- 
tative rings in the first half of the paper, only introducing schemes and &ale 
cohomology when forced to. We have therefore organized our results as follows. 

In section one, we recall Bass' notion of a contracted functor, and define 
LPic(A). We include a result of independent interest: if 

A=R[t~,  t? 1 . . . . .  tin, t~  1, Xl,  . . . ,  Xn] 

for a 0-dimensional ring R, then every projective A-module of constant rank 
is free. 

In section two, we construct the H ~  LPic sequence, an exact sequence asso- 
ciated to a finite integral extension A c B. When A is reduced noetherian and 
has a finite integral closure B, this sequence reduces to 

0 ~ ~E d ~ LPic(A) ~ LPic(A/I) ~ LPic(B/I), 

d = h ~ ( B / I )  - h ~ ( A / I )  + h ~ (A)  - -  h ~ (B),  

where I is the conductor ideal from B to A, and h~ denotes the number 
of connected components of a ring R. This yields an effective algorithm for 
computing LPic(A) for pseudo-geometric rings, and shows that in this case 
L P i c ( A ) ~ "  for some r. We also use the H ~  sequence to show that 
NLPic=L  z Pic=0, which yields a formula for the Picard group of a free abelian 
group: 

m 

Pic(A[t~, t~ 1, ..., tin, t2,1)~-Pic(A)(~ LI LPic(A)G f i  I_I Nkpic(A) �9 
i = 1  k = l  i = l  

Sections 3 and 6 are scenic excursions, showing how the introduction of 
LPic simplifies many of the results in the literature, particularly those involving 
Asanuma's notion of "anodal" domain. Let A be a domain. Then LPic(A)=0 
implies that A is anodal; Asanuma's theorem becomes: if dim(A)=l then 
L Pic(A) = 0 iff A is anodal; the Onoda-Yoshida principal becomes: LPic(Av)= 0 
for every prime ideal P iff Av is anodal for every prime ideal P. We give an 
example of a 2-dimensional anodal domain which has L Pic~e0, showing that 
being anodal is not a sufficient condition for LPic to vanish. 

In Sect. 4 we show that N Pic satisfies descent for the &ale topology. In 
contrast, descent fails miserably for LPic, because LPic vanishes for hensel local 
rings. Our proof is an adaptation of the methods of Vorst and van der Kallen, 
who showed that the groups NKi satisfy descent for the &ale topology. 
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Our main results are proven in Sect. 5 (for rings), and extended to schemes 
in Sect. 7. We have described these results above. 

Finally, we conclude with some remarks in Sect. 8 about  the connection 
to negative algebraic K-theory. For  example, the 7-filtration and the action 
of the Adams operations Ok are related to vanishing conjectures for negative 
K-theory [W]. We also consider the Brown-Gersten spectral sequence for K.(X) 
and show that the E2 ~~ term not only lives to infinity but is naturally isomorphic 
to L Pic (X). 

Acknowledgements. Many background results on contracted functors, and (1.7) in particular, 
were developed jointly with Sue Geller. I have benefitted greatly from conversations with 
Bob Thornason and Wolmer Vasconcelos, and also with Dan Grayson, Rick Jardine and 
Les Reid. I would also like to thank N. Onoda and K. Yoshida for writing the paper JOY], 
which rekindled my interest in the subject of Pic(A It, t- 1]). 

w 1. Contracted functors of rings 

We begin by recalling some notation from [Bass, ch. XII].  Let ~ be the category 
of commutative rings. Given a functor F from ~ to some abelian category 
,~r we define functors NF and LF by the formulas: 

N F  (R) = Nt F (R) = ker IF (t = 1): F (R It]) ~ F (R)] 

coker IF (i +): F (R) ~ F(R It])]; 

LF(R) = Lt F(R) = coker [F(R [t]) G F (R I t -  1]) aad , F(R[t, t -  1])]. 

These functors can be iterated; it is easy to see that there are natural isomorph- 
isms NLF(R) ~- LNF(R) and L 2 F(R) = Ls Lt F(R) _~ Lt Ls F(R). Clearly F(R It]) --- 
F(R) �9 NF(R). To decompose F(R It, t-1]), let Seq(F, R) denote the chain com- 
plex 

O---~F(R) ~+'-~, F(R[t])OF(R[t-1]) add  , F(R[t, t-~I)--~LF(R)--~O. 

Here (+ ,  - )  denotes the map (F(i+), -F ( i_ ) ) ,  which is a split injection. Hence 
Seq(F, R) is quasi-isomorphic to the subcomplex 

O--, F(R) �9 N Ft(R) �9 Nt-I F(R) add , F(R [t, t- I-])__~LF(R)___~0. 

Following Bass, we say F is a contractedfunctor (on ~)  if the sequence Seq(F, R) 
is naturally split exact, i.e., exact and split by a map 

h=ht(R): LF(R)~ F(R[t, t - l ] )  

which is natural in R and t. Such a splitting induces a natural decomposition 

F(R [t, t- 1-]) ~ F(R) • NF(R) ~ NF(R) G LF(R). 
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Example 1.1 [Bass, pp. 671-673]. The group U(R) of units of a commutative 
ring R is a contracted functor. The group NU(R) is (1 +(t -1)J[ t ] )  • where 
J is the nilradical of R, and LU(R) is the group 

H ~ (R) = H ~ (Spec (R); Z) 

of continuous maps from the topological space Spec(R) to 7Z. The splitting 
h: H~  U(R[t, t-~]) takes a continuous map f to t s, the unit of R[t, t -1] 
which is t" on the component of Spec(R[t, t-~]) on which f takes the value 
/I. 

Remark 1.1.1. By formal nonsense, using Example 1.2 below, we see that 
/2N J U(R)=0 if i > 2  or if i=  1, j # 0 .  Note that if R is reduced then N ~ U(R)=0 
for all j # 0. For a reduced ring R, this quickly yields the Bass-Murthy formula 
[BM, 5.12]: 

U ( R [ t l ,  t-11 . . . . .  tin, t~, 1, xl, ..., x,]) -~ U(R) • f iH~ 
i = 1  

(If R is not reduced, one has to add lots of N j U(R) terms.) 
Bass proves on p. 661 of [Bassi that, whenever F is a contracted functor, 

both N F  and LF are also contracted functors. In fact, whenever E ~ F  is a 
morphism of contracted functors (a natural transformation commuting with 
h), the kernel, cokernel and image are also contracted functors. 

Example 1.2. H~ is a "trivially" contracted functor, i.e., N H  ~ = L H  ~ =0,  be- 
cause it is easy to see that 

H ~ (R) ~- H ~ (R [t]) ~ H ~ (R It, t -  z]). 

Construetion 1.2.1. I f  R is /1oetherian, so that Spec(R) has only finitely many 
(say h) con/1ected components, it is obvious that H ~  h. More generally, 
H~ is always a free abelia/1 group [Fuchs, 97.7]. 

This fact does not seem to be well-known; it is listed as an open problem 
in [Pierce, p. 108], and was established the next year by N6beling [No]. The 
following construction of a basis of H~ is due to Bergman, and involves 
a clever ordering of the set g~ of idempotents of R. A well-ordering of ~ is 
called a Speeker ordering if the first element is 1 and ~, fl < ~ implies e~ e~ < e~. 
Specker orderings exist; to construct one, first choose any well-ordering of g 
and then do a bubble sort. Given a Specker ordering of ~, let ~ be the subset 
of all idempotents ep not in the subgroup of R generated by the e~ with a < ft. 
Interpreting idempoteilts as characteristic functions on Spec(R), hence as ele- 
ments of H~ ~ becomes a basis of H~ With this remark, we can improve 
upon IBM, A.5]: 

Proposition 1.3. I f  A ~ B is any commutative ring map, the image of the map 
H~176 is a direct summand, and the cokernel is a free abelian group. 
I f  A is a subring of B, then H~ injects into H~ and H~176 iff 
every idempotent of B lies in A. 

Proof. When A is a subring of B, first choose a Specker ordering for the idernpo" 
tents of A, and extract a basis ~1 of H ~ (A) using Construction 1.2.1. Then corn- 
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plete the Specker ordering to the remaining idempotents of B, and extract a 
basis ~ of H~ It is clear from (1.2.1) that d is a subset of ~ ,  so H~ 
is a summand of H~ In the general case, let S be the image in B of the 
set of idempotents of A, and let (S )  denote the subgroup of H~ spanned 
by S. It is clear that (S )  is the image of H~ Specker-order S, then complete 
to a Specker ordering of all the idempotents of B. Construction 1.2.1 shows 
that (S)  is a direct summand of H~ [] 

Example 1.4. The Fundamental Theorem of algebraic K-theory states that the 
functors K,(R) are contracted functors (even on the category of all rings) with 
LK, = K,_ 1. For example, Ko(R) is the Grothendieck group of finitely generated 
projective R-modules, but we lack a familiar interpretation of the negative groups 
K_,(R)=L" Ko(R). (See [Bass, p. 663] and [Q].) 

Example 1.4.1. If R is a commutative ring, the rank of a projective module 
gives a morphism rank: Ko(R)~H~ of contracted functors. This map is 
a split surjection, since H~ is generated by the characteristic functions of 
ideml~otents, and the idempotent e corresponds to the projective module eR. 
Let Ko(R ) denote the kernel of the rank map; it follows from tile above that 
Ko -~ H o G  Ko, that/s is a contracted functor, and that 

LKo(R) ~ LKo(R)= K-1 (R). 

In fact, /~0(R) itself is LSKI(R), where SKI(R ) is SL(R)/[SL(R), SL(R)], and 
SL(R) is the special linear group of matrices of determinant one. See [Bass, 
pp. 671-673]. 

Example 1.5. If R is a commutative ring, Pic(R) is the group of isomorphism 
classes of rank one projective R-modules, the group operation being tensor 
product. In this paper we shall prove that Pic is a contracted functor, that 
det: /~0~Pic  is a morphism of contracted functors, and that NLPic(R)= 
L 2 Pic(R)= 0. As a first step, we mention the following result of Bass and Murthy. 

Lemma 1.5.1 [Bass, p. 670]. The sequence Seq(Pic, R): 

0 ~ Pic(R) ~ Pic(R It]) x Pic(R [ t -  13) ~ Pic(R [t, t -  11) ~ LPic(R) ~ 0 

is exact for every commutative ring R. 

Proof. Only exactness at the second spot is nontrivial. Suppose given 
L~ ePic(R [t]) and L_ ePic(R [ t -  11) which become isomorphic in Pic(R [t, t -  x]). 
By Quillen's Affine Horrocks Theorem [Lam] [Q 761, L + and L_ are extended 
from the same LePic(R), proving exactness. [] 

Remark 1.5.2. The following basic facts about N Pic and LPic will be used exten- 
sively in this paper. N Pic and LPic commute with finite products and filtered 
colimits of rings, because Pic does. Since Pic(R)=Pic(Rre,0, both NPic(R) 
= N Pic (Rred) and L Pic (R)= L Pic(R~d) hold. If R is an integrally closed domain, 
NPic(R)=LPic(R)=O, because Pic(R)~-Pic(R[t])~Pic(R[t,t-1]) holds by 
[BM, 5.101 (and a colimit argument if R isn't noetherian). 

In order to quickly expand our repertoire of rings with N P i c = L P i c = 0 ,  
we include the following result here, which may be of independent interest: 
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Theorem 1.6. Let R be a zero-dimensional commutative ring, and set 

S=R[tx ,  t[ l . . . . .  tm, t~,l, Xl . . . .  ,Xn] (m=>0, n>0).  

(a) Every finitely generated projective S-module of constant rank is free. 
(b) Every finitely generated projective S-module is extended from R. In fact, 

it is a direct sum of modules e S, where e is an idempotent in R. 
(c) Pic (S) =/~o (S) = 0, and Ko (S) ~ H ~ (R). 

Proof. We may assume that R is reduced, i.e., yon Neumann regular. In particu- 
lar, every localization Rp of R is a field. Every projective R-module P is a 
sum of modules eR by [Kap, Thm. 4], so if rank(P) is constant then P is 
free. Hence (b) will imply (a) and (c). If m=0 ,  i.e., S = R [ x l  . . . . .  x,], the result 
(b) is now an easy consequence of Quillen's Patching Theorem, as in [Lam, 
p. 136]. We shall prove the result for m > 0 by induction on m, using the following 
observation of Swan [Sw, 1.3]: if P is a fin. gen. A [t, t -  1J-module, and if P | A (t) 
is extended from A, then P is extended from A [t-~].  Here A(t) is the localization 
of A [t] at the multiplicative set of all monic polynomials, and "extended" means 
that P~-A[t, t -1] | Q for some fin. gen. projective A[t-~]-module  Q. Now 
write S=A[ t ,  t-x], where t=t,,, and let P be a fin. gen. projective S-module. 
It is easy to see that R(t) is also a von Neumann regular ring, because its 
localizations are all fields of the form Rp(t). By induction on m, the projective 
A |  P | is extended from R(t), hence from R, as every idem- 
potent e in R(t) lies in R. Since A(t) is a localization of A Q R R ( t  ), P|  
is extended from R. Hence P is extended from A It-1].  By induction on m, 
P is extended from R. [] 

Corollary 1.6.1. For every zero-dimensional ring R, K_m (R)= 0 for all m > 1, and 

N Pic (R) = L Pic (R) = 0. 

Example 1.7. Let SKo(R) denote the kernel of the determinant map "de t"  from 
/~o(R) to Pie(R). By chasing the diagram connecting Seq(F, R) for F=SKo,  
/~o and Pic, and using (1.5.1), we see that Seq(SK o, R) is exact, and that there 
is a short exact sequence 

(1.7.1) O__~LSKo(R)__~K_I(R) L d e t  I, LPic(R)--~0. 

I do not know whether "de t"  is a morphism of contracted functors, nor whether 
SKo is a contracted functor. However, from the calculation in (2.4) below that 
N L  Pic = L 2 Pic = 0, we see that N L S K o  (R) _~ N K_ ~ (R) and that 
L2SKo(R)~-K_2(R). In' addition, Seq(LSKo, R) is exact. To see this, use (1.4), 
(1.5.1) and the exact sequence of chain complexes 

0 ~ Seq(LSKo, R) ~ Seq(K_ 1, R) ~ Seq(L Pic, R) --. 0. 

w 2. The H ~ - L Pic  sequence 

To compute LPic(A) for any given ring A, we will use a modified version of 
the "Units-Pie" sequence. Recall from [Bass, p. 482] that for any commutative 
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ring map A - ~ B  and any ideal I of A with I~-IB, the Units-Pic sequence of 
(A ~ B, I) is the exact sequence 

1 --~ U(A)--~ U(B) • U(A/I)--~ U(B/I) ~ , Pic(A)--~.Pic(B) x Pic(A/I)---~Pic(B/I), 

where ~ is constructed in loc. cit. Applying L, we obtain the chain complex: 

( 2 . 0 )  O--~H~176 x H~176 ~ , LPic(A) 
---* L Pic (B) x L Pic (A/1) ---, L Pie (B/I). 

We shall call (2.0) the H ~  sequence of ( A ~ B ,  I). Exactness at the left 
two spots is due to Bass and Murthy. Once we know that Pic is a contracted 
functor, it will follow that the H ~  sequence is exact. (We'll also see in 
(5.6) how to continue the sequence to the right.) For  now, we record a partial 
result. 

Lemma 2.1. The H~ sequence is exact, except possibly at the LPic(B) 
• LPic(A/I) term. It is exact there too if N Pic(B/1)=O. 

Proof (Cf. [Bass, pp. 675-676], [-Or, p. 792], [Isch, 3.2], [OY, 1.6]). Combine 
the horizontally written Units-Pic exact sequences for (A ~ B, 1), (A [t] ~ B [t], 
I[t]), ... together with the H ~  sequence to form a commutative dia- 
gram whose column sequences are either Seq(U, R) or Seq(Pic, R) for the rings 
R=A,  B, A/I and B/1. The columns are exact by (1.1) and (1.5.1). The lemma 
now follows by diagram chasing. [] 

Corollary 2.1.1. The image of H~ 0 , LPic(A) is a torsionfree abelian group. 

Proof. Given the lemma, this is [Bass, p. 487]. [] 

Exercise 2.1.2. Let b~B be such that (b 2 - b ) d .  Its image ~ in B/I is idempotent. 
Interpreting ~ as an element of H~ show that 0(6) is the invertible 
A [t, t -  1]-module 

{(x, y)sB[t,  t - t]  • A/I[t, t - t ] :  ( 1 - b + b t )  x = y  in B/I[t, t -  1]}, 

considered as an element of Pic(A[t, t - l ] ) .  I f  A c B and B is a domain, show 
that this is isomorphic to the invertible ideal 

A[t, t - 1 ]c~ (1 -b+b t )  B[t, t - l ] .  

Example 2.2 (The node). Let k be either a field or 7Z, and set 

A = k [a, c]/(c 2 = a c + a3). 

Mapping a to (b2-b)  and c to b a = ( b a - b  2) embeds A as the subring k[b 2 
-b,  b 3 - b  2] of B=k[b] with conductor ideal I=(a, c)A. Alternatively, A is 
{f~ B: f (0) = f  (1)}. The H ~ - L Pic sequence quickly yields L Pic(A) ~ Z. By (2.1.2), 

L=A[t ,  t - 1 ] c 3 ( l - b + b t )  B[t, t -~] 

is an invertible ideal which as an element of Pic(A[t, t-1]) generates LPic(A). 
Similarly, the local domain A, has LPic(Al)~-Z, generated by Lf. 

Example 2.2.1. Let R be the direct product of an infinite number of copies (say 
many) of a field k, and set A R = A |  f(0)=f(1)}.  Since R is 
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yon Neumann regular, we see by (1.6) that the H ~  LPic sequence for A R ~ R [b] 
degenerates to yield LPic (A)~H~ This is a free abelian group of cardinality 
2 x . 

Example 2.2.2 (The axes in the plane). The ring A = k [x, y]/(x y) has LPic(A)= 0. 
This is immediate from the H ~  sequence for i: A ~ k [ x ]  x k[y]  and 1 
=(x, y)A, where i ( x )=x  and i(y)=y. This example shows that the analytic type 
of the singularity is not relevant for LPic, a point we shall return to in (2.5). 

Recall that a noetherian ring A is called pseudo-geometric if every reduced 
finite A-algebra B has finite normalization. (For more details, see I-N]. In [EGA, 
IV] these rings are called noetherian universally japanese rings.) For  example, 
any finitely generated algebra over a field, or over Z, is pseudo-geometric. 

Proposition 2.3. I f  A is pseudo-geometric, and dim (A) is finite, then 

LPic(A) ~ Z  r for some r. 

Proof. We proceed by induction on dim(A). As LPic(A)=LPic(Ared), we may 
assume that A is reduced. If dim(A)=0,  we cite (1.6.1). Otherwise, let B be 
the normalization o f  A. The conductor ideal I contains a nonzerodivisor of 
both A and B, so dim(A/ I )<dim(A) .  By induction, L P i c ( A / I ) _ ~  s for some 
s. By (2.1.1) we have the exact 

0 --* 2g a ~ L Pic (A) ~ Z s, 

d = [dim H ~ (B/I) - dim H ~ (A/I)] - [dim H ~ (B)-- dim H ~ (A)]. 

Since every subgroup of 7Z. ~ is free abelian, LPic(A)~-Z r for some r, d<_r<d 
+s.  [ ]  

Corollary 2.3.1. LPic(A) is a torsionfree abelian group for every ring A. 

Proof. LPic(A) is the direct limit of the LPic groups of the fin. gen. subrings 
of A. 

Exercise 2.3.2. Fix a field k and a positive integer p. Let An be the coordinate 
ring of pn affine lines linked together into a circle: 

I 
I 
I 

Fig. 1 
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and map An to An+ l by the obvious degree p mapping of pn+l lines to pn lines. 
i - t - I  

Show that A=limAn is al-dimensional reduced k-algebra with LPic(A)=Z [1[. 
LPJ 

(Hint: Show that the maps LPic(An) ~ LPiC(An+ 1) are Z P, 7E.) 

Remark 2.3.3. The proof of (2.3) yields an  effective algorithm for computing 
LPic(A). This is because by the H ~  sequence (5.3) the image of LPic(A) 
in 2~ s is the kernel of the map from Z ~-  L Pic(A/I) to 7Z.t~ - L Pic(B/I). 

Theorem 2.4. For every commutative ring A, NLPic(A)=L2pic(A)=O. That is, 
we have: 

L Pic (A) -~ L Pic (A [ t ] ) -  L Pic (A [t, t -  1]). 

Proof. Since Pic commutes with filtered colimits of rings, we may assume A 
is finitely generated over 7Z,, i.e., pseudo-geometric. We now proceed by induction 
on dim(A). Since Pic(A)=Pic(Ar,d), there is also no harm in assuming that 
A is reduced. If dim(A)=0, i.e., A is a finite product of fields, the result is 
classical: we cite (1.6). If dim(A)>0, the normalization B of A is a finite A- 
module, so the conductor ideal I contains a nonzerodivisor. Hence A/I and 
B/I have smaller Krull dimension than A. We now compare the H ~  
sequences: 

H~ , LPic(A)  

H~ , LPic(A[t]) 

H~ t-t]) ,LPic(A[t, t-l]) 

, LPic(A/I) • LPic(B) 

, LPic(A/I [t]) x LPic(B [t]) 
$ 

, LPic(A/l[t, t-~]) 
• LPic(B[t, t -  1]). 

The left verticals are isomorphisms by (1.2). The LPic groups of the normal 
rings B, B[t]  and B[t, t-1] vanish by (1.5.2), so the right verticals are isomorph- 
isms by the inductive hypothesis. Since the top row is a natural summand 
of the other rows, it follows that the complementary sumands of LPic(A[t]) 
and LPic(A[t, t - l ] )  are zero. By definition, therefore, we have N(LPic)(A) 
= L(LPic)(A)= 0. This completes the induction, and hence the proof. []  

We have observed that normal domains and 0-dimensional rings are two 
classes of commutative rings for which LPic vanishes. Hensel local rings form 
another class of such rings, as we now show. Recall that a local ring A is 
hensel if every finite A-algebra B is a direct product of local rings. 

Theorem 2.5. LPic(A)= 0 for every hensel local ring A. 

Proof. We shall prove by induction on dim(A) that LPic(A)= 0 for every pseudo- 
geometric hensel local ring A. This will be sufficient to prove the result in 
general, since every hensel local ring is the union of its finitely generated subrings 
A~, hence of their henselizations A~ (with respect to A, ~ A), and each A~ is 
pseudo-geometric by [N, 44.2] or [EGA, IV.18.7.3]. Since LPic(A)=LPic(A,,d), 
we may also assume that A is reduced. If dim(A)=0, i.e., A is a field, then 
LPic(A)=0 by (1.6.1). If dim(A)>0, let B be the normalization of A. As B 
Is a finite A-algebra, the conductor ideal I contains a nonzerodivisor. Hence 
A/I is pseudo-geometric with dim(A~1)< dim(A), so LPic(A/I)= 0 by induction. 
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Because A is a hensel local ring, B and B/I must be finite products of local 
rings. Every continuous function from Spec(B/I) to 2~ must therefore lift to 
a continuous function from Spec(B) to Z, i.e., H~ maps onto H~ The 
exact sequence of Lemma 2.1 now implies that LPic(A)=0,  completing the 
inductive step. []  

w 3. Anodal extensions 

It would be nice to have an elementary characterization of those rings A for 
which LPic(A)=0.  This subject has been addressed sporadically over the last 
two decades in [BM],  [P], [Or], [Isch], [G],  [Rush], [OY], [OSY] and [And] 
under the guise of determining when Pic(A)=Pic(A[t,  t-1]), i.e., when N Pic 
(A)=LPic(A) = 0. (Starting with [G],  such rings have been called quasinormal; 
cf. [BM, p. 33].) The introduction of LPic simplifies many of the results found 
in op. cit., because it eliminates the extraneous hypothesis that A be seminormal. 
(We will see in (5.4) that LPic(A)=LPic(+A) anyhow.) To illustrate this point, 
consider the following notion: 

Definition 3.1 (T. Asanuma). An inclusion A c B of rings is called anodal, or 
an anodal extension, if every b e B  such that (b 2 -  b)cA and (b 3 -  b Z)~A belongs 
to A. That is, every solid diagram 

7Z [b 2 - b, b 3 - b 2] ~ 

A ~ 

,Z[b] 

, B 

can be completed by a dashed arrow, as shown. (Asanuma and [OY] use the 
phrase "A is u-closed in B" in the case that A is a domain; D. Grayson has 
pursuaded me that the term "anodal"  is better.) Note  that if b is an idempotent 
element of B not in A, then A c B cannot be anodal. Using (1.3), we rephrase 
this as: 

Lemma 3.1.1. I f  A c B is an anodal extension, then H ~ (A) ~- H ~ (B). 

Lemma 3.2 (Onoda-Yoshida). Suppose that A c B  is an extension satisfying 
H ~ (A) ~- H ~ (B). Then the following are equivalent: 

(i) A ~ B is anodal ; 
(ii) For every finite A-algebra C contained in B, and every ideal I of A 

with I ~ I C, 

n ~ (All) ~ n ~ (C/I); 

(iii) For every finite A-algebra C contained in B, and every ideal I of A 
with I ~ I C, 

LPic(A) ~ LPic(C) x LPic(A/1) is injective. 

Proof (Cf. [OY, 1.10]). The equivalence of (ii) and (iii) follows easily from the 
H ~  sequence. The implication (i)=~ (ii) is immediate from (1.3). Finally, 
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suppose beB is such that bE-b  and b a - b  2 lie in A, and set C = A [ b ] , / = ( b  2 
- b ) C .  If (ii) holds, the idempotent E of B/I belongs to Aft, forcing b~A, so 
(i) holds. [] 

We shall say that a domain A is anodal if the extension A c ,4 (or equivalently, 
A c F) is anodal. Here F denotes the field of fractions of A and ,4 is the integral 
closure of A in F. Note that H~ H~176 

Corollary 3.3. I f  A is a domain, then LPic(A)= 0 implies that A is anodal. 

Example 3.3.1. If A is not a domain, LPic(A)=0 does not imply that A c . 4  
is anodal, nor that H~176 This is illustrated by (2.2.2), the axes in 
the plane. 

Theorem 3.4 (Asanuma). Let A be a 1-dimensional domain. Then: 

LPic(A) = 0  ~ A is anodal. 

Proof (Cf. JOY, 1.14]). The =*- direction is (3.3). For  the ~ direction, let L 
be a nontrivial element of LPic(A). Then L vanishes in LPic(B) for some finite 
A-subalgebra B. As the conductor I from B to A is nonzero, dim(A/I)=O. 
Hence LPic(A/I)=O by (1.6.1). The H ~  sequence shows that L is in the 
image of I-I ~ (B/l), so H ~ (Aft)~ H ~ (B/I). By (3.2), A c ~ fails to be anodal. [] 

Exercise 3.4.1. Show that LPic(A) is a free abelian group for every 1-dimensional 
domain (Hint: Construct a family of extensions Aa+I=Aa[ba] inside .4 with 
UAz anodal. Use (1.3) and (1.6) to show that LPic(A~)--}LPic(Aa+I) is onto, 
and that its kernel F~ is free. Then show that LPic(A)~ @ Fa.) 

We now construct an example of a 2-dimensional seminormal domain which 
is anodal yet has L Pic =I = 0. This shows that (3.4) does not extend very far into 
higher dimensions. The ring A will be obtained from k Ix, y] by glueing the 
coordinate axes in the plane together into a node, using the technique of [P]. 

Example 3.5. Let k be a field and set R=k[b].  Let C = k [ b Z - b ,  b 3 - b  2] be 
the node, considered as a subring of R. Let D =k Ix, y]/(xy) be the axes in 
the plane, considered both as a quotient of B = k Ix, y] and as a subring of 
/5=k Ix] x k[y] as in (2.2.2). The map R--}D sending b to (x, 1 - y )  induces 
a map i: C ~ D .  Finally, define A = B  xoC, so that 

(3.5.1) 

A t"  

1 
C ~ 

~B 

i ,D 

is a cartesian square. A is a 2-dimensional noetherian domain whose integral 
closure is B (the proof is a standard exercise we leave to the reader). Using 
Unit-Pic sequences, it is easy to see that A, B, C and D are all seminormal. 

Proposition 3.5.2. The seminormal domain A is anodal, yet LPic(A)=7 .  
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Proof. By (5.3) below, or by (2.1) and the seminormality of D, we see that the 
full H ~ - L P i c  sequence for (3.5.1) is exact. Using (2.2) and (2.2.2), this yields 

L Pic (A) ~ L Pic (C) -~ Z. 

To see that A---, B is anodal, it suffices by Lemma (3.6) below to show that 
C ~ D  is anodal. If teD had t 2 - t ,  t a - t 2eC ,  then t must lie in the subring 
R o f / ) ;  this follows from Lemma (3.7) below, b e c a u s e / ) ~ R  x R and (0, 1) and 
(1, 0) are not in D. We can write t = u + 2 b  for ueC, 2ek, because every element 
of R has this form. The image of t in /) is i(u)+2(x, 1 - y ) = i ( u ) + A x - A y  
+2(0, 1), which lies in D iff 2=0.  But 2 = 0  implies that teC, which proves 
that C-4 D is anodal. [] 

Lemma 3.6. I f  A ~ B is any ring extension, and I is an ideal satisfying I ~-IB, 
then: 

A c B is anodal r162 (Aft) ~ (B/I) is anodal. 

Proof Fix beB and set a = b 2 - b ,  c=ab. Observe that beA iff EeA/I, aeA 
iff ~eA/I  and ceA iff 6eA/I. The lemma is now a syllogism. [] 

Lemma 3.7. I f  R is any domain and R c R x R is the diagonal inclusion, then 
the only t=(x, y) in R x R which satisfy t z - t e R  and t 3 - t 2 e R  are: teR, t=(0,  1) 
and t=(1, 0). 

Proof Set r = x 2 - x = y 2 - y .  If r ~ 0 ,  we can divide X3--x2=y3--y  2 by r to 
get x=y ,  i.e., teR. If r = 0  then x and y must both be either 0 or 1, which 
gives the 4 solutions: t = 0, t = 1, t = (0, 1) and t = (1, 0). [] 

w 4. Descent for NPic 

In this section we establish some local-global results about N Pic(A) for the 
Zariski and 6tale topology. In order to postpone the scheme-theoretic invasion 
as long as possible, we first show that the methods of Vorst IV] and van der 
Kallen [vdK] allow us to prove the following two results: 

Theorem 4.1 (Descent for N Pic). Let i: A ~ B be an ~tale, faithfully fiat extension 
of commutative rings. Then the standard descent complex 

0---~NPic(A) i ,NPic(B) i |174174174174 

is exact. 

Theorem 4.2 (Vorst's Theorem). Given f~A,  write [ f ]  for the endomorphism of 
N Pic(A) and Pic(A [t]) induced by the substitution t~--~ft on A [t]. Then 

N Pic (A)tsl -~ N Pic (AI). 



Pic is a contracted functor 363 

Proof of 4.2. Since A is the union of all its finitely generated subrings which 
contain f, and NPic(A)=NPic(Area), we are reduced to the case in which A 
is reduced noetherian. In the square 

NKo(A)c.rl ~ NKo(AI)  

det det 

N Pic (A)tll , N Pic (As) 

the top arrow is an isomorphism by IV, 1.4 and 1.6], and the "de t"  maps 
are onto, so the bottom arrow is also a surjection. 

To see that N Pic(A)Es1-0 N Pic(As) is an injection, hence an isomorphism, 
let L be an element of NPic(A) which dies in NPic(As). Then Ls~-Af[ t  ] as 
a rank one projective module, so the element 2=  [ L ] - [ A [ t ] ]  of NKo(A) dies 
in N Ko (As). Hence 2 dies in the localization N Ko (A)ts 1, forcing its determinant 
de t (2)=Lto  die in NPic(A)tfj. [] 

The key technical point in the proof of Theorem 4.1 is the projection formula 
for the action of W(A), the ring of big Witt vectors, on NPic(A). By FSt], 
the group NKo(A) is a W(A)-module; by [DW, 4.4] the group NPic(A) is 
also a W(A)-module and deta: NKo(A ) ~ N Pic(A) is a W(A)-module map. 

Lemma 4.3 (Projection Formula for N Pie). Let C be a finite A-algebra, free as 
an A-module. The map i: A --* C induces transfer maps i*: N Pic(C) -0 N Pie(A) and 
i*: W ( C ) ~  W(A), as well as the usual base change map i . :  NPic(A)-+ NPic(C). 
For toe W(C) and ee N Pie(A), the projection formula 

(i* co).~ = i* [co. i ,  (~)] 
holds in N Pic(A). 

Proof. It is proven in [DW, 3.2] that i*(L)=deta(L) defines a transfer map 
i*: Pic(C Ft]) --* Pic(A [-t]) and that the following diagram commutes: 

N K o ( C )  ~* , NKo(A) 

N Pic(C) i* ~ N Pic(A). 

In [vdK, 1.18 and 1.19], van der Kallen constructs the transfer map on Witt 
vectors and proves the projection formula (i*co).2=i*[o).i.(2)] for NKo. 
Choose a lift 2 ~N Ko (A) of c~ and apply det to van der Kallen's formula. [] 

Theorem 4.1 is now an immediate consequence of the following more general 
result, which we state here in the generality for which van der Kallen's proof 
of [vdK, Thin. 1.2] remains valid. 

Theorem 4.4 (van der Kallen). Let F be any functor from commutative rings 
to abelian groups which commutes with filtered colimits. Suppose that NF(A) 
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is a W(A)-module in such a way that for f e A  the Witt vector 1 - f t  acts on 
F(A[t])  via the endomorphism [ f ]  induced by the substitution t~--~f t. Suppose 
in addition: 

(i) Vorst's Theorem holds: N F (A)m ~- N F  (Ay) for all f e  A; 
(ii) The Projection Formula holds: whenever C is a finite free A-algebra, there 

is a transfer map i*: N F ( C) --* N F ( A ) so that for og e W ( C) and a e N F ( A ) 

(i*co).~=i*[r 

Then the standard descent complex 

0 ~ NF(A)  ---, NF(B)  ---, N F ( B  | A B) ~ NF(B  |  B | B) ~ . . .  

is exact for every dtale faithfully fiat A-algebra B. 

Corollary 4.5. I f  A is a local ring, essentially of finite type over a field or over 
an excellent discrete valuation domain, then N Pic(A) injects into both N Pic(A h) 
and N Pic(.~), where A h is the henselization and .4 is the completion of A. 

Proof. This follows from Artin approximation, as in [vdK, 1.11]. [] 

This last result suggests a cohomological interpretation of N Pic(A) as the 
global sections of a sheaf on the 6tale site of Spec(A). In fact, this works on 
the Zariski site as well, and we shall give a self-contained proof, making no 
use of Vorst or van der Kallen's results. The cohomological invasion has now 
arrived. 

Definition 4.6. Let X be a scheme. The &ale sheafification of the presheaf U~-, 
NPic(U) will be denoted Jff ~'ic. The stalk of Jff ~ i c  at a geometric point 
2 is NPic((_fx,x), where (gx, ~ denotes the strict henselization of 6x,~ at )L Note 
that, since N Pic((gx.x)= N Pic((gx,o~.x ), the sheaves ,At ~ i c ( X )  and ,#" ~/C(Xred) 
agree. 

Theorem 4.7. I f  X is any scheme, the restriction of dV" ~ i c  to the Zariski site 
is the Zariski sheafification of the presheaf U ~--~N Pic(U). Moreover, 

0 H~t (X, JV ~ie )  = H~ (X, ,A/ ~ ic )  = N Pic (Xred). 

Finally,/f X = Spec(A) is affine then H~ Jg" ~ i c ) =  N Pic(A). 

Proof. First suppose that X is reduced, and write ~ for the 6tale structure map 
X[ t ]  ~ X .  From (1.1) we see that z,((gxttl)=(gx. The 6tale sheaf JV ~ i c  is the 
derived sheaf R ~ zt,(r Since Hi(X, (;~) is a summand of Hi(X[t],  Cxm), the 
Leray spectral sequence degenerates enough to yield 

NPic(X)=H~t(XEt],  * ' , ... o (9xm)/Het(X, (gx)=Het(X, ~ ~ic).  

This proves that for any scheme X we have H~ JV ~ i c ) =  N Pic(Xred). When 
X is affine, N Pic(X)= N Pic(X,ed)= H~ Jg" ~ic) .  

It remains to consider the site change z: Xet ~ X=,  and show that z ,  X ~i~, 
the restriction of ,/ff ~ i c  to the Zariski site, is the sheafification Y ~ i c  z"' of 
the presheaf NPic. At the Zariski point x e X  the stalk of z ,  JI / '~ic  is 
H~ ,/V ~ i c ) =  N Pic((gx,~), which is also the stalk of X ~ic*% Since 
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the map from Jg" ~ . z , r  to Z,Jff  ~ge  is an isomorphism on stalks, it is an 
isomorphism. Finally, we deduce that: 

0 �9 zar __ 0 
H z a r ( / ,  X ~ g g  ) - H z a r ( X ,  - c , ~ / "  ~g,'~)=O~ ~ ~is [] 

Remark4.7.1. If X is not reduced, the surjeetion ~.((9"m)--,(9" is no longer 
an isomorphism; its kernel is JVG~, the 6tale sheaf associated to the presheaf 
U~-. N U(U). Consequently, there is an exact sequence (for 6tale cohomology) 

0 ~ H1 (X, dff G,,) --* N Pic (X) --* N Pic(X~d) --+ H 2 (X, Jff G,~)... 

We would like to close this section by observing that several of the last 
few results also follow from Descent for N Pic. Indeed, the proof of [vdK, 1.9] 
goes through in the current context to yield the following result: 

Proposition 4.8. The Zariski and dtale cohomology groups of Jff ~ i~  agree: 

H*,(X, Jff ~ge)= H*,,(X, Jff ~gc). 

Moreover, if X = Spec(A) is affine, then H~ (X, Jff ~i~)= N Pic(A) and 

H~(X, JV ~ / c ) = 0  /f i:#0. 

w 5. The contraction of Pic 

In order to prove that Pic is a contracted functor on commutative rings, we 
need to consider sheaves on Spec(A) for the 6tale topology. For any scheme 
X, let Nie[T]  denote the 6tale sheaf on X associated to the presheaf 
U~Pic(U[t ,  t - l ] ) .  The stalk of this sheaf at a geometric point ff of X is 
Pic(R [t, t-1]), where R is the strict henselization (9~ of the corresponding local 
ring (gx, x. By (1.5.1) and (2.5), this is isomorphic to Nr P i c ( R ) � 9  Nt-, Pic(R). Since 
N Pic(R) is the stalk of the 6tale sheaf Jff ~ i c  of (4.6), this proves: 

Proposition 5.1. There is an isomorphism of ~tale sheaves on every scheme: 

Theorem 5.2. Pic is a contracted functor on the category ~l of commutative rings, 
and the natural splitting of the exact sequence Seq(Pie, A) is provided by the 
global sections map 

Pic(A [t, t -  1]) _~ HOt(Spec(A), ~ i e  [T])  ~ Nt Pic(A) 0) N~-~ Pie(A). 

Proof By (4.7), the map from NPic(A) to H~ JV" ~ ic )  is an isomorph- 
ism. By (5.1), the injection Nt Pie(A) @ Nt-, Pie(A) -~ Pic(A [t, t -  1]) is split by 
the global sections map. The theorem now follows from the generalities on 
contracted functors discussed in w 1. []  

Remark 5.2.1. Unlike the situation with Jff ~ i c ,  the Zariski sheafification 5g 
of U~-~Pie(U[t, t-1]) need not be a sheaf for the 6tale topology. For example, 
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consider the node discussed in (2.2). Here 6e(U) is the skyscraper sheaf i,~E 
at the singular point, while the 6tale sheaf ~ i c  [T] is zero. 

Recall from [Nis] [Nis2] [KS, 1.1] [TT, Appendix E] that the henselian 
topology on X (discovered by Nisnevich in 1974 and also called the Nisnevich 
topology) is intermediate between the Zariski and 6tale topologies. Its site is 
the category of 6tale schemes over X, but a family { V~ ~ U} is a covering when 
every point x of U has some point y ~  V~ lying over it with the same residue 
field as x. Hence the "points" of X are the Zariski points on "all" the schemes 
&ale over X, and the henselian stalk of (gx at a point x~U,  U ~ X  6tale, is 
the henselization (9~ of the local ring (gv, ~. The main advantage for us of the 
henselian topology over the &ale topology is that the cohomological dimension 
of a scheme is at most its Zariski dimension. In particular, H~,(F ,  
i:~ 0 when F is a field. 

Remark 5.2.2. The argument given above in (5.1) for the &ale site 
the henselian site as well, and shows that ~ie[T] is also the sheaf 
to the presheaf U~--~Pic(U[t, t-~]) for the henselian topology. In 
the &ale and henselian cohomology groups of ~ i c  [T] agree. 

Corollary 5.3. The H ~  sequence (2.0) is exact for every A ~ B  
ideal I of A with I ~- lB. 

Proposition 5.4. For every reduced commutative ring A, 

- ) = 0  for 

applies to 
associated 
particular, 

and every 

L Pic (A) --- L Pic ( + A), 

where + A denotes the seminormalization of A. 

Proof. Since LPic commutes with filtered colimits, the construction of +A in 
[Swan, 4.1] shows that it suffices to prove that whenever b, c s A  satisfy b 3 = c  2, 

LPic(A) ~ L Pic(A [x]/(b - x  2, c -  x3)) 

is an isomorphism. Set B=A[x]/(b--x 2, c--x3); the map A-oB is injective by 
[Swan, 4.3], so the ideal I=(b,c)A is isomorphic to IB=x2B. Since 
(A/I)rea ~- (B/I)rea, H ~ (A/I) ~ H ~ (B/I) and L Pic (A/I) _~ L Pic (B/I). The isomorph- 
ism LPic(A)~-LPic(B) now follows from the H ~  sequence (5.3). [] 

Remark 5.4.1. Here is another proof of Theorem 5.4, using the cohomological 
characterization of L Pic below. If A -o B is ~tale, then +A | B is the seminorma- 
lization of B by [Rush, 1.10] or [G, 1.6]. Therefore, there is a bijection between 
the henselian points of Spec(A) and the henselian points of Spec(+A). This 
implies that H*e.(Spec(A), Z) is isomorphic to H*o.(Spec(+A), Z). Now we cite 
(5.5) below. [] 

In order to obtain a more explicit description of the map h from LPic(A) 
to Pic(A[t, t-~]), we focus our attention on the Leray spectral sequence for 
the 6tale (or henselian) cohomology of G,,,y on Y= Spec(A [t, t-~]) via the map 
~: Y-~X,  X=Spec(A). For convenience we assume A is reduced, so that by 
(1.1.1) we have 

7C, Gm, y-~ G m • 7Z,. 
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By construction, ~i~[T]  is the sheaf R 1 re. G,,,r (see [Milne]). The Leray spec- 
tral sequence therefore yields an exact sequence 

O+Hx(X,  Gm) • H~(X, Z)+Pic(Y)-~H~ ~ i c  [T]). 

We know that the righthand map is split surjective by (5.2), and that 
H a (X, Gin)= Pic(A). In summary, we have proven the following result. 

T h e o r e m  5.5. For any commutative ring A, 

L Pic (A) ~ Hit (Spec (A), Z) g Hie" (Spec (A), Z). 

The splitting map h: LPic(A)~Pic(A[t ,  t -a])  is given by the edge map in the 
Leray spectral sequence: 

L Pic(A) = H a (X, Z) -+ H a (X, re. G,,) --+ H 1 (X It, t -  a], Gin) = Pic(A [t, t -  1]). 

Remark 5.5.1. Let A be a normal domain with quotient field F. From [SGA1, 
1.10.1], the &ale sheaf 7Z on X=Spec(A) is g.7Z, where g: Spec(F)-~X is the 
generic point. From [Milne, p. 106] we calculate that 

H16t(X, 7Z) ~ H16t(F, Z) ~ Homtop(G , Z) = 0, 

where G is the separable Gatois group of F. This provides an alternative proof 
that L Pic(A)= 0 for a normal domain A. Notice the advantage of the henselian 
topology here: F has cohomological dimension zero, so: 

H / h ~ . ( X ,  7Z,) ~ ' =Hhon(F, ~. ) -0  for i4=0. 

In contrast, Hz6t(X, 7Z) is a subgroup of HZt(F, 7Z)~Homtop(G, (i~/Z), which is 
large. 

Remark 5.5.2. Let X=Spec(A) be the node of (2.2) and i: x ~ X  the singular 
point. By [Artin, p. 102], there is an exact sequence of 6tale sheaves on X: 

Here g: S p e c ( F ) ~ X  is the generic point of X. This provides another proof 
that LPic(A)~-H~t(X, 7]) is ~. In contrast, x Hzar(X, Z)=0 ,  because A is a domain. 

We can expand on these remarks in order to extend the H ~ - L P i c  sequence. 
Let A -~ B be a ring map, and I an ideal with I ~- lB. Set X -- Spec(A), X = Spec(B) 
and write n, i, j for the maps )7 ~ X, Spec(A/I)-~ X and Spec(B/l)--* .17. 

Lemma 5.6. The following sequence of dtale (or henselian) sheaves on X is exact: 

(5.6.1) 0 ~ Z  ~ ~ , Z ~  i . Z - ~  ~ . j . Z ~ 0 .  

If  B is finite over A, the long exact sequence for its (dtale or henselian) cohomo- 
logy starts with the H ~  L Pic sequence, and continues as: 

L Pic(B) x LPic(A/I) --* LPic(B/I) -4 H2(X, Z) --+ H2 ()7, 7,) 

x n2(Spec(A/I), 7Z,) ~ . . .  
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Proof. We shall give the proof for the henselian topology; the proof for the 
6tale topology is the same. The sequence of stalks of (5.6.1) at a point x is 

0 ~ H ~ (A h) ~ H ~ (B h) x H ~ (Ah/IA h) ~ H ~ (Bh/IB h) --~ O. 

This is exact by (2.1) and (2.5), so (5.6.1) is exact. Here A h and B h are the 
henselizations of A and B at the point x. To see that the cohomology exact 
sequence coincides with the H~ sequence, we need only check that the 
two maps H~ LPic(A) coincide. This is a routine calculation, using (2.1.2) 
and the boundary map for ~ech cohomology, which we leave to the reader. [] 

w 6. The Zariski topology 

We devote a quick section to a discussion of the local-to-global behavior of 
LPic for the Zariski topology. Remark (5.5.2) shows that H~ar(Spec(A), Z) does 
not completely determine the structure of LPic. Our first result refines this: 

Proposition 6.1. In general, H~ar(Spec(A), Z) is a subgroup of  LPic(A). However, 
if LPic(Ap)= 0 for every prime ideal P of A, then 

L Pic (A) ~ nlar (Spec (A), Z). 

Proof. Set X=Spec(A), and consider the Leray spectral sequence for re: Xet 
---' Xzar [Milne, III. 1.18]. Since rc, Z = Z  and R 1 rc,Z is the Zariski sheaf 5a ~ ' c  
associated to the presheaf U~-~LPic(U), we extract the exact sequence: 

0 --+ Hzlar (X, 7~) --r LPie(A) ~ HLr(X,  ~.~ ~r163 

Under the hypothesis that the stalks L Pic(Ae) of ~ ~ c  vanish, ~ ~, 'c  = 0. [] 

Example 6.1.1 (Triangle). If A = k Ix, y]/(x y (x + y - 1) = 0) then L Pic (Ae) = 0 for 
all P, and L Pic(A)= t Hzar(X , Z ) = Z .  

We now focus on domains, so that 1 Hzar(X, 2~)=0 and LPic(A)_~ 
0 Hzar (X , ~ ~ic).  

Corollary 6.2 (Onoda-Yoshida [Ou 2.6]). I f  A is a domain, then 

LPic(Ae)=O for all P~Spec(A) ~ LPic(A)=0. 

Example 6.2.1 (Pedrini l-P, P. 98] I-OSY, p. 250]). Let A be obtained from k[x, y] 
by glueing the axes in the plane together into a line L. That is, 

A =  { f  (x, y)~k[x,  y]: f (t, 0) =f(0,  t) V t~k} = k [ x  + y, x y, x2 y]. 

Then A is a noetherian domain, L P i c ( A e ) = Z  for all P on the line L except 
one, yet LPic(A)=0.  Thus although ~r ~r is not zero, it has no global sections. 

Lemma 6.3 (Rush). Let A be a domain and F its field of  fractions. Suppose 
that {Aa} is a family of subrings of F such that A = fq Aa. Then 

LPic(A) ~ 1~ LPic(Aa) is injective. 

Proof. Since Pic is contracted, this follows from (1.3) and (1,8) of [Rush]. 
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Proposition 6.4 (Onoda-Yoshida [OY, 2.13]). If A is a domain, the following 
are equivalent: 

(i) LPic(Ae)= 0 for every P~Spec(A); 
(ii) Ap is anodal for every P~Spec(A). 

Proof By (3.3), (i) implies (ii). If (i) fails, and dim(A) is finite, choose a prime 
ideal P of A minimal with respect to the property that LPic(Ae)+-O, and set 
C=Aec~ fq {AQ: QcP,, Q4:P}. Note that LPic(C)=0 by (6.3), so there is a finite 
overring B of Ae contained in C such that LPic(Ae) does not inject into LPic(B). 
By the construction of C, AQ = BQ for every Q c P, Q 4= P. Since B is finite over 
Ap the conductor ideal I cannot lie in any such Q. Therefore, dim(Ap/1)=O, 
so LPic(Ap/I)= 0 by (1.6.1). By (3.2), Ap cannot be anodal, so (ii) fails. 

If dim(A) = ~ and (i) fails, the argument is more delicate. Consider the non- 
empty poset of pairs (x, P), where P is a prime ideal and x is a nonzero element 
of LPic(Ap); (x, P)< (y, Q) if Q c P and x maps to y under LPic(Ap)-o LPic(AQ). 
If P = N P/then LPic(Ae)= ~ LPic(Ap,), so Zorn's Lemma applies, and the poset 

has a minimal element (x, P). Construct C as above and note that the image 
of x in LPic(C) is zero by (6.3). Hence x vanishes in some finite overring B 
contained in C, and we conclude as before that (ii) fails. [] 

Exercise 6.4.1. Modify Example 3.5 to give an example of a 2-dimensional seminor- 
real local domain Ap which is anodal, yet LPic(Ap)~-Z. 

w 7. L Pic on schemes 

We can extend many of the above results from rings to schemes, writing X [-t] 
and X It, t -1] for X | and X |  t-1].  In particular, it makes sense 
to ask if a contravariant functor on schemes is contracted. 

Example 7.1. Let X be a scheme. The group H~ Z) of continuous maps from 
the topological space underlying X to 77 is a contracted functor, isomorphic 
to 

HOar(X, ~r)= HOt(X, 2~)= I4~ Z). 

In fact, NH ~ (X, 2~)= LH ~ (X, Z ) =  O, because it is easy to see that 

H~ Z)~- H~ Z)~- H~ t- 1], 77). 

If X is quasicompact, then H ~ (X, 2~) is always a free abelian group by [Fuchs, 
97.7]; in fact, H~ 2~)~-H~ for A---H~ Cx). However, i f X  is the disjoint 
union of an infinite number of copies of Spec(F), F a field, then H~ Z) is 
]-I 2~, which is not free abelian. 

Proposition 7.2. The global units functor U (X) o . = Hzar(X, (~x) is a contracted func- 
tot on the category of schemes, L U (X)= H~ Z), and the splitting map 

h: H~ Z)--* H~ t - l ] ,  (_9*tt,t_ q) 

is multiplication by the global section t. Therefore, (7.1) implies that 

L z U(X)=LNU(X)=O, and IJNJU(X)=O if i~2 orif i=1  and j#O. 
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Proof. Set Y=X[t ,  t - l] ,  and let n: Y ~ X  be the structure map. Similarly, let 
n + and n -  denote the structure maps from Y §  and Y - = X [ t  -1] to 
X. By (1.1), 

0 ~ ( 9 "  + * - * --' n ,  ((gxm) x re, ((gxt,- ,1) ~ n ,  ((Or*) --" :g --' 0 

is a naturally split exact sequence of Zariski sheaves on X. (It is exact because 
the stalks at each x e X  form the exact sequence Seq(U, (gx, J; the splitting is 
given by two maps: n.((9~)--* (9* is evaluation at t = 1, and the map 7Z--, n .  ((9~) 
is multiplication by t.) Taking global sections therefore yields a naturally split 
exact sequence. This sequence is Seq(U, X) because, for example, U(Y) is 
H~ n. (97). The rest is a formal consequence of the definitions, given (7.1). [] 

Proposition7.3. For any scheme X, U(Pxl)~U(X) and Pic(Px~)~Pic(X) 
x H~ Z). Moreover, the sequence Seq(Pic, X): 

1 ~ Pic(X) ~ Pic(X [t]) x Pic(X I t -  13) ~ Pic(X I-t, t -  13) ~ LPic(X) --* 1 

is exact, and LPic(X) is a subgroup of both 2 1 Hz, r(F~, (9*) and 2 1 H6t (~:)j~, Gin). 
Proof. The Mayer-Vietoris sequence for the (Zariski or ~tale) cohomology of 
(97, Y=Px ~, relative to the covering of Y=Px ~ by X[t]  and X [ t  -1] is 

1 ---* U(Fx 1) ~ U(X [t3) x U(X [ t -  13) ---. U(X [t, t -  13) o , Pic(Px ~) 

---, Pic(X It]) x Pic(X [t - 1]) ~ Pic(X It, t -  1]) .__.H 2 (F:~, (9~) ... 

It is easy to calculate directly that d(t) is Cr(1). I claim that n.((9")=(9" and 
R 1 rc.((9~c)=Z as Zariski sheaves on X. Checking this stalkwise amounts to 
considering the special case X-Spec(A) ,  where A is a local ring. Comparing 
the Mayer-Vietoris with the exact Seq(U, A) and Seq(Pic, A), we see that 
U(FJ)~ U(A) and that P ic (P~) -Z ,  on @y(1). This proves the claim. 

The Leray spectral sequence for the (Zariski or &ale) cohomology of (9* 
yields U ( Y) _~ H ~ (X, n. (9*)~-U(X) and the exact sequence 

0 ~ Pic(X) --* Pic(Y) ~ H~ 7Z). 

The righthand map is the left inverse of the map L U(X)= H ~ (X, Z) 0 , Pic(Y). 
This yields the calculation of Pic(Y), and shows that Seq(U, X) splits off from 
the beginning of the Mayer-Vietoris sequence, leaving Seq(Pic, X). [] 

Remark 7.3.1. According to [EGA, II.4.2.7], this result will appear in EGA V. 

Remark 7.3.2. The group H2t(Y, G ~  is called the cohomological Brauer group, 
and its torsion subgroup is related to the usual Brauer group, Br(Y) [Milne, 
IV.2]. Since LPic(X) is often torsionfree (see (7.9.1) below), it would appear 
that there is little connection between LPic(X) and Br(F~)/Br(X). 

Proposition 7.4. I f  X is a normal scheme, then LPic(X)= N Pic(X)= 0. 

Proof. We compute Pic(Y), Y=X[t ,  t - l] ,  using the Leray spectral sequence 
for re: Y--.X and invoking (7.3). Let A be the local ring of X at some point; 
A is an integrally closed domain [EGA, 0t(4.1.4)]. Thus U(A [t, t -  l]) = U(A), 
and Pic(A [t, t -1 ] )=P ic (A)=0  by (1.5.2). Hence as Zariski sheaves n.((9*)= (9~ 
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and R 17z.(d)*)=0. The Leray spectral sequence therefore degenerates enough 
to yield 

Pic(X[t,  t-1])=Hla,(X[t, t- l] ,  0*)=H•,r(X, n.((9*))=Pic(X). []  

Theorem 7.5. Pic is a contracted functor on the category of reduced schemes, 
and 

L Pic (X) -~ Hit (X, ~E) -~ H~,, (X, Z). 

The splitting of Seq(Pic, X) is provided by both the global sections map: 

Pic(X It, t -  1]) ~ HOt(X, ~ ' c  IT])  ~ N~ Pic(X) @ Nt-, Pie(X) 

and the edge map in the Leray spectral sequence: 

LPic(X) = H 1 (X, Z) ~ H 1 (X, re. Gin) ~ H ~ (X It, t -  a], GI)  = Pic(X It, t -  1]). 

Proof Given (4.7) and (5.1), the proofs of (5.2) and (5.5) are valid here. [ ]  

We cannot be so naive when dealing with schemes which are not reduced, 
as Remark (4.7.1) indicates. Adapting the notation used in (4.7.1) and in the 
proof of (7.2) for the &ale topology, we see from (1.1) that now we have: 

+ (G~,y+)~ G~ • ~tt G~, 7C, 

and 
7r. G~,y~ Gm • ~Ctt G~ x ~ttG~ • Z. 

Theorem 7.6. Pic is a contracted functor on the category of all schemes, and 

LPic(X)~ H~t(X, Z)~  H~,(X,  Z). 

The splitting map is the edge map in the Leray spectral sequence: 

LPic(X) = H ~ (X, Z) -~ H ~ (X, ~ ,  G~) ~ H ~ (X [t, t -  1], G~) = Pie(X It, t -  1]). 

Proof We compare the Leray spectral sequences for n § n -  and ~, using (5.1) 
and the observation that Rln~-(Gm.r,) is Jt/ ;~i~ and Rl~,Gm.y is ~ i c [ T ] ,  
to construct the following exact diagram: 

0 0 

O-~Pic(X) OHI(X,~ttGm)GHI(X,~tt- ,  Gm)--~H1 (X, 7z, G,n.r)--~H1 (X, ~)--~0 

0--. Pic (X) ~ Nt Pic (X) q) Nt-, Pic (X) 

N~ Pic(Xrea) ~ Nt-, Pic(X,ed) 
1 

0--. H2(X, G,,,x.A,~tG,,,x.A~t_,Gm) 

Pic(X[t ,  t - l ] )  --~ LPic(X) ---*0 

= Nt Pic (Xred) O Nt-,Pic (Xred) 

-"* H z ( x ,  G,, x -t/~t Gm 
x~-,G,,x~. 

A diagram chase now shows that H 1 (X, Z) --* LPic(X) is an isomorphism. []  
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Corollary 7.6.1. For every scheme X, let +X denote the seminormalization of 
the reduced scheme X,r a. Then 

L Pic (X) ~ L Pic (X~od) ~ L Pic ( + X). 

Proof The 6tale cohomology of X and X,ed agree [Milne], giving the first 
isomorphism. For the second, copy the proof  (5.4.1), citing (7.6). []  

Proposition 7.7. For every scheme X, NLPic(X)= L 2 Pic(X)= 0. 

Proof Consider the Leray spectral sequences converging to Hit(Y, Z) for Y 
= X [ t ]  and X[t, t -1] via n: Y ~ X .  The stalks of RPzc.;E are just HP(A[t], Z) 
or HP(A[t, t - l ] ,T/ )  for some hensel local ring A. By (1.2), (2.4) and (2.5) we 
see that rc, Z = Z  and Rlrc .  7Z=0. Thus L P i c ( Y ) ~ H ~ ( Y , Z ) ~ H ~ ( X , Z )  
~ LPic(X). []  

Our next topic is the Units-Pic sequence for an affine map ~: )7 ~ X  of 
schemes. If there is a closed subscheme i: Y~  X with ideal sheaf J ,  so that 
J~J-zt,~(d~x), we shall call Y a conducting subscheme of X. If so, let us set 
Y= Y x x X  with structure map j: ~ '~ )~. The reader should bear in mind the 
paradigm (5.6), in which X = Spec(A), X = Spec(B), Y= Spec(A/l) and ~'= Spec(B/ 
1). The sequence of (Zariski, henselian or 6tale) sheaves on X 

1 --* (9~ ~ x ,  (Cx*) x i, (C~,) ~ re. j .  (Or*) ~ 1 

is exact, because the stalks at x ~ X  form the start of the Units-Pic sequence 
for Cx, x ~ (9~.x, and Pic of the local ring Cx.x is zero. Similarly, the proof of 
(5.6) shows that the sequence of 6tale (or henselian) sheaves 

O ~ Z ~ r c ,  Z O i ,  Z ~ x , j , Z ~ O  

is exact. Upon  taking the long exact cohomology sequences, we find we have 
proven: 

Proposition 7.8. Given a finite map 7z: . ~ X  and a conducting subscheme Y, 
the following are long exact sequences: 

(i) (the Units-Pic sequence) 

I ~ U(X) -~ U(X) x U(Y) --, U(Y) ~ Pic(X) ~ Pic ()~) x Pic(Y) ~ Pic(~'); 

(ii) (the H ~  LPic sequence) 

0 ~ n ~  Z) ~ n ~  ~, 7Z) x n~ Z) ~ H~ (Y,, Z) --. LPic(X) ~ L P i c 0  7) 

x LPic(Y) ~ Pic(~'). 

Theorem 7.9. I f  X is locally pseudo-geometric, and dim(X) is finite, then 

L P i c (X)= Zr fo r  some r. 

Proof Copy the proof  of (2.3), citing (7.4) and (7.8). The analogue of (2.1.1) 
follows from consideration of the ring map H~ (9x) x H~ ~gr) 
--,n~ C%). [] 
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The filtered colimit trick used in (2.3.1) is not generally available in this 
setting, except when the noetherian approximation techniques of [EGA, 1.6 
and IV.8] apply. Note that noetherian schemes are quasicompact [-EGA, 1.2.7.2] 
and quasiseparated [EGA, 1.6.13 or IV.1.2.8]. These approximation techniques 
were used in [TT, C.9] to show that any quasicompact quasiseparated scheme 
X is the inverse limit of schemes X~ which are finitely presented over 7/. Since 
(7.9) applies to each X~, and LPic(X) is the filtered colimit of the LPic(X,), 
this proves: 

Corollary 7.9.1. I f  X is a noetherian scheme, or more generally any quasicompact, 
quasiseparated scheme, then L Pic(X) is a torsionfree abelian group. 

Example 7.9.2. Let X be the nonseparated scheme obtained by glueing together 
infinitely many copies of the node along their common smooth loci. X is quasi- 
separated but not quasicompact [EGA, 1.6.1.12 or IV. 1.2.7] and LPic(X)= I-] 7/ 
by (7.1). 

w 8. Connections with negative K-theory 

We conclude this paper by addressing some questions raised by this paper 
which involve negative K-theory, i.e., the groups K_I(A), K_z(A), etc. One 
circle of questions involves possible filtrations on negative K-theory, and another 
involves the relationship of LPic(X) to the term E~~ HIr Z) in the Brown- 
Gersten spectral sequence of [TT]. 

I do not know of a natural construction of 2-operations or Adams operations 
on negative K-theory which is compatible with the K-theory product, except 
up to torsion. By this I mean such that for x~K_a(A ) we have 

~lk{t, X}={~bkt, ~okx}=k{t, ~/kX} in K_a+l(A[t, t-l]).  

Clearly, such a filtration would be shifted from the filtration induced on K0 
of a suitable Laurent polynomial ring, and can be defined without having a 
direct definition of the operations 2 k or ~,k. 

For our purposes, it is convenient to use Kratzer's variation F m Ko of the 
usual y-filtration F~"K o on K 0 [Kr, p. 248]. By definition, F~ 
and F ~ Ko(A)=/~o(A). In general, F ~ Ko(A) is the subgroup of Ko(A ) generated 
by the yi(x) with i>m and xegio(A). In fact, because of the equation xy=y2(x  
+y)-yZ(x) -yZ(y  ) and [SGA6, X.5.3.2], we also have F2Ko(A)=Fr 
=SKo(A). Kratzer proved in loc. tit. that his filtration coincides with the 7- 
filtration up to torsion, and that ~O k is multiplication by k ~ on the quotient 
Fro~F,, + 1 Ko (A). 

Definition 8.1. Fix m>0 and set F-"K_,~(A)=K_r,(A).  For i > - m ,  we define 
FiK_~(A) to be the image in K_m(A)=L~Ko(A) of 

F"+i Ko(A[tl ,  t ; x . . . . .  tm, t,~ X]) 

under the natural quotient map defining L" Ko. 

Question 8.2. Is K_m(A)=F~ for every m? This is true for m = l  and 
m--2 by (1.4.1), (1.7) and (2.4). For m>2 we have K_,,(A)=F2-mK_m(A). An 
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affirmative answer for aU m, together with the following result, would imply 
that if A is noetherian then K _=(A)= 0 for m > dim(A). This would affirmatively 
solve the problem posed in [W, 2.9]. 

Proposition 8.3. Let R = A[ t t ,  t'( ' . . . .  , tin, t~, l, x l  . . . . .  x,], where A is a commuta- 
tive noetherian ring of Krull dimension d. Then F a+ 1Ko(R)=0.  In other words, 
7 k(x) = 0 for every k > d and every x ~ go  (R). 

Proof (Cf. [Sou, 2.21). Write x = E P ] -  JR'I, where P is a projective R-module 
of constant rank r. If r > d then P_-__ Q ~3 R ' -  ~ by [BLR], so x = [Q] - [R d] as 
well. Therefore, we may assume that r_< d. Now for k > d we compute: 

r  = ;tqx + k -  1) 

_- ,a? ( tp  (~ R k - ' -  , ] )  
= [Ak(p ~ Rk- ,  - 1)] 

=[0 ]=0 .  [] 

Corollary 8.3.1. F d § t - = K_ ,, (A) = 0 when m > O, A is noetherian and d = dim (A). 

Remark 8.3.2. This fits nicely with Soul6's result that F d § 1 +m K, , (A)= 0 for m > 0 
[Sou, Thin. 1], as well as with the classical result that F d§ Ko(A)=0. 

(8.4). A topic related to V-filtrations is the natural decomposition of K-theory 
according to the eigenvectors of the Adams operations ~k k. Recall that for i, 
m ~ 0  

K=(A) (0 = {xe  K,~(A): ~kk(x)---- kix for all k 4= 0}. 

Although these subgroups need not span KIn(A), and intersect nontrivially, it 
is true that Q |  K=(A) is the direct sum of its subspaces ~ |  "), and 
that ~ | F ~ K=(A) is the sum of those subspaces ~ | K=(A) C~ with i > r [Sou, 
2.8]. The same is true for negative K-theory, provided we use the following 
definition of the action of the Adams operations on the groups Q |  
If m > 0  and x ~ |  choose t o ~ |  t[  1 . . . . .  t , ,  t~l])  so that 
x is the image of to, and define ~kk(x) to be the image in K_~(A)  of ~kk(og). 
It is not hard to see that ~bk(x) is Well-defined, and that ~k k is a ring endomorphism 
of the E-graded ring O . |  When A is noetherian and d=dim(A),  (8.3.1) 
implies that 

| K_ m (A) = ~ | K_ = (A) (i -'nJ ~ ~ | K_ r~ (A)  (2 - rn) @...  (~ (~. | K _  r, (A) (a- n,), 

and (8.2) asks if ~ |  K _,.(A) (~ = 0  for i <0. 

Exercise 8.4.1. Show that Q |  K,~(A) (i) is a contracted functor for all m~Z,  and 
that 

Lff~ | K=(A) (~ ~ ~ | K=_ 1 (A) ~- ~ ). 

Another possible approach to studying the negative K-theory of a noetherian 
ring or scheme is via the Brown-Gersten spectral sequence of ETT]: 

P q ~  P E 2 -H~ ,~(X ,  ~_q)  =~ K_p_a(X).  

Here ~r_a is the henselian sheaf associated to the presheaf U~--~K_ q(U). 
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To illustrate this approach, suppose we can prove that K_~(R)=0  for every 
m > dim(R) and every hensel local ring of some fixed scheme X. From the spectral 
sequence we could then deduce that K_m(X)=0 for every m > d i m ( X ) + d i m  
Sing (X). For example, if X has isolated singularities then we only need consider 
the negative K-theory of a finite number of hensel local rings. 

Example 8.5 (L. Reid). The negative K-theory of a hensel local ring need not 
vanish. Let A be a d-dimensional affine normal domain with exactly one singular 

oint P, and with K_d(A)~O. Such examples were constructed in [Reid]. Let 
denote the P-adic completion of A, and A h the henselization of A at P. By 

[W, 1.6] we have 

K _d(A) "~ K _d(A h) _~ K _d(a) 

for d >  1. (The argument does not work for d =  1. In fact, I don't know of 
any hensel local ring for which K_ 1 is nonzero.) 

Motivated by this example, we define K-re(X) to be the kernel of the global 
sections map K_m(X)~ o Hhon(X,~-m). Since the global sections map sends 
representatives of LPic(X) to zero, the natural map /~_  I ( X ) ~  LPic(X) is onto. 
We define SK_I(X) to be the kernel of this map, so that LPic(X)~-_K_~(X)/ 
S K_ I(X). By definition, we also have S K_ 1 (X) =/~_ 1 (X) c~ LS K 0 (X). 

Now suppose that X is noetherian and that dim(X) is finite, so the Brown- 
Gersten spectral sequence of [TT] converges. There is a natural map from 
/~_ ~ (X) to the E~ ~ term, which is H~en(X, Z). It is natural to ask if the isomorph- 
ism LPic(X)~H~o,(X, Z) of (5.5) or (7.5) arises in this way. 

Theorem 8.5. If  X is noetherian, and dim(X) is finite, then in the Brown-Gersten 
spectral sequence converging to K .  (X): 

(a) ~ 1 o _ ~ , o _ u l  {y 
~L, O0 - -  .L, 2 - -  Jt~t h e n  ~ . ' " ,  ~ r ) ;  

(b) The kernel of I~_l(X)---, E~ ~ is SK_~(X); 
(c) The induced map from LPic(X)=K_I(X)/SK_I(X ) to E~,~ ~) 

is an isomorphism. 

Proof Consider the seminormalization + X ~ X .  It maps SK_~(X) to 
SK_I(+X), and H~n(X, Z)~-H~,(+X, 7Z,) by (7.6.1). We may therefore assume 
that X is seminormal. Given oeSK_I(X) ,  choose a lift aeSKo(X[t, t - l ] ) .  Be- 
cause K 0 (X) is a contracted functor, split by multiplication by t e K + ~ (7Z [t, t-~]), 
we can write 

~={t, co}+v§ 

where v• is the image in Ko(X[t, t - t ] )  of an element of Nt~ Ko(X). Since X 
is seminormal, i.e., NPic(X)=0,  we have det(v• Consequently, det({t, 09}) 
=de t (a )=0  in Pic(X[t, t - l ] ) .  On the other hand, it follows from naturality 
of the K-theory product and the construction of the Brown-Gersten spectral 
sequence in [TT] that 

g_~(X) ,ELO lo ~ E  2 = H h e n ( X  , Z )  

~o(X[t,t-1]) a~t , Eoo"-i =E12,-, =H~(X[ t , t -1] ,G~)  
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commutes. (It is well-known that the bottom horizontal map is the "det" map 
from Ko(Y) to Pic(Y)~ H~en(Y, Gin), and that E~ 1 = E~L) The right vertical map 
is a split injection because by (7.5) it is the splitting map for Seq(Pic, X). Conse- 
quently, the top horizontal map sends SK_ ~(X) to zero, and factors through 
LPic(X). 

Finally, given co in E 210-- Hhen(X , 1  Z), set L={t, co} in H~en(X[t  , t-x]) 
~Pic(X[t, t - l ] )  and set 2 = [ L ] - - I  in Ko(X[t, t-l]).  Let x be the image of 
2 in K_ I(X); since L becomes trivial in every hensel local ring, x belongs to 
/(_I(X). Choose v• Ko(X ) so that 2={t,x}+v++v_ and note that 
det({t, x})=det(A)={t, co}. Inspection of the above diagram now reveals that 
x maps to co. Thus the horizontal map LPic(X)~H~en(X, ~E) is onto; running 
the argument backwards shows that it is also into, hence an isomorphism. [] 

References 

[Artin] 
[And] 

[Bass] 
[BLR] 

[BM] 

[Bour] 
[DW] 

[EGA] 

[Fuchs] 
[G] 

[Isch] 

[Kap] 
[Kr] 

[KS] 

[Lam] 

[Lantz] 

[Milne] 
IN] 
[Nis] 
[Nis2] 

[No] 

[Or] 

[OSY] 

Artin, M.: Grothendieck Topologies. Harvard Seminar Notes, 1962 
Anderson, D.F.': The Picard group of a monoid domain. J. Algebra 115, 342-351 
(1988) 
Bass, H.: Algebraic K-theory. Benjamin, New York, 1968 
Bhatwadekar, S., Lindel, H., Rao, R.: The Bass-Murthy question: Serre dimension 
of Laurent polynomial extensions. Invent. Math. 81, 189 203 (1985) 
Bass, H., Murthy, M.P.: Grothendieck groups and Picard groups of abelian group 
rings. Ann. Math. 86, 16-73 (1967) 
Bourbaki, N.: Algtbre Commutative, ch. 7, Diviseurs. Hermann, Paris, 1965 
Dayton, B., Weibel, C.: On the naturality of Pic, S K  o and S K  1. Algebraic K-theory: 
Connections with Geometry and Topology. NATO ARI Series C, Kluwer Press, 1989 
Grothendieck, A., Dieudonnt, J.: E16ments de Gtomttrie Algtbrique. Publ. Math. 
I.H.E.S. Part I: 4 (1960); Part II: 8 (1961); Part IV: 20 (1964), 24 (1965), 28 (1966), 
32 (1967). Part I (revised version), Springer, Berlin Heidelberg New York, 1971 
Fuehs, L.: Infinite Abelian Groups. Vol. II, Academic Press, New York, 1973 
Greco, S.: Seminormality and quasinormality of group rings. J. Pure Appl. Algebra 
18, 129-142 (1980) 
Isehebeck, F.: Zwei Bemerkungen fiber seminormale Ringe. Math. Z. 152, 101-106 
(1977) 
Kaplansky, I.: Projective Modules. Ann. Math. 68, 372-377 (1958) 
Kratzer, C.: A-structure en K-thtorie algtbrique. Comm. Math. Heir. 55, 233-254 
(1980) 
Kato, K., Saito, S.: Global class theory of arithmetic schemes. AMS Contemp. Math. 
55 (Part I), 255-331 (1986) 
Lain, T.Y.: Serre's Conjecture. (Leet. Notes Math. Vol. 635) Springer, Berlin Heidel- 
berg New York, 1978 
Lantz, D.: On the Picard group of an abelian group ring, Group and Semigroup 
Rings. N. Holland Math. Studies Vol. 126, Amsterdam, 1986 
Milne, J.: l~tale Cohomology. Princeton University Press, Princeton, 1980 
Nagata, M.: Local Rings. Wiley and Sons, New York, 1962 
Nisnevich, Y.: Adeles and Grothendieck topologies (Preprint) 1982 
Nisnevich, Y.: The completely decomposed topology on schemes and associated de- 
scent spectral sequences in algebraic K-theory. Algebraic K-theory: Connections with 
Geometry and Topology. NATO ARI Series C, Kluwer Press, 1989 
N6beling, G.: Verallgemeinerung eines Satzes yon Herrn E. Specker. Invent. Math. 
6, 41-55 (1968) 
Orecchia, F.: Sui gruppi delle unit/t et i gruppi di Picard relativi a una variet/t affine, 
ridotta e alia sua normalizzata. Boll. U.M.I. 14B, 786-809 (1977) 
Onoda, N., Sugatani, T., Yoshida, K.: Local quasinormality and closedness type criter- 
ia. Houston J. Math. 11, 247-256 (1985) 



Pic is a contracted functor 377 

[OY] 

[P] 

[Pierce] 

[e] 

[Q76] 

[Rush] 
[Reid] 

[SGA1] 

[SGA6] 

[Sou] 
[St] 

[Sw] 

[Swan] 
[TT] 

iv] 

[vdK] 

[w] 

Onoda, N., Yoshida, K.: Remarks on quasinormal rings. J. Pure Appl. Alg. 33, 59~7 
(1984) 
Pedrini, C. : On the Ko of certain polynomial extensions. (Lect. Notes Math., Vol. 342) 
Springer, Berlin Heidelberg New York, 1973 
Pierce, R.S.: Modules over commutative regular rings. Memoirs AMS, No. 70, Provi- 
dence, 1967 
Quillen, D.: Higher algebraic K-theory: I. (Lect. Notes Math., Vol. 341) Springer, 
Berlin Heidelberg New York, 1973 
Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167-171 
(1976) 
Rush, D.: Picard groups in abelian group rings. J. Pure Appl. Alg. 26, 101-114 (1982) 
Reid, L.: N-dimensional rings with an isolated singular point having non-zero K_ N. 
K-theory 1, 197-206 (1987) 
Grothendieck, A.: Rev&ements 6tales et groupe fondamental. (Lect. Notes Math., 
Vol. 224) Springer, Berlin Heidelberg New York, 1971 
Berthelot, P., Grothendieck, A., Illusie, L.: Throrie des intersections et throrrme de 
Riemann-Roch. (Lect. Notes Math., Vol. 225) Springer, Berlin Heidelberg New York, 
1971 
Soulr, C. : Oprrations en K-throrie algrbrique. Can. J. Math. 37, 488-550 (1985) 
Stienstra, J. : Operations in the higher K-Theory of endomorphisms. CMS Conf. Proc. 
2 (Part I), 59.-115 (1982) 
Swan, R.: Projective modules over Laurent polynomial rings. Trans. AMS 237, 111- 
120 (1978) 
Swan, R.: On seminormality. J. Algebra 67, 210-229 (1980) 
Thomason, R., Trobaugh, T.: Higher algebraic K-Theory of schemes and of derived 
categories, preprint, 1988, Grothendieck Festschrift (Progr. Math. series) Birkh~iuser 
Press, Basel Boston (to appear) 
Vorst, T.: Localization of the K-Theory of polynomial extensions. Math. Ann. 244, 
33-53 (1979) 
Kallen, W. van der: Descent for the K-Theory of polynomial rings. Math. Z. 191, 
405~415 (1986) 
Weibel, C.: K-theory and analytic isomorphisms. Invent. Math. 61, 177 197 (1980) 


