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Preface

This book was written by Carlo Mazza and Charles Weibel on the basis of
the lectures on the motivic cohomology which I gave at the Institute for Advanced
Study in Princeton in 1999/2000.

From the point of view taken in these lectures, motivic cohomology with coef-
ficients in an abelian groupA is a family of contravariant functors

H p,q(−,A) : Sm/k→ Ab

from smooth schemes over a given fieldk to abelian groups, indexed by integersp
andq. The idea of motivic cohomology goes back to P. Deligne, A. Beilinson and
S. Lichtenbaum.

Most of the known and expected properties of motivic cohomology (predicted
in [ABS87] and [Lic84]) can be divided into two families. The first family concerns
properties of motivic cohomology itself – there are theorems concerning homotopy
invariance, Mayer-Vietoris and Gysin long exact sequences, projective bundles,
etc. This family also contains conjectures such as the Beilinson-Soulé vanishing
conjecture (H p,q = 0 for p< 0) and the Beilinson-Lichtenbaum conjecture, which
can be interpreted as a partialétale descent property for motivic cohomology. The
second family of properties relates motivic cohomology to other known invari-
ants of algebraic varieties and rings. The power of motivic cohomology as a tool
for proving results in algebra and algebraic geometry lies in the interaction of the
results in these two families; specializing general theorems about motivic coho-
mology to the cases when they may be compared to classical invariants, one gets
new results about these invariants.

The idea of these lectures was to define motivic cohomology and to give care-
ful proofs for the elementary results in the second family. In this sense they are
complementary to the study of [VSF00], where the emphasis is on the properties
of motivic cohomology itself. In the process, the structure of the proofs forces us
to deal with the main properties of motivic cohomology as well (such as homotopy
invariance). As a result, these lectures cover a considerable portion of the material
of [VSF00], but from a different point of view.

One can distinguish the following “elementary” comparison results for motivic
cohomology. Unless otherwise specified, all schemes below are assumed to be
smooth or (in the case of local or semilocal schemes) limits of smooth schemes.

v



vi PREFACE

(1) H p,q(X,A) = 0 for q< 0, and for a connectedX one has

H p,0(X,A) =
{

A for p = 0
0 for p 6= 0

(2) one has

H p,1(X,Z) =


O∗(X) for p = 1
Pic(X) for p = 2
0 for p 6= 1,2

(3) for a fieldk, one hasH p,p(Spec(k),A) = KM
p (k)⊗A whereKM

p (k) is the
p-th Milnor K-group ofk (see [Mil70 ]).

(4) for a strictly Hensel local schemeS over k and an integern prime to
char(k), one has

H p,q(S,Z/n) =
{

µ
⊗q
n (S) for p = 0

0 for p 6= 0

whereµn(S) is the groups ofn-th roots of unity inS.
(5) one hasH p,q(X,A) = CHq(X,2q− p;A). HereCHi(X, j;A) denotes the

higher Chow groups ofX introduced by S. Bloch in [Blo86], [Blo94]. In
particular,

H2q,q(X,A) = CHq(X)⊗A,

whereCHq(X) is the classical Chow group of cycles of codimensionq
modulo rational equivalence.

The isomorphism between motivic cohomology and higher Chow groups leads to
connections between motivic cohomology and algebraicK-theory, but we do not
discuss these connections in the present lectures. See [Blo94], [BL94], [FS02],
[Lev98] and [SV00].

Deeper comparison results include the theorem of M. Levine comparing
CHi(X, j;Q) with the graded pieces of the gamma filtration inK∗(X)⊗Q [Lev94],
and the construction of the spectral sequence relating motivic cohomology and al-
gebraicK-theory for arbitrary coefficients in [BL94] and [FS02].

The lectures in this book may be divided into two parts, corresponding to the
fall and spring terms. The fall term lectures contain the definition of motivic co-
homology and the proofs for all of the comparison results listed above except the
last one. The spring term lectures contain more advanced results in the theory of
sheaves with transfers and the proof of the final comparison result (5).

The definition of motivic cohomology which is used here goes back to the work
of Andrei Suslin in about 1985. As far as I understand, when he came up with this
definition he was able to prove the first three of the comparison results stated above.
In particular the proof of the comparison (3) between motivic cohomology and
Milnor’s K-groups given in these lectures is exactly Suslin’s original proof. The
proofs of the last two comparison results (4) and (5) are also based on results of
Suslin. Suslin’s formulation of the Rigidity Theorem ([Sus83]; see Theorem 7.20)
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is a key result needed for the proof of (4), and Suslin’s moving lemma (Theorem
18A.1 below) is a key result needed for the proof of (5).

It took ten years and two main new ideas to finish the proofs of the compar-
isons (4) and (5). The first one, which originated in the context of theq f h-topology
and was later transferred to sheaves with transfers (definition 2.1), is that the sheaf
of finite cyclesZtr(X) is thefreeobject generated byX. This idea led to a group
of results, the most important of which is lemma 6.23. The second idea, which is
the main result of [CohTh], is represented here by theorem 13.8. Taken together
they allow one to efficiently do homotopy theory in the category of sheaves with
transfers.

A considerable part of the first half of the lectures is occupied by the proof of
(4). Instead of stating it in the form used above, we prove a more detailed theorem.
For a given weightq, the motivic cohomology groupsH p,q(X,A) are defined as
the hypercohomology (in the Zariski topology) ofX with coefficients in a complex
of sheavesA(q)|XZar

. This complex is the restriction to the small Zariski site ofX
(i.e., the category of open subsets ofX) of a complexA(q) defined on the site of
all smooth scheme overk with the Zariski and even théetale topology. Restricting
A(q) to the smallétale site ofX, we may consider théetale version of motivic
cohomology,

H p,q
L (X,A) :=Hp

ét(X,A(q)|Xét
).

The subscriptL is in honor of Steve Lichtenbaum, who first envisioned this con-
struction in [Lic94].

Theorem 10.2 asserts that theétale motivic cohomology of anyX with coeffi-
cients inZ/n(q) wheren is prime to char(k) are isomorphic toH p

ét
(X,µ⊗q

n ). This
implies the comparison result (4), since the Zariski and theétale motivic coho-
mology of a strictly Hensel local schemeX agree. There should also be analog
of (4) for the case ofZ/`r coefficients wherè = char(k), involving the logarith-
mic de Rham-Witt sheavesνq

r [−q], but I do not know much about it. We refer the
reader to [GL00] for more information.

Vladimir Voevodsky
Institute for Advanced Study

May 2001.





Introduction

This book is divided into six main parts. The first part (Lectures 1–5) presents
the definitions and the first three comparison results. The second part (Lectures 6–
10) presents théetale version of the theory, focussing on coefficients, 1/m∈ k. As
Suslin’s Rigidity Theorem 7.20 demonstrates, a key role is played by locally con-
stantétale sheaves such asµ

⊗i
m , which are quasi-isomorphic to the motivicZ/m(i)

by Theorem 10.3. The tensor triangulated categoryDM−ét(k,Z/m) of étale motives
is constructed in Lecture 9 and shown to be equivalent to the derived category of
discreteZ/m-modules over the Galois groupG = Gal(ksep/k) in Theorem 9.35.

The first main goal of the lecture notes, carried out in Lectures 11–16, is to in-
troduce the tensor triangulated categoryDMeff,−

Nis (k,R) of effective motives and its
subcategory of effective geometric motivesDMeff

gm. The motiveM(X) of a scheme
X is an object ofDMeff,−

Nis (k,R), and belongs toDMeff
gm if X is smooth. This re-

quires an understanding of the cohomological properties of sheaves associated with
homotopy invariant presheaves with transfers for the Zariski, Nisnevich and cdh
topologies. This is addressed in the third part (Lectures 11–13). Lecture 11 intro-
duces the technical notion of a standard triple, and uses it to prove that homotopy
invariant presheaves with transfers satisfy a Zariski purity property. Lecture 12
introduces the Nisnevich and cdh topologies, and Lecture 13 considers Nisnevich
sheaves with transfers and their associated cdh sheaves.

A crucial role in this development is played by Theorem 13.8: ifF is a homo-
topy invariant presheaf with transfers, andk is a perfect field, then the associated
Nisnevich sheafFNis is homotopy invariant, and so is its cohomology. For reasons
of exposition, the proof of this result is postponed and occupies Lectures 21 to 24.

In the fourth part (Lectures 14–16) we introduce the categoriesDMeff,−
Nis (k,R)

andDMeff
gm. The main properties of these categories — homotopy, Mayer-Vietoris,

Projective bundle decomposition, Blow-up triangles, Gysin sequence, Cancella-
tion, and the connection with Chow motives — are summarized in 14.5. We also
show (in 15.9) that the product on motivic cohomology (defined in 3.12) is graded-
commutative and agreement (for coefficientsQ) with theétale theory presented in
Lectures 9 and 10 (see 14.30).

Lecture 16 introduces equidimensional algebraic cycles. These are used to
construct the Suslin-Friedlander motivic complexesZSF(i), which are are quasi-
isomorphic to the motivic complexesZ(i); this requires the field to be perfect (see
16.7). They are also used to define motives with compact supportMc(X). The basic

ix



x INTRODUCTION

theory with compact support complements the theory presented in Lecture 14; this
requires the field to admit resolution of singularities. This lecture concludes with
the use of Friedlander-Voevodsky duality (see 16.24) to establish the Cancellation
Theorem 16.25; this lets us embed effective motives into the triangulated category
of all motives.

The second main goal of this book is to establish the final comparison 19.1 with
Bloch’s higher Chow groups: for any smooth separated schemeX over a perfect
field k, we have

H p,q(X,Z)∼= CHq(X,2q− p).

This is carried out in the fifth part (Lectures 17–19). In Lecture 17, we introduce
Bloch’s higher Chow groups and show (in 17.21) that they are presheaves with
transfers over any field. Suslin’s comparison (18.3) of higher Chow groups with
equidimensional cycle groups over any affine scheme is given in Lecture 18, and
the link between equidimensional cycle groups and motivic cohomology is given
in Lecture 19.

We briefly revisit the triangulated categoryDMgm of geometric motives in Lec-
ture 20. We work over a perfect field which admits resolution of singularities. First
we embed Grothendieck’s classic category of Chow motives as a full subcategory.
We then construct the dual of any geometric motive and use it to define internal
Hom objectsHom(X,Y). The Lecture culminates in theorem 20.17, which states
that this structure makesDMgm a rigid tensor category.

The final part (Lectures 21–24) is dedicated to the proof of theorem 13.8. Using
technical results from lecture 21, we prove (in 22.3) thatFNis is homotopy invariant.
The proof that its cohomology is homotopy invariant (24.1) is given in Lecture 24.
We conclude with a proof that the sheafFNis admits a “Gersten” resolution.

During the production of the book, we received many suggestions and com-
ments from the mathematical community. One popular suggestion was that we
include some of the more well known and useful properties of motives that had
been missing in the original lectures, in order to make the exposition of the theory
more complete. For this reason, a substantial amount of material has been added to
Lectures 12–14, 16 and 20. Another suggestion was that we warn the reader that
the exercises vary in difficulty and content, from the concrete to the abstract; some
are learning exercises and some augment the ideas presented in the text.

In Figure 1 we give a rough bird-eye view of the stucture of this book and how
the various lectures depend upon each other. Lectures 1 and 2 are missing because
they are prerequisites for all other lectures. We split Lecture 13 in two different
parts to further clarify that the results in the second half of the lecture crucially
depend on Theorem 13.8 which is proven in Lecture 24. The dependency chart
(and this Introduction) should serve as a guide to direct the reader of these notes.
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FIGURE 1. Dependency graph of the lectures
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Presheaves with transfers





LECTURE 1

The category of finite correspondences

In this lecture we shall define the additive categoryCork of finite correspon-
dences over a fieldk. The objects ofCork will be the smooth separated schemes
(of finite type) overk. The morphisms inCork from X to Y will be the finite corre-
spondences, which are special kinds of cycles inX×Y. Composition is defined so
thatCork contains the categorySm/k of smooth separated schemes overk.

By convention, all schemes will be separated, and defined overk. Although
smooth schemes always have finite type overk [EGA4, 17.3.1], we will some-
times refer to local and even semilocal schemes as being smooth; by this we mean
that they are the local (resp., semilocal) schemes associated to points on a smooth
scheme.

Our point of view will be that a cycle in a schemeT is a formalZ-linear
combination of irreducible closed subsets ofT. Each irreducible closed subsetW
is the support of its associated integral subschemeW̃ soW andW̃ determine each
other. Thus we can ascribe some algebraic properties toW. We say thatW is finite
along a morphismT → S if the restrictionW̃→ S is a finite morphism. A cycle
∑niWi is said to be finite along a morphism if eachWi is finite.

DEFINITION 1.1. If X is a smooth connected scheme overk, andY is any
(separated) scheme overk, anelementary correspondencefrom X toY is an irre-
ducible closed subsetW of X×Y whose associated integral subscheme is finite and
surjective overX. By an elementary correspondence from a non-connected scheme
X to Y, we will mean an elementary correspondence from a connected component
of X to Y.

The groupCor(X,Y) is the free abelian group generated by the elementary
correspondences fromX to Y. The elements ofCor(X,Y) will be called finite
correspondences.

If X is not connected andX =q Xi is the decomposition into its connected
components, our definition implies thatCor(X,Y) =⊕iCor(Xi ,Y).

EXAMPLE 1.2. Let f : X→Y be a morphism inSm/k. If X is connected, the
graphΓ f of f is an elementary correspondence fromX toY. If X is not connected,
the sum of the components ofΓ f is a finite correspondence fromX to Y. Indeed
the projectionΓ f → X is an isomorphism, andΓ f is closed becauseY is separated
overk.

The graphΓ1 of the identity onX is the support of the diagonal∆(X)⊂ X×X.
We will write idX for the finite correspondenceΓ1 from X to itself. It will be the

5



6 1. THE CATEGORY OF FINITE CORRESPONDENCES

identity element ofCor(X,X) for the composition product. Note thatidX is an
elementary correspondence whenX is integral.

If X is connected,Y is smooth andf : X → Y is finite and surjective, the
transpose ofΓ f in Y×X is a finite correspondence fromY to X. This is a useful
construction; see exercise 1.11 below for one application.

CONSTRUCTION1.3. Every subscheme Z of X×Y which is finite and surjec-
tive over X determines a finite correspondence[Z] from X to Y.

PROOF. If Z is integral then its support[Z] is by definition an elementary cor-
respondence. In general we associate toZ the finite correspondence∑niWi , where
theWi are the irreducible components of the support ofZ which are surjective over
a component ofX andni is the geometric multiplicity ofWi in Z, i.e., the length of
the local ring ofZ atWi (See [Ser65] or [Ful84]). �

We will now define an associative and bilinear composition for finite corre-
spondences between smooth schemes. For this, it suffices to define the composi-
tion W◦V of elementary correspondencesV ∈Cor(X,Y) andW ∈Cor(Y,Z). Our
definition will use the push-forward of a finite cycle.

Let p : T→ Sbe any morphism. IfW is a irreducible closed subset ofT finite
alongp, the imageV = p(W) is a closed irreducible subset ofSandd = [k(W) :
k(V)] is finite. In this case we define thepush-forward of the cycleW alongp to be
the cyclep∗W = d ·V; see [Ful84]. By additivity we may define the push-forward
of any cycle which is finite alongp.

LEMMA 1.4. Suppose that f: T → T ′ is a morphism of separated schemes of
finite type over a Noetherian base S. Let W be an irreducible closed subset of T
which is finite over S. Then f(W) is closed and irreducible in T′ and finite over S.
If W is finite and surjective over S, then so is f(W).

PROOF. By Ex.II.4.4 of [Har77], f (W) is closed inT ′ and proper overS.
Since f (W) has finite fibers overS, it is finite overSby [EGA3, 4.4.2]. IfW→ S
is surjective, so isf (W)→ S. �

Given elementary correspondencesV ∈ Cor(X,Y) andW ∈ Cor(Y,Z), form
the intersection product[T] = (V ×Z) · (X×W) of the corresponding cycles in
X×Y×Z. (The intersection product is defined in [Ser65] and [Ful84]; see 17A.1.)

The compositionW ◦V of V andW is defined to be the push-forward of the
finite correspondence[T], along the projectionp : X×Y×Z→X×Z; see [Ful84].
By lemma 1.7 below, the cycle[T] is finite overX×Z. Thus the push-forwardp∗[T]
is defined; it is a finite correspondence fromX to Z by lemma 1.4.

We can easily check thatidX is the identity ofCor(X,X), and that the composi-
tion of finite correspondences is associative and bilinear (see [Man68] and [Ful84,
16.1]).

DEFINITION 1.5. LetCork be the category whose objects are the smooth sepa-
rated schemes of finite type overk and whose morphisms fromX toY are elements
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of Cor(X,Y). It follows from the above remarks thatCork is an additive category
with /0 as the zero object, and disjoint union as coproduct.

LEMMA 1.6. Let Z be an integral scheme, finite and surjective over a normal
scheme S. Then for every morphism T→ S with T connected, every component of
T×SZ is finite and surjective over T .

PROOF. See [EGA4, 14.4.4]. �

Recall that two irreducible closed subsetsZ1 andZ2 of a smooth scheme are
said to intersectproperly if Z1∩Z2 = /0 or codim(Z1∩Z2) = codimZ1 +codimZ2.

LEMMA 1.7. Let V ⊂ X×Y and W⊂ Y× Z be irreducible closed subsets
which are finite and surjective over X and Y respectively. Then V×Z and X×W
intersect properly, and each component of the push-forward of the cycle[T] of
T = (V×Z)∩ (X×W) is finite and surjective over X.

PROOF. Let Ṽ andW̃ be the underlying integral subschemes associated toV
andW respectively. Without loss of generality we can suppose bothX andY con-
nected. We form the pullback of̃V andW̃.

Ṽ×Y W̃ - W̃ - Z

Ṽ
?

- Y

f.surj.
?

X

f.surj.
?

By 1.6, each component ofṼ×YW̃ is finite and surjective over̃V and therefore over
X too. The imageT of the evident map̃V×Y W̃→ X×Y×Z is the intersection
of Ṽ ×Z and X̃×W. Thus each irreducible componentTi of T is the image of
an irreducible component of̃V ×Y W̃. By 1.4, we know that eachTi is finite and
surjective overX. Therefore dimTi = dimX for all i, i.e.,Ṽ×Z andX×W̃ intersect
properly.

Let p(Ti) denote the image ofTi under the mapp : X×Y×Z→ X×Z. By
lemma 1.4, eachp(Ti) is an irreducible closed subscheme ofX×Z which is finite
and surjective overX. Since the components ofp∗[T] are the supports of thep(Ti),
we are done. �

REMARK 1.8. It is possible to extend the definition of finite correspondences
to correspondences between singular schemes. This uses the categoryCorS, where
S is a Noetherian scheme; see [RelCh]. Since we will use only smooth schemes
in these lectures, we describe this more general definition in the appendix of this
lecture.

The additive categoryCork is closely related to the categorySm/k of smooth
schemes overk. Indeed, these categories have the same objects, and it is a routine
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computation (exercise!) to check thatΓg◦Γ f equalsΓg◦ f . That is, there is a faithful
functorSm/k→Cork, defined by:

X 7→ X ( f : X→Y) 7→ Γ f .

The tensor product is another important feature of the categoryCork.

DEFINITION 1.9. If X andY are two objects inCork, their tensor product
X⊗Y is defined to be the product of the underlying schemes overk:

X⊗Y = X×Y.

If V andW are elementary correspondences fromX to X′ and fromY to Y′, then
the cycle associated to the subschemeV×W by 1.3 gives a finite correspondence
from X⊗Y to X′⊗Y′.

It is easy to verify that⊗ makesCork a symmetric monoidal category (see
[Mac71]).

EXERCISE 1.10. If S= Speck thenCork(S,X) is the group of zero-cycles in
X. If W is a finite correspondence fromA1 to X, ands, t : Speck→A1 arek-points,
show that the zero-cyclesW ◦Γs andW ◦Γt are rationally equivalent (Cf. [Ful84,
1.6]).

EXERCISE1.11. Let x be a closed point onX, considered as a correspondence
from S= Spec(k) to X. Show that the compositionS→ X→ S is multiplication by
the degree[k(x) : k], and thatX→ S→ X is given byX×x⊂ X×X.

Let L/k be a finite Galois extension with Galois groupG andT = Spec(L).
Prove thatCork(T,T) ∼= Z[G] and thatT → S→ T is ∑g∈Gg∈ Z[G]. Then show

thatCork(S,Y)∼= Cork(T,Y)G for everyY

EXERCISE 1.12. If k ⊂ F is a field extension, there is an additive functor
Cork → CorF sendingX to XF . If F is finite and separable overk, there is an
additive functorCorF →Cork sendingU to U . These are adjoint: ifU is smooth
overF andX is smooth overk, there is a canonical identification:

CorF(U,XF) = Cork(U,X).

EXERCISE 1.13. (a) LetF be a field extension ofk andX andY two smooth
schemes overk. Writing XF for X×Speck SpecF and so on, show thatCorF(XF ,YF)
is the limit of theCorE(XE,YE) asE ranges over all finitely generated field exten-
sions ofk contained inF .

(b) Let X → S→ Spec(k) be smooth morphisms, withS connected, and let
F denote the function field ofS. For every smooth schemeY over k, show that
CorF(X×SSpecF,Y×k SpecF) is the direct limit of theCork(X×SU,Y) asU
ranges over all non-empty open subschemes ofS. In the special caseX = S, this
shows thatCorF(SpecF,Y×k SpecF) = lim−→Cork(U,Y).

(c) Show that (a) and (b) remain valid ifY is any scheme overk, using the
definition 1.1 ofCork(X,Y).



Appendix 1A - The categoryCorS

It is possible to generalize the notion of finite correspondence to construct a
categoryCorS, associated to any Noetherian schemeS; see [RelCh]. The objects of
this category are the schemes of finite type overS; the morphisms are the elements
of an abelian groupCorS(X,Y) whose elements are the cyclesW onX×SY which
are “universally integral relative toX”, and each of whose components are finite
and surjective overX.

Universally integral cycles are defined in 1A.9 below as those cycles for
which the pullback is always defined, and has integer coefficients. This condi-
tion is needed because, in order to compose an elementary correspondenceV in
CorS(X,Y) with a correspondenceW in CorS(Y,Z), we must form the pullbackWV
of W alongV→Y to get a cycle onV×SZ⊂ X×SY×SZ (See 1A.11).

Relabeling, we are reduced to the following basic setup for pulling back cycles.
We are given a cycleW on X, a structure mapX → S and a mapV → S. The
problem is to define a pullback cycleWV onX×SV in a natural way. This is easy if
V is flat overS(see [Ful84, 1.7]), but in general the problem is quite difficult even
for V = SpecK.

WV ⊂ X×SV - V

W ⊂ X
?

- S
?

The general pullback is modelled on the pullback of flat cycles. IfW is an
irreducible cycle onX which is flat overS, we define the pullbacks∗(W) along
s : Spec(K)→ S to be the cycle onXs defined byWs = W×SSpec(K).

EXAMPLE 1A.1. Let W be an irreducible cycle onX. By “platification”
[RG71, 5.2], there is a proper birational mapT → S such that the proper trans-
form W̃ of W is flat overT. Given a points0 : Spec(k0)→ S, choose a finite field
extension fieldk1 of k0 such thats1 : Spec(k1)→ Shas a liftt : Spec(k1)→ T; then
the flat pullbackt∗(W̃) is a candidate for the pullbacks∗1(W).

There are two problems with this candidate: it may depend upon the choice of
T andt (as in example 1A.4), and ifk0 6= k1 we need to descend from the cycle

9



10 APPENDIX 1A - THE CATEGORYCorS

t∗(W̃) onXk1
to a cycle onXk0

(as in example 1A.7).

Speck1
t - T �

flat
W̃

Speck0

?

s0

-

s1

-

S

6

� W

One way to attack the first problem is to restrict our attention to “relative cy-
cles,” defined in 1A.5 using the notion of pullback along a fat point ofS. This
approach was introduced in [RelCh], using discrete valuation rings (DVRs). Re-
call that ifK is a field, aK-point ofS(or point) is a morphism SpecK→ S.

DEFINITION 1A.2. A fat point s of S is a DVRD, a fieldK and morphisms

SpecK
s0- SpecD

s1- S,

so that the closed point of SpecK goes to the closed point of SpecD and the generic
point SpecF of SpecD goes to a generic point ofS. We say that the fat point
s= (s0,s1) lies over the underlyingK-point SpecK→ S.

Every points in a Noetherian schemeShas a fat point lying over it in the sense
that there is a field extensionk(s) ⊂ K and a fat point over SpecK → S. That is,
if s lies over a generic points′ of S, then there is a DVRD and a map SpecD→ S
sending the closed point (resp., generic point) of SpecD to s (resp., tos′); see
[EGA1, 0I .6.5.8] or [Har77, II.4.11]. The following trick now lets us take the
pullback of cycles to SpecD.

THEOREM 1A.3. Let D be a DVR with field of fractions F. If X is a scheme
of finite type over D and WF is closed in the generic fiber XF then there exists a
unique closed subscheme WD of WF in X which is flat overSpecD.

PROOF. Locally X has coordinate ringA, XF has coordinate ringA⊗D F , and
WF has coordinate ring(A⊗D F)/( f1, . . . , fn), where fi ∈ A for everyi = 1, . . . ,n.
Let R0 be A/( f1, . . . , fn) and letR be R0/I whereI is the torsion submodule of
theD-moduleR0. Is is easy to see thatR is independent of the choice of thefi ’s.
Locally WD is SpecR. �

We can now define the pullback along a fat pointsof Sover aK-points. Given
a closed subschemeW in X, we may form the (classical) flat pullbackWF along
SpecF → S, and consider the closed subschemeWD of WF flat over SpecD as in
1A.3. The pullbacks∗(W) of W is defined to be the cycle[WK ] onXK associated to
the fiberWK of the schemeWD over the closed point SpecK of SpecD.

Since the pullbacks∗(W) is a cycle onXs = X×SSpec(K), it is a candidate
for the pullback ofW alongs. However, two fat points over the sameK-point may
give two distinct candidates, as the following example shows.

EXAMPLE 1A.4. Let S be the node over a fieldk and X its normalization.
There are two fat points over the singular points∈ S, corresponding to the two
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k-points ofXs = {p0, p1}. The pullbacks ofW = X along these fat points are[p0]
and[p1], respectively.

In order to have a useful pullback, we need to get rid of the dependence on the
choice of the fat point. The following definition is taken from [RelCh, 3.1.3].

DEFINITION 1A.5. Let W = ∑niWi be a cycle onX. We say thatW is domi-
nant overS if each termWi of W is dominant over a component ofS. We say that a
dominant cycleW is arelative cycleonX overS if its pullbackss∗(W) andt∗(W)
coincide for any pairs, t of fat points over a commonK-point s. We will write
s∗(W) for this pullback cycle onXs.

For example, any dominant cycleW which is flat and equidimensional overS
is a relative cycle, because the pullbacks∗(W) coincides with the classical pullback
of a cycle along theK-point. This follows easily from the observation that since
WD is W×SSpecD, we haveWK = W×SSpecK.

We writeCycl(X/S, r) for the free abelian group of the relative cyclesW onX
overSsuch that each component has dimensionr overS. It turns out that every ef-
fective relative cycle inCycl(X/S, r) must be equidimensional overS; see [RelCh,
3.1.7]. If S is normal, the following result shows that this is also a sufficient condi-
tion for being a relative cycle; it is proven in [RelCh, 3.4.2].

THEOREM 1A.6. If S is normal or geometrically unibranch, and W is a cycle
on X which is dominant equidimensional over S, then W is a relative cycle.

The use of relative cycles solves the first problem raised in the situation of
example 1A.1. Given a relative cycleW, find a proper birational mapT → S as
in 1A.1 so that the components ofW have flat proper transforms inXT . By the
Valuative Criterion for Properness, fat pointssof Sare in 1–1 correspondence with
fat points t of T. Given any pair of liftingst ′, t ′′ : Spec(k1)→ T of a k1-point
s1 on S, we can find fat pointss′ ands′′ of S over a field extensionη : k1→ K
whose lifts toT factor throught ′ andt ′′. SinceW is a relative cycle, we see that
η
∗t ′∗(W̃) = (s′)∗(W) andη

∗t ′′∗(W̃) = (s′′)∗(W) agree as cycles onXK . Sinceη
∗

is an injection, we gett ′∗(W̃) = t ′′∗(W̃).

Speck1

t ′ -

t ′′
- T � W̃

SpecK

η

6

s′ -

s′′
- S
?
�

s1

-

W

Now that we have a good definition for the pullback of a relative cycle along a
k1-points1 : Speck1→Swhich lifts to ak1-pointt of T, we need to solve the second
problem raised in 1A.1, descending froms∗1(W) to the pullbacks∗(W) along any
Zariski points : Spec(k0)→ S.
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If k1 is separable overk0, elementary Galois theory allows us to descend from
the cyclet∗(W̃) onXk1

to a cycle onXk0
, which is the desired pullbacks∗(W). More

precisely, we may assume thati : k0→ k1 is a Galois extension with Galois group
G, in which case everyG-invariant cycle onXk1

comes from a unique cycle onXk0
.

Sincet∗(W̃) is G-invariant, there is a unique cycle, which we calls∗(W), such that
t∗(W̃) = i∗(s∗(W)).

However, it may be that the fieldsk(t) are inseparable overk(s) for every point
t of T overs. To fix this, it turns out that we need to invert the characteristicp of
k(s) (see 1A.7 below). Fixingsandt, let K denote the maximal purely inseparable
extension ofk(s) in k(t); by the preceding paragraph,t∗(W̃) descends to a unique
cycleZ′ onXK . Since the index[K : k(s)] is a power ofp, and elementary field the-
ory shows that[K : k(s)]Z comes from a unique cycleZ on Xs, we writes∗(W) for
the cycleZ/[K : k(s)]. This completes the solution of the second problem referred
to in 1A.1.

Speck(t)
t - T � W̃

SpecK
p.insep

-

sep.

�
Speck(s)

? s - S
?
� W

EXAMPLE 1A.7. Let K be a purely inseparable extension ofk with [K : k] =
p and setW = X = Spec(K[t]). Let S= SpecA, whereA⊂ K[t] is the ring of
polynomialsf (t) where f (0) ∈ k. If s : Spec(k)→ S is the origin, and theK-point
s1 of S lies overs, then using the fat point withD = K[[t]] we haves∗1(W) = [s1] on
XK . It follows thats∗(W) = [s]/p as a cycle onXk = Spec(K).

Even ifX is smooth andS is normal, there can be a relative cycleW for which
the coefficient 1/p occurs in its pullbackss∗(W). An example, due to Merkurjev,
is given in Example 3.5.10 in [RelCh].

THEOREM 1A.8. Let W be a relative cycle on X over a Noetherian scheme S.
For each map f: T→S, there exists a unique and well-defined relative cycle WT of
X×ST over T , whose coefficients may lie inZ[1/p] in characteristic p, satisfying
the following condition: for every point t of T , the pullback t∗(W) to Xt agrees with
the pullback f(t)∗(W). The relative cycle WT is called thepullbackof W.

PROOF. For each generic pointt of T, consider the pullback cyclest∗(W) =
∑ntiZ

′
t,i on Xt constructed above. LetZt,i denote the closure ofZ′t,i in X×ST.

ThenWT = ∑t,i ntiZt,i is the desired cycle onX×ST over T. The verification is
straightforward but lengthy, and is given in [RelCh, 3.3]. �

DEFINITION 1A.9. A relative cycleW is calleduniversally integral when its
pullbacksWT always have integer coefficients; see [RelCh, 3.3.9].

We definec(X/S,0) to be the free abelian group on the universally inte-
gral relative cycles ofX which are finite and surjective overS. Finally we set
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CorS(X,Y) = c(X×SY/X,0). That is,CorS(X,Y) is the group of universally inte-
gral cycles onX×SY whose support is finite overX (i.e., proper overX of relative
dimension 0).

In [RelCh] the notationz(X/S,0) was used for the subgroup ofCycl(X/S,0)
generated by universally integral cycles, and the notationc(X/S,0) was introduced
for the subgroup generated by the proper cycles inz(X/S,0).

The following theorem was proved in [RelCh, 3.3.15] and [RelCh, 3.4.8].

THEOREM 1A.10. Any relative cycle of X over S is universally integral pro-
vided that either

(1) S is regular, or
(2) X is a smooth curve over S.

DEFINITION 1A.11. The composition of relative cyclesV ∈CorS(X,Y) and
W ∈ CorS(Y,Z) is defined as follows. Form the pullbackWV of W with respect
to the mapV →Y, as in 1A.8. The compositionW ◦V is defined to be the push-
forward ofWV along the projectionp : X×Y×Z→ X×Z. By [RelCh, 3.7.5], the
composition will be a universally integral cycle which is finite and surjective over
X.

In the special case whenV is the graph off : X→Y, we see thatW ◦V is just
the pullbackWX of 1A.8. That is,CorS(Y,Z)→CorS(X,Z) is W 7→WX.

EXAMPLE 1A.12. By definition, c(X/S,0) = CorS(S,X). If S and X are
smooth over a fieldk, then clearlyCorS(S,X)⊆Cork(S,X) via the embedding ofX
in S×X. Hence, for every mapS′→S, there is a mapc(X/S,0)→ c(X×SS′/S′,0)
induced by composition inCork.

c(X/S,0) ⊂ - Cork(S,X)

c(X×SS′/S′,0)
?

........
⊂- Cork(S

′,X)
?

EXAMPLE 1A.13. If S= Speck for a fieldk andX andY are smooth overS,
then the groupCorS(X,Y) = c(X×Y/X,0) agrees with the groupCork(X,Y) of
definition 1.1.

To see this, note thatc(X×Y/X,0) ⊆Cork(X,Y) by definition. By 1A.6 and
1A.10, every cycle inX×Y which is finite and surjective overX is a universally
integral relative cycle, so we have equality.

Since composition inCorS (as defined in 1A.11) evidently agrees with compo-
sition inCork, we see thatCork is just the restriction ofCorS to Sm/k.

EXAMPLE 1A.14. Suppose thatV ⊂ S is a closed immersion of regular
schemes and letW be an equidimensional cycle on a schemeX of finite type over
S. It it shown in [RelCh, 3.5.8] that the pullback cycleWV coincides with the im-
age ofW under the pullback homomorphism for the mapV×SX→ X as defined
in [Ser65] and [Ful84], using an alternating sum of Tor terms.





LECTURE 2

Presheaves with transfers

In order to define motivic cohomology we need to introduce the notion of
a presheaf with transfers. In this lecture we develop the basic properties of
presheaves with transfers.

DEFINITION 2.1. A presheaf with transfers is a contravariant additive func-
tor F : Cork→ Ab. We will write PreSh(Cork), or PST(k) or PST if the field is
understood, for the functor category whose objects are the presheaves with trans-
fers and whose morphisms are natural transformations.

By additivity, there is a pairingCork(X,Y)⊗F(Y)→ F(X) for all F , X and
Y.

Restricting to the subcategorySm/k of Cork, we see that a presheaf with trans-
fersF may be regarded as a presheaf of abelian groups onSm/k which is equipped
with extra “transfer” mapsF(Y)→ F(X) indexed by the finite correspondences
from X to Y.

EXAMPLE 2.2. Every constant presheafA on Sm/k may be regarded as a
presheaf with transfers. IfW is an elementary correspondence fromX to Y (both
connected), the homomorphismA→ A defined byW is multiplication by the de-
gree ofW overX.

The following theorem is a special case of a well known result on functor
categories, see [Wei94] 1.6.4 and Exercises 2.3.7 and 2.3.8.

THEOREM2.3. The categoryPST(k) is abelian and has enough injectives and
projectives.

EXAMPLE 2.4. The sheafO∗ of global units and the sheafO of global func-
tions are two examples of presheaves with transfers.

Recall first that ifX is normal andW→X is finite and surjective then there is a
norm mapN : O∗(W)→O∗(X) induced from the usual norm map on the function
fields,k(W)∗→ k(X)∗. Indeed, if f ∈ O∗(W) thenN f andN f−1 are both in the
integrally closed subringO(X) of k(X).

Similarly, there is a trace map Tr :O(W)→O(X) induced from the usual trace
map on the function fields,k(W)→ k(X). Indeed, if f ∈ O(W) then Trf belongs
to the integrally closed subringO(X) of k(X).

If W ⊂ X×Y is an elementary correspondence fromX to Y, we define the
transfer mapO∗(Y)→ O∗(X) associated toW to be the composition:

O∗(Y) - O∗(W)
N- O∗(X).

15
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We define the transferO(Y)→ O(X) associated toW to be the composition

O(Y) - O(W)
Tr- O(X).

We omit the verification that these transfers are compatible with the composition
in Cork. It is clear from the transfer formula that the subsheafµn of nth roots of
unity in O∗ is also a presheaf with transfers, and that the subsheafk of O is just the
constant sheaf with transfers described in 2.2.

EXAMPLE 2.5. The classical Chow groupsCHi(−) are presheaves with trans-
fers. To see this, we need to construct a mapφW : CHi(Y)→ CHi(X) for each
elementary finite correspondenceW from a smooth schemeX to a smooth scheme
Y, and check that this defines a functor fromCork to abelian groups.

The correspondence homomorphismφW is given by the formulaφW(α) =
q∗(W · p∗α), whereα ∈CHi(Y). Herep∗ : CHi(Y)→CHi(X×Y) is the flat pull-
back along the projectionX×Y→Y, the ‘·’ is the intersection product (see 17A.1),
andq : X×Y→ X is the projection. IfY were proper, this would be exactly the
formula given in Chapter 16 of [Ful84]. For generalY, we need to observe that
W · p∗α has finite support overX, so that the push-forwardq∗(W · p∗α) is defined
in CHi(X).

The verification that the definition ofφW is compatible with the composition
of correspondences is now a routine calculation using the projection formula; it is
practically the same as the calculation in the proper case, which is given in [Ful84,
16.1.2].

EXAMPLE 2.6. We will see in 13.11 that the motivic cohomology groups
H p,q(−,Z) of 3.4 are presheaves with transfers.

EXAMPLE 2.7. The functorK0, considered as a presheaf of abelian groups
on Sm/k, has no extension to a presheaf with transfers. To see this, it suffices to
find a finite étale coverf : Y → X of degree 2 and an elementx ∈ K0(X) such
that f ∗(x) = 0 but 2x 6= 0. Indeed, ifΦ ∈ Cor(X,Y) is the canonical “transfer”
morphism defined byf , then f ◦Φ = 2 in Cor(X,X) (cf. 1.11), so any presheaf
with transfersF would haveF(Φ) f ∗(x) = 2x for all x∈ F(X).

Let L be a line bundle on a smooth varietyX satisfyingL 2 ∼= OX but [L ⊕
L ] 6= [OX⊕OX] in K0(X). It is well-known that suchL exists; see [Swa62]. It
is also well-known that there is ańetale coverf : Y→ X of degree 2 withY =
Spec(OX⊕L ); see [Har77, IV Ex.2.7]. Sincef ∗L ∼= OY, the elementx = [L ]−
[OX] of K0(X) satisfiesf ∗(x) = 0 but 2x 6= 0, as required.

Representable functors provide another important class of presheaves with
transfers. We will use the notationZtr(X), which was introduced in [SV00]; the
alternate terminologyL(X) was used in [TriCa ], while cequi(X/Speck,0) was used
in [RelCh] and [CohTh].
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By the Yoneda lemma, representable functors provide embeddings ofSm/k
andCork into an abelian category, namelyPST(k):

Sm/k - Cork
- PST(k).

X - X - Ztr(X)

DEFINITION 2.8. If X is a smooth scheme overk we letZtr(X) denote the
presheaf with transfers represented byX, so thatZtr(X)(U) = Cor(U,X). By the
Yoneda lemma,

HomPST(Ztr(X),F)∼= F(X).
It follows thatZtr(X) is a projective object inPST(k).

For everyX andU , Ztr(X)(U) is the group of finite correspondences fromU
to X and the mapZtr(X)(U)→ Ztr(X)(V) associated to a morphismf : V→U is
defined to be composition with the correspondence associated tof .

We will write Z for the presheaf with transfersZtr(Speck); it is just the con-
stant Zariski sheafZ on Sm/k, equipped with the transfer maps of 2.2. Thus the
structure mapX→ Speck induces a natural mapZtr(X)→ Z.

Here are three exercises. Carefully writing up their solutions requires some
knowledge about cycles, such as that found in [Ful84].

EXERCISE 2.9. If F is a presheaf with transfers andT is a smooth scheme,
defineFT(U) = F(U×T). Show thatFT is a presheaf with transfers and that every
morphismS→ T induces a morphismFT → FS of presheaves with transfers. If
F is constant andT is geometrically connected, thenFT = F .

EXERCISE2.10. If k⊂ L is a separable field extension, everyX in Sm/L is an
inverse limit of schemesXα in Sm/k. For every presheaf with transfersF overk,
we setF(X) = lim−→F(Xα). Show that this makesF a presheaf with transfers over
L.

EXERCISE 2.11. Let X be a (non-smooth) scheme of finite type overk. For
each smoothU , defineZtr(X)(U) to be the groupCor(U,X) of 1.1. Show that the
composition◦ defined after 1.4 makesZtr(X) into a presheaf with transfers.

Given a pointed scheme(X,x), we defineZtr(X,x) to be the cokernel of the
mapx∗ : Z→ Ztr(X) associated to the pointx : Speck→ X. Sincex∗ splits the
structure mapZtr(X)→ Z, we have a natural splittingZtr(X)∼= Z⊕Ztr(X,x).

The pointed schemeGm = (A1−0,1) and its associated presheaf with transfers
Ztr(Gm) = Ztr(A1−0,1) will be of particular interest to us.

DEFINITION 2.12. If (Xi ,xi) are pointed schemes fori = 1, . . . ,n we define
Ztr((X1,x1)∧ . . .∧ (Xn,xn)), orZtr(X1∧ . . .∧Xn), to be:

coker

(⊕
i

Ztr(X1×·· · X̂i · · ·×Xn)
id×···×xi×···×id- Ztr(X1×·· ·×Xn)

)
.

By definitionZtr((X,x)∧1) = Ztr(X,x) andZtr((X,x)∧q) = Ztr((X,x)∧ . . .∧
(X,x)) for q> 0. By conventionZtr((X,x)∧0) = Z andZtr((X,x)∧q) = 0 when
q< 0.
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LEMMA 2.13. The presheafZtr((X1,x1)∧ . . .∧ (Xn,xn)) is a direct summand
ofZtr(X1×·· ·×Xn). In particular, it is a projective object ofPST.

Moreover, the following sequence of presheaves with transfers is split exact:

0→ Z
{xi}→ ⊕iZtr(Xi)→⊕i, jZtr(Xi×Xj)→ . . .

. . .→⊕i, jZtr(X1×·· · X̂i · · · X̂j · · ·×Xn)→⊕iZtr(X×·· · X̂i · · ·×Xn)→
→ Ztr(X1×·· ·×Xn)→ Ztr(X1∧·· ·∧Xn)→ 0.

This lemma is illustrated by the formulasZtr(X)∼= Z⊕Ztr(X,x) and

Ztr(X1×X2)∼= Z⊕Ztr(X1,x1)⊕Ztr(X2,x2)⊕Ztr(X1∧X2).

PROOF. The projections[xi ] : Xi→{xi}→ Xi are idempotent, as are the corre-
spondencesei = 1Xi

− [xi ]. These idempotents induce a decomposition ofZtr(X1×
·· ·×Xn) into 2n summands, and we see by inspection thatZtr(X1∧·· ·∧Xn) is the
image ofe1×·· ·×en. SinceZtr(X1∧·· ·∧Xn) is a summand of a projective object,
it is projective. The individual terms in the indicated sequence decompose in a
similar fashion, and each map is a projection followed by an inclusion; it is easy to
see from this description that the sequence is split exact (see [Wei94, 1.4.1]). �

We shall also need a functorial construction of a chain complex associated to
a presheaf with transfers. For this we use the cosimplicial scheme∆• overk which
is defined by:

∆n = Speck[x0, . . . ,xn]/

(
n

∑
i=0

xi = 1

)
.

The j th face map∂ j : ∆n→ ∆n+1 is given by the equationx j = 0. Although this
construction is clearly taken from topology, the use of∆• in an algebraic setting
originated with D. Rector in [Rec71].

DEFINITION 2.14. If F is a presheaf of abelian groups onSm/k, F(∆•) and
F(U × ∆•) are simplicial abelian groups. We will writeC•F for the simplicial
presheafU 7→ F(U ×∆•), i.e.,Cn(F)(U) = F(U ×∆n). If F is a presheaf with
transfers,C•F is a simplicial presheaf with transfers by 2.9.

As usual, we can take the alternating sum of the face maps to get a chain
complex of presheaves (resp., presheaves with transfers) which (using∗ in place of
•), we will call C∗F . It sendsU to the complex of abelian groups:

. . .→ F(U×∆2)→ F(U×∆1)→ F(U)→ 0.

Both F 7→C•F andF 7→C∗F are exact functors. Moreover, the Dold-Kan corre-
spondence (see [Wei94, 8.4.1]), which describes an equivalence between simplicial
objects and positive chain complexes, associates toC•F a normalized subcomplex
CDK
∗ F of the complexC∗F , which is quasi-isomorphic to the complexC∗F .

If A is the constant presheaf with transfersA(U) = A thenC∗A is the complex

· · ·→A
id- A

0- A→ 0; it is quasi-isomorphic toCDK
∗ (A), which isA regarded

as a complex concentrated in degree zero.
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Homotopy invariant presheaves

We now introduce a special class of presheaves which will play a major role in
these notes.

DEFINITION 2.15. A presheafF is homotopy invariant if for everyX the map
p∗ : F(X)→ F(X×A1) is an isomorphism. Asp : X×A1→ X has a section,p∗

is always split injective. Thus homotopy invariance ofF is equivalent top∗ being
onto.

The homotopy invariant presheaves of abelian groups form a Serre subcategory
of presheaves, meaning that if 0→ F0→ F1→ F2→ 0 is an exact sequence of
presheaves thenF1 is homotopy invariant if and only if bothF0 and F2 are. In
particular, if F andG are homotopy invariant presheaves with transfers then the
kernel and the cokernel of every mapf : F→G are homotopy invariant presheaves
with transfers.

Let iα : X ⊂ - X×A1 be the inclusionx 7→ (x,α). We shall writei∗
α

for
F(iα) : F(X×A1)→ F(X).

LEMMA 2.16. F is homotopy invariant if and only if

i∗0 = i∗1 : F(X×A1)→ F(X) for all X.

PROOF. ([Swa72, 4.1]) One direction is clear, so suppose thati∗0 = i∗1 for all
X. Applying F to the multiplication mapm :A1×A1→A1, (x,y) 7→ xy, yields the
diagram

F(X×A1)
i∗0 - F(X)

F(X×A1) �
(i1×1

A1)∗

1X×A1

�
F(X×A1×A1)

(1X×m)∗

? (i0×1
A1)∗- F(X×A1).

p∗

?

Hencep∗i∗0 = (1× i0)∗m∗ = (1× i1)∗m∗ = id. Sincei∗0p∗ = id, p∗ is an isomor-
phism. �

DEFINITION 2.17. For i = 0, . . . ,n we defineθi : ∆n+1→ ∆n×A1 to be the
map that sends the vertexv j to v j×{0} for j ≤ i and tov j−1×{1} otherwise. (See
Figure 1.) These are the algebraic analogues of the top-dimensional simplices in
the standard simplicial decomposition of the polyhedron∆n×∆1.

LEMMA 2.18. Let F be a presheaf. Then the maps i∗
0, i
∗
1 : C∗F(X×A1)→

C∗F(X) are chain homotopic.

PROOF. The mapsθi defined in 2.17 induce maps

hi = F(1X×θi) : CnF(X×A1)→Cn+1F(X).
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FIGURE 2.1. Simplicial decomposition of∆n×A1

Thehi form a simplicial homotopy ([Wei94, 8.3.11]) fromi∗1 = ∂0h0 to i∗0 = ∂n+1hn.
By [Wei94, 8.3.13], the alternating sumsn = ∑(−1)ihi is a chain homotopy from
i∗1 to i∗0. �

Combining 2.16 and 2.18, we obtain

COROLLARY 2.19. If F is a presheaf then the homology presheaves

HnC∗F : X 7→ HnC∗F(X)

are homotopy invariant for all n.

EXAMPLE 2.20. ([Swa72, 4.2]) The surjectionF → H0C∗F is the universal
morphism fromF to a homotopy invariant presheaf.

EXERCISE 2.21. SetHsing
0

(X/k) = H0C∗Ztr(X)(Speck). Show that there is
a natural surjection fromHsing

0
(X/k) to CH0(X), the Chow group of zero cycles

modulo rational equivalence (see exercise 1.10). IfX is projective,Hsing
0

(X/k) ∼=
CH0(X). If X =A1, show thatHsing

0
(A1/k) =Z. We will return to this point in 7.1.

LEMMA 2.22. Let F be a presheaf of abelian groups. Suppose that for every
smooth scheme X there is a natural homomorphism hX : F(X)→ F(X×A1) which
fits into the diagram

F(X)

F(X) �
F(i0)

0

�
F(X×A1)

hX
?

F(i1)
- F(X)

id
-

Then the complex C∗F is chain contractible.

The assertion thathX is natural means that for every mapf : X→Y we have a
commutative diagram

F(X)
hX- F(X×A1)

F(Y)

6

hY- F(Y×A1)

6

PROOF. By naturality,hX induces a mapC∗h : C∗F(X)→C∗F(X×A1). By
2.18, the identity mapid = i∗1(C∗h) is chain homotopic to 0= i∗0(C∗h). �
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EXAMPLE 2.23. The prototype for lemma 2.22 is the sheaf of global func-
tions. The complexC∗O is chain contractible, becauseO(X×A1)∼= O(X)[t] and
hX( f ) = t f satisfies the conditions of 2.22.

Here is a second application of 2.22. Note that the projectionp : X×A1→ X
induces a mapZtr(X×A1)→ Ztr(X).

COROLLARY 2.24. C∗Ztr(X×A1)→C∗Ztr(X) is a chain homotopy equiva-
lence.

PROOF. Let F denote the cokernel ofZtr(i0) : Ztr(X)→ Ztr(X×A1) induced
by i0 : X→X×A1. That is, eachF(U) is the cokernel ofCor(U,X)→Cor(U,X×
A

1). Let HU denote the composition of the product withA1 and multiplication
A

1×A1→ A1 :

Cor(U,X×A1)→Cor(U×A1,(X×A1)×A1)→Cor(U×A1,X×A1).

SinceHU sendsCor(U,X×{0}) toCor(U×A1,X×{0}), it induces a natural map
hU : F(U)→ F(U×A1). ForU = X×A1 it is easy to see that the composition of
HU with i0, i1 : U→U×A1 sends 1U ∈Cor(U,X×A1) to the projectioni0p : U→
X→ X×A1 and 1U , respectively. ThereforeF(i0)hU(1U) = 0 andF(i1)hU(1U) =
1U for U = X×A1. For any otherU , every elementf̄ ∈ F(U) is the image of
1X×A1 under some correspondencef : U → X×A1, so againF(i0)hU( f̄ ) = 0 and
F(i1)hU( f̄ ) = f̄ . Therefore 2.22 applies to show thatC∗F is chain contractible.
SinceC∗Ztr(X×A1)∼= C∗Ztr(X)⊕C∗F , we are done. �

An elementaryA1-homotopy between two morphismsf ,g : X→Y is a map
h : X×A1→Y so thatf andg are the restrictions ofh alongX×0 andX×1. This
relation is not transitive (exercise!). To correct this, we pass to correspondences.

DEFINITION 2.25. We say that two finite correspondences fromX to Y are
A

1-homotopic if they are the restrictions alongX×0 andX×1 of an element of
Cor(X×A1,Y). This is an equivalence relation onCor(X,Y). The sum and com-
position ofA1-homotopic maps areA1-homotopic, so theA1-homotopy classes of
finite correspondences form the morphisms of an additive category.

We say thatf : X → Y is anA1-homotopy equivalenceif there exists ag :
Y→ X so thatf g andg f areA1-homotopic to the identity.

The projectionp : X×A1→ X is the prototype of anA1-homotopy equiva-
lence; itsA1-homotopy inverse is given by the zero-section.

LEMMA 2.26. If f : X→Y is anA1-homotopy equivalence withA1-homotopy
inverse g, then f∗ : C∗Ztr(X)→ C∗Ztr(Y) is a chain homotopy equivalence with
chain homotopy inverse g∗.
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PROOF. Applying C∗Ztr to the data gives a diagram

C∗Ztr(X)

C∗Ztr(X)
(i0)∗
∼=
-

g∗ f∗
-

C∗Ztr(X×A1)

h∗

6

�
(i1)∗
∼=

C∗Ztr(X)

1X

�

and similarly forY. The horizontal maps are chain homotopy equivalences by 2.24,
and are homotopy inverses top∗. From the right triangle,h∗ ' p∗. From the left
triangle, we getg∗ f∗ ' 1X. Similarly, the diagram forY gives f∗g∗ ' 1Y. Hence
f∗ : C∗Ztr(X)→C∗Ztr(Y) is a chain homotopy equivalence with inverseg∗. �

EXERCISE2.27. Show that there is a natural identification for everyX andY:

H0C∗Ztr(Y)(X) = Cor(X,Y)/A1-homotopy.

We will return to the subject ofA1-homotopy in lectures 7, 9, 13, and 14; see
7.2, 9.9 and 14.14.

The motive associated toX will be the classM(X) of C∗Ztr(X) in an appropri-
ate triangulated categoryDMeff,−

Nis (k,R) constructed in 14.1 from the derived cate-
gory of PST(k). By 2.24, we haveM(X)∼= M(X×A1) for all X. More generally,
anyA1-homotopy equivalenceX→Y induces an isomorphismM(X) ∼= M(Y) by
2.26.

EXERCISE2.28. If k⊂F is a finite separable field extension, exercise 1.12 im-
plies that there are adjoint functorsi∗ : PST(k)→PST(F), i∗ : PST(F)→PST(k).
Show that there is a natural transformationπ : i∗i∗M→M whose compositionπη

with the adjunction mapη : M → i∗i∗M is multiplication by[F : k] on M. Hint:
XF → X is finite.



LECTURE 3

Motivic cohomology

Using the tools developed in the last lecture, we will define motivic cohomol-
ogy. It will be hypercohomology with coefficients in the special cochain com-
plexesZ(q), called motivic complexes.

DEFINITION 3.1. For every integerq≥ 0 themotivic complexZ(q) is defined
as the following complex of presheaves with transfers:

Z(q) = C∗Ztr(G
∧q
m )[−q].

We considerZ(q) to be a bounded above cochain complex; the shifting convention
for [−q] implies that the termsZ(q)i = Cq−iZtr(G∧q

m ) vanish wheneveri > q, and
the term withi = q isZtr(G∧q

m ).
If A is any other abelian group thenA(q) = Z(q)⊗A is another complex of

presheaves with transfers.

Whenq = 0, we haveZ(0) = C∗(Z). As observed after 2.14 above,Z(0) is
quasi-isomorphic toZ, regarded as a complex concentrated in degree 0.

Whenq= 1, we haveZ(1) =C∗Ztr(Gm)[−1]. We will give another description
of Z(1) in the next lecture.

By conventionZ(q) = 0 if q< 0.

We now show that these complexes of presheaves are actually complexes of
sheaves with respect to the Zariski topology. Later on, in 6.2, we will show that
theZtr(Y) are also sheaves in theétale topology.

LEMMA 3.2. For every scheme Y over k,Ztr(Y) is a sheaf in the Zariski topol-
ogy, and C∗Ztr(Y) is a chain complex of sheaves.

Similarly, if A is any abelian group, the proof of 3.2 shows thatA⊗Ztr(Y) is a
sheaf in the Zariski topology, andA⊗C∗Ztr(Y) is a complex of sheaves.

PROOF. We have to prove that wheneverU is covered byU1 andU2 the se-
quence

0→Cor(U,Y)
diag- Cor(U1,Y)⊕Cor(U2,Y)

(+,−)- Cor(U1∩U2,Y)

is exact. We may suppose thatU is connected and therefore (being smooth) ir-
reducible. As every finite correspondence fromU to Y is dominant overU , it is
completely determined by the fiber at the generic point ofU . HenceCor(U,Y)
injects into eachCor(Ui ,Y).

23
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To see that the sequence is exact at the other spot, take cyclesZ1 = ∑i∈I miZ1i ⊂
U1×Y andZ2 = ∑ j∈J n jZ2 j ⊂U2×Y that coincide on(U1∩U2)×Y. It is possible
to pair up theZ1i andZ2 j , since they are determined by their fibers at the common
generic point ofU , U1 andU2. Hence there is a bijection betweenI andJ such that,
if i ∈ I corresponds toj ∈ J thenmi = n j and the restrictions ofZ1i andZ2 j agree
in (U1∩U2)×Y. Thus we may assume thatZ1 andZ2 are elementary correspon-
dences. But then their unionZ = Z1∪Z2 in U ×Y is a finite correspondence from
U to Y, and its restriction to bothUi×Y is Zi , i.e.,Z is a preimage of the pair.

Now wheneverF is a sheaf andX is smooth, each presheafU 7→ F(U ×X) is
also a sheaf for the Zariski topology. In particular eachCnF is a sheaf andC∗F is a
complex of sheaves. ThusC∗Ztr(Y) is a complex of Zariski sheaves. �

We have already seen (in exercises 2.21 and 2.27 above) that the complex
C∗Ztr(Y) is not exact. There we showed that the last map may not be surjective,
because its cokernelH0C∗Ztr(Y)(S) = Cor(S,Y)/A1-homotopy can be non-zero.
WhenS= Spec(k), it is the groupHsing

0
(Y/k) described in exercise 2.21 above and

7.3 below.
Recall that the (small) Zariski siteXZar over a schemeX is the category of open

subschemes ofX, equipped with the Zariski topology.

COROLLARY 3.3. The restrictionZ(q)X ofZ(q) to the Zariski site over X is a
complex of sheaves in the Zariski topology.

Similarly, if A is any abelian group,A(q) is a complex of Zariski sheaves.

PROOF. SetY = (A1−0)q. By lemma 3.2 we know thatC∗Ztr(Y) is a complex
of sheaves. The complexZ(q)[q] is a direct summand ofC∗Ztr(Y) by lemma 2.13,
so it must be a complex of sheaves too. �

Note thatA(q) represents the derived sheaf tensor productZ(q)⊗L A, since
Z(q) is a flat complex of sheaves.

DEFINITION 3.4. Themotivic cohomology groupsH p,q(X,Z) are defined to
be the hypercohomology of the motivic complexesZ(q) with respect to the Zariski
topology:

H p,q(X,Z) =Hp
Zar(X,Z(q)).

If A is any abelian group, we define:

H p,q(X,A) =Hp
Zar(X,A(q)).

REMARK 3.5. Motivic cohomology is well-defined even if theZ(q) are un-
bounded complexes because theX in Sm/k are finite dimensional; see [Wei94,
10.6.8]. We will see in 13.11 and 14.16 that motivic cohomology is representable
in several derived categories.

VANISHING THEOREM 3.6. For every smooth scheme X and any abelian
group A, we have Hp,q(X,A) = 0 when p> q+dimX.



3. MOTIVIC COHOMOLOGY 25

PROOF. By definition, the complexZ(q) is zero in degrees bigger thenq.
SinceH i

Zar(X,F) vanishes for every sheafF when i > dimX, the result is now
an immediate consequence of the hypercohomology spectral sequence. �

We will prove in 19.3 that, for every smooth varietyX and any abelian group
A, we haveH p,q(X,A) = 0 for p> 2q as well.

REMARK 3.7. The groupsH p,q(X,Z) are contravariantly functorial inX. To
see this we need to check that for a morphismf : X→Y we can construct a natural
mapZ(q)Y→ f∗Z(q)X. But this is true for any complexC of presheaves onSm/k:
for each openU ⊂ Y, the restrictionf−1U → U induces the desired map from
CY(U) = C(U) to f∗CX(U) = C( f−1U).

The groupsH p,q(X,A) are also covariantly functorial ink. That is, ifi : k⊂F is
a field extension, there is a natural mapH∗,∗(X,A)→H∗,∗(XF ,A). It is induced by
the sheaf mapZ(q)X → i∗Z(q)XF

assembled from the natural mapsZtr(Y)(U)→
i∗Ztr(YF)(U) = Ztr(YF)(UF) of exercise 1.12.

PROPOSITION3.8. If k ⊂ F is a finite and separable field extension and U is
smooth over F, then the two motivic chain complexesZ(q)U (defined using Cork
and CorF , respectively) are isomorphic. Hence the motivic cohomology groups
H p,q(U,A) are independent of the choice of the ground field.

PROOF. Let T be any smooth scheme overk, and TF its base change
over F . By exercise 1.12 the groupsCnZtr(TF)(U) = CorF(U ×F ∆n

F ,TF) and
C∗Ztr(T)(U) = Cork(U ×k ∆n

k,T) are isomorphic. That is,C∗Ztr(TF)(U) ∼=
C∗Ztr(T)(U). LettingT be(A1

k−0)q, the result follows from lemma 2.13, which
says that the complexZ(q)[q] is a direct summand ofC∗Ztr(T) over k, and of
C∗Ztr(TF) overF . �

The following colimit lemmas are elementary consequences of exercise 1.13.
They will be useful later on.

LEMMA 3.9. (Colimits) Let k⊂ F be a field extension and X smooth over k.
Then:

H∗,∗(XF ,A) = colim
k⊂E⊂F

E of finite type

H∗,∗(XE,A).

If f : X → S is a smooth morphism of smooth schemes over k such that S is
connected and F= k(S), then:

H∗,∗(X×SSpecF,A) = colim
U⊂S

nonempty

H∗,∗(X×SU,A).

And now we want to introduce a multiplicative structure on the sheavesZ(n).
We will need the following construction:

CONSTRUCTION3.10. If (Xs,xs) are pointed schemes fors= 1, . . . , j, then for
everyi < j we define a morphism of presheaves with transfers:

Ztr(X1∧ . . .∧Xi)⊗Ztr(Xi+1∧ . . .∧Xj)→ Ztr(X1∧ . . .∧Xj).
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Indeed, definition 1.9 provides a map:

Ztr(X1× . . .×Xi)(U)⊗Ztr(Xi+1× . . .×Xj)(U)

= Cork(U,X1× . . .×Xi)⊗Cork(U,Xi+1× . . .×Xj)→
→Cork(U×U,X1× . . .×Xj) = Ztr(X1× . . .×Xj)(U×U).

Composing with the diagonalU →U×U , we have:

Ztr(X1× . . .×Xi)(U)⊗Ztr(Xi+1× . . .×Xj)(U)
∆- Ztr(X1× . . .×Xj)(U).

Now recall that by definitionZtr(X1∧ . . .∧Xn) is a quotient ofZtr(X1× . . .×Xn).
It is easy to check that the map∆ factors through the quotient, giving the required
morphism.

CONSTRUCTION3.11. For eachm andn we construct a map

Z(m)⊗Z(n)→ Z(m+n)

using the mapZtr(G∧m
m )⊗Ztr(G∧n

m )→ Ztr(G∧m+n
m ) of 3.10, as follows.

For any smoothU we need to build a map of complexes of abelian groups:

Z(m)[m](U)⊗Z(n)[n](U)→ Z(m+n)[m+n](U),

or equivalently, Z(m)(U)⊗Z(n)(U)→ Z(m+ n)(U). Recall that by definition
3.1,Z(n)[n](U) is the chain complexC∗Ztr(G∧n

m )(U). Let us write the underlying
simplicial object asAn

•=Ztr(G∧n
m )(U×∆•), and the associated unnormalized chain

complexZ(n)[n] as An
∗. Similarly, we write(Am

• ⊗An
•)∗ for the chain complex

associated to diag(Am
• ⊗An

•). The Eilenberg-Zilber theorem ([Wei94, 8.5.1]) yields
a quasi-isomorphism∇ : Am

∗ ⊗An
∗→ (Am

• ⊗An
•)∗.

Therefore if we find a simplicial mapm : diagAm
• ⊗An

•→ Am+n
• we have also a

map(Am
• ⊗An

•)∗→ Am+n
∗ which, composed with the previous one, gives the multi-

plicative structure. Unfolding the definitions again, we have:

An
i = Ztr(G

∧n
m )(U×∆i).

We define the components ofm to be the maps of 3.10:

Ztr(G
∧m
m )(U×∆i)⊗Ztr(G

∧n
m )(U×∆i)→ Ztr(G

∧(m+n)
m )(U×∆i).

The morphisms in 3.10 are associative and the map∇ in the Eilenberg-Zilber
theorem is homotopy associative ([Wei94, 8.5.4]). It follows that the pairing of
construction 3.11 is homotopy associative.

COROLLARY 3.12. For each smooth X, there are pairings:

H p,q(X,Z)⊗H p′,q′(X,Z)→ H p+p′,q+q′(X,Z).

In 15.9 we will show that this pairing is skew-commutative with respect to the
first grading, so thatH∗,∗(X,Z) is an associative graded-commutative ring.



LECTURE 4

Weight one motivic cohomology

In this lecture we describeZ(1) andZ/l(1) in terms of units and roots of unity.

THEOREM4.1. There is a quasi-isomorphism of complexes of presheaves with
transfers:

Z(1)
'- O∗[−1].

COROLLARY 4.2. Let X be a smooth scheme over k. Then we have:

H p,q(X,Z) =


0 q≤ 1 and(p,q) 6= (0,0),(1,1),(2,1)
Z(X) (p,q) = (0,0)
O∗(X) (p,q) = (1,1)
Pic(X) (p,q) = (2,1)

6

-

q

p

H0,2 H1,2

0 0 0

Z(X)00

0 0

000

H2,2H−1,2H−2,2
H3,2

Pic(X)O∗(X)0

0 0 00

FIGURE 4.1. Weightq motivic cohomology

This theorem will follow from lemmas 4.3–4.6 below. An alternative proof is
given in [SV96].

Consider the functorM ∗(P1;0,∞) : Sm/k→ Ab which sends a schemeX to
the group of rational functions onX×P1 which are regular in a neighborhood of
X×{0,∞} and equal 1 onX×{0,∞}. Clearly M ∗(P1;0,∞) is a sheaf for the
Zariski topology. Given a rational functionf on X×P1 let D( f ) denote its (Weil)
divisor.

27
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LEMMA 4.3. For all f in M ∗(P1;0,∞)(X), the Weil divisor D( f ) belongs to
the subgroup Cor(X,A1−0) of the group of cycles on X×P1.

PROOF. Since the support ofD( f ) is disjoint fromX×{0,∞}, D( f ) is a cycle
in X×A1−0. To see that it is finite and surjective overX we may assume thatX =
SpecA is an affine domain. We may writef = f+/ f− where f+ = amtm+ · · ·+ a0
and f− = bntn + · · ·+ b0 are inA[t] andam, a0, bn andb0 are nonzero. Sincef is
regular nearX×{0}, f− is relatively prime tot, and we may assume thatb0 is a
unit of A. Similarly, we may assume thatbn is a unit ofA. Since f = 1 onX×∞,
we havem= n and may assume thatan = bn = 1. But then the divisorsD( f+) of
f+ = tn + · · ·+ a0 andD( f−) of f− = tn + · · ·+ b0 are finite and surjective overX.
Since they belong toCor(X,A1−0), so doesD( f ) = D( f+)−D( f−). �

From 4.3 we get a morphism of sheaves:M ∗(P1;0,∞) ⊂ - Ztr(A1−0).

LEMMA 4.4. For any connected X there is a short exact sequence inAb:

0 - M ∗(P1;0,∞)(X) - Ztr(A
1−{0})(X)

λ- Z⊕O∗(X) - 0.

PROOF. We know that Pic(X×P1)∼= Pic(X)×Z, so for anyZ in Cor(X,A1)⊂
Cor(X,P1) there is a unique rational functionf on X×P1 and an integern so that
D( f ) = Z and f/tn = 1 onX×{∞}. If Z lies inCor(X,A1−0), then f (0)∈O∗(X).
We defineλ : Ztr(A1−0)→ Z⊕O∗ by λ (Z) = (n,(−1)n f (0)). If u∈O∗(X) and
Zu = D(t−u) thenλ (Zu) = (1,u). Sinceλ (Zu−Z1) = (0,u) λ is onto. The kernel
of λ consists of allZ whosef lies inM ∗(P1;0,∞)(X), so we are done. �

LEMMA 4.5. The mapλ respects transfers. HenceM ∗(P1;0,∞) is aPST.

PROOF. It is easy to see that the first component ofλ is a morphism inPST
because it is the mapCork(X,A

1−0)→Cork(X,Speck), induced by the structure
map π : A1− 0→ Speck. To check the second component ofλ , we see from
exercise 1.13 that it suffices to check that the following diagram commutes for
every finite field extensionF ⊂ E.

Ztr(A
1−0)(SpecE) - E∗

Ztr(A
1−0)(SpecF)
?

- F∗

NE/F
?

This is a straightforward verification using exercise 1.10. �

Write M ∗ for M ∗(P1;0,∞). By 2.14,(CiF)(U) = F(U×∆i), so 4.4 gives us:

0→C∗(M ∗)→C∗Ztr(A
1−0)→C∗(Z⊕O∗)→ 0.

Splitting off 0→C∗Z= C∗Z→ 0 we get an exact sequence:

0→C∗(M ∗)→ Z(1)[1]→C∗(O∗)→ 0.
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But C∗(O∗) ' O∗ becauseO∗(U ×∆n) = O∗(U). We will prove in lemma 4.6
that the first termC∗(M ∗) is acyclic. ThereforeZ(1)[1] is quasi-isomorphic toO∗.
This is the statement of the theorem 4.1, shifted once.

LEMMA 4.6. If X is a smooth scheme over k, then C∗(M ∗)(X) is an acyclic
complex of abelian groups. Hence C∗(M ∗) is an acyclic complex of sheaves.

PROOF. Let f ∈ CDK
i (M ∗)(X) be a cycle, i.e., an element vanishing in

CDK
i−1(M ∗)(X). Then f is a regular function on some neighborhoodU of Z =

X×∆i×{0,∞} in X×∆i×P1, and f = 1 on each faceX×∆i−1×P1, as well as on
Z. Consider the regular functionhX( f ) = 1− t(1− f ) on the neighborhoodA1×U
of A1×Z in A1×X×∆i×P1, wheret denotes the coordinate function ofA1. Then
hX( f ) is a cycle inCDK

i (M ∗)(A1×X), because it equals 1 wheref equals 1. The
restrictions alongt = 0,1, fromCDK

i (M ∗)(A1×X) to CDK
i (M ∗)(X), sendhX( f )

to 1 andf , respectively. Since these restrictions are chain homotopy equivalent by
2.18, f is a boundary. �

This completes the proof of theorem 4.1.

REMARK 4.7. We will revisit this in lecture 7 in 7.11.
Lemma 4.6 works more generally to show thatC∗M ∗(Y;Z)(X) is acyclic for

every affineX, whereM ∗(Y;Z)(X) is the group of rational functions onX×Y
which are regular in a neighborhood ofX×Z and equal to 1 onX×Z.

Now let us consider the complexZ/l(1). By theorem 4.1Z(1) is quasi-
isomorphic toO∗[−1]. Tensoring withZ/l we haveZ/l(1) ' O∗[−1]⊗L

Z/l ,

which is just the complex[O∗
l- O∗] in degrees 0 and 1. Then we have the

universal coefficients sequence:

0 - H p,q(X,Z)/l - H p,q(X,Z/l) -
l H

p+1,q(X,Z) - 0.

COROLLARY 4.8. There is a quasi-isomorphism of complexes ofétale sheaves

Z/l(1)ét ' µl .

PROOF. Since sheafification is exact ([Mil80 ] p. 63), theorem 4.1 gives
Z(1)ét 'O∗ét[−1], and hence

Z/l(1)ét 'O∗ét[−1]⊗LZ/l ' µl . �

COROLLARY 4.9. If 1/l ∈ k and X is smooth, then Hp,1(X,Z/l) = 0 for p 6=
0,1,2 while:

H0,1(X,Z/l) = µl (X), H1,1(X,Z/l) = H1
ét(X,µl ),

H2,1(X,Z/l) = Pic(X)/l Pic(X).

PROOF. The calculation ofH p,1 for p 6= 1 follows from the universal coeffi-
cients sequence, since the only nonzero Zariski cohomology groups ofO∗ on a
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smooth scheme areH0 andH1(X,O∗) = Pic(X). For p = 1 note that corollary 4.8
gives a natural map

H
∗
Zar(X,Z/l(1))→H∗ét(X,Z/l(1)ét) = H1

ét(X,µl )

fitting into the diagram:

H
1
Zar(X,Z(1))/l ⊂- H

1
Zar(X,Z/l(1)) -- lH

2
Zar(X,Z(1))

H
1
ét(X,Z(1))/l

∼=
?

⊂ - H
1
ét(X,Z/l(1))

?
--

lH
2
ét(X,Z(1)).

∼=
?

SinceH1
ét(X,O

∗) = H1
Zar(X,O

∗) by Hilbert’s Theorem 90 (see [Mil80 , III 4.9]),
the 5-lemma concludes the proof. �

REMARK 4.10. (Deligne) If chark = l thenH1,1(X,Z/l)∼= H1
ffp(X,µl ). In fact,

the proof of 4.9 is valid in this setting.



LECTURE 5

Relation to Milnor K-Theory

The Milnor K-theoryKM
∗ (F) of a field F is defined to be the quotient of the

tensor algebraT(F∗) overZ by the ideal generated by the elements of the form
x⊗ (1−x) wherex∈ F∗. In particular,KM

0 (F) = Z andKM
1 (F) = F∗.

The goal of this lecture is to prove the following:

THEOREM 5.1. For any field F and any n we have:

Hn,n(SpecF,Z)∼= KM
n (F).

We have already seen that this holds forn = 0,1, because by definition 3.4
H0,0(SpecF,Z) = H0

Zar(SpecF,Z) = Z and by theorem 4.1:

H1,1(SpecF,Z) = H1
Zar(SpecF,O∗[−1]) = H0

Zar(SpecF,O∗) = F∗.

The proof of theorem 5.1 will follow [SV00, 3.4] which is based on [NS89]. It
will consist of three steps:

(1) Construction ofθ : Hn,n(SpecF,Z)→ KM
n (F). This will use lemma 5.5.

(2) Construction ofλF : KM
n (F)→ Hn,n(SpecF,Z). This will be done using

lemmas 5.9 and 5.6. The proof of lemma 5.9 will need lemma 5.8.

5.6+(5.8⇒ 5.9)⇒∃ λF

(3) Proof that these two maps are inverse to each other. For this we will need
lemma 5.10 (proved using lemma 5.11).

Before starting the proof of the theorem we need some additional properties of
motivic cohomology and MilnorK-theory.

Recall thatZtr(G∧n
m )(SpecF) is a quotient ofZtr((A1−0)n)(SpecF), which

by 1.10 is the group of zero cycles of(A1−0)n.

LEMMA 5.2. We have Hp,q(SpecF,Z) = Hq−p

(
C∗Ztr(G∧q

m )(SpecF)
)

for all p
and q. In particular we have

Hn,n(SpecF,Z) =H0

(
C∗Ztr(G

∧n
m )(SpecF)

)
=coker

(
Ztr(G

∧n
m )(A1)

∂0−∂1- Ztr(G
∧n
m )(SpecF)

)
.

PROOF. Write A∗ for C∗Ztr(G∧q
m )(SpecF) so the right side isHq−pA∗ =

H p−qA∗. By definition 3.1, the restriction ofZ(q) to SpecF is the chain com-
plex A∗[−q]. Since Zariski cohomology on SpecF is just ordinary cohomology,
we have

H p,q(SpecF,Z) = H p(A∗[−q]) = H p−q(A∗) = Hq−p(A∗). �

31
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LEMMA 5.3. If F ⊂ E is a finite field extension, then the proper push-forward
of cycles induces a map NE/F : H∗,∗(SpecE,Z)→ H∗,∗(SpecF,Z). Moreover, if

x∈ H∗,∗(SpecE,Z) and y∈ H∗,∗(SpecF,Z) then:

(1) NE/F : H0,0(SpecE,Z) = Z→ Z = H0,0(SpecF,Z) is multiplication by

the degree of E/F.
(2) NE/F : H1,1(SpecE,Z) = E∗ → F∗ = H1,1(SpecF,Z) is the classical

norm map E∗→ F∗.
(3) NE/F(yE ·x) = y·NE/F(x) and NE/F(x ·yE) = NE/F(x) ·y.
(4) If F ⊂ E ⊂ K, and K is normal over F, we have:

NE/F(x)K = [E : F ]insep ∑
j:E ⊂ - K

j∗(x) in H∗,∗(SpecK,Z).

(5) If F ⊂ E′ ⊂ E then NE/F(x) = NE′/F(NE/E′(x)).

PROOF. All but property 2 follow immediately from the corresponding proper-
ties of proper push-forward. Property 2 follows from property 4 since this formula
also holds for the classical norm mapNE/F : E∗→ F∗. �

If F ⊂ E is a finite field extension, there is a “norm map”NE/F : KM
n (E)→

KM
n (F) satisfying the analogue of lemma 5.3. In addition, it satisfies the following

condition (see [Sus82]).

THEOREM 5.4 (Weil Reciprocity).Suppose that L is an algebraic function
field over k. For each discrete valuation w on L there is a map

∂w : KM
n+1(L)→ KM

n (k(w)),

and for all x∈ KM
n+1(L):

∑
w

Nk(w)/k∂w(x) = 0.

COROLLARY 5.5. Let p: Z→A1
F be a finite surjective morphism and suppose

that Z is integral. Let f1, . . . , fn ∈O∗(Z) and:

p−1({0}) =q n0
i z0

i p−1({1}) =q n1
i z1

i

where nεi are the multiplicities of the points zε

i = SpecEε

i (ε = 0,1). Define:

ϕ0 = ∑n0
i NE0

i /F
({ f1, . . . , fn}E0

i
) ϕ1 = ∑n1

i NE1
i /F

({ f1, . . . , fn}E1
i
)

then we have:

ϕ0 = ϕ1 ∈ KM
n (F).

PROOF. Let L be the function field ofZ and considerx = {t/t−1, f1, . . . , fn}.
At every infinite place,t/t − 1 equals 1 and∂w(x) = 0. Similarly, ∂w(x) = 0 at
all finite places except those over 0 and 1. Ifwi lies overt = 0 then∂wi

(x) =
n0

i { f1, . . . , fn} in KM
n (E0

i ); if wi lies overt = 1 then∂wi
(x) = −n1

i { f1, . . . , fn} in
KM

n (E1
i ). By Weil Reciprocity 5.4,∑N∂wi

(x) = ϕ0−ϕ1 vanishes inKM
n (F). �
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We are now ready to define the mapθ . By 5.2 it is enough to find a mapf
fromZtr(G∧n

m )(SpecF) to KM
n (F) which composed with the difference of the face

operators is zero. Such a map must induce a unique mapθ on the cokernel:

Ztr(G
∧n
m )(A1)

∂0−∂1- Ztr(G
∧n
m )(SpecF) -- Hn,n(SpecF,Z)

KM
n (F).

θ

?

f

-

But nowZtr(G∧n
m )(SpecF) is a quotient of the free abelian group generated by

the closed points of(A1
F−{0})n (by exercise 1.10), modulo the subgroup generated

by all points of the form(x1, . . . ,1, . . . ,xn) where the 1’s can be in any position.
If x is a closed point of(A1

F −{0})n with residue fieldE thenx is defined by a
canonical sequence(x1, . . . ,xn) of nonzero elements ofE. Now E is a finite field
extension ofF , and{x1, . . . ,xn} ∈ KM

n (E). Using the norm map for MilnorK-
theoryNE/F : KM

n (E)→ KM
n (F), we define

f (x) = NE/F({x1, . . . ,xn}).

Since {x1, . . . ,1, . . . ,xn} = 0 in KM
∗ (E), this induces a well-defined mapf :

Ztr(G∧n
m )(SpecF)→ KM

n (F). By 5.5 the composition off with the face opera-
tors is zero. We defineθ to be the map induced on the cokernel.

If x is anF-point of (A1
F −0)n then its coordinatesx1, . . . ,xn are nonzero ele-

ments ofF . We shall write[x1 : · · · : xn] for the class ofx in Hn,n(SpecF,Z). The
mapθ is obviously surjective sinceθ([x1 : · · · : xn]) = {x1, . . . ,xn} for x1, . . . ,xn in
F .

Now let us build the opposite map,λF . For this, we will use the multiplica-
tive structure (3.12) onH∗,∗(X,Z). The following lemma is immediate from the
construction 3.11 and lemma 5.2.

LEMMA 5.6. For a1, . . . ,an ∈ F we have[a1 : · · · : an] = [a1] · · · [an].
By definitionKM

∗ (F) = T(F∗)/(x⊗ (1−x)). Therefore we define a map:

T(F∗)→⊕nHn,n(SpecF,Z), a1⊗ . . .⊗an 7→ [a1] · · · [an].

We will prove that this maps factors throughKM
n (F). By 5.6, it is enough to prove

that[a : 1−a] is zero, which is the statement of proposition 5.9 below.

EXAMPLE 5.7. We can use a special cycle to show that[a :−a] = 0. Consider
the correspondenceZ fromA1 (parametrized byt) to X = A1−{0} (parametrized
by x) defined by

x2− t(a+b)x− (1− t)(1+ab)x+ab= 0.

Restricting alongt = 0,1 yields correspondences[ab] + [1] and [a] + [b] in
Cor(SpecF,X). Setting these equal recovers the identity[ab] = [a] + [b] in
H1,1(SpecF,Z)∼= F∗, because[1] = 0.
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Let Y denote the composition ofZ with the diagonal embeddingX ⊂ - X2.
Since[1 : 1] = [1][1] = 0, equating the restrictions alongt = 0,1 yields the identity
[ab : ab] = [ab : ab] + [1 : 1] = [a : a] + [b : b] in H2,2(SpecF,Z). Bilinearity (5.6)
yields skew-commutativity:[a : b]+ [b : a] = 0. In particular, 2[a : a] = 0.

Passing toE = F(
√

a), we see that 0= 2[
√

a :
√

a] = [a :
√

a] in
H2,2(SpecE,Z). By 5.3, applyingNE/F yields 0= [a :−a] in H2,2(SpecF,Z).

LEMMA 5.8. Suppose∃n> 0 so that n[x : 1−x] = 0 for all finite extensions of
F and x 6= 0,1 in F. Then[x : 1−x] = 0 in H2,2(SpecF,Z) for every x6= 0,1.

PROOF. Supposen = m· p wherep is a prime; we want to provem[x : 1−x] =
0. Let us considery = p

√
x andE = F(y). Then 0= mp[y : 1−y] = m[x : 1−y], and

1−x = NE/F(1−y). Hence

0 = NE/F(m[x : 1−x]) = m· [x : NE/F(1−y)] = m[x : 1−x].

The formula[x : 1−x] = 0 follows by induction onn. �

PROPOSITION5.9. The element[x : 1− x] in H2,2(SpecF,Z) is the zero ele-
ment.

PROOF. Let Z be the finite correspondence fromA1 (parametrized byt) to
X = A1−0 (parametrized byx) defined by:

x3− t(a3 +1)x2 + t(a3 +1)x−a3 = 0.

Let ω be a root ofx2 + x+ 1, soω
3 = 1, andE = F(ω). The fiber overt = 0

consists ofa,ωa, andω
2a and the fiber overt = 1 consists ofa3 and two sixth

roots of 1. Using the embeddingx 7→ (x,1− x) of A1−{0,1} into X2, Z yields a
correspondenceZ′ fromA1 to X2. Then inH2,2(SpecE,Z)

∂0(Z′) = [a : 1−a]+ [ωa : 1−ωa]+ [ω2a : 1−ω
2a] =

[a : 1−a3]+ [ω : (1−ωa)(1−ω
2a)2]

is equal to

∂1(Z′) = [a3 : 1−a3]+ [−ω : 1+ ω]+ [−ω
2 : 1+ ω

2].

Multiplying by 3 eliminates terms[ω : b], noting that[−1 : 1+ω]+[−1 : 1+ω
2] =

0 as(1+ ω)(1+ ω
2) = 1. Therefore 0= 2[a3 : 1−a3] overE. Applying the norm

yields 0= 4[a3 : 1− a3] over F . Passing to the extensionF( 3
√

a) and norming
yields 0= 12[a : 1− a] over F . Applying lemma 5.8 withn = 12, we see that
0 = [a : 1−a] as well. �

Proposition 5.9 shows that the algebra map of lemma 5.6 induces a map on the
quotientλF : KM

n (F)→ Hn,n(SpecF,Z). Now we need to check thatλF andθ are
inverse to each other. Sinceθ ◦λF is the identity by construction, it is enough to
prove thatλF is surjective.

LEMMA 5.10. The mapλF is surjective.
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PROOF. By 5.2, it suffices to show that ifx is a closed point ofX = (A1
F −0)n

then[x] ∈ Hn.n(SpecF,Z) belongs to the image ofλF . SetE = k(x), and choose a
lift x̃∈ XE of x. Sincex is the proper push-forward of ˜x, the definition of the norm
map (see 5.3) implies that:

[x] = NE/F([x̃]) x̃ = (a1, . . . ,an) ∈ (A1−0)n(E).

Sincex̃ is a rational point ofXE, [x̃] is the image underλE of its coordinates. So
[x] = NE/FλE{a1, . . . ,an}. The lemma now follows from the assertion, proven in
5.11 below, that the diagram (5.10.1) commutes. �

(5.10.1)

KM
n (E)

λE- Hn,n(SpecE,Z)

KM
n (F)

NE/F

?

λF

- Hn,n(SpecF,Z).

NE/F

?

LEMMA 5.11. If F ⊂ E is any finite field extension, then the diagram (5.10.1)
commutes.

PROOF. By 5.3 (3) we may assume that[E : F ] = l for some prime number
l . Assume first thatF has no extensions of degree prime tol and[E : F ] = l . The
Bass-Tate lemma (5.3) in [BT73] states that in this caseKM

n (E) is generated by the
symbolsa = {a1, . . . ,an−1,b} whereai ∈ F andb∈ E. The properties of the norm
onKM

∗ and 5.6 yield:

λFN{a1, . . . ,an−1,b}= λF{a1, . . . ,an−1,N(b)}= [a1 : · · · : an−1] · [Nb].

But using the assertions of lemma 5.3 we have:

NλE(a) = N[a1 : · · · : an−1 : b]
(2)
= [a1 : · · · : an−1] ·N[b]

(4)
= [a1 : · · · : an−1] · [Nb].

This concludes the proof in this case.
Now we use a standard reduction. For simplicity, we will writeH p,q(F) for

H p,q(SpecF,Z). If F ′ is a maximal prime-to-l extension ofF then the kernel of
Hn,n(F)→Hn,n(F ′) is a torsion group of exponent prime tol by (1) and(3) of 5.3.
Fix a∈ KM

n (E). By the above case,t = NλE(a)−λFN(a) is a torsion element of
Hn,n(F), of exponent prime tol .

Since the kernel ofHn,n(F)→ Hn.n(E) has exponentl , tE 6= 0 if and only if
t = 0. If E is an inseparable extension ofF then by 5.3(4) we havetE = lλE(a)−
λE(la) = 0. If E is separable overF thenE⊗F E is a finite product of fieldsEi
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with [Ei : E]< l . Moreover, Weil Reciprocity implies that the diagrams

KM
n (E)

diag- ⊕KM
n (Ei) Hn,n(E)

diag- ⊕Hn,n(Ei)

KM
n (F)

NE/F

?
- KM

n (E)

⊕NEi/E

?

Hn,n(F)

NE/F

?
- Hn,n(E)

⊕NEi/E

?

commute (see p.387 of [BT73]). By induction onl , we have

tE =⊕NEi/E
λEi

(aEi
)−⊕λENEi/E

(aEi
) = 0.

SincetE = 0 we also havet = 0. �

This completes the proof of theorem 5.1.



Part 2

Étale motivic theory





LECTURE 6

Étale sheaves with transfers

The goal of this lecture will be to study the relations between presheaves with
transfers and́etale sheaves. The main result (6.17) will be that sheafification pre-
serves transfers.

DEFINITION 6.1. A presheafF of abelian groups onSm/k is anétale sheafif
it restricts to ańetale sheaf on eachX in Sm/k. That is, if:

(1) the sequence 0→ F(X)
diag- F(U)

(+,−)- F(U×X U) is exact for every
surjectiveétale morphism of smooth schemesU → X;

(2) F(X qY) = F(X)⊕F(Y) for all X andY.

We will write Sh́et(Sm/k) for the category of́etale sheaves, which is a full subcat-
egory of the category of presheaves of abelian groups.

A presheaf with transfersF is anétale sheaf with transfersif its underlying
presheaf is ańetale sheaf onSm/k. We will write Sh́et(Cork) for the full subcate-
gory ofPST(k) whose objects are théetale sheaves with transfers.

For example, we saw in lecture 2 that theétale sheavesZ andO∗ have transfers,
so they aréetale sheaves with transfers. Lemma 6.2 shows thatZtr(T) is anétale
sheaf with transfers, even ifT is singular (see 2.11).

LEMMA 6.2. For any scheme T over k,Ztr(T) is anétale sheaf.

PROOF. SincePST(k) is an additive category, we have the required decom-
position ofZtr(T)(X q Y) = HomCork

(X q Y,T). To check the sheaf axiom for
surjectiveétale mapsU → X, we proceed as in the proof of 3.2.

As U × T → X× T is flat, the pullback of cycles is well-defined and is an
injection. Hence the subgroupZtr(T)(X) = Cork(X,T) of cycles onX×T injects
into the subgroupZtr(T)(U) = Cork(U,T) of cycles onU×T.

To see that the sequence 6.1.1 is exact atZtr(T)(U), takeZU in Cork(U,T)
whose images inCork(U ×X U,T) coincide. We may assume thatX andU are
integral, with function fieldsF and L, respectively. SinceCorF(F,TF) is the
equalizer ofCorF(L,TF)⇒ CorF(L⊗F L,TF) by 1.11,ZL ∈ CorF(L,TF) comes
from a cycleZF in CorF(F,TF). Thus by 1.13 there is a Zariski openV ⊂ X and a
cycleZV in Cork(V,T) agreeing withZU in Cor(U ×X V,T). Writing ZV = ∑niZi ,
we see that we can decomposeZU = ∑niZ

′
i so thatZi andZ′i agree inCor(U ×X

V,T). By restricting attention toZi andZ′i , we may assume thatZV is an elementary
correspondence.

39
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Let Z be the closure ofZV in X×T; it is irreducible and dominant overX since
Z×X V is. Since the group of cycles onU ×T meeting(U ×X V)×T injects into
the group of cycles on(U ×X V)×T, we see that the lift ofZ to a cycle onU ×T
must beZU . Hence the components ofZ×X U are finite overU . But by faithfully
flat descent, this implies thatZ is finite overX, i.e., a finite correspondence in
Cork(X,T). �

COROLLARY 6.3. Let F be ańetale sheaf with transfers. If X is smooth, then

HomSh́et(Cork)(Ztr(X),F) = HomPST(Ztr(X),F) = F(X).

COROLLARY 6.4. For any abelian group A, the A(n) are complexes of́etale
sheaves. If1/n ∈ k, the motivic complex of́etale sheavesZ/n(1) is quasi-
isomorphic to théetale sheafµn.

PROOF. TheZ(n) are étale sheaves with transfers by lemmas 2.13 and 6.2,
as in 3.3. We know that theZtr(T) are sheaves of free abelian groups. Hence
A⊗Ztr(T) areétale sheaves. We conclude that theA(n) areétale sheaves by the
same argument we used for theZ(n). The last assertion is just a restatement of
corollary 4.8 using 6.2. �

EXERCISE 6.5. Let π : X→ Sbe a finiteétale map, andπt the induced finite
correspondence fromS to X. If F is any étale sheaf with transfers, show that
π
∗
t : F(X)→ F(S) is the étale trace map of [Mil80 , V.1.12]. Hint: If Y→ S is

Galois with groupG, and factors throughX, thenCor(S,X) = Cor(Y,X)G by 6.2.
Show that the image ofπ in Cor(Y,X) is the sum∑ f of all S-maps fromf :Y→X,
and hence determinesπt ∈Cor(S,X).

Locally constant́etale sheaves form a second important class ofétale sheaves
with transfers.

DEFINITION 6.6. The full subcategoryEt/k of Sm/k consists of all the
schemes of finite type overk which are smooth of dimension zero. EveryS in
Et/k is a finite disjoint union of spectra of separable field extensions ofk.

It is well known (see [Mil80 ] and [SGA4, VIII 2.2]) that the category of́etale
sheaves onEt/k is equivalent to the category of discrete modules over the profinite
groupGal(ksep/k). If F corresponds to the Galois moduleM andS= Spec(`) then
F(S) = MH , whereH = Gal(ksep/`).

We have the following functors:

Sh́et(Et/k) �
π∗

π
∗
- Sh́et(Sm/k),

where the restrictionπ∗ is the right adjoint ofπ∗; they are both exact functors.

DEFINITION 6.7. An étale sheaf islocally constant if π
∗
π∗F → F is an iso-

morphism. We will writeShlc
ét for the full subcategory ofSh́et(Sm/k) consisting of

all locally constant sheaves.
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EXERCISE6.8. Let F be the locally constant sheafπ
∗M corresponding to the

G-moduleM. If X is connected, andl is the separable closure ofk in H0(X,OX),
show thatF(X) = MH whereH = Gal(ksep/l). Conclude thatπ∗F is the Galois
moduleM. Note thatF(X) = MH is also defined ifX is normal.

LEMMA 6.9. The functorsπ
∗ and π∗ induce an equivalence between the

category Shlcét and the category of discrete modules over the profinite group
Gal(ksep/k).

PROOF. If M is in Sh́et(Et/k), thenM→ π∗π
∗M is an isomorphism by Ex. 6.8.

Thusπ
∗ is faithful. By category theory,π∗π∗π∗ ∼= π

∗, so forF locally constant we
have a natural isomorphismπ∗π∗F ∼= F . �

EXERCISE6.10. Let L be a Galois extension ofk, and letG= Gal(L/k). Show
thatZtr(L) is the locally constant́etale sheaf corresponding to theG-moduleZG of
mapsG→ Z. Hint: (ZG)H = ZG/H .

LEMMA 6.11. Any locally constant́etale sheaf has a unique underlyingétale
sheaf with transfers.

PROOF. Let Z′ ⊂ X×Y be an elementary correspondence and letZ be the
normalization ofZ′ in a normal field extensionL of F = k(X) containingK = k(Z′).
If G = Gal(L/F) then we also haveG = AutX(Z), and it is well known that the set
HomX(Z,Z′) of mapsq : Z→ Z′ overX is in one-one correspondence with the set
of field maps HomF(K,L). The cardinality of this set is the separable degree ofK
overF .

Let M be a Galois module, considered as a locally constantétale sheaf. It is
easy to check using exercise 6.8 thatM(X) is isomorphic toM(Z′)G.

Write i for the inseparable degree ofK overF . Then the transfer mapM(Y)→
M(X) is defined to be the composite ofM(Y)→ M(Z′), multiplication by i, and
the sum over all mapsq : Z→ Z′ overX of q∗ : M(Z′)→M(Z).

The verification that this givesM the structure of a presheaf with transfers is
now straightforward, and we refer the reader to 5.17 in [SV96] for details. �

It is clear that the locally constantétale sheaves form an abelian subcategory
of Sh́et(Cork), i.e., the inclusion is an exact functor.

In order to describe the relation between presheaves andétale sheaves with
transfers (see 6.18), we need two preliminary results.

If p : U → X is anétale cover, we defineZtr(Ǔ) to be theČech complex

. . .
p0−p1+p2- Ztr(U×X U)

p0−p1- Ztr(U) - 0.

PROPOSITION6.12. Let p: U → X be anétale covering of a scheme X. Then
Ztr(Ǔ) is anétale resolution of the sheafZtr(X), i.e., the following complex is exact
as a complex of́etale sheaves.

. . .
p0−p1+p2- Ztr(U×X U)

p0−p1- Ztr(U)
p- Ztr(X)→ 0
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PROOF. As this is a complex of sheaves it suffices to verify the exactness of
the sequence at everyétale point. Since points in théetale topology are strictly
Hensel local schemes, it is enough to prove that, for every Hensel local schemeS
overk, the following sequence of abelian groups is exact.

(6.12.1) · · · → Ztr(U)(S)→ Ztr(X)(S)→ 0.

HereSis an inverse limit of smooth schemesSi , and by abuse of notationZtr(T)(S)
denotes limZtr(T)(Si).

To prove that (6.12.1) is exact we need another reduction step. LetZ be a
closed subscheme ofX×Swhich is quasi-finite overS. We writeL(Z/S) for the
free abelian group generated by the irreducible connected components ofZ which
are finite and surjective overS. L(Z/S) is covariantly functorial onZ with respect
to morphisms of quasi-finite schemes overS. Clearly, the sequence (6.12.1) is the
colimit of complexes of the form:

(6.12.2) · · · → L(ZU ×Z ZU/S)→ L(ZU/S)→ L(Z/S)→ 0

whereZU = Z×X U and the limit is taken over allZ closed subschemes ofX×S
which are finite and surjective overS. Therefore the proof of 6.12 will be completed
once we show that the sequence (6.12.2) is exact for every subschemeZ of X×S
which is finite and surjective overS.

SinceS is Hensel local andZ is finite overS, Z is also Hensel. Therefore the
coveringZU → Z splits. Lets1 : Z→ ZU be a splitting. We set(ZU)k

Z = ZU ×Z
. . .×Z ZU . It is enough to check that the mapssk : L((ZU)k

Z/S)→ L((ZU)k+1
Z /S) are

contracting homotopies wheresk = L
(

s1×Z id(ZU )k
Z

)
.

This is the end of the proof of 6.12. �

The proof shows thatZtr(Ǔ) is also a Nisnevich resolution ofZtr(X), i.e., the
sequence of 6.12 is also exact as a complex of Nisnevich sheaves. We can pinpoint
why this proof holds in théetale topology and in the Nisnevich topology, but does
not hold in the Zariski topology. This is because:

• If S is strictly Hensel local (i.e., a point in théetale topology) andZ is
finite overS thenZ is strictly Hensel.
• If S is Hensel local (i.e., a point in the Nisnevich topology) andZ is finite

overS thenZ is Hensel.
• If S is local (i.e., a point in the Zariski topology) andZ is finite overS

thenZ neednot be local but will be semilocal.

EXAMPLE 6.13. Let X be a connected semilocal scheme finite over a local
schemeS. X is covered by its local subschemesUi . If X is not local, its graphΓ
defines an element ofZtr(X)(S) that cannot come from⊕Ztr(Ui)(S), becauseΓ
does not lie in anyS×Ui . (By 1.4, every elementary correspondence fromqUi
to S is an elementary correspondence fromX to S, and they form a basis for the
image of⊕Ztr(Ui)(S)→ Ztr(X)(S).) Hence⊕Ztr(Ui)→ Ztr(X) is not a surjection
of Zariski sheaves.
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We will see in 13.14 that Tot(C∗Ztr(Ǔ)) is a Zariski resolution ofC∗Ztr(X).
If U = {Ui → X} is a Zariski covering, we can replace the infinite complex

Ztr(Ǔ) of 6.12 by the bounded complex

Ztr(Ǔ ) : 0→ Ztr(U1∩ . . .∩Un)→ . . .→⊕iZtr(Ui)→ 0.

PROPOSITION6.14. LetU = {Ui→X} be a Zariski open covering of X. Then
Ztr(Ǔ ) is an étale resolution ofZtr(X), i.e., the following sequence is exact as a
complex of́etale sheaves:

0→ Ztr(U1∩ . . .∩Un)→ . . .→⊕iZtr(Ui)→ Ztr(X)→ 0.

PROOF. If n = 2, we apply 6.12 toU = U1 qU2. SinceU ×X U = U1 qU2 q
(U1∩U2), we see that the image ofZtr(U×3) in Ztr(U×X U) isZtr(U1)⊕Ztr(U2)
in the exact complex of 6.12. It follows thatZtr(Ǔ )→ Ztr(X) is exact forn = 2.
For n> 2, the exactness follows by induction onn. �

EXAMPLE 6.15. If U is the cover ofP1 byA1 = Speck[t] and Speck[t−1], and
we mod out by the basepointt = 1, we obtain the exact sequence

0→ Ztr(Gm)→ 2Ztr(A
1,1)→ Ztr(P

1,1)→ 0.

Applying C∗ yields an exact sequence of complexes (see 2.14). Recalling that
C∗Ztr(A1,1)' 0, we obtain quasi-isomorphisms ofétale complexes (or even Nis-
nevich complexes)

C∗Ztr(P
1,1)'C∗Ztr(Gm)[1] = Z(1).

LEMMA 6.16. Let p: U→Y be ańetale covering and f: X→Y a finite corre-
spondence. Then there is anétale covering p′ : V→ X and a finite correspondence
f ′ : V→U so that the following diagram commutes in Cork.

V
f ′ - U

X

p′

?

f
- Y

p

?

PROOF. We may suppose thatf is defined by the elementary correspondence
Z⊂ X×Y. (For a general correspondencef , we take a disjoint union of suchV ’s.)
Form the pullbackZU = Z×Y U insideX×U . Since the projectionZU → Z is
étale andZ→ X is finite, the projection splitśetale-locally onX. That is, there
is an étale coverV → X so thatV ×X ZU → V ×X Z has a sections. But then
s(V×X Z)⊂V×U is finite overV and defines the required finite correspondence
V→U . �
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V×X ZU
- ZU

⊂ - X×U - U

V×X Z

split

?
- Z
?
⊂ - X×Y - Y

?

V
?

- X
?�

-

As in [Mil80 ] pp. 61-65, the inclusioni : Sh́et(Sm/k)→ PreSh(Sm/k) has a
left adjointaét, andi ◦aét is left exact. Hence the category ofétale sheaves onSm/k
is abelian, and the functoraét is exact.

If F is a presheaf with transfers, the following theorem shows that itsétale
sheafification admits transfers. The same holds in the Nisnevich topology butnot in
the Zariski topology. However, we will prove later (in 22.15) that ifF is ahomotopy
invariant presheaf with transfers, its Zariski sheafification admits transfers.

Recall that there is a forgetful functorϕ : PST(k)→ PreSh(Sm/k).

THEOREM 6.17. Let F be a presheaf with transfers, and write Fét for aétϕF.
Then F́et has a unique structure of presheaf with transfers such that F→ Fét is a
morphism of presheaves with transfers.

COROLLARY 6.18. The inclusion functor Shét(Cork) ⊂
i- PST(k) has a left

adjoint aét. The category Sh́et(Cork) is abelian, áet is exact and commutes with the
forgetful functorϕ to (pre)sheaves on Sm/k.

The connections between these abelian categories, given by 6.17 and 6.18, are
described by the following diagram, where theϕ are (exact) forgetful functors and
both functorsaét are exact.

PreSh(Sm/k) �
ϕ

PST(k)

Sh́et(Sm/k)

i
∪

6
aét
?

�ϕ

Sh́et(Cork)

i
∪

6
aét
?

PROOF OF6.17. Uniqueness.Suppose that twóetale sheaves with transfers
F1 andF2 satisfy the conditions of the theorem. We already know thatF1(X) =
F2(X) = Fét(X) for all X and we just need to check thatF1( f ) = F2( f ) holds when
f : X→Y is a morphism inCork. This is given if f comes fromSm/k.

Let y∈ F1(Y) = F2(Y) = Fét(Y). Choose ańetale coveringp : U →Y so that
y|U ∈ Fét(U) is the image of someu ∈ F(U). Lemma 6.16 yields the following
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diagram.

V
f ′ - U

X

p′

? f - Y

p
?

Becausey|U comes fromF(U), we haveF1( f ′)(y|U) = F2( f ′)(y|U).

F1(p′)F1( f )(y) = F1( f ′)F1(p)(y) as the diagram commutes,

= F1( f ′)(y|U) asp comes fromSm/k,

= F2( f ′)(y|U) asy|U comes fromF(U),

= F2(p′)F2( f )(y) as the diagram commutes,

= F1(p′)F2( f )(y) asp′ comes fromSm/k.

This implies thatF1( f ) = F2( f ) asp′ is a covering andF1 is anétale sheaf.
Existence.We need to define a morphismFét(Y)→ Fét(X) for each finite cor-

respondence fromX to Y. We first produce a map

Fét(Y)→ HomSh(Ztr(Y),Fét)

natural inCork and compatible withF(Y)→ HomPST(Ztr(Y),F).
For all y ∈ Fét(Y) there is ańetale coveringp : U → Y and an elementu ∈

F(U) so thaty andu agree inFét(U). By representability (see 2.8),u determines
a morphismZtr(U)→ F of presheaves with transfers. By shrinkingU , we may
arrange that the difference map sendsu to zero inF(U ×Y U). A chase in the
commutative diagram below (whereU2

Y denotesU ×Y U) will produce the map of
sheaves[y] : Ztr(Y)→ Fét. The top row is exact by 6.12.

0→ HomSh(Ztr(Y),Fét) - HomSh(Ztr(U),Fét) - HomSh(Ztr(U
2
Y),Fét)

HomPST(Ztr(U),F)
6

- HomPST(Ztr(U
2
Y),F)

6

It is easy to see that[y] is independent of the choice ofU andu. We can now
define a pairingCor(X,Y)⊗Fét(Y)→ Fét(X). Let f be a correspondence fromX
to Y andy∈ Fét(Y). By the map just described,y induces a morphism of sheaves
[y] : Ztr(Y)→ Fét. Consider the composition:

Ztr(X)
f- Ztr(Y)

[y]- Fét.

Hence there is a mapZtr(X)(X)→ Fét(X). The image of the identity map will be
the pairing off andy. �

We conclude with an application of these ideas to homological algebra.

PROPOSITION6.19. The abelian category Shét(Cork) has enough injectives.
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PROOF. The categoryS = Sh́et(Cork) has products and filtered direct limits
are exact, because this is separately true for presheaves with transfers and forétale
sheaves. That is,S satisfies axioms AB5 and AB3∗. By 6.3, the family of sheaves
Ztr(X) is a family of generators ofS . It is well known (see [Gro57, 1.10.1]) that
this implies thatS has enough injectives. �

EXAMPLE 6.20. Let F be anétale sheaf with transfers. We claim that the terms
En(F) in its canonical flasque resolution (as anétale sheaf, see [Mil80 ] p. 90) are
actually étale sheaves with transfers. For this it suffices to considerE = E0(F).
Fix an algebraic closurēk of k. For everyX we define:

E(X) = ∏
x̄∈X(k̄)

Fx̄,

whereX(k̄) is the set of̄k-points ofX, andFx̄ denotes the fiber ofF at x̄. If U → X
is étale,E(U) is the product∏Fx̄ over x̄∈U(k̄). From this it follows thatE is an
étale sheaf, not only onX but on the biǵetale site ofSm/k. It is also easy to see
thatF(X)→ E(X) is an injection.

In addition,E is a presheaf with transfers andF → E is a morphism inPST.
For if Z ⊂ X×Y is an elementary correspondence fromX to Y, we define the
transferE(Y)→ E(X)

E(Y) = ∏
ȳ∈Y(k̄)

Fȳ→ ∏
x̄∈X(k̄)

Fx̄ = E(X)

by stating that the component for ¯x ∈ X(k̄) is the sum of the induced transfers
Fȳ→ Fx̄, taken over all ¯y∈Y(k̄) such thatz= (x̄, ȳ) ∈ Z(k̄). To see thatF → E is
a morphism inPST, we may takeX to be strictly Hensel local, soF(X) = E(X).
Since this forcesY to also be strictly Hensel semilocal, soF(Y) = E(Y), this is a
tautology.

The same construction works in the Nisnevich topology, lettingE(X) be the
product over all closed pointsx∈ X of F(SpecOh

X,x) (see 13.3). However, exam-
ple 6.13 shows that it does not work in the Zariski topology, because the transfer
E(X)→ E(S) need not factor through the sum of theE(Ui).

LEMMA 6.21. If F is any étale sheaf with transfers, then its cohomology
presheaves Hnét(−,F) are presheaves with transfers.

PROOF. The canonical flasque resolutionF → E∗(F) of 6.20 is a resolution
of sheaves with transfers. Since the forgetful functor fromPST(k) to presheaves is
exact, andHn(−,F) is the cohomologyE∗(F) as a presheaf, we see thatHn(−,F)
is also the cohomology ofE∗(F) in the abelian categoryPST(k). �

EXAMPLE 6.22. By 2.4, F = Gm is an étale sheaf with transfers. By 6.21,
both the Picard group Pic(X) = H1

ét(X,Gm) and the cohomological Brauer group
Br′(X) = H2

ét(X,Gm)tors are presheaves with transfers.

LEMMA 6.23. For any F∈ Sh́et(Cork) and any smooth X and i∈ Z we have:

ExtiSh́et(Cork)(Ztr(X),F) = H i
ét(X,F).
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PROOF. The casei = 0 is Hom(Ztr(X),F) = F(X); this is 6.3. Fori > 0 it
suffices to show that ifF is an injectiveétale sheaf with transfers thenH i(X,F) is
zero. Consider the canonical flasque resolutionE∗(F) of example 6.20. SinceF is
injective, the canonical inclusionF → E0 must split, i.e.,F is a direct factor ofE0

in Sh́et(Cork). SinceH i
ét(X,F) is a direct summand ofH i(X,E0), it must vanish

for i > 0. �

If we restrict to the categorySh́et(Cork,R) of étale sheaves ofR-modules with
transfers,E0(F) is a flasque sheaf ofR-modules with transfers by 6.20. The proof
of 6.23 goes through word for word to prove the following variation.

PORISM 6.24. For any F∈ Sh́et(Cork,R) and any smooth X and i∈ Z:

ExtiSh́et(Cork,R)(Rtr(X),F) = H i
ét(X,F).

The same proof also shows that lemmas 6.23 and 6.24 hold for the Nisnevich
topology (see 13.4). See [TriCa , 3.1.8] for an alternative proof.

EXERCISE 6.25. Let K be any complex of́etale sheaves ofR-modules with
transfers. Show that its hyperext and hypercohomology agree in the sense that for
any smoothX andi ∈ Z:

Exti(Rtr(X),K)∼=Hi
ét(X,K).

(For simplicity, the reader may assume that cdR(k)< ∞.)

If one is interested in extending the constructions of this lecture to possibly sin-
gular schemes, it would be useful to assume thatk admits resolution of singularities
and use the cdh topology, which we will introduce in lecture 12.





LECTURE 7

Relative Picard group and Suslin’s Rigidity Theorem

In this lecture we introduce the relative Picard group Pic(X̄,X∞). WhenX̄ is a
good compactification ofX overS, its elements determine mapsF(X)→ F(S) for
every homotopy invariantF . This pairing will be used to prove Suslin’s Rigidity
Theorem 7.20.

Recall from 1A.9 and 1A.10 that ifS is a smooth connected scheme andp :
X → S a smooth morphism then we writec(X/S,0) for the free abelian group
generated by the irreducible closed subsets ofX which are finite and surjective
overS. In this lecture we will writeC0(X/S) for c(X/S,0).

By 1A.12, given a mapS′ → S, there is a mapC0(X/S)→ C0(X×SS′/S′),
induced from

C0(X/S) ⊂ - Ztr(X)(S) = Cork(S,X).

DEFINITION 7.1. We defineHsing
0

(X/S) to be the cokernel of the map

C0(X×A1/S×A1)
∂0−∂1- C0(X/S)

where∂i is induced by “t = i” : Speck→ A1
k.

EXAMPLE 7.2. If X = Y×k S thenC0(X/S) = Cor(S,Y) = Ztr(Y)(S). In ad-
dition, X×A1 = Y×k (S×A1) and the following diagram commutes:

C0(X×A1/S×A1) - C0(X/S)

Ztr(Y)(S×A1)

=
?

- Ztr(Y)(S).

=
?

Taking cokernels, we conclude (using 2.27) that:

Hsing
0 (Y×S/S) = H0C∗Ztr(Y)(S) = Cor(S,Y)/A1-homotopy.

In particular, this implies that two elements ofCor(S,Y) areA1-homotopic exactly
when they agree inHsing

0
(Y×S/S).

If S= Speck then Hsing
0

(X/S) is the cokernelHsing
0

(X/k) of Ztr(X)(A1)→
Ztr(X)(S) discussed in exercise 2.21, becauseC0(X/S) = Ztr(X)(Speck). Also by
2.21, there is a natural surjectionHsing

0
(X/S)→CH0(X). If X is projective, this

surjection is an isomorphism.

EXAMPLE 7.3. If S = Speck, then 7.16 below shows thatHsing
0

(P1/S) =
Hsing

0
(A1/S) = Z butHsing

0
(A1−0/S) = Z⊕k∗.

49
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REMARK 7.4. In [SV96] the groupsHsing
∗ (X/S) are defined to be the homol-

ogy of the evident chain complexC∗(X/S) with

Cn(X/S) = C0(X×∆n/S×∆n).

We will consider the singular homologyHsing
∗ (X/S) in lecture 10 below whenS=

Speck, andC∗(X/S) = C∗Ztr(X)(S).
Let F be aPST. The map Tr :C0(X/S)⊗F(X)→ F(S) is defined to be the

inclusionC0(X/S)⊂Cork(S,X) (see 1A.12) followed by evaluation onF(X).

C0(X/S)⊗F(X)
Tr- F(S)

Cork(S,X)⊗F(X)
?

∩

evaluate

-

LEMMA 7.5. If F is homotopy invariant presheaf with transfers then the map
Tr factors through Hsing

0
(X/S)⊗F(X)→ F(S).

PROOF. SinceF(X) = F(X×A1), we have a diagram

C0(X×A1/S×A1)⊗F(X)
Tr - F(S×A1)

C0(X/S)⊗F(X)

∂0−∂1
? Tr - F(S). �

i0− i1 = 0
?

EXAMPLE 7.6. If σ : S→ X is a section ofp, regarded as an element of
Hsing

0
(X/S), thenTr(σ ,−) is the usual mapσ∗ : F(X)→ F(S).

REMARK 7.7. The pairingHsing
0

(X/S)⊗F(X)→ F(S) is fundamental. It can
be defined more generally for homotopy invariant presheaves equipped only with
transfer maps TrD : F(X)→ F(S) for any relative smooth curveX/Sand any effec-
tive divisorD⊂ X which is finite and surjective overS, such that the transfer maps
form a “pseudo pretheory”. This construction applies to theK-theory presheaves
Kn(X), equipped with the transfer maps of exercise 2.7, even though these are not
presheaves with transfers.

In order to computeHsing
0

(X/S), it is useful to embedX in a slightly larger
schemeX̄.

DEFINITION 7.8. A smooth curvep : X→ Sadmits agood compactification
X̄ if it factors as:

X ⊂
j - X̄

S

p̄

?

p
-
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where j is an open embedding,̄X is a proper normal but not necessarily smooth
curve overSandY = X̄−X has an affine open neighborhood in̄X.

If S is affine, for example, thenX = A1×SadmitsP1×Sas a good compact-
ification. Similarly, ifC is any smooth affine curve overk thenC×S→ Sadmits
C̄×Sas a good compactification. The following result implies that every pointx
of everyX has an open neighborhoodU which has a good compactification over a
generic projectionX→ Al−1.

LEMMA 7.9. Let p : X → A
l be anétale map. If k is infinite, there exists a

linear projectionAl → A
l−1 so that the composition X→ A

l−1 is a curve with a
good compactification.

PROOF. There is an openU ⊂ Al so thatX is quasi-finite and surjective over
U . Choose a linear projectionAl → A

l−1 so that the restriction toAl −U is finite;
A

l has good compactificationY = P1×Al−1. By Zariski’s Main Theorem (as for-
mulated in [EGA4, 8.12.6]), the mapX→Y may be factored as an open immersion
X ⊂ - X̄ followed by a finite map ¯p : X̄→Y. ReplacingX̄ by its normalization,
we may assume that̄X is normal. Note that ¯p is an affine map. SinceY is a good
compactification ofU , X̄ is a good compactification ofX. �

DEFINITION 7.10. If Y ⊂
i- X̄ is closed we setGX̄,Y = Ker(O∗X̄ → i∗O∗Y).

Therelative Picard group is defined to be:

Pic(X̄,Y) = H1
Zar(X̄,GX̄,Y).

By [Mil80 ] p. 124, we also have Pic(X̄,Y) = H1
ét(X̄,GX̄,Y).

By [SV96, 2.1], the elements of Pic(X̄,Y) are the isomorphism classes(L , t)
of line bundlesL on X̄ with a trivializationt onY. The group operation is⊗, i.e.,
(L , t)⊗ (L ′, t ′) = (L ⊗L ′, t⊗ t ′).

REMARK 7.11. For X̄ = S×P1 andY = S×{0,∞}, the “stalk” (i∗GX̄,Y)(Y)
of GX̄,Y atY is the groupM ∗(P1;0,∞)(S) of lecture 4.

The cohomology ofO∗→ i∗O∗Y yields the exact sequence

O∗(X̄)→ O∗(Y)→ Pic(X̄,Y)→ Pic(X̄)→ Pic(Y).

Comparing this exact sequence forX̄ andX̄×A1 yields:

COROLLARY 7.12. If X̄ is a normal scheme and Y is reduced, we have:

Pic(X̄,Y) = Pic(X̄×A1,Y×A1).

Let us write j for the open embedding ofX = X̄−Y into X̄.

LEMMA 7.13. If 1/n∈ k, there is a natural injection

Pic(X̄,Y)/n ⊂ - H2
ét(X̄, j!µn).

PROOF. By Kummer Theory we have an exact sequence ofétale sheaves:

(7.13.1) 0 - j!µn - GX̄,Y

n- GX̄,Y
- 0.
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Applying étale cohomology yields:

H1(X̄, j!µn) - H1(X̄,GX̄,Y)
n- H1(X̄,GX̄,Y) - H2

ét(X̄, j!µn).

But the middle groups are both Pic(X̄,Y). �

EXAMPLE 7.14. Suppose thatS= Speck andk is algebraically closed. If̄X
is a smooth connected curve, then Pic(X̄,Y) is an extension of Pic(X̄) by a finite
product of|Y|−1 copies ofk∗. Hence Pic(X̄,Y)/n∼= H2

ét(X̄,µn)∼= Z/n.

Recall thatC0(X/S) is generated by closed subsetsZ of X which are finite and
surjective overS. BecauseX is smooth, each such subset is an effective Cartier
divisor onX̄, and has an associated line bundleL equipped with a canonical map
O →L . This map gives a trivialization ofL on X̄−Z, which is a neighborhood
of Y. Thus a good compactification̄X induces a homomorphism

C0(X/S)→ Pic(X̄,Y).

WhenY lies in an affine open neighborhood, this map is onto because every trivi-
alization onY extends to a neighborhood ofY.

EXERCISE7.15. In this exercise we make the lifting toC0(X/S) explicit. Sup-
pose thatL is a line bundle onX̄ with a fixed trivializationt on an open neigh-
borhoodU of Y. Show thatt gives a canonical isomorphism ofL with a Cartier
divisorL (D), i.e., an invertible subsheaf of the sheafK of total quotient rings of
O. (See [Har77, II.6].) Show thatL (D) comes from a Weil divisorD = ∑niZi on
X̄ with theZi supported on̄X−U . Then show that the mapC0(X/S)→ Pic(X̄,Y)
sends∑niZi to (L , t).

BecauseC1(X/S) → Pic(X̄,Y) factors through Pic(X̄ × A1,Y × A1), 7.12
shows thatC0(X/S)→ Pic(X̄,Y) induces a homomorphism

Hsing
0 (X/S)→ Pic(X̄,Y).

THEOREM 7.16. Let S be a smooth scheme. If p: X→ S is a smooth quasi-
affine curve with a good compactification(X̄,Y), then:

Hsing
0 (X/S)

∼=- Pic(X̄,Y).

PROOF. The kernel ofC0(X/S)→ Pic(X̄,Y) consists off ∈ K(X̄) which are
defined and equal to 1 onY. SinceX is quasi-affine overS, Y contains at least
one point in every irreducible component of every fiber ofX̄ overS. Therefore the
divisor D of t f + (1− t) defines an element ofC0(X×A1/S×A1) with ∂0D = 0
and∂1D = ( f ). Hence( f ) represents 0 inHsing

0
(X/S). This proves that the map

Hsing
0

(X/S)→ Pic(X̄,Y) is an injection, hence an isomorphism. �

Theorem 7.16 also holds whenX is not quasi-affine overS, but the proof is
more involved.
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COROLLARY 7.17. If F is a homotopy invariant presheaf with transfers, there
is a pairing

Pic(X̄,Y)⊗F(X)→ F(S).
EXAMPLE 7.18. If X is a smooth curve overk and 1/n ∈ k, then any two

geometric pointsx,x′ : Spec̄k→ X induce the same mapF(X)→ F(Spec̄k). Here
F is any homotopy invariant presheaf with transfers satisfyingnF = 0. Indeed,
[x] = [x′] in Pic(X̄,Y)/n by example 7.14. This phenomenon is known as “rigidity,”
and is a simple case of theorem 7.20 below.

COROLLARY 7.19. Let p : X→ S be a smooth curve with a good compacti-
fication. Assume that S is Hensel local and let X0→ S0 be the closed fiber of p.
Then for every n prime tochark the following map is injective:

Hsing
0 (X/S)/n→ Hsing

0 (X0/S0)/n.

PROOF. Kummer Theory yields the exact sequence 7.13.1 ofétale sheaves,
and similarly for(X̄0,Y0). Applying étale cohomology yields:

H1(X̄, j!µn) - H1(X̄,GX̄,Y)
n- H1(X̄,GX̄,Y) - H2

ét(X̄, j!µn)

H1(X̄0, j!µn)
?

- H1(X̄0,GX̄,Y)
?

n- H1(X̄0,GX̄,Y)
?

- H2
ét(X̄0, j!µn).

∼=
?

SinceH2(X̄, j!µn) = H2
c (X,µn), the right vertical map is an isomorphism by proper

base change with compact supports (see [Mil80 , VI.3.2]). We have a diagram:

Pic(X̄,Y)/n ⊂ - H2
ét(X̄, j!µn)

Pic(X0,Y0)/n
?

⊂- H2
ét(X̄0, j!µn).

∼=
?

Corollary 7.19 now follows from theorem 7.16. �

It follows from 6.8 that every locally constantétale sheafF is homotopy in-
variant, becauseH0(X×A1,O) ∼= H0(X,O)⊗k k[t]. The following result shows
that the converse is true for torsion sheaves. (Cf. [SV96, 4.5].)

THEOREM7.20. (Suslin’s “Rigidity Theorem”) Let F be a homotopy invariant
presheaf with transfers, such that the groups F(X) are torsion of exponent prime
to chark. Then F́et is locally constant.

PROOF. Let F0 = π∗π
∗(F) be the locally constant sheaf for the groupM =

F(ksep). We want to show that the adjunctionF0→ F is an isomorphism of́etale
sheaves. It suffices to check this on stalks. SinceOsh

X,x contains a separable closure
of k, we may assume thatk is separably closed. In this case 7.20 asserts thatFét
is the constant sheaf for the groupM = F(Speck). SinceX is smooth atx, Osh

X,x

is isomorphic to the Henselization ofAl at {0}. Thus the Rigidity Theorem is a
consequence of proposition 7.21 below. �
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PROPOSITION7.21. Let Sl be the Henselization at{0} in Al over a separably
closed field k. Assume that F is as is 7.20. Then F(Sl ) = F(Speck).

PROOF. The hypothesis onF is inherited byF(X)n = {x ∈ F(X) : nx = 0}.
Therefore we may assume thatF has exponentn for some primen.

We use the following sequence of inclusions:

Speck = S0⊂ . . .⊂ Sl−1

i
⊂ Sl .

By induction onl , it is enough to prove that the mapF(i) : F(Sl )→ F(Sl−1) is an
isomorphism. For this it suffices to prove thatF(i) is an injection, because it is
split by the projectionπ

Sl−1
�π

i
- Sl .

But F(Sl ) = colim(X,x0)→(Al ,0) F(X) where the colimit is taken over all dia-
grams:

Sl
π- X

p- Al .

It suffices to show for everyX that if ϕ ∈ F(X) hasi∗l π
∗
ϕ = 0 thenπ

∗
ϕ = 0. By

lemma 7.9 there is a curveX→ Al−1 with a good compactification. LetX′ be the
pullback in the following diagram:

Sl−1

i l - Sl

X′
q -

s1

-

X

π

-

Sl

?
πl -

Id

-

Sl−1
- A

l−1
?

The mapsπ andπ i l πl : Sl→X induce two sectionss1,s2 : Sl→X′ of X′→Sl which
agree on the closed fiberX0 = X×SS0. Given ϕ ∈ F(X) we need to show that
π
∗
l i∗l π

∗
ϕ = π

∗
ϕ. But π

∗
ϕ = s∗1q∗(ϕ) andπ

∗
l i∗l π

∗
ϕ = s∗2q∗(ϕ). Thesi coincide on

the closed point ofSl by construction. So we are left to prove thats∗(ψ) = (s′)∗(ψ)
for all ψ ∈ F(X′) and anys,s′ : Sl → X′ with s0 = s′0. Consider the following
diagram:

(Γs−Γs′)⊗ψ - s∗(ψ)−s′∗(ψ)

C0(X′/Sl )⊗F(X′) -- H0(X′/Sl )⊗F(X′)
Tr - F(Sl )

H0(X′0/S0)⊗F(X′)
?

∩

Tr - F(S0)
?



7. RELATIVE PICARD GROUP AND SUSLIN’S RIGIDITY THEOREM 55

By assumption, the element(Γs−Γs′)⊗ψ in the top left group goes to zero in
H0(X′0/S0)⊗F(X′). Hence it vanishes inH0(X′/Sl )⊗F(X′) by the immersion of
H0(X′/S)/n in H0(X′0/S0)/n of 7.19. Therefores∗(ψ)−s′∗(ψ) vanishes inF(Sl ).

�

We conclude this lecture with a description of the behavior of the relative Pi-
card group for finite morphisms. We will need this description in the proof of 21.9.

DEFINITION 7.22. Let (Ȳ,Y∞) and (X̄,X∞) be two good compactifications,
say ofY andX, respectively. Any finite mapf : Ȳ→ X̄ which restricts to a map
f : Y→ X, yields a mapf∗ : O∗(Y∞)→ O∗(X∞) constructed as follows.

Considerα ∈ O∗(Y∞). We may extendα to α̃ ∈ O∗(U) whereU is an affine
open neighborhood ofY∞. Since f is finite, we may assume thatU = f−1(V),
whereV is an open neighborhood ofX∞. SinceV is normal, there is a norm map
N : O∗(U)→O∗(V) (see 2.4). We definef∗(α) = N(α̃)|X∞

. By 7.23 below,f∗(α)
is independent of the choice of the extensionα̃.

EXERCISE7.23. Let f : U →V be a finite morphism of normal schemes and
let Z⊂V be a reduced closed subscheme. Ifα ∈O∗(U) andα = 1 on the reduced
closed subschemef−1(Z), show thatN(α) = 1 onZ.

LEMMA 7.24. Let (Ȳ,Y∞) and(X̄,X∞) be good compactifications of Y and X,
respectively. Let f be a finite map f: Ȳ→ X̄ which restricts to a map f: Y→ X.
Then the following diagram is commutative:

O∗(Y∞) - Pic(Ȳ,Y∞)
∼=- H0(Y/S)

O∗(X∞)

f∗
?

- Pic(X̄,X∞)
∼=- H0(X/S),

?

where f∗ was defined in 7.22 and the right vertical map is induced by the push-
forward of cycles.

PROOF. Chooseα ∈ O∗(Y∞) and extend it to a rational functiont onȲ which
is regular in a neighborhood of the formf−1(V). By definition, f∗(α) extends to
the regular functionN(t) onV. The horizontal maps sendα and f∗(α) to (OȲ,α)
and(OX̄, f∗α). Let D andD′ be the Weil divisors on̄Y andX̄ associated tot and
N(t), respectively. We may regardD andD′ as classes inC0(Y/S) andC0(X/S).
By 7.15,D andD′ represent the images of(OȲ,α) and(OX̄, f∗α) in H0(Y/S) and
H0(X/S), respectively. The right vertical map sendsD to D′ becauseD′ = div(Nt)
is the push-forward ofD = div(t) (see [Ful84, 1.4]). �





LECTURE 8

Derived tensor products

The goal of this lecture is to define a tensor product on the derived category of
étale sheaves with transfers, starting with the tensor productX⊗Y = X×Y onCork
defined in 1.9. For this we first need to build a total tensor product on the category
PST(k), and this construction makes sense in somewhat greater generality.

Let A be a small additive category. We defineZ(A ) to be the category of all
additive presheaves onA , i.e., all contravariant additive functorsF : A → Ab. It
is an abelian category. The Yoneda embeddingh : A → Z(A ) allows us to define
the additive categoryA ⊕ as the closure ofA under infinite direct sums inZ(A ).
If Xi are inA , we will considerX =⊕Xi to be the object ofA ⊕ corresponding to
the presheafhX =⊕hXi

in Z(A ).
More generally, ifR is a ring, we defineR(A ) to be the (abelian) category of

all additive functorsF : A → R-mod. By abuse of notation, we will writehX for
the functorA 7→ R⊗

Z
HomA (A,X) and call it “representable”.

LEMMA 8.1. Every representable presheaf hX is a projective object of R(A ),
every projective object of R(A ) is a direct summand of a direct sum of repre-
sentable functors, and every F in R(A ) has a projective resolution.

PROOF. Since HomR(A )(hX,F) ∼= F(X), eachhX is a projective object in

R(A ). Moreover everyF in R(A ) is a quotient of somehX, X ∈ A ⊕, because
of the natural surjection ⊕

X inA

⊕
x∈F(X)

x6=0

hX
x- F �

Now suppose thatA has an additive symmetric monoidal structure⊗, such as
A = Cork. (By this, we mean that⊗ commutes with direct sums; see 8A.3.) We
may extend⊗ to a tensor product onA ⊕ in the obvious way, and this extends to
tensor product of projectives. We now extend⊗ to a tensor product on all ofR(A ).

If F and G are in R(A ), we can form the presheaf tensor product(F ⊗R
G)(X) = F(X)⊗RG(X). However, it does not belong toR(A ), sinceF⊗RG is not
additive. In order to get a tensor product onR(A ), we need a more complicated
construction.

Our construction of⊗ is dictated by the requirement that ifX andY are in
A , then the tensor producthX ⊗ hY of their representable presheaves should be
represented byX⊗Y. As a first step, note that we can extend⊗ to a tensor product
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⊗ : A ⊕×A ⊕→ A ⊕ commuting with⊕. Thus if L1 andL2 are in the category
Ch−(A ⊕) of bounded above cochain complexes (· · · → Fn→ 0→ ··· ), the chain
complexL1⊗L2 is defined as the total complex of the double complexL∗1⊗L∗2.

DEFINITION 8.2. If F andG are objects ofR(A ), choose projective resolu-
tionsP∗→ F andQ∗→ G and defineF ⊗LG to beP⊗Q, i.e., Tot(P∗⊗Q∗). We
define the tensor product andHompresheaves to be:

F⊗G = H0(F⊗LG)

Hom(F,G) : X 7→ HomR(A )(F⊗hX,G)

Since any two projective resolutions ofF are chain homotopy equivalent, the
chain complexF ⊗L G is well-defined up to chain homotopy equivalence, and
similarly for Hom(F,G). In particular, sincehX andhY are projective, we have
hX⊗L hY = hX⊗hY = hX⊗Y for all X andY in A ⊕.

The following result implies thatR(A ) is an additive symmetric monoidal
category (see 8A.3).

LEMMA 8.3. The functor Hom(F,−) is right adjoint to F⊗−. In particular,
Hom(F,−) is left exact and F⊗− is right exact.

PROOF. BecauseR(A ) has enough projectives, it suffices to observe that

HomR(A )(hX,Hom(hY,G)) = G(X⊗Y) = HomR(A )(hX⊗hY,G). �

EXAMPLE 8.4. If A is the category of freeR-modules over a commutative ring
R, R(A ) is equivalent to the category of allR-modules; the presheaf associated to
M is M⊗R, andHomand⊗ are the familiar HomR and⊗R.

EXERCISE8.5. If Fi andGi are inR(A ), show that there is a natural map

Hom(F1,G1)⊗Hom(F2,G2)→ Hom(F1⊗F2,G1⊗G2),

compatible with the monoidal pairing HomA (U×A1,X1)⊗HomA (U×A2,X2)→
HomA (U×U×A1×A2,X1×X2)→ HomA (U×A1×A2,X1×X2).

REMARK 8.6. If the (projective) objectshX are flat, i.e.,hX ⊗− is an exact
functor, then⊗ is called a balanced functor ([Wei94, 2.7.7]). In this caseF ⊗LG
agrees (up to chain equivalence) with the usual left derived functorL(F ⊗−)G.
But we do not know when thehX are flat. It is true in example 8.4, but probably
not true inPST= Z(Cork).

We can now extend⊗L to a total tensor product on the categoryCh−R(A )
of bounded above cochain complexes (· · · → Fn→ 0→ ··· ). This would be the
usual derived functor if⊗ were balanced (see [Wei94, 10.6]), and our construction

is parallel. IfC is a complex inCh−R(A ), there is a quasi-isomorphismP
'- C

with P a complex of projective objects. Any such complexP is called a projective
resolution ofC, and any other projective resolution ofC is chain homotopic toP;
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see [Wei94, 5.7]. If D is any other complex inCh−R(A ), andQ
'- D is a

projective resolution, we define

C⊗LD = P⊗Q.

BecauseP and Q are bounded above, each(P⊗Q)n = ⊕i+ j=nPi ⊗Q j is a

finite sum, andC⊗LD is bounded above. BecauseP andQ are defined up to chain
homotopy, the complexC⊗LD is independent (up to chain homotopy equivalence)
of the choice ofP andQ. There is a natural mapC⊗LD→C⊗D, which extends
the mapF⊗LG→ F⊗G of definition 8.2.

LEMMA 8.7. Let C,C′ and D be bounded above complexes of presheaves.

(1) If C and D are complexes overA ⊕, or complexes of projectives, then

C⊗LD
'- C⊗D is a chain homotopy equivalence.

(2) If f : C
'- C′ is a quasi-isomorphism of complexes, then C⊗LD→

C′⊗LD is a chain homotopy equivalence.

PROOF. If C is a complex overA ⊕, it is a complex of projectives. We may
takeP = C in the definition of⊗L: C⊗LD = C⊗Q. If D is also a complex of
projectives, we may takeQ = D as well. Part 1 is now immediate. In part 2,
we may takeP to be a projective resolution of bothC andC′, so thatC⊗LD =
C′⊗LD = P⊗Q. �

PROPOSITION8.8. The derived categoryD−R(A ), equipped with⊗L, is a
tensor triangulated category.

PROOF. The categoryP of projective objects inR(A ) is additive symmetric
monoidal, andD−R(A ) is equivalent to the chain homotopy categoryK−(P) by
[Wei94, 10.4.8]. By 8A.4, this is a tensor triangulated category under⊗. The result
now follows from the natural isomorphism⊗∼=⊗L in P of 8.7. �

DEFINITION 8.9. If C and D are bounded above complexes of presheaves,
there is a canonical map from the presheaf tensor productC⊗R D to the tensor
productC⊗D of 8.2. By right exactness of⊗R and⊗ (see 8.3), it suffices to
construct a natural map of presheavesη : hX ⊗R hY → hX⊗Y. ForU in A , ηU is
just the monoidal product inA , followed by the diagonal∆ : U →U⊗U :

hX(U)⊗RhY(U) = HomA (U,X)⊗RHomA (U,Y)
⊗-

HomA (U⊗U,X⊗Y)
∆∗- HomA (U,X⊗Y) = hX⊗Y(U).

Having disposed with these generalities, we now specialize to the case where
A is Cork and⊗ is the tensor productX⊗Y = X×Y of 1.9. We have the Yoneda
embedding

Cork ⊂Cor⊕k ⊂ PST(k).
We will write ⊗tr for the tensor product onPST = Z(Cork), or onPST(k,R) =
R(Cork), and⊗tr

L for ⊗L. Thus there are natural mapsC⊗tr
L D→C⊗tr D.
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EXAMPLE 8.10. By lemma 8.1,hX = Rtr(X) is projective and

Rtr(X)⊗tr Rtr(Y) = Rtr(X×Y).

Similarly if (Xi ,xi) are pointed schemes then theRtr(Xi ,xi) are projective and from
2.13 we see that

Rtr(X1,x1)⊗tr · · ·⊗tr Rtr(Xn,xn) = Rtr((X1,x1)∧·· ·∧ (Xn,xn)).

In particular,Rtr(Gm)⊗
tr n = Rtr(G∧n

m ).
The next example, in whichR = Z, shows that⊗tr does not behave well on

locally constant sheaves.

EXAMPLE 8.11. The complexZ
n- Z is a projective resolution ofZ/n, so

we haveZ/n⊗tr
Ztr(X) = Z/n⊗

Z
Ztr(X) = (Z/n)tr(X) by 8.7.

If
√
−1 6∈ k and l = k(

√
−1), let Zε = Ztr(l)/Z denote the locally constant

sheaf corresponding to the sign representation ofG = Gal(l/k). We see from 8.7
thatZ/n⊗tr

L Zε is quasi-isomorphic to the complex(Z/n)⊗L (Z→ Ztr(l)), i.e.,

0→ Z/n→ (Z/n)tr(l)→ 0.

Hence the presheaf(Z/n)⊗tr
Zε sends Speck to 0 and Specl toZ/n. If n = 4, this

is not anétale sheaf because(Zε/4Zε)G 6= 0. It is easy to see, however, that its
sheafification is the locally constantétale sheaf:(

(Z/4)⊗tr
Zε

)
ét
∼= µ4.

The étale sheafµ4 is the tensor product(Z/4)⊗étZε of the two underlyinǵetale
sheaves.

DEFINITION 8.12. If F andG are presheaves ofR-modules with transfers, we
write F⊗tr

ét G for (F⊗tr G)ét, theétale sheaf associated toF⊗tr G. If C andD are
bounded above complexes of presheaves with transfers, we shall writeC⊗tr

ét D for
(C⊗tr D)ét, andC⊗tr

L,ét D for (C⊗tr
L D)ét ' P⊗tr

ét Q, whereP andQ are complexes
of representable sheaves with transfers, andP'C andQ' D. There is a natural
mapC⊗tr

L,ét D→C⊗tr
ét D, induced byC⊗tr

L D→C⊗tr D.

LEMMA 8.13. If F,F ′ are étale sheaves of R-modules with transfers, and F is
locally constant, then the map of 8.9 induces an isomorphism

F⊗ét F
′ ∼=- F⊗tr

ét F
′.

PROOF. Let F correspond to the discrete Galois moduleM. As M =∪MH and
⊗tr commutes with colimits, we may assume thatM = MH for some open normal
H of Gal(ksep/k). ThusM is aG-module, whereG = Gal(ksep/k)/H. Choose a
presentation overR[G]:

⊕R[G]α →⊕R[G]β →M→ 0.

As⊗ét and⊗tr
ét are both right exact, we may assumeM = R[G] andF ′ = Rtr(X). If

L = (ksep)H andT = Spec(L) thenF = Rtr(T) by exercise 6.10. But thenF⊗tr F ′=
Rtr(T ×X), so it suffices to observe thatRtr(T)⊗ét Rtr(X)→ Rtr(T ×X) is an
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isomorphism. SinceT×Y→Y is anétale cover, it suffices to observe that forY
overT

Rtr(T)⊗ét Rtr(X)(Y)∼= R[G]⊗Cor(Y,X)∼=
∼= R⊗

Z
Cor(Y,T×X) = Rtr(T×X)(Y). �

We are now going to show (in 8.16) that the tensor product⊗tr
L,ét induces a

tensor triangulated structure on the derived category ofétale sheaves ofR-modules
with transfers. Using proposition 8.8, we haveC⊗tr

L,ét D
∼= D⊗tr

L,étC, and it suffices
to show that⊗tr

L,ét preserves quasi-isomorphisms.
As a first step, fixY and consider the right exact functorΦ(F) = Rtr(Y)⊗tr

ét
F , from the categoryPST(k,R) of presheaves ofR-modules with transfers to the
category ofétale sheaves ofR-modules with transfers. Its left derived functors
Lp Φ(F) are the homology sheaves of the total left derived functorRtr(Y)⊗tr

L,étF . If
C is a chain complex (bounded below in homological notation), the hyperhomology
spectral sequence (see [Wei94, 5.7.6]) is

E2
p,q = Lp Φ(HqC)⇒ Lp+q Φ(C).

EXAMPLE 8.14. If U → X is an étale cover, consider the augmentedČech
complex

Č : · · · → Rtr(U×X U)→ Rtr(U)→ Rtr(X)→ 0.

SinceČét is exact by 6.12, each homology presheafHq(U/X) = Hq(Č) satisfies
Hq(U/X)ét = 0. By definition,Rtr(Y)⊗tr Č is the augmenteďCech complex

· · · → Rtr(U×X U×Y)→ Rtr(U×Y)→ Rtr(X×Y)→ 0

for the étale coverU ×Y→ X×Y, soRtr(Y)⊗tr
ét Č is again exact by 6.12. Thus

Ln Φ(Č) = 0 for all n. In particular, the 0th homology presheafH0(U/X) satisfies

ΦH0(U/X) = Rtr(Y)⊗tr
ét H0(U/X) = H0

(
Rtr(Y)⊗tr

étČ
)

= 0.

The following lemma shows that in fact every derived functorLn Φ vanishes
onH0(U/X).

LEMMA 8.15. Fix Y and setΦ = Rtr(Y)⊗tr
ét. If F is a presheaf of R-modules

with transfers such that Fét = 0, then Ln Φ(F) = 0 for all n.

PROOF. Suppose thatFét = 0. Each mapRtr(X)→ F is defined by anx ∈
F(X), and there is ańetale coverUx→ X such thatx vanishes inF(Ux). Thus the
compositionRtr(Ux)→Rtr(X)→ F is zero, i.e., the given map factors through the
cokernelH0(Ux/X) of Rtr(Ux)→ Rtr(X). It follows that the canonical surjection
⊕X,xRtr(X)→ F factors through a surjection⊕X,xH0(Ux/X)→ F . If K denotes the
kernel of this surjection thenKét = 0.

We now proceed by induction onn, noting thatLn Φ = 0 for n< 0. Forn = 0,
we know thatΦH0(Ux/X) = 0 by example 8.14. SinceΦ is right exact, this yields
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Φ(F) = 0. Forn> 0, we may assume that the lemma holds forLp Φ whenp< n.
From the exact sequence

⊕X,x(Ln Φ)H0(Ux/X)→ Ln Φ(F)→ Ln−1 Φ(K)

we see that it suffices to prove that(Ln Φ)H0(U/X) = 0. We saw in 8.14 that
Hq(U/X)ét = 0, soLp ΦHq(U/X) = 0 by the inductive assumption. Hence the
hypercohomology sequence for the complexČ collapses to yield

Ln Φ(Č)∼= (Ln Φ)H0(Č) = (Ln Φ)H0(U/X).

But we saw in example 8.14 thatLn Φ(Č) = 0, whence the result. �

Now we prove that⊗tr
L,ét preserves quasi-isomorphisms.

PROPOSITION8.16. Let f : C→ C′ be a morphism of bounded above com-
plexes of presheaves of R-modules with transfers. If f induces a quasi-isomorphism
Cét→ C′ét between the associated complexes ofétale sheaves, then C⊗tr

L,ét D→
C′⊗tr

L,ét D is a quasi-isomorphism for every D.

PROOF. If P
'- C is a projective resolution of presheaves, thenPét→Cét

is a quasi-isomorphism of complexes ofétale sheaves. Thus we may assume that
C, C′ andD are complexes of representable presheaves. IfA denotes the mapping
cone ofC→C′, it suffices to show thatA⊗tr

L,ét D = A⊗tr
ét D is acyclic. As each row

of the double complex underlyingA⊗tr
ét D is a sum of termsA⊗tr

ét Rtr(Y), it suffices
to show thatA⊗tr

ét Rtr(Y) is acyclic. As in the proof of 8.15, its homology sheaves
are the hyper-derived functorsLn Φ(A), Φ = ⊗tr

étRtr(Y). In the hypercohomology
spectral sequence

E2
p,q = Lp Φ(HqA)⇒ Lp+q Φ(A)

the presheavesHqA have(HqA)ét = 0 becauseAét is acyclic. By lemma 8.15 we
haveLq Φ(HqA) = 0 for all p andq. Hence the spectral sequence collapses to yield
Ln Φ(A) = 0 for all n, i.e.,LΦ(A)' Rtr(Y)⊗tr

ét A is acyclic. �

COROLLARY 8.17. The derived category of bounded above complexes ofétale
sheaves of R-modules with transfers is a tensor triangulated category.

PROOF. By 8.8, D−PST(k,R) is tensor triangulated. Now combine 8.16 and
8A.7, lettingW be the system of morphisms inducing quasi-isomorphisms on the
associated complexes ofétale sheaves. �

LEMMA 8.18. Let F be a locally constant́etale sheaf of flat R-modules. Then
the map E⊗tr

L,ét F → E⊗tr
ét F is a quasi-isomorphism for everýetale sheaf with

transfers E.

PROOF. Suppose first thatE = Rtr(Y). Choose a resolutionC→ F in the
category of locally constant sheaves in which eachCn is a sum of representa-
blesRtr(Ln,α) for finite Galois field extensionsLn,α of k. (This is equivalent to
resolving the Galois moduleM corresponding toF by Galois modulesR[Gn,α ],
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and the existence of such a resolution ofM is well known.) By proposition 8.16,
E⊗tr

étC = E⊗tr
L,étC is quasi-isomorphic toE⊗tr

L,ét F . By lemma 8.13,

E⊗tr
étC = E⊗étC

'- E⊗ét F
�' E⊗tr

ét F.

Hence the result is true forE = Rtr(Y).
In the general case, choose a projective resolutionP→ E in the category of

presheaves ofR-modules with transfers. Then we have quasi-isomorphisms

E⊗tr
L,ét F = P⊗tr

L,ét F
'- P⊗tr

ét F
'- P⊗ét F.

Because sheafification is exact,P→ E is also a resolution in the category ofétale
sheaves ofR-modules. SinceF is flat in this category, we have the final quasi-
isomorphism:

P⊗ét F
'- E⊗ét F

�' E⊗tr
ét F. �

It is clear that 8.18 also holds ifE is a bounded above complex ofétale sheaves
with transfers.

COROLLARY 8.19. In the derived category of́etale sheaves ofZ/m-modules
with transfers, the operation M7→M(1) = M⊗tr

L,étZ/m(1) is invertible.

PROOF. Indeed, ifµ∗m is the Pontrjagin dual ofµm, then combining 8.18, 8.13,
and 4.8 yields:

µ
∗
m⊗tr

L,étZ/m(1)
8.18' µ

∗
m⊗tr

étZ/m(1)
8.13∼= µ

∗
m⊗ét

Z/m(1)
4.8∼= µ

∗
m⊗ét

µm
∼= Z/m. �

EXERCISE8.20. If E andF are bounded above complexes of locally constant
étale sheaves ofR-modules, show thatE⊗tr

L,ét F is quasi-isomorphic toE⊗LR F ,
their total tensor product as complexes ofétale sheaves ofR-modules. (Hint: Use
8.13, 8.16, and 8.18.)

REMARK 8.21. If B→ I is a flasque resolution ofB as a sheaf with trans-
fers, we defineRHom(RtrX,B) to beHom(RtrX, I), so thatRHom(RtrX,B)(U) =
RHom(U ×X,B) for all U . If cd(k) < ∞ andX is proper thenRHom(RtrX,B) is
bounded above by proper base change (citing 9.26); this construction extends to
bounded above complexesB in the usual way. IfA andB are both bounded above,
a short calculation shows that in the derived categoryD−(Sh(Cork,R)) of sheaves
with transfers we have the adjunction:

HomD−(A⊗tr
L,ét Rtr(X),B)∼= HomD−(A,RHom(RtrX,B)).





Appendix 8A - Tensor Triangulated Categories

The notion of a tensor triangulated category is a generalization of the tensor
product structure on the derived category of modules over a scheme, which played
a central role in the development of the subject.

DEFINITION 8A.1. A tensor triangulated category is an additive category
with two structures: that of a triangulated category and that of a symmetric
monoidal category. In addition, we are given natural isomorphismsr andl of the
form

C[1]⊗D
∼=

lC,D

- (C⊗D)[1] �
∼=

rC,D

C⊗D[1],

which commute in the obvious sense with the associativity, commutativity and
unity isomorphisms. There are two additional axioms:

(TTC1) For any distinguished triangleC0
- C1

- C2
∂- C0[1] and any

D, the following triangles are distinguished:

C0⊗D - C1⊗D - C2⊗D
l(∂ ⊗D)- (C0⊗D)[1]

D⊗C0
- D⊗C1

- D⊗C2
r(D⊗∂ )- (D⊗C0)[1].

(TTC2) For anyC andD, the following diagram commutes up to multiplication
by−1, i.e.,rl =−lr :

C[1]⊗D[1]
r- (C[1]⊗D)[1]

−1

(C⊗D[1])[1]

l

? r- (C⊗D)[2].

l

?

This description is not minimal. For example the commutativity isomorphism
τ : C⊗D ∼= D⊗C allows us to recoverr from l and vice versa using the formula
τ lτ = r. In addition,lC,D can be recovered froml1,D : 1[1]⊗D ∼= D[1], where1
is the identity object for⊗. Moreover, if either of the two triangles in (TTC1) is
distinguished, then both are distinguished.

The definition of tensor triangulated category that we have given is sufficient
for our purposes. However, it is possible to add extra axioms in order to work
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with a richer structure. For example, many more axioms are postulated by May in
[May01].

EXERCISE 8A.2. Show that the canonical isomorphismsl ir j , r j l i : C[i]⊗
D[ j] ∼= (C⊗D)[i + j] differ by (−1)i j , and are interchanged by the twist isomor-
phismτ onC⊗D andC[i]⊗D[ j].

DEFINITION 8A.3. Let A be an additive category with a symmetric monoidal
structure⊗. We say thatA is anadditive symmetric monoidal categoryif (q
Ai)⊗B∼=q (Ai⊗B) for every direct sumq Ai in A .

If C andD are bounded above complexes inA , the tensor productC⊗D has
(C⊗D)n = ⊕p+q=nC

p⊗Dq and differentiald⊗1+ (−1)p⊗d on Cp⊗Dq. It is
associative.

We define the twist isomorphismτ :C⊗D→D⊗C componentwise, as(−1)pq

times the natural isomorphismCp⊗Dq→ Dq⊗Cp in A . It is a straightforward
exercise to verify that the categoryCh−(A ) is an additive symmetric monoidal
category.

The degreen part of each ofC⊗D[1], (C⊗D)[1], andC[1]⊗D are the same,
and we definelC,D to be the canonical isomorphism. The maprC,D is multiplication
by (−1)p on the summandCp⊗Dq. A routine calculation verifies the following.

PROPOSITION 8A.4. Let A be an additive symmetric monoidal category.
Then the chain homotopy categoryK−(A ) of bounded above cochain complexes
is a tensor triangulated category.

EXAMPLE 8A.5. (See [Ver96].) Let A be the category of modules over a
commutative ring, or more generally over a scheme. Then not only isK−(A )
a tensor triangulated category, but the total tensor product⊗L makes the derived
categoryD−(A ) into a tensor triangulated category. In effect,D−(A ) is equivalent
to the tensor triangulated subcategory of flat complexes inK−(A ).

EXAMPLE 8A.6. The smash product of based topological spaces leads to an-
other example. IfA→ X→ X/A→ SAis a cofibration sequence, there is a natural
homeomorphism(X/A)∧Y ∼= (X∧Y)/(A∧Y); see [Whi78, III.2.3]. The suspen-
sionSX= S1∧X has homeomorphisms

X∧ (SY)
∼=
r
- S(X∧Y) �

∼=
l

(SX)∧Y

satisfying (TTC1) and (TTC2) up to homotopy. It follows easily that the stable
homotopy category, which is triangulated by [Wei94, 10.9.18] and a symmetric
monoidal category by [Ada74, III.4], is a tensor triangulated category.

If W is a saturated multiplicative system of morphisms in a triangulated cate-
goryD, closed under⊕, translations, and cones, Verdier proved in [Ver96] that the
localizationD[W−1] is also a triangulated category.

PROPOSITION8A.7. Let D be a tensor triangulated category. Suppose that if
C→C′ is in W then C⊗D→C′⊗D is in W for every D inD. Then the localization
D[W−1] is also a tensor triangulated category.
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PROOF. Because each⊗D : D → D preservesW, ⊗ induces a symmetric
monoidal pairingD[W−1]×D[W−1]→ D[W−1] by the universal property of lo-
calization (applied toW×W). Similarly, the natural isomorphismsr andl descend
to D[W−1]. Axiom (TTC2) is automatic, and axiom (TTC1) may be routinely ver-
ified for Verdier’s description of distinguished triangles inD[W−1]. �

Inverting twistsX 7→ X⊗T is another construction which often preserves the
tensor triangulated structure. For example, it is used to construct the tensor trian-
gulated categoryDM−ét(k,Z/m) from DMeff,−

ét
(k,Z/m); see 9.7.

Let T be an object in a symmetric monoidal category(C ,⊗,1). LetC [T−1] de-
note the category whose objects are pairs(X,m) with X in C andm∈Z; morphisms
(X,m)→ (Y,n) in C [T−1] are just elements of the direct limit limi→∞ Hom(X⊗
T⊗m+i ,Y⊗T⊗n+i), where the bonding maps are given by the functor⊗T : C →C .
Composition is defined in the obvious way, and it’s easy to check thatC [T−1] is a
category. There is a universal functorC → C [T−1] sendingX to (X,0). Note that
(X,m)∼= X⊗T⊗m in C [T−1] for m≥ 0.

EXERCISE8A.8. Let T be an object in a tensor triangulated categoryC . Show
thatC [T−1] is a triangulated category, and thatC → C [T−1] is triangulated.

In order for the formula(X,m)⊗(Y,n) = (X⊗Y,m+n) to extend to a bifunctor
on C [T−1], we need to define the tensorf ⊗ g of two C [T−1]-morphisms in a
natural way. In general,C [T−1] need not be symmetric monoidal, as exercise 8A.9
shows.

EXERCISE8A.9. Let T be an invertible object in a symmetric monoidal cate-
goryC , i.e., an object such thatT⊗U ∼= 1 for someU . It is well known that endo-
morphisms of1 commute; show that the same must be true for endomorphisms of
T. Then show that the cyclic permutation ofT⊗ (T⊗T) must equal the identity
morphism.

PROPOSITION8A.10. Let T be an object in a symmetric monoidal category
(C ,⊗,1) such that the cyclic permutation on T⊗3 is the identity inC [T−1]. Then
(C [T−1],⊗,1) is also a symmetric monoidal category.

PROOF. The hypothesis implies that permutations onT⊗n commute with each
other forn≥ 3. The many ways to definef ⊗g onX⊗Tm+i⊗Y⊗Tn+ j are indexed
by the(i, j)-shuffles, and differ only by a permutation, sof ⊗g is independent of
this choice. Therefore the tensor product is a bifunctor onC [T−1]. The symmetric
monoidal axioms may now be routinely verified as in [Ada74, III.4]. The hexag-
onal axiom, that the two isomorphisms fromX⊗ (Y⊗Z) to (Z⊗X)⊗Y agree,
follows because the cyclic permutation onT⊗3 is the identity. �

COROLLARY 8A.11. Let T be an object in a tensor triangulated categoryC
such that the cyclic permutation on T⊗3 is the identity inC [T−1]. ThenC [T−1] is
a tensor triangulated category.

PROOF. By 8A.8 and 8A.10,C [T−1] is both triangulated and symmetric
monoidal. The verification of the remaining axioms is straightforward. �
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EXERCISE8A.12. Let T be an object in a tensor triangulated categoryD such
that Hom(X,Y)→ Hom(X⊗T,Y⊗T) is an isomorphism for everyX andY in D.
Show thatD[T−1] is a tensor triangulated category.



LECTURE 9

A
1-weak equivalence

In this section we define the notion ofA1-weak equivalence between bounded
above cochain complexes ofétale sheaves with transfers, andA1-local complexes.
The categoryDMeff,−

ét
is obtained by invertingA1-weak equivalences. The main

result in this lecture (9.35) is that when we restrict to sheaves ofZ/m-modules the
categoryDMeff,−

ét
is equivalent to the derived category of discrete Galois modules

for the groupGal(ksep/k). We will use these ideas in the next lecture to identify
étale motivic cohomology with ordinarýetale cohomology.

Since quasi-isomorphic complexes will beA1-weak equivalent, it is appropri-
ate to define the notion in the derived categoryD− = D−(Sh́et(Cork,R)) of étale
sheaves ofR-modules with transfers. InD−, we have the usual shift, and

A
f- B - cone( f ) - A[1]

is a distinguished triangle for each mapf . We refer the reader to [GM03] or
[Wei94] for basic facts about derived categories. We will also need the notion of
a thick subcategory, which was introduced by Verdier in [Ver96]. We will use
Rickard’s definition (see [Ric89]); this is slightly different from, but equivalent to,
Verdier’s definition.

DEFINITION 9.1. A full additive subcategoryE of D− is thick if:

(1) Let A→ B→C→ A[1] be a distinguished triangle. Then if two out of
A,B,C are inE then so is the third.

(2) if A⊕B is in E then bothA andB are inE .

If E is a thick subcategory ofD−, we can form a quotient triangulated cate-
gory D−/E as follows (see [Ver96]). Let WE be the set of maps whose cone is
in E ; WE is a saturated multiplicative system of morphisms. ThenD−/E is the
localizationD−[W−1

E ], which may be constructed using calculus of fractions; see
[Wei94, 10.3.7]. In particular, a morphismf : C→C′ becomes an isomorphism in
D−[W−1

E ] if and only if f is in WE .

DEFINITION 9.2. A morphism f in D− is called anA1-weak equivalenceif f
is in W

A
= WE

A

, whereE
A

is the smallest thick subcategory so that:

(1) the cone ofRtr(X×A1)→ Rtr(X) is in E
A

for every smooth schemeX;
(2) E

A
is closed under any direct sum that exists inD−.

We setDMeff,−
ét

(k,R) = D−[W−1
A

].

69
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REMARK 9.3. Alternatively, we can describeE
A

as the thick subcategory of
all complexesE such thatC∗(E) is acyclic (i.e., quasi-isomorphic to zero). Indeed,
it follows from 2.24 thatC∗(E) is acyclic for everyE in E

A
. Conversely, ifC∗(E)

is acyclic thenE→ 0 is inW
A

by 9.15 below, and henceE is in E
A

.

It is clear that the notion ofA1-weak equivalence inD− = D−(Sh(Cork,R))
makes sense for other topologies. This includes the alternative description in 9.3.
For the Nisnevich topology, we will see in 14.11 that the localizationDMeff,−

Nis (k,R)
of D− is the triangulated category of motivic complexes introduced and studied in
[TriCa ].

LEMMA 9.4. The smallest class inD− which contains all the Rtr(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all ofD−.

PROOF. First we show that for any complexD∗, if all Dn are in the class, then
so isD∗. If βnD is the brutal truncation 0→ Dn→ Dn−1→ ··· of D∗, thenD∗ is
the union of theβnD. EachβnD is a finite complex, belonging to the class, as an
inductive argument shows. Since there is an exact sequence

0 - ⊕βnD - ⊕βnD - D∗ - 0,

it follows thatD∗ is in the class.
Thus it suffices to show that each sheafF is in the class. Now there is a

resolutionL∗→ F by sums of the representable sheavesRtr(X), given by lemma
8.1. Since eachLn is in this class, so isL∗ and henceF . �

LEMMA 9.5. If f : C→C′ is anA1-weak equivalence, then for every D the
map f⊗ Id : C⊗tr

L,ét D→C′⊗tr
L,ét D is anA1-weak equivalence.

PROOF. Since⊗tr
L,ét commutes with cones andf is anA1-weak equivalence if

and only if its cone is inE
A

, it suffices to show that ifC is in E
A

, thenC⊗tr
L,ét D is

in E
A

for anyD.
If D = Rtr(X), consider the subcategoryE of all C in D− such thatC⊗tr

L,ét D
is in E

A
. E is closed under direct sums and it is thick. Moreover, ifY is a smooth

scheme, thenE contains the cone ofRtr(Y×A1)→ Rtr(Y). ThereforeE
A
⊆ E .

Now fix C in E
A

and consider the full subcategoryD of all D in D− such that
C⊗tr

L,ét D is in E
A

. D is closed under direct sums, it is thick and we have seen that
it containsRtr(X) for all X. By 9.4, we conclude thatD = D−. �

COROLLARY 9.6. The product⊗tr
L,ét endowsDMeff,−

ét
(k,R) with the structure

of a tensor triangulated category.

PROOF. Given 8.17, this follows from 9.5 and proposition 8A.7. �

REMARK 9.7. The categoryDM−ét(k,R) is obtained fromDMeff,−
ét

(k,R) by in-
verting the Tate twist operationM 7→M(1) = M⊗tr

L,ét R(1). If R= Z/m, then the
Tate twist is already invertible by 8.19, so we have

DM−ét(k,Z/m) = DMeff,−
ét (k,Z/m).
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For any coefficientsR, it will follow from 8A.11 and 15.8 below that
DM−ét(k,R) is always a tensor triangulated category.

DEFINITION 9.8. Two morphismsF
f-

g
- G of sheaves ofR-modules with

transfers are calledA1-homotopic if there is a maph : F ⊗tr Rtr(A1)→ G so that

the restrictions ofh alongR
1-

0
- Rtr(A1) coincide with f andg.

If G is anétale sheaf,h factors through (and is determined by) a mapFét⊗tr
L,ét

Rtr(A1)→G.

EXAMPLE 9.9. Suppose we are given two mapsf ,g : X → Y such that the
induced mapsZtr(X) → Ztr(Y) areA1-homotopic in the sense of 9.8. By the
Yoneda lemma, this is equivalent to saying thatf andg are restrictions of some
h∈Cor(X×A1,Y), i.e., thatf andg areA1-homotopic maps in the sense of 2.25.

LEMMA 9.10. Let f,g : F→G be two maps betweenétale sheaves with trans-
fers. If f and g areA1-homotopic, then f= g in DMeff,−

ét
(k,R).

PROOF. Any two sections ofA1→ Speck yield the same mapR→Rtr(A1) in
the localized categoryDMeff,−

ét
(k,R), namely the inverse of theA1-weak equiva-

lenceRtr(A1)→ R. Therefore the maps:

F
F×0-

F×1
- Rtr(A

1)⊗tr
L,ét F

h- G

are the same in the localized category. �

There is a mistake in the proof of the corresponding lemma 3.2.5 in [TriCa ] as
the proof there assumes thatZtr(A1) is flat inCork. If we replace⊗ by⊗L in loc.
cit., the proof goes through as written.

COROLLARY 9.11. EveryA1-homotopy equivalence is anA1-weak equiva-
lence.

Our next goal is to show that,F→C∗F is always anA1-weak equivalence (see
9.15 below). HenceF ∼= C∗F in DMeff,−

ét
(k,R).

By the (direct sum) total complex Tot(B) of a double complexB, we mean the
cochain complex withnth term⊕p+q=nBp,q; see [Wei94, 1.2.6].

LEMMA 9.12. Let f : B→ B′ be a map of double complexes which are verti-
cally bounded above in the sense that there is a Q so that B∗,q = (B′)∗,q = 0 for all
q≥ Q. Suppose that the restriction of f to each row is anA1-weak equivalence,
and thatTot(B) andTot(B′) are bounded above.

ThenTot(B)→ Tot(B′) is anA1-weak equivalence.

PROOF. Let S(n) be the double subcomplex ofB consisting of theBpq for
q≥ n. Then TotS(n+ 1) is a subcomplex of TotS(n) whose cokernel is a shift of
the n-th row of B. If S′(n) is defined similarly, then each TotS(n)→ TotS′(n) is
anA1-weak equivalence by induction onn. Now Sh́et(Cork,R) satisfies(AB4),
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meaning that⊕, and hence Tot, is exact. Hence there is a short exact sequence of
complexes

0 -
∞⊕

n=1

TotS(n)
id−shift-

∞⊕
n=1

TotS(n) - TotB - 0

and similarly forB′. Since⊕TotS(n)→⊕TotS′(n) is anA1-weak equivalence, so
is TotB→ TotB′. �

COROLLARY 9.13. If f : C→C′ is a morphism of bounded above complexes,
and fn : Cn→C′n is in W

A
for every n, then f is in W

A
.

PROOF. This is a special case of 9.12. �

LEMMA 9.14. For every F and every n, the map F
s- Hom(Rtr(∆n),F) =

Cn(F) is anA1-homotopy equivalence. A fortiori, it is anA1-weak equivalence.

PROOF. Since ∆n is isomorphic toAn as a scheme, we haveCn(F) ∼=
C1Cn−1(F). Thus we may suppose thatn = 1. We define a mapm : C1F →C2F as
follows. For eachX, the map

mX : C1(F)(X) = F(X×A1)→ F(X×A2) = C2(F)

is induced by the multiplication mapA2→ A
1 by crossing it withX and applying

F . SinceC2F = Hom(Rtr(A1),C1F), the adjunction of 8.2 associates tom a map
h :C1F⊗tr Rtr(A1)→C1F . Similarly the inclusionsA1×{i}⊂A2 induce mapsηi :
C2F →C1F , and the compositionsηim : C1F →C1F are adjoint to the restriction
of h alongi : R→ Rtr(A1). Henceh induces anA1-homotopy between the identity
(η1m) and the composite

C1F
∂0- F

s- C1F,

corresponding toη0m. Since∂0s is the identity onF , s and ∂0 are inverseA1-
homotopy equivalences. They areA1-weak equivalences by 9.11. �

LEMMA 9.15. For every bounded above complex F of sheaves of R-modules
with transfers, the morphism F→C∗(F) is anA1-weak equivalence. Hence F∼=
C∗(F) in DMeff,−

ét
(k,R).

PROOF. By 9.12, we may assume thatF is a sheaf. Consider the diagram
whose rows are chain complexes

· · · - 0 - 0 - F

· · ·
0 - F

? 1 - F
? 0 - F

=
?

· · · - C2F

'
A1

?
- C1F

'
A1

?
- F.

'
A1

?
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The first two rows are quasi-isomorphic. NowF'
A1Cn(F) by 9.14. Using 9.13,

we see that the second and third rows areA
1-weak equivalent. �

EXAMPLE 9.16. The identity map onO isA1-homotopic to zero by 2.23 and
9.15. HenceO is isomorphic to zero inDMeff,−

ét
(k). When chark = ` > 0 the

Artin-Schrier sequence ofétale sheaves [Mil80 , II 2.18(c)]

0 - Z/` - O
1−φ- O - 0

shows thatZ/`∼= 0 in DMeff,−
ét

(k). HereRmay be eitherZ orZ/`.

ÉtaleA1-local complexes

In this section we will show thatDMeff,−
ét

(k,Z/m) can be identified with the
full subcategoryL of A1-local complexes inD−(Sh́et(Cork,Z/m)).

DEFINITION 9.17. An objectL in D− is calledA1-local if for all A1-weak
equivalencesK′→ K the induced map Hom(K,L)→ Hom(K′,L) is bijective. We
write L for the full subcategory ofA1-local objects inD−.

It is easy to see thatL forms a thick triangulated subcategory ofD−.

REMARK 9.18. We will see in 9.31 below thatC∗ is a functor fromD− to L ,
provided thatR= Z/m andcdm(k) < ∞. Moreover, Hom(C∗(F),L) ∼= Hom(F,L)
for everyL in L andF in D−, by 9.15 and definition 9.17. HenceC∗ is the left
adjoint to the inclusionL ⊂ D−.

LEMMA 9.19. If L is A1-local then for every K inD−

Hom
DMeff,−

ét
(k,R)

(K,L) = HomD−(K,L).

Hence the natural functorL → DMeff,−
ét

(k,R) is full and faithful.

PROOF. By the calculus of fractions [Wei94, 10.3.7], the left side consists of

equivalence classes of diagramsK �
s

K′ - L with s in W
A

. It suffices to
show that ifK′ → K is anA1-weak equivalence then Hom(K,L) = Hom(K′,L).
But this holds sinceL isA1-local. �

LEMMA 9.20. An object L inD− isA1-local if and only ifHom(Rtr(X)[n],L)→
Hom(Rtr(X×A1)[n],L) is an isomorphism for all X and n.

PROOF. Let K be the full subcategory of allK for which Hom(K[n],L) = 0
for all n. Clearly,K is a thick subcategory ofD− and it is closed under direct
sums and shifts. Under the given hypothesis,K contains the cone of every map
Rtr(X×A1)→ Rtr(X). By definition, E

A
is a subcategory ofK , i.e., L is A1-

local. �

LEMMA 9.21. If f : L→ L′ is anA1-weak equivalence and L,L′ areA1-local
then f is an isomorphism inD−, i.e., a quasi-isomorphism of complexes ofétale
sheaves with transfers.
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PROOF. By definition, f induces bijections Hom(L′,L) ∼= Hom(L,L) and
Hom(L′,L′) ∼= Hom(L,L′). Hence there is a uniqueg : L′ → L so that f g = 1L,
and f (g f) = ( f g) f = f implies thatg f = 1L′ . �

DEFINITION 9.22. An étale sheaf with transfersF is strictly A1-homotopy
invariant if the mapHn

ét(X,F)→ Hn
ét(X×A1,F) is bijective for all smoothX and

everyn ∈ N. In particular forn = 0 we must have thatF is homotopy invariant
(2.15).

LEMMA 9.23. ([SGA4, XV 2.2]) If R is of torsion prime tochark then any
locally constant sheaf of R-modules is strictlyA1-homotopy invariant.

LEMMA 9.24. Let F be anétale sheaf of R-modules with transfers. Then F is
A

1-local if and only if F is strictlyA1-homotopy invariant.

PROOF. By 6.23 or 6.24, we have

HomD−(Rtr(X),F [i]) = Ext i
Sh́et(Cork,R)(Rtr(X),F) = H i

ét(X,F)

for every smoothX. SinceRtr(X×A1)[n]→ Rtr(X)[n] is anA1-weak equivalence
for all n, 9.20 shows thatF isA1-local if and only if the induced map

H−n
ét (X,F) = Hom(Rtr(X)[n],F)→ Hom(Rtr(X×A1)[n],F) = H−n

ét (X×A1,F)

is an isomorphism, that is, if and only ifF is strictlyA1-homotopy invariant. �

Here is a special case of 9.24 which includes the sheavesµ
⊗q
n . It follows by

combining 9.23 with 9.24.

COROLLARY 9.25. Let M be a locally constant́etale sheaf of torsion prime to
chark. Then M isA1-local.

We now make the running assumption thatR is a commutative ring and that
cdR(k)< ∞, i.e.,k is a field having finitéetale cohomological dimension for coef-
ficients inR. If R= Z/m we will write cdm(k) for cdR(k). This assumption allows
us to invoke a classical result from [SGA4].

LEMMA 9.26. ([SGA4], [Mil80 ]) Let X be a scheme of finite type over k. If k
has finite R-cohomological dimension d then cdR(X)≤ d+2dimk X.

COROLLARY 9.27. Set nX = cdR(k) + 2dimk X. Then Extn(Rtr(X),F) = 0
when n≥ nX.

PROOF. Extn(Rtr(X),F)∼= Hn
ét(X,F) by 6.24. �

REMARK 9.28. If B isA1-local then so is the complexRHom(RtrX,B) of 8.21.
Indeed,B is strictlyA1-homotopy invariant by 9.24, so by 6.25, we have:

H∗RHom(RtrX,B)(U)∼=H∗(U×X,B)
∼=H∗(U×X×A1,B)∼= H∗RHom(RtrX,B)(U×A1).

If C is a cochain complex of presheaves, each cohomologyHn(C) is a presheaf.
We writeaétH

n(C) for its associated́etale sheaf.
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LEMMA 9.29. Assume that cdR(k)<∞. Then for every (bounded above) chain
complex C there is a bounded, convergent spectral sequence:

Ep,q
2 = Extp(Rtr(X),aétH

q(C)) =⇒ HomD−(Rtr(X),C[p+q]).

PROOF. This is well-known; see [Wei94, 5.7.9]. The spectral sequence is
bounded, and hence converges, by 9.27. �

PROPOSITION 9.30. Let C be a bounded above cochain complex ofétale
sheaves of R-modules with transfers, where cdR(k) < ∞. If the sheaves áetH

n(C)
are all strictlyA1-homotopy invariant, then C isA1-local.

PROOF. LetC be a complex of́etale sheaves with transfers. By 9.20, it suffices
to prove that cone( f ) is in this class whenf is the projectionRtr(X×A1)→Rtr(X).
The mapf induces a morphism between the spectral sequences of 9.29 forX and
X×A1. Because the sheavesL = aétH

qC are strictlyA1-homotopy invariant, they
areA1-local by 9.24. Thus

Extp(Rtr(X),L) = HomD−(Rtr(X)[−p],L)
∼= HomD−(Rtr(X×A1)[−p],L) = Extp(Rtr(X×A1),L).

Hence the morphism of spectral sequences is an isomorphism on allE2 terms.
By the Comparison Theorem [Wei94, 5.2.12], f induces an isomorphism from
HomD−(Rtr(X)[n],C) to HomD−(Rtr(X×A1)[n],C) for eachn. Done. �

LEMMA 9.31. Suppose that1/m∈ k and cdm(k)<∞. If K is a bounded above
complex ofétale sheaves ofZ/m-modules with transfers, thenTotC∗(K) is A1-
local.

PROOF. SetC = TotC∗(K). By 2.19, eachH iC is anA1-homotopy invariant
presheaf ofZ/m-modules with transfers. By the Rigidity Theorem 7.20, the sheaf
aétH

iC is locally constant. By 9.23,aétH
iC is strictlyA1-homotopy invariant. Fi-

nally, 9.30 lets us conclude thatC isA1-local. �

Combining 9.21 with 9.31, we obtain:

COROLLARY 9.32. If F is A1-local then F∼= C∗F in D−.

COROLLARY 9.33. If 1/m∈ k thenZ/m(q) isA1-local for all q.

PROOF. TakeK to be(Z/m)trG
∧q
m [−q]; Z/m(q) = C∗K by definition 3.1. �

DEFINITION 9.34. If 1/m∈ k, let L denote the full subcategory ofD− con-
sisting ofA1-local complexes ofZ/m-modules with transfers. IfE and F are
A

1-local, we setE⊗L F = TotC∗(E⊗tr
L,ét F). By 9.31,E⊗L F isA1-local, so⊗L

is a bifunctor fromL ×L →L .

Recall from 6.9 that the category of locally constantétale sheaves ofZ/m-
modules is equivalent to the categoryMod(G,Z/m) of discreteZ/m-modules
over the Galois groupG = Gal(ksep/k). Let D−(G,Z/m) denote the (bounded
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above) derived category of such modules. There is a triangulated functorπ
∗ from

D−(G,Z/m) to D− = D−(Sh́et(Cork,Z/m)).
THEOREM 9.35. If 1/m∈ k, (L ,⊗L ) is a tensor triangulated category and

the functors

D−(G,Z/m)
π
∗
- L - D−[W−1

A
] = DMeff,−

ét (k,Z/m)

are equivalences of tensor triangulated categories.

PROOF. Clearly,L is a thick subcategory ofD−. By 9.19, the functorL →
D−[W−1

A
] is fully faithful. By 9.31, every object ofD−[W−1

A
] is isomorphic to an

object ofL . HenceL is equivalent toD−[W−1
A

] as a triangulated category.
By 9.6,DMeff,−

ét
(k,Z/m) is a tensortriangulated category. Using the first part

of this proof, we conclude thatL is a tensor triangulated category as well. More-
over, if E andF areA1-local, thenE⊗L F is isomorphic toE⊗tr

L,ét F in D−[W−1
A

]
by 9.15, so the induced tensor operation onL is isomorphic to⊗L .

Next we considerπ∗. It is easy to see from 6.9 and 6.11 thatπ
∗ induces an

equivalence betweenD−(G,Z/m) and the full subcategory of complexes of locally
constant sheaves inD−. By exercise 8.20,π∗ sends⊗L

Z/m to ⊗tr
L,ét. It suffices to

show that everyA1-local complexF is isomorphic to such a complex. By 9.15,
9.31, and 9.21F → C∗F is a quasi-isomorphism. By 2.19, eachaétH

iF is A1-
homotopy invariant. By 7.20 the sheavesaétH

iF are locally constant. Hence the
canonical mapF → π

∗
π∗F is a quasi-isomorphism of complexes ofétale sheaves.

But π∗F is a complex of modules inMod(G,Z/m). �



LECTURE 10

Étale motivic cohomology and algebraic singular
homology

There are two ways one might define anétale version of motivic cohomol-
ogy. One way, which is natural from the viewpoint of these notes, is to use the
morphisms in the triangulated categoryDM−ét, namely to define the integral coho-
mology group indexed by(p,q) as HomDM−ét

(Ztr(X),Z(q)[p]), and similarly for

cohomology with coefficients in anA. The second approach, due to Lichtenbaum,
is to take théetale hypercohomology of the complexZ(q).

DEFINITION 10.1. For any abelian groupA, we define théetale (or Lichten-
baum) motivic cohomologyof X as the hypercohomology ofA(q):

H p,q
L (X,A) =Hp

ét(X,A(q)|Xét
).

If q< 0 thenH p,q
L

(X,A) = 0, becauseA(q) = 0. If q = 0 thenH p,0
L

(X,A) ∼=
H p

ét
(X,A), becauseA(0) = A.
The two definitions agree in some cases of interest. We will see in 10.7 below

thatH p,q
L

(X,Z/n)∼= HomDM−ét
(Ztr(X),Z/n(q)[p]) when 1/n∈ k. Even further on,

in 14.27, we will see thatH p,q
L

(X,Q) ∼= HomDM−ét
(Ztr(X),Q(q)[p]). However, the

two definitions do not agree for̀-torsion coefficients, for̀ = char(k). Indeed, for
q = 0 we have HomDM−ét

(Ztr(X),Z/`[p]) = 0 in characteristic̀ by 9.16, yet the

groupsH p,0
L

(X,Z/`)∼= H p
ét

(X,Z/`) can certainly be nonzero.

By proposition 6.4 we haveH p,1
L

(X,Z/n)∼= H p
ét

(X,µn) when 1/n∈ k. Here is
the generalization to allq.

THEOREM 10.2. Let n be an integer prime to the characteristic of k. Then:

H p,q
L (X,Z/n) = H p

ét(X,µ
⊗q
n ) q≥ 0, p∈ Z.

By 6.4 there is a quasi-isomorphismµn → Z/n(1) of complexes ofétale
sheaves. Becauseµn and the terms ofZ/n(1) are flat as sheaves ofZ/n-modules,
there is a morphismµ

⊗q
n → (Z/n)(1)⊗q in the category of complexes ofétale

sheaves ofZ/n-modules. Combining with the multiplication of 3.11 gives a map

µ
⊗q
n

- (Z/n)(1)⊗q - (Z/n)(q).

We may now reformulate theorem 10.2 as follows.

THEOREM10.3. The mapµ⊗q
n →Z/n(q) is a quasi-isomorphism of complexes

of étale sheaves.

77
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PROOF. The theorem is true forq = 1 by 6.4. By 9.25 and 9.31, bothµ⊗q
n and

Z/n(q) areA1-local. We will show that the mapµ⊗q
n → Z/n(q) is anA1-weak

equivalence in 10.6 below. By 9.21, it is also a quasi-isomorphism. �

Let R be any commutative ring. Recall thatR(n) = R⊗
Z
Z(n). Clearly, the

multiplication mapZ(m)⊗
Z
Z(n)→ Z(m+ n) of 3.11 induces a mapR(m)⊗R

R(n)→ R(m+n).
PROPOSITION10.4. The multiplication map R(m)⊗R(n)→R(m+n) factors

through a mapµ : R(m)⊗tr R(n)→ R(m+n).

R(m)⊗RR(n)
mult. - R(m+n)

R(m)⊗tr R(n)

8.9
? µ

-

PROOF. We first reinterpret the left vertical map in simplicial language. Recall
that by definition 3.1,R(n)[n] = C∗(Rtr(G∧n

m )). Let us writeAn
• for the underlying

simplicial presheaf, viz.,An
•(U) = Ztr(G∧n

m )(U ×∆•), and write the associated un-
normalized chain complex asAn

∗. By 8.9, we have a natural map of bisimplicial
presheavesAm

• ⊗R An
•→ Am

• ⊗tr An
•, and a map of their diagonal chain complexes,

(Am⊗RAn)∗→ (Am⊗tr An)∗. As in 3.11, the Eilenberg-Zilber theorem yields quasi-
isomorphisms∇ fitting into a commutative diagram:

R(m)⊗RR(n)[m+n]
=- Am

∗ ⊗RAn
∗

∇ - (Am⊗RAn)∗

R(m)⊗tr R(n)[m+n]

8.9
? =- Am

∗ ⊗tr An
∗

8.9
? ∇ - (Am⊗tr An)∗.

8.9
?

Comparing with 3.11, we see that it suffices to find a simplicial map for allX and
Y,

(10.4.1) diag(C•Rtr(X)⊗tr C•Rtr(Y))−→C•Rtr(X×Y)

compatible with the corresponding construction 3.10 for⊗R. The mapµ will be
the composite of∇ and the map induced by 10.4.1.

Let F be any presheaf with transfers. Definitions 8.2 and 2.14 imply that
Cn(F) ∼= Hom(Rtr(∆n),F) as presheaves and thatC•(F) ∼= Hom(Rtr(∆•k),F) as
simplicial presheaves. Using these identifications, we define the map 10.4.1 in
degreen as the composition:

Cn(Rtr(X))⊗tr Cn(Rtr(Y)) =

Hom(Rtr(∆n),Rtr(X))⊗tr Hom(Rtr(∆n),Rtr(Y))
8.5-

Hom(Rtr(∆n×∆n),Rtr(X×Y))
diagonal- Hom(Rtr(∆n),Rtr(X×Y)) =

Cn(Rtr(X×Y)).
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SinceHom(Rtr(∆n×∆n),Rtr(X×Y))(U) = Rtr(X×Y)(U ×∆n×∆n), the above
composition is the right vertical composition in the following commutative diagram
(see 8.5):

Rtr(X)(U×∆n)⊗RRtr(Y)(U×∆n)
8.9- (CnRtr(X)⊗tr CnRtr(Y))(U)

Rtr(X×Y)(U×U×∆n×∆n)

⊗
? diag(U)- Rtr(X×Y)(U×∆n×∆n)

8.5

?

Rtr(X×Y)(U×∆n).

diag(∆n)
?diag(U×∆n) -

Since the left composite is the degreen part of construction 3.10, this shows that
the triangle in 10.4 commutes. �

PROPOSITION10.5. The mapZ/n(1)⊗
tr
L q→ Z/n(q) is anA1-weak equiva-

lence inD−(Sh́et(Cork,Z/n)).

PROOF. The assertion follows from the diagram in figure 1, remembering that
by definitionZ/n(q) is C∗(Z/n)tr(G∧n

m )[−q]. �

Z/n(1)⊗
tr
L q - Z/n(q)

(Z/n)tr(Gm)[−1]⊗
tr
L q

'
A1 9.5+9.15

6

(Z/n)tr(G
∧q
m )[−q]

9.15 '
A1

6

((Z/n)tr(Gm))⊗
tr q [−q]

8.10

=

-

8.7

'
-

FIGURE 10.1. The factorization in proposition 10.5

PROPOSITION10.6. The mapµ
⊗q
n → Z/n(q) is anA1-weak equivalence in

D−(Sh́et(Cork,Z/n)).
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PROOF. Consider the following diagram, in which⊗tr and⊗tr
L are to be un-

derstood inZ/n-modules.

µ
⊗tr

L q
n

'- Z/n(1)⊗
tr
L q

µ
⊗q
n

' - µ
⊗tr q
n

'
?

- Z/n(1)⊗
tr q

µ1

?

µ

- Z/n(q)

µ1◦µ

-

We already know that the top map is a quasi-isomorphism by 6.4 and 8.16. Lemma
8.13 proves that the bottom left mapµ

⊗q
n → µ

⊗tr q
n is a quasi-isomorphism. Lemma

8.18 proves that the left vertical map is a quasi-isomorphism. Hence the assertion
follows from proposition 10.5. �

Recall that when 1/n∈ k we haveDM−ét = DMeff,−
ét

(k,Z/n).

PROPOSITION10.7. If 1/n∈ k then Hp,q
L

(X,Z/n)∼= HomDM−ét
(Ztr(X),Z/n(q)[p]).

PROOF. SinceA = Z/n(q) isA1-local by 9.33, the right side is

HomDM−ét
(Ztr(X),Z/n(q)[p]) =HomD−(Ztr(X),Z/n(q)[p])

=Extp(Ztr(X),Z/n(q)).

By 6.25, this Ext group isHp
ét

(X,Z/n(q)), which is the left side. �

As a bonus for all our hard work, we are able to give a nice interpretation of
Suslin’s algebraic singular homology. Recall thatRtr(X) = Ztr(X)⊗R.

DEFINITION 10.8. We define the algebraic singular homology ofX by:

Hsing
p (X,R) = Hp(C∗Rtr(X)(Speck)) .

By remark 7.4,Hsing
0

(X,Z) agrees with the groupHsing
0

(X/Speck) of lecture
7. It is immediate from 5.2 that:

H p,q(Speck,R) = Hsing
q−p(G∧q

m ,R).

Notice thatRtr(G∧q
m ) is well-defined even thoughG∧q

m is not a scheme.
The following theorem was first proven in [SV96, 7.8] under the assumption

of resolution of singularities onk. The proof we give here doesn’t need resolution
of singularities, so it extends the result to fields of positive characteristic.

THEOREM 10.9. Let k be a separably closed field and X a smooth scheme
over k, and let l be a prime number different fromchark. Then there exist natural
isomorphisms for all i:

Hsing
p (X,Z/l)∗ ∼= H p

ét(X,Z/l)

where the∗ denotes the dual vector space overZ/l.
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It is amusing to note that this implies thatH i
ét(X,Z/l) is finite, because it is a

countable-dimensional dual module.
To prove 10.9, we need one more lemma. To clarify the role of the coefficient

ring R, we will write D−R for D−(Sh́et(Cork,R)), so thatD−
Z

is just the usual derived
category ofSh́et(Cork).

LEMMA 10.10. Let k be a separably closed field and C a bounded above chain
complex of́etale sheaves of R-modules with transfers. Assume that the cohomology
sheaves of C are locally constant and projective (as R-modules).Then for any n∈Z
we have:

HomD−
R
(C,R[n]) = HomR−mod(Hn(C)(Speck),R).

PROOF. For simplicity, let us write Ext∗ for Ext in the categorySh́et(Cork,R).
(There are enough injectives to define Ext by 6.19.)

If P is a summand of⊕αR, then Extn(P,R) injects into

Extn(⊕αR,R) = ∏Extn(R,R) = ∏Extn(Rtr(Speck),R).

But Extn(Rtr(Speck),R) = Hn
ét(Speck,R) by 6.24 and this vanishes ifn 6= 0 ask is

separably closed. Ifn = 0, this calculation yields Ext0(R,R) = R and Ext0(P,R) =
HomR−mod(P,R).

Now recall that Extn(F,R) = HomD−
R
(F,R[n]) for every sheafF ; see [Wei94,

10.7.5]. More generally, ifR→ I∗ is an injective resolution then the total Hom
cochain complexRHom(C,R) of Hom∗(C, I [n]) satisfies

Hn
RHom(C,R)∼= HomD−

R
(C,R[n]).

(See [Wei94, 10.7.4].) Since Hom∗(C, I [n]) is a bounded double complex, it gives
rise to a convergent spectral sequence which, as in [Wei94, 5.7.9], may be written

Epq
2 = Extp(HqC,R) =⇒ H p+q

RHom(C,R) = HomD−
R
(C,R[p+q]).

The assumption onHqC makes the spectral sequence collapse to yield
Ext0(HnC,R)∼= HomD−

R
(C,R[n]), whence the result. �

PROOF OF10.9. Taking R = Z/l , this means that allR-modules are projec-
tive. Consider the diagram:

HomD−
R
(C∗Rtr(X),R[n])

∼=
10.10
- HomR−mod(Hsing

n (X,R),R)

HomD−
R
(Rtr(X),R[n])

9.25 ∼=
? ∼=

6.24
- Hn

ét(X,R).

By 2.19, eachHn = HnC∗Rtr(X) is a homotopy invariant presheaf ofZ/l -modules
with transfers. Hence the sheavesaétH

n are locally constant by the Rigidity Theo-
rem 7.20. Hence the top map is an isomorphism by 10.10. SinceR is A1-local by
9.25, the left map is an isomorphism by 9.15. The bottom map is an isomorphism
by 6.24. �
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COROLLARY 10.11. Let k be a separably closed field and X a smooth scheme
over k, and let n be an integer relatively prime tochark. Then there exist natural
isomorphisms for all i:

Hsing
p (X,Z/n)∗ ∼= H p

ét(X,Z/n)

where the∗ denotes the Pontrjagin dualZ/n-module.

PROOF. Using the sequences 0→ Z/l → Z/lm→ Z/m→ 0, the 5-lemma
shows that we may assume thatn is prime. �



Part 3

Nisnevich sheaves with transfers





LECTURE 11

Standard triples

Our goal in this lecture is to prove proposition 11.1 below, which is one of
the main properties of homotopy invariant presheaves with transfers. It (or rather
its corollary 11.2) will be used in subsequent lectures to promote results from the
Nisnevich topology to the Zariski topology. It depends primarily upon the relative
Picard group introduced in lecture 7.

For all of this lecture,F will be a homotopy invariant presheaf with transfers.
Recall that a subgroupA of an abelian groupB is calledpure if nA= nB∩A

for every integern. A homomorphismf : A→ B of abelian groups is calledpure
injective if it is injective and f (A) is a pure subgroup ofB.

Any semilocal subschemeSof a smoothX is the intersection of the openXα

which contain it; by abuse we callS smooth and writeF(S) for lim−→F(Xα), as in
exercise 2.10. (IfS is local, this is the stalk ofF at the closed point ofS.)

PROPOSITION 11.1. For any smooth semilocal S over k, any Zariski dense
open subset V⊂ S, and any homotopy invariant presheaf with transfers F, the map
F(S)→ F(V) is pure injective.

The intersection of all suchV is the coproduct of the generic points SpecEi of
S. HenceF(S) injects (as a pure subgroup) into⊕F(SpecEi) = lim−→F(V).

COROLLARY 11.2. Let F be a homotopy invariant presheaf with transfers. If
F(SpecE) = 0 for every field E over k, then FZar = 0.

Here is the proof of proposition 11.1; it is a consequence of a more precise
result, theorem 11.3, whose proof will take up most of this lecture.

PROOF. The semilocal schemeS is the intersection of a familyXα of smooth
varieties of finite type overk andV is the intersection of dense open subschemes
Vα ⊂ Xα . HenceF(S)→ F(V) is the filtered colimit of the mapsiα : F(Xα)→
F(Vα). Since theUα given by 11.3 contains someX

β
, the kernel ofiα vanishes in

F(X
β
) and the colimit is an injection. Ifa∈ F(Xα) equalsnb∈ F(Vα) for some

b∈ F(Vα), then the image ofa in F(Uα), and hence inF(S), is n-divisible. �

THEOREM 11.3. Let X be smooth of finite type over a field k and let V be a
dense open subset. Then for every finite set of points x1, . . . ,xn ∈ X there exists
an open neighborhood U of these points such that the restriction F(X)→ F(U)
factors through F(X)→ F(V). That is, there is a map F(V)→ F(U) such that the

85
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following diagram commutes.

F(X)

F(V)
? ∃ - F(U)

-

EXAMPLE 11.4. If V & X is a dense open subset, thenF = Ztr(X)/Ztr(V) is a
presheaf with transfers, butF(X)→ F(V) is not injective. (1X is nonzero inF(X)
but vanishes inF(V).) This shows that homotopy invariance is necessary in 11.3.

To prepare for the proof of proposition 11.3, we need a technical digression.

DEFINITION 11.5. A standard triple is a triple(X̄
p̄- S,X∞,Z) wherep̄ is

a proper morphism of relative dimension 1 andZ andX∞ are closed subschemes of
X̄. The following conditions must be satisfied:

(1) S is smooth and̄X is normal,
(2) X̄−X∞ is quasi-affine and smooth overS,
(3) Z∩X∞ = /0,
(4) X∞∪Z lies in an affine open neighborhood in̄X.

Given a standard triple as above, we usually writeX for X̄−X∞. Note thatX̄ is a
good compactification of bothX andX−Z (see 7.8) by parts 2 and 4.

Conversely, ifX̄ is a good compactification of a smooth quasi-affine curve
X→ S(see 7.8), then(X̄, X̄−X, /0) is a standard triple.

We will see in 11.17 below that any pair of smooth quasi-projective varieties
Z⊂ X is locally part of a standard triple, at least whenk is infinite.

REMARK 11.6. (Gabber) Parts 4 and 2 imply thatS is affine, and thatZ and
X∞ are finite overS. Indeed,X∞ is finite and surjective overSby part 2, and affine
by part 4, so Chevalley’s theorem ([Har77, III Ex.4.2]) implies thatS is affine.

We will make use of the following observation. Recall from 7.10 that
Pic(X̄,X∞) is the group of isomorphism classes of pairs(L ,s) whereL is a line
bundle onX̄ ands is a trivialization onX∞.

Given a standard triple(X̄,X∞,Z), any sectionx : S→X of p defines an element
[x] of Pic(X̄,X∞). Indeed, there is a homomorphismC0(X/S)→ Pic(X̄,X∞).

REMARK 11.7. Let F be a homotopy invariant presheaf with transfers. Given
a standard triple(X̄,X∞,Z), by 7.5 there is a pairing:

( , ) : Pic(X̄,X∞)⊗F(X)→ F(S).

Let x : S→ X be a section ofp. If [x] is the class ofx in Pic(X̄,X∞), then([x], f ) =
F(x)( f ) for all f ∈ F(X).

LEMMA 11.8. Let (X̄,X∞,Z) be a standard triple over S and X= X̄−X∞.
Then there is a commutative diagram for every homotopy invariant presheaf with
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transfers F.

Pic(X̄,X∞ q Z)⊗F(X) - Pic(X̄,X∞ q Z)⊗F(X−Z)

Pic(X̄,X∞)⊗F(X)
?

- F(S)
?

PROOF. By definition, X̄ is a good compactification of bothX and X− Z.
Thus the pairings exist by 7.5 (or 7.16) and are induced by the transfers pairing
Cork(S,X)⊗F(X)→ F(S). Commutativity of the diagram is a restatement of the
fact that any presheaf with transfers is a functor onCork. �

COROLLARY 11.9. If x : S→ X is a section and[x] ∈ Pic(X̄,X∞) lifts to λ ∈
Pic(X̄,X∞ q Z), there is a commutative diagram:

F(X) - F(X−Z)

F(S).

[x]

?

λ

�

Moreover, ifλ ′ ∈C0(X−Z/S)⊂Cor(S,X−Z) is any representative ofλ (see 7.16
and 1A.12), the composition ofλ

′ with the inclusion X−Z ⊂ X isA1-homotopic
to x in Cor(S,X).

EXERCISE 11.10. Use example 7.14 withF = O∗ to show that there can be
more than one liftλ : F(X−Z)→ F(S).

More generally, observe that any units of O(Z) gives a trivialization of
O(X̄) on Z; combining this with the trivialization 1 onX∞ gives an element
σ(s) = (O,1q s) of Pic(X̄,X∞ q Z). Show thatλ + σ(s) is also a lift of [x] to
Pic(X̄,X∞ q Z), and that every other lift has this form for somes∈O∗(Z).

DEFINITION 11.11. A standard triple issplit over an open subsetU ⊂ X if
L∆|U×SZ is trivial, whereL∆ is the line bundle onU ×S X̄ corresponding to the
graph of the diagonal map.

EXAMPLE 11.12. For any affineS, the standard triple(S×P1,S×∞,S× 0)
is split over anyU in X = S×A1. Indeed, the line bundleL∆ is trivial on all of
X×X.

EXERCISE11.13. Let X̄ be a smooth projective curve overk, with affine open
X = Spec(A) and setX∞ = X̄−X. Then(X̄,X∞,Z) is a standard triple for every
finite Z in X. Let P1, ... be the prime ideals ofA defining the points ofZ, and
suppose for simplicity thatA/Pi

∼= k for all i. Show that the standard triple splits
overD( f ) if and only if eachPi becomes a principal ideal in the ringA[1/ f ].

In particular, ifX̄ = P1, the triple splits over allX because in this caseA is a
principal ideal domain.
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LEMMA 11.14. Any finite set of points in X has an open neighborhood U such
that the triple is split over U.

PROOF. The mapf : X×SZ→ X is finite, asZ is finite overS. Given points
xi ∈ X, eachf−1(xi) is finite. Now the line bundleL∆ is trivial in some neighbor-
hoodV of ∪i f−1(xi), because every line bundle on a semilocal scheme is trivial.
But every suchV contains an open of the formU ×SZ, and the triple is split over
such aU . �

PROPOSITION11.15. Consider a standard triple split over an affine U. Then
there is anA1-equivalence class of finite correspondencesλ : U → (X−Z) such
that the composite ofλ with (X−Z)⊂ X isA1-homotopic to the inclusion U⊂ X.

In particular, F(X)→ F(U) factors throughλ : F(X−Z)→ F(U):

F(X) - F(X−Z)

F(U).
?

∃λ
�

PROOF. Pulling back yields a standard triple(U ×SX̄,U ×SX∞,U ×SZ) over
the affineU . The diagonal∆ : U →U ×SX is a section and its class in Pic(U ×S
X̄,U ×SX∞) is represented by the line bundleL∆. If the triple is split over an
affineU , thenL∆ has a trivialization onU ×SZ as well, so[∆] lifts to a classλ
in Pic(U ×SX̄,U ×S(X∞ q Z)). By 7.2 and 7.16,λ is anA1-equivalence class of
maps inCor(U,X−Z). By 11.9 we have a commutative diagram

U
λ - U×S(X−Z)

[pr]- X−Z

U×SX
? [pr] -

[∆] -

X
?

and it suffices to observe thatpr ◦∆ : U →U×SX→ X is the inclusion. �

A different splitting (trivialization onU ×SZ) may yield a different liftingλ
′.

By exercise 11.10,λ ′ = λ + σ(s) for some units of O(U×SZ).

EXERCISE 11.16. Suppose thatλ is represented by an elementD of
Cor(U,X−Z) = C0(U × (X−Z)/U), as in exercise 7.15. Show that the element
D− [∆(U)] of Cor(U,X) is represented by a principal divisor( f ) onU × X̄, with
f equal to 1 onU×X∞.

THEOREM 11.17. Let W be a connected quasi-projective smooth scheme over
an infinite field k, Y a proper closed subset of W and y1, . . . ,yn ∈Y. Then there is
an affine open neighborhood X of these points in W and a standard triple(X̄→
S,X∞,Z) such that(X,X∩Y)∼= (X̄−X∞,Z).
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PROOF. (Mark Walker) We may assume thatW is affine, a closed(d + 1)-
dimensional subscheme ofAn. EmbedAn in AN by

(x1, . . . ,xn) 7→ (x1, . . . ,xn,x
2
1,x1x2, . . . ,xix j , . . . ,x

2
n).

Given a closed pointx∈W, Bertini’s Theorem (see [SGA4, XI.2.1]) implies that
the general linear projectionp : AN→ Ad is smooth near each point ofW lying on
p−1(p(x)). It is also finite when restricted toY, becauseY has dimension≤ d.

Let W̄ denote the closure ofW in PN, H = PN−AN, andW∞ = W̄∩H. The
general projection defines a rational mapp : W̄ .........- P

d whose centerC is finite,
becauseC lies in the intersection ofW∞ with a codimensiond linear subspace of
H. Let X̄1 be the closure of the graph ofp : (W̄−C)→ P

d in W̄×Pd. ThenW is
naturally an open subscheme ofX̄1 andX̄1−W has finite fibers overAd.

The singular pointsΣ of the projectionX̄1→ Pd are closed, and finite over each
p(yi) becausep is smooth nearW∩ p−1(p(yi)). Therefore there is an affine open
neighborhoodS in Ad of {p(yi)} over whichΣ is finite and disjoint fromY. Define
X to be p−1(S)∩W−Σ; by constructionp : X→ S is smooth. DefinēX ⊂ X̄1 to
be the inverse image ofS, andX∞ = X̄−X. ThenX∩Y→ SandX∞→ Sare both
finite.

It remains to show thatX∞ q (X∩Y) lies in an affine open neighborhood ofX̄.
As X̄ is projective overS, there is a global section of some very ample line bundle
L whose divisorD misses all of the finitely many points ofX∞ andX∩Y over any
p(yi). BecauseL is very ample andS is affine,X̄−D is affine. ReplacingS by
a smaller affine neighborhood of thep(yi), we can assume thatD missesX∞ and
X∩Y, i.e., thatX∞ andX∩Y lie in X̄−D, as desired. �

PORISM 11.18. If k is finite, the proof shows that there is a finite extensionk′

and an affine openX′ of the points inW×k Speck′ so that(X′,X′∩Y′) comes from
a standard triple overk′, whereY′ = Y×k Speck′. In fact, for each primel we can
assume that[k′ : k] is a power ofl .

Finally, we will use 11.15, 11.14 and 11.17 to prove 11.3.

PROOF OF11.3. We first assume thatk is infinite. Since we may replaceV
by V −{x1, . . . ,xn}, we may assume that the closed pointsx1, . . . ,xn of X lie in
Z = X−V. We can use 11.17 to shrinkX about these points to assume that there
exists a standard triple withX = X̄−X∞. By 11.14 the triple splits over an open
neighborhoodU of the points. AsX is quasi-projective, we may shrinkU to make
it affine. By 11.15 we get the mapF(X−Z)→ F(U) factoringF(X)→ F(U).

If k is finite, we proceed as follows. We see by porism 11.18 that there is an
openX′ of X×k Spec(k′) fitting into a standard triple overk′. The argument above
shows that there is an open neighborhoodU of x1, . . . ,xn (depending onk′) such
that if U ′ = U ×k Spec(k′) andV ′ = V ×k Spec(k′), thenF(X′)→ F(U ′) factors
through a mapΦ′ : F(V ′)→ F(U ′). Let Φ(k′) : F(V)→ F(U) be the composite of
Φ′ and the transferF(U ′)→ F(U). By 1.11,[k′ : k] timesF(X)→ F(U) factors
throughΦ(k′). By 11.18, we can choose two such extensionsk′,k′′ with [k′ : k] and
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[k′′ : k] relatively prime. ShrinkingU , we may assume thatF(U) is the target of
bothΦ(k′) andΦ(k′′). But thenF(X)→F(U) factors through a linear combination
of Φ(k′) andΦ(k′′). �



LECTURE 12

Nisnevich sheaves

We have already mentioned the Nisnevich topology several times in previous
lectures, as an alternative to theétale and Zariski topologies. In this lecture we
develop some of its more elementary properties.

We begin by recalling the definition of the Nisnevich topology (see [Nis89]).
A family of étale morphisms{pi : Ui → X} is said to be aNisnevich coveringof
X if it has the Nisnevich lifting property:

• for all x∈ X, there is ani and au∈Ui so thatpi(u) = x and the induced
mapk(x)→ k(u) is an isomorphism.

It is easy to check that this notion of cover satisfies the axioms for a Grothendieck
topology (in the sense of [Mil80 , I.1.1], or pre-topology in the sense of [SGA4]).
The Nisnevich topology is the class of all Nisnevich coverings.

EXAMPLE 12.1. Here is an example to illustrate the arithmetic nature of a

Nisnevich cover. When chark 6= 2, the two morphismsU0 =A1−{a} ⊂ j- A
1 and

U1 = A1−{0} z7→z2
- A

1 form a Nisnevich covering ofA1 if and only if a∈ (k∗)2.
They form ańetale covering ofA1 for any nonzeroa∈ k.

EXAMPLE 12.2. Let k be a field. The small Nisnevich site on Speck consists
of theétaleU over Speck, together with their Nisnevich coverings. EveryétaleU
over Speck is a finite disjoint unionq Specl i with the l i finite and separable over
k; to be a Nisnevich cover, one of thel i must equalk. Thus a Nisnevich sheafF
on Speck merely consists of a family of setsF(l), natural in the finite separable
extension fieldsl of k. In fact, each suchl determines a “point” of(Speck)Nis in
the sense of [SGA4, IV 6.1].

¿From this description it follows that Speck has Nisnevich cohomological di-
mension zero. This implies that the Nisnevich cohomological dimension of any
Noetherian schemeX is at most dimX; see [KS86].

LEMMA 12.3. If {Ui → X} is a Nisnevich covering then there is a nonempty
open V⊂ X and an index i such that Ui |V →V has a section.

PROOF. For each generic pointx of X, there is a generic pointu∈Ui so that
k(x) ∼= k(u). HenceUi → X induces a rational isomorphism between the corre-
sponding components ofUi andX, i.e.,Ui → X has a section over an open sub-
schemeV of X containingx. �

91
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EXAMPLE 12.4. A Hensel local ring or scheme(R,m) is a local ring such
that any finiteR-algebraS is a product of local rings. It is well-known (see [Mil80 ,
I.4.2]) that if S is finite andétale overR, and if R/m ∼= S/mi for some maximal
ideal mi of S, thenR→ S splits; one of the factors ofS is isomorphic toR. If
{Ui→ SpecR} is a Nisnevich covering then someUi is finite étale, soUi→ SpecR
splits. Thus every Nisnevich covering of SpecRhas the trivial covering as a refine-
ment. Consequently, the Hensel local schemes SpecR determine “points” for the
Nisnevich topology.

As with any Grothendieck topology, the categoryShNis(Sm/k) of Nisnevich
sheaves of abelian groups is abelian, and sheafificationF 7→FNis is an exact functor.
We know that exactness inShNis(Sm/k) may be tested at the Hensel local ringsOh

X,x
of all smoothX at all pointsx (see [Nis89, 1.17]). That is, for every presheafF :

• FNis = 0 if and only ifF(SpecOh
X,x) = 0 for all (X,x);

• FNis(SpecOh
X,x) = F(SpecOh

X,x).

By abuse of notation, we shall writeF(Oh
X,x) for F(SpecOh

X,x), and refer to it as
thestalkof FNis atx.

DEFINITION 12.5. A commutative squareQ = Q(X,Y,A) of the form

B
i - Y

A

f

? i - X

f

?

is calledupper distinguishedif B= A×X Y, f is étale,i : A→X is an open embed-
ding and(Y−B)→ (X−A) is an isomorphism. Clearly, any upper distinguished
square determines a Nisnevich covering ofX: {Y→ X,A→ X}.

EXERCISE 12.6. If dim X ≤ 1 show that any Nisnevich cover ofX admits a
refinement{U,V} such thatQ(X,U,V) is upper distinguished. Show that this fails
if dim X ≥ 2. Hint: CoverPn by copies ofAn.

By definition, F(Q) is a pullback square if and only ifF(X) is the pullback
F(Y)×F(B) F(A), i.e., the kernel off − i : F(Y)×F(A)→ F(B).

LEMMA 12.7. A presheaf F is a Nisnevich sheaf if and only if F(Q) is a pull-
back square for every upper distinguished square Q.

PROOF. For the “if” part, suppose that eachF(Q) is a pullback square. To
prove thatF is a Nisnevich sheaf, fix a Nisnevich covering{Ui → X}. Let us say
that an open subsetV ⊂ X is good(for the covering) if

F(V) - ∏F(Ui×X V)
-- ∏F(Ui×X U j ×X V)

is an equalizer diagram. We need to show thatX itself isgood.
By Noetherian induction, we may assume that there is a largestgood V⊂ X.

Suppose thatV 6= X and letZ = X−V. By lemma 12.3, there is a nonempty open
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W⊂ Z and an indexi such thatUi |W→W splits. LetX′ ⊂ X be the complement of
the closed setZ−W. ThenV andU ′i = Ui |X′ form an upper distinguished square
Q overX′. Pulling back along eachU ′j = U j |X′ also yields an upper distinguished
square. Thus we have pullback squares

F(X′) - F(U ′i ) F(U ′j) - F(U ′i ×X U ′j)

F(V)
?

- F(U ′i |V)
?

F(U ′j |V)
?

- F(U ′i ×X U ′j |V).
?

A diagram chase shows thatX′ is alsogood, contradicting the assumption that
V 6= X. HenceX is goodfor each cover, i.e.,F is a Nisnevich sheaf.

For “only if”, we assume thatF is a Nisnevich sheaf andQ is upper distin-
guished and need to prove that the mapF(X)→ F(Y)×F(B) F(A) is an isomor-
phism. We already know the map is monic because{A,Y} is a Nisnevich cover
of X. For the surjectivity, note that the sheaf axiom for this covering yields the
equalizer sequence

F(X)→ F(Y)×F(A)→→F(B)×F(A)×F(Y×X Y).

Since{∆(Y),B×A B} is a cover ofY×X Y, we have an injectionF(Y×X Y)→
F(Y)×F(B×A B). Now (a,y) ∈ F(A)×F(Y) lies in F(A)×F(B) F(Y) if the two
restrictions toF(B) are the same. The two maps toF(A) andF(Y) are the same, so
it suffices to consider the maps fromF(Y) to F(B×AB). These both factor through
F(B), so the images ofy are the same as the images ofa. But by construction the
two mapsF(A)→→F(B×A B) are the same. �

PORISM 12.8. Suppose more generally thatF is a sheaf for some Grothendieck
topology, and thatQ = Q(X,Y,A) is a pullback square whose horizontal maps are
monomorphisms. If{A,Y} is a cover ofX and{B×A B,Y} is a cover ofY×X Y,
the proof of 12.7 shows thatF(Q) is a pullback square.

EXERCISE 12.9. Write O∗/O∗l for the presheafU 7→ O∗(U)/O∗l (U), and
O∗/l for the Zariski sheaf associated toO∗/O∗l . Show that there is an exact se-
quence

0→ O∗(U)/O∗l (U)→ O∗/l(U)→ Pic(U)
l- Pic(U)

for all smoothU . Then show thatO∗/l is a Nisnevich sheaf onSm/k. If 1/l ∈
k, this is an example of a Nisnevich sheaf which is not anétale sheaf. In fact,
(O∗/l)ét = 0.

EXERCISE 12.10. If F is a Nisnevich sheaf, consider the presheafE0(F) de-
fined by:

E0(F)(X) = ∏
closed
x∈X

F(Oh
X,x).
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Show thatE0(F) is a Nisnevich sheaf, and that the canonical mapF → E0(F) is
an injection. Using 12.2, show thatE0(F) is a flasque sheaf, i.e., that it has no
higher cohomology (see [SGA4, V.4.1]). Iteration of this construction yields the
canonical flasque resolution 0→ F → E0(F)→ ··· of a Nisnevich sheaf, which
may be used to compute the cohomology groupsH∗Nis(X,F).

DEFINITION 12.11.Consider the presheafhX sendingU toZ[HomSm/k(U,X)].
We writeZ(X) for its sheafification(hX)Nis with respect to the Nisnevich topology.
It is easily checked thatZ(X)(U) =Z[Hom(−,X)](U) for every connected openU .
This is false for non-connectedU , sinceZ(X)(U1 qU2) = Z(X)(U1)⊕Z(X)(U2)
buthX(U1 qU2) = hX(U1)⊗hX(U2).

By the Yoneda lemma, Hom(Z(X),G) = G(X) for every sheafG. SinceZtr(X)
is a Nisnevich sheaf by 6.2, we see thatZ(X) is a subsheaf ofZtr(X).

Let D−Nis denote the derived category of cohomologically bounded above com-
plexes inShNis(Sm/k). If F andG are Nisnevich sheaves, it is well known that
ExtnNis(F,G) = HomD−

Nis
(F,G[n]) (see [Wei94, 10.7.5]).

LEMMA 12.12. Let G be a complex of Nisnevich sheaves. Then for all X:

ExtnNis(Z(X),G) =Hn
Nis(X,G).

PROOF. First suppose thatG is a sheaf. IfG→ I∗ is a resolution by injective
Nisnevich sheaves, then thenth cohomology ofG is Hn of I∗(X). But by [Wei94,
10.7.4] we know that the left side isHn of HomShNis(Sm/k)(Z(X), I∗) = I∗(X). A
similar argument applies whenG is a complex. �

LEMMA 12.13. The smallest class inD−Nis which contains all theZ(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all ofD−Nis.

PROOF. The proof of 9.4 goes through usingZ(X) in place ofRtr(X). �

For the rest of this lecture, we shall write⊗ for the presheaf tensor prod-
uct, (F ⊗G)(U) = F(U)⊗

Z
G(U), and⊗Nis for the tensor product of Nisnevich

sheaves, i.e., the sheafification of⊗. Note that if a sheafF is flat as a presheaf then
F is also flat as a sheaf. This is true for example of the sheavesZ(X).

LEMMA 12.14. Z(X×Y) = Z(X)⊗NisZ(Y).

PROOF. Since Hom(U,X × Y) = Hom(U,X) × Hom(U,Y), we see that
Z[Hom(U,X×Y)] = Z[Hom(U,X)]⊗Z[Hom(U,Y)]. ThusZ[Hom(−,X×Y)]∼=
Z[Hom(−,X)]⊗Z[Hom(−,Y)] as presheaves. Now sheafify. �

LEMMA 12.15. Let G be a Nisnevich sheaf on Sm/k such that Hn
Nis(−,G) is

homotopy invariant for all n. Then for all n and all bounded above C:

HomD−
Nis

(C,G[n])∼= HomD−
Nis

(C⊗NisZ(A1),G[n]).

PROOF. By 12.12, our assumption yields Extn(Z(X),G) ∼= Extn(Z(X ×
A

1),G) for all X. SinceZ(X×A1) = Z(X)⊗NisZ(A1) by 12.14, the conclusion
holds forC = Z(X). If C andC′ are quasi-isomorphic, then so areC⊗NisZ(A1)
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andC⊗NisZ(A1), becauseZ(A1) is a flat sheaf. But the class of all complexesC
for which the conclusion holds is closed under direct sums and cones, so by 12.13
the conclusion holds for allC. �

We borrow yet another topological definition: deformation retract. For eachF ,
note that the presheafF⊗Z[Hom(−,Speck)] is justF .

DEFINITION 12.16. An injection of presheavesi : F →G is called a(strong)
deformation retract if there is a mapr : G→ F such thatr ◦ i = idF and a ho-
motopyh : G⊗Z[Hom(−,A1)]→ G so that the restrictionh|F is the projection
F⊗Z[Hom(−,A1)] - F , h(G⊗0) = i ◦ r andh(G⊗1) = id.

If F and G are sheaves, the condition in the definition is equivalent to the
condition that there is a sheaf maph : G⊗NisZ(A1)→G so that the restrictionh|F
is the projectionF⊗NisZ(A1)→ F , h(G⊗0) = i ◦ r andh(G⊗1) = id.

For example, the zero-section Speck
0- A

1 induces a deformation retract
Z→ Z(A1); the homotopy maph is induced by the multiplicationA1×A1→ A

1

using 12.14. IfI1 is the quotient presheafZ(A1)/Z, so thatZ(A1) ∼= Z⊕ I1, then
0⊂ I1 is also a deformation retract.

LEMMA 12.17. If F → G is a deformation retract, then the quotient presheaf
G/F is a direct summand of G/F⊗ I1.

PROOF. The inclusion 0⊂ G/F is a deformation retract, whose homotopy is
induced fromh. Therefore we may assume thatF = 0.

Let K denote the kernel ofh. Since the evaluation “t = 1” : G = G⊗Z→
G⊗Z(A1) is a section of bothh and the projectionG⊗Z(A1)→G, we see thatK
is isomorphic toG⊗ I1. But “t = 0”: G→G⊗Z(A1) embedsG as a summand of
K. �

For every presheafF we defineC̃m(F) to be the quotient presheafCm(F)/F .
That is,C̃m(F)(U) is F(U ×Am)/F(U). Thus we have split exact sequences 0→
F →Cm(F)→ C̃m(F)→ 0.

COROLLARY 12.18. C̃m(F) is a direct summand of̃Cm(F)⊗ I1 for all m≥ 0.

PROOF. It is easy to see thatF →CmF is a deformation retract, so 12.18 is a
special case of 12.17. �

PROPOSITION 12.19. Let G be a Nisnevich sheaf on Sm/k such that
Hn

Nis(−,G) is homotopy invariant for all n. Then for all n and for all presheaves
F, there is an isomorphism

HomD−
Nis

((C∗F)Nis,G[n])
∼=- HomD−

Nis
(FNis,G[n]).

PROOF. Write Extn(C,G) for HomD−
Nis

(C,G[n]). For each complexC, lemma

12.15 implies that Extq(C⊗Nis I1,G) = 0 for all q. ForC = (C̃pF)Nis, 12.18 yields
Extq((C̃pF)Nis,G) = 0.
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Note that Extq(C,G) = Hq
RHom(C,G) for anyC; see [Wei94, 10.7.4]. As in

the proof of 10.10, a resolutionG→ I∗ yields a first quadrant Hom double complex
Hom((C̃∗F)Nis, I

∗) and hence a first quadrant spectral sequence

Ep,q
1 = Extq((C̃pF)Nis,G)⇒ Extp+q((C̃∗F)Nis,G)

(see [Wei94, 5.6.1]). Since every Ep,q
1

vanishes, this implies that
Extn((C̃∗F)Nis,G) = 0 for all n. In turn, this implies the conclusion of 12.19, viz.,
Extn((C∗F)Nis,G)∼= Extn(F,G) for all n. �

EXERCISE12.20. If U is open inX,Z(U) is a subsheaf ofZ(X); writeZ(X,U)
for the quotient Nisnevich sheaf. Iff : Y→ X is an étale morphism of smooth
schemes overk, andZ⊂ X is a closed subscheme isomorphic tof−1(Z), show that

Z(Y,Y− f−1(Z))
∼=- Z(X,X−Z).

The cdh topology

In order to extend the main results of the following chapters to (possibly) sin-
gular schemes, we need to introduce another topology: the cdh topology on the
categorySch/k of schemes of finite type overk. A crucial part will be played by
the following notion.

DEFINITION 12.21. Let X be a scheme of finite type over a fieldk and let
i : Z→ X be a closed immersion. Then anabstract blow-up of X with centerZ is
a proper mapp : X′→ X which induces an isomorphism(X′−Z′)red

∼= (X−Z)red,
whereZ′ = X′×X Z. We will often refer to the cartesian square

Z′ - X′

Z
?
⊂

i - X.

p
?

We will say thatp : X′→ X is an abstract blow-up if there exists aZ ⊆ X which
satisfies the conditions above.

EXERCISE12.22. Let X′→X be an abstract blow-up with centerZ. Show that
both 0→ Z(Z′)→ Z(X′)⊕Z(Z)→ Z(X) and 0→ Ztr(Z′)→ Ztr(X′)⊕Ztr(Z)→
Ztr(X) are exact sequences of Nisnevich sheaves onSm/k.

DEFINITION 12.23. The cdh topology onSch/k is the minimal Grothendieck
topology generated by Nisnevich covers and coversX′ q Z→ X corresponding to
abstract blow-ups. Aproper cdh cover is a proper map which is also a cdh cover.
A proper cdh cover of a reduced scheme is called aproper birational cover if it
is an isomorphism over a dense open subscheme.

If F is any presheaf onSch/k we will write Fcdh for its sheafification with
respect to this topology.
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The name “cdh” stands for “completely decomposed h-topology”; “completely
decomposed” is the original term for the Nisnevich topology (see [Nis89]), and the
h-topology was introduced in Voevodsky’s thesis.

EXAMPLE 12.24. It is easy to see from the definition thatXred→ X is a proper
cdh cover, and that every cdh cover has the Nisnevich lifting property (see p. 91).
In particular, it follows as in 12.2 that every cover of Speck has a section, and that
any 0-dimensional scheme has cdh cohomological dimension zero. In fact, the cdh
cohomological dimension of any Noetherian scheme is at most dimX; see [SV00,
5.13].

If X′→X is an abstract blow-up with centerZ, andZ contains no generic point
of X, thenX′ q Z→ X is a proper birational cdh cover.

EXAMPLE 12.25. If X is reduced, every proper cdh coverX̃→ X has a refine-
ment which is a proper birational cdh cover. To see this, note that the Nisnevich
lifting property applied to the generic point ofX yields a closed subschemeX′

of X̃ such thatX′ → X is a birational isomorphism, i.e., an isomorphism over
a dense open of the formX − Z. But thenX′ q Z → X is a cdh cover, and
X′ q (X̃×X Z)→ X is a proper birational cdh cover.

To better understand the structure of the cdh topology, we need to study some
properties of its coverings.

LEMMA 12.26. (See[SV00, 5.8].) A proper map is a proper cdh cover if and
only if it satisfies the Nisnevich lifting property.

PROOF. Let X̃→ X be a proper map satisfying the Nisnevich lifting property;
we must show that it is a cdh cover. By 12.24, this is true if dimX = 0, and we may
assume thatX is reduced and irreducible. We will proceed by induction on dimX.

Consider the proper birational cdh coverX′ q Z→ X constructed in 12.25.
The pullback ofX̃ → X along this cover consists of̃X×X X′ → X′ (which is a
cover because it has a section) andX̃×X Z→ Z (which is a cdh cover by induction
on dimX because the Nisnevich lifting property is satisfied). SinceX̃→ X is a cdh
cover locally in the cdh topology, it is a cdh cover. �

For example, ifX is smooth then any blow-upX′→ X along a smooth center
Z is a proper birational cdh cover. Indeed, the inverse image ofZ is a projective
bundle overZ, and such a bundle always satisfies the Nisnevich lifting property.

PROPOSITION12.27. Any cdh cover of the form T
p- U

q- X, where X
is integral, p is a proper cdh cover, and q is a Nisnevich cover, has a refinement of
the form

V
f - S

T
? p - U

q - X

g
?

where f is a Nisnevich cover and g is a proper cdh cover.
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PROOF. Let U =qi Ui be the decomposition ofU into its irreducible compo-
nents and letTi = T×U Ui . RefiningT→U as in 12.25, we may assume that each
Ti → Ui is a proper birational cdh cover. By platification (see [RG71] or 1A.1)
applied toT → X, there is a blow-upX′→ X along aZ ⊆ X such that the proper
transformT ′i of eachTi is flat overX′. We setU ′i = Ui ×X X′. The situation is
described by the following diagram in which all squares are cartesian:

T ′i - Ti×X X′ - U ′i
h - X′

Ti

?
- Ui

?
- X.
?

Now T ′i → X′ is flat, andh is étale by base change, sog : T ′i → U ′i is flat. But
g is also proper and birational, and thereforeg is an isomorphism since bothT ′i
andU ′i are irreducible. Hence the pullback ofT → X to X′ admits the refinement
U ′ =qU ′i ∼=q T ′i → X′.

By induction on dimX, the induced coverT ×X Z→ U ×X Z→ Z admits a
refinementV ′→ S′→ Z with V ′→ S′ a Nisnevich cover andS′→ Z a proper cdh
cover. But then the required refinement ofT→ X is the composition

V = V ′ qU ′
f- S= S′ q X′→ Zq X′→ X. �

PROPOSITION12.28. Every cdh cover of X in Sch/k has a refinement of the

form U
q- X′

p- X, where p is a proper cdh cover and q is a Nisnevich cover.

PROOF. SinceXred → X is a proper cdh cover, we may assumeX itself is
reduced. It will suffice to prove the statement for the irreducible components, and
therefore we may assume thatX itself is an integral scheme.

By definition, each cdh cover ofX can be refined to a cover of the formXn→
Xn−1→Xn−2→ . . .X1→X, where each map is either a Nisnevich cover or a proper
cdh cover. But using 12.27 we can move all Nisnevich covers to the left and all
proper cdh covers to the right, which is the statement. �

PROPOSITION12.29. Let F be a Nisnevich sheaf on Sch/k. Then Fcdh = 0
if and only if for any scheme X and any a∈ F(X), there is a proper cdh cover
p : X′→ X such that p∗(a) = 0∈ F(X′).

PROOF. If Fcdh = 0 anda∈ F(X), there is a cdh coverU → X such thata|U =

0. But by 12.28 we may assume that the cover is of the formU
q- X′

p- X,
whereq is a Nisnevich cover andp is a proper cdh cover. We know that 0=
(p◦q)∗(a) = q∗(p∗(a)). Sinceq is a Nisnevich cover andF is a Nisnevich sheaf,
q∗ is injective, and thereforep∗(a) = 0 in F(X′).

Now let us assume that the condition holds and considera∈ Fcdh(X). Replac-
ing X by a cover, we may assume thata∈ F(X). By assumption there is a proper
cdh coverp : X′→X such thatp∗(a) = 0. But thena = 0 sinceFcdh(X) injects into
Fcdh(X

′). �
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Consider the composite morphism of sitesr : (Sch/k)cdh→ (Sch/k)Nis→
(Sm/k)Nis. If F is a Nisnevich sheaf onSm/k, the inverse image sheafr∗(F) is
a cdh sheaf onSch/k. By abuse of notation, we will writeFcdh for r∗(F).

If we have resolution of singularities, then not only does everyX in Sch/k
have an abstract blow-upX′→ X with X′ smooth, but every proper birational cdh
coverX′→ X has a refinementX′′→ X with X′′ smooth, obtained as a composite
of blow-ups along smooth centers. Thus every cdh sheaf ofSch/k is determined
by its restriction toSm/k. In fact, assuming resolution of singularities, the functor
F 7→ Fcdh from ShNis(Sm/k) to Shcdh(Sch/k) is an exact functor by [SV00, 5.11].

LEMMA 12.30. Assume that k admits resolution of singularities. Let F be a
Nisnevich sheaf on Sm/k. Then Fcdh = 0 if and only if for any smooth scheme
X and any a∈ F(X), there is a composition of blow-ups along smooth centers
p : Xr → Xr−1→ ··· → X1→ X such that p∗(a) = 0∈ F(X′).

PROOF. AssumeFcdh = 0 and leta ∈ F(X) for a smoothX. By 12.29 and
12.25, there is a proper birational cdh coverp : X′→ X such thatp∗(a) = 0. Re-
fining the cover, we may assumep is a composition of blow-ups along smooth
centers.

Conversely, assume that the condition holds. LetX ∈ Sch/k and let a ∈
Fcdh(X). Passing to a covering, we may assume thata∈F(X) and thatX is smooth.
By assumption, there is a proper cdh coverp : Xr → Xr−1→ ··· → X1→ X such
that p∗(a) = 0∈ F(X′). �

EXERCISE12.31. If C is a nodal curve, show thatH1
cdh(C,Z) = Z.

EXERCISE12.32. This exercise shows thatH2
Nis(X,Z) 6= H2

cdh(X,Z) for some
normal surfaces.

(1) If X is normal, use [SGA1, I.10.1] to show thatHn
Nis(X,Z) = 0 for n> 0.

(2) Let X be a normal surface with a point singularity, whose exceptional
fiber is a node. Show thatH2

cdh(X,Z) 6= 0.





LECTURE 13

Nisnevich sheaves with transfers

We now consider the categoryShNis(Cork) of Nisnevich sheaves with transfers.
As with étale sheaves, we say that a presheaf with transfersF is aNisnevich sheaf
with transfers if its underlying presheaf is a Nisnevich sheaf onSm/k. Clearly,
everyétale sheaf with transfers is a Nisnevich sheaf with transfers.

THEOREM 13.1. Let F be a presheaf with transfers, and write FNis for the
sheafification of the underlying presheaf. Then FNis has a unique structure of
presheaf with transfers such that F→ FNis is a morphism of presheaves with trans-
fers.

Consequently, ShNis(Cork) is an abelian category, and the forgetful functor
ShNis(Cork) ⊂ - PST(k) has a left adjoint (F7→ FNis) which is exact and com-
mutes with the forgetful functor to (pre)sheaves on Sm/k.

Finally, ShNis(Cork) has enough injectives.

PROOF. The Nisnevich analogue of 6.16, is valid; just replace ‘étale cover’ by
‘Nisnevich cover’ in the proof. As explained after 6.12, theČech complexZtr(Ǔ)
is a Nisnevich resolution ofZtr(X). With these two observations, the proofs of
6.17, 6.18, and 6.19 go through for the Nisnevich topology. �

EXAMPLE 13.2. By theorem 4.1,Z(1) ' O∗[−1] as complexes of Nisnevich
sheaves with transfers. By 12.9,O∗/l = O∗⊗NisZ/l . SinceZ/l(1) = Z(1)⊗LNis
Z/l , it follows that there is a distinguished triangle of Nisnevich sheaves with trans-
fers for eachl :

µl → Z/l(1)→ O∗/l [−1]→ µl [1].

Since(O∗/l)ét = 0, this recovers 4.8:µl ' Z/l(1)ét.

EXERCISE13.3. If F is a Nisnevich sheaf with transfers, modify example 6.20
to show that the sheafE0(F) defined in 12.10 is a Nisnevich sheaf with transfers,
and that the canonical flasque resolutionF → E∗(F) is a complex of Nisnevich
sheaves with transfers.

LEMMA 13.4. Let F be a Nisnevich sheaf with transfers. Then:

(1) Its cohomology presheaves Hn
Nis(−,F) are presheaves with transfers;

(2) For any smooth X, we have F(X)∼= HomShNis(Cork)(Ztr(X),F);
(3) For any smooth X and any n∈ Z,

Hn
Nis(X,F)∼= ExtnShNis(Cork)(Ztr(X),F).

101
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PROOF. (Cf. 6.3, 6.21, and 6.23.) Assertion 2 is immediate from 13.1 and the
Yoneda isomorphismF(X) ∼= HomPST(Ztr(X),F). Now consider the canonical
flasque resolutionF → E∗(F) in ShNis(Sm/k). By 13.3, this is a resolution of
sheaves with transfers. SinceHn

Nis(−,F) is the cohomology ofE∗(F) as a presheaf,
and hence as a presheaf with transfers, we get part 1.

For part 3, it suffices by part 2 to show that ifF is an injective sheaf with trans-
fers andn> 0, thenHn

Nis(−,F) = 0. SinceF → E0(F) must split inShNis(Cork),
Hn

Nis(X,F) is a summand ofHn
Nis(X,E

0(F)) = 0, and must vanish. �

EXERCISE 13.5. (Cf. 6.25.) LetK be any complex of Nisnevich sheaves
of R-modules with transfers and letX be a smooth scheme. Use the fact that
cdNis(X) ≤ dim(X) (by 12.2) to generalize 13.4, by showing that hyperext and
hypercohomology agree in the sense that forn∈ Z:

Extn(Rtr(X),K)∼=Hn
Nis(X,K).

Since Nisnevich hypercohomology commutes with infinite direct sums, this shows
that Extn(Rtr(X),⊕Kα)∼=⊕α Extn(Rtr(X),Kα).

EXERCISE 13.6. Let F be a homotopy invariant Nisnevich sheaf ofR-
modules with transfers. Show thatF(X) ∼= HomD−(C∗Ztr(X),F), whereD− =
D−ShNis(Cork,R).

The following result allows us to bootstrap quasi-isomorphism results from the
field level to the sheaf level.

PROPOSITION13.7. Let A→ B be a morphism of complexes of presheaves
with transfers. Assume that their cohomology presheaves H∗A and H∗B are homo-
topy invariant, and that A(SpecE)→ B(SpecE) is a quasi-isomorphism for every
field E over k. Then AZar→ BZar is a quasi-isomorphism in the Zariski topology.

PROOF. LetC be the mapping cone. By the 5-lemma, eachHnC is a homotopy
invariant presheaf with transfers, which vanishes on SpecE for every fieldE over
k. Corollary 11.2 states that(HnC)Zar = 0. This implies thatCZar is acyclic as
a complex of Zariski sheaves, i.e., thatAZar andBZar are quasi-isomorphic in the
Zariski topology. �

The main result of this lecture, 13.12, as well as the next few lectures, depends
upon the following result, whose proof will not be completed until 24.1. Theorem
13.8 allows us to bypass the notion of strictlyA1-homotopy invariance (see 9.22)
used in lecture 9. The casen = 0 of 13.8, thatFNis is homotopy invariant, will be
completed in 22.3.

THEOREM 13.8. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then each presheaf Hn

Nis(−,FNis) is homotopy invariant.

The proofs of the following results are all based upon a combination of theorem
13.8, lemma 13.4, and proposition 13.7.
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PROPOSITION 13.9. Let k be a perfect field. If F is a homotopy invariant
Nisnevich sheaf with transfers, then for all n and all smooth X:

Hn
Zar(X,F)∼= Hn

Nis(X,F).

We will prove in 22.15 thatFZar is a presheaf with transfers. This would sim-
plify the proof of 13.9.

PROOF. For n = 0 we haveH0
Nis(X,F) = H0

Zar(X,F) = F(X) for every sheaf.
By the Leray spectral sequence, it now suffices to prove thatHn

Nis(S,F) = 0 for
all n > 0 when S is a local scheme. By 13.4 and 13.8, eachHn

Nis(−,F) is a
homotopy invariant presheaf with transfers. By 11.2, it suffices to show that
Hn

Nis(SpecE,F) = 0 for every fieldE over k. But fields are Hensel local rings,
and as such have no higher cohomology, i.e.,Hn

Nis(SpecE,−) = 0 for n> 0. �

PROPOSITION 13.10. Let C be a be bounded above complex of Nisnevich
sheaves with transfers, whose cohomology sheaves are homotopy invariant. Then
its Zariski and Nisnevich hypercohomology agree:

H
n
Zar(X,C)∼=Hn

Nis(X,C) for all smooth X and for all n.

PROOF. We will proceed by descending induction onn− p, whereCi = 0 for
i > p. If dimX = d, thenHn

Zar(X,C) = Hn
Nis(X,C) = 0 for all n> p+ d, because

cdZar(X) and cdNis(X) are at mostd. By 13.1, both the good Nisnevich truncation
τC and thepth-cohomology sheafH p = (C/τC)Nis are Nisnevich sheaves with
transfers. Settingm= n− p, we have a diagram

Hm−1
Zar (X,H p) - H

n
Zar(X,τC) - H

n
Zar(X,C) - Hm

Zar(X,H
p) - H

n+1
Zar (X,τC)

Hm−1
Nis (X,H p)

∼=
?

- H
n
Nis(X,τC)

∼=
?

- H
n
Nis(X,C)
?

- Hm
Nis(X,H

p)

∼=
?

- H
n+1
Nis (X,τC).

∼=
?

The four outer verticals are isomorphisms, by induction and 13.9. The statement
now follows from the 5-lemma. �

EXAMPLE 13.11. The motivic complexR(i) is bounded above, and has ho-
motopy invariant cohomology by 2.19. IfA is R-module, the same is true for
A(i) = A⊗RR(i). By 13.10, the motivic cohomology of a smoothX could be com-
puted using Nisnevich hypercohomology:

Hn,i(X,A) =Hn
Zar(X,A(i)) =Hn

Nis(X,A(i)).

This is the definition of motivic cohomology used in [VSF00]. Note that the mo-
tivic cohomology groupsHn,i(X,A) are presheaves with transfers by 13.5.

By 12.12 and 13.5,

Hn,i(X,A)∼= HomD−
Nis

(R(X),A(i)[n])∼= ExtnShNis(Cork)(Rtr(X),A(i)).

So motivic cohomology is representable inD−Nis andD−(ShNis(Cork)).
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THEOREM 13.12. Let k be a perfect field and F a presheaf with transfers such
that FNis = 0. Then(C∗F)Nis' 0 in the Nisnevich topology, and(C∗F)Zar ' 0 in
the Zariski topology.

PROOF. Let F be a presheaf with transfers such thatFNis = 0. We will first
prove that(C∗F)Nis' 0 or, equivalently, that the homology presheavesHi = HiC∗F
satisfy(Hi)Nis = 0 for all i. For i < 0 this is trivial;CiF = 0 implies thatHiC∗F = 0.
Since(H0)Nis is a quotient ofFNis = 0, it is also true fori = 0.

We shall proceed by induction oni, so we assume that(H j)Nis = 0 for all
j < i. That is, we assume thatτ(C∗F)Nis' (C∗F)Nis, whereτ(C∗F)Nis denotes the
subcomplex of(C∗F)Nis obtained by good truncation at leveli:

τ(C∗F)Nis is · · · → (Ci+1F)Nis→ (CiF)Nis→ d(CiF)Nis→ 0.

There is a canonical morphismτ(C∗F)Nis→ (Hi)Nis[i] and hence a morphism
f : (C∗F)Nis→ (Hi)Nis[i] in the derived categoryD−Nis. Since f induces an iso-
morphism on theith homology sheaves, it suffices to prove thatf = 0.

The presheaf with transfersHi is homotopy invariant by 2.19, so by 13.1 and
13.8 the sheafG = (Hi)Nis satisfies the hypothesis of 12.19. SinceFNis = 0, 12.19
yields

HomD−
Nis

((C∗F)Nis,(Hi)Nis[i])∼= HomD−
Nis

(FNis,(Hi)Nis[i]) = 0.

Hencef = 0 in D−Nis, and this implies that(Hi)Nis = 0.
We can now prove thatC∗FZar' 0. Each cohomology presheafH i = H iC∗F is

a homotopy invariant presheaf with transfers by 2.19. Since(C∗F)Nis' 0, we have
C∗(F)(SpecE) ' 0 for every finitely generated field extensionE of k (and hence
for every field overk). Indeed,E is Oh

X,x for the generic point of some smoothX.
Now apply 13.7 toC∗F → 0. �

Here is a stalkwise restatement of theorem 13.12.

COROLLARY 13.13. Let k be a perfect field and F a presheaf with transfers so
that F(SpecOh

X,x) = 0 for all smooth X and all x∈ X. Then(C∗F)(SpecOX,x)' 0
for all X and all x∈ X.

COROLLARY 13.14. Let f : C1 → C2 be a map of bounded above cochain
complexes of presheaves with transfers. If f induces a quasi-isomorphism over
all Hensel local ringsSpecOh

X,x, thenTot(C∗C1)→ Tot(C∗C2) induces a quasi-
isomorphism over all local rings.

PROOF. Let K = cone( f ) denote the mapping cone off . By assumption, each
H pK is a presheaf with transfers which vanishes on all Hensel local schemes, i.e.,
KNis' 0. By 13.12,C∗H pK ' 0 in the Zariski topology.

SinceK is a bounded above cochain complex, the double complexC∗(K) is
bounded. Hence the usual spectral sequence of a double complex (see [Wei94,
5.6.2]) converges toH∗TotC∗(K). SinceCqK(X) = K(X×∆q) we haveH pCqK =
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CqH pK for all p and q, and we have seen that eachHqC∗H pK vanishes on ev-
ery local schemeX. The resulting collapse in the spectral sequence shows that
H∗TotC∗(K) vanishes on every local scheme, which yields the result. �

If U = {U1, . . . ,Un} is a Zariski covering ofX, we saw in 6.12 that thěCech
complex

Ztr(Ǔ ) : 0→ Ztr(U1∩ . . .∩Un)→ ··· → ⊕iZtr(Ui)→ 0

is a resolution ofZtr(X) in the étale topology (and the Nisnevich topology). Sur-
prisingly, this gets even better when we applyC∗.

PROPOSITION13.15. If U is a Zariski covering of X then thěCech resolution
TotC∗Ztr(Ǔ )→C∗Ztr(X) is a quasi-isomorphism in the Zariski topology.

PROOF. Apply 13.14 to 6.14. �

COROLLARY 13.16. If E is a vector bundle over X, C∗Ztr(E)→C∗Ztr(X) is
a quasi-isomorphism.

PROOF. Choose a Zariski coverU of X on whichE is a trivial bundle. By
2.24 and 13.15, the left vertical and the horizontal maps are quasi-isomorphisms in
the diagram:

C∗Ztr(Ǔ ×X E)
'- C∗Ztr(E)

C∗Ztr(Ǔ )

'
? '- C∗Ztr(X).

?

Hence the right vertical map is a quasi-isomorphism. �

EXAMPLE 13.17. Applying 13.15 to the usual cover ofP1 (by P1−{0} and
P

1−{∞}) allows us to deduce thatC∗
(
Ztr(P1)/Z

)
'C∗Ztr(Gm)[1] = Z(1)[2] for

the Zariski topology, becauseC∗Ztr(A1)/Z' 0 by 2.24. This was already observed
in example 6.15 for théetale topology. This example will be generalized in theorem
15.2 below.

PROPOSITION 13.18. Let k be a perfect field and F a homotopy invariant
Nisnevich sheaf with transfers. Then the Zariski sheaf HZar associated to H(U) =
Hq(U×X,F) vanishes for every q> dim(X).

PROOF. By 13.4 and 13.8,H(U) is a homotopy invariant presheaf with trans-
fers. If E is a field overk then the Nisnevich cohomological dimension ofXE is at
most dim(XE) = dim(X), soH(SpecE) = Hq(XE,F) = 0. By 11.2,HZar = 0. �

We now consider the behavior of cohomology with respect to blow-ups along
smooth centers. We assume thatk is perfect in order to invoke 13.8.

PROPOSITION13.19. Let p : X′ → X be the blow-up of a smooth X with a
smooth center Z. Let C (respectively, Q) denote the cokernel ofZ(X′)→ Z(X)
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(respectively,Z(Z)⊕Z(X′)→ Z(X)). Then for any homotopy invariant Nisnevich
sheaf with transfers F,Extn(C,F) = Extn(Q,F) = 0 for all n.

If L is a complex of Nisnevich sheaves with transfers whose cohomology
sheaves are homotopy invariant,Extn(C,L) = Extn(Q,L) = 0 for all n.

PROOF. SetU = X−Z; by assumptionZ(U) is a subsheaf of bothZ(X′) and
Z(X). By the 5-lemma,C is the cokernel ofZ(X′)/Z(U)→ Z(X)/Z(U).

SinceZ is smooth, and exercise 12.20 allows us to pass to anétale neighbor-
hood ofZ without changingC or Q, we may assume thatX = T ×Ad and that
Z is identified withT × 0. But then the projectionX′ → T ×Pd−1 defining the
blow-up is a vector bundle with fiberA1, with sectionZ′ = Z×X X′ ∼= T×Pd−1.
SinceF is a homotopy invariant presheaf with transfers, theorem 13.8 implies that
Extn(Z(X′),F)∼= Hn(X′,F) = Hn(T×Pd−1,F) andHn(T×Ad,F)∼= Hn(Z,F).

The result forF is now a straightforward calculation. SinceZ→ X factors
throughX′ in this special case, we haveC = Q. If K denotes the kernel ofZ(X)→
C, then Ext∗(Z(Z′),F)∼= Ext∗(Z(X′),F) implies that Ext∗(K,F)∼= Ext∗(Z(Z),F).
This in turn implies that Ext∗(Z(X),F)→ Ext∗(K,F) is an isomorphism, whence
Ext∗(C,F) = 0.

The result for L follows from the hyperext spectral sequenceEp,q
2

=
Extq(−,H pL)⇒ Extp+q(−,L). �

COROLLARY 13.20. Let F be a homotopy invariant Nisnevich sheaf with
transfers, and let p: X′→ X be the blow-up of a smooth X along a smooth center
Z. Then there is a long exact sequence in Nisnevich cohomology (and, by 13.9,
Zariski cohomology)

. . .→ H i−1(Z′,F)→ H i(X,F)→ H i(X′,F)⊕H i(Z,F)→ H i(Z′,F)→ . . .

There is an analogous long exact sequence of hypercohomology groupsH
∗(−,L)

(either Nisnevich or Zariski by 13.10) if L is a complex of Nisnevich sheaves with
transfers whose cohomology sheaves are homotopy invariant.

PROOF. SinceH i
Nis(X,F)∼= Exti(Z(X),F), and Ext∗(Q,F) = 0 by 13.19, this

follows from the Ext sequences associated to exercise 12.22. �

COROLLARY 13.21. Let Xr → Xr−1→ . . .→ X1→ X be a sequence of blow-
ups along smooth centers and let C= Z(Xr ,X) be the sheaf cokernel ofZ(Xr)→
Z(X). ThenExt∗(C,F) = 0 if F is a homotopy invariant Nisnevich sheaf with
transfers.

PROOF. We proceed by induction onr, the caser = 1 being 13.19. IfX1→ X
has centerZ, and we setZ1 = Z×X X1, Zr = Z×X Xr , thenZr→ Z1 is a composition
of r−1 blow-ups along smooth centers. Consider the diagram

Z(Xr) - Z(X1) - Z(Xr ,X1)→ 0

Z(Xr)

=
?

- Z(X)
?

- Z(Xr ,X)
?
→ 0.
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It follows from 12.22 and a diagram chase that there is an exact sequence

0→ Z(Zr ,Z1)→ Z(Xr ,X1)→C→ Z(X1,X)→ 0.

By induction, Ext∗(Z(Zr ,Z1),F) and Ext∗(Z(Xr ,X1),F) vanish. Since
Ext∗(Z(X1,X),F) also vanishes, it follows from the Ext sequences that
Ext∗(C,F) = 0. �

Cdh sheaves with transfers

The main result of this section will be theorem 13.25.

LEMMA 13.22. Let C be the sheaf cokernel ofZ(X′)→ Z(X), where X′→ X
is a cdh cover. Then Ccdh = 0.

PROOF. To see this, pick a generatorf ∈ Hom(U,X) of C(U) and consider
the pullback cdh coverU ′ = U ×X X′ → U of X′ → X along f . The image of
f in Hom(U ′,X) comes fromf ′ ∈ Hom(U ′,X′) and so vanishes inC(U ′). Since
U ′→U is a cdh cover,f vanishes inCcdh(U). �

PROPOSITION13.23. Suppose that k admits resolution of singularities. If F
is a Nisnevich sheaf on Sm/k such that Fcdh = 0, and H is a homotopy invariant
Nisnevich sheaf with transfers, thenExtnNis(F,H) = 0 for all n.

PROOF. We proceed by induction, the casen< 0 being a definition. Consider
the canonical surjection of sheaves⊕

a∈F(X)

Z(X)
π- F.

SinceFcdh= 0, 12.30 implies thatπ factors through
⊕

α
Cα

p- F , where eachCα

is the sheaf cokernel of a sequence of blow-ups along smooth centers. WriteK for
the kernel of the surjectionp. The sheafKcdh vanishes because it is a subsheaf of
⊕(Cα)cdh, which is zero by 13.22. By 13.21, each Ext∗(Cα ,H) = 0, and therefore
Extn(F,H)∼= Extn−1(K,H), which is zero by induction onn. �

COROLLARY 13.24. Let H be a homotopy invariant Nisnevich sheaf with
transfers. Then H(X) injects into H(X′) for any cdh cover X′→ X.

In particular, H(X)→ Hcdh(X) is an injection for all smooth X.

PROOF. Let C be the sheaf cokernel ofZ(X′)→ Z(X). Since Hom(−,H)
is left exact, 0→ Hom(C,H)→ Hom(Z(X),H)→ Hom(Z(X′),H) is exact. But
Hom(C,H) = 0 by 13.22 and 13.23, and Hom(Z(X),H) = H(X) by Yoneda. �

THEOREM 13.25. Assume that resolution of singularities holds over a perfect
field k. Let F be a Nisnevich sheaf with transfers such that Fcdh = 0. Then the
complex C∗(F) is acyclic.
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PROOF. If C∗(F) is not acyclic, there is a smallestn≥ 0 such that the sheaf
H = Hn(C∗(F)) is non-zero. Using the good truncation ofC∗(F), we define a non-
zero mapC∗(F)→ H[n] in D−Nis. By 2.19 and 13.8, the sheaf with transfersH is
strictly homotopy invariant. By 12.19, HomD−

Nis
(C∗F,H[n])∼= HomD−

Nis
(F,H[n]) =

ExtnNis(F,H). But this Ext group is zero by 13.23. �

THEOREM 13.26. Assume that resolution of singularities holds over k. Let
X′→ X be an abstract blow-up with center Z, and set Z′ = Z×X X′. Then there is
a distinguished triangle inD−(ShNis(Cork)):

C∗Ztr(Z
′)→C∗Ztr(Z)⊕C∗Ztr(X

′)→C∗Ztr(X)→C∗Ztr(Z
′)[1].

PROOF. Let Φ be the sequenceZtr(Z′)→ Ztr(Z)⊕Ztr(X′)→ Ztr(X). Let Q
denote the cokernel ofZtr(X′)⊕Ztr(Z)→ Ztr(X); by exercise 12.22,Φ∼= Q. We
have to show thatC∗(Q) is acyclic; by 13.25, it suffices to show thatQcdh = 0.

Pick a finite set of elementary correspondencesWi ⊂U ×X representing gen-
eratorsai of Ztr(X)(U) and henceQ(U). We may assume that noWi lies inU×Z.
LetW′i be the proper transform ofWi in U×X′. By platification [RG71], there is a
blow-upU ′→U such that the proper transformsW′′i of W′i in U ′×X′ are flat over
U ′. Since eachW′′i →U ′ is generically finite, and flat, it is finite. Using resolu-
tion of singularities, we can findU ′′→U ′ with U ′′ smooth such thatU ′′→U is a
(proper birational) cdh cover; we may replaceU ′ by U ′′ so that theW′′i represent
elementsbi ∈ Ztr(X′)(U ′′). But the mapZtr(X)(U)→ Ztr(X)(U ′′) sends eachai
to the image ofbi , and hence the injectionQcdh(U)→ Qcdh(U

′′) sends eachai to
zero. By 12.30, this proves thatQcdh = 0. �

PROPOSITION13.27. Assume that resolution of singularities holds over k, and
let F be a homotopy invariant Nisnevich sheaf with transfers. Then for all smooth
X:

• Fcdh(X)∼= F(X);
• Hn

cdh(X,Fcdh)∼= Hn
Nis(X,F) for all n.

PROOF. Let us first show thatFcdh(X) = F(X). By 13.24,F(X)→ Fcdh(X) is
an injection for all smoothX. Letting G be the sheaf cokernel, we have an exact
sequence of Nisnevich sheaves:

0→ F → Fcdh→G→ 0.

By 13.23, Ext1(G,F) = 0, and therefore the sequence splits. HenceF is a direct
summand ofFcdh, and hence the restriction of a cdh sheaf toSm/k. SoG = 0.

Let F → I∗ be a cdh injective resolution ofF . The restrictionI∗|Nis of I∗ to
the Nisnevich topology is a complex of injective Nisnevich sheaves. It suffices to
show that this is also a resolution for the Nisnevich topology. LetBi ,Zi andH i =
Zi/Bi be thei-th boundaries, cycles and cohomology sheaves of the complexI∗|Nis,
respectively. SinceH0 = F by left exactness, we only need to show thatH i = 0 for
i > 0. If not, there is a minimali > 0 such thatH i 6= 0. By hypothesis(H i)cdh = 0,
so by 13.23 and dimension shifting [Wei94, Exercise 2.4.3], 0= Exti+1(H i ,F) ∼=
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Ext1(H i ,Bi). This implies that the sequence 0→ Bi → Zi → H i → 0 splits, and
therefore thatH i is a summand ofZi . SinceZi is a cdh sheaf, so isH i . But then
H i = (H i)cdh = 0. �





Part 4

The triangulated category of motives





LECTURE 14

The category of motives

In this lecture, we define the triangulated category of (effective) motives over
k, and the motive of a scheme in this category. The construction ofDMeff,−

Nis (k,R)
is parallel to the construction ofDMeff,−

ét
(k,R) in 9.2, but more central. We list the

main properties of this category in 14.5 below. Ifk admits resolution of singulari-
ties, this category allows us to extend motivic cohomology to all schemes of finite
type, as a cdh hypercohomology group. IfQ⊆R, we will show thatDMeff,−

Nis (k,R)
andDMeff,−

ét
(k,R) are equivalent.

Write D− for D−ShNis(Cork,R), and letE
A

denote the smallest thick sub-
category ofD− containing everyRtr(X×A1)→ Rtr(X) and closed under direct
sums. (See 9.1 and 9.2.) The quotientD−/E

A
is the localizationD−[W−1

A
], where

W
A

= WE
A

is the class of maps inD− whose cone is inE
A

. A map inW
A

is called

anA1-weak equivalence.
As pointed out in 9.3, it follows from 2.24 and 14.4 below thatE

A
is the thick

subcategory of all complexesE in D− such thatC∗(E) is acyclic.

DEFINITION 14.1. The triangulated category of motives overk is defined to
be the localizationDMeff,−

Nis (k,R) = D−[W−1
A

] of D− = D−ShNis(Cork,R). (Cf.
9.2.) If X is a smooth scheme overk, we writeM(X) for the class ofZtr(X) in
DMeff,−

Nis (k,Z) and call it themotive of X.
We defineDMeff

gm(k,R) to be the thick subcategory ofDMeff,−
Nis (k,R) generated

by the motivesM(X), whereX is smooth overk. Objects inDMeff
gm(k,R) will

be calledeffective geometric motives. If k admits resolution of singularities, it
follows from (14.5.3) and (14.5.5) thatDMeff

gm containsM(Y) for everyY in Sch/k,
and is generated byM(X), whereX is smooth and projective.

In 8.17, we showed that the derived categoryD−(Sh́et(Cork,R)) is a tensor
triangulated category. The same argument works in the Nisnevich topology for
D−ShNis(Cork,R). Here are the details.

DEFINITION 14.2. If C andD are bounded above complexes of presheaves
with transfers, we writeC⊗tr

L,Nis D for (C⊗tr
L D)Nis. Because 6.12 holds for the

Nisnevich topology, the Nisnevich analogues of 8.14, 8.15, 8.16, 8.17, and 8.18
hold. In particular, the derived categoryD− of bounded above complexes of Nis-
nevich sheaves with transfers is a tensor triangulated category under⊗tr

L,Nis. By
8.10,M(X)⊗tr

L,NisM(Y)∼= M(X×Y).

113
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Given 14.2, the proofs of 9.5 and 9.6 go through to show that the tensor⊗tr
L,Nis

on D− also endows the localizationDMeff,−
Nis (k,R) of D−ShNis(Cork,R) with the

structure of a tensor triangulated category.
The categoryDM−(k,R) is obtained fromDMeff,−

Nis (k,R) by inverting the Tate
twist operationM 7→ M(1) = M⊗tr

L,Nis R(1). Thus every object inDM−(k,R) is

isomorphic toM(−n) for somen≥ 0 and someM in DMeff,−
Nis (k,R). For any co-

efficientsR, it will follow from 8A.11 and 15.8 below thatDM−(k,R) is always a
tensor triangulated category. The localizationDMeff,−

Nis (k,R)→ DM−(k,R) is fully
faithful, by Voevodsky’s Cancellation Theorem 16.25 below.

The categoryDMgm(k,R) of geometric motivesis obtained fromDMeff
gm(k,R)

by inverting the Tate twist operationM 7→M(1) = M⊗tr
L,NisR(1). ¿From the previ-

ous paragraph, it is clear thatDMgm(k,R) is a full tensor triangulated subcategory
of DM−(k,R) and that the localizationDMeff

gm(k,R)→DMgm(k,R) is fully faithful.

REMARK 14.3. Because sheafification is exact, it induces a triangulated func-
tor from D−Nis = D−(ShNis(Cork,R)) to D−ét = D−(Sh́et(Cork,R)). By definitions
9.15 and 14.2, we have(K ⊗tr

L,Nis L)ét = K ⊗tr
L,ét L. Comparing definitions, we

see thatD−Nis → D−ét sends NisnevichA1-weak equivalences tóetaleA1-weak
equivalences, so it induces a tensor triangulated functorσ from DMeff,−

Nis (k,R) to
DMeff,−

ét
(k,R). We will show in 14.30 below thatσ is an equivalence whenR=Q.

Our definitions ofDMeff,−
Nis (k,R) andM(X) are equivalent to the definitions in

[TriCa , p. 205]. This follows by comparing the definition inloc. cit. to theorem
14.11 below, using the following lemma.

LEMMA 14.4. For every bounded above complex K of sheaves of R-modules
with transfers, the morphism K→ TotC∗(K) is anA1-weak equivalence. Hence
K ∼= TotC∗(K) in DMeff,−

Nis (k,R).
In particular, there is a natural isomorphism M(X)∼= C∗Ztr(X).

PROOF. The proof of lemmas 9.12 and 9.15 go through in this setting.�

PROPERTIES14.5. We now summarize the main properties of the category
DMeff,−

Nis (k,R) for the convenience of the reader.

• By 14.4,M(X) = Ztr(X) ∼= C∗Ztr(X). By 9.13M(X)⊗M(Y) ∼= M(X×
Y), and 2.24 yieldsM(X)∼= M(X×A1).
• For every smoothX and every Y, it follows from 14.16 that
H

n(X,C∗Rtr(Y))∼= Hom
DMeff,−

Nis

(M(X),M(Y)[n]). In particular,

Hn,i(X,R)∼= Hom
DMeff,−

Nis

(M(X),R(i)[n]).

For non-smoothX, Hn,i(X,R) is defined via this formula; see 14.17.
• (Mayer-Vietoris) For each open cover{U,V} of a smooth schemeX,

proposition 13.15 yields the Mayer-Vietoris triangle inDMeff,−
Nis (k,R):

(14.5.1) M(U ∩V)→M(V)⊕M(U)→M(X)→M(U ∩V)[1].
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• (Vector bundle) IfE→ X is a vector bundle, by 13.16 we have an iso-

morphismM(E)
∼=- M(X).

• (Projective bundle) We will prove in 15.12 that ifP(E )→ X is a projec-
tive bundle of rankn+1, then the canonical map induces an isomorphism:

(14.5.2)
n⊕

i=0

M(X)(i)[2i]
∼=- M(P(E )).

• (Blow-up triangle) Assume that resolution of singularities holds overk.
Let X′→ X be an abstract blow-up with centerZ, and setZ′ = Z×X X′.
By 13.26, there is a distinguished triangle:

(14.5.3) M(Z′)→M(X′)⊕M(Z)→M(X)→M(Z′)[1].

If moreoverX andZ are smooth, andZ has codimensionc, we show in
15.13 that (14.5.2) and (14.5.3) easily yield an isomorphism:

(14.5.4) M(X′)∼= M(X)⊕
(
⊕c−1

i=1 M(Z)(i)[2i]
)
.

• (Gysin triangle) LetX be a smooth scheme overk andZ a smooth closed
subscheme ofX of codimensionc. We will show in 15.15 that there is a
distinguished triangle:

(14.5.5) M(X−Z)→M(X)→M(Z)(c)[2c]→M(X−Z)[1].

• (Cancellation) Assume thatk admits resolution of singularities. LetM
andN be in DMeff,−

Nis (k,R). Then we will see in 16.25 that there is an
isomorphism Hom(M,N)→ Hom(M(1),N(1)).
• (Chow motives) We will show in 20.1 that Grothendieck’s category of

effective Chow motives embeds contravariantly intoDMeff
gm(k,Z), and

hence intoDMeff,−
Nis (k,Z), in the sense that ifX andY are two smooth

projective schemes, then:

(14.5.6) Hom(M(X),M(Y))∼= CHdimX(X×Y) = HomChow(Y,X).

We will define the notion of a motive with compact support in lecture 16. We
will investigate its properties there and in lecture 20.

NisnevichA1-local complexes

In this section we will show thatDMeff,−
Nis (k,R) can be identified with the full

subcategoryL of A1-local complexes inD− = D−(ShNis(Cork,R)).
DEFINITION 14.6. As is 9.17, we say that an objectL of D− is calledA1-

local (for the Nisnevich topology) if HomD−(−,L) sendsA1-weak equivalences to
isomorphisms. We writeL for the full subcategory ofA1-local objects inD−. The
proof of 9.19 goes through in the Nisnevich setting to show that ifL is A1-local
then for everyK:

(14.6.1) Hom
DMeff,−

Nis

(K,L)∼= HomD−(K,L).
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REMARK 14.7. We will see in 14.9 below thatC∗ is a functor fromD− to L .
Moreover, HomL (C∗(K),L) ∼= HomD−(K,L) for everyL in L andK in D− by
14.4 and definition 14.6. HenceC∗ is the left adjoint to the inclusionL ⊂ D−.

Let F be a Nisnevich sheaf with transfers. ThenF isA1-local if and only ifF
is homotopy invariant, because the proof of 9.24 goes through using 13.4 and 13.8.
This is the easy case of the following proposition.

PROPOSITION14.8. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. Then K isA

1-local if
and only if the sheaves aNis(H

nK) are all homotopy invariant.
HenceL is the categoryD−hi(ShNis(Cork,R)) of complexes with homotopy in-

variant cohomology sheaves.

PROOF. Suppose first that the cohomology sheaves ofK are homotopy invari-
ant. By 13.8 applied toF = aNis(H

qK), the presheavesHn
Nis(−,F) are homotopy

invariant. As in the proof of 9.24, this implies that eachaNis(H
qK) is A1-local.

BecausecdNis(X)< ∞, the hyperext spectral sequence (see [Wei94, 5.7.9])

Epq
2 (X) = Extp(Rtr(X),aNisH

qK) =⇒ HomD−(Rtr(X),K[p+q])

is bounded and converges. The mapf induces a morphism from it to the cor-
responding spectral sequence forX×A1. By the Comparison Theorem ([Wei94,
5.2.12]), f induces an isomorphism from HomD−(Rtr(X)[n],K) to HomD−(Rtr(X×
A

1)[n],K) for eachn. By 9.20,K isA1-local.
Now suppose thatK is A1-local. The cohomology presheaves ofK′ =

TotC∗(K) are homotopy invariant by 2.19. Theorem 13.8 applied to the cohomol-
ogy presheavesHqK′ shows that the sheavesaNis(H

qK′) are homotopy invariant.
The first part of this proof shows thatK′ is A1-local. By lemma 14.4, the canon-
ical mapK → K′ is anA1-weak equivalence. By 9.21, which goes through for
the Nisnevich topology,K → K′ is an isomorphism inD−. Hence the sheaves
aNis(H

nK)∼= aNis(H
nK′) are homotopy invariant. �

COROLLARY 14.9. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. If the presheaves Hn(K)
are all homotopy invariant, then K isA1-local.

In particular, C∗(K) isA1-local, and if K isA1-local then K∼= C∗(K) inD−.

PROOF. Combine 13.8 and 14.8. The hypothesis applies toC∗(K) by 2.19, and
the final assertion follows immediately from 14.4, as in theétale case 9.32. �

EXAMPLE 14.10. Here is an example to show that the converse does not hold
in 14.9. Consider the complexK of example 6.15:

0→ Ztr(Gm)→ 2Ztr(A
1,1)→ Ztr(P

1,1)→ 0.

Evaluating at Spec(k) and atA1, it is easy to see that the cohomology presheaf
H2K is not homotopy invariant (consider an embedding ofA

1 in P1 whose image
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contains both 0 and 1). On the other handK is A1-local, because its cohomology
sheavesaNisH

∗(K) vanish by 6.14.

If E andF are inL , then we defineE⊗L F = TotC∗(E⊗tr
L,NisF).

THEOREM 14.11. The category(LNis,⊗L ) is a tensor triangulated category,
and the canonical functor

LNis→ D−[W−1
A

] = DMeff,−
Nis (k,R)

is an equivalence of tensor triangulated categories.

PROOF. The categoryL = LNis is a thick subcategory ofD−. By 14.6.1
and 14.8, the functorL → D−[W−1

A
] is fully faithful. By 14.4, every objectK

of D−[W−1
A

] is isomorphic to TotC∗(K), which is in L by 14.9. HenceL is
equivalent toD−[W−1

A
].

It follows thatL is a tensor triangulated category, becauseD−[W−1
A

] is. If E
andF areA1-local, we have seen that the tensor productE⊗tr

L,Nis F is naturally
isomorphic toE⊗L F in D−[W−1

A
]. That is,⊗L is isomorphic to the induced

tensor operation onL . �

In [TriCa , p. 210], the tensor structure onLNis was defined using⊗L .

REMARK 14.12. If X is smooth andF is a Nisnevich sheaf with transfers,
we defineRHom(RtrX,F) to be the complex RHom(−×X,F) of sheaves with
transfers, as in 8.21. Ifk is perfect, this complex is bounded above by 13.18.
The RHom(RtrX,F) construction extends in an evident way to the more general
situation whenF is replaced by a bounded above complexL, andRtrX is replaced
by a complex representing an effective geometric motiveM. Moreover, ifL is an
A

1-local complex, thenRHom(M,L) is alsoA1-local, by 14.9.
If K is another bounded above complex, then a short calculation shows that

in either the derived categoryD−(Sh(Cork,R)) or in DMeff,−
Nis (k,R) we have the

adjunction (where⊗ is either⊗tr
L,Nis or⊗L ):

Hom(K⊗Rtr(X),L)∼= Hom(K,RHom(RtrX,L)).

EXERCISE14.13. (a) Show thatRHom(RtrX,L[n]))∼= RHom(RtrX,L))[n].
(b) Use 14.16 and 15.2 to show thatRHom(X,R)∼= RandRHom(X(r),R) = 0

for all smoothX andr > 0.

Next, recall from 9.8 that two parallel morphismsf andg of sheaves are said
to beA1-homotopic if there is a mapF⊗tr

L Ztr(A1)→G whose restrictions along
0 and 1 coincide withf and g, respectively. The proof of 9.10 shows thatA1-
homotopic morphisms between Nisnevich sheaves become equal inDMeff,−

Nis (k,R).
PROPOSITION14.14. Let C and D be bounded above complexes of Nisnevich

sheaves with transfers, whose cohomology sheaves are homotopy invariant. If C
and D areA1-local, thenA1-homotopic maps f,g : C→ D induce the same maps
on hypercohomology:

f = g :H∗Zar(X,C)→H∗Zar(X,D).
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PROOF. To prove the proposition, we writeDM for DMeff,−
Nis (k). Combining

13.10 with 13.5, we see that

H
n
Zar(X,C)∼= HomD−(Ztr(X),C[n]).

If C is A1-local, this equals HomDM (Ztr(X),C[n]) by 14.6.1. Sincef andg agree
in DM , they induce the same map fromHn(X,C) ∼= HomDM (Ztr(X),C[n]) to
H

n(X,D)∼= HomDM (Ztr(X),D[n]), as asserted. �

We will need the following elementary result forR= Q in 14.30 below. It is
proven by replacingZ(X) by Rtr(X) in the proof of 12.13.

LEMMA 14.15. The smallest class inD− which contains all the Rtr(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all ofD−.

One of the features of motivic cohomology is that it is representable by the
A

1-local complexesR(i)[n].

PROPOSITION14.16. Let L beA1-local. Then for any X∈ Sm/k

H
n
Zar(X,L)∼= Hom

DMeff,−
Nis

(Rtr(X),L[n]).

In particular, the motivic cohomology functors X7→ Hn,i(X,R) are representable
on Sm/k by R(i)[n] in DMeff,−

Nis (k,R):

Hn,i(X,R)∼= Hom
DMeff,−

Nis

(Rtr(X),R(i)[n]).

PROOF. By 14.8 and 13.10, the left hand side isHn
Nis(X,L). By 14.6.1, the

right side equals HomD−(Rtr(X),L[n]). These are isomorphic by 13.5. The final
representability formula follows from this and 13.11, becauseR(i)[n] is A1-local
by 3.1 and 14.9. �

DEFINITION 14.17. Let X be any scheme of finite type overk andi ≥ 0. We
define the motivic cohomology ofX with coefficients inR to be:

Hn,i(X,R) = Hom
DMeff,−

Nis

(Rtr(X),R(i)[n]),

whereRtr(X) was defined in 2.11. This agrees with our original definition 3.4 for
smoothX by 14.16.

Dually, we define the motivic homologyHn,i(X,R) to be

Hn,i(X,R) = Hom
DMeff,−

Nis

(R(i)[n],Rtr(X)).

Suslin’s algebraic singular homology, defined in 10.8, is the special casei = 0
of motivic homology.

PROPOSITION14.18. If X is any scheme of finite type over k, then

Hsing
n (X,R)∼= Hn,0(X,R).
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PROOF. BecauseH0
Nis(Speck,−) is an exact functor, we haveH∗Nis(Speck,K) =

H∗(K(Speck)) for every complexK. SettingR= Rtr(Speck), we compute:

Hsing
n (X,R) = Hn(C∗Rtr(X)(Speck)) by defn. 10.8,

=H−n
Nis(Speck,C∗Rtr(X)) by remark above

= HomD−(R[n],C∗Rtr(X)) by 13.5,

= Hom
DMeff,−

Nis (k,R)
(R[n],C∗Rtr(X)) by 14.9 and (14.6.1),

= Hn,0(X,R) by definition. �

If we assume thatk admits resolution of singularities, we may use the cdh
topology to extend some of the previous results from smooth schemes to all
schemes of finite type. For example, applying Hom(R(i)[n],−) to the triangle
(14.5.3) yields:

PROPOSITION14.19. Assume that resolution of singularities holds over k. Let
X′→ X be an abstract blow-up with center Z, and set Z′ = Z×X X′. Then there is
a long exact sequence in motivic homology:

Hn,i(Z
′,R)→ Hn,i(Z,R)⊕Hn,i(X

′,R)→ Hn,i(X,R)→ Hn−1,i(Z
′,R).

Now if L isA1-local, we can identify HomD−(K,L) with Hom
DMeff,−

Nis

(K,L) by

(14.6.1). WhenK = Ztr(X), we can identify these Hom groups with cdh hyper-
cohomology. Note that cdh hypercohomology makes sense by 12.24, because the
cdh cohomological dimension of any Noetherian scheme is finite.

THEOREM 14.20. Assume that resolution of singularities holds over k. Let L
be anA1-local complex. Then for any X in Sch/k and all n≥ 0 we have:

HomD−(Ztr(X),L[n])∼=Hn
cdh(X,Lcdh).

In particular, for any scheme X, and all positive n and i:

Hn,i(X,R)∼=Hn
cdh(X,R(i)cdh).

PROOF. For anyX, the inclusion of Nisnevich sheavesι : Z(X)→ Ztr(X) in-
duces a sequence of maps:

HomD−(Ztr(X),L[n]) = ExtnD−(Ztr(X),L) by definition,
u→ ExtnNis(Ztr(X),L) by forgetting transfers,

ι
∗
→ ExtnNis(Z(X),L) by ι ,
r→ Extncdh((Z(X))cdh,Lcdh) by change of sites,

=Hn
cdh(X,Lcdh) by definition.

If X is smooth, the compositeι∗ ◦u is an isomorphism by 13.5 and 12.12. By
mimicking the proof of 13.10 (using 13.27 in place of 13.9), we see that the mapr
is an isomorphism too. This finishes the proof whenX is smooth.
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WhenX is any scheme, we proceed by induction on dimX. We may assume
thatX is reduced. By resolution of singularities, there is a smoothX′ and a proper
birational morphismp : X′→X. LetZ be a proper subscheme (of lower dimension)
such thatp is an isomorphism overX−Z. Note that the cdh sheafification of the
sequence 12.22 is exact for the cdh coverX′ q Z→ X. By 13.22, we have a long
exact sequence of cdh hypercohomology groups. There is also a corresponding
long exact sequence of hyperext groups obtained by applying Hom(−,L) to the
triangle (14.5.3). Now consider the following morphism of long exact sequences:

Extn−1(Ztr(Z
′),L) - Extn(Ztr(X),L) - Extn(Ztr(X

′),L)⊕Extn(Ztr(Z),L)

H
n−1
cdh (Z′,Lcdh)

?
- H

n
cdh(X,Lcdh)

?
- H

n
cdh(X

′,Lcdh)⊕H
n
cdh(Z,Lcdh).

?

The outside verticals are isomorphisms by induction and the smooth case. We
conclude the proof of the general result using the 5-lemma.

Now the complexR(i) is A1-local by 3.1 and 14.9, so by 14.17 and (14.6.1)
Hn,i(X,R)∼= HomD−(Rtr(X),R(i)[n]). This yields the final assertion. �

Motives with Q-coefficients

We now consider the case when the coefficient ringR containsQ. Our first
goal is to identifyétale and Nisnevich motivic cohomology (14.24). We will
then describeDMeff,−

ét
(k,R) (in 14.28), and finally show thatDMeff,−

Nis (k,R) ∼=
DMeff,−

ét
(k,R) (in 14.30).

LEMMA 14.21. Let F be a Zariski sheaf ofQ-modules with transfers. Then F
is also anétale sheaf with transfers.

PROOF. It suffices to show that the presheaf kernel and cokernel ofF → Fét
vanish. By 6.17, these are presheaves with transfers. Thus we may suppose that
Fét = 0. If F 6= 0 then there is a pointx ∈ X and a nonzero elementc ∈ F(S),
S= SpecOX,x. SinceFét = 0, there is a finitéetale mapS′→ Swith c|S′ = 0. As in
1.11, the composition of the transfers and inclusion

F(S)→ F(S′)→ F(S)

is multiplication byd, the degree ofS′ → S. Hence this composition is an iso-
morphism. Since it sendsc to zero, we havec = 0. This contradiction shows that
F = 0, as desired. �

COROLLARY 14.22. If F is a presheaf ofQ-modules with transfers, then
FNis = Fét.

PROOF. By 13.1,FNis is a sheaf with transfers, so 14.21 applies. �

PROPOSITION14.23. If F is an étale sheaf ofQ-modules, then

Hn
ét(−,F) = Hn

Nis(−,F).
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PROOF. We need to prove thatHn
ét(S,F) = 0 for n> 0 whenS is Hensel local.

Given this, the result will follow from the Leray spectral sequence. SinceF is
uniquely divisible, so is its cohomology. But ifs is the closed point ofS then
Hn

ét(S,F) equalsHn
ét(s,F), which a torsion group. HenceHn

ét(S,F) = 0. �

Recall from 10.1 that théetale (or Lichtenbaum) motivic cohomology
H p,q

L
(X,Q) is defined to be théetale hypercohomology of the complexQ(q).
THEOREM 14.24. Let k be a perfect field. If K is a bounded above complex of

presheaves ofQ-modules with transfers, then KNis = Két and

H
∗
ét(X,Két) =H∗Nis(X,KNis)

for every X in Sm/k. In particular, Hp,q
L

(X,Q) = H p,q(X,Q).

PROOF. ConsiderF = HqC. By 14.22,KNis = Két andFNis = Fét. By 14.23,
we have isomorphismsH p

ét
(X,Fét)→ H p

Nis
(X,FNis), and these groups vanish for

p> dim(X) by 14.23. Comparing the hypercohomology spectral sequences for
the Nisnevich and théetale topology yields the result.

In particular, the result applies to the complexC =Q(q). �

For clarity, let us say that a complexK is étaleA1-local if it is A1-local for
the étale topology (as in 9.17), andNisnevichA1-local if it is A1-local for the
Nisnevich topology.

These notions coincide for anýetale sheaf ofR-modules with transfersF ,
whereQ ⊆ R. To see this, note that by 14.8,F is NisnevichA1-local if and
only if it is homotopy invariant:F(X) ∼= F(X×A1,F) for all smoothX. On the
other hand, we see from 9.24 thatF is étaleA1-local if and only if it is strictlyA1-
homotopy invariant in the sense of 9.22:Hn

ét(X,F)∼= Hn
ét(X×A1,F) for all smooth

X and alln. Hence ifF is étaleA1-local then it is NisnevichA1-local. Conversely,
if F is NisnevichA1-local thenHn

Nis(X,F) ∼= Hn
Nis(X×A1,F) for all smoothX

by 13.8. By 14.23,F is strictlyA1-homotopy invariant, i.e.,́etaleA1-local. This
proves the following lemma:

LEMMA 14.25. Let k be a perfect field, andQ⊆ R. The following are equiva-
lent for everýetale sheaf of R-modules with transfers F: F is homotopy invariant;
F is NisnevichA1-local; and F isétaleA1-local.

PROPOSITION14.26. Let k be a perfect field and suppose thatQ ⊆ R. If K
is a bounded above cochain complex ofétale sheaves of R-modules with transfers,
the following are equivalent: K iśetaleA1-local; K is NisnevichA1-local; and the
sheaves áet(H

nK) are homotopy invariant.
In particular, each R( j) is anétaleA1-local complex.

PROOF. By 14.22,aNis(H
nK) = aét(H

nK) so, by 14.8,K is NisnevichA1-local
if and only if the sheavesaét(H

nK) are homotopy invariant.
Suppose that the sheavesaétH

n(K) are homotopy invariant. By 14.25, they are
étaleA1-local. SinceQ⊆ R, we have cdR(k) = 0, soK is étaleA1-local by 9.30.
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Conversely, suppose thatK is étaleA1-local and setK′ = TotC∗(K). By
2.19, eachHn(K′) is A1-homotopy invariant. By theorem 13.8 and 14.21, each
étale sheavesaét(H

nK′) is homotopy invariant. The first part of this proof shows
that K′ is étaleA1-local. By 9.15,K → K′ is an (́etale)A1-weak equivalence,
and an isomorphism inDMeff,−

ét
(k,R). By 9.21, K → K′ is an isomorphism in

D−(Sh́et(Cork,R)). Hence each sheafaét(H
nK) is isomorphic toaét(H

nK′), and is
therefore also homotopy invariant. �

COROLLARY 14.27. If k is perfect andQ ⊆ R, theétale motivic cohomology
functors X7→ Hn,i

L
(X,R) are representable by R(i)[n] in DM−ét = DMeff,−

ét
(k,R):

Hn,i
L (X,R)∼= HomDM−ét

(Rtr(X),R(i)[n]).

PROOF. Write D−ét for D−(Shet(Cork,R)). SinceR(i) is étaleA1-local by
14.26, we know from 9.19 that

HomDM−ét
(Rtr(X),R(i)[n]) = HomD−

ét
(Rtr(X),R(i)[n]) = Extn(Rtr(X),R(i)).

By 6.25, this Ext group isHn,i
L

(X,R) =Hn
ét(X,R(i)). �

Let Lét denote the full subcategory ofD−ét = D−(Sh́et(Cork,R)) consisting of
complexes with homotopy invariant cohomology sheaves. By 14.26,Lét is also
the subcategory of́etaleA1-local complexes.

THEOREM 14.28. The natural functorLét→ DMeff,−
ét

(k,R) is an equivalence
of triangulated categories ifQ⊆ R.

PROOF. The functor is full and faithful by 9.19 and 14.26. Since everyK in
D−ét becomes isomorphic to TotC∗(K) in DMeff,−

ét
by 9.15, and TotC∗(K) is in Lét

by 2.19 and 14.26, the functor is an equivalence. �

REMARK 14.29. Theorem 14.28 implies thatLét is a tensor triangulated cat-
egory. As in the proof of 9.35 and 14.11, 14.4 and 14.9 show that the tensor oper-
ation ofLét is isomorphic to the operation⊗L defined in 9.34.

THEOREM 14.30. If Q ⊆ R, thenσ : DMeff,−
Nis (k,R) → DMeff,−

ét
(k,R) is an

equivalence of tensor triangulated categories.

PROOF. Recall from 14.3 that there are tensor triangulated functorsD−→D−ét
and DMeff,−

Nis → DMeff,−
ét

. Since they are onto on objects, it suffices to show
that the functorσ is full and faithful, i.e., that we have Hom

DMeff,−
Nis

(K,L) ∼=
Hom

DMeff,−
ét

(Két,Lét). By theorem 14.11, we may assume thatL is in LNis. The

class of objectsK so that Hom
DMeff,−

Nis

(K,L[n]) ∼= Hom
DMeff,−

ét

(Két,Lét[n]) for all n

is closed under quasi-isomorphisms, direct sums, shifts, and cones. By 14.15, it
suffices to show that eachRtr(X) is in this class. But then by 14.6.1, 13.5, 9.19,
and 6.25, we have Hom

DMeff,−
Nis

(Rtr(X),L[n]) ∼= HomD−(Rtr(X),L[n]) ∼= Hn
Nis(X,L)
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and Hom
DMeff,−

ét

(Rtr(X),Lét[n]) ∼= HomD−
ét
(Rtr(X),Lét[n]) ∼= H

n
ét(X,Lét). By theo-

rem 14.24, these groups are isomorphic as required. �





LECTURE 15

The complexZ(n) and Pn

The goal of this lecture is to interpret the motivic complexZ(n) in terms of
Ztr(Pn) and use this to show that the product on motivic cohomology is graded-
commutative. We also apply this to give a projective bundle theorem and a Gysin
map associated to a smooth blow-up. We begin by observing thatM(Pn− 0) ∼=
M(Pn−1).

LEMMA 15.1. There is a chain homotopy equivalence:

C∗Ztr(P
n−0)'C∗Ztr(P

n−1).

PROOF. Consider the projection(Pn−0)→ Pn−1 sending(x0 : · · · : xn) to (x1 :
· · · : xn), where 0 is(1 : 0 : · · · : 0). This map has affine fibers. The self homotopy
λ (x0 : · · · : xn)→ (λx0 : x1 : · · · : xn) is well defined onPn−0×A1, even forλ = 0,
because one ofx1, . . . ,xn is always non zero. Hence the projection and the section
(x1 : · · · : xn) 7→ (0 :x1 : · · · : xn) are inverseA1-homotopy equivalences. The lemma
now follows from 2.26. �

THEOREM 15.2. If k is a perfect field, there is a quasi-isomorphism of Zariski
sheaves for each n:

C∗
(
Ztr(P

n)/Ztr(P
n−1)

)
'C∗Ztr(G

∧n
m )[n] = Z(n)[2n].

In particular, C∗
(
Ztr(Pn)/Ztr(Pn−1)

)
(X)' Z(n)[2n](X) for any smooth local X.

Our proof will use theorem 13.12, whose proof depended upon theorem 13.8,
a result whose proof we have postponed until lecture 24. The requirement thatk be
perfect is only needed for 13.8 (and hence 13.12).

PROOF. Let U be the usual cover ofPn by (n+ 1) copies ofAn and note
thatn of these form a coverV of Pn−0. The intersection ofi + 1 of theseAn is
A

n−i × (A1−0)i . By 6.14, we have quasi-isomorphismsZtr(Ǔ )→ Ztr(Pn) and
Ztr(V̌ )→Ztr(Pn−0) of complexes of Nisnevich sheaves with transfers. Hence the
quotient complexQ∗ = Ztr(Ǔ )/Ztr(V̌ ) is a resolution ofZtr(Pn)/Ztr(Pn−0) as
a Nisnevich sheaf. By 13.14 and 15.1, or by 13.15, TotC∗Q∗ is quasi-isomorphic
to C∗ (Ztr(Pn)/Ztr(Pn−0)) and hence toC∗(Ztr(Pn)/Ztr(Pn−1)) for the Zariski
topology.

125
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On the other hand, we know from 2.13 that forT = A1−0 the sequence

0→ Ztr(G
∧n
m )→ Ztr(T

n)→⊕iZtr(T
n−1)→⊕i, jZtr(T

n−2)→

··· → ⊕i, jZtr(T
2)→⊕iZtr(T)→ Z→ 0

is split exact. Rewriting this as 0→ Ztr(G∧n
m )→ Rn→ Rn−1→ ··· → R0→ 0,

with Rn = Ztr(Tn), Rn−1 =⊕iZtr(Tn−1), andR0 = Z, we may regard it as a chain
homotopy equivalenceZtr(G∧n

m )[n]→R∗. With this indexing there is a natural map
Q∗→ R∗ whose typical term is a direct sum of the projections

Ztr(A
n−i×T i)→ Ztr(T

i).

These areA1-homotopy equivalences (see 2.25). ApplyingC∗ turns them into
quasi-isomorphisms by 2.26. Hence we have quasi-isomorphisms of total com-
plexes of presheaves with transfers

TotC∗Q∗
'- TotC∗R∗ �

'
C∗Ztr(G

∧n
m )[n].

Combining with TotC∗Q∗'C∗
(
Ztr(Pn)/Ztr(Pn−1)

)
yields the result in the Zariski

topology. �

If n = 1, it is easy to see that the isomorphisms of 13.17 and 15.2 agree. Fig-
ure 1 illustrates the proof of theorem 15.2 whenn = 2. We have written ‘X’ for
C∗Ztr(X) in order to save space, and ‘A1−h.e.’ for A1-homotopy equivalence.

0 - 0 - A
1× (A1−0) - 2A2 - P

2−0

0
?

- (A1−0)2
?

- 3
(
A

1× (A1−0)
)?

- 3A2
?

- P
2
?

0
?

- (A1−0)2

=
?

- 2
(
A

1× (A1−0)
)?

- A
2
?

- P
2/(P2−0)

?

G
∧2
m

?
- (A1−0)2

=
?

- 2(A1−0)

A
1−h.e.

?
- pt

A
1−h.e.

?
- 0
?

FIGURE 15.1. The casen = 2 of theorem 15.2

COROLLARY 15.3. For each n there is a quasi-isomorphism for the Zariski
topology

C∗ (Ztr(A
n−0)/Z)' Z(n)[2n−1].

PROOF. Applying 13.15 and 15.1 to the cover ofPn byAn andPn−0, we see
that the sequence

0→C∗Ztr(A
n−0)→C∗Ztr(A

n)⊕C∗Ztr(P
n−1)→C∗Ztr(P

n)→ 0
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becomes exact for the Zariski topology. The result now follows from theorem 15.2,
sinceC∗Ztr(An)'C∗Ztr(Speck)' Z by 2.24 and 2.14. �

EXERCISE 15.4. Show that the mapC∗Ztr(Pi) → Z(i)[2i] of theorem 15.2
factors through the natural inclusionC∗Ztr(Pi)→C∗Ztr(Pn) for all n> i. Hint:
Fix U0 in U and constructZtr(Ǔ )→ Z(1)[2] vanishing onZtr(U0). Then form

Ztr(Ǔ )
∆- Ztr(Ǔ )⊗·· ·⊗Ztr(Ǔ )→ Z(1)[2]⊗i → Z(i)[2i].

COROLLARY 15.5. There is a quasi-isomorphism

M(Pn) = C∗Ztr(P
n)

'- Z⊕Z(1)[2]⊕·· ·⊕Z(n)[2n].

PROOF. We proceed by induction, the casen = 1 being 13.17. By exercise
15.4, the mapZtr(Pn−1)→ Ztr(Pn) is split injective inDM , because the quasi-
isomorphismZtr(Pn−1)→ ⊕Z(i)[i] factors through it. Hence the distinguished
triangle of theorem 15.2 splits:

C∗Ztr(P
n−1) - C∗Ztr(P

n) - Z(n)[n] - C∗Ztr(P
n−1)[1]. �

Our re-interpretation of the motivic complexes allows us to show that the prod-
uct in motivic cohomology is skew-commutative. This will be a consequence of
the following construction, and some linear algebra.

EXAMPLE 15.6. Consider the reflection automorphismτ of Pn, n≥ 1, sending
(x0 : x1 : · · · : xn) to (−x0 : x1 : · · · : xn). We claim that the induced automorphism
of C∗Ztr(Pn) is A1-homotopic to the identity map, so that it is the identity map in
DMeff,−

Nis (see 14.1 and 9.10).
To see this, consider the elementary correspondence fromPn × A1

(parametrized byx0, . . . ,xn andt) to Pn (parametrized byy0, . . . ,yn) given by the
subvarietyZ of Pn×A1×Pn defined by the homogeneous equation(s)

yi(x0yi + txiy0) = (t2−1)xiy
2
0, i = 1, . . . ,n

together withxiy j = x jyi for 1≤ i, j ≤ n if n≥ 2. (Exercise: check that this is
an elementary correspondence!) The restrictions alongt = ±1 yield two finite
correspondences fromPn to itself, whose difference isid

Pn− τ.
Restricted toPn−1×A1, this correspondence is the projection ontoPn−1. Thus

it induces anA1-homotopy betweenτ and the identity ofZtr(Pn)/Ztr(Pn−1). Ap-
plying C∗, we see from theorem 15.2 that it induces anA1-homotopy between the
reflection automorphismτ of Z(n)[2n] and the identity, so thatτ is the identity map
in DMeff,−

Nis .

The symmetric groupΣn acts canonically onAn by permuting coordinates. By
inspection, this induces aΣn-action on the sheaf with transfersZtr(G∧n

m ) and hence
on the motivic complexesZ(n).

PROPOSITION15.7. The action of the symmetric groupΣn on C∗Ztr(An−0)
isA1-homotopic to the trivial action.



128 15. THE COMPLEXZ(n) AND Pn

PROOF. Because the action is induced from an embeddingΣn ↪→GLn(k), and
every transposition acts as the reflectionτ times an element ofSLn(k), we see from
example 15.6 that it suffices to show that the action ofSLn(k) onC∗Ztr(An−0) is
chain homotopic to the trivial action.

Since every matrix inSLn(k) is a product of elementary matrices, it suffices to
consider one elementary matrixei j (a), a∈ k. But multiplication by this matrix is
A

1-homotopic to the identity ofAn−0, by the homotopy(x, t) 7→ ei j (at)x (see 9.9).
In particular it is anA1-homotopy equivalence (see 2.25). By 2.26, the resulting
endomorphism ofC∗Ztr(An−0) is chain homotopic to the identity. �

COROLLARY 15.8. The action of the symmetric groupΣn on Z(n) is A1-
homotopic to the trivial action. Hence it is trivial inDMeff,−

Nis , and on the motivic
cohomology groupsHp(X,Z(n)).

Tensoring with a coefficient ringRdoes not affect the action, so it follows that
Σn also acts trivially onR(n)[2n], and onHp(X,R(n)).

PROOF. The action ofΣn onAn extends to an action onPn fixing Pn−1. In fact,
all the constructions in the proof of theorem 15.2 and corollary 15.3 are equivariant.
By 15.3, it suffices to show that the action ofΣn onC∗Ztr(An−0) isA1-homotopic
to the trivial action. This follows from 15.7 and 14.14. �

Recall from 3.11 that there is a pairing of presheavesZ(i)⊗Z( j)→ Z(i + j).
By inspection of 3.10, this pairing is compatible with the action of the subgroup
Σi×Σ j of Σi+ j , as well as with the permutationτ interchanging the firsti and last
j coordinates ofZtr(G∧i+ j

m ).
THEOREM 15.9. The pairing defined in 3.12 is skew-commutative:

H
p
Zar(X,Z(i))⊗Hq

Zar(X,Z( j))→Hp+q
Zar (X,Z(i + j)).

PROOF. As in 8A.2, the permutationτ fits into the commutative diagram

H
p(X,Z(i))⊗Hq(X,Z( j)) - H

p+q(X,Z(i)⊗Z( j)) - H
p+q(X,Z(i + j))

H
q(X,Z( j))⊗Hp(X,Z(i))

(
?
−1)pq

- H
p+q(X,Z( j)⊗Z(i))

τ

?
- H

p+q(X,Z( j + i))

τ

?

and the right vertical map is the identity by proposition 15.8. �

We conclude this lecture with a generalization of the decomposition 15.5 of
M(Pn) to a projective bundle theorem.

CONSTRUCTION15.10. Let P= P(E )→ X be a projective bundle associated
to a vector bundleE of rankn+ 1. From 4.2, 13.11, and 13.5 we have an isomor-
phism

Pic(P)∼= H2
Nis(P,Z(1))∼= HomD−(Ztr(P),Z(1)[2]).

Therefore the canonical line bundle yields a canonical mapτ : Ztr(P) →
Z(1)[2] in D−. Recall from 10.4 that there are multiplication maps for alli ≥ 1,
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from Z(1)⊗
tr i = Z(1)⊗tr · · ·⊗tr

Z(1) to Z(i). For i > 1, we letτ i denote the com-
posite

Ztr(P)
∆- Ztr(P×·· ·×P)

∼=- Ztr(P)⊗
tr i τ

⊗i
- Z(1)[2]⊗

tr i - Z(i)[2i].

Finally, we extend the structure mapσ0 :Ztr(P)→Ztr(X) to a canonical family
of maps inD−

σi : Ztr(P)
∆- Ztr(P)⊗tr

Ztr(P)
σ0⊗τ

i
- Ztr(X)⊗Z(i)[2i].

EXERCISE 15.11. Show that the canonical map in 15.10 induces the isomor-
phismZtr(Pn

k)∼=⊕n
i=0Z(i)[2i] of 15.5.Hint: Use exercise 15.4.

THEOREM 15.12 (Projective Bundle Theorem).Let p : P(E )→ X be a pro-
jective bundle associated to a vector bundleE of rank n+ 1. Then the canonical
map

⊕n
i=0Ztr(X)(i)[2i]→ Ztr(P(E ))

is an isomorphism inDM , and p is the projection onto the factorZtr(X).

PROOF. Using induction on the number of open subsets in a trivialization of
E , together with the Mayer-Vietoris triangles (14.5.1), we are reduced to the case
whenP(E ) = X×Pn. SinceZtr(X×Pn) ∼= Ztr(X)⊗tr

Ztr(Pn), we may even as-
sumeX = Spec(k). This case is given by 15.5 and exercise 15.11. �

COROLLARY 15.13. Let X be a smooth scheme and Z a smooth subscheme of
pure codimension c. Let p: X′→ X be the blow-up along Z. Then

C∗Ztr(X
′)∼= C∗Ztr(X)⊕

(
⊕c−1

i=1 C∗Ztr(Z)(i)[2i]
)
.

Moreover, there is a natural “Gysin” mapγ : C∗Ztr(X)→C∗Ztr(Z)(c)[2c], which
is zero on C∗Ztr(X−Z).

PROOF. SinceZ is smooth,Z′ is the projective bundle associated to the normal
bundle ofZ in X. We claim that the morphismC∗Ztr(X′)→ C∗Ztr(X) is a split
surjection. By 13.26 and 15.12, this will prove the first assertion.

Let X′′ be the blow-up ofX×A1 alongZ×0, and letZ′′ = (Z×0)×X×A1 X′′.
Consider the following diagram, whose rows are distinguished triangles by 13.26:

C∗Ztr(Z
′)

a- C∗Ztr(Z)⊕C∗Ztr(X
′)

b - C∗Ztr(X) - C∗Ztr(Z
′)[1]

C∗Ztr(Z
′′)

f
? c- C∗Ztr(Z×0)⊕C∗Ztr(X

′′)

g
? d- C∗Ztr(X×A1)

' h = 1X×0
?

- C∗Ztr(Z
′′)[1].
?

By 2.24, the maph is a quasi-isomorphism. Buth is alsoA1-homotopic to 1X×1,
soh lifts to a mapC∗Ztr(X)→C∗Ztr(X′′). This splitsd, and hencec.

Let N be the normal bundle ofZ in X. Then the morphismZ′ → Z′′ is
the canonical embedding ofP(N ) into P(N ⊕O). By 15.12, f is a splitting
monomorphism. Composingg with the splittings ofc and f , we see thata splits
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naturally. Since the first row is a distinguished triangle,b also splits naturally,
which implies the claim.

Note that the cokernel off isC∗Ztr(Z)(c)[2c]. Composing the splitting ofb, g,
and the splitting ofc with the projection onto this cokernel yields the desired Gysin
mapγ. A diagram chase shows thatγ vanishes onC∗Ztr(X−Z). �

EXERCISE15.14. The Gysin map forX = An or Pn andZ = 0 induces a map

C∗(Ztr(A
n)/Ztr(A

n−0))
'- C∗(Ztr(P

n)/Ztr(P
n−0))

γ̄- Z(n)[2n].

(The first map is a quasi-isomorphism by 12.20.) Show thatγ̄ agrees with the
quasi-isomorphism of 15.2.

THEOREM 15.15. Let X be a smooth scheme over a perfect field and Z a
smooth closed subscheme of X of codimension c. Then there is a “Gysin” triangle:

C∗Ztr(X−Z)→C∗Ztr(X)
γ- C∗Ztr(Z)(c)[2c]→C∗Ztr(X−Z)[1].

PROOF. We have to show that the Gysin map̄γ : C∗(Ztr(X)/Ztr(X−Z))→
C∗Ztr(Z)(c)[2c] of 15.13 is a quasi-isomorphism. By 12.20 we may assume that
X = Y×Ac andZ = Y×0. But thenγ̄ is the isomorphism of 15.14, tensored with
C∗Ztr(Y). �



LECTURE 16

Equidimensional cycles

In the first part of this lecture we introduce the notion of an equidimensional
cycle, and use it to construct the Suslin-Friedlander chain complexZ

SF(i). We
then show (in 16.7) thatZSF(i) is quasi-isomorphic toZ(i). In lecture 19 (19.4)
we shall compareZSF(i) to the complex defining higher Chow groups. In the
second part of this lecture, we use equidimensional cycles to define motives with
compact support and investigate their basic properties. Finally we use Friedlander-
Voevodsky Duality (see 16.24) to prove the Cancellation Theorem 16.25.

LetZ be a scheme of finite type overSsuch that every irreducible component of
Z dominates a component ofS. We say thatZ is equidimensional overSof relative
dimensionm if for every points of S, eitherZs is empty or each of its components
have dimensionm. If S′→ S is any map, the pullbackS′×SZ is equidimensional
overS′ of relative dimensionm.

DEFINITION 16.1. Let T be any scheme of finite type overk andm≥ 0 an
integer. The presheafzequi(T, r) onSm/k is defined as follows. For each smoothS,
zequi(T, r)(S) is the free abelian group generated by the closed and irreducible sub-
varietiesZ of S×T which are dominant and equidimensional of relative dimension
r over a component ofS. If S′→ S is any map, the pullback of relative cycles (see
1A.6 and 1A.8) induces the required natural mapzequi(T, r)(S)→ zequi(T, r)(S

′).
It is not hard to see thatzequi(T, r) is a Zariski sheaf, and even anétale sheaf,

for eachT and r ≥ 0. One can also check that eachzequi(T, r) is contravariant
for flat maps inT, and covariant for proper maps inT, both with the appropri-
ate change in the dimension indexr, (see [RelCh, 3.6.2 and 3.6.4]); see [Blo86,
1.3]. In particular, ifT ′ ↪→ T is a closed immersion, there are canonical inclusions
zequi(T

′, r) ↪→ zequi(T, r) for all r.

EXAMPLE 16.2. The caser = 0 is of particular interest, since ifU is irre-
ducible the groupzequi(T,0)(U) is free abelian on the irreducibleZ⊂U×T which
are quasi-finite and dominant overU . HenceZtr(T)(U)⊆ zequi(T,0)(U), because
Ztr(T)(U) is the free abelian group of cycles inU ×T which are finite and sur-
jective overU . In fact, Ztr(T) is a subsheaf ofzequi(T,0) because the structure
morphisms associated toV →U are compatible:Ztr(T)(U)→ Ztr(T)(V) is also
the pullback of relative cycles (see 1A.8 and 1A.11).

If T is projective, or proper, thenZtr(T) = zequi(T,0). Indeed, each closed
subvarietyZ⊂U ×T is proper overU , soZ is quasi-finite overU if and only if Z
is finite overU (see [Har77, Ex. III.11.2]).

131
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We now define transfer maps forzequi(T, r). Given an elementary correspon-
denceV from X to Y and a cycleZ in zequi(T, r)(Y), the pullbackZV is a well-
defined cycle ofV ×T by 1A.6 and 1A.8. We defineφV(Z ) ∈ zequi(T, r)(X) to
be the push-forward ofZV along the finite mapV ×T → X×T. This gives a
homomorphismφV : zequi(T, r)(Y)→ zequi(T, r)(X).

If r = 0, the restriction ofφV to Ztr(T)(Y) is the transfer map constructed in
1.1 and 1A.11, as we see from 1A.11 and 1A.13.

We leave the verification of the following to the reader; cf. [BivCy, 5.7].

EXERCISE 16.3. For all T and r, show thatφ makes eachzequi(T, r) into a
presheaf with transfers.Hint: Use the identity 2.2(4) in [Ful75]. If S→ T is flat
of relative dimensiond, show that the pullbackzequi(T, r)→ zequi(S,d + r) is a
morphism of presheaves with transfers.

EXAMPLE 16.4. For eachX, there is a natural mapzequi(A
i ,0)(X)→CHi(Ai×

X) ∼= CHi(X), sending a subvarietyZ of Ai ×X, quasi-finite overX, to its cycle.
Comparing the transfer map forzequi(A

i ,0) to the transfer map forCHi(X) de-
fined in 2.5, we see thatzequi(A

i ,0)→CHi(−) is a morphism of presheaves with
transfers.

We define theSuslin-Friedlander motivic complexesZSF(i) by:

Z
SF(i) = C∗zequi(A

i ,0)[−2i].

We regardZSF(i) as a bounded above cochain complex, whose top term is
zequi(A

i ,0) in cohomological degree 2i. As in 3.1,C∗(F) stands for the chain com-
plex of presheaves associated to the simplicial presheafU 7→ F(U×∆•).

EXAMPLE 16.5. It follows from 16.2 and 16.3 that there is a morphism of
presheaves with transfers fromZtr(Pi) = zequi(P

i ,0) to zequi(A
i ,0), with kernel

Ztr(Pi−1). Applying C∗ gives an exact sequence of complexes of presheaves with
transfers 0→C∗Ztr(Pi−1)→C∗Ztr(Pi)→ ZSF(i)[2i].

EXERCISE16.6. Let E be the function field of a smooth variety overk. Show
that the stalk at SpecE of the sheafzequi(A

i
k,0) on Sm/k is equal to the global

sectionszequi(A
i
E,0)(SpecE) of the sheafzequi(A

i
E,0) on Sm/E. Similarly, show

that the stalk ofCmzequi(A
i
k,0) at SpecE equalsCmzequi(A

i
E,0)(SpecE).

Conclude that the stalk ofZSF(i) at SpecE is independent of the choice ofk,
since it equalsZSF(i)(SpecE) evaluated inSm/E.

Here are the two main results in this lecture. Figure 1 gives the scheme of
the proof of 16.7. It shows how this result ultimately depends on theorem 13.12,
whose proof will be completed in lectures 21-24 below.

THEOREM 16.7. Assume that k is perfect. Then there is a quasi-isomorphism
in the Zariski topology:

Z(i)' ZSF(i).

In particular, Hn,i(X,Z)∼=Hn(X,ZSF(i)) for all n and i.
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PROOF. As Pi is proper,zequi(P
i ,0) = Ztr(Pi) by 16.2. Hence 16.7 follows

from combining 15.2 and 16.8. �

13.12
13.14

16.12

16.10

15.1 16.8

15.2
16.7

FIGURE 16.1. Scheme of the proof of 16.7

THEOREM 16.8. There is a quasi-isomorphism in the Zariski topology:

C∗
[
zequi(P

i ,0)/zequi(P
i−1,0)

] '- C∗zequi(A
i ,0).

We now prepare for the proof of 16.8. We remark that an easier proof is avail-
able if k admits resolution of singularities, because thenC∗zequi(−,0) satisfies lo-
calization by [BivCy, 4.10.2]. This may be compared to the localization property
for C∗Ztr in 13.15.

Write Fi(U) for the (free abelian) subgroup ofzequi(A
i ,0)(U) generated by

the cycles inU ×Ai which do not touchU × 0. The transferszequi(A
i ,0)(U)→

zequi(A
i ,0)(V) clearly sendFi(U) to Fi(V). HenceFi is a sub-presheaf with trans-

fers ofzequi(A
i ,0).

LEMMA 16.9. There is a commutative diagram with exact rows inPST(k), in
which all three vertical maps are injections:

0 - Ztr(P
i−0)/Ztr(P

i−1) - Ztr(P
i)/Ztr(P

i−1) - coker1 - 0

0 - Fi

?

∩

- zequi(A
i ,0)

ϕ
?

∩

- coker2
?

∩

- 0.

PROOF. By example 16.2, there is a natural map fromZtr(Pi) = zequi(P
i ,0) to

zequi(A
i ,0) with kernelZtr(Pi−1). Thusϕ is an injection; by exercise 16.3,ϕ is a

morphism of presheaves with transfers. Now the inclusionZtr(Pi−0)⊂ Ztr(Pi) is
a morphism inPST by the Yoneda lemma; see 2.8. SinceZtr(Pi −0)(U) consists
of cyclesZ ⊂U × (Pi −0) finite overU , their restriction belongs to the subgroup
Fi(U), i.e.,ϕ sendsZtr(Pi−0) to Fi . Hence the diagram commutes.

By inspection, coker1(U) is free abelian on the elementary correspondences
Z⊂U×Pi which touchU×0 and coker2(U) is free abelian on the equidimensional
W ⊂ U ×Ai which touchU × 0. SinceZ 7→ ϕ(Z) is a monomorphism on these
generators, it follows that coker1(U)→ coker2(U) is an injection for allU . �

LEMMA 16.10. C∗(Fi) is chain contractible as a complex of presheaves.
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PROOF. Recall thatFi(X) is a subgroup of the group of cycles onX×Ai . Let
hX : Fi(X)→ Fi(X×A1) be the pullback of cycles alongµ : X×Ai×A1→ X×Ai

defined by(x, r, t)→ (x, r · t). This is a good pullback because the mapµ is flat
overX× (Ai−{0}). By construction, the following diagram commutes.

X×Ai t = 1- X×Ai×A1 �t = 0
X×Ai

X×Ai

µ

? id×0�id -

It follows that Fi(t = 1)hX is the identity andFi(t = 0)hX = 0. Thus the require-
ments of lemma 2.22 are satisfied forFi . �

LEMMA 16.11. For every Hensel local scheme S, the mapcoker1(S) →
coker2(S) in diagram 16.9 is an isomorphism.

PROOF. Since coker1(S)→ coker2(S) is injective by 16.9, it suffices to prove
that it is surjective. LetZ be a equidimensional correspondence fromS to Ai .
As Z is quasi-finite over a Hensel scheme, the projection decomposesZ into the
disjoint union ofZ0 (which doesn’t contain any point over the closed point of the
Hensel scheme) andZ1 (which is finite over the base). We claim that theZ0 part
comes fromFi . TakeZ0 and consider its irreducible components. The intersection
Z0∩{0}must be empty, otherwise it would project to the closed point of the base.
HenceZ0 is zero in the cokernel. But nowZ1 comes fromZtr(Pi)/Ztr(Pi−1). �

LEMMA 16.12. Assume that k is perfect. Then the map C∗(coker1) →
C∗(coker2) is a quasi-isomorphism of complexes of Zariski sheaves.

PROOF. Let ϕ
′ be the map between the cokernels in 16.9. By 16.11,ϕ

′

is an isomorphism on all Hensel local schemes. By 13.14,ϕ
′ induces quasi-

isomorphismsC∗ coker1(X)'C∗ coker2(X) for all localX. �

PROOF OF16.8. Applying C∗ to the diagram in 16.9 yields a commutative
diagram of chain complexes with exact rows. The left two complexes are acyclic by
15.1 and 16.10. The right two complexes are quasi-isomorphic by 16.12. Theorem
16.8 now follows from the 5-lemma. �

Motives with Compact Support

By 16.1 and 16.3,zequi(X,0) is a Nisnevich sheaf with transfers for every
schemeX of finite type overk. As such, we can regard it as an element of
D−ShNis(Cork).

DEFINITION 16.13. For any schemeX of finite type overk, let Mc(X) denote
zequi(X,0), regarded as an object inDMeff,−

Nis (k). By 14.4,Mc(X)∼= C∗zequi(X,0) in

DMeff,−
Nis (k).
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As pointed out in 16.1,Mc(X) is contravariant inX for étale maps and co-
variant in X for proper maps. As observed in 16.2, there is a canonical map
M(X)→ Mc(X), induced byZtr(X) ⊆ zequi(X,0). Moreover,M(X) = Mc(X) if
X is proper overk.

EXAMPLE 16.14. We have an isomorphismMc(Ai)∼= Z(i)[2i] in DMeff,−
Nis (k).

To see this, recall from 16.7 that the Suslin-Friedlander motivic complexZ
SF(i) =

C∗zequi(A
i ,0)[−2i] is quasi-isomorphic toZ(i).

THEOREM 16.15. Assume that k admits resolution of singularities. If

Z
i- X is a closed subscheme with complement U

j- X, there is a dis-
tinguished triangle:

Mc(Z)
i∗- Mc(X)

j∗- Mc(U)→Mc(Z)[1].

PROOF. It is easy to see from the definitions that there is an exact sequence of
sheaves with transfers:

0→ zequi(Z,0)
i∗- zequi(X,0)

j∗- zequi(U,0)→Q→ 0.

By 13.25 it suffices to show thatQcdh = 0. By 12.30, It suffices to fixS in Sm/k
and show that for anyq∈Q(S) there is a composition of blow-upsp : S′→ Ssuch
thatp∗(q) = 0. A lift of q to zequi(U,0)(S) is supported on a finite set of irreducible
subschemesWα |U ⊂U ×Swhich are quasi-finite and dominant over a component
of S. We may assume that the closuresWα of Wα |U in X×S are not quasi-finite
overS. By platification (see [RG71] or 1A.1), there is a blow-upp : S′→ Ssuch
that the proper transformsW′

α
of Wα are flat and dominant overS′. By resolution

of singularities, we may assume thatS′ is smooth and thatp is a composition of
blow-ups along smooth centers. But thenp∗(Wα) = j∗(W′

α
) in zequi(U,0)(S′) and

eachp∗(Wα |U) vanishes inQ(S′). �

COROLLARY 16.16. For every X and Y, Mc(X×Y)∼= Mc(X)⊗tr
L,NisMc(Y).

In particular, Mc(X×Ai)∼= Mc(X)(i)[2i].

PROOF. If X andY are smooth and proper, this is just the identityM(X×Y)∼=
M(X)⊗tr

L,NisM(Y). The case whenX andY are proper follows formally from this
using the axioms 8A.1 for the tensor triangulated structure and the blow-up triangle
13.26. Using the axioms and the closed subscheme triangle 16.15, we obtain the
general case. The last assertion comes from 16.14. �

COROLLARY 16.17. For every scheme X in Sch/k, Mc(X) is in DMeff
gm.

PROOF. If X is proper, so thatMc(X) = M(X), this follows from (14.5.3), as
pointed out in 14.1. The general case follows from this, using theorem 16.15.�

EXERCISE16.18. Let U,V be an open cover ofX. Show that (assuming reso-
lution of singularities) there is a distinguished triangle inDMeff,−

Nis :

Mc(X)→Mc(U)⊕Mc(V)→Mc(U ∩V)→Mc(X)[1].
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EXERCISE 16.19. Assume thatk admits resolution of singularities. If

Z
i- X is a closed subscheme with complementU

j- X, modify the proof of
16.15 to show that there is a distinguished triangle:

C∗zequi(Z, r)
i∗- C∗zequi(X, r)

j∗- C∗zequi(U, r)→C∗zequi(Z, r)[1].

DEFINITION 16.20. Let X be any scheme of finite type overk andi ≥ 0. We
define themotivic cohomology with compact supportsof X with coefficients in
R to be:

Hn,i
c (X,R) = Hom

DMeff,−
Nis

(Mc(X),R(i)[n]).

Dually, we define the(Borel-Moore) motivic homology with compact supports
HBM

n,i (X,R) to be

HBM
n,i (X,R) = Hom

DMeff,−
Nis

(R(i)[n],Mc(X)).

Applying Hom to the triangle in 16.15 yields the expected long exact localiza-
tion sequences for motivic cohomology and homology with compact supports:

Hn,i
c (U,Z)→ Hn,i

c (X,Z)→ Hn,i
c (Z,Z)→ Hn+1,i

c (U,Z),

HBM
n,i (Z,Z)→ HBM

n,i (X,Z)→ HBM
n,i (U,Z)→ HBM

n−1,i(Z,Z).

We will identify the motivic homology groupsHBM
n,i (X,R) with higher Chow

groups in lecture 20.

REMARK 16.21. Friedlander and Voevodsky introduced a bivariant cycle co-
homology groupAr,i(Y,X) in [BivCy, 4.3], as the cdh hypercohomology onY of
C∗zequi(X, r). Using 14.20, their definition is equivalent to:

Ar,i(Y,X) = Hom
DMeff,−

Nis

(M(Y)[i],C∗zequi(X, r)).

In [BivCy, 8.3], they proved the following result:

THEOREM 16.22. Let X be in Sch/k, where k admits resolution of singulari-
ties. Then for any r≥ 0 and any M inDMeff,−

Nis , there are natural isomorphisms:

Hom
DMeff,−

Nis

(M(1)[2],C∗zequi(X, r))
∼=- Hom

DMeff,−
Nis

(M,C∗zequi(X, r +1));

Hom
DMeff,−

Nis

(M(r)[2r],Mc(X))
∼=- Hom

DMeff,−
Nis

(M,C∗zequi(X, r)).

More precisely, they proved in [BivCy, 8.3] that there is a natural isomorphism
Ar,i(Y(1)[2],X) ∼= Ar+1,i(Y,X) for every X,Y in Sch/k. Since theY[i] generate

DMeff,−
Nis , this is equivalent to the first isomorphism. SinceMc(X) is C∗zequi(X,0),

the second isomorphism follows from the first by induction onr.

COROLLARY 16.23. Let X→ Y be a flat map of relative dimension r. Then
we have a morphism inDMeff,−

Nis

Mc(Y)(r)[2r]→Mc(X).

PROOF. By 16.3, the pullback induces a morphismC∗zequi(Y,0) →
C∗zequi(X, r). Now takeM = C∗zequi(Y,0) in 16.22. �
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The Duality Theorem below is also due to Friedlander and Voevodsky ([BivCy,
8.2]). We also cite it without proof.

THEOREM16.24. (Duality) Assume that k admits resolution of singularities. If
T is a smooth scheme of dimension d over k then there are canonical isomorphisms

Hom(M(X×T)[n],Mc(Y))∼= Hom(M(X)(d)[2d+n],Mc(T×Y)).

THEOREM16.25. (Cancellation) Assume that k admits resolution of singulari-
ties. Let M and N be inDMeff,−

Nis . Then tensoring withZ(1) induces an isomorphism
Hom(M,N)→ Hom(M(1),N(1)).

PROOF. Suppose first thatM = M(X)[n] and N = M(Y) for smooth proper
schemesX andY. Under this assumption,Mc(Y) = M(Y) and Mc(A1×Y) =
Mc(A1)⊗Mc(Y) = M(Y)(1)[2]. Applying 16.24 withT = A1, homotopy invari-
ance yields isomorphisms:

Hom(M,N) = Hom(M(X)[n],M(Y))∼= Hom(M(X×A1)[n],Mc(Y))∼=
Hom(M(X)(1)[2+n],Mc(A1×Y))∼= Hom(M(1)[2],N(1)[2]).

Removing the shift yields Hom(M,N) ∼= Hom(M(1),N(1)). To see that this iso-
morphism is induced by tensoring withZ(1), it suffices to trace through the explicit
isomorphisms we used. We leave this to the reader.

Since these motives generateDMeff
gm, the theorem is true whenM andN are

in DMeff
gm. By 13.5, Hom(M,⊕αNα) ∼= ⊕α Hom(M,Nα) for M in DMeff

gm. Since
DMeff,−

Nis is generated byDMeff
gm and direct sums, the theorem holds for allN in

DMeff,−
Nis when M is in DMeff

gm. Finally, Hom(⊕Mα ,N) ∼= ⊕Hom(Mα ,N) so we
may remove the restriction onM. �

REMARK 16.26. The Cancellation Theorem 16.25 is also valid whenk is per-
fect. This was proven in 2002 by Voevodsky in [Voe02].

The next three lectures will be devoted to a proof that Bloch’s higher Chow
groups agree with motivic cohomology on smooth schemes. We will generalize
this to all schemes of finite type at the end of lecture 19, replacing motivic coho-
mology with Borel-Moore motivic homology.





Part 5

Higher Chow groups





LECTURE 17

Higher Chow groups

During the first part of this series of lectures we defined motivic cohomol-
ogy and we studied its basic properties. We also established relations with some
classical objects of algebraic geometry, such as MilnorK-Theory, 5.1, and́etale
cohomology, 10.2.

The goal of the next few lectures is to find a relation between motivic co-
homology and the classical Chow groupsCHi , generalizing the isomorphism
H2,1(X,Z)∼= Pic(X) = CH1(X) of 4.2. That is, we will prove that:

H2i,i(X,Z)∼= CHi(X)

for any smooth varietyX. There are at least three ways to prove this. The origi-
nal approach, which needs resolution of singularities, was developed in the book
“Cycles, Transfers and Motivic Homology Theories”[VSF00]. A second recent
approach is to use the Cancellation Theorem 16.25 of [Voe02] and the Gersten
resolution 24.11 for motivic cohomology sheaves.

A third approach, which is the one we shall develop here, uses Bloch’s higher
Chow groupsCHi(X,m) to establish the more general isomorphismHn,i(X,Z) ∼=
CHi(X,2i−n). This approach uses the equidimensional cycle groups of the pre-
vious lecture, but does not use resolution of singularities.

The main goal of this lecture is to prove that the higher Chow groups are
presheaves with transfers. (See theorem 17.21.) In particular, they are functo-
rial for maps between smooth schemes. (We will give a second proof of this in
19.15.)

We begin with Bloch’s definition of higher Chow groups (see [Blo86]).

DEFINITION 17.1. Let X be an equidimensional scheme. We writezi(X,m)
for the free abelian group generated by all codimensioni subvarieties onX×∆m

which intersect all facesX×∆ j properly for all j <m (in the sense of 17A.1).
Each faceX×∆ j is defined by a regular sequence, and intersection of cycles

defines a mapzi(X,m)→ zi(X, j) (see 17A.1, or [Ful84, Example 7.1.2]). We write
zi(X,•) for the resulting simplicial abelian groupm 7→ zi(X,m). We writezi(X,∗)
for the chain complex associated tozi(X,•).

Thehigher Chow groupsof X are defined to be the groups:

CHi(X,m) = πm(zi(X,•)) = Hm(zi(X,∗)).

If X is any scheme, it is easy to check thatCHi(X,0) is the classical Chow
groupCHi(X) (see 17.3). Indeed,zi(X,0) is the group of all codimensioni cycles
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on X while zi(X,1) is generated by those codimensioni subvarietiesZ on X×
A

1 which intersect bothX×{0} andX×{1} properly. Moreover the maps∂ j :
zi(X,1) -- zi(X,0) sendZ to Z∩ (X×{ j}).

EXAMPLE 17.2. If i ≤ d = dimX, thenzequi(X,d− i)(∆m) ⊆ zi(X,m) for ev-
ery m, because cycles inX×∆m which are equidimensional over∆m must meet
every face properly. By 1A.14, the inclusion is compatible with the face maps,
which are defined in 16.1 and 17.1, so this yields an inclusion of simplicial groups,
zequi(X,d− i)(∆•)⊆ zi(X,•).

EXERCISE17.3. (a) If d = dimX, show that every irreducible cycle inzd(X,1)
is either disjoint fromX×{0,1} or else is quasi-finite overA1. Use this to describe
zd(X,1)→ zd(X,0) explicitly and show thatCHd(X,0) ∼= CHd(X). (The group
CHd(X) is defined in [Ful84, 1.6].)

(b) Show thatC∗Ztr(X)(Speck) is a subcomplex ofzd(X,∗). On homology,
this yields mapsHsing

m (X/k)→CHd(X,m). Form= 0, show that this is the surjec-
tion Hsing

0
(X/k)→CH0(X) = CHd(X) of 2.21, which is an isomorphism whenX

is projective. By 7.3, it is not an isomorphism whenX isA1 orA1−0.

The push-forward of cycles makes the higher Chow groups covariant for finite
morphisms (see 17A.10). It also makes them covariant for proper morphisms (with
the appropriate change in codimension indexi; see [Blo86, 1.3]).

At the chain level, it is easy to prove that the complexeszi(−,∗), and hence
Bloch’s higher Chow groups, are functorial for flat morphisms. However, the com-
plexeszi(−,∗) are not functorial for all maps. We will see in 17.21 below that the
higher Chow groups are functorial for maps between smooth schemes.

PROPERTIES17.4. We will need the following non-trivial properties of higher
Chow groups:

(1) Homotopy Invariance: The projectionp : X×A1→X induces an isomor-
phism

CHi(X,m)
∼=- CHi(X×A1,m)

for any schemeX overk. The proof is given in [Blo86, 2.1].
(2) Localization Theorem: For anyU ⊂ X open, the cokernel ofzi(X,•)→

zi(U,•) is acyclic. This is proven by Bloch in [Blo94]. (Cf. [Blo86, 3.3].)
If the complementZ = X−U has pure codimensionc, it is easy to

see that we have an exact sequence of simplicial abelian groups (and also
of complexes of abelian groups):

0→ zi−c(Z,•)→ zi(X,•)→ zi(U,•)→ coker→ 0.

Thus the localization theorem yields long exact sequences of higher
Chow groups. The fact that we need to use Bloch’s Localization The-
orem is unfortunate, because its proof is very hard and complex.

Transfer maps associated to correspondences are not defined on all ofzi(Y,∗).
We need to restrict to a subcomplex on whichW ∗ may be defined.
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DEFINITION 17.5. Let W be a finite correspondence fromX to Y. Write
zi(Y,m)W for the subgroup ofzi(Y,m) generated by the irreducible subvarieties
T ⊂Y×∆m such that the pullbackX×T intersectsW ×∆ j properly inX×Y×∆m

for every face∆ j ↪→ ∆m. By construction,zi(Y,∗)W is a subcomplex ofzi(Y,∗).
The proof of the following proposition, which is a refinement of the results in

[Lev98], is due to Marc Levine.

PROPOSITION17.6. Let W be a finite correspondence from X to Y, with Y
affine. Then the inclusion zi(Y,∗)W ⊂ zi(Y,∗) is a quasi-isomorphism.

PROOF. (Levine) Letw : W→ Y be a morphism of schemes withY smooth,
andW locally equidimensional but not necessarily smooth. Writezi(Y,m)w for the
subgroup ofzi(Y,m) generated by the irreducible subvarietiesT ⊂Y×∆m for which
every component ofw−1(T) has codimension at leasti in W×∆m and intersects
every face properly. By construction,zi(Y,∗)w is a subcomplex ofzi(Y,∗).

For example, ifW is the support of a finite correspondenceW , let w : W→Y
be the natural map. ThenW is locally equidimensional, and the groupzi(Y,m)w is
the same as the groupzi(Y,m)W of 17.5.

Levine proves thatzi(Y,m)w ↪→ zi(Y,m) is a quasi-isomorphism on p.102 of
[Lev98] (in I.II.3.5.14), except thatW is required to also be smooth in order to
cite lemma I.II.3.5.2 ofop. cit.. In loc. cit., a finite set{Cj} of locally closed
irreducible subsets ofY and a sequence of integersmj ≤ i is constructed, with the
property thatT is in zi(Y,m)w if and only if T is in zi(Y,m) and the intersections
of T with Cj ×∆p have codimension at leastmj for all j and for every face∆p of
∆m. A reading of the proof of lemma I.II.3.5.2 shows that in factW need only be
locally equidimensional. �

DEFINITION 17.7. Let W be a finite correspondence between two smooth
schemesX andY. For each cycleY in zi(Y,m)W , we define the cycleW ∗(Y )
onX×∆m to be:

W ∗(Y ) = π∗((W ×∆m) · (X×Y )).

Hereπ : X×Y×∆m→ X×∆m is the canonical projection.

For eachW , it is clear thatW ∗ defines a homomorphism from the group
zi(Y,m)W to the group of all cycles onX×∆n.

EXAMPLE 17.8. Let f : X→Y be a morphism of smooth varieties, and letΓ f

be its graph. ForY in zi(Y,0)Γ f
, Γ∗f (Y ) is just the classical pullback of cycles

f ∗(Y ) defined in [Ser65, V-28] (see 17A.3).

REMARK 17.9. The mapW ∗ of 17.7 is compatible with the mapW ∗ defined
in 17A.8 in the following sense. GivenW in Cor(X,Y), W ×diag(∆m) is a finite
correspondence fromX×∆m toY×∆m. If Y is a cycle inzi(Y,m)W , we may regard
it as a cycle inY×∆m. The projection formula 17A.11 says that the following
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diagram commutes:

zi(Y,m)W
⊂ - zi(Y×∆m)W

zi(X,m)

W ∗
?

⊂ - zi(X×∆m).

(W ×diag(∆m))∗
?

LEMMA 17.10. The mapsW ∗ define a chain map zi(Y,∗)W → zi(X,∗).

PROOF. Let ∂ j : ∆m ⊂ - ∆m+1 be a face, and consider the following diagram,
whose vertical compositions areW ∗:

z(Y×∆m+1)
∂
∗
j - z(Y×∆m)

z(X×Y×∆m+1)

f ∗
?

∂
∗
j- z(X×Y×∆m)

f ∗
?

z(X×Y×∆m+1)

W ×∆m+1 ·−
?

∂
∗
j- z(X×Y×∆m)

W ×∆m ·−
?

z(X×∆m+1)

π∗ ?
∂
∗
j- z(X×∆m).

π∗
?

The horizontal maps∂ ∗j are only defined for cycles meeting the face properly (see
17A.4) and the intersection products in the middle are only defined on cycles in
good position forW . The top square commutes because of the functoriality of
Bloch’s complex for flat maps, and the bottom square commutes by 17A.10.

Suppose thatZ is a cycle inX×Y×∆m+1 which intersects the faceX×Y×∆m

as well asW ×∆m+1 andW ×∆m properly. By 17A.2:

W ×∆m · ((X×Y×∆m) ·Z ) = X×Y×∆m · ((W ×∆m+1) ·Z ).

That is, the middle square commutes forZ . Finally, if Y ∈ zi(Y,m+1)w, the cycle
(W ×∆m+1) · f ∗Y is finite overX×∆m+1, soπ∗ may be applied to it. A diagram
chase now shows thatW ∗ is a morphism of chain complexes. �

COROLLARY 17.11. If Y is affine, any finite correspondenceW from X to Y
induces mapsW ∗ : CHi(Y,m)→CHi(X,m) for all m.

PROOF. On homology, 17.6 andW ∗ give: CHi(Y,m) ∼= Hm(zi(Y,∗)W ) →
Hm(zi(X,∗)) = CHi(X,m). �

EXAMPLE 17.12. If f : X → Y is a morphism of smooth varieties, andY is
affine, we will write f ∗ for the mapΓ∗f from zi(Y,m)Γ f

to zi(X,m), and also for the

induced map fromCHi(Y,m) to CHi(X,m). It agrees with Levine’s mapf ∗ (see
pp. 67 and 102 of [Lev98]). This is not surprising, since we are using lemma 17.6,
which is taken from p. 102 of [Lev98]. The map f ∗ may also be obtained from
[Blo86, 4.1] using [Blo94].
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If f is flat, thenf ∗ is just the flat pullback of cycles. That is, ifY = [V] then
f ∗(Y ) is the cycle associated to the schemef−1(V). This fact is a special case of
17A.4.

We can now show that the higher Chow groups are functors on the subcategory
of affine schemes inCork.

LEMMA 17.13. Let X, Y and Z be smooth affine schemes. Given finite corre-
spondencesW1 in Cor(X,Y) andW2 in Cor(Y,Z), then

(W2◦W1)∗ = W ∗
1 W ∗

2 : CHi(Z,m)→CHi(X,m).

In particular, if f1 : X→ Y and f2 : Y→ Z are morphisms, then( f2 ◦ f1)∗ =
f ∗1 f ∗2 .

PROOF. By 17.6 and 17.12, it suffices to show that(W2 ◦W1)∗ = W ∗
1 W ∗

2 as
maps fromzi(Z,m)W → zi(X,m), whereW ∈Cor(Y q X,Z) is the coproduct of
W2 andW2◦W1. An element ofzi(Z,m)W is a cycle inzi(Z,m) which is in good po-
sition with respect to bothW2 andW2◦W1. Hence the result follows from theorem
17A.14, given the reinterpretation in 17.9. �

We now extend the definition of the transfer mapW ∗ from affine varieties to
all smooth varieties using Jouanolou’s device [Jou73, 1.5] and [Wei89, 4.4]: over
every smooth varietyX there is a vector bundle torsorX′→ X with X′ affine.

LEMMA 17.14. Let X be a variety and p: X′→X a vector bundle torsor. Then
p∗ : CH∗(X,∗)→CH∗(X′,∗) is an isomorphism.

PROOF. By definition, there is a dense openU in X so thatp−1(U)∼= U×An.
There is a commutative diagram

0 - z∗(X′− p−1(U)) - z∗(X′,∗) - z∗(p−1(U))

0 - z∗(X−U)

6

- z∗(X,∗)

6

- z∗(U).

6

By homotopy invariance of the higher Chow groups (see 17.4), the right vertical
arrow is a quasi-isomorphism. By Noetherian induction, the result is true forX−U ,
i.e., the left vertical arrow is a quasi-isomorphism. By the Localization Theorem
and and the five lemma,p∗ : CH∗(X,∗)→CH∗(X′,∗) is an isomorphism. �

LEMMA 17.15. Let p: Y′→Y be a vector bundle torsor and let X be affine.

• Every morphism f: X→Y has a lift f′ : X→Y′ such that p f′ = f .
• Every finite correspondence has a lift, i.e., p∗ : Cor(X,Y′)→Cor(X,Y)

is surjective.

PROOF. Clearly, X×Y Y′ → X is a vector bundle torsor. ButX is affine and
therefore every vector bundle torsor overX is a vector bundle (see [Wei89, 4.2]).
Define f ′ : X→Y′ to be the composition of the zero-section ofX×Y Y′ followed
by the projection. Clearly,p f ′ = f .
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Now suppose thatW ⊂ X×Y is an elementary correspondence. SinceW is
finite overX, it is affine. By the first part of this proof, the projectionp : W→Y
lifts to a mapp′ : W→Y′. Together with the projectionW→ X, p′ induces a lift
i : W→ X×Y′ of W⊂ X×Y. Theni(W) is an elementary correspondence fromX
to Y′ whose image underp∗ is W. �

LEMMA 17.16. Let X and Y be two smooth varieties over k and let p: X′→ X
and q: Y′→Y be vector bundle torsors with X′ and Y′ affine. Then for every finite
correspondenceW from X to Y, there exists a correspondenceW ′ from X′ to Y′ so
that q◦W ′ = W ◦ p in Cork(X

′,Y).

X′
W ′

- Y′

X

p
? W - Y

q
?

PROOF. SinceCor(X′,Y′)→ Cor(X′,Y) is onto by 17.15,W ◦ p has a lift
W ′. �

DEFINITION 17.17. Let X andY be two smooth varieties overk and letW be
a finite correspondence fromX to Y. We defineW ∗ : CHi(Y,m)→CHi(X,m) as
follows.

By Jouanolou’s device [Jou73, 1.5], there exist vector bundle torsorsp : X′→
X andq : Y′→Y whereX′ andY′ are affine. BothX′ andY′ are smooth, becauseX
andY are. By lemma 17.14,p∗ andq∗ are isomorphisms. By 17.16 there is a finite
correspondenceW ′ from X′ to Y′ so thatq◦W ′ = W ◦ p in Cork(X

′,Y). SinceY′

is affine, the mapW ′∗ : CH∗(Y′,m)→CH∗(X′,m) was defined in 17.11. We set
W ∗ = (p∗)−1W ′∗q∗ : CH∗(Y,m)→CH∗(X,m).

CH∗(X′,∗) �
W ′∗

CH∗(Y′,∗)

CH∗(X,∗)

p∗ ∼=
6

�W
∗

CH∗(Y,∗)

q∗ ∼=
6

If f : X→Y is a morphism, we definef ∗ : CHi(Y,m)→CHi(X,m) to beΓ∗f ,
that is, f ∗ = (p∗)−1( f ′)∗q∗, where f ′ : X′→Y′ lies over f .

LEMMA 17.18. If X and Y are affine, the map defined in 17.17 agrees with the
mapW ∗ defined in 17.11.

PROOF. By 17.13, the map defined in 17.17 equals:

(p∗)−1W ′∗q∗ = (p∗)−1(q◦W ′)∗ = (p∗)−1(W ◦ p)∗ = (p∗)−1p∗W ∗ = W ∗. �

LEMMA 17.19. The definition ofW ∗ in 17.17 is independent of the choices.



17. HIGHER CHOW GROUPS 147

PROOF. Suppose given affine torsorsX′′ → X andY′′ → Y and a lift W ′′ ∈
Cor(X′′,Y′′) of W . We have to show thatW ′ andW ′′ induce the same map.

We begin by making two reductions. First, we may assume thatX′ = X′′ and
Y′ = Y′′, by passing toX′×X X′′ andY′×Y Y′′ and choosing lifts ofW ′ andW ′′.
(This reduction uses 17.18.)

We may also assume thatX is affine and thatX′ = X, by replacingX by X′.
Thus we need to show that for any two liftsW0 andW1 of W , W0

∗q∗ = W1
∗q∗.

By lemma 17.20, there is a finite correspondencẽW so that the following dia-
gram commutes:

X×A1 W̃ - Y′

�
�
�
�
�
�
�
�
�

W0

3

�
�
�
�
�
�
�
�
�

W1

3

X

s0

6

s1

6

W - Y.

q

?

Since s0 and s1 are both inverses to the projectionp : X ×A1 → X, we have
s∗0p∗ = s∗1p∗ by 17.13. Since higher Chow groups are homotopy invariant,p∗ is

an isomorphism and we gets∗0 = s∗1. SinceX andY′ are affine, andWi = W̃ ◦si , we
may apply 17.13 again to get

W ∗
0 = s∗0W̃

∗ = s∗1W̃
∗ = W ∗

1 . �

Recall from 2.25 that two correspondencesW0 andW1 from X to Y are said
to beA1-homotopic, writtenW0 'W1, if they are the restrictions of an element of
Cor(X×A1,Y) alongX×0 andX×1.

LEMMA 17.20. Let W be a finite correspondence between a smooth affine
scheme X and a smooth Y. If q: Y′→Y is a vector bundle torsor, then any two lifts
W0 andW1 areA1-homotopic.

PROOF. Let V be the image of the union of the supports ofW0 and W1 in
X×Y, and letV ′ denote the fiber product ofV andY′ overY; p : V ′→V is a vector
bundle torsor. SinceX is affine and the induced mapV → X is finite,V is affine
too. Hencep : V ′→V is a vector bundle. Fix a sections : V→V ′.

V ′ - X×Y′ - Y′

V

s
6

p
?
⊂ - X×Y

?
- Y

q
?

Clearly,p is anA1-homotopy equivalence (in the sense of 2.25) with inverses, that
is, sp isA1-homotopic to the identity.

Both W0 andW1 induce correspondences̃W0 andW̃1 from X to V ′. Now the

compositiong◦ (W̃i×A1) ∈Cor(X×A1,V ′) is anA1-homotopy fromspW̃i to W̃i ,
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for i = 0,1. SincepW̃0 = pW̃1, we have

W̃0' s pW̃0 = s pW̃1' W̃1.

SinceWi is the composition ofW̃i with the mapV ′ → Y, W0 is A1-homotopic to
W1. �

At last, we have the tools to show that the higher Chow groups are presheaves
with transfers, i.e., functors on the categoryCork of smooth separated schemes
overk.

THEOREM17.21. The mapsW ∗ defined in 17.17 give the higher Chow groups
CHi(−,m) the structure of presheaves with transfers.

That is, for any two finite correspondencesW1 andW2 from X to Y and from Y
to Z, respectively, and for allα ∈CHi(Z,m):

W1
∗(W2

∗(α)) = (W2◦W1)∗(α).

In particular, if f1 : X→Y and f2 : Y→ Z are morphisms, then( f2◦ f1)∗ = f ∗1 f ∗2 .

PROOF. By 17.16, there is a commutative diagram inCork of the form

X′
W ′

1 - Y′
W ′

2 - Z′

X

p
? W1 - Y

q
? W2 - Z

r
?

where the vertical maps are affine vector bundle torsors. By 17.13, we have
W ′

1
∗W ′

2
∗ = (W ′

2 ◦W ′
1)∗. Since the definitions ofW ∗

i and (W2 ◦W1)∗ are inde-
pendent of the choices by 17.19, the statement now follows from an unwinding of
17.17:

W ∗
1 W ∗

2 = (p∗)−1W ′
1
∗q∗(q∗)−1W ′

2
∗r∗ = (p∗)−1(W ′

2 ◦W ′
1)∗r∗ = (W2◦W1)∗. �



Appendix 17A- Cycle maps

If W is a finite correspondence fromX to Y, we can define a mapW ∗ from
“good” cycles onY to cycles onX. The formula is to pull the cycle back toX×Y,
intersect it withW , and push forward toX. In this appendix, we will make this
precise, in 17A.8. First we must explain what makes a cycle “good”.

DEFINITION 17A.1. Two subvarietiesZ1 and Z2 of X are said tointersect
properly if every component ofZ1∩Z2 has codimension codimZ1 + codimZ2 in
X. This is vacuously true ifZ1∩Z2 = /0.

If the ambient varietyX is regular, the intersection cycleZ1 ·Z2 is defined to
be the sum∑n j [Wj ], where the indexing is over the irreducible componentsWj
of Z1∩Z2, and then j are their (local) intersection multiplicities. Following Serre
[Ser65], the multiplicity n j is defined as follows. IfA is the local ring ofX at the
generic point ofWj , andIl are the ideals ofA definingZl , then

n j = ∑
i

(−1)i lengthTorAi (A/I1,A/I2).

If X is not regular, the multiplicity will only make sense when only finitely many
Tor-terms are non-zero.

We say that two equidimensional cyclesV = ∑miVi andW = ∑n jWj intersect
properly if eachVi andWj intersect properly. In this case, the intersection cycle
V ·W is defined to be∑mjn j(Vi ·Wj).

EXERCISE 17A.2. Let V1,V2 andV3 be three cycles on a smooth schemeX.
Show that(V1 ·V2) ·V3 = V1 · (V2 ·V3) whenever both sides are defined. (This is
proven in [Ser65, V-24].)

DEFINITION 17A.3. Suppose thatf : X → Y is a morphism withX andY
regular, and thatY is a codimensioni cycle onY. We say thatf ∗(Y ) is defined if
each component off−1(Supp(Y )) has codimension≥ i in X. As in [Ser65, V-28],
we define the cyclef ∗(Y ) to beΓ f · (X×Y ) (see 17A.1), identifying the graph
Γ f with X.

As noted in [Ser65, V-29], the intersection cycle makes sense even ifX is not
regular, since the multiplicities may be computed overY by flat base change for
Tor (see [Wei94, 3.2.9]).

EXAMPLE 17A.4. If f is flat andY = [V], then f ∗(Y ) is the cycle associated
to the schemef−1(V). If X is a subvariety ofY, then the cyclef ∗(Y ) on X is

149
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the same as the cycleX ·Y considered as a cycle onX. If X ⊂ - Y is a regu-
lar embedding, the coefficients off ∗(Y ) agree with the intersection multiplicities
defined in [Ful84, 7.1.2].

REMARK 17A.5. Here is a variant of definition 17A.3 we will need in the next
lecture. Suppose thatSandT are smooth, thatX is a scheme of finite type, and that
f : X×S→ X×T is a morphism overX. If V is a codimensioni cycle inX×T,
we say thatf ∗(V) is defined if every component off−1(V) has codimensioni in
X×S. (It is not hard to see that they have codimension≤ i.)

As in 17A.3, f ∗(V) is defined to be the intersection productΓ f · (S×V) of
17A.1, whereΓ f is the image of the graph embedding ofX×Sinto X×S×T. The
Tor formula of 17A.1 makes sense because the inclusionΓ f ⊂ X×S×T is locally
defined by a regular sequence, and hence has finite Tor dimension.

DEFINITION 17A.6. Let f : Y′→Y be a morphism of smooth varieties andW
a cycle onY′. We say that a cycleY onY is in good positionfor W (relative to
f ) if the cycle f ∗(Y ) is defined, and intersectsW properly onY′. If Y is in good
position forW , the intersection productW · f ∗Y is defined (see 17A.1). If the
map f is flat, the cyclef ∗(Y ) is always defined.

Let W be an irreducible subvariety ofY′ and letw be the compositionW→
Y′→Y. By 17A.1 and 17A.3, a codimensioni cycleY is in good position forW
if and only if codimW w−1(Supp(Y ))≥ i, that is, ifw∗(Y ) is defined.

As a special case, we will say that a cycleY is in good position for a finite
correspondenceW from X to Y if Y is in good position for the cycle underlying
W , relative to the projectionX×Y→Y.

REMARK 17A.7. Let f : X → Y be a morphism of smooth varieties and let
Z be a cycle onX, supported on a closed subschemeZ so that the composition
Z→ X→Y is a proper map. It is clear thatf∗(Z ) is well-defined even thoughf
is not proper.

DEFINITION 17A.8. Let W be a finite correspondence between two smooth
schemesX andY. For every cycleY onY in good position forW , we define

W ∗(Y ) = π∗(W · f ∗Y ),

where f : X×Y→Y andπ : X×Y→ X are the canonical projections. The inter-
section and the push-forward are well-defined by 17A.6 and 17A.7. The mapW ∗

induces the transfer map for Chow groups, see 17.11 and 17.17.
For any smoothT, W ×T is a finite correspondence fromX×T toY×T over

T. By abuse of notation, we shall also writeW ∗ for (W ×T)∗.

EXAMPLE 17A.9. We can now reinterpret the composition of correspon-
dences. IfW1 andW2 are finite correspondences fromX to Y and fromY to Z,
respectively, we have:

W2◦W1 = (W1×Z)∗(W2) = (X×W2)∗(W1).

Here are two formulas which are useful in the study ofW ∗.
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LEMMA 17A.10. Consider the following diagram of varieties

X′
g′ - X

Y′

f ′
?

g
- Y

f
?

where the square is fiber and both X and Y are smooth. LetX be a cycle on X
whose support is finite over Y and for which(g′)∗X is defined. Then g∗ f∗X is
defined and g∗ f∗X = f ′∗(g

′)∗X .

PROOF. If V is a component ofX , then the mapf : V → f (V) is fi-
nite. Hencef ′ : (g′)−1(V)→ g−1( f (V)) is finite too, so that codim(g′)−1(V) =
codimg−1( f (V)). By hypothesis, codim(g′)−1(V) ≥ i, which proves thatg∗ f∗X
is defined. The equality now follows from [Ful75, 2.2(4)]. �

LEMMA 17A.11 (Projection Formula).Let f : X→Y be a morphism of smooth
schemes. Suppose given a cycleX on X, whose support is finite over Y , and a cycle
Y on Y which is in good position forX (see 17A.6). Then f∗X andY intersect
properly, and the projection formula holds:

f∗(X · f ∗Y ) = f∗X ·Y .

PROOF. Since the restriction off to the support ofX is finite, it is clear that
f∗(X ) andY intersect properly too. The result is now a consequence of the basic
identity 2.2(2) of [Ful75], or [Ser65, V-30]. �

EXERCISE17A.12. Let i be the inclusion of a closed subvarietyW in a smooth
schemeX and letf : X→Y be a map of smooth schemes. Prove that ifY is a cycle
onY so that bothf ∗Y and( f i)∗(Y ) are defined, theni∗( f i)∗(Y ) =W · f ∗Y . Hint:
Use [Ser65, V-30] or [Ful75, 2.2(2)].

Recall from 1A.10 that ifV →Y is a morphism withY regular, then the pull-
backZV of a relative cycleZ in T ×Y is a well defined cycle onT ×V with
integer coefficients.

LEMMA 17A.13. Let T and Y be regular and letZ be a cycle in T×Y which
is dominant equidimensional over Y . If f: V→Y is a morphism, then the pullback
ZV agrees with the pullback cycle( f ×T)∗(Z ).

PROOF. Note thatZ is a relative cycle by 1A.6, so thatZV is defined. Its
coefficients are characterized by the equalities(ZV)v = Z f (v) for everyv∈V. By
[RelCh, 3.5.8 and 3.5.9], the coefficients ofZV are the same as the multiplicities
in 17A.1, i.e., the coefficients of( f ×T)∗(Z ) given by 17A.3. �

THEOREM 17A.14. Let W1 andW2 be two finite correspondences from X to
Y and from Y to Z, respectively. Suppose thatZ is a cycle on Z which is in good
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position with respect to bothW2 andW2◦W1. Then

(W2◦W1)∗(Z ) = W ∗
1 (W ∗

2 (Z )).

The termW ∗
1 (W ∗

2 (Z )) makes sense by the following lemma.

LEMMA 17A.15. LetZ be in good position forW2 andW2◦W1. ThenW ∗
2 (Z )

is in good position with respect toW1.

PROOF. We may assume that the correspondences are elementary, i.e.,W1 and
W2 are subvarietiesW1 andW2 of X×Y, andY×Z, respectively. In this spirit, we
will write W2◦W1 for the subvariety ofX×Z which is the support of the composi-
tion of correspondences,W2◦W1. Consider the following diagram:

W2◦W1

W1×Y W2

u

6

e- W2 d
- Z

c

-

W1

q

? b - Y

p

?

By hypothesis, codimd−1(Z )≥ codimZ and codimc−1(Z )≥ codimZ .
We claim that codimb−1pd−1Z ≥ codimZ . Since the central square is carte-

sian,b−1p = qe−1. Sinceq is finite, this yields

codimb−1pd−1Z = codimqe−1d−1Z = codime−1d−1Z .

But e−1d−1 = u−1c−1, andu is finite, so:

codime−1d−1Z = codimu−1c−1Z = codimc−1Z .

But codimc−1Z ≥ codimZ by hypothesis, as claimed. �

PROOF OF17A.14. The right side is defined by 17A.15. We will follow the
notation established in figure 1, where we have omitted the factor∆n in every entry
to simplify notation. Note that the central square is cartesian.

By definition 17.7, we have

W ∗
1 (W ∗

2 (Z )) = r∗(W1 ·b
∗(p∗(W2 ·d

∗Z ))).

Since the central square is cartesian, we haveb∗p∗ = q∗e∗ by 17A.10. Since the
pullbacke∗ is a ring homomorphism, we have

b∗(p∗(W2 ·d
∗Z )) = q∗(e∗(W2 ·d

∗Z )) = q∗ (e∗(W2) ·e∗d∗Z ) .

Consider the two cyclesX = e∗(W2) · (de)∗(Z ) andY = W1 and the function
q. The intersectionX ·q∗Y = e∗(W2) · (de)∗(Z ) ·q∗(W1) is proper becauseZ is
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X×Z

X×Y×Z
e-

u

�

Y×Z
d
- Z

c

-

X×Y

q

? b - Y

p

?

X

r

?

v

-
FIGURE 17A.1. Composition of correspondences

in good position with respect toW2 ◦W1. Therefore the conditions for 17A.11 are
satisfied, and the projection formula yieldsY ·q∗X = q∗(q∗Y ·X ), i.e.,

W ∗
1 (W ∗

2 (Z )) = r∗q∗ (q∗(W1) · (e∗(W2) ·e∗d∗Z )) .

Since the push-forward and pullback are functorial, we haver∗q∗ = v∗u∗ and
e∗d∗ = u∗c∗. Our cycle then becomes

v∗u∗ (q∗(W1) ·e∗(W2) ·u∗c∗Z ) .

We may use the projection formula (17A.11) once again, this time foru∗, with
X = q∗(W1) ·e∗(W2) andY = c∗Z (the conditions are satisfied by the same ar-
gument we used above). This yieldsu∗(X ·u∗Y ) = (u∗X ) ·Y , i.e.,

W ∗
1 (W ∗

2 (Z )) = v∗ (u∗(q∗(W1) ·e∗(W2)) ·c∗Z ) .

Since the composition ofW1 andW2 as correspondences is exactlyu∗(q∗(W1) ·
e∗(W2)), the last equation becomes

W ∗
1 (W ∗

2 (Z )) = v∗((W2◦W1) ·c∗Z ) = (W2◦W1)∗(Z ).

This concludes the proof of 17A.14. �





LECTURE 18

Higher Chow groups and equidimensional cycles

The next step in the proof of theorem 19.1 (that motivic cohomology and higher
Chow groups agree) is the reduction to equidimensional cycles. The main refer-
ences for this lecture are [HighCh] and [FS02].

DEFINITION 18.1. For an equidimensionalX, and i ≤ dimX, we write
zi
equi(X,m) for zequi(X,dimX− i)(∆m), the free abelian group generated by all codi-

mensioni subvarieties onX×∆m which are dominant and equidimensional over
∆m (of relative dimension dimX− i). We writezi

equi(X,•) andzi
equi(X,∗) for the

simplicial abelian groupm 7→ zi
equi(X,m) and its associated chain complex, respec-

tively.
By 17.2, zi

equi(X,m) is a subgroup ofzi(X,m) andzi
equi(X,•) is a simplicial

subgroup ofzi(X,•).
EXAMPLE 18.2. The inclusionzi

equi(X,∗) ⊂ zi(X,∗) will not be a quasi-
isomorphism in general. Indeed, ifi > d then zi

equi(X,m) = 0 while zi(X,m)
is not generally zero. For example, considerX = Speck. If i > 0 we have
zi
equi(Speck,∗) = 0. In contrast,zi(Speck, i) is the group of points on∆i which do

not lie on any proper face. We will see in 19.7 thatHiz
i(Speck,∗) = H i,i(Speck) =

KM
i (k).

THEOREM 18.3. (Suslin[HighCh, 2.1]) Let X be an equidimensional affine
scheme of finite type over k, then the inclusion map:

zi
equi(X,∗) ⊂ - zi(X,∗)

is a quasi-isomorphism for i≤ dimX.

COROLLARY 18.4. Let X be an affine variety, then for all i≥ 0

CHi(X,m) = Hm(zi
equi(X×Ai ,∗)).

In particular, CHi(Speck,m) = Hm(zi
equi(A

i ,∗)).

PROOF. This is an immediate corollary of 18.3, definition 17.1 and the homo-
topy invariance of the higher Chow groups; see 17.4. �

COROLLARY 18.5. Let X be an equidimensional quasi-projective scheme over
a field k which admits resolution of singularities. For all i≤ dimX, the natural
inclusion ziequi(X,∗) ⊂ - zi(X,∗) is a quasi-isomorphism, i.e., it induces isomor-
phisms

Hmzi
equi(X,∗)

∼=- Hmzi(X,∗) = CHi(X,m).

155
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PROOF. If U is affine, zi
equi(U,∗) ⊂ - zi(U,∗) is a quasi-isomorphism by

18.3. We proceed by induction on dimX. LetU be a dense open affine subscheme
of X with complementZ of codimension 1. The commutative diagram

zi−1
equi(Z,∗) - zi

equi(X,∗) - zi
equi(U,∗)

zi−1(Z,∗)

'
?

- zi(X,∗)
?

- zi(U,∗)

'
?

becomes a morphism of triangles by 16.19 and the Localization Theorem for higher
Chow groups (see 17.4). The result follows from the 5-lemma. �

We need lemmas 18.9, 18.12 and 18.14 to prove theorem 18.3. All of their
proofs rely on a technical theorem 18A.1, which will be proven in the appendix.

We begin by introducing some auxiliary notions. LetX be a scheme overS.

DEFINITION 18.6. An N−skeletal mapϕ overX, relative toX→ S, is a col-
lection {ϕn : X×∆n→ X×∆n}Nn=0 of S-morphisms, such thatϕ0 is the identity
1X and for every face map∂ j : ∆n−1→ ∆n with n≤ N the following diagram com-
mutes.

X×∆n−1 ϕn−1- X×∆n−1

X×∆n

1X×∂ j
?

ϕn- X×∆n

1X×∂ j
?

Note thatϕN determinesϕn for all n< N. WhenS= X, we shall just callϕ an
n-skeletal map overX.

The condition that an(N−1)-skeletal map overX can be extended to anN-
skeletal map is a form of the homotopy extension property, and follows from the
Chinese Remainder Theorem whenX is affine.

For example, a 1-skeletal map overX = SpecR (relative toS= X) is deter-
mined by a polynomialf ∈R[t] such thatf (0) = 0 and f (1) = 1; ϕ1 is Spec of the
R-algebra mapR[t]→ R[t] sendingt to f .

DEFINITION 18.7. Given anN-skeletal mapϕ over X and n ≤ N, we de-
fine ϕzi(X,n) to be the subgroup ofzi(X,n) generated by allV in X×∆n such
that ϕ

∗
n(V) is defined (in the sense of 17A.5) and is inzi(X,n). If n> N we set

ϕzi(X,n) = 0. In other words,ϕzi(X,n) is the group of cycles inX×An which
intersect all the faces properly and whose pullbacks alongϕn intersect all the faces
properly.

By definition 18.6 we know that the face map∂ j : zi(X,n) → zi(X,n− 1)
sendsϕzi(X,n) to ϕzi(X,n−1). Thusϕzi(X,∗) is a chain subcomplex ofzi(X,∗).
Moreover it follows from 18.6 that theϕ∗n assemble to define a chain mapϕ

∗ :
ϕzi(X,∗)→ zi(X,∗).

Similarly, we can defineϕzi
equi(X,n) to be the subgroup ofzi

equi(X,n) generated
by allV such thatϕ∗n(V) is defined and is inzi

equi(X,n). The same argument shows
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that ϕzi
equi(X,∗) is a subcomplex ofzi

equi(X,n) and that theϕn form a chain map
ϕ
∗ : ϕzi

equi(X,∗)→ zi
equi(X,∗).

0 - ϕzi(X,1) - ϕzi(X,0) - 0

zi(X,2)
?

- zi(X,1)

i
?

∩

ϕ
∗
1
?

- zi(X,0)

=
?

- 0.

FIGURE 18.1. A 1-skeletal mapϕ and its chain mapϕ∗.

EXAMPLE 18.8. If N = 1, andα ∈ k−{0,1}, the subvarietyV = X×{α}
of X×A1 is in z1(X,1) but notz1

equi(X,1). If X = SpecR, fix r ∈ R and letϕ1 :
X×A1→ X×A1 be the 1-skeletal map defined by theR-algebra mapR[t]→ R[t]
sendingt to f (t) = t + r(t2− t). The condition thatϕ∗1(V) is in z1

equi(X,1), i.e.,
dominant and equidimensional over∆1, is equivalent to the condition that the map
r : X→A1 is equidimensional, i.e., thatr−β be nonzero in the domainRfor all β ∈
k. Indeed, the fiber ofϕ−1

1 (V) overt 6= 0,1 is supported onR/(r− (α− t/t2− t)),
and is empty ift = 0,1. Suchr always exists when dimX ≥ 1.

LEMMA 18.9. (See[HighCh, 2.8]) Let C∗ be a finitely generated subcomplex
in zi(X,∗) with i ≤ dimX. Choose N so that Cn = 0 for n> N. Then there is
an N-skeletal mapϕ over X such that C∗ ⊆ ϕzi(X,∗), and the chain mapϕ∗ :
ϕzi(X,∗)→ zi(X,∗) satisfies

ϕ
∗C∗ ⊆ zi

equi(X,∗).

PROOF. Suppose thatCn is generated by{Vk
n } ⊆ zi(X,n). Setd = dimX−

i and note thatd ≥ 0 sincei ≤ dimX. ThenVn = ∪Vk
n is closed inX× ∆n of

dimensionn+d.
We proceed by induction onN. SinceN is finite, we may assume that the

∂ j(V
k
n ) are supported inVn−1. Inductively, we may suppose that we have con-

structed an(N− 1)-skeletal map{ϕn} such that the fibers of the projections
ϕ
−1
n (Vn)→ ∆n have dimension≤ d. Let ∂∆N be the union of the faces∆N. The

compatibility granted by definition 18.6 implies that these maps fit together to form
a map fromX× ∂∆N to itself such that the fibers ofϕ−1(X× ∂∆N)∩VN → ∂∆N

have dimension≤ d. By Generic Equidimensionality 18A.1, this map extends
to an N-skeletal mapϕN : X × ∆N → X × ∆N over X such that the fibers of
ϕ
−1
N (VN)→ A

N have dimension≤ d. Because each componentW of ϕ
−1(Vk

n )
satisfies the inequality dimW ≤ n+ d = dimVk

n , each cycleϕ∗n(Vk
n ) is defined and

lies in zi
equi(X,n). SinceCn is generated by theVk

n , it lies in ϕzi(X,n) and satisfies
ϕ
∗(Cn)⊂ zi

equi(X,n). �

DEFINITION 18.10. Let ϕ
0 andϕ

1 beN-skeletal maps overX. An N−skeletal
homotopy Φ betweenϕ

0 and ϕ
1 is an N-skeletal map{Φn : X × ∆n×A1 →
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X× ∆n×A1}Nn=0 over X×A1 relative to the projectionX×A1 → X, which is
compatible with theϕ j in the sense that the following diagram commutes for every
n.

X×∆n i0- X×∆n×A1 �
i1 X×∆n

X×∆n

ϕ
0
n
? i0- X×∆n×A1

Φn
?

�
i1 X×∆n

ϕ
1
n
?

Recall from 2.17 that the simplicial decomposition of∆n×A1 is given by iso-
morphismsθ j : ∆n+1 → ∆n×A1, j = 0, . . . ,n. Eachθ j identifies the subgroup
zi(X,n+1) of cycles inX×∆n+1 with a subgroup of cycles inX×∆n×A1.

The subgroupΦzi(X,n) of zi(X,n) is defined to be the subgroup generated by
all V in X×∆n such that: (a)(ϕ

0)∗(V) and(ϕ
1)∗(V) are defined and inzi(X,n);

(b) eachΦ∗n(V×A1) is defined (see 17A.5); and (c) each isomorphismθ j identifies
Φ∗n(V×A1) with an element ofzi(X,n+ 1). As in definition 18.7,Φzi(X,∗) is a
subcomplex ofzi(X,∗). In fact,Φzi lies in (ϕ

0zi)∩ (ϕ
1zi).

We define the subgroupΦzi
equi(X,n) of zi

equi(X,n) similarly, replacingzi with
zi
equi in the definition ofΦzi(X,n).

LEMMA 18.11. If Φ is an N-skeletal homotopy betweenϕ
0 andϕ

1, then the
maps(ϕ

0)∗ and (ϕ
1)∗ are chain homotopic, both fromΦzi(X,∗) to zi(X,∗) and

from Φzi
equi(X,∗) to zi

equi(X,∗).

0 - Φzi(X,2)
∂- Φzi(X,1)

∂- Φzi(X,0)

zi(X,3)
??

∂-

h

�
zi(X,2)

ϕ
1
2

?

∩

ϕ
0
2

?
∂-

h

�
zi(X,1)

ϕ
1
1

?

∩

ϕ
0
1

?
∂ -

0

�
zi(X,0)

ϕ
1
0

?

∩

ϕ
0
0 = 1X

?

FIGURE 18.2. The chain homotopy betweenid andϕ
∗ whenN = 2.

PROOF. For 0≤ j ≤ n, let h j denote the composite

X×∆n+1
1X×θ j- X×∆n×A1 Φn- X×∆n×A1 pr- X×∆n,

wherepr is the projection. That is, forV in Φzi(X,n) we define

h∗j [V] = (Φn◦ (1X×θ j))
∗[V×A1] ∈ zi(X,n+1).

The h∗j form a simplicial homotopy (see [Wei94, 8.3.11]) from∂0h∗0 = (ϕ
1)∗ to

∂n+1h∗n = (ϕ
0)∗. Hence their alternating sumh = ∑(−1) jh∗j satisfiesh∂ + ∂h =

(ϕ
1)∗− (ϕ

0)∗. (This is illustrated in figure 2 whenN = 2.) �
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PROPOSITION18.12. Let ϕ be an N-skeletal map, and{Vk
n } a finite set of

varieties inϕzi(X,n), n≤N. Then there exists an N-skeletal homotopyΦ between
ϕ and the identity map, such that each Vk

n lies in Φzi(X,n).
If the{Vk

n } lie in ϕzi
equi(X,n), then theΦ∗n(Vk

n ×A1) lie in zi
equi(X×A1,n).

For the construction ofΦ, we may assume without loss of generality that the
set ofVk

n is closed under taking components of restrictions to faces.

PROOF. Setd = dim(X)− i, and let∂ (∆n×A1) denote the union of(∂∆n)×A1

and∆n×{0,1}. As in the proof of 18.9, we shall construct anN-skeletal homotopy
Φ by induction onN satisfying the “fiber condition” that (for eachk andn≤ N)
the fibers of the projectionsΦ−1

n (Vk
n ×A1)→ ∆n×A1 have dimension≤ d over all

points not in∂ (∆n×A1).
Inductively, we are givenΦn (n< N) forming an(N−1)-skeletal map which

satisfies the fiber condition. The compatibility with the faces of∆N and withi0, i1
granted by definition 18.10 implies that theΦn andϕN fit together to form a map
∂ΦN from X× ∂ (∆N×A1) to itself. By Generic Equidimensionality 18A.1, with
A

n = ∆N×A1, this map extends to a mapΦN from X×∆N×A1 to itself which
extends∂ΦN (i.e., ΦN is anN-skeletal homotopy from the identity toϕ overX),
such that the fibers ofΦ−1

N (Vk
N×A1)→∆N×A1 have dimension≤ d over all points

of ∆N×A1 not on∂ (∆N×A1).
To complete the proof of 18.12, we need to show that eachΦ∗N(Vk

N) is defined
and that each isomorphismθ j identifies them with elements inzi(X,N + 1) (resp.,

in zi
equi(X,N +1) whenVk

N ∈ ϕzi
equi(X,n)). SetW =

⋃
k Φ−1

n (Vk
N×A1).

Because theVk
N belong toϕzi(X,N) (resp., tozi

equi(X,N)), the part ofW lying
over ∆N×{0,1} has dimensiond + N (resp., is equidimensional). The inductive
hypothesis implies that the part ofW lying over ∂ (∆N ×A1) has dimension≤
d + N (resp., is equidimensional). LetF ⊆ ∆N×A1 correspond to a face of∆N+1

under one of the isomorphismsθ j . The fiber condition onΦn implies that the
part ofW lying over F but not over∂ (∆n×A1) is equidimensional, and so has
dimension≤ d + dim(F). HenceW has codimension at leasti in X×F (resp., is
equidimensional). �

In order to prove thatzi
equi(X,∗)→ zi(X,∗) is a quasi-isomorphism in theorem

18.3, we introduce the “topological” notion of weak homotopy.

DEFINITION 18.13. Two maps f ,g : K → L of complexes of abelian groups
are calledweakly homotopic if for every finitely generated subcomplexC of K,
the restrictionsf |C andg|C are chain homotopic.

It is easy to check that weakly homotopic maps induce the same maps on ho-
mology. If K andL are bounded complexes of free abelian groups, this notion is
equivalent to the usual notion of chain homotopy between maps. To see that this
notion is weaker than chain homotopy, consider a pure subgroupA of B which is
not a summand, such as⊕∞

1Z ⊂∏∞
1 Z. Then the canonical map from(A→ B) to

(A→ 0) is weakly homotopic to zero but not chain contractible.
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LEMMA 18.14. (See[HighCh, 2.3 and 2.6]) Let ϕ be an N-skeletal map over
X. Then the inclusion mapι and the mapϕ∗ are are weakly homotopic onϕzi :

ϕzi(X,∗)
⊂

ι-

ϕ
∗
- zi(X,∗),

and also onϕzi
equi:

ϕzi
equi(X,∗)

⊂
ι-

ϕ
∗
- zi

equi(X,∗).

PROOF. Consider a subcomplexC∗ ⊂ - ϕzi(X,∗) generated by some closed
irreducible subvarietiesVk

n so that∂ j(V
k
n ) is a linear combination of generators.

By 18.12, there is anN-skeletal homotopyΦ such thatC∗ ⊂ Φzi(X,∗), and ifC∗
lies in ϕzi

equi(X,∗) thenC∗ ⊂Φzi
equi(X,∗). By 18.11,Φ induces a chain homotopy

betweenϕ∗ andι .
Note that the following diagram commutes:

ϕzi
equi(X,−) ⊂- ϕzi(X,−)

zi
equi(X,−)

ι

?

∩

ϕ
∗

?
⊂ - zi(X,−).

ι

?

∩

ϕ
∗

?

Moreover ifa∈ ϕzi(X,n)∩zi
equi(X,n), andϕ

∗a∈ zi
equi(X,n), thena∈ ϕzi

equi(X,n).
�

PROOF OF THEOREM18.3. We have to prove that the induced map on homol-
ogy classes is an isomorphism:

(18.14.1) Hn(zi
equi(X,∗))→ Hn(zi(X,∗))

First we prove surjectivity. Leta ∈ zi(X,n) be such thatd(a) = 0. Lemma
18.9 provides an integerN and anN-skeletal map{ϕn} such thata∈ ϕzi(X,n) and
ϕ
∗(a) ∈ zi

equi(X,n). By 18.14,a−ϕ
∗a is a boundary inzi(X,n), i.e.,a andϕ

∗(a)
represent the same class in homology. Hence the map 18.14.1 is surjective.

For injectivity we need to considera ∈ zi
equi(X,n) so thatd(a) = 0 andb ∈

zi(X,n+ 1) with d(b) = a. Apply lemma 18.9 tob anda. We find an(n+ 1)-
skeletal mapϕ such thata,b∈ ϕzi(X,∗) andϕ

∗a,ϕ∗b∈ zi
equi(X,∗). But now we

have:
ϕ
∗a = ϕ

∗(db) = d(ϕ
∗b) = 0.

From lemma 18.14,a andϕ
∗a = 0 represent the same class in the homology of

zi
equi(X,∗). Thereforea is a boundary inzi

equi(X,∗). Hence the map (18.14.1) is
also injective. �



Appendix 18A- Generic Equidimensionality

This appendix is devoted to a proof of the following Generic Equidimension-
ality Theorem, due to Suslin. (See [HighCh] 1.1.)

THEOREM18A.1. Let S be an affine scheme of finite type over a field. Let V be
a closed subscheme of S×An, Z an effective divisor ofAn andϕ : S×Z→ S×An

any morphism over S. For every t≥ 0 so thatdimV ≤ n+ t, there exists a map
Φ : S×An→ S×An over S so that:

(1) Φ|S×Z = ϕ;
(2) the fibers of the projectionΦ−1(V)→ A

n have dimension≤ t over the
points ofAn−Z.

TheS-morphismϕ : S×Z→ S×An is determined by its componentϕ
′ : S×

Z→ A
n. If S⊂ Am, we can extendϕ ′ to a morphismψ

′ : Am×Z→ A
n. If we

knew the theorem forAm, there would exist an extensionΨ′ :Am×An→An of ψ
′

such that, settingΨ(X,Y) = (X,Ψ′(X,Y)), the fibers ofΨ−1(V)→An over points
of An−Z have dimension≤ t, and the restrictionΦ of Ψ to S×An would satisfy
the conclusion of the theorem. Thus we may suppose thatS= Am.

Write Am = Speck[x1, . . . ,xm] andAn = Speck[y1, . . . ,yn]. If the divisorZ is
defined by a polynomialh ∈ k[Y] then the componentϕ ′ : Am× Z→ A

n of ϕ

extends tof = ( f1, . . . , fn) :Am×An→An for polynomialsfi ∈ k[X,Y] defined up
to a multiple ofh. For eachn-tupleF = (F1, . . . ,Fn) of homogeneous forms ink[X]
of degreeN, consider the maps

ΦF : Am×An→ An

ΦF(X,Y) = ( f1(X,Y)+h(Y)F1(X), . . . , fn(X,Y)+h(Y)Fn(X)).

By construction, the restriction ofΦF to Z×S is ϕ
′, i.e., property(1) holds. It

suffices to show that ifN >> 0 and theFi are in general position thenΦ(X,Y) =
(X,ΦF(X,Y)) has the desired property(2).

If I = (g1, . . . ,gs) is the ideal ofk[X,Y] definingV, then the idealJ of k[X,Y]
definingΦ−1(V) is generated by the polynomials

g j(X,ΦF) = g j(x1, . . . ,xm,Φ1,Φ2, . . . ,Φn), Φi = fi(X,Y)+h(Y)Fi(X).

If b is ak-point ofAn, the idealJb of k[X] defining the fiber overb is generated by
theg j(X,ΦF(X,b)). We need to show that ifb 6∈ Z, thenJb has height≥m− t.

EXAMPLE 18A.2. Suppose thatm= 1 andt = 0. We may assume that dimV =
n, and thatV is defined byg(x,Y) = 0. ThenΦ−1(V) is defined byg(x,ΦF),
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Fi(x) = aix
N, and the fiber overb∈ An−Z is defined by

g(x, f1(x,b)+h(b)a1xN, . . .) = 0.

Sinceb 6∈ Z, h(b) 6= 0. Hence the left side of this equation is a nonzero polynomial
in k[x] for almost all choices ofa1, . . . ,an whenN >> 0. Hence the fiber overb is
finite.

The same argument works more generally whent = m− 1; we may assume
thatV is defined byg = 0, and the fiber overb is defined byg(X,ΦF(X,b)) = 0.
In order to see that the left side is nonzero for almost all choices ofF1, . . . ,Fn one
just needs to analyze the leading form ofg(X,ΦF) with respect toX.

For any ringRwe grade the polynomial ringR[X] = R[x1, . . . ,xm] with all xi in
degree 1. Any polynomial of degreed is the sumf = Fd + . . .+ F0 whereFi is a
homogeneous form of degreei; Fd is called theleading form of f with respect toX.
If I is an ideal inR[X] the leading forms of elements ofI generate a homogeneous
idealI ′ of R[X].

LEMMA 18A.3. Let R be a catenary Noetherian ring, I⊂ R[X] an ideal, and
I ′ the ideal of leading forms in I with respect to X. Thenht(I ′) = ht(I).

PROOF. Let Ih⊂ S= R[x0, . . . ,xm] be the homogeneous ideal defining the clo-
sureV̄ of V(I) in Pm

R. Then ht(I) = htS(Ih) = htS(Ih,x0)−1. But I ′ = (Ih,x0)S/x0S,
so ht(I ′) = htS(Ih,x0)−1. �

Now the ringk[X,Y] is bigraded, with eachxi of bidegree(0,1) and eachyi of
bidegree(1,0). Thus each polynomial can be written as a sumg = ∑Gi j , where
theGi j have bidegree(i, j). Ordering the bidegrees lexicographically allows us to
talk about the bidegree ofg, namely the largest(p,q) with Gpq 6= 0; thisGpq is the
bi-homogeneous leading form ofg.

Without loss of generality, we assume that the generatorsg1, . . . ,gs of I have
the following property: the bi-homogeneous leading formsG j(X,Y) of g j generate
the ideal of the leading forms ofI .

LEMMA 18A.4. If F1, . . . ,Fn are homogeneous forms in k[X] of degree N>
max{degX( fi),degX(g j)} then the ideal J′ of leading forms in J with respect to X
contains forms hrG j(X,F1, . . . ,Fn), for r >> 0.

PROOF. (See [HighCh] 1.6.1.) Recall thatJ is generated by theg j(X,ΦF).
For any choice of theN-forms Fi it is easy to see that degX g j(X,ΦF) =
degX G j(X,ΦF) = NdegY G j + degX G j , and that the leading form ing j(X,ΦF)
with respect toX is hdegY G j G j(X,F1, . . . ,Fn). �

PROPOSITION18A.5. Let T⊂ Am×An be a closed subscheme of dimension
≤ n+ t, t ≥ 0. If k is infinite, then for any N≥ 0 we can find forms F1, . . . ,Fn in
k[X] of degree N so that W= {w∈Am : (w,F1(w), . . . ,Fn(w)) ∈ T} has dimension
at most t.
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PROOF. The vector space ofn-tuplesF = (F1, . . . ,Fn) of homogeneous forms
of degreeN in k[X] is finite-dimensional, say of dimensionD. We identify it with
the set ofk-rational points of the affine spaceAD. Consider the evaluation map

η : Am×AD→ Am+n, η(w,F) = (w,F(w)).

If w 6= 0, the fibers ofη : w×AD→ w×An are isomorphic toAD−n, because
the linear homomorphismη(w,−) :AD→An is surjective. By inspection,η−1(0×
A

n) = 0×AD. It follows thatη−1(T) has dimension at mostD+ t.
Now consider the projectionπ : η

−1(T)→ A
D. The theorem on dimension of

the fibers [Har77] III.9.6 implies that there is a nonemptyU ⊂ AD whose fibers
have dimension≤ t. Choosing a rational point inU , the corresponding homoge-
neous forms(F1, . . . ,Fn) satisfy dim{w∈ Am : (w,F(w)) ∈ T} ≤ t. �

REMARK 18A.6. The caseN = 0 is easy to visualize, sinceD = n. There is an
open subsetU of An so that for eachb∈U the fiberT ∩ (Am×b) of the projection
T→ An overb has dimension at mostt.

If T is defined by bi-homogeneous polynomials, thenW is defined by homoge-
neous polynomials. Suslin states 18A.5 for the corresponding projective varieties
in [HighCh, 1.7].

We are now ready to complete the proof of theorem 18A.1. By 18A.3,Jb ⊂
k[X] has the same height as the idealJ′b of its leading forms. Suppose thatN >
max{degX( fi),degX(g j)}. Sinceh(b) 6= 0, J′b contains all theG j(X,F) by 18A.4.
LetT ⊂Am+n be the variety defined by the ideal of bi-homogeneous forms ofI , i.e.,
theG j(X,Y). Hence the varietyW = {w∈ Am : (w,F(w)) ∈ T} is defined by the
G j(X,F). By two applications of 18A.3, dimT = dimV ≤ n+ t. Thus dimW ≤ t
by 18A.5. But the height ofJ′b is at least the height of the ideal generated by the
G j(X,F), i.e., the codimension ofW, which is at leastm− t.





LECTURE 19

Motivic cohomology and higher Chow groups

With the preparation of the last three lectures, we are ready to prove the funda-
mental comparison theorem:

THEOREM 19.1. Let X be a smooth separated scheme over a perfect field k,
then for all n and i≥ 0 there is a natural isomorphism:

Hn,i(X,Z)
∼=- CHi(X,2i−n).

At the end of this lecture, we will generalize this to all schemes of finite type,
replacing motivic cohomology by Borel-Moore motivic homology. Assuming res-
olution of singularities we will prove in 19.18 thatCHd−i(X,n)∼= HBM

2i+n,i(X,Z).
BecauseCHi(X,0) is the classical Chow groupCHi(X) we obtain:

COROLLARY 19.2. H2i,i(X,Z)∼= CHi(X)

It is clear from definition 17.1 thatCHi(X,m) = 0 for m< 0. We immediately
deduce the:

VANISHING THEOREM 19.3. For every smooth variety X and any abelian
group A, we have Hn,i(X,A) = 0 for n> 2i.

The proof of 19.1 will proceed in two stages. First we will show (in theorem
19.8) thatZ(i)[2i] is quasi-isomorphic toU 7→ zi(U×Ai ,∗) as a complex of Zariski
sheaves. Then we will show (in 19.12) that the hypercohomology ofzi(−×Ai ,∗)
is CHi(−,∗).

We saw in 16.7 thatZ(i) is quasi-isomorphic to the Suslin-Friedlander mo-
tivic complexZSF(i). Recall from page 132 that the shiftZSF(i)[2i] is the chain
complexC∗zequi(A

i ,0) associated to the simplicial abelian presheaf with transfers
C•zequi(A

i ,0), which sendsX to m 7→ zequi(A
i ,0)(X×∆m). The following result

generalizes example 17.2.

LEMMA 19.4. Let T be smooth of dimension d. If0≤ i ≤ d then for all X
there is an embedding of simplicial abelian groups:

C•zequi(T,d− i)(X) ⊂ - zi(X×T,•).

In particular (for T = Ai), ZSF(i)[2i](X) is a subcomplex of zi(X×Ai ,∗).

PROOF. The cycles inCmzequi(T,d− i)(X) are equidimensional overX×∆m

at all points, while the ones inzi(X×T,m) need only be equidimensional at the
generic points of the faces ofX×T×∆m. Hence the first group is contained in the
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second group of cycles. Moreover, the face maps of the two simplicial groups are
compatible by 1A.14. �

EXAMPLE 19.5. The complexZSF(i)[2i](Y) is a subcomplex ofzi(Y×Ai ,∗)W
(see 17.6) for every finite correspondenceW from X toY. Indeed,zequi(A

i ,0)(Y×
∆m) lies in zi(Y×Ai ,m)

W ×Ai because every generating cycle is quasi-finite over
Y×∆m.

In contrast, it is easy to see thatzequi(Y×Ai ,dimY)(∆m) need not lie inzi(Y×
A

i ,m)
W ×Ai , by lettingX be a point ofY.

For any schemesX andT, consider the simplicial presheaf onX:

U 7→ zi(U×T,•).

This can be regarded as a simplicial sheaf on the flat site overX and hence on both
the (small)étale site and the Zariski site ofX as well. We will writezi(−×T,∗)
for the associated complex of sheaves. The homology ofzi(−×T,∗) has the more
general structure of a presheaf with transfers by 17.21.

PROPOSITION19.6. The homology of the embedding in 19.4 is a morphism of
presheaves with transfers:

(19.6.1) HmC∗zequi(A
i ,0)(−)→ Hmzi(−×Ai ,∗) = CHi(−×Ai ,m).

PROOF. The source and target are presheaves with transfers by 16.3 and 17.21,
respectively. It suffices to show that their transfer maps are compatible.

Let W be an elementary correspondence fromX to Y. We need to verify that
φW andW∗ are compatible with the map (19.6.1). IfW is the graph of a flat map
from X toY, thenφW andW∗ are compatible because both are just the flat pullback
of cycles. SinceW∗ is defined in 17.17 by passing to an affine vector bundle torsor
Y′→Y, a simple diagram chase (which we leave to the reader) shows that it suffices
to prove the statement whenY is affine.

Let Y be affine. SinceHnzi(Y×Ai ,m)W = Hnzi(Y×Ai ,m) by 17.6, the result
will follow once we show that the following diagram commutes.

zequi(A
i ,0)(Y×∆m)

φW- zequi(A
i ,0)(X×∆m)

zi(Y×Ai ,m)W

19.5
?

∩

W∗ - zi(X×Ai ,m)

19.4
?

∩

Let i, f andπ, respectively, denote the products withAi ×∆m of the inclusion
W ⊂ - X×Y, and the canonical projectionsX×Y→Y andX×Y→X. The trans-
fer mapW∗ was defined asW∗(Z ) = π∗((W×Ai×∆m) · f ∗Z ) in 17.7. According
to 16.3, the transfer map onzequi(A

i ,0)(Y×∆m) is φW(Z ) = (iπ)∗(ZW×∆m), where
the pullbackZW×∆m was defined on page 12. By 17A.13,ZW×∆m = ( f i)∗(Z ), so
we have:

φW(Z ) = (iπ)∗( f i)∗(Z ) = π∗i∗( f i)∗(Z ).
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By 17A.12, i∗( f i)∗(Z ) = (W×Ai × ∆m) · f ∗Z and therefore for everyZ in
zequi(A

i ,0)(Y×∆m) we have:

φW(Z ) = π∗((W×Ai×∆m) · f ∗Z ) = W∗(Z ). �

EXAMPLE 19.7. If E is a field overk, then the map of 19.6 evaluated at SpecE
is an isomorphism:

HmC∗zequi(A
i ,0)(SpecE)

∼=- Hmzi(SpecE×Ai ,∗).

This follows from Suslin’s theorem 18.3 withX = A
i
E , since we may identify

zequi(A
i
k,0)(∆m

E) andzequi(A
i
E,0)(∆m) by 16.6.

This implies that theorem 19.1 is true when evaluated on fields. To see this, set
S= SpecE and recall thatHm(S,C∗) = HmC∗(S) for any complex of sheavesC∗.
By 16.7, the above map fits into the sequence of isomorphisms:

Hn,i(S,Z)∼= Hn
Z(i)(S)∼= Hn

Z
SF(i)(S) =

H2i−nC∗zequi(A
i ,0)(S)

∼=- H2i−nzi(Ai
E,∗) =

CHi(Ai
E,2i−n)∼= CHi(S,2i−n).

THEOREM 19.8. The mapZSF(i)[2i] = C∗zequi(A
i ,0) → zi(−×Ai ,∗) is a

quasi-isomorphism of complexes of Zariski sheaves.

PROOF. The induced homomorphisms on homology presheaves,

(19.8.1) HmC∗zequi(A
i ,0)→ Hmzi(−×Ai ,∗)

are morphisms of presheaves with transfers by 19.6. The left side is homotopy
invariant by 2.19 and the right side is homotopy invariant because the higher Chow
groups are homotopy invariant (see 17.4). By 19.7, this is an isomorphism for all
fields. By 11.2, the sheafification of the map (19.8.1) is an isomorphism. Hence
C∗zequi(A

i ,0)→ zi(−×Ai ,∗) is a quasi-isomorphism for the Zariski topology.�

COROLLARY 19.9. For any smooth scheme X, the inclusion of 19.4 induces
an isomorphism:

Hn,i(X,Z)
∼=- H

n−2i(X,zi(−×Ai ,∗)).

PROOF. By 16.7 and 19.8, we have the sequence of isomorphisms:

Hn,i(X,Z) =Hn(X,Z(i))∼=Hn(X,ZSF(i)) =

H
n−2i(X,ZSF(i)[2i])

∼=- H
n−2i(X,zi(−×Ai ,∗)). �

Corollary 19.9 is the first half of the proof of 19.1. The rest of this lecture is
dedicated to proving the second half, thatH

−m(X,zi(−×Ai ,∗))∼= CHi(X,m). To
do this, we shall use Bloch’s Localization Theorem (see 17.4) to reinterpret the
higher Chow groups as the hypercohomology groups of a complex of sheaves.

A chain complex of presheavesC is said to satisfyZariski descent on X if
H∗(C(U))→H∗(U,CZar) is an isomorphism for every openU in X.
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DEFINITION 19.10. Let C be a complex of presheaves onXZar (the small
Zariski site ofX). We say thatC has the (Zariski)Mayer-Vietoris property if
for everyU ⊂ X, and any open coveringU = V1∪V2, the diagram

C(U) - C(V1)

C(V2)
?

- C(V1∩V2)
?

is homotopy cartesian (i.e., the total complex is an acyclic presheaf). This implies
that there is a long exact sequence

· · · → H i(C(U))→ H i(C(V1))⊕H i(C(V2))→ H i(C(V1∩V2))→ ···

For example, any chain complex of flasque sheaves has the Mayer-Vietoris
property. This is an easy consequence of the fact thatC(U)→ C(V) is onto for
eachV ⊂U .

The following result is proven in [BG73].

THEOREM 19.11 (Brown-Gersten).Let C be a complex of presheaves on X
with the Mayer-Vietoris property. Then C satisfies Zariski descent. That is, the
maps H∗(C(U))→H∗(U,CZar) are all isomorphisms.

Our main application of the Brown-Gersten theorem is to prove that Bloch’s
complexes satisfy Zariski descent.

PROPOSITION19.12. Let X be any scheme of finite type over a field. For any
scheme T, each zi(−×T) satisfies Zariski descent on X. That is, for all m and i,
we have:

CHi(X×T,m)∼=H−m(X,zi(−×T)).

In particular (for T = Ai),

CHi(X,m)
∼=- CHi(X×Ai ,m)

∼=- H
−m(X,zi(−×Ai)).

PROOF. (Bloch [Blo86, 3.4]) By 19.11, we have to show thatC(U) = zi(U ×
T) has the Mayer-Vietoris property. For each cover{V1,V2} of eachU we set
V12 = V1∩V2 and consider the diagram:

0 - C(U−V1) - C(U) - C(V1) - coker1 - 0

0 - C(V2−V12)

=
?

- C(V2)
?

- C(V12)
?

- coker2
?

- 0.

By Bloch’s Localization Theorem, the cokernels are both acyclic. A diagram chase
shows that the middle square is homotopy cartesian, i.e., the Mayer-Vietoris con-
dition is satisfied. �

We are now ready to prove the main result of this section, theorem 19.1.
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PROOF OF19.1. Using 19.9 and 19.12, we define the map to be the composi-
tions of isomorphisms:

Hn,i(X,Z) ∼= H
n(X,Z(i))

∼=- H
n−2i(X,zi(−×Ai)) ∼= CHi(X,2i− n). �

Zariski descent has also been used by Bloch and Levine to show that the higher
Chow groups are functorial for morphisms between smooth schemes. We first
recall their definition and then show in proposition 19.16 below that it agrees with
ours.

DEFINITION 19.13. (Bloch-Levine) Letf be a morphism fromX toY. Natural
mapsf ∗ : CHi(Y,m)→CHi(X,m) for all mandi are defined as follows. As in the
proof of 17.6, writezi(Y,∗) f for zi(Y,∗)Γ f

.

If U ⊂Y is open,zi(Y,∗) f restricts tozi(U,∗) f , andzi
f is a complex of sheaves.

SinceY is locally affine,zi
f ' zi by 17.6 and there is a mapzi

f → f∗zi of com-
plexes of sheaves onY. The map is now defined using Zariski descent 19.12 as the
composite:

CHi(Y,m)∼=H−m(Y,zi)∼=H−m(Y,zi
f )

f ∗- H
−m(X,zi)∼= CHi(X,m).

EXAMPLE 19.14. If q : Y′→Y is flat, thenzi
q = zi , and the mapq∗ defined in

19.13 is just the flat pullback of cycles mapq∗, described in 17.12.

LEMMA 19.15. If X
g- Y

f- Z are morphisms of smooth schemes, then
the maps defined in 19.13 satisfy( f g)∗ = g∗ f ∗.

PROOF. If f gq f : X qY→ Z, we can restrict( f g)∗ and f ∗ to the subgroup
zi(Z,m) f gq f . Since( f g)∗ = g∗ f ∗ on cycles (see [Ser65, V-30]), f ∗ maps this
subgroup intozi(Y,m)g. By construction, the diagram of groups

zi(Z,m) f gq f
⊂- zi(Z,m) f g

zi(Y,m)g

f ∗
? g∗- zi(X,m)

( f g)∗
?

commutes. Sheafifying and applying hypercohomology, 17.6 and Zariski descent
19.12 show that the composite

CHi(Z,m)∼=H−m(Z,zi
f gq f )

f ∗- H
−m(Y,zi

g)
g∗- H

−m(X,zi)∼= CHi(X,m)

is just( f g)∗, as required. �

PROPOSITION19.16. The map f∗ : CHi(Y,m)→CHi(X,m) defined in 19.13
agrees with the map f∗ = Γ∗f defined in 17.17.
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PROOF. Suppose first thatX andY are affine, and consider the commutative
diagram

CHi(Y,m) = H−mzi(Y,∗) �
∼=

H−mzi(Y,∗) f
- H−mzi(X,∗) = CHi(X,m)

H
−m(Y,zi)

∼=
?

�
∼=

H
−m(Y,zi

f )
?

- H
−m(X,zi).

∼=
?

The arrows marked ‘∼=’ are isomorphisms by 17.6 and 19.12. The top composite is
the map of 17.12, which by 17.18 is the mapΓ∗f of 17.17. The bottom composite
is the mapf ∗ of 19.13, proving thatf ∗ = Γ∗f in this case.

In the general case, 17.15 gives a diagram

X′
g - Y′

X

p
? f - Y,

q
?

whereX′→ X andY′→Y are affine vector bundle torsors. By definition 17.17,Γ∗f
is (p∗)−1Γ∗gq∗, wherep∗ andq∗ are flat pullback of cycles. By 19.14, these are the
same as the mapsp∗ andq∗ defined in 19.13. SinceΓ∗g = g∗ by the first part of the
proof andg∗q∗ = (qg)∗ = (p f)∗ = p∗ f ∗ by 19.15, we have:

Γ∗f
17.17= (p∗)−1Γ∗gq∗ = (p∗)−1g∗q∗

19.15= (p∗)−1p∗ f ∗ = f ∗. �

We conclude this lecture by reinterpreting theorem 19.1 in terms of the Borel-
Moore motivic homology groupsHBM

n,i (X,Z) = Hom
DMeff,−

Nis

(Z(i)[n],Mc(X)), as-

suming resolution of singularities. We begin with the smooth case.

EXAMPLE 19.17.WhenX is smooth of dimensiond, the identification follows
from the isomorphismCHi(X,n) ∼= H2i−n,i(X,Z) of 19.1. To see this we setj =
d− i and compute:

CH j(X,n)∼= H2 j−n, j(X,Z) by 19.1,

= Hom(M(X),Z( j)[2 j−n]) by 14.16

= Hom(Z(d)[2d],Mc(X)( j)[2 j−n]) by 16.24.

= Hom(Z(i)[2i +n],Mc(X)) by 16.25.

= HBM
2i+n,i(X,Z) by definition 16.20.

We now establish this isomorphism whenX is not smooth, using 16.22.

PROPOSITION19.18. Assume that k admits resolution of singularities. Let X
be a quasi-projective equidimensional scheme over k of dimension d. Then for
every positive i≤ d and n there is a canonical isomorphism:

CHd−i(X,n)∼= HBM
2i+n,i(X,Z) = Hom(Z(i)[2i +n],Mc(X))
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PROOF. By 16.22, the right-hand side is isomorphic to Hom(Z[n],C∗zequi(X, i)).
But by 13.5 this is isomorphic toHnC∗zequi(X, i)(Speck), i.e., then-th homology of

the complex of abelian groupszd−i
equi(X,∗). We conclude using corollary 18.5. �

COROLLARY 19.19. If i ≥ 0 there are canonical isomorphisms:

CHd+i(X,n)∼= Hom(Z,Mc(X)(i)[2i−n]).

PROOF. By homotopy invariance (see 17.4),CHd+i(X,n) =CHd+i(X×Ai ,n).
By 19.18, this is Hom(Z[n],Mc(X ×Ai)), and Mc(X ×Ai) ∼= Mc(X)(i)[2i] by
16.16. �





LECTURE 20

Geometric motives

In lectures 14 and 16 we introduced the categoryDMeff
gm of effective geomet-

ric motives, and the categoryDMgm of all geometric motives. In this lecture we
complete our investigation of the properties of these categories.

We begin by comparing by embedding Grothendieck’s classic categoryChow
of Chow motives intoDMgm. We then construct the dual of any object inDMgm,
based on theRHomof 14.12. This allows us to construct internal Hom objects
Hom(X,Y). We will conclude this lecture by proving that the tensor triangulated
subcategoryDMgm of DM− is rigid.

Recall that Grothendieck’s category of effective Chow motivesChoweff is the
idempotent completion of the category whose objects are smooth projective vari-
eties overk, and whose morphisms are given by: HomChow(Y,X) = CHdimX(X×
Y). There is a canonical decompositionP1 = (Speck)⊕L, whereL is the Lef-
schetz motive. The categoryChowof Chow motives is obtained by invertingL and
Choweff is a full subcategory ofChow.

In this lecturek will always be a perfect field which admits resolution of sin-
gularities and the coefficients will be taken overZ.

PROPOSITION20.1. Assume that k is a perfect field which admits resolution
of singularities. Then Grothendieck’s category of effective Chow motives embeds
contravariantly intoDMeff

gm(k,Z), and hence intoDMeff,−
Nis (k,Z), in the sense that

if X and Y are two smooth projective schemes, then

HomChow(Y,X)∼= Hom(M(X),M(Y)).

PROOF. We setd = dimX and compute inDMeff,−
Nis :

CHd(X×Y) = H2d,d(X×Y,Z) by 19.2,

= Hom(M(X×Y),Z(d)[2d]) by 14.16,

= Hom(M(X)(d)[2d],M(Y)(d)[2d]) by 16.24 andY proper

= Hom(M(X),M(Y)) by 16.25 �.

173
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REMARK 20.2. The Lefschetz motiveL is mapped toZ(1)[2] by 13.17. So
from 16.25 and 20.1 we have the following diagram of fully faithful tensor func-
tors:

(Choweff)op - DMeff
gm

- DMeff,−
Nis

Chowop
?

- DMgm

?
- DM−Nis.

?

The categoryDMgm also has dual objects. We can construct the dual of any
object inDMgm, based on theRHomof 14.12. Recall that ifB is in DMeff

gm andA,C

are inDMeff,−
Nis then inDMeff,−

Nis we have:

Hom(A⊗B,C)∼= Hom(A,RHom(B,C)).

By construction, the functorRHom(B,C) is triangulated in both variables.

PROPOSITION20.3. If X is smooth of dimension d, the diagonal X→ X×X
induces isomorphisms for r≥ 0:

∆r : Mc(X)(r)[−2d]∼= RHom(M(X),Z(d))(r)∼= RHom(M(X),Z(d+ r)).

PROOF. If A = M(U)[n] for a smooth schemeU , we have:

Hom(A,Mc(X)(r)[−2d]) = Hom(A(d)[2d],Mc(X)(d+ r)) by 16.25
∼= Hom(A⊗M(X),Z(d+ r)) by 16.24
∼= Hom(A,RHom(M(X),Z(d+ r))) by 14.12.

WhenA = Mc(X)[−2d], the graph of the identity onX (the diagonal) is the cor-
respondence inducing the identity onM(X) and onMc(X), so it induces natural
maps∆r from Mc(X)(r)[−2d] to RHom(M(X),Z(d+ r)).

The subcategory of objectsA for which Hom(A,∆r) is an isomorphism is tri-
angulated, and contains theM(U)[n], so it is all ofDMeff,−

Nis . The Yoneda lemma
implies that each∆r is a natural isomorphism. �

COROLLARY 20.4. If X is a scheme in Sch/k, then RHom(M(X),Z(i)) is in
DMeff

gm for all i ≥ dim(X).

PROOF. It suffices to recall from 16.17 that eachMc(X) is in DMeff
gm. �

EXERCISE20.5. Show thatRHom(M(X),L)∼= RHom(M(X)(1),L(1)) for ev-
ery smoothX and everyL in DMeff,−

Nis , by mimicking the proof of 20.3.

DEFINITION 20.6. If X is in Sm/k andd = dimX, we define the dual to be:

M(X)∗ = RHom(M(X),Z(d))(−d).

By 20.3,M(X)∗ is the same asRHom(M(X),Z(i))(−i) for all i ≥ d.
If M is any object ofDMgm, some twistM(r) is effective. We define the dual

M∗ to beRHom(M(r),Z(i))(r− i) for largei. Note thatM∗ is independent ofi and
r by 20.5 and 20.3, and belongs toDMgm by 20.4. his independence implies that
for everyr there is a canonical isomorphismM(r)∗ ∼= M∗(−r).
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LEMMA 20.7. The assignment M7→M∗ is a contravariant triangulated func-
tor from DMgm to itself.

PROOF. By construction, each contravariant functorRHom(−,Z(i)) and each
covariant functorM 7→M(−i) is triangulated. Given any diagram inDMeff

gm, there is
an i such that the dual coincides with the triangulated functorRHom(−,Z(i))(−i)
on the diagram. �

The following proposition justifies the terminology “dual”. For simplicity, we
write Homgm(A,B) for HomDMgm

(A,B).
PROPOSITION20.8. The dual M∗ of an object M inDMgm represents the func-

tor A 7→ Homgm(A⊗M,Z), in the sense that there is a natural isomorphism:

Homgm(A,M∗)∼= Homgm(A⊗M,Z).

PROOF. Since M(r)∗(r) ∼= M∗, Homgm(A(−r),M(r)∗) ∼= Homgm(A,M∗).
Hence we may assume thatM is effective. But then Homgm(A,M∗) ∼=
Hom(A(i),RHom(M,Z(i)) for largei. By adjunction, this is Hom(A(i)⊗M,Z(i)).
By 16.25, it is Homgm(A⊗M,Z). �

COROLLARY 20.9. There is a natural morphismεM : M∗⊗M→ Z for every
M in DMgm, adjoint to the identity of M∗.

REMARK 20.10. The dual M∗ is not the same asRHom(M,Z) in
general. For the Lefschetz motiveL = M(P1)/M(Speck), for example,
L
∗ ∼= RHom(L,Z(1))(−1) ∼= Z(−1)[−2], while exercise 14.13 implies that

RHom(L,Z) = 0.

EXAMPLE 20.11. If X is smooth of dimensiond, the dualM(X)∗ is just an
untwisting ofMc(X). To see this, we combine 20.3 with definition 20.6:

Mc(X)∼= RHom(M(X),Z(d))[2d]∼= M(X)∗(d)[2d].

In particular, ifX is projective thenM(X)∼= M(X)∗(d)[2d].

PROPOSITION20.12. There is a natural isomorphismιM : M
∼=- M∗∗ for M

in DMgm.

PROOF. The identity ofM∗ gives a natural mapιM : M→M∗∗ via 20.8, adjoint
to the mapεM of 20.9:

Homgm(M,M∗∗)∼= Homgm(M⊗M∗,Z).

To prove thatιM is an isomorphism for allM, it suffices to prove it whenM =
M(X), whereX is a a smooth projective scheme of dimensiond. SinceM(X)∗(d)
is effective, we see by 20.6 and 20.3 that for alli ≥ d:

(M(X)∗)∗ = RHom(M(X)∗(d),Z(i))(d− i)
∼= RHom(M(X)[−2d],Z(i))(d− i)∼= M(X).

A careful comparison ofιM(X) with this isomorphism shows that they are inverse
to each other. �
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PROPOSITION20.13.There is a natural isomorphism M∗⊗N∗
∼=- (M⊗N)∗

for every M and N inDMgm.

PROOF. There is a natural mapM∗⊗N∗→ (M⊗N)∗ arising fromεM⊗εN via
the isomorphism of 20.8:

Homgm
(
M∗⊗N∗,(M⊗N)∗

)∼= Homgm
(
M∗⊗N∗⊗ (M⊗N),Z

)
∼= Homgm

(
(M∗⊗M)⊗ (N∗⊗N),Z

)
.

To show that it is an isomorphism we may assume thatM = M(X) andN = M(Y),
whereX andY are smooth projective varieties of dimensionsd ande. Using 20.11
three times, and writingL for Z(1)[2], we have:

M∗ ⊗N∗ ⊗ Ld+e ∼= (M∗ ⊗ Ld)⊗ (N∗ ⊗ Le) ∼= M ⊗N ∼= (M ⊗N)∗ ⊗ Ld+e.

Since this isomorphism is our natural map, we are done. �

Using the dual, we can now show thatDMgm has an internal Hom functor.

PROPOSITION20.14. Let L, M, and N be three objects ofDMgm. Then there
is a natural isomorphism

Homgm(L⊗M,N)∼= Homgm(L,M∗⊗N).

PROOF. Using theorem 20.12, which states thatM ∼= M∗∗ andN ∼= N∗∗, 20.8
and 20.13, we have:

Homgm(L⊗M,N)∼= Homgm(L⊗M⊗N∗,Z)
∼= Homgm(L⊗ (M∗⊗N)∗,Z)∼= Homgm(L,M∗⊗N). �

Proposition 20.14 says thatM∗⊗N represents the functorL 7→ Homgm(L⊗
M,N). This justifies the following definition.

DEFINITION 20.15. If M and N are two objects ofDMgm, we define their
internal Hom to be:

Hom(M,N) = M∗⊗N.

By 20.6,Hom(M,N) is a geometric motive, i.e., an object ofDMgm. Moreover, it
is clear thatHom(M,Z) = M∗.

EXERCISE 20.16. To see the relation betweenHomandRHom, let M andN
be two effective geometric motives. First show thatRHom(M,N(i)) is in DMeff

gm
for largei. Then show thatHom(M,N) = RHom(M,N(i))(−i) for largei.

Recall from [DMOS82, p. 111] that a tensor categoryA is said to berigid
if it has an internal Hom, bi-distributive for the tensor, and ifA→ (A∗)∗ is an
isomorphism for everyA.

THEOREM 20.17. The tensor categoryDMgm is rigid.
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PROOF. We have already shown in 20.15 thatDMgm has an internal Hom and
in 20.12 that every object is isomorphic to its double dual. It remains to check
bi-distributivity. But this is just the routine calculation:

Hom(M1⊗M2,N1⊗N2) = (M1⊗M2)∗⊗ (N1⊗N2)
∼= (M∗1⊗N1)⊗ (M∗2⊗N2) = Hom(M1,N1)⊗Hom(M2,N2). �





Part 6

Zariski sheaves with transfers





LECTURE 21

Covering morphisms of triples

The main goal of the rest of the lectures will be to prove that ifF is a homo-
topy invariant presheaf with transfers, then the presheafHn

Nis(−,F) is homotopy
invariant. This was stated in theorem 13.8 and it was used in lectures 13-20. The
remaining lectures depend upon lectures 11, 12, and the first part of 13 (13.1–13.5),
but not on the material from 13.7 to the end of lecture 20.

DEFINITION 21.1. Let TY = (Ȳ,Y∞,ZY) and TX = (X̄,X∞,ZX) be standard
triples (as defined in 11.5). For convenience, setY = Ȳ−Y∞ andX = X̄−X∞. A
covering morphism f : TY→ TX of standard triples is a finite morphismf : Ȳ→ X̄
such that:

• f−1(X∞)⊂Y∞ (or equivalently,f (Y)⊂ X);
• f |Y : Y→ X is étale;

• f induces an isomorphismZY

∼=- ZX, whereZY = f−1(ZX)∩Y.

Note thatf need not induce a finite morphismf : Y→ X.

Y∞,1 Ȳ

ZY

Y∞,2

ZXX∞

X̄

FIGURE 21.1. A covering morphismf : Ȳ→ X̄

By definition, the squareQ= Q(X,Y,X−ZX) induced by a covering morphism
of standard triples is upper distinguished (see 12.5):

(Y−ZY) - Y

(X−ZX)
?

- X.

f
?

We say that this upper distinguished squarecomes fromthe covering morphism of
standard triples.

181
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EXAMPLE 21.2. Suppose that an affineX has a coveringX = U ∪V and a
good compactification(X̄,X∞) over some smoothS. Then the Zariski square

U ∩V - U

Q(X,U,V) :

V
?

- X
?

comes from a morphism of triples, provided thatX̄− (U ∩V) lies in an affine open
neighborhood inX̄.

Indeed, ifZ = X−V thenT = (X̄,X∞,Z) is a standard triple andT ′ = (X̄, X̄−
U,Z) is also a standard triple. The identity on̄X induces a covering morphism
T ′→ T and the above square comes from this morphism.

Recall from 11.11 that a splitting of a standard triple(X̄,X∞,Z) overV ⊂ X is
a trivialization ofL∆X

onV×SZ.

LEMMA 21.3. Let f : TY→ TX be a covering morphism of standard triples. A
splitting of TX over V induces a splitting of TY over f−1(V)∩Y.

PROOF. SinceTX was split overV ⊆ X̄, we are givent : L∆X|V×ZX

∼= O. We
need a trivialization

f−1(t) : L∆Y| f−1(V)×ZY

∼= O.

Now ( f × f )−1(∆X) is the disjoint union of∆Y and someQ, so( f × f )∗(L∆X) is
L∆Y⊗LQ, whereLQ is the associated line bundle. Sincef induces an isomor-
phismZY→ ZX, Q is disjoint fromY×SZY. SinceLQ has a canonical trivialization
outsideQ, we haveLQ

∼= O on Y×SZY. Since( f × f )∗(t) is a trivialization of
L∆Y
⊗LQ on ( f × f )−1(V×SZX), we may regard( f × f )∗(t) as a trivialization of

L∆Y on ( f−1(V)∩Y)×SZY. �

EXAMPLE 21.4. Let Ȳ→ X̄ be a finite separable morphism of smooth projec-
tive curves,X∞ ⊂ X̄ a finite nonempty set containing the branch locus, andy∈ Ȳ a
k-rational point so thatx = f (y) is not inX∞. SetY∞ = f−1(X∞) q f−1(x)−{y}.
Then (Ȳ,Y∞,{y})→ (X̄,X∞,{x}) is a covering morphism of standard triples. If
X = SpecA andP is the prime ideal ofA definingx, thenPB is prime in the co-
ordinate ringB of Y. If a ∈ A then by 11.13, lemma 21.3 states that ifP[1/a] is
principal, then so isPB[1/a].

DEFINITION 21.5. Let Q be any commutative square of the form

B
i - Y

A

f

? i - X.

f

?
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We writeMV(Q) for the following chain complex inCork:

MV(Q) : 0 - B
(− f ,i)- A⊕Y

(i, f )- X - 0.

If F is a presheaf, thenF(MV(Q)) is the complex of abelian groups:

0 - F(X)
(i, f )- F(A)⊕F(Y)

(− f ,i)- F(B) - 0.

The general theorem below will involve an intricate set of data which we
now describe. Letf be a covering morphism of standard triples, fromTY =
(Ȳ,Y∞,ZY) to TX = (X̄,X∞,ZX). Let Q denote the square that comes fromf . Let
Q′ = (X′,Y′,A′) be another upper distinguished square withY′ andX′ affine so that
Q andQ′ are of the form:

(21.5.1)

B′ - Y′ B - Y

Q′ : Q :

A′

f ′

? i′ - X′

f ′

?

A

f

? i - X.

f

?

THEOREM21.6. Let j : Q′→Q be a morphism of upper distinguished squares
of the form 21.5.1 such that:

• Q comes from a covering morphism TY→ TX of standard triples;
• X′→ X is an open embedding, and(X̄,X∞,ZX) splits over X′;
• X′ and Y′ are affine.

Then for any homotopy invariant presheaf with transfers F, the map of complexes
F(MV(Q))→ F(MV(Q′)) is chain homotopic to zero.

0 - F(X)
(i, f )- F(A)⊕F(Y)

(− f , i)- F(B) - 0

0 - F(X′)

jX

? (i′, f ′)- F(A′)⊕F(Y′)

(
jA
jY

)
? (− f ′, i′)- F(B′)

jB

?
- 0

The proof of 21.6 will be assembled from lemmas 21.7, 21.8 and 21.9 below.
We say that a diagram inCork is homotopy commutativeif every pair of com-

positesf ,g : X→Y with the same source and target areA1-homotopic. Any homo-
topy invariant presheaf with transfers identifiesA1-homotopic maps, and converts
a homotopy commutative diagram into a commutative diagram.

LEMMA 21.7. Let j : Q′ → Q be as in the statement of 21.6. Then there are
mapsλA ∈Cor(X′,A) andλB ∈Cor(Y′,B), well-defined up toA1-homotopy, such
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that the following diagram is homotopy commutative.

Y′
f ′ - X′

Y �
i

jY

�
B

∃λB

? f - A

∃λA

? i - X.

jX

-

Applying a homotopy invariant presheaf with transfers F gives a commutative di-
agram:

F(X)
i - F(A)

f - F(B) �
i

F(Y)

F(X′)

∃λA

? f ′-

jX -

F(Y′).

∃λB

?

jY
�

The assertion in the lemma thatλA is only well defined up toA1-homotopy
equivalence reflects the identification

Cor(X′,A)/A1-h.e.= Hsing
0 (X′×SA/X′)

∼=- Pic(X′×SX̄,X′×S(X∞ q ZX))

arising from 7.2 and 7.16. A similar remark applies to the indeterminacy ofλB.

PROOF. By 21.3, both triplesTX andTY split over an affine. Hence the maps in
question exist and the outer triangles commute up toA

1-homotopy by 11.15. The
construction of the relative Picard classes representingλA andλB from the com-
patible splittings in the proof of 11.15 shows that the middle square is homotopy
commutative. �

SinceCor(X,Y)/A1-homotopy= Hsing
0

(X ×Y/X) by 7.2, two elements of
Cor(X,Y) areA1-homotopic exactly when they agree inHsing

0
(X×Y/X). This

allows us to apply the relative Picard techniques of lecture 7.

LEMMA 21.8. Let h be a rational function on̄X×SȲ which is invertible in a
neighborhood U of A′×SY∞ and A′×SZY, and equals1 on A′×SY∞. Then the Weil
divisor D defined by h defines an elementψ of Cor(A′,B) such that the composition
iψ ∈Cor(A′,Y) isA1-homotopic to zero.

PROOF. As a divisor on the normal varietyA′×SȲ, we can writeD = ∑niDi
with eachDi integral and supported off ofU . Since eachDi missesA′×SY∞, it
is quasi-finite overA′. SinceDi is proper overA′, and has the same dimension
asA′, it is finite and surjective overA′. As such, eachDi and henceD defines an
element ofC0(A′×SB/A′) which is a subgroup ofC0(A′×B/A′) = Cor(A′,B). By
construction (see 7.15), the image ofD in Pic(A′×SȲ,A′×S(Y∞ q Z)) is given
by (O,h), the trivial line bundle with trivialization 1 onA′×SY∞, andh on A′×S
ZY. The composition withi : B→ Y sendsD to an element ofC0(A′×SY/A′)
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whose image in Pic(A′×SȲ,A′×SY∞) is the class of(O,h). By 7.16, this group
is isomorphic toHsing

0
(A′×SB/A′). But in this group(O,h) = (O,1) is the zero

element. This implies that the image is zero inHsing
0

(A′×B/A′). �

LEMMA 21.9. Let j : Q′→ Q be as in the statement of 21.6. Then there are
λA ∈Cor(X′,A), λB ∈Cor(Y′,B), satisfying the conditions of lemma 21.7, and a
ψ in Cork(A

′,B) fitting into a homotopy commutative diagram in Cork:

B′
λB◦ i′− jB- B

A′

f ′

?

λA◦ i′− jA
-

ψ

....
....

....
....

....
....

....
....

.
-

A.

f

?

Moreover the composition A′
ψ- B

i- Y isA1-homotopic to0.
Applying a homotopy invariant presheaf with transfers F gives a commutative

diagram:

F(A)
f - F(B)

F(A′)

i′ ◦λA− jA

?

f ′
-

ψ

�...
....

....
....

....
....

....
....

F(B′),

i′ ◦λB− jB

?

and the composite F(Y)
i- F(B)

ψ- F(A′) is zero.

PROOF OF21.9. In order to streamline notation, we write× for ×S.
Let L∆X′ be the line bundle onX′ × X̄ corresponding to the graph∆X′ of

X′ ⊂ - X̄, andL∆Y′ for the line bundle onY′× Ȳ corresponding to the graph
∆Y′ of Y′ ⊂ - Ȳ. In between these, we have the line bundleM on X′ × Ȳ,
obtained by pulling backL∆X′ .

Since these three line bundles come from effective divisors, they have canon-
ical global sections. We will writesX for the canonical global section ofL∆X′ on
X′× X̄, sM for M onX′×Ȳ, andsY for L∆Y′ onY′×Ȳ. Each global section deter-
mines a section onX′×ZX, X′×ZY, andY′×ZY, respectively. SinceA′ ⊆ X′−ZX
andB′⊆Y′−ZY, the restrictions ofsX,sM ,sY also determine trivializations in each
case, ofL∆X′ onA′×ZX, of M onA′×ZY, and ofL∆Y′ onB′×ZY.

BecauseZY
∼= ZX, the inclusion ofX′×ZX in X′× X̄ lifts to X′× Ȳ, and we

may identify the pullbacks ofL∆X′ andM toX′×ZY, together with their respective
trivializationssX andsM onA′×ZY.

Since the standard triple(X̄,X∞,ZX) splits overX′, we are given a fixed trivial-
izationtX of L∆X′ on X′×ZX. As with sX, we may identifytX with a trivialization
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tM of M onX′×ZY. By 21.3,tX also induces a trivializationtY of L∆Y onY′×ZY.
SinceZX lives in an affine neighborhoodUX in X̄, we extendtX to X′×UX and we
fix this particular extension. Pulling back, the same is true fortM andtY and we
fix those two extensions too.

BecausetX, tM , tY are trivializations, there are regular functionsrX, rM , rY so
that:

sX = rXtX onX′×ZX; sM = rM tM onX′×ZY; sY = rYtY onY′×ZY.

BecausesX is a trivialization onA′×ZX, rX is invertible onA′×ZX. Similarly, rM
is invertible onA′×ZY, andrY is invertible onB′×ZY. (See figure 2.)

A′×ZY

A′×Y∞,1

A′×Y∞,2

1

rM

1

A′×Ȳ A′× X̄

A′×ZX
rX

1

A′×X∞

FIGURE 21.2. The covering morphismf : Ȳ→ X̄ overA′

Because(Ȳ,Y∞,ZY) is a standard triple, there is an affine open neighborhood
U of Y∞ q ZY in Ȳ. HenceX′×U is an affine open neighborhood ofX′×ZY and
X′×Y∞ in X′×Ȳ. SinceZY andY∞ are disjoint, the Chinese Remainder Theorem
yields a regular functionh onX′×U which equals 1 onX′×Y∞ and equalsrM on
X′×ZY. LetD⊂X′×Ȳ denote the principal divisor corresponding toh. By lemma
21.8, the divisor−D defines an elementψ of Cor(A′,B) such that the composition
iψ ∈Cor(A′,Y) is homotopically trivial. By 7.15, the mapCor(A′,B)→ Pic(A′×
Ȳ,A′× (Y∞ q ZY)) sendsψ to the class of(OA′×Ȳ,1∞ q r−1

M ).
It remains to verify that the diagram in 21.9 is homotopy commutative.
We first interpret the horizontal maps in 21.9. By the construction ofλA and

λB in 11.15 and 21.7, the compositionsλA◦ i′ ∈Cor(A′,A) andλB◦ i′ ∈Cor(B′,B)
represent the classes of(L∆A′ ,s∞ q tX) and (L∆B′ ,s∞ q tY) in Pic(A′ × X̄,A′ ×
(X∞ q ZY)) and Pic(B′× Ȳ,B′× (Y∞ q ZY)), respectively. On the other hand, the
inclusions jA and jB represent the classes of(L∆A′ ,s∞ q sX) and(L∆B′ ,s∞ q sY),
respectively. It follows that the differencesjA−λA ◦ i′ ∈Cor(A′,A) and jB−λB ◦
i′ ∈ Cor(B′,B) represent the classes of(OA′×X̄,1∞ q rX) and (OB′×Ȳ,1∞ q rY),
respectively. (Cf. exercise 11.16.)
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The compositionψ f ′ ∈ Cor(B′,B) represents(OB′×Ȳ, f ∗h−1). Since f ∗h is
a rational function onB′× Ȳ which is 1 onB′×Y∞ and rY on B′×ZY, we have
ψ f ′ = λB◦ i′− jB in Pic(B′×Ȳ,B′× (Y∞ q ZY)).

Now the compositionf ψ ∈ Cor(A′,A) represents the push-forward ofψ

along H0(A′ × B/A′) → H0(A′ × A/A′). By 7.24, this represents the class of
(OA′×X̄, f∗(1∞ q r−1

M )). By definition 7.22, the norm ofh is a rational function
which extends the trivializationf∗(1∞ q rM ) to an affine neighborhood. Sinceh is
identically 1 on f−1(X∞) ⊂Y∞, N(h) = 1 onA′×X∞ by 7.23. We will show that
N(h) = rX onA′×ZX in lemma 21.10 below. Hencef ψ = λAi′− jA in Cor(A′,A),
as desired. �

LEMMA 21.10. Let f : U →V be a finite map with U and V normal. Suppose
that Z⊂V and Z′ ⊂U are reduced closed subschemes such that the induced map
Z′→ Z is an isomorphism, and U→V is étale in a neighborhood of Z′.

If h∈O∗(U) is 1 on f−1(Z)−Z′, then N(h)|Z and h|Z′ are identified by Z′ ∼= Z.

PROOF. Suppose first thatf has a sections : V →U sendingZ to Z′. Then
U ∼= s(U) qU ′ andh is 1 on f−1(Z)∩U ′. In this case, the assertion follows from
the componentwise calculation of the normN(h), together with 7.23.

In the general case, letU ′ ⊂U be a neighborhood ofZ′ which isétale overV,
and leth′ ∈O∗(U ′×V U) be the pullback ofh. The graphZ′′ ⊂U ′×V U of Z′→ Z
is isomorphic toZ′, andU ′×V U ′ is anétale neighborhood ofZ′′ in U ′×V U . By
construction,h′ is 1 onU ′×V ( f−1(Z)−Z′′) andU ′×V U →U ′ has a canonical
section sendingZ′ to Z′′; in this case we have shown thatN(h′)|Z′ is identified with
h|Z′ . Since norms commute with base change, we can identifyN(h) with N(h′)
underO∗(V)⊆O∗(U ′). This proves the lemma. �

PROOF OF21.6. From 21.7 and 21.8, we have mapss1 = (λA,0) : F(A)⊕
F(Y)→F(X′) ands2 = (ψ,λB) : F(B)→F(A′)⊕F(Y′). In order for these maps to
form a chain homotopy fromj to zero, we must havesd+ds= j. This amounts to
six equations, three of which come from the commutativity of the trapezoid in 21.7.
The other three, which involveψ are:ψ i ' 0, jA' i′λA−ψ f and jB' i′λB− f ′ψ.
These are provided by 21.9. �

We isolate a special case of theorem 21.6 as a corollary, which will be needed
in the proof of theorem 22.2.

COROLLARY 21.11. Let Q= Q(X,Y,A) be an upper distinguished square of
smooth schemes coming from a covering morphism of standard triples and letΣ be
a finite set of points in Y . Then there exist affine neighborhoods X′ of f(Σ) in X
and Y′ of Σ in Y∩ f−1(X′) such that:

• The induced square Q′ = Q(X′,Y′,A′) is upper distinguished, where A′ =
A∩X′ and B′ = B∩Y′;
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• For any homotopy invariant presheaf with transfers F, the map
F(MV(Q))→ F(MV(Q′)) is chain homotopic to zero.

0 - F(X) - F(A)⊕F(Y) - F(B) - 0

0 - F(X′)
?

- F(A′)⊕F(Y′)
?

- F(B′)
?

- 0

PROOF. By 11.14, f (Σ) has an affine neighborhoodX′ over which the triple
(X̄,X∞,Z) splits. SetȲ′ = X′×X̄ Ȳ, Z′X = ZX ∩X′ andZ′Y = ZY ∩ Ȳ′, and note
thatZ′Y→ Z′X is an isomorphism by 21.1. SincēY′→ X′ is finite,Ȳ′ is affine. The
subsetsY∞∩Ȳ′ andZ′Y∪Σ of Ȳ′ are closed in̄Y′, and disjoint by 11.5. Hence there
is an affine open subschemeY′ of Ȳ′ which contains bothZ′Y andΣ but is disjoint
from Y∞ ∩ Ȳ′. SinceY′ is open inY, it is étale overX′. SinceB′ = B∩Y′ is the
complement inY′ of Z′Y = ZY ∩Y′, andB′ = A×X Y′ = A′×X′Y

′, the squareQ′ =
Q(X′,Y′,A′) is upper distinguished (see 12.5). Thus the hypotheses of theorem
21.6 are satisfied forQ′→ Q, and the final part of the corollary is the conclusion
of 21.6. �



LECTURE 22

Zariski sheaves with transfers

With the technical results of the last lecture in hand, we are ready to prove the
following results.

THEOREM 22.1. Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf FZar is homotopy invariant.

THEOREM 22.2. Let F be a homotopy invariant presheaf with transfers. Then
FZar = FNis.

Combining 22.1 and 22.2, we obtain theorem 22.3 below, which is the case
n = 0 of theorem 13.8. This theorem does not requirek to be perfect.

THEOREM22.3. If F is a homotopy invariant presheaf with transfers, then the
Nisnevich sheaf FNis is homotopy invariant.

We will prove theorems 22.1 and 22.2 in order, using a sequence of lemmas.
We make the running assumption thatF is a homotopy invariant presheaf with
transfers. The Mayer-Vietoris sequenceF(MV(Q)) associated to a commutative
squareQ is defined in 21.5.

LEMMA 22.4. Let U be an open subset ofA1 and U=U1∪U2 be a Zariski cov-
ering of U. Then the complex F(MV(Q)) is split exact, where Q= Q(U,U1,U2).

F(MV(Q)) : 0 - F(U) - F(U1)⊕F(U2) - F(U1∩U2) - 0

In particular, F is a Zariski sheaf onA1.

PROOF. SettingY∞ = P1−U , Y′∞ = P1−U1 andZ = U−U2, the identity ofP1

is a covering morphism(P1,Y′∞,Z)→ (P1,Y∞,Z) of standard triples as in example
21.2. Both triples are split overU itself by 11.13, so by theorem 21.6 withQ′ = Q,
the complexF(MV(Q)) is chain contractible, i.e., split exact. �

LEMMA 22.5. If F is a homotopy invariant Zariski sheaf with transfers, and
U is an open subset ofA1, then Hn

Zar(U,F) = 0 for n> 0.

PROOF. If U = {U1, . . . ,Un} is a finite cover ofU , it follows from 22.4 and
induction onn that the following sequence is exact.

0→ F(U)→⊕iF(Ui)→⊕i, jF(Ui ∩U j)→ . . .→ F(∩iUi)→ 0

Hence theČech cohomology ofF satisfiesȞ i(U ,F) = 0 for i > 0. But then
H1(U,F) = Ȟ1(U,F) = 0 by [Har77, Ex III.4.4]. Since dimU = 1, we must also
haveH i(U,F) = 0 for i > 1 (see [Har77, III.2.7]). �

189
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EXERCISE22.6. Show that 22.4 and 22.5 fail forF = O∗ if A1 is replaced by
an affine elliptic curve.

LEMMA 22.7. If F is a homotopy invariant Nisnevich sheaf with transfers, and
U is an open subset ofA1, then Hn

Nis(U,F) = 0 for n> 0.

PROOF. Since dimU = 1, we haveHn
Nis(U,F) = 0 for n > 1. By [Mil80 ,

III.2.10], H1
Nis(U,F) = Ȟ1(U,F). Therefore we only need to show thatȞ1(U,F) =

0.
SinceF takes disjoint unions to direct sums, theČech cohomology can be

computed using covering familiesV → X, instead of the more general{Vi → X}.
By 12.6, any such cover ofU has a refinementU = {A,V}, whereA ⊂ U is
dense open,V →U is étale, and the squareQ = Q(U,V,A) is upper distinguished
(see 12.5). EmbedV in a smooth projective curvēV finite over P1, and set
V∞ = V̄ −V. By construction (see 21.1),Q comes from the covering morphism
of standard triples(V̄,V∞,Z)→ (P1,U∞,Z), whereU∞ = P1−U andZ = U −A.
Since(P1,U∞,Z) splits overU by 11.13, theorem 21.6 withQ′ = Q implies that
the complexF(MV(Q)) is split exact. That isȞ1(U ,F) = 0. Passing to the limit
over all such covers yieldšH1(U,F) = 0. �

LEMMA 22.8. Let F be a homotopy invariant presheaf with transfers. If X is
smooth and U⊂ X is dense open, then FZar(X)→ FZar(U) is injective.

PROOF. As FZar is a sheaf it suffices to verify this locally. Letf ∈ FZar(X)
be a nonzero section which vanishes inFZar(U). Pick a pointx ∈ X so that f is
nonzero in the stalkFx = F(SpecOX,x). By shrinkingX aroundx we may assume
that f ∈ F(X). By shrinkingU , we may assume thatf vanishes inF(U) and hence
in F(V) for V = Spec(OX,x)∩U . By 11.1, f is nonzero inF(V), and this is a
contradiction. �

PROOF OF22.1. We have to prove thati∗ : FZar(X×A1)→ FZar(X) is an iso-
morphism, wherei : X→ X×A1. It is enough to prove thati∗ is injective. We may
assume thatX is connected and therefore irreducible. Letγ : SpecK - X be the
generic point. We get a diagram:

FZar(X×A
1)

i∗ - FZar(X)

FZar(SpecK×A1)

(γ×1)∗
? ∼=- FZar(SpecK)

γ
∗

?

where the vertical maps are injective by 22.8. The bottom map is an isomorphism
by 22.4 since we may regardF as a homotopy invariant presheaf with transfers
over the fieldK by 2.10:

FZar(A
1
K) = F(A1

K)
∼=- F(SpecK) = FZar(SpecK).

Thusi∗ is injective. �
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Let sZar(F) be the separated presheaf (with respect to the Zariski topology)
associated to the presheafF . It is defined by the formula:

sZar(F)(X) = F(X)/F0(X), F0(X) = colim
covers
{Ui→X}

kerF(X)→∏F(Ui).

LEMMA 22.9. sZar(F) is a homotopy invariant presheaf with transfers.

PROOF. The homotopy invariance ofsZarF is immediate from the fact that
homotopy invariance is preserved by quotient presheaves. The existence of trans-
fers is more difficult. LetZ ⊂ S×X be an elementary correspondence fromS to
X. We must show that the corresponding transferF(X)→ F(S) sendsF0(X) to
F0(S), i.e., that the image ofF0(X) vanishes at each stalkF(SpecOS,s). It suffices
to supposeS local, so thatZ is semilocal. Hence there is a semilocal subscheme
X′ of X with Z ⊂ S×X′. But by 11.1,F(X′) injects intoF(U) for each dense
U ⊂ X′, soF0(X′) = 0. HenceF0(X)→ F(S) is zero, because it factors through
F0(X′) = 0. �

For the next few lemmas,S will be the semilocal scheme of a smooth quasi-
projective varietyX at a finite set of points. Since any finite set of points lies in
an affine neighborhood, we may even assume thatX is affine. Clearly,S is the
intersection of the filtered family of its affine open neighborhoodsXα in X.

LEMMA 22.10. Suppose that F is a homotopy invariant presheaf with trans-
fers. Then for any open covering S= U0∪V there is an open U⊂U0 such that
S= U ∪V and the sequence F(MV(Q)) is exact, where Q= Q(S,U,V):

0→ F(S)→ F(U)⊕F(V)→ F(U ∩V)→ 0.

PROOF. We may assume thatS is connected, since we can work separately
with each component. By assumption, there are openŨ0, Ṽ in X such thatU0 =
S∩ Ũ0, V = S∩ Ṽ. SinceŨ0 is open inX, there is an affine opeñU contained in
Ũ0 which contains the finite set of closed points ofU0. SettingU = S∩Ũ , we have
S= U ∪V. We will show thatF(MV(Q)) is exact for the squareQ = Q(S,U,V).

We first suppose thatk is an infinite field. For eachα, setUα = Xα ∩ Ũ and
Vα = Xα ∩Ṽ. The canonical map fromQ to the squareQα = Q(Xα ,Uα ,Vα) induces
a morphism of Mayer-Vietoris sequences,F(MV(Qα))→ F(MV(Q)). It suffices
to show that these morphisms are chain homotopic to zero, becauseF(MV(Q)) is
the direct limit of theF(MV(Qα)).

Let Z ⊂ X denote the union ofX− (Ũ ∩ Ṽ) and the closed points ofS. For
eachXα , we know by 11.17 that there is an affine neighborhoodX′

α
of S in Xα and

a standard tripleTα = (X̄α ,X∞,α ,Zα) with X′
α

∼= X̄α −X∞,α andZα = Xα ∩Z. Set
U ′

α
= X′

α
∩ Ũ andV ′

α
= X′

α
∩ Ṽ. SinceX̄α − (U ′

α
∩V ′

α
) lies in X∞,α ∪Zα , it lies

in an affine open subset of̄Xα (by definition 11.5). By 21.2, the Zariski square
Q′

α
= Q(X′

α
,U ′

α
,V ′

α
) comes from a covering morphism of triplesT ′

α
→ Tα .

By 11.14, the tripleTα is split over an affine neighborhoodX′′
α

of S in X′
α

. Set
U ′′

α
= X′′

α
∩Ũ andV ′′

α
= X′′

α
∩ Ṽ, and form the squareQ′′

α
= Q(X′′

α
,U ′′

α
,V ′′

α
). Since

X′′
α

andŨ are affine, so isU ′′
α

. By theorem 21.6, the morphismF(MV(Q′
α

))→
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F(MV(Q′′
α

)) is chain homotopic to zero. SinceF(MV(Qα))→ F(MV(Q)) factors
through this morphism, it too is chain homotopic to zero.

0 - F(Xα) - F(Uα)⊕F(Vα) - F(Uα ∩Vα) - 0

0 - F(X′
α

)
?

- F(U ′
α

)⊕F(V ′
α

)
?

- F(U ′
α
∩V ′

α
)

?
- 0

0 - F(X′′
α

)
?

- F(U ′′
α

)⊕F(V ′′
α

)
?

- F(U ′′
α
∩V ′′

α
)

?
- 0

0 - F(S)
?

- F(U)⊕F(V)
?

- F(U ∩V)
?

- 0.

If k is finite, exactness follows by a transfer argument. Any elementa in the
homology ofF(MV(Q)) must vanish when we pass toQ⊗k k′ for any infinite
algebraic extensionk′ of k. Sincea must vanish for some finite subextensionk′0, a
has exponent[k′0 : k]. Since[k′0 : k] can be chosen to be a power of any prime, we
conclude thata = 0. �

Lemma 22.10 corrects [CohTh, 4.23], which omitted the passage fromU0 to U .

COROLLARY 22.11. Let S′ and S′′ be semilocal schemes of a smooth quasi-
projective scheme X at finite sets of points, and set S= S′ ∪S′′. Then the Mayer-
Vietoris sequence F(MV(Q)) is exact, where Q= Q(S,S′,S′′):

0→ F(S)→ F(S′)⊕F(S′′)→ F(S′∩S′′)→ 0.

PROOF. Write S′ as the intersection of opensUα ⊂SandS′′ as the intersection
of opensV

β
⊂ S. The sequenceF(MV(Q)) is the direct limit of the sequences

F(MV(Q
αβ

)), whereQ
αβ

= Q(S,Uα ,Vβ
). By 22.10, there areU

αβ
⊂ Uα such

that the sequencesF(MV(Q(S,U
αβ
,V

β
))) are exact. Hence the morphisms from

F(MV(Q
αβ

)) to F(MV(Q)) are zero on homology. Passing to the direct limit, we
see that the homology ofF(MV(Q)) is zero, i.e., it is exact. �

Note that the sequence 0→F (S)→F (S′)⊕F (S′′)→F (S′∩S′′) is always
exact whenF is a Zariski sheaf onS. This is because it is the direct limit of the
exact sequences 0→F (S)→F (Uα)⊕F (V

β
)→F (Uα ∩V

β
) associated to the

family of open covers{Uα ,Vβ
} of Swith S′ ⊂Uα andS′′ ⊂V

β
.

LEMMA 22.12. Let S be the semilocal scheme of a smooth quasi-projective
scheme X at a finite set of points. Then FZar(S) = F(S).

PROOF. By 11.1, F(S) = (sZarF)(S). SincesZarF is a homotopy invariant
presheaf with transfers by 22.9, we may replaceF by sZarF and assume thatF is
separated. We now proceed by induction on the number of the closed points ofS.
Let S′ be the local scheme at a closed pointx of S, andS′′ the semilocal scheme at



22. ZARISKI SHEAVES WITH TRANSFERS 193

the remaining points. Consider the following commutative diagram.

0 - F(S) - F(S′)⊕F(S′′) - F(S′∩S′′)

0 - FZar(S)
?

- FZar(S
′)⊕FZar(S

′′)

=
?

- FZar(S
′∩S′′)

into
?

The top row is exact by 22.11, and we have noted that the bottom row is exact
becauseFZar is a Zariski sheaf. The right vertical map is an injection becauseF is
separated. The middle vertical map is the identity by induction. A diagram chase
shows that the left vertical map is an isomorphism, as desired. �

We need an analogue of lemma 6.16 for the Zariski topology, showing that we
can lift finite correspondences to open covers under mild conditions.

LEMMA 22.13. Let W be a closed subset of X×Y, x∈X a point and V⊂Y an
open subset such that p−1(x)⊂ {x}×V, where p: W→ X is the projection. Then
there is a neighborhood U of x such that W×X U is contained in U×V.

PROOF. The subsetZ = W−W∩ (X×V) is closed, andx 6∈ p(Z). Becausep
is a closed map,p(Z) is closed andU = X− p(Z) is an open neighborhood ofx.
By construction,W×X U is contained inU×V. �

COROLLARY 22.14. Let W ∈Cor(X,Y) have support W and let p: W→ X
be the projection. If x∈ X and V⊂Y are such that p−1(x) ⊂ {x}×V, then there
is a neighborhood U of x and a canonicalWU ∈Cor(U,V) such that the following
diagram commutes.

U
WU - V

X
? W - Y

?

PROOF. Writing W = ∑ni [Wi ], we may apply lemma 22.13 to eachWi . Since
Wi is finite overX, Wi×X U is finite overU , soWU = ∑ni [Wi×X U ] is the required
finite correspondence. It is canonical because ifU ′⊂U , the composition ofU ′⊂U
with WU is WU ′ = ∑ni [Wi×X U ′]. �

THEOREM22.15.Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf FZar has a unique structure of presheaf with transfers such that
F → FZar is a morphism of presheaves with transfers.

PROOF. By 22.9 we may assume thatF is separated, i.e., thatF(V)⊆ FZar(V)
for everyV. We may also assume thatX andY are irreducible without loss of
generality. We begin by defining an elementW ∗( f ) in FZar(X) for every element
f ∈ FZar(Y) and every finite correspondenceW from X to Y.

The first step is to fix a pointx ∈ X and construct an elementW ∗( f )x of
FZar(Ux) for an appropriate neighborhoodUx of x. Sincep :W→X is finite, the im-
age ofp−1(x) under the natural mapW→Y consists of only finitely many points;
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let S denote the semilocal scheme ofY at these points. SinceF(S) = FZar(S) by
22.12, there is an openVx ⊂Y such thatfx = f |Vx

∈ FZar(Vx) lies in the subgroup
F(Vx)⊆ FZar(Vx). By 22.14, there is a neighborhoodUx of x such thatW restricts
to a finite correspondenceWx from Ux to Vx. Let W ∗( f )x denote the image offx
underW ∗

x : F(Vx)→ F(Ux)⊆ FZar(Ux).
Uniqueness ofW ∗( f )x. Suppose thatF → FZar is a morphism of presheaves

with transfers. GivenW ∈ Cor(X,Y) and f ∈ FZar(Y), it suffices to show that
W ∗( f ) ∈ FZar(X) is uniquely defined in some neighborhood of any pointx. The
construction above shows that the image ofW ∗( f ) in FZar(Ux) must equalW ∗( f )x,
which is defined using only the sheaf structure onFZar and the transfer structure on
F .

Existence ofW ∗( f )x. Fix W ∈Cor(X,Y) and f ∈ FZar(Y). In the above con-
struction, we produced a neighborhoodUx of every pointx∈X, an open setVx in Y
so thatfx = f |Vx

belongs to the subgroupF(Vx) of FZar(Vx), and considered the im-
ageW ∗( f )x = W ∗

x ( fx) of fx in F(Ux) ⊆ FZar(Ux). This construction corresponds
to the top row of Figure 1.

FZar(Y) FZar(X)

∏FZar(Vx)
?

� ⊃ ∏F(Vx)
W ∗

x- ∏F(Ux) ⊂ - ∏FZar(Ux)
?

∏FZar(Vxx′)
?

�into ∏F(Vxx′)
? W ∗

xx′- ∏F(Uxx′)
?

- ∏FZar(Uxx′)
?

FIGURE 22.1. The transfer map forFZar

To construct the rest of Figure 1, pick two pointsx,x′ ∈ X and setUxx′ = Ux∩
Ux′ , Vxx′ = Vx∩Vx′ . SinceW×X Ux lies in Ux×Vx for all x (by 22.13), it follows
thatW×X Uxx′ lies inUxx′× (Vx∩Vx′). Hence there is a finite correspondenceWxx′

from Uxx′ lifting both Wx andWx′ in the sense of 22.14. That is, the middle square
commutes in figure 1.

A diagram chase on 1 shows that theW ∗( f )x agree on all intersectionsUxx′ =
Ux∩Ux′ . Thus the elementW ∗( f ) ∈ FZar(X) exists by the sheaf axiom.

Fix x∈ X and chooseV ⊂Y, fV ∈ F(V) andUx as above. BecauseF is sepa-
rated we haveF(V)⊂ FZar(V), so the elementfV ∈ F(V) is well defined. Given a
denseV0⊂V, the mapF(V)→ F(V0) sendsfV to fV0

, becauseFZar(V)⊂ FZar(V0)
by 22.8. GivenU0 ⊂ Ux, the proof of 22.14 shows that the the canonical lift
WU0
∈ Cor(U0,V) is the composition of the inclusionU0 ⊂ U with the canoni-

cal lift WU ∈Cor(U,V). HenceFZar(Ux)→ FZar(U0) sends the elementW ∗( f )x to
the image offV0

underF(V0)→ F(U0)⊂ FZar(U0).



22. ZARISKI SHEAVES WITH TRANSFERS 195

It is now easy to check using 22.8 that the mapsW ∗ are additive and giveFZar
the structure of a presheaf with transfers. �

PROOF OF22.2. We have to prove thatFZar = FNis. Let F ′ and F ′′ denote
the kernel and cokernel presheaves ofF → FNis, respectively. By 13.1, they are
presheaves with transfers whose associated Nisnevich sheaf is zero. Since sheafi-
fication is exact, it suffices to show thatF ′Zar = F ′′Zar = 0. That is, we may assume
thatFNis = 0.

By 22.1 and 22.15,FZar is also a homotopy invariant presheaf with transfers.
SinceFNis = (FZar)Nis, we may assume thatF = FZar, i.e., thatF is a Zariski sheaf.
Therefore it suffices to show thatF(S) = 0 for every local schemeS of a smooth
varietyX. Let Sbe the local scheme associated to a pointx of X.

By 12.7, it suffices to check that, for any upper distinguished square

B
i - Y

Q :

A

f
? i - X

f
?

(see definition 12.5), the squareF(Q×X S) is a pullback. By 21.5, this is equivalent
to checking that the complexF(MV(Q×X S)) is exact. This is evident ifx ∈ A,
whenA×X S= SandB×X S= Y×X S, so we may assume thatx∈ ZX.

ShrinkingX aroundx, we may suppose by 11.17 thatX is affine and fits into
a standard triple(X̄,X∞,Z) with A = X− Z. ShrinkingY around the finite set
Σ = f−1(x), we may also suppose by 11.17 thatY is affine, and fits into a standard
triple so thatQ comes from a covering morphism of standard triples in the sense of
21.1. Hence 21.11 implies thatQ×X S→Q factors through an upper distinguished
squareQ′ in such a way that

F(MV(Q))→ F(MV(Q′))→ F(MV(Q×X S))

is chain homotopic to zero.

0 - F(X) - F(A)⊕F(Y) - F(B) - 0

0 - F(X′)
?

- F(A′)⊕F(Y′)
?

- F(B′)
?

- 0

0 - F(S)
?

- F(A∩S)⊕F(Y×X S)
?

- F(B×X S)
?

- 0

Taking the limit over smaller and smaller neighborhoodsX of x, we see that
F(MV(Q×X S)) is exact. But thenF(Q×X S) is a pullback square, as claimed.�





LECTURE 23

Contractions

We need one final tool in order to prove theorem 13.8, which says that Nis-
nevich cohomology preserves homotopy invariance for sheaves with transfers. In
this lecture we associate toF a new presheafF−1 (known as thecontraction of F
in the literature). Here is the definition.

Let F be a homotopy invariant presheaf. The presheafF−1 is defined by the
formula:

F−1(X) = coker
(
F(X×A1)→ F(X× (A1−0))

)
.

For r > 1 we defineF−r to be (F1−r)−1. Sometimes we will writeF(X)−r for
F−r(X).

Since the inclusiont = 1 : X ⊂ - X× (A1− 0) ⊂ X×A1 is split by the
projectionX×A1→ X, we have a canonical decompositionF(X× (A1− 0)) ∼=
F(X)⊕F−1(X). Hence,F−1 is also homotopy invariant, and ifF is a sheaf then so
is F−1. Here are some examples of this construction.

EXAMPLE 23.1. If F = O∗ then F−1 = Z, becauseO∗(X × (A1− 0)) =
O∗(X)×{tn} for every integralX. By 4.1, there is a quasi-isomorphismZ(1)−1'
Z[−1].

More generally, the higher Chow groupsCHi(−,n) are homotopy invariant
(see 17.4) and their contractions are given by the formula:

(23.1.1) CHi(X,n)−1
∼= CHi−1(X,n−1).

This follows from the the Localization Theorem (see 17.4):

CHi−1(X,n)
(t=0)∗- CHi(X×A1,n)→CHi(X× (A1−0),n)→CHi−1(X,n−1),

which is split as above by the pullback alongt = 1 (using 19.13).
Theorem 19.1 allows us to rewrite the formula in (23.1.1) as:

Hm,i(X,Z)−1 =Hm
Zar(X,Z(i))−1

∼=Hm−1
Zar (X,Z(i−1)) = Hm−1,i−1(X,Z).

This yields the formulaZ(i)−1' Z(i−1)[−1] in the derived category, and inDM .

EXAMPLE 23.2. We will see in the next lecture (in 24.1 and 24.8) that ifF
is a homotopy invariant Zariski sheaf with transfers thenHn(−,F) is homotopy
invariant andHn

Zar(−,F)−1
∼= Hn

Zar(−,F−1).
EXAMPLE 23.3. Suppose that 1/n ∈ k, and letM be a locally constantn-

torsion sheaf, such asµn. The argument of 23.1 applied tóetale cohomology,
shows that

Hm
ét(X,M⊗µn)−1

∼= Hm−1
ét (X,M).

197
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EXERCISE 23.4. Let U be the standard covering ofX× (An− 0) by U1 =
X×(A1−0)×An−1, . . . ,Un = X×An−1×(A1−0). If F is homotopy invariant and
n≥ 2, show thatȞ0(U ,F)∼= F(X), Ȟn−1(U ,F)∼= F−n(X), and thatȞr(U ,F) =
0 for all otherr.

Now suppose thatF is a Zariski sheaf, and that its cohomology groups are also
homotopy invariant. Show that, for allmandn> 0, the cohomology with supports
satisfies:

Hm
X×{0}(X×A

n,F)∼= Hm−n(X,F)−n.

Hint: Use theČech spectral sequencěH p(U ,HqF)⇒ H p+q(X× (An−0),F).
PROPOSITION23.5. Let F be a homotopy invariant presheaf with transfers.

Then(FNis)−1
∼= (F−1)Nis.

PROOF. By 13.1 and 22.3,FNis is a homotopy invariant sheaf with transfers.
By inspection, the natural map(F−1)Nis→ (FNis)−1 is a morphism of presheaves
with transfers. By 11.2 (applied to the kernel and cokernel), it suffices to show
thatF−1(S) = (FNis)−1(S) whenS= SpecE for a fieldE. The left side isF(A1

E−
0)/F(A1

E) by definition, while the right side equalsFNis(A
1
E−0)/FNis(A

1
E). These

are equal by 22.4 and 22.2. �

In the rest of this lecture, we will compareF−1 to various sheavesF(Y,Z), which
we now define.

DEFINITION 23.6. Given a closed embeddingi : Z ⊂ - Y, and a presheaf
F , we define a Nisnevich sheafF(Y,Z) on Z as follows. LetK = K(Y,Z) denote the
presheaf cokernel ofF→ j∗ j∗F , where j : V ⊂ - Y is the complement ofZ. That
is, K(U) is the cokernel ofF(U)→ F(U×Y V) for all U . We setF(Y,Z) = (i∗K)Nis.

Since sheafification is exact, there is a canonical exact sequence of sheaves

(23.6.1) FNis→ ( j∗ j∗F)Nis→ i∗F(Y,Z)→ 0.

EXAMPLE 23.7. If Z = {z} is a closed point onY, then the value atZ of
F(Y,Z) is the cohomology with supports,H1

Z(Y,FNis). Indeed, ifSis the Hensel local
scheme ofY at Z thenF(Y,Z)(Z) is the cokernel ofFNis(S)→ FNis(S−Z,F), i.e.,

H1
Z(S,FNis). But this equalsH1

Z(Y,FNis) by excision [Har77, Ex.III.2.3]. Similarly,
we haveHn(−,F)(Y,Z)

∼= Hn+1
Z (Y,F) for n> 0. This follows from excision and the

exact sequence

Hn−1(S,F)→ Hn−1(U,F)→ Hn
z (S,F)→ 0.

EXAMPLE 23.8. Fix a Nisnevich sheafF and consider the presheafHn(−,F).
We claim that ifn> 0 then

Hn(−,F)(Y,Z) = i∗Rn j∗(F).

Indeed, in 23.6.1 we haveHn(−,F)Nis = 0, andRn j∗(F) is the sheaf onY as-
sociated to the presheafj∗ j∗Hn(−,F) = j∗Hn(−,F |V). Hencei∗Hn(−,F)(Y,Z)

∼=
( j∗ j∗Hn(−,F))Nis = Rn j∗(F). Now applyi∗ and observe thati∗i∗ is the identity.
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EXAMPLE 23.9. Let i : S⊂ - S×A1 be the embeddingi(s) = (s,0), with
complementS× (A1−0). By definition,F−1(U) = K(U×A1) where the cokernel
presheafK is defined in 23.6. The adjunction yields a natural map fromK(U×A1)
to i∗i∗K(U×A1) = i∗K(U). That is, we have a natural morphism of sheaves onS:

(F−1)Nis→ F(S×A1,S×0).

PROPOSITION23.10. Let F be a homotopy invariant presheaf with transfers.
Then(F−1)Nis|S∼= F(S×A1,S×0) for all smooth S.

PROOF. We need to compareF−1 and j∗ j∗F/F in a sufficiently small neigh-
borhood of any points of any smooth affineS. We will use the standard triple
T = (P1

S→ S,S×∞,S×0), which is split overS×A1 by 11.12. For each affine
neighborhoodU of S×0 in S×A1, setTU = (P1

S,P
1
S−U,S×0).

We claim that by shrinkingSwe can makeTU into a standard triple. At issue is
whether or not(P1

S−U)∪(S×0) lies in an affine open subscheme ofP1
S. Since the

fiberUs overs is open inP1
s, there is an affine openV ⊂ P1

k so thats×kV contains
both 0 and the finite setP1

s−Us. Hence the complements ofU andS×V in P1
S

intersect in a closed subset, disjoint from the fiberP
1
s. SinceP1

S is proper overS,
we may shrinkS abouts (keepingS affine) to assume that the complements are
disjoint. Hence the affineS×V contains the complementP1

S−U as well asS×0,
as claimed.

Now the identity onP1
S is a finite morphism of standard triplesTU → T in the

sense of 21.1 by 21.2. SettingU0 = U− (S×0), the squareQ coming from this is:

U0
- U

S× (A1−0)
?

j- S×A1
?

By the standard triples theorem 21.6 applied toQ′ = Q, the complexF(MV(Q)) is
split exact:

0→ F(S×A1)→ F(S× (A1−0))⊕F(U)→ F(U0)→ 0.

SinceF is homotopy invariant, this implies thatF(U)→ F(U0) is injective and
that F−1(S) ∼= F(U0)/F(U). Since j : S× (A1− 0) ↪→ S×A1 has j∗ j∗F(U) =
F(U0), the right side isj∗ j∗F/F(U). Passing to the limit overU andS, we get the
statement. �

LEMMA 23.11. Let f :Y→X be anétale morphism and Z a closed subscheme
of X such that f−1(Z)→ Z is an isomorphism. Then for every presheaf F:

F(X,Z)

∼=- F(Y, f−1(Z)).



200 23. CONTRACTIONS

PROOF. Since this is to be an isomorphism of Nisnevich sheaves, we may
assume thatX is Hensel local, and thatZ is not empty. ThenY is Hensel semilocal;
the assumption thatf−1(Z) ∼= Z implies thatY is local and in factY ∼= X. In this
case the two sides are the same, namelyF(X−Z)/F(X)∼= F(Y−Z)/F(X). �

Lemma 23.11 uses the Nisnevich topology in a critical way. For the Zariski
topology, the corresponding result requiresF to be a homotopy invariant presheaf
with transfers, and may be proven along the same lines as 23.10; see [CohTh,
4.13].

THEOREM 23.12. Let i : Z→ X be a closed embedding of smooth schemes of
codimension1, and F a homotopy invariant presheaf with transfers. Then there
exists a covering X= ∪Uα and isomorphisms on each Uα ∩Z:

F(Uα ,Uα∩Z)
∼= (F−1)Nis.

That is, for eachα there is an exact sequence of Nisnevich sheaves on Uα :

0→ Fα → jα∗ j∗
α

Fα → i∗(F−1)Nis→ 0.

Here Fα =
(

F |Uα

)
Nis

and jα denotes the inclusion Uα ∩ (X−Z) ⊂ - Uα .

Moreover, for every smooth T we also have isomorphisms on(Uα ∩Z)×T:

F(Uα×T,(Uα∩Z)×T)
∼= (F−1)Nis.

PROOF. We have to show that every smooth pair(X,Z) of codimension one is
locally like (S×A1,S×0). If dim(Z) = d then, by shrinkingX about any point
(and writingX instead ofU), we may find ańetale mapf : X→ A

d+1 such that
Z∼= f−1(Ad).

Z ⊂
i - X

A
d

f

?
⊂ - A

d+1∼= Ad×A1

f

?

By construction,Z×A1 is étale overAd×A1. Form the pullbackX′ = X×
Ad+1

Z×A1 and note that bothX′ → X andX′ → Z×A1 areétale withZ′ = Z×
Ad Z

lying aboveZ andZ×0, respectively. SinceZ′→ Z is étale and has a canonical
section∆, we can writeZ′ = ∆(Z) qW. SettingX′′ = X−W, bothX′′→ X and
X′′→ Z×A1 areétale, with∆(Z) the inverse image ofZ andZ×0, respectively.
Applying lemma 23.11 twice and then 23.10, we obtain the required isomorphisms
of Nisnevich sheaves onZ:

F(X,Z)
�
∼=

F(X′′,∆(Z))

∼=- F(Z×A1,Z×0)
∼= (F−1)Nis.

To see that the sequence of sheaves is exact, we only need to observe thatFα injects

into j∗ j∗Fα by lemma 22.8, sinceFα =
(

F |Uα

)
Zar

by 22.2.
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In order to prove the final assertion, it suffices to replaceZ, X andAd with
Z×T, X×T andAd×T in the above argument. �

PORISM 23.13. The same proof shows that if Z→ X is a closed embedding of
smooth schemes of codimension r, then locally F(X,Z)

∼= F(Z×Ar ,Z×0).

EXAMPLE 23.14. Let M be a locally constantn-torsionétale sheaf and con-
siderF(X) = H1(X,M⊗µn). By 23.3,(F−1)Nis

∼= M. By [Mil80 , p. 243], we also
haveF(X,Z)

∼= M. In this case, the isomorphismsF(X,Z)
∼= (F−1)Nis of 23.12 hold for

any cover ofX.





LECTURE 24

Homotopy Invariance of Cohomology

We finally have all the tools to prove 13.8 which we restate here for the conve-
nience of the reader.

THEOREM 24.1. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then HnNis(−,FNis) is a homotopy invariant presheaf (with transfers)
for every n.

PROOF. It suffices to prove that theHn
Nis(−,FNis) are homotopy invariant, since

we already know that they are presheaves with transfers from 13.4. We shall pro-
ceed by induction onn. The casen = 0 was completed in theorem 22.3, so we
know thatFNis is homotopy invariant. Hence, we may assume thatF = FNis.

ConsiderX×A1 π- X. Sinceπ∗F(U) = F(U ×A1) ∼= F(U), we have
π∗F = F . By induction we know thatRq

π∗F = 0 for 0< q< n. By theorem 24.2
below,Rn

π∗F = 0 as well. Hence the Leray spectral sequence

H p
Nis(X,R

q
π∗F)⇒ H p+q

Nis (X×A1,F)

collapses enough to yieldHn
Nis(X,F) ∼= Hn

Nis(X×A1,F). That is, the presheaf
Hn

Nis(−,F) is homotopy invariant. �

We have thus reduced the proof of 24.1 to the following theorem. Recall from
[EGA4, 17.5] that the Hensel local scheme Spec(R) of a smooth variety at some
point isformally smooth, i.e., geometrically regular.

THEOREM24.2. Let k be a perfect field, and F a homotopy invariant Nisnevich
sheaf with transfers such that Rq

π∗F = 0 for 0< q< n. If S is a formally smooth
Hensel local scheme over k, then Hn

Nis(S×A1,F) = 0.

The requirement thatk be perfect comes from the following fact (see [EGA0,
19.6.4]): ifk is perfect, every regular localk-algebra is formally smooth overk.

PROOF. We will proceed by induction ond = dim(S). If d = 0 thenS =
Spec(K) for some fieldK; in this case,Hn

Nis(S×A1,F) = Hn
Nis(A

1
K ,F) = 0 by 22.7.

Here we have used exercise 2.10 to regardF as a homotopy invariant presheaf with
transfers overK.

If dim(S) > 0, andU is any proper open subscheme, then dimU < d (S is
local), soRq

π∗F |U = 0 for 0< q≤ n, by induction ond. Thus the canonical map
π|∗U : Hn

Nis(U,F)→ Hn
Nis(U ×A1,F) is an isomorphism, and its inverse is induced

203
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by the restrictions|U of the zero sections : S→ S×A1 to U . From the diagram

Hn
Nis(S×A1,F)

j∗- Hn
Nis(U×A1,F)

0 =Hn
Nis(S,F)

s∗
?

- Hn
Nis(U,F)

s|∗U ∼=
?

we see that the top mapj∗ is zero for all suchU .
Now S= Spec(R) for a regular local ring(R,m); chooser ∈ m−m2 and set

Z = Spec(R/r), U = S−Z. BecauseZ is regular andk is perfect,Z is formally
smooth overk. For this choice, the mapj∗ is an injection by proposition 24.3
below. Hence the sourceHn

Nis(S×A1,F) of j∗ must be zero. �

PROPOSITION24.3. Let k be a perfect field and S the Hensel local scheme of a
smooth scheme X at some point. Let U be the complement of a smooth divisor Z on
S. Under the inductive assumption that Rq

π∗F = 0 for all 0< q< n, the following
map is a monomorphism:

Hn
Nis(S×A1,F)→ Hn

Nis(U×A1,F).

PROOF. Let i and j denote the inclusions ofZ×A1 andU ×A1 into S×A1

respectively. RegardingF as a sheaf onS×A1, the map in question factors as:

Hn
Nis(S×A1,F)

τ- Hn
Nis(S×A1, j∗ j∗F)

η- Hn
Nis(U×A1, j∗F).

We first show that the right-hand mapη is injective. This will follow from 24.4 be-
low, once we have shown thatRq j∗F = 0 for 0< q< n. The inductive assumption
implies thatHq(F) is a homotopy invariant presheaf with transfers. Sinceq> 0
we haveHq(F)Nis = 0. Now see from 23.5 that(Hq(F)−1)Nis

∼= (Hq(F)Nis)−1 = 0.
By 23.8 and 23.12 (withT = A1) we have

Rq j∗F ∼= i∗H
q(F)(S×A1,Z×A1)

∼= i∗(Hq(F)−1)Nis = 0.

We now prove that the left-hand mapτ is injective as well. SinceF is a ho-
motopy invariant presheaf with transfers,F injects into j∗ j∗F by lemma 22.8. By
23.6, there is a short exact sequence of Nisnevich sheaves onS×A1:

0→ F → j∗ j∗F → i∗F(S×A1,Z×A1)→ 0.

SinceS is local, theorem 23.12 (withT = A1) implies thatF(S×A1,Z×A1)
∼= F−1 on

Z×A1. Consider the associated long exact sequence in cohomology.

Hn−1(S×A1, j∗ j∗F)→ Hn−1(Z×A1,F−1)
∂-

Hn(S×A1,F)→ Hn(S×A1, j∗ j∗F)→ Hn(Z×A1,F−1).

It suffices to show that the mapHn−1(S×A1, j∗ j∗F)→ Hn−1(Z×A1,F−1) is
onto. If n> 1, this follows from the homotopy invariance ofF−1 and the fact that
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Z is Hensel local:

Hn−1(Z×A1,F−1)∼= Hn−1(Z,F−1) = 0.

If n = 1, we argue as follows. SinceF andF−1 are homotopy invariant, the
two left horizontal maps are isomorphisms in the commutative diagram:

F(U)
∼=- F(U×A1) �

=
H0(S×A1, j∗ j∗F)

F−1(Z)

23.12 onto
? ∼=- F−1(Z×A1)

?
�= H0(Z×A1,F−1).

?

The left vertical map is onto by 23.12, becauseS is local. It follows that the right
vertical map is onto, as desired. �

LEMMA 24.4. Let G be any sheaf on U×A1 such that Rq j∗G= 0 for 0< q< n.
Then the canonical map Hn(X×A1, j∗G)→ Hn(U×A1,G) is an injection.

PROOF. Consider the Leray spectral sequence

H p(X×A1,Rq j∗G) =⇒ H p+q(U×A1,G).

Using the assumption on the vanishing of theRq j∗G, it is easy to see that there is a
short exact sequence:

0→ Hn(X×A1, j∗G)→ Hn(U×A1,G)→ H0(X×A1,Rn j∗G). �

We have now completed the proof of homotopy invariance of the cohomology
sheaves, which was promised in lecture 13 (as theorem 13.8).

For the rest of this lecture, we fix a homotopy invariant Zariski sheaf with
transfersF over a perfect fieldk. Because we have proven theorem 13.8, we may
use proposition 13.9, which says thatH∗Zar(X,F)∼= H∗Nis(X,F). We will sometimes
suppress the subscript and just writeH∗(X,F).

COROLLARY 24.5. If S is a smooth semilocal scheme over k and F is a homo-
topy invariant sheaf with transfers, then for all n> 0:

• Hn(S,F) = 0;
• Hn(S×T,F) = 0 for every open subset T ofA1

k.

PROOF. (Cf. 13.9.) By 24.1, eachHn(−,F) is a homotopy invariant presheaf
with transfers. IfE is the field of fractions ofS, thenHn(SpecE,F) = 0 for n> 0
because dimE = 0. By 11.1, this implies thatHn(S,F) = 0.

Now Hn(X) = Hn(X×T,F) is also a homotopy invariant presheaf with trans-
fers by 24.1, andHn(S) injects intoHn(SpecE) = Hn(Spec(E)×T,F) by 11.1.
By 2.10 and 22.7, this group vanishes forn> 0. �

EXAMPLE 24.6. Let (R,m) be a discrete valuation ring containingk, with
field of fractionsE and residue fieldK = R/m. SettingS= SpecRandZ = SpecK,
theorem 23.12 yieldsF(S,Z)

∼= F−1 and an exact sequence of Nisnevich sheaves
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on S, 0→ F → j∗F → i∗F−1→ 0. SinceH1
Nis(S,F) = 0 by 24.5, the Nisnevich

cohomology sequence yields the exact sequence:

0→ F(SpecR)→ F(SpecE)→ F−1(SpecK)→ 0.

More generally, ifR is a semilocal principal ideal domain with maximal idealsmi ,
the same argument (using 24.5) yields an exact sequence:

0→ F(SpecR)→ F(SpecE)→⊕iF−1(SpecR/mi)→ 0.

EXERCISE24.7. If X is a smooth curve overk, show thatF−1(x)∼= H1
x (X,F)

for every closed pointx∈ X. Conclude that there is an exact sequence

0→ F(X)→ F(Speck(X))→
⊕
x∈X

F−1(x)→ H1
Zar(X,F)→ 0.

PROPOSITION 24.8. Let k be a perfect field and F a homotopy invariant
Zariski sheaf with transfers. Then Hn(−,F)−1

∼= Hn(−,F−1) for all smooth X.
That is, there is a natural isomorphism:

Hn
Zar(X× (A1−0),F)∼= Hn

Zar(X,F)⊕Hn
Zar(X,F−1).

PROOF. Write T for A1−0 and consider the projectionπ : X×T→ X. Let S
be the local scheme at a pointx of X. The stalk ofRq

π∗F atx is Hq(S×T,F), which
vanishes forq> 0 by 24.5. Therefore the Leray spectral sequence degenerates to
yield Hn(X×T,F)∼= Hn(X,π∗F). Butπ∗F ∼= F⊕F−1 by the definition ofF−1. �

EXAMPLE 24.9. Let F be a homotopy invariant Zariski sheaf with transfers.
Combining proposition 24.8 with 24.1 and 23.4, we get the formula:

Hn
Z×{0}(Z×A

r ,F)∼= Hn−r(Z,F−r).

If Z = Spec(K) for a fieldK, this shows thatHn
{0}(A

r
K ,F) vanishes forn 6= r, while

the value ofHr
{0}(A

r
K ,F) at Spec(K) is F−r(Spec(K)).

LEMMA 24.10. Let S be a d-dimensional regular local scheme over a perfect
field k. If F is a homotopy invariant sheaf with transfers and Z is the closed point
of S, then HnZ(S,F) vanishes for n6= d, while Hd

Z(S,F)∼= F−d(Z).

PROOF. Since the cased = 0 is trivial, andd = 1 is given in example 24.6, we
may assume thatd> 1. WriteU for S−Z. SinceF(S) injects intoF(U) by 11.1,
H0

Z(S,F) = 0. Forn> 0, we may useHn−1(−,F), which is a homotopy invariant
presheaf with transfers by 24.1. By 23.11 and two applications of 23.7, we have

Hn
Z(S,F)∼= Hn−1(−,F)(S,Z)

∼= Hn−1(−,F)(Z×Ad,Z×0)
∼= Hn

Z×0(Z×Ad,F).

By 24.9, this group vanishes forn 6= d, and equalsF−d(Z) if n = d. �

If z is a point ofX with closureZ, andA is an abelian group, let(iz)∗(A) denote
the constant sheafA onZ, extended to a sheaf onX.
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THEOREM24.11. Let X be smooth over k, and F a homotopy invariant Zariski
sheaf with transfers. Then there is a canonical exact sequence of Zariski sheaves
on X:

0→ F →
∐

codimz=0

(iz)∗(F)→
∐

codimz=1

(iz)∗(F−1)→ ··· →
∐

codimz=r

(iz)∗(F−r)→ ···

PROOF. It suffices to assume thatX is local with generic pointx0 and closed
pointxd, and construct the exact sequence

0→F(S)→ F(x0)→
∐

codimz=1

(F−1(z))→ ··· →
∐

codimz=r

(F−d(z))→ ··· → F(xd)→ 0.

When dim(X) = 1 this is 24.6, so we may assume thatd = dim(X) > 1. For
any r ≤ d, let Hn(Xr ,F) denote the direct limit of the groupsHn(X−T,F) with
codim(T) > r. For any Zariski sheafF , andr > 0, the direct limit (overT and
all Z of codimensionr) of the long exact cohomology sequencesH∗Z(X−T,F)→
H∗(X−T,F)→ H∗(X−Z−T,F) yields an exact sequence

0→
∐

codimz
=r

H0
z (Xz,F)→ F(Xr)→ F(Xr−1)→

∐
codimz

=r

H1
z (Xz,F)→ H1(Xr ,F) . . .

EachXz is anr-dimensional local scheme. Hence the groupsHn
z (Xz,F) vanish

except forn = r by 24.10, andHr
z(Xz,F)∼= F−r(z). For r > 0 this yields:

F(X)∼= F(Xd−1)∼= · · ·F(Xr)∼= · · · ∼= F(X1);

0 = Hr(X,F)∼= Hr(Xd−1,F)∼= · · · ∼= Hr(Xr+1,F);
and (sinceX0 is a point)

0 = Hr(X0,F)∼= Hr(X1,F)∼= · · · ∼= Hr(Xr−1,F).

Using these, we get exact sequences:

0→ F(X)→ F(x0)→
∐

codimz=1

H1
z (Xz,F)→ H1(X1,F)→ 0;

and (for 0< r ≤ d)

0→ Hr−1(Xr−1,F)→
∐

codimz=r

Hr
z(Xz,F)→ Hr(Xr ,F)→ 0.

Splicing these together (and using 24.10) yields the required exact sequence.�

REMARK 24.12. Since the sheaves(iz)∗(F−r) are flasque, theorem 24.11 gives
a flasque resolution of the sheafF . Taking global sections yields a chain complex
which computes the cohomology groupsHn(X,F). This shows that the coniveau
spectral sequence

Ep,q
1 =

⊕
codimx=p

H p+q
z (X,F) =⇒ H p+q(X,F)

degenerates, withEp,0
2

= H p(X,F) andEp,q
2

= 0 for q 6= 0.





Glossary

⊗L total tensor product, 52
⊗tr tensor product of presheaves with transfers, 53
⊗tr

L tensor product of complexes of presheaves with transfers, 53
⊗tr

ét tensor product of́etale sheaves with transfers, 54
⊗tr

L,Nis tensor product onD−ShNis(Cork,R), 101
⊗tr

L,ét tensor product of complexes ofétale sheaves with transfers, 54
⊗L tensor product onL , 69
aét(F) étale sheafification ofF , 38
aNis(F) Nisnevich sheafification ofF , 84
A ⊕ the closure ofA under infinite direct sums, 51
A(q) the complex of presheaves with transfersZ(q)⊗A, 19
Ar,i(Y,X) bivariant cycle cohomology group, 122
c(X/S,0) universally integral relative cycles ofX finite and surjective overS, 8
C0(X/S) same asc(X/S,0), 43
C∗F the complex obtained from the simplicial presheafF(−×∆•), 14
CDK
∗ F normalized complex associated toC∗F , 14

C [T−1] category obtained fromC by inverting⊗T, 61
CHi(X) Chow group of codimensioni cycles ofX, 12
Ch−(A ) category of bounded above cochain complexes inA , 52
CHi(X,m) Bloch’s higher Chow group, 125
Chow(Choweff) the category of (effective) Chow motives, 157
Cork category of finite correspondences, 3
Cor(X,Y) group of finite correspondences fromX to Y, 1
CorS category of finite correspondences over a Noetherian schemeS, 5
CorS(X,Y) the groupc(X×SY/X,0), 9
Cycl(X/S, r) free abelian group of the relative cyclesW onX overSsuch that each

component has dimensionr overS, 7
D− or D−ét or D−(Sh́et(Cork,R)) derived category of́etale sheaves ofR-modules

with transfers, 63
D− or D−(ShNis(Cork,R)) derived category of Nisnevich sheaves with transfers,

101
D−Nis or D−Nis(ShNis(Sm/k)) derived category of Nisnevich sheaves, 86
∆• cosimplicial scheme with∆n∼= An, 14
D−(G,Z/m) derived category of discreteZ/n-modules overG, 70
DM−(k,R) category of motives, 102

209
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DMeff,−
ét

or DMeff,−
ét

(k,R) category of effectivéetale motives, 63
DM−ét or DM−ét(k,R) category of́etale motives, 64
DMeff

gm(k,R) category of effective geometric motives, 101
DMgm(k,R) category of geometric motives, 102
DMeff,−

Nis or DMeff,−
Nis (k,R) category of effective motives, 101

E
A

the thick subcategory ofD− such thatDM− = D−/E
A

, 63
Et/k category of smooth schemes overk of dimension zero, 34
F−r contraction of the presheafF , 179
Fcdh cdh sheafification ofF , 89
Fét same asaét(F), 38
FNis same asaNis(F), 84
F(Y,Z) Nisnevich sheaf onZ associated to a closed embedding ofZ into Y, 180
Γ f the graph off , 1

Gm the pointed scheme(A1−0,1), 13
GX̄,Y units ofX̄ equal to 1 onY, 45
H p,q(X,A) motivic cohomology group, 20
HBM

n,i (X,R) (Borel-Moore) motivic homology with compact supports, 122
Hn,i

c (X,R) motivic cohomology with compact supports, 122
H p,q

L
(X,A) étale (or Lichtenbaum) motivic cohomology, 71

Hsing
0

(X/k) the groupH0C∗Ztr(X)(Speck), 16
Hsing
∗ (X/S) algebraic singular homology ofX overS, 43

Hsing
∗ (X,R) algebraic singular homology, 74

hX additive functor HomA (−,X), 51
H

n
cdh(X,L) cdh hypercohomology of a complex of cdh sheaves, 107
H

i
ét(X,K) étale hypercohomology of a complex of sheaves, 41
H

n
Nis(X,K) Nisnevich hypercohomology of a complex of sheaves, 94
H

p
Zar

(X,L) Zariski hypercohomology of a complex of sheaves, 20
Hom(M,N) internal Hom inDMgm, 160
Hom(F,G) Hom presheaf, 52
K−(A ) chain homotopy category of complexes inA , 53
KM
∗ (k) the MilnorK-theory of a fieldk, 27

Kn K-theory group, 12
L the Lefschetz motiveZ(1)[2], 157
L or Lét A

1-local objects inD−(Sh́et(Cork,R)), 67
L of LNis A

1-local objects inD−(ShNis(Cork,R)), 103
L∆ line bundle onU×SX̄ corresponding to the diagonal map, 79
(L , t) line bundleL with a trivializationt, 45
M ∗(P1;0,∞) sheaf sendingX to the rational functions onX×P1 which are regular

in a neighborhood ofX×{0,∞} and equal 1 onX×{0,∞}, 23
M∗ the dual of a motiveM, 158
M(q) Tate twistM⊗tr

L,NisR(q), 102
Mc(X) motive with compact support ofX, 120
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µn sheaf ofnth roots of unity, 12
MV(Q) Mayer-Vietoris sequence of a squareQ, 165
M(X) the motive ofX in DMeff,−

Nis , DM− or DMgm, 101
O sheaf of global functions, 11
O∗ sheaf of global units, 11
Oh

X,x Hensel local ring ofX atx, 40
Pic(X) the Picard group ofX, 23
Pic(X̄,Y) relative Picard group, 45
PreSh(Cork) category of additive presheaves with transfers, 11
PST(k) same asPreSh(Cork), 11
Q(X,Y,A) cartesian square of schemes, 84
RHom(M,L) internal Hom inDMeff,−

Nis , 105
Sch/k category of schemes of finite type overk, 88
Sh́et(Cork) category of́etale sheaves with transfers, 33
Sh́et(Sm/k) category of́etale sheaves on smooth schemes, 33
Shlc

ét category of locally constant sheaves inSh́et(Sm/k), 34
ShNis(Cork) category of Nisnevich sheaves with transfers, 93
ShNis(Sm/k) category of Nisnevich sheaves on smooth schemes, 84
Sl Henselization at{0} in Al , 48
Sm/k category of smooth separated schemes, 1
W
A

multiplicative system ofA1-weak equivalences, 63
(X̄,X∞,Z) standard triple, 78
Z1 ·Z2 intersection product of cycles, 133
Z(A ) category of additive presheaves onA , 51
zequi(T, r) sheaf of equidimensional cycles of relative dimensionr, 117
zi
equi(X,m) same aszequi(X,dimX− i)(∆m), 139

zi(X,m) Bloch’s cycle group, 125
zi(Y,m)W cycles inzi(Y,m) meetingW properly, 127
Z(q) the motivic complexC∗Ztr(G∧q

m )[−q], 19
Z

SF(i) Suslin-Friedlander motivic complex, 118
Ztr(Gm) the presheaf with transfersZtr(A1−0)/Z, 13
Ztr(G∧q

m ) smash product, 13
Ztr(Ǔ) Čech complex associated to a coverǓ of X, 35
Ztr(X) representable presheaf with transfers associated toX, 12
Ztr(X,x) cokernel of the mapx∗ : Z→ Ztr(X), 13
Z(X) Nisnevich sheafification ofZ[HomSm/k(−,X)], 86





Index

A
1-homotopy,19, 19–20
A

1-homotopic,19, 19–20, 47, 69,69, 71,
85, 86, 115,115, 125–127, 145, 146,
181–183

A
1-homotopy equivalence,19, 19–20, 69,
124, 182

strict,72, 72–74, 100
A

1-local complexes,seeNisnevichA1-local
A

1-local objects, see étale A1-local, Nis-
nevichA1-local

A
1-weak equivalences,see étale A1-weak

equivalences, NisnevichA1-weak equiv-
alences

abelian category, 13, 15, 39, 42–44, 55, 90,
99

abstract blow-up,seeblow-up
additive category, 3–5, 19, 37, 55–57, 63, 64,

67
adjoint functors, 6, 20, 38, 42, 51, 56, 61, 70,

71, 99, 114, 115, 173, 197
algebraic singular homologyHsing

i
(X/S), 48,

47–53,78, 78–80, 183
and Chow groups, 140
and higher Chow groups, 140
and motivic homology, 116
and transfers, 48

balanced functor, 56
Bass-Tate lemma, 33
Bertini’s Theorem, 87
bivariant cycle cohomology group, 134
Bloch’s cycle complexzi(X,∗), 139, 139–

146, 153–158
and equidimensional cycle complex, 153
subcomplex zi(X,∗)W , 141, 140–143,

167–169
and equidimensional cycles, 164
is isomorphic whenX affine, 141

Bloch’s cycle presheafzi(− × T,∗), 164,
164–167

Bloch, Spencer, 139, 166, 167
blow-up

abstract,94, 94–97, 106, 111, 113, 117

decomposition of motives, 127
sequence in cohomology, 104
sequence in motivic cohomology, 117
triangle, 106, 113

Borel-Moore motivic homology,seemotivic
homology with compact supports

Brauer group, 44
Brown-Gersten, 166

calculus of fractions, 67, 71
Cancellation Theorem, 112, 135, 139, 168,

171–173
canonical flasque resolution,seeflasque res-

olution
Cartier divisor, 50, 86, 184
cdh cohomology, 97
cdh hypercohomology, 134

and hyperext, 117
and motivic cohomology, 117

cdh resolution, 106
cdh sheaf, 133
cdh sheaves with transfers, 105–107
cdh topology, 45,94, 94–97, 117
Čech cohomology, 187, 188, 196
Čech resolution, 39, 41, 59, 99, 103, 123, 125
Chevalley’s theorem, 84
Chow group, 14, 139, 140, 171

and algebraic singular homology, 140
and motivic cohomology, 163
andzequi(T, r), 130
higher,seehigher Chow group
is a presheaf with transfers, 14

Chow motives, 171–173
cohomological dimension

cdh, 95, 117
étale, 45, 71–73, 119
Nisnevich, 89, 100, 101, 114
Zariski, 101

cohomology,seemotivic cohomology,étale
cohomology, Nisnevich cohomology,
cdh cohomology

compact support,seemotive with compact
support

213
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compactification,seegood compactification
contraction,195, 202

of higher Chow groups, 195
of homotopy invariant Zariski sheaf, 204
of locally constant́etale sheaf, 195
of motivic cohomology, 195
of motivic complex, 195
of relative sheaf, 197, 198
of Zariski cohomology, 195

corrections, 69, 190
correspondence
A

1-homotopic,seeA1-homotopy
composition,4
elementary,3, 3–6, 125
finite, 3, 3–6

lifts to a vector bundle torsor, 143
covering morphism,seestandard triple
cycles

equidimensional,seeequidimensional cy-
cles

in good position, 142, 143,148, 147–151
intersection, 139, 147
properly intersecting, 5, 139–142,147,

147–151, 154
pullback,seepullback
push-forward,seepush-forward

deformation retract,93
Deligne, Pierre, 28
direct limit, 6, 15, 83
Dold-Kan correspondence, 16
dual motive,seegeometric motive
dual vector space, 78
Duality Theorem, 135, 168, 171, 172

effectiveétale motives,seeétale motives
effective geometric motives,see geometric

motives
effective motives,111, 111–121

and Chow motives, 171
and NisnevichA1-local, 115
list of properties, 112
Q coefficients, 118–121

are effectivéetale motives, 120
Eilenberg-Zilber theorem, 24, 76
elementary correspondence,see correspon-

dences
elementary matrices, 126
enough injectives, 13, 43, 44, 79, 99
enough projectives, 13, 56
equidimensional cycle complexzi

equi(X,∗),
153, 153–158

and Bloch’s cycle complex, 153

equidimensional cycle presheafzequi(T, r),
129, 129–135, 139, 140, 163

and Chow group, 130
and motives with compact support, 132
is a presheaf with transfers, 130
is anétale sheaf, 129
isZtr (T) if T proper, 129

equidimensional cycles, 9, 11, 147, 149
locally, 141

equidimensional scheme, 139, 153–154, 168
étaleA1-local,71, 71–80, 119–121

andétale effective motives, 74
is NisnevichA1-local rationally, 119

étaleA1-weak equivalence,67, 67–80
étale cohomology, 27, 45

and Ext, 44
preserves transfers, 44

étale hypercohomology
and hyperext, 45

étale motives,68
andétale effective motives, 68
effective,67, 67–80

étale motivic cohomology, 67,75, 75–80,
119, 120

andétale cohomology, 75
is motivic cohomology rationally, 119
is representable, 78, 120

étale resolution, 61, 103
étale sheaf,37

locally constant,38, 38–39, 51, 58, 60, 61,
72–74, 79, 195, 199

with transfers,37, 37–45
étale sheafification

preserves transfers, 42
étale topology, 40, 164

and Tate twist,seeTate twist
Ext group, 78

fat point,8
ffp cohomology, 28
field

extension,seefield extension
perfect, 100–103, 105, 114, 115, 119, 120,

123, 128, 130, 132, 135, 163, 171, 187,
201–204

separable closure, 39, 51
separably closed, 51, 52, 78–80

field extension, 6–9, 23, 26, 30–33, 87, 102,
190

Galois, 6, 10, 39, 60
inseparable, 10, 33
inseparable degree, 39
normal, 39
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purely inseparable, 10
separable, 6, 10, 15, 20, 23, 33, 38, 89
separable degree, 39

finite correspondence,seecorrespondences
flasque resolution, 61, 166, 205

canonical, 44, 45, 92, 99, 100
flat presheaf,seetensor product
flat site, 164
formally smooth, 201
Friedlander, Eric, 134, 135
Friendlander-Voevodsky Duality,seeDuality

Theorem

Gabber, Offer, 84
Galois group, 6, 10, 38, 39, 67, 73
Galois module, 38, 39, 58, 60, 67
Generic Equidimensionality Theorem, 155,

157, 159
geometric motives,112, 171–175

are rigid, 174
double dual isomorphism, 173
dual,172
dual and motive with compact supports,

173
dual and tensor product, 174
effective,111, 171–175

geometric point, 51
geometrically regular, 201
Gersten resolution, 139, 205
global functions

is a presheaf with transfers, 13
is zero in motives, 71

global units, 188, 195
is a presheaf with transfers, 13
isZ(1)[1], 25

good compactification, 47–53, 84, 85, 180
Gysin

map, 127
map for compact supports, 134
triangle, 113, 128

h-topology, 95
Hensel local ring or scheme, 40, 51,90, 101,

102, 119, 132, 196, 198, 201–203
strictly, 40, 44

Henselization, 51, 52
higher Chow groups, 129, 134, 135,139,

139–146, 153, 163–169, 195
and algebraic singular homology, 140
and Chow groups, 140
and vector bundle torsors, 143
are functors on affine schemes, 143
areHBM

i,n , 163, 168

are hypercohomology, 166
are motivic cohomology, 163, 167
are presheaves with transfers, 146
are representable, 169
definition of transfer, 144
Homotopy Invariance, 140, 143, 153, 165,

169, 195
Localization Theorem, 140, 143, 154, 165,

195
Hom presheaf, 56, 61
homogeneous form, 160
homotopic
A

1−, seeA1-homotopy
weekly,seeweakly homotopic

homotopy commutative,181, 181–185
homotopy invariance,17, 17–20, 83–88

higher Chow groups,see higher Chow
groups

NisnevichA1-local and, 114
Nisnevich cohomology preserves, 100,

201
Nisnevich sheaf, 100

is the Zariski sheaf, 187
Nisnevich sheaf and contractions, 196
Nisnevich sheafification preserves, 187
presheafHnC∗F , 18
Zariski sheaf, 203
Zariski sheafification and, 187, 191

homotopy invariant presheaf with transfers,
seehomotopy invariance

hyperext,seecohomology

injective resolution, 79
internal Hom, 115, 172

of geometric motives, 174
intersection cycle,seecycles
intersection multiplicity, 147, 148

and the Tor formula, 147

Jouanolou’s device, 143, 144

K-theory, 14, 48
Milnor, seeMilnor K-theory

Kummer Theory, 49, 51

leading form,160
Lefschetz motive, 171
Levine, Marc, 141, 142, 167
Lichtenbaum motivic cohomology,seeétale

motivic cohomology
line bundle, 14, 50, 85–87, 126, 180, 182,

183
trivialization, 49, 50, 84–86, 127, 180,

182–185
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localization, 64, 65, 67, 68, 111, 112
localization sequence, 131, 140
Localization Theorem,see higher Chow

groups
locally constant,seeétale sheaf

Mayer-Vietoris property,166
Mayer-Vietoris sequenceMV(Q), 181, 187–

190, 193, 197
Mayer-Vietoris triangle, 103, 112, 127, 133
Milnor K-theory, 29–34

is Hn,n, 29
motiveM(X), see alsoeffective motives, geo-

metric motives, motives, 20,111
Chow,seeChow motive
decomposition of projective space, 125
dual,seegeometric motive
geometric,seegeometric motive
is homotopy invariant, 20
isomorphic toC∗Ztr (X), 112
list of properties, 112
projective bundle, 113, 127
vector bundle, 113

motive with compact supportMc(X), 132,
132–135, 172–173

Duality Theorem, 135
embedding triangle, 133
is geometric, 133
is M(X) for X proper, 133

motivesDM−(k,R), 112, 172
motivic cohomology,22

and cdh hypercohomology, 117
and Chow group, 163
and Nisnevich hypercohomology, 101
colimits, 23
independent ofk, 23
is a presheaf with transfers, 14
is étale motivic cohomology rationally,

119
is higher Chow groups, 163
is representable, 101, 112, 116
pairing, 24, 126
product is graded-commutative, 126
singular X,116
with compact supports,134

motivic complex,21, 21–24
and the projective space, 123
isZSF(i), 130
product, 24, 76, 126

motivic homology,116
with compact supports,134, 163, 168

is higher Chow groups, 168
multiplicative system, 64, 67, 111

NisnevichA1-local,113, 113–121
and effective motives, 115
and homotopy invariance, 114
is étaleA1-local rationally, 119

Nisnevich cohomology
and cdh cohomology, 97, 106
and Ext, 92, 99
and Zariski cohomology, 101
is étale cohomology rationally, 118
preserves homotopy invariance, 100, 201
preserves transfers, 99

Nisnevich cover, 96
Nisnevich hypercohomology

and hyperext, 100
and Zariski hypercohomology, 101
is étale hypercohomology rationally, 119

Nisnevich lifting property, 89, 95
Nisnevich resolution, 40, 92, 94, 99, 106
Nisnevich sheaf, 40, 89–94, 96, 102

criterion, 90
not étale sheaf, 91
with transfers, 99–107

is étale after⊗Q, 118
Z(X), 92, 92–94, 103–105, 117

Nisnevich sheafification
preserves transfers, 99

Nisnevich topology, 40–42, 44, 45, 68, 83,
89, 198

and Zariski topology, 102
points are Hensel local, 90

nodal curve, 97
norm map, 13, 30–34, 53, 185

Milnor K-theory, 30–34
normal bundle, 127
normal surface, 97

perfect field,seefield
Picard group, 25–28, 44, 49, 50, 91, 126, 139

relative, 47,49, 49–53, 83–86, 182–185
platification, 7, 96, 106, 133
Pontrjagin dual, 61, 80
presheaf with transfers,13, 13–20

homotopy invariant,seehomotopy invari-
ance

Ztr (X), seeZtr (X)
Projection Formula, 141, 149
projective bundle, 95, 126, 127
Projective Bundle Theorem, 127
projective objects, 15, 16, 55–58, 79
projective resolution, 55–58, 60, 61
proper birational cover,94
proper cdh cover,94, 94–97
pseudo pretheory, 48



INDEX 217

pullback of cycles, 5, 130, 134, 141, 149–
151, 154, 164, 195

along a fat point,8, 8–11
along a finite correspondence,148
and relative cycles, 129, 149
flat, 7, 8, 14, 37, 132, 141, 143, 148, 164,

167, 168
is defined,147

pure subgroup, 83
push-forward of cycles, 4, 5, 11, 14, 30, 33,

53, 130, 140, 148, 151

relative cycle,9, 8–11, 129, 149
universally integral, 7,10, 10–11

relative Picard group,seePicard group
relative sheaf, 196, 202
representable presheaf, 55
resolution of singularities, 45, 78, 97, 105,

106, 111, 113, 117, 118, 131, 133–135,
139, 153, 163, 168, 171

rigid tensor category, 172–175
Rigidity Theorem, 51, 73, 79
roots of unity, 14, 25, 27, 28, 38, 49–51, 58,

61, 72, 75, 76, 78, 99, 195, 199
vs.Z/l(1), 27, 99
µ
⊗q
n
∼= Z/n(q), 77

semilocal ring or scheme, 3, 40, 83, 86, 189,
190, 192, 203, 204

separable closure of a field,seefield
separably closed field,seefield
separated presheaf, 189
sheaf, see Zariski sheaf, étale sheaf, Nis-

nevich sheaf, cdh sheaf
simplicial decomposition, 17, 156
simplicial group, 16, 24, 139, 140, 153, 163,

164
simplicial homotopy, 18, 156
simplicial map, 24, 76
simplicial presheaf, 16, 76, 130, 163, 164
singular schemes,seeZtr (X), cdh topology
skeletal homotopy, 155
skeletal map,154, 154–158
smash product∧, 15, 29, 31, 64, 76–78, 123–

126
and tensor product, 58

smooth curve, 85, 180, 188, 204
spectral sequence, 60, 73, 79, 94, 102, 103

Čech, 196
coniveau, 205
hypercohomology, 23, 119
hyperext, 104, 114
hyperhomology, 59

Leray, 101, 119, 201, 203, 204
stable homotopy category, 64
standard triple,84, 84–88, 193, 197

covering morphism,179, 179–189
split, 85, 85–88, 180, 182, 183, 186

strong deformation retract,seedeformation
retract

Suslin, Andrei, 51, 78, 153, 159, 161
Suslin-Friedlander motivic complexZSF(i),

130, 130–133, 163–167
is independent ofk, 130
is isomorphic to Bloch’s cycles sheaf, 165
isZ(i), 130

suspension, 64
symmetric group, 125–126
symmetric monoidal category, 6, 55–57, 63–

65, 174

Tate twist,112
étale is invertible, 61, 68

tensor product
and smash product, 58
in Cork, 6
in derived category, 60
of A1-local objects, 115
of flat presheaves, 56, 92
of motives with compact support, 133
of Nisnevich sheaves, 92
of presheaves, 56–61, 92
of presheaves with transfers, 57
of sheaves, 58–61
total,seetotal tensor product

tensor triangulated category, 57, 60,63, 63–
66, 68, 74, 111, 115

C [T−1] is a, 65
of motives, 112

thick, 67, 68, 71, 74, 111, 115
topology, seeZariski topology,étale topol-

ogy, Nisnevich topology, cdh topology
total Hom, 79
trace map, 13, 38
truncation

brutal, 68
good, 102, 106

unibranch scheme
geometrically, 9

universally integral cycles,seerelative cycles
upper distinguished square,90, 91, 179, 181,

185, 186, 188, 193
coming from a covering morphism of stan-

dard triples,179, 180, 181, 185

Vanishing Theorems, 22, 163
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vector bundle, 103, 113, 126, 127
torsor, 143–146, 164, 168

Voevodsky, Vladimir, 95, 112, 134, 135

Walker, Mark, 87
weakly homotopic,157
Weil divisor, 25, 26, 50, 53, 182, 202
Weil Reciprocity, 30, 34

Yoneda lemma, 15, 55, 57, 69, 92, 100, 105,
131, 172

Zariski covering, 187
Zariski descent,165, 166, 167
Zariski resolution, 41
Zariski sheaf, 103, 132

with transfers, 118, 187–193, 195, 203–
205

Zariski topology, 40, 42, 44, 83, 100, 191,
198

Zariski’s Main Theorem, 49
Ztr (X)

and flatness, 56
is a sheaf, 21, 37
is projective, 15
singularX, 15, 37, 116, 117
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no. 239, xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note
by Georges Maltsiniotis.

[Voe02] V. Voevodsky,Cancellation theorem, Preprint. http://www.math.uiuc.edu/K-theory/541,
2002.

[VSF00] V. Voevodsky, A. Suslin and E. M. Friedlander,Cycles, transfers, and motivic homology
theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, 2000.

[Wei89] C. Weibel,Homotopy algebraic K-theory, AlgebraicK-theory and algebraic number
theory (Honolulu, HI, 1987), Amer. Math. Soc., Providence, RI, 1989, pp. 461–488.

[Wei94] , An introduction to homological algebra, Cambridge University Press, Cam-
bridge, 1994.

[Whi78] G. Whitehead,Elements of homotopy theory, Springer-Verlag, New York, 1978.

References in [VSF00].
[RelCh] A. Suslin and V. Voevodsky,Relative Cycles and Chow Sheaves, in [VSF00], pp. 10–86.
[CohTh] V. Voevodsky,Cohomological Theory of Presheaves with Transfers, in [VSF00], pp. 87–

137.
[BivCy] E. M. Friedlander and V. Voevodsky,Bivariant Cycle Cohomology, in [VSF00],

pp. 138–187.
[TriCa] V. Voevodsky,Triangulated Categories of Motives Over a Field, in [VSF00], pp. 188–

238.
[HighCh] A. Suslin,Higher Chow Groups and́Etale Cohomology, in [VSF00], pp. 239–254.


