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Preface

This book was written by Carlo Mazza and Charles Weibel on the basis of
the lectures on the motivic cohomology which | gave at the Institute for Advanced
Study in Princeton in 1999/2000.

From the point of view taken in these lectures, motivic cohomology with coef-
ficients in an abelian groufais a family of contravariant functors

HPI(— A): Sm/k — Ab

from smooth schemes over a given figltb abelian groups, indexed by integgrs
andg. The idea of motivic cohomology goes back to P. Deligne, A. Beilinson and
S. Lichtenbaum.

Most of the known and expected properties of motivic cohomology (predicted
in [ABS87] and [Lic84]) can be divided into two families. The first family concerns
properties of motivic cohomology itself — there are theorems concerning homotopy
invariance, Mayer-Vietoris and Gysin long exact sequences, projective bundles,
etc. This family also contains conjectures such as the BeilinsoreS@mlishing
conjecture P9 = 0 for p < 0) and the Beilinson-Lichtenbaum conjecture, which
can be interpreted as a partéhle descent property for motivic conomology. The
second family of properties relates motivic cohomology to other known invari-
ants of algebraic varieties and rings. The power of motivic cohomology as a tool
for proving results in algebra and algebraic geometry lies in the interaction of the
results in these two families; specializing general theorems about motivic coho-
mology to the cases when they may be compared to classical invariants, one gets
new results about these invariants.

The idea of these lectures was to define motivic cohomology and to give care-
ful proofs for the elementary results in the second family. In this sense they are
complementary to the study 0/E5F0(, where the emphasis is on the properties
of motivic cohomology itself. In the process, the structure of the proofs forces us
to deal with the main properties of motivic cohomology as well (such as homotopy
invariance). As a result, these lectures cover a considerable portion of the material
of [VSFO0Q, but from a different point of view.

One can distinguish the following “elementary” comparison results for motivic
cohomology. Unless otherwise specified, all schemes below are assumed to be
smooth or (in the case of local or semilocal schemes) limits of smooth schemes.

"
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(1) HPA(X,A) =0 forq< 0, and for a connected one has

A forp=0

p,0 _
H (X’A)_{O forp#£0

(2) one has

0*(X) forp=1
HPL(X,Z)={ Pig(X) forp=2
0 forp#1,2

(3) for afieldk, one haHPP(Spec¢k),A) = K} (k) @ A whereKJ! (k) is the
p-th Milnor K-group ofk (see Mil70]).

(4) for a strictly Hensel local schem® over k and an integen prime to
char(k), one has

®q _
Hp’q(SZ/n)Z{ AR

whereu,(S) is the groups ofi-th roots of unity inS,

(5) one hasHP9(X,A) = CHY(X,2q— p;A). HereCH' (X, j;A) denotes the
higher Chow groups oX introduced by S. Bloch inBlo86], [BlIo94]. In
particular,

H29(X,A) = CHI(X) ® A,

whereCHY(X) is the classical Chow group of cycles of codimensipn
modulo rational equivalence.

The isomorphism between motivic cohomology and higher Chow groups leads to
connections between motivic cohomology and algebiatbeory, but we do not
discuss these connections in the present lectures. BBe@4], [BL94], [FS03,
[Lev9g] and [SVOQ.

Deeper comparison results include the theorem of M. Levine comparing
CH'(X, j; Q) with the graded pieces of the gamma filtratiorif{X) ® Q [Lev94],
and the construction of the spectral sequence relating motivic conomology and al-
gebraicK-theory for arbitrary coefficients irBL94] and [FS03.

The lectures in this book may be divided into two parts, corresponding to the
fall and spring terms. The fall term lectures contain the definition of motivic co-
homology and the proofs for all of the comparison results listed above except the
last one. The spring term lectures contain more advanced results in the theory of
sheaves with transfers and the proof of the final comparison result (5).

The definition of motivic cohomology which is used here goes back to the work
of Andrei Suslin in about 1985. As far as | understand, when he came up with this
definition he was able to prove the first three of the comparison results stated above.
In particular the proof of the comparison (3) between motivic cohomology and
Milnor's K-groups given in these lectures is exactly Suslin’s original proof. The
proofs of the last two comparison results (4) and (5) are also based on results of
Suslin. Suslin’s formulation of the Rigidity Theorens(js83; see Theorem 7.20)
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is a key result needed for the proof of (4), and Suslin’s moving lemma (Theorem
18A.1 below) is a key result needed for the proof of (5).

It took ten years and two main new ideas to finish the proofs of the compar-
isons (4) and (5). The first one, which originated in the context ofjttretopology
and was later transferred to sheaves with transfers (definition 2.1), is that the sheaf
of finite cyclesZ, (X) is thefree object generated bX. This idea led to a group
of results, the most important of which is lemma 6.23. The second idea, which is
the main result of CohTh], is represented here by theorem 13.8. Taken together
they allow one to efficiently do homotopy theory in the category of sheaves with
transfers.

A considerable part of the first half of the lectures is occupied by the proof of
(4). Instead of stating it in the form used above, we prove a more detailed theorem.
For a given weight, the motivic cohomology groupd P9(X,A) are defined as
the hypercohomology (in the Zariski topology)Xfwith coefficients in a complex
of sheavesA(q)\xZar. This complex is the restriction to the small Zariski siteXof
(i.e., the category of open subsetsXjfof a complexA(q) defined on the site of
all smooth scheme ovérwith the Zariski and even thetale topology. Restricting
A(g) to the smallétale site ofX, we may consider thétale version of motivic
cohomology,

HPI(X,A) = HE (X, Ay, ).
The subscript is in honor of Steve Lichtenbaum, who first envisioned this con-
struction in Lic94].

Theorem 10.2 asserts that thile motivic cohomology of an¥ with coeffi-
cients inZ/n(q) wheren is prime to chak) are isomorphic td42(X, u9). This
implies the comparison result (4), since the Zariski andétate motivic coho-
mology of a strictly Hensel local schem&agree. There should also be analog
of (4) for the case oZ/¢" coefficients wheré = chark), involving the logarith-
mic de Rham-Witt sheaveg![—q], but | do not know much about it. We refer the
reader to GLOQ] for more information.

Vladimir Voevodsky
Institute for Advanced Study
May 2001.






Introduction

This book is divided into six main parts. The first part (Lectures 1-5) presents
the definitions and the first three comparison results. The second part (Lectures 6—
10) presents thétale version of the theory, focussing on coefficienfsn & k. As
Suslin’s Rigidity Theorem 7.20 demonstrates, a key role is played by locally con-
stantétale sheaves such a§', which are quasi-isomorphic to the motivig m(i)
by Theorem 10.3. The tensor triangulated catedivi (k,Z/m) of étale motives
is constructed in Lecture 9 and shown to be equivalent to the derived category of
discreteZ /m-modules over the Galois gro= Gal(ksep/Kk) in Theorem 9.35.

The first main goal of the lecture notes, carried out in Lectures 11-16, is to in-
troduce the tensor triangulated categbiyi Efif’s*(k, R) of effective motives and its
subcategory of effective geometric motivem g‘} The motiveM(X) of a scheme
X is an object oDMEM~(k R), and belongs t®MEH if X is smooth. This re-
guires an understanding of the cohomological properties of sheaves associated with
homotopy invariant presheaves with transfers for the Zariski, Nisnevich and cdh
topologies. This is addressed in the third part (Lectures 11-13). Lecture 11 intro-
duces the technical notion of a standard triple, and uses it to prove that homotopy
invariant presheaves with transfers satisfy a Zariski purity property. Lecture 12
introduces the Nisnevich and cdh topologies, and Lecture 13 considers Nisnevich
sheaves with transfers and their associated cdh sheaves.

A crucial role in this development is played by Theorem 13.& i§ a homo-
topy invariant presheaf with transfers, aki a perfect field, then the associated
Nisnevich sheaF; is homotopy invariant, and so is its cohomology. For reasons
of exposition, the proof of this result is postponed and occupies Lectures 21 to 24.

In the fourth part (Lectures 14-16) we introduce the categmm.ﬁf{g(k, R)
andDMgfnﬂ. The main properties of these categories — homotopy, Mayer-Vietoris,
Projective bundle decomposition, Blow-up triangles, Gysin sequence, Cancella-
tion, and the connection with Chow motives — are summarized in 14.5. We also
show (in 15.9) that the product on motivic cohomology (defined in 3.12) is graded-
commutative and agreement (for coefficie@swith the étale theory presented in
Lectures 9 and 10 (see 14.30).

Lecture 16 introduces equidimensional algebraic cycles. These are used to
construct the Suslin-Friedlander motivic comples&$ (i), which are are quasi-
isomorphic to the motivic complexé&4i); this requires the field to be perfect (see
16.7). They are also used to define motives with compact suptyox). The basic
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theory with compact support complements the theory presented in Lecture 14; this
requires the field to admit resolution of singularities. This lecture concludes with
the use of Friedlander-Voevodsky duality (see 16.24) to establish the Cancellation
Theorem 16.25; this lets us embed effective motives into the triangulated category
of all motives.

The second main goal of this book is to establish the final comparison 19.1 with
Bloch’s higher Chow groups: for any smooth separated schérmeer a perfect
field k, we have

HPA(X,Z) = CHY(X,2q— p).

This is carried out in the fifth part (Lectures 17-19). In Lecture 17, we introduce
Bloch’s higher Chow groups and show (in 17.21) that they are presheaves with
transfers over any field. Suslin’s comparison (18.3) of higher Chow groups with
equidimensional cycle groups over any affine scheme is given in Lecture 18, and
the link between equidimensional cycle groups and motivic cohomology is given
in Lecture 19.

We briefly revisit the triangulated categdbM gm of geometric motives in Lec-
ture 20. We work over a perfect field which admits resolution of singularities. First
we embed Grothendieck’s classic category of Chow motives as a full subcategory.
We then construct the dual of any geometric motive and use it to define internal
Hom objectsHom(X,Y). The Lecture culminates in theorem 20.17, which states
that this structure makd3M 4, a rigid tensor category.

The final part (Lectures 21-24) is dedicated to the proof of theorem 13.8. Using
technical results from lecture 21, we prove (in 22.3) thatis homotopy invariant.
The proof that its cohomology is homotopy invariant (24.1) is given in Lecture 24.
We conclude with a proof that the shégf,, admits a “Gersten” resolution.

During the production of the book, we received many suggestions and com-
ments from the mathematical community. One popular suggestion was that we
include some of the more well known and useful properties of motives that had
been missing in the original lectures, in order to make the exposition of the theory
more complete. For this reason, a substantial amount of material has been added to
Lectures 12-14, 16 and 20. Another suggestion was that we warn the reader that
the exercises vary in difficulty and content, from the concrete to the abstract; some
are learning exercises and some augment the ideas presented in the text.

In Figure 1 we give a rough bird-eye view of the stucture of this book and how
the various lectures depend upon each other. Lectures 1 and 2 are missing because
they are prerequisites for all other lectures. We split Lecture 13 in two different
parts to further clarify that the results in the second half of the lecture crucially
depend on Theorem 13.8 which is proven in Lecture 24. The dependency chart
(and this Introduction) should serve as a guide to direct the reader of these notes.
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Presheaves with transfers






LECTURE 1

The category of finite correspondences

In this lecture we shall define the additive categGuoy, of finite correspon-
dences over a field. The objects oCor, will be the smooth separated schemes
(of finite type) ovek. The morphisms iCor, from X to'Y will be the finite corre-
spondences, which are special kinds of cycleX inY. Composition is defined so
thatCor, contains the categoi§nyk of smooth separated schemes duer

By convention, all schemes will be separated, and definedlovelthough
smooth schemes always have finite type dv¢EGA4, 17.3.1], we will some-
times refer to local and even semilocal schemes as being smooth; by this we mean
that they are the local (resp., semilocal) schemes associated to points on a smooth
scheme.

Our point of view will be that a cycle in a schenfeis a formal Z-linear
combination of irreducible closed subsetslofEach irreducible closed suba#t
is the support of its associated integral subschéfreW andW determine each
other. Thus we can ascribe some algebraic propertdé d/e say thaWV is finite
along a morphisnT — Sif the restrictionW — Sis a finite morphism. A cycle
Y W is said to be finite along a morphism if eaghis finite.

DEFINITION 1.1. If X is a smooth connected scheme okemandY is any
(separated) scheme overanelementary correspondencdrom X toY is an irre-
ducible closed subs®f of X x Y whose associated integral subscheme is finite and
surjective oveiX. By an elementary correspondence from a non-connected scheme
X toY, we will mean an elementary correspondence from a connected component
of XtoY.

The groupCor(X,Y) is the free abelian group generated by the elementary
correspondences froid to Y. The elements o€or(X,Y) will be called finite
correspondences

If X is not connected an¥ =II X is the decomposition into its connected
components, our definition implies th@aor(X,Y) = &,Cor(X,Y).

ExamMpPLE 1.2. Let f : X — Y be a morphism irSnyk. If X is connected, the
graphrl ; of f is an elementary correspondence frEno Y. If X is not connected,
the sum of the components bt is a finite correspondence froMito Y. Indeed
the projectiorm ; — X is an isomorphism, anl; is closed becaus¢is separated
overk.

The graph™, of the identity onX is the support of the diagona[X) C X x X.
We will write idy for the finite correspondendg, from X to itself. It will be the

5



6 1. THE CATEGORY OF FINITE CORRESPONDENCES

identity element ofCor(X,X) for the composition product. Note that, is an
elementary correspondence wheis integral.

If X is connectedY is smooth andf : X — Y is finite and surjective, the
transpose of ; in Y x X is a finite correspondence frovhto X. This is a useful
construction; see exercise 1.11 below for one application.

CONSTRUCTIONL.3. Every subscheme Z of XY which is finite and surjec-
tive over X determines a finite correspondefiefrom X to Y.

PROOEF If Z is integral then its suppofZ] is by definition an elementary cor-
respondence. In general we associaté tbe finite correspondencenW,, where
theW are the irreducible components of the suppo @fhich are surjective over
a component oK andn; is the geometric multiplicity o¥, in Z, i.e., the length of
the local ring ofZ atW, (See Ber63 or [Ful84]). O

We will now define an associative and bilinear composition for finite corre-
spondences between smooth schemes. For this, it suffices to define the composi-
tionW oV of elementary correspondendés Cor(X,Y) andW € Cor(Y,Z). Our
definition will use the push-forward of a finite cycle.

Let p: T — Sbe any morphism. NV is a irreducible closed subset offinite
alongp, the image/ = p(W) is a closed irreducible subset 8fandd = [k(W) :

k(V)] is finite. In this case we define tpesh-forward of the cyclewW alongpto be
the cyclep,W = d-V; see Ful84]. By additivity we may define the push-forward
of any cycle which is finite along.

LEMMA 1.4. Suppose that fT — T’ is a morphism of separated schemes of
finite type over a Noetherian base S. Let W be an irreducible closed subset of T
which is finite over S. Then(W) is closed and irreducible in Tand finite over S.

If W is finite and surjective over S, then so (¥M).

PROOF. By Ex.Il.4.4 of [Har77], f(W) is closed inT’ and proper oveS
Since f (W) has finite fibers oves, it is finite overSby [EGAS3, 4.4.2]. IfW — S
is surjective, so if (W) — S O

Given elementary correspondenaés Cor(X,Y) andW < Cor(Y,Z), form
the intersection produdf| = (V x Z) - (X x W) of the corresponding cycles in
X xY x Z. (The intersection product is defined Bdr69 and [Ful84]; see 17A.1.)

The compositionW oV of V andW is defined to be the push-forward of the
finite correspondend@ |, along the projectiop: X x Y x Z — X x Z; see Ful84].

By lemma 1.7 below, the cycl@] is finite overX x Z. Thus the push-forwarg, [T]
is defined; it is a finite correspondence frofrio Z by lemma 1.4.

We can easily check that, is the identity ofCor(X, X), and that the composi-
tion of finite correspondences is associative and bilinear {daa8] and [Ful84,
16.1]).

DEFINITION 1.5. LetCor, be the category whose objects are the smooth sepa-
rated schemes of finite type oveand whose morphisms froXtoY are elements
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of Cor(X,Y). It follows from the above remarks th@br, is an additive category
with @ as the zero object, and disjoint union as coproduct.

LEMMA 1.6. Let Z be an integral scheme, finite and surjective over a normal
scheme S. Then for every morphism-TS with T connected, every component of
T xgZ is finite and surjective over T.

PROOF See EGA4, 14.4.4]. O

Recall that two irreducible closed subs&tsandZ, of a smooth scheme are
said to intersegproperly if Z, NZ, = 0 or codin(Z, NZ,) = codimZ, + codimZ,.
LEMMA 1.7. LetV C X xY and WC Y x Z be irreducible closed subsets
which are finite and surjective over X and Y respectively. Thend/and Xx W
intersect properly, and each component of the push-forward of the €ytlef
T =(V xZ)Nn (X xW) is finite and surjective over X.

PROOF LetV andW be the underlying integral subschemes associat&t to
andW respectively. Without Ios~s of ggnerality we can suppose KoaimdY con-
nected. We form the pullback &f andW.

V ey W W . Z
f.surj.
v v
f.surj.
X

By 1.6, each component ¥fx, W is finite and surjective ov&f and therefore over
X too. The imagél of the evident may/ x, W — X x Y x Z is the intersection
of V x Z andX x W. Thus each irreducible componehtof T is the image of
an irreducible component & x, W. By 1.4, we know that each is finite and
surjective oveX. Therefore dinT, = dimX for alli, i.e.,V x Z andX x W intersect
properly.

Let p(T,) denote the image oF under the map: X xY xZ — X x Z. By
lemma 1.4, eaclp(T;) is an irreducible closed subschemeXok Z which is finite
and surjective oveX. Since the components pf[T] are the supports of the(T,),
we are done. O

REMARK 1.8. It is possible to extend the definition of finite correspondences
to correspondences between singular schemes. This uses the c@tegowhere
Sis a Noetherian scheme; séRelCh]. Since we will use only smooth schemes
in these lectures, we describe this more general definition in the appendix of this
lecture.

The additive categor@or, is closely related to the catego8nyk of smooth
schemes ovek. Indeed, these categories have the same objects, and it is a routine
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computation (exercise!) to check thigfo [ ; equalsi'gof. That s, there is a faithful
functorSnyk — Cor,, defined by:

X=X (fF:X=Y)—=T,.
The tensor product is another important feature of the category

DEFINITION 1.9. If X andY are two objects irCor,, their tensor product
X®Y is defined to be the product of the underlying schemes kaver

X®Y =XxY.

If V andW are elementary correspondences frérno X’ and fromY to Y’, then
the cycle associated to the subschameW by 1.3 gives a finite correspondence
fromX®YtoX' ®Y'.

It is easy to verify thatv makesCor, a symmetric monoidal category (see
[Mac71]).

EXERCISE1.10. If S= Sped thenCor, (S X) is the group of zero-cycles in
X. If W is afinite correspondence froat to X, ands,t : Spedk — A! arek-points,
show that the zero-cycléd' o 's andW o I'; are rationally equivalent (CfHul84,
1.6]).

EXERCISEL.11. Letx be a closed point oK, considered as a correspondence
from S= Speck) to X. Show that the compositidd— X — Sis multiplication by
the degreégk(x) : k], and thaiX — S— X is given byX x x € X x X.

Let L/k be a finite Galois extension with Galois gro@and T = SpecL).
Prove thaCor, (T,T) £ Z[G] and thatT — S— T is 3,59 € Z[G]. Then show
thatCor, (S Y) 2 Cor,(T,Y)® for everyY

EXeErcISE 1.12. If k C F is a field extension, there is an additive functor
Cor, — Cor sendingX to X. If F is finite and separable ovéx there is an
additive functorCor. — Cor, sendingJ toU. These are adjoint: i} is smooth
overF andX is smooth ovek, there is a canonical identification:

Corg (U, Xz) =Cor, (U,X).

EXERCISE1.13. (a) LetF be a field extension df andX andY two smooth
schemes ovet. Writing Xg for X x 5,04 Sped= and so on, show th&tor (Xg, Y )
is the limit of theCorg (Xg, Yg) askE ranges over all finitely generated field exten-
sions ofk contained irF.

(b) Let X — S— Spedk) be smooth morphisms, witB connected, and let
F denote the function field . For every smooth schem&overk, show that
Corg (X x5 Sped,Y x, Sped) is the direct limit of theCor, (X xgU,Y) asU
ranges over all non-empty open subschemeS dh the special cas¥ = S this
shows thaCorg (Sped-,Y x, Sped=) =limCor,(U,Y).

(c) Show that (a) and (b) remain valid ¥f is any scheme ovek, using the
definition 1.1 ofCor, (X,Y).



Appendix 1A - The categoryCorg

It is possible to generalize the notion of finite correspondence to construct a
categonyCorg, associated to any Noetherian sche®ngee RelCh]. The objects of
this category are the schemes of finite type &ahe morphisms are the elements
of an abelian grougorg(X,Y) whose elements are the cycldson X xgY which
are “universally integral relative t&”, and each of whose components are finite
and surjective oveX.

Universally integral cycles are defined in 1A.9 below as those cycles for
which the pullback is always defined, and has integer coefficients. This condi-
tion is needed because, in order to compose an elementary correspoxdence
Corg(X,Y) with a correspondend® in Corg(Y,Z), we must form the pullbacky,
of W alongV — Y to geta cycle oV xZ C X xgY xgZ (See 1A.11).

Relabeling, we are reduced to the following basic setup for pulling back cycles.
We are given a cycl8V on X, a structure magX — Sand a mapy — S. The
problemis to define a pullback cydlé, on X x gV in a natural way. This is easy if
V is flat overS (see Ful84, 1.7]), but in general the problem is quite difficult even
forV = Spe.

W, C XxgV Vv
W c X S

The general pullback is modelled on the pullback of flat cycleswW Ifs an
irreducible cycle onX which is flat overS, we define the pullback"(W) along
s: Spe¢K) — Sto be the cycle oiXs defined byWs =W x Spe¢K).

ExaMPLE 1A.1. Let W be an irreducible cycle oiX. By “platification”
[RG71, 5.2], there is a proper birational mdp— S such that the proper trans-
form W of W is flat overT. Given a points, : Speck,) — S, choose a finite field
extension field,; of k, such thas, : Speck;) — Shas a liftt : Speck,;) — T, then
the flat pullback* (W) is a candidate for the pullback(W).

There are two problems with this candidate: it may depend upon the choice of

T andt (as in example 1A.4), and K, # k; we need to descend from the cycle

9



10 APPENDIX 1A - THE CATEGORYCorg

t*(W) on X, toa cycle onX, (as in example 1A.7).

Sped, t T« flat W
| £
Sped, - S~ W

One way to attack the first problem is to restrict our attention to “relative cy-
cles,” defined in 1A.5 using the notion of pullback along a fat poinSofThis
approach was introduced iREICh], using discrete valuation rings (DVRs). Re-
call that ifK is a field, aK-point of S (or point) is a morphism Spéc— S.

DEFINITION 1A.2. A fat point s of S is a DVRD, a fieldK and morphisms

SpeK >, Sped 3, S,

so that the closed point of Spigagoes to the closed point of Spge@nd the generic
point Sped of Sped goes to a generic point & We say that the fat point
s= (s, 5,) lies over the underlying(-point Spe& — S.

Every pointsin a Noetherian schenthas a fat point lying over it in the sense
that there is a field extensids) C K and a fat point over Spé& — S. That is,
if slies over a generic poirg of S then there is a DV and a map Spdg — S
sending the closed point (resp., generic point) of $pée s (resp., tos); see
[EGAL, 0,.6.5.8] or Har77, 11.4.11]. The following trick now lets us take the
pullback of cycles to Spda.

THEOREM 1A.3. Let D be a DVR with field of fractions F. If X is a scheme
of finite type over D and Wis closed in the generic fiberoxthen there exists a
unique closed subscheme W W in X which is flat ovelSped.

PrRoOOF. Locally X has coordinate ring, Xz has coordinate ring®p F, and
W has coordinate ringA®g F)/(f;,..., fn), wheref, € Afor everyi =1,...,n.
Let R, be A/(f;,...,fn) and letR be R,/I wherel is the torsion submodule of
the D-moduleR,. Is is easy to see th& is independent of the choice of tHgs.
Locally W, is Sped. O

We can now define the pullback along a fat painf Sover aK-points. Given
a closed subschenW in X, we may form the (classical) flat pullbadl- along
Sped= — S, and consider the closed subschemgof W flat over Spe® as in
1A.3. The pullbacls’ (W) of W is defined to be the cycl#V] on X, associated to
the fiberW, of the schem&\, over the closed point Sp&cof Sped.

Since the pullbacls® (W) is a cycle onXs = X xgSpe¢K), it is a candidate
for the pullback oWV alongs. However, two fat points over the sarkepoint may
give two distinct candidates, as the following example shows.

ExAMPLE 1A.4. Let S be the node over a field and X its normalization.
There are two fat points over the singular parge S, corresponding to the two
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k-points ofXs = {p,, p; }. The pullbacks otV = X along these fat points afg,]
and[p,], respectively.

In order to have a useful pullback, we need to get rid of the dependence on the
choice of the fat point. The following definition is taken froRdICh, 3.1.3].

DEFINITION 1A5. LetW = 5 nW be a cycle orX. We say thawV is domi-
nant overSif each term of W is dominant over a component 8f We say that a
dominant cycléV is arelative cycleon X overSif its pullbackss* (W) andt*(W)
coincide for any pais, t of fat points over a commoK-points. We will write
s*(W) for this pullback cycle orXs.

For example, any dominant cydé which is flat and equidimensional ovsr
is a relative cycle, because the pullbatiV) coincides with the classical pullback
of a cycle along th&-point. This follows easily from the observation that since
W, isW x s Sped, we havel, =W x sSpeK.

We writeCycl(X /S r) for the free abelian group of the relative cycWson X
overSsuch that each component has dimensiomerS. It turns out that every ef-
fective relative cycle it€ycl(X/S,r) must be equidimensional oversee RelCh,
3.1.7]. If Sis normal, the following result shows that this is also a sufficient condi-
tion for being a relative cycle; it is proven iREICh, 3.4.2].

THEOREM1A.6. If S is normal or geometrically unibranch, and W is a cycle
on X which is dominant equidimensional over S, then W is a relative cycle.

The use of relative cycles solves the first problem raised in the situation of

example 1A.1. Given a relative cycW, find a proper birational map — Sas

in 1A.1 so that the components W have flat proper transforms ;. By the
Valuative Criterion for Properness, fat poistsf Sare in 1-1 correspondence with
fat pointst of T. Given any pair of liftingst’,t” : Spegk;) — T of a k;-point

s, on S we can find fat points ands’ of S over a field extensiom : k; — K
whose lifts toT factor throught’ andt”. SinceW is a relative cycle, we see that
n*t"* (W) = (8)*(W) andn*t”*(W) = (s")*(W) agree as cycles oX,. Sincen*

is an injection, we gett “ (W) = t"*(W).

t/

Spedk; ——= T W
tll
n S1
s

SpeK S W

Now that we have a good definition for the pullback of a relative cycle along a
k,-points, : Spek,; — Swhich lifts to ak,;-pointt of T, we need to solve the second
problem raised in 1A.1, descending fraj{W) to the pullbacks*(W) along any
Zariski points: Specgk;) — S.
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If k; is separable oveg,, elementary Galois theory allows us to descend from
the cyclet*(W) on X toa cycle o , which is the desired pullback(W). More
precisely, we may assume thatk, — k; is a Galois extension with Galois group
G, in which case everg-invariant cycle or)(kl comes from a unique cycle O(‘%

Singet*(v~\/) is G-invariant, there is a unique cycle, which we cillW), such that
(W) = i*(s*(W)).

However, it may be that the fieldi$t) are inseparable ové(s) for every point
t of T overs. To fix this, it turns out that we need to invert the characterigtix
k(s) (see 1A.7 below). Fixing andt, letK denote the maximal purely inseparable
extension ok(s) in k(t); by the preceding paragrapti(W) descends to a unique
cycleZ' onX,. Since the indeXK : k(s)] is a power ofp, and elementary field the-
ory shows thaifK : k(s)]Z comes from a unique cycl& on X, we writes" (W) for
the cycleZ/[K : k(s)]. This completes the solution of the second problem referred
toin 1A.1.

t ~
Sped(t) T w
2
S
SpeK Spedk S w
be p.insep ped(s)

ExampLE 1A.7. LetK be a purely inseparable extensionkofith [K : k] =
p and setW = X = SpecK]|t]). Let S= Sped, whereA C K|t] is the ring of
polynomialsf (t) wheref(0) € k. If s: Spe¢k) — Sis the origin, and th&-point
s, of Slies overs, then using the fat point witD = K[[t]] we haves; (W) = [s;| on
X It follows thats* (W) = [s]/p as a cycle oK, = Spe¢K).

Even if X is smooth andis normal, there can be a relative cy@efor which
the coefficient ¥p occurs in its pullbacks*(W). An example, due to Merkurjev,
is given in Example 3.5.10 irRelCh].

THEOREM1A.8. Let W be a relative cycle on X over a Noetherian scheme S.
Foreachmap £ T — S, there exists a unique and well-defined relative cygl®W
X x T over T, whose coefficients may lieZfil/ p] in characteristic p, satisfying
the following condition: for every pointt of T, the pullba¢kW) to X agrees with
the pullback {t)*(W). The relative cycle Wis called thepullback of W.

PROOF For each generic poirtof T, consider the pullback cycld$(W) =
> NyZ; on X constructed above. Léi; denote the closure off; in X xgT.
ThenW, = >+iMiZ, is the desired cycle oX xgT over T. The verification is
straightforward but lengthy, and is given iR¢ICh, 3.3]. O

DEFINITION 1A.9. A relative cycleW is calleduniversally integral when its
pullbacksW; always have integer coefficients; sé&ee[Ch, 3.3.9].

We definec(X/S0) to be the free abelian group on the universally inte-
gral relative cycles oK which are finite and surjective ov& Finally we set



APPENDIX 1A - THE CATEGORYCorg 13

Corg(X,Y) =c(X xgY/X,0). Thatis,Corg(X,Y) is the group of universally inte-
gral cycles orX xgY whose support is finite ovet (i.e., proper oveK of relative
dimension 0).

In [RelCh] the notationz(X/S,0) was used for the subgroup 6f/cl(X/S,0)
generated by universally integral cycles, and the notatin'S, 0) was introduced
for the subgroup generated by the proper cyclegXy S 0).

The following theorem was proved iREICh, 3.3.15] and RelCh, 3.4.8].

THEOREM 1A.10. Any relative cycle of X over S is universally integral pro-
vided that either

(1) Sisregular, or
(2) X is a smooth curve over S.

DEFINITION 1A.11. The composition of relative cycleg € Corg(X,Y) and
W € Corg(Y,Z) is defined as follows. Form the pullbab¥, of W with respect
to the mapy — Y, as in 1A.8. The compositiol/ oV is defined to be the push-
forward ofW, along the projectiomp: X xY x Z — X x Z. By [RelCh, 3.7.5], the
composition will be a universally integral cycle which is finite and surjective over
X.

In the special case whanis the graph off : X — Y, we see thaiVoV is just
the pullback, of 1A.8. ThatisCorg(Y,Z) — Corg(X,Z) isW — W.

EXAMPLE 1A.12. By definition, ¢(X/S 0) = Corg(S X). If Sand X are
smooth over a fiel#, then clearlyCorg(S, X) C Cor, (S X) via the embedding oX
in Sx X. Hence, for every maf — S, there is a map(X/S,0) — ¢(X x5S/S,0)
induced by composition i€or, .

¢(X/S,0) —— Cor, (§X)

\
c(X xgS/S,0) = Cor,(S,X)

ExAamMPLE 1A.13. If S= Sped for a fieldk andX andY are smooth ove§,
then the grougCorg(X,Y) = ¢(X x Y/X,0) agrees with the grougor,(X,Y) of
definition 1.1.

To see this, note tha(X x Y/X,0) C Cor,(X,Y) by definition. By 1A.6 and
1A.10, every cycle irX x Y which is finite and surjective ovef is a universally
integral relative cycle, so we have equality.

Since composition i€org (as defined in 1A.11) evidently agrees with compo-
sition inCor,, we see thaCor, is just the restriction o€org to Snyk.

ExAamMPLE 1A.14. Suppose thaV C Sis a closed immersion of regular
schemes and |1&/ be an equidimensional cycle on a schexnef finite type over
S Itit shown in [RelCh, 3.5.8] that the pullback cycM{, coincides with the im-
age ofW under the pullback homomorphism for the map X — X as defined
in [Ser64 and [Ful84], using an alternating sum of Tor terms.






LECTURE 2

Presheaves with transfers

In order to define motivic cohomology we need to introduce the notion of
a presheaf with transfers. In this lecture we develop the basic properties of
presheaves with transfers.

DEFINITION 2.1. A presheaf with transfersis a contravariant additive func-
tor F : Cor, — Ab. We will write PreSKHCor, ), or PST(k) or PST if the field is
understood, for the functor category whose objects are the presheaves with trans-
fers and whose morphisms are natural transformations.

By additivity, there is a pairingCor, (X,Y) ® F(Y) — F(X) for all F, X and
Y.

Restricting to the subcatego8nyk of Cor,, we see that a presheaf with trans-
fersF may be regarded as a presheaf of abelian grouf@whk which is equipped
with extra “transfer” maps (Y) — F(X) indexed by the finite correspondences
fromXtoY.

ExAMPLE 2.2. Every constant preshed#f on Smyk may be regarded as a
presheaf with transfers. W is an elementary correspondence frgnto Y (both
connected), the homomorphistn— A defined byW is multiplication by the de-
gree ofW overX.

The following theorem is a special case of a well known result on functor
categories, se&\ei94] 1.6.4 and Exercises 2.3.7 and 2.3.8.

THEOREM2.3. The categoryPST(k) is abelian and has enough injectives and
projectives.

ExAMPLE 2.4. The sheafr* of global units and the shedf of global func-
tions are two examples of presheaves with transfers.

Recall first that ifX is normal andV — X is finite and surjective then there is a
norm mapN : *(W) — ¢*(X) induced from the usual norm map on the function
fields, k(W)* — k(X)*. Indeed, iff € &*(W) thenNf andN f~1 are both in the
integrally closed subring’(X) of k(X).

Similarly, there is a trace map TZ(W) — ¢(X) induced from the usual trace
map on the function fieldk(W) — k(X). Indeed, iff € &(W) then Trf belongs
to the integrally closed subring(X) of k(X).

If WC X xY is an elementary correspondence frofrto Y, we define the
transfer map*(Y) — ¢*(X) associated tiV to be the composition:

G (Y) —— O* (W) e 6%(X).

15
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We define the transfef (Y) — &'(X) associated t@V to be the composition
OY) — 6(W) '+ G(X).

We omit the verification that these transfers are compatible with the composition
in Cor,. Itis clear from the transfer formula that the subshaabf n' roots of

unity in * is also a presheaf with transfers, and that the subshafad is just the
constant sheaf with transfers described in 2.2.

EXAMPLE 2.5. The classical Chow grouaH! (—) are presheaves with trans-
fers. To see this, we need to construct a nggp: CH'(Y) — CH!(X) for each
elementary finite correspondengkfrom a smooth schem to a smooth scheme
Y, and check that this defines a functor fr@ur, to abelian groups.

The correspondence homomorphisiy is given by the formulap, () =
a«(W- p*a), wherea € CH'(Y). Herep* : CH'(Y) — CH!(X x Y) is the flat pull-
back along the projectiod x Y — Y, the *’ is the intersection product (see 17A.1),
andq: X xY — X is the projection. IfY were proper, this would be exactly the
formula given in Chapter 16 ofHul84]. For generaly, we need to observe that
W - p*a has finite support oveX, so that the push-forwarmg. (W - p*«) is defined
in CH'(X).

The verification that the definition af,, is compatible with the composition
of correspondences is now a routine calculation using the projection formula; it is
practically the same as the calculation in the proper case, which is givenlByj
16.1.2].

EXAMPLE 2.6. We will see in 13.11 that the motivic cohomology groups
HP4(—,Z) of 3.4 are presheaves with transfers.

EXAMPLE 2.7. The functorK,, considered as a presheaf of abelian groups
on Snyk, has no extension to a presheaf with transfers. To see this, it suffices to
find a finite étale coverf : Y — X of degree 2 and an elemext K,(X) such
that f*(x) = 0 but Z # 0. Indeed, if® € Cor(X,Y) is the canonical “transfer”
morphism defined by, thenf o ® = 2 in Cor(X,X) (cf. 1.11), so any presheaf
with transferd= would haveF (@) f*(x) = 2x for all x € F(X).

Let % be a line bundle on a smooth varietysatisfying.£? = Oy but[.Z @

L # [0y ® Oy] in Ky(X). Itis well-known that such? exists; see$wa63. It
is also well-known that there is atale coverf : Y — X of degree 2 withY =
Spec¢Oy ¢.Z); see Har77, IV Ex.2.7]. Sincef*.Z = 0., the elemenk = [.¥] —
[Oy] of Ky(X) satisfiesf*(x) = 0 but 2 # 0, as required.

Representable functors provide another important class of presheaves with
transfers. We will use the notatidf, (X), which was introduced ingvO0Q; the
alternate terminologl (X) was used inTriCa], while c.,(X/ Spec, 0) was used
in [RelCh] and [CohTh].
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By the Yoneda lemma, representable functors provide embedding§sydf
andCor, into an abelian category, nameisT(K):
Snyk Cor, —— PST(k).
X - X | > Zir (X)
DEFINITION 2.8. If X is a smooth scheme ov&rwe letZ, (X) denote the

presheaf with transfers representedyyso thatZ, (X)(U) = Cor(U, X). By the
Yoneda lemma,

Homgo(Zi (X),F) = F(X).
It follows thatZ, (X) is a projective object ifPST(k).
For everyX andU, Z, (X)(U) is the group of finite correspondences from
to X and the mayZ, (X)(U) — Z, (X)(V) associated to a morphisfn: V — U is
defined to be composition with the correspondence associated to

We will write Z for the presheaf with transfef, (Spe); it is just the con-
stant Zariski sheaf. on Snyk, equipped with the transfer maps of 2.2. Thus the
structure magX — Sped induces a natural mé&f, (X) — Z.

Here are three exercises. Carefully writing up their solutions requires some
knowledge about cycles, such as that foundHul84].

EXERCISE2.9. If F is a presheaf with transfers afidis a smooth scheme,
defineFT (U) =F (U x T). Show thaF T is a presheaf with transfers and that every
morphismS — T induces a morphisr&" — FS of presheaves with transfers. If
F is constant and is geometrically connected, thél = F.

ExXERCISE2.10. If k C L is a separable field extension, evetyn SnyL is an
inverse limit of schemeX,, in Snyk. For every presheaf with transfefsoverk,
we setF (X) =1limF(X,). Show that this makeB a presheaf with transfers over
L.

EXERCISE2.11. Let X be a (non-smooth) scheme of finite type okerFor
each smoothJ, defineZ;, (X)(U) to be the grougor(U, X) of 1.1. Show that the
compositiore defined after 1.4 makés, (X) into a presheaf with transfers.

Given a pointed schemgX, x), we defineZ, (X,X) to be the cokernel of the
mapXx. : Z — Z (X) associated to the point: Spedk — X. Sincex, splits the
structure magZ, (X) — Z, we have a natural splitting, (X) = Z & Z, (X, X).

The pointed schen@n = (A —0,1) and its associated presheaf with transfers
Ziy (Gm) = Zy (A1 — 0,1) will be of particular interest to us.

DEFINITION 2.12. If (X;,X) are pointed schemes for= 1,...,n we define
Zr (Xg5Xg) Ao A (KnsXn)), OF Zie (Xy A ... A Xn), tO be:

(;(:)I(Q['(GBZtr Xl X|><Xn) id -+ XX X -+ xid Ztr(Xlx-‘-xXn)> .

By definition Z, (X, X)) = Z (X, X)
(X,x)) for g > 0. By conventionZ, ((X,x)"\%) = Z and Z, ((X,x)
q<0.

and Zu (X, = Zue((X.) A
MYy =0 when
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LEMMA 2.13. The presheaf, ((X;,X;) A ... A (Xn, X)) is a direct summand
Of Zy (Xy X -+ x Xn). In particular, it is a projective object dPST.
Moreover, the following sequence of presheaves with transfers is split exact:
x}
0—Z = &Zy(X) — @i,thr(xi X Xj) — ...
_>@i7thr(Xlx XX’\J Xxn) ﬁ@iZtI’(X X )2' Xxn) —
— Zap (X X - X Xa) = Ly (X A=+ AXn) — 0.
This lemma is illustrated by the formulds, (X) = Z & Z, (X, x) and
Ze (X X Xo) = 2D Ly (Xq,Xq) B Zar (Ko, %p) D Zigg (X AKy).

PrROOF The projectiongx] : X; — {x } — X are idempotent, as are the corre-
spondences, = Iy — [%]. These idempotents induce a decompositiofpfX; x
.-+ x Xn) into 2" summands, and we see by inspection EatX; A--- A X,) is the
image ofe; x - - - x &,. SinceZ, (X, A---AXn) is asummand of a projective object,
it is projective. The individual terms in the indicated sequence decompose in a
similar fashion, and each map is a projection followed by an inclusion; it is easy to
see from this description that the sequence is split exact (§e®4, 1.4.1]). O

We shall also need a functorial construction of a chain complex associated to
a presheaf with transfers. For this we use the cosimplicial sciA®roeerk which

is defined by:
n
A" = Sped(x,,...,Xn]/ Z)Xi =1].
i=

The j™ face mapaj - A" — A" s given by the equatior; = 0. Although this
construction is clearly taken from topology, the use\dfin an algebraic setting
originated with D. Rector inRec71.

DEFINITION 2.14. If F is a presheaf of abelian groups 8nyk, F(A®) and
F(U x A®) are simplicial abelian groups. We will writg,F for the simplicial
presheal) — F(U x A®), i.e.,,C,(F)(U) =F(U xA"). If F is a presheaf with
transfersC,F is a simplicial presheaf with transfers by 2.9.

As usual, we can take the alternating sum of the face maps to get a chain
complex of presheaves (resp., presheaves with transfers) which @isiptace of
), we will call C,F. It senddJ to the complex of abelian groups:

.. —F(UxA?) - FUxA) - FU) —0.

BothF — C,F andF — C,F are exact functors. Moreover, the Dold-Kan corre-
spondence (se®\ei94, 8.4.1]), which describes an equivalence between simplicial
objects and positive chain complexes, associat€Foa normalized subcomplex
CPXF of the complexC.F, which is quasi-isomorphic to the compl€xF.

If Ais the constant presheaf with transfé(®) ) = AthenC.Ais the complex

oA A% A0 itis quasi-isomorphic t&PX (A), which isA regarded
as a complex concentrated in degree zero.
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Homotopy invariant presheaves

We now introduce a special class of presheaves which will play a major role in
these notes.

DEFINITION 2.15. A presheaf is homotopy invariant if for every X the map
p* : F(X) — F(X x Al) is an isomorphism. Ap: X x A — X has a sectionp*
is always split injective. Thus homotopy invarianceFois equivalent top* being
onto.

The homotopy invariant presheaves of abelian groups form a Serre subcategory
of presheaves, meaning that if0 F; — F, — F, — 0 is an exact sequence of
presheaves theR, is homotopy invariant if and only if botk, andF, are. In
particular, ifF and G are homotopy invariant presheaves with transfers then the
kernel and the cokernel of every mépF — G are homotopy invariant presheaves
with transfers.

Letig : X —— X x A be the inclusiorx — (x, ). We shall writei?, for
Flig): F(X x A1) = F(X).

LEMMA 2.16. F is homotopy invariant if and only if
is=il:F(XxAY) - F(X) forall X.

PrRoOOF. ([Swa72 4.1]) One direction is clear, so suppose thjat i for all
X. Applying F to the multiplication mamn: A x A* — A, (xy) — xy, yields the
diagram

F(X x Al 0 -~ F(X)

1X x Al

(L x m)* p*

(igx1

i, x1 *
( (o> 1) F(X x Ab).

F(X x Ab) X ) F(X x Al x AL

Hencep®iy = (1 xiy)*m" = (1 xi;)*m" =id. Sinceijp* =id, p* is an isomor-
phism. O

DEFINITION 2.17. Fori = 0,...,n we defineg, : A™?! — A" x Al to be the
map that sends the vertextov; x {0} for j <iand tov;_, x {1} otherwise. (See
Figure 1.) These are the algebraic analogues of the top-dimensional simplices in
the standard simplicial decomposition of the polyhedi8mx Al

LEMMA 2.18. Let F be a presheaf. Then the magsyj: C.F(X x A1) —
C.F(X) are chain homotopic.

PROOF. The map%; defined in 2.17 induce maps

hy = F (L x 6) 1 GoF (X x AY) — G, 1 F (X).
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0 - 0
(2]
1 Al
90
1 1
2
AZ 0 Al 1

FIGURE 2.1. Simplicial decomposition df” x Al

Theh; form a simplicial homotopy {Vei94, 8.3.11]) fromi] = dphy toig = J, 1 hn.
By [Wei94, 8.3.13], the alternating susy = 3 (—1)'h, is a chain homotopy from
] toiyg. O
Combining 2.16 and 2.18, we obtain
COROLLARY 2.19. If F is a presheaf then the homology presheaves

HnC.F : X — HC.F(X)

are homotopy invariant for all n.
EXAMPLE 2.20. ([Swa72 4.2]) The surjectiorF — HC.F is the universal
morphism fromF to a homotopy invariant presheaf.
EXERCISE 2.21. Set Hg"‘g(X/k) = HyC.Z (X)(Spek). Show that there is
a natural surjection frorti""9(X /k) to CHy(X), the Chow group of zero cycles
modulo rational equivalence (see exercise 1.10X i projective,HS"9(X/k) =
CHy(X). If X = A, show thaH$"9(A /k) = Z. We will return to this pointin 7.1.
LEMMA 2.22. Let F be a presheaf of abelian groups. Suppose that for every

smooth scheme X there is a natural homomorphigsmP(X) — F (X x Al) which
fits into the diagram

<~ F(Xx
F(io)
Then the complex € is chain contractible.

The assertion thdt, is natural means that for every méap X — Y we have a
commutative diagram

F(X) I, F(X x A1)

e

FOY) ™ (Y x AY)

PROOF. By naturality,hy induces a mag,h : C.F(X) — C.F(X x Al). By
2.18, the identity majul = i;(C.h) is chain homotopic to € ij(C.h). O
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EXAMPLE 2.23. The prototype for lemma 2.22 is the sheaf of global func-
tions. The complex, & is chain contractible, becaugg(X x A1) = ¢ (X)[t] and
hy (f) =tf satisfies the conditions of 2.22.

Here is a second application of 2.22. Note that the projeqtiol x A — X
induces a maf, (X x A) — Z (X).

COROLLARY 2.24. C,Z (X x A') — C,Z(X) is a chain homotopy equiva-
lence.

PROOF. LetF denote the cokernel @ (iy) : Zy (X) — Zy (X x A1) induced
byiy: X — X x AL, Thatis, eact (U) is the cokernel o€or(U, X) — Cor(U, X x
AY). Let H, denote the composition of the product withh and multiplication
Alx AT AL

Cor(U,X x AY) = Cor(U x AL, (X x A1) x AY) — Cor(U x AL, X x AD).

SinceH,, send<Cor(U, X x {0}) toCor(U x A1, X x {0}), itinduces a natural map
h, :F(U) — F(U x Al). ForU = X x Alitis easy to see that the composition of
Hy withiy,i; :U — U x Al sends {, € Cor(U,X x A?) to the projectionyp:U —

X — X x Al and 1, respectively. Thereforg(iy)h, (1,) = 0 andF (i,)h, (1,) =

1, for U = X x Al. For any othelJ, every element € F(U) is the image of
1, 42 under some correspondenteU — X x Al, so agairF(ig)h, (f) = 0 and
F(i;)hy(f) = f. Therefore 2.22 applies to show thatF is chain contractible.
SinceC,Z, (X x Al) = C,Z, (X) ®C.F, we are done. O

An elementaryA*-homotopy between two morphismé,g: X — Y is a map
h: X x A' — Y so thatf andg are the restrictions df alongX x 0 andX x 1. This
relation is not transitive (exercise!). To correct this, we pass to correspondences.

DEFINITION 2.25. We say that two finite correspondences frito Y are
A'-homotopic if they are the restrictions along x 0 andX x 1 of an element of
Cor(X x Al)Y). This is an equivalence relation @or(X,Y). The sum and com-
position of A-homotopic maps ar&-homotopic, so thé\!-homotopy classes of
finite correspondences form the morphisms of an additive category.

We say thatf : X — Y is an Al-homotopy equivalenceif there exists &g :
Y — X so thatfg andg f areA-homotopic to the identity.

The projectionp : X x A — X is the prototype of am\'-homotopy equiva-
lence; itsA'-homotopy inverse is given by the zero-section.

LEMMA 2.26. If f : X — Y is anAl-homotopy equivalence with'-homotopy
inverse g, then.f: C.Z (X) — C.Z(Y) is a chain homotopy equivalence with
chain homotopy inverse.g
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PROOF Applying C.Z, to the data gives a diagram
C.Z (X)

C.ze (%) 12 .z, (x x a1 1 Cz, )

~ >~

and similarly forY. The horizontal maps are chain homotopy equivalences by 2.24,
and are homotopy inverses . From the right triangleh, ~ p,. From the left
triangle, we gep, f, ~ 1. Similarly, the diagram fo¥ gives f.g. ~ 1,. Hence

fi 1 CZy (X) — C.Z, (Y) is a chain homotopy equivalence with invegge O

EXERCISE2.27. Show that there is a natural identification for evrandY:
HoC.Z (Y)(X) = Cor(X,Y)/A*-homotopy

We will return to the subject ahl-homotopy in lectures 7, 9, 13, and 14; see
7.2,9.9 and 14.14.

The motive associated ¥ will be the classVl(X) of C.Z, (X) in an appropri-
ate triangulated categoyM ﬁf{g(k, R) constructed in 14.1 from the derived cate-
gory of PST(k). By 2.24, we have (X) =2 M(X x Al) for all X. More generally,
any A'-homotopy equivalenc¥ — Y induces an isomorphisi (X) = M(Y) by
2.26.

EXeERCISE2.28. If k C F is afinite separable field extension, exercise 1.12 im-
plies that there are adjoint functars PST(k) — PST(F), i. : PST(F) — PST(K).
Show that there is a natural transformationi*i.M — M whose compositiorrn
with the adjunction map : M — i*i.M is multiplication by[F : k] on M. Hint:

Xg — Xis finite.



LECTURE 3

Motivic cohomology

Using the tools developed in the last lecture, we will define motivic cohomol-
ogy. It will be hypercohomology with coefficients in the special cochain com-
plexesZ(q), called motivic complexes.

DEFINITION 3.1. For every integeq > 0 themotivic complexZ(q) is defined
as the following complex of presheaves with transfers:

Z(q) = C.Z (Gpy))[—q].

We considefZ(q) to be a bounded above cochain complex; the shifting convention
for [—q] implies that the term&(q)' = quiZtr(GQﬂ) vanish wheneverr> g, and
the term withi = q is Z;, (GL9).

If Ais any other abelian group théX(q) = Z(q) ® A is another complex of
presheaves with transfers.

Whenqg = 0, we haveZ(0) = C.(Z). As observed after 2.14 abovB(0) is
guasi-isomorphic t&, regarded as a complex concentrated in degree O.

Wheng = 1, we haveZ(1) = C.Z (Gm)[—1]. We will give another description
of Z(1) in the next lecture.

By conventionZ(q) =0 if g < 0.

We now show that these complexes of presheaves are actually complexes of
sheaves with respect to the Zariski topology. Later on, in 6.2, we will show that
theZ, (Y) are also sheaves in tiétale topology.

LEMMA 3.2. For every scheme Y overX, (Y) is a sheaf in the Zariski topol-
ogy, and GZ, (Y) is a chain complex of sheaves.

Similarly, if Ais any abelian group, the proof of 3.2 shows that Z, (Y) is a
sheaf in the Zariski topology, amil® C.Z, (Y) is a complex of sheaves.

PROOF We have to prove that whenewveris covered byJ; andU, the se-

quence
diag (+,-)
0— Cor(U,Y) — Cor(U,,Y)@®Cor(U,,Y) —— Cor(U; NU,,Y)

is exact. We may suppose tHatis connected and therefore (being smooth) ir-
reducible. As every finite correspondence frahto Y is dominant ovetJ, it is
completely determined by the fiber at the generic pointyofHenceCor(U,Y)
injects into eaciCor(U;,Y).

23
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To see that the sequence is exact at the other spot, take &jcte§ ;. mZ,; C
U; xYandz, =y ;.;n;Z,; C U, x Y that coincide orfU; NU,) x Y. Itis possible
to pair up theZ;; andZ,;, since they are determined by their fibers at the common
generic point o, U, andU,. Hence there is a bijection betwekandJ such that,
if i € | corresponds tg € J thenm; = n; and the restrictions af;; andZ,; agree
in (U;NU,) xY. Thus we may assume thaf andZ, are elementary correspon-
dences. But then their uniach=Z, UZ, inU x Y is a finite correspondence from
U toY, and its restriction to botb, x Y is Z,, i.e.,Z is a preimage of the pair.

Now whenever is a sheaf an& is smooth, each preshéadf— F(U x X) is
also a sheaf for the Zariski topology. In particular e@ghk is a sheaf an@.,F is a
complex of sheaves. Th@&Z, (Y) is a complex of Zariski sheaves. O

We have already seen (in exercises 2.21 and 2.27 above) that the complex
C.Z (Y) is not exact. There we showed that the last map may not be surjective,
because its cokernél,C.Z (Y)(S) = Cor(SY)/Al-homotopy can be non-zero.
WhenS= Speck), itis the groupHg‘”g(Y/k) described in exercise 2.21 above and
7.3 below.

Recall that the (small) Zariski sit&, ,, over a schemX is the category of open
subschemes of, equipped with the Zariski topology.

COROLLARY 3.3. The restrictionZ(q)y of Z(q) to the Zariski site over X is a
complex of sheaves in the Zariski topology.

Similarly, if Ais any abelian groupd(q) is a complex of Zariski sheaves.

PROOF. SetY = (Al —0)9. By lemma 3.2 we know th&, Z, (Y) is a complex
of sheaves. The compléX(q)|q] is a direct summand &.Z, (Y) by lemma 2.13,
so it must be a complex of sheaves too. O

Note thatA(q) represents the derived sheaf tensor prodi(cf) ®" A, since
Z(q) is a flat complex of sheaves.

DEFINITION 3.4. Themotivic cohomology groupsHP9(X,Z) are defined to
be the hypercohomology of the motivic comple#&s)) with respect to the Zariski
topology:

HPA(X,Z) = HY, (X, Z(q)).
If Ais any abelian group, we define:
HPA(X, A) =HE, . (X,A(q)).

REMARK 3.5. Motivic cohomology is well-defined even if thé(q) are un-
bounded complexes because then Snyk are finite dimensional; se&\[ei94,
10.6.8]. We will see in 13.11 and 14.16 that motivic cohomology is representable
in several derived categories.

VANISHING THEOREM 3.6. For every smooth scheme X and any abelian
group A, we have F9(X,A) = 0when p> q+dimX.
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PROOF. By definition, the complexZ(q) is zero in degrees bigger then
SinceHy,,(X,F) vanishes for every she& wheni > dimX, the result is now
an immediate consequence of the hypercohomology spectral sequence. [

We will prove in 19.3 that, for every smooth varieyand any abelian group
A, we haveHP9(X,A) =0 for p > 2q as well.

REMARK 3.7. The groupHP9(X,Z) are contravariantly functorial iX. To
see this we need to check that for a morphisnX — Y we can construct a natural
mapZ(q)y — f.Z(q)y. But this is true for any comple® of presheaves oBnyk:
for each operd C Y, the restrictionf *U — U induces the desired map from
C,(U)=C(U) to f.Cy(U) =C(f~U).

The group#H P9(X, A) are also covariantly functorial ia Thatis, ifi :k C F is
afield extension, there is a natural mtap*(X,A) — H**(X¢,A). Itis induced by
the sheaf mafZ(q)yx — i*Z(q)XF assembled from the natural mapg(Y)U) —

1 Zyy (Ye ) (U) = Z (Yg ) (Ug ) of exercise 1.12.

PrROPOSITION3.8. If k C F is a finite and separable field extension and U is
smooth over F, then the two motivic chain complezés), (defined using Cqr
and Cor, respectively) are isomorphic. Hence the motivic cohomology groups
HPA(U,A) are independent of the choice of the ground field.

PROOF Let T be any smooth scheme ovér and T: its base change
over F. By exercise 1.12 the grouf$Z (T:)(U) = Core (U xg A2, T) and
CiZy(T)(U) = Cor (U x, A, T) are isomorphic. That isC,Z (Tg)(U) =
C.Z(T)(U). Letting T be (A} —0)9, the result follows from lemma 2.13, which
says that the comple%(q)[q] is a direct summand dE.Z,(T) overk, and of
C.Zy (T) overF. O

The following colimit lemmas are elementary consequences of exercise 1.13.
They will be useful later on.

LEMMA 3.9. (Colimits) Let kC F be a field extension and X smooth over k.
Then:

H*,* — H *,% .
(Xe,A)= colim H™(Xg,A)
E of finite type
If f : X — S is a smooth morphism of smooth schemes over k such that S is
connected and E= k(S), then:
H™*(X xsSped,A) = coIirSn H** (X xgU,A).
nolf]ugmpty
And now we want to introduce a multiplicative structure on the she@yes
We will need the following construction:
CONSTRUCTION3.10. If (X, xs) are pointed schemes fer=1,..., j, then for
everyi < j we define a morphism of presheaves with transfers:

Zig Ky Ao e AX) @ Ze (K g Ao AXG) = L (XA AX).
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Indeed, definition 1.9 provides a map:

Zag (K % oo X X)(U) @ Zgy (K g X - X X)) (U)
= Con (U, X; x... x X)®@Con (U, X 1 x... X X;) —
— Con (U x U, X x ... X Xj) = Zye (X X ... x X) (U xU).
Composing with the diagonél — U x U, we have:
Zag (Xy X o X X)U) © Zap (K g X oo X X ) (U) = Zap (Xg % x X)) (V).
Now recall that by definitiorZ, (X; A ... A Xy) is a quotient oZ, (X; x ... x X,).
It is easy to check that the madpfactors through the quotient, giving the required
morphism.

CONSTRUCTION3.11. For eachmandn we construct a map
Z(m) ® Z(n) — Z(m-+n)
using the ma@, (GiM) ® Z, (GR") — Z (GA™™) of 3.10, as follows.
For any smoothJ we need to build a map of complexes of abelian groups:
Zm)[m(U) @ Z(n)[n)(U) — Z(m+n)[m+n|(U),

or equivalently, Z(m)(U) ® Z(n)(U) — Z(m+n)(U). Recall that by definition
3.1,Z(n)[n](U) is the chain compleL.Z, (G}")(U). Let us write the underlying
simplicial object a®\] = Z, (G{") (U x A*), and the associated unnormalized chain
complexZ(n)[n] asA?. Similarly, we write (A]' ® A]).. for the chain complex
associated to didd\'® AJ). The Eilenberg-Zilber theorem\{[ei94, 8.5.1]) yields
a quasi-isomorphismil : A"® AT — (AT ® AL)..

Therefore if we find a simplicial mam: diagAT® Al — A" we have also a
map (AT ® Al). — AT which, composed with the previous one, gives the multi-
plicative structure. Unfolding the definitions again, we have:

Al = Zy (G (U x ).
We define the components wfto be the maps of 3.10:
Zur (G (U x &) @ Za (G ) (U x &) = Zyp (GR™ ) (U x 4').
The morphisms in 3.10 are associative and the map the Eilenberg-Zilber

theorem is homotopy associativa\§i94, 8.5.4]). It follows that the pairing of
construction 3.11 is homotopy associative.

COROLLARY 3.12. For each smooth X, there are pairings:
HPI(X,Z) ®H .o (X,Z) —H IDJrP’#HQ’()(7 7).

In 15.9 we will show that this pairing is skew-commutative with respect to the
first grading, so thatl**(X,Z) is an associative graded-commutative ring.



LECTURE 4

Weight one motivic cohomology

In this lecture we descriti(1) andZ/I (1) in terms of units and roots of unity.

THEOREM4.1. There is a quasi-isomorphism of complexes of presheaves with
transfers:

Z(1) — 0*[-1].
COROLLARY 4.2. Let X be a smooth scheme over k. Then we have:

0 q<1land(p,q)# (0,0),(1,1),(2,1)
Z(X)  (p,q) = (0,0)
o*(X) (p,a)=(1,1)
Pic(X) (p,@)=(2,1)

HPI(X, Z) =

0 0 0  o*(X) PiccX) 0
0 0 | Z(X) 0 0 0

p
0 0 0 0 0 0

FIGURE 4.1. Weightg motivic cohomology

This theorem will follow from lemmas 4.3-4.6 below. An alternative proof is
given in [SV94|.

Consider the functor#*(P*;0,) : Smyk — Ab which sends a schem¢to
the group of rational functions a4 x P! which are regular in a neighborhood of
X x {0,00} and equal 1 orX x {0,»}. Clearly.#*(P*;0,) is a sheaf for the
Zariski topology. Given a rational functiohon X x P* let D(f) denote its (Weil)
divisor.

27
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LEMMA 4.3. For all f in .#*(P1;0,)(X), the Weil divisor Bf) belongs to
the subgroup CqiX,A® — 0) of the group of cycles on X PL.

PROOF Since the support dd( f) is disjoint fromX x {0,e}, D(f) is a cycle
in X x A1 —0. To see that it is finite and surjective overe may assume thit =
Sped\ is an affine domain. We may write= f,_/f_ wheref, =ant™+---+a,
andf_ = bpt"+--- + by are inAlt] andam, a,, by andb, are nonzero. Sincé is
regular neaX x {0}, f_ is relatively prime ta, and we may assume thiag§ is a
unit of A. Similarly, we may assume thhj is a unit ofA. Sincef =1 onX x oo,
we havem = n and may assume tha} = b, = 1. But then the divisor®(f, ) of
f,=t"4+...+a,andD(f_) of f_ =1t"+..4 b, are finite and surjective ovex.
Since they belong t€or(X, A —0), so doeD(f) =D(f,) —D(f_). a

From 4.3 we get a morphism of sheavesg? *(P*;0,0) —— Z;, (A —0).
LEMMA 4.4. For any connected X there is a short exact sequenédin

0 2 (P50,00)(X) — Zy (AL~ {0})(X) 2+ Zep 6*(X) — O.

PROOF. We know that Pi¢X x P1) 2 Pic(X) x Z, so for anyZ in Cor(X, Al) C
Cor(X,PY) there is a unique rational functidnon X x P* and an integen so that
D(f)=Zandf/t"=10nX x {»}. If ZliesinCor(X, A —0), thenf(0) € &*(X).
We definel : Z, (A1 —0) — Z@® 0* by A(Z) = (n,(—1)"f(0)). If uc 6*(X) and
Z,=D(t —u) theni(Z,) = (1,u). SinceA(Z,—Z,) = (O,u) A is onto. The kernel
of A consists of alz whosef lies in.#*(P';0,)(X), so we are done. O

LEMMA 4.5. The mapl respects transfers. Hence * (P1;0,) is aPST.

PROOF It is easy to see that the first componentlois a morphism irPST
because it is the mapor, (X, A —0) — Cor, (X, Spek), induced by the structure
map r : Al — 0 — Sped. To check the second component bf we see from
exercise 1.13 that it suffices to check that the following diagram commutes for
every finite field extensioR C E.

Z (A* — 0)(SpeE) — E*

{NE/F
Zy (A —0)(Sped) —— F*
This is a straightforward verification using exercise 1.10. O

Write .#* for .4/ *(PY;0,). By 2.14,(CF)(U) = F(U x A'), so 4.4 gives us:
0— C.(M*) — CiZlyy (A1 —0) - C.(Z® 0") — 0.
Splitting off 0— C,Z = C,Z — 0 we get an exact sequence:

0— C,.(.4*) — Z(1)[1] — C.(6*) — 0.
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But C.(0*) ~ 0* becauser*(U x A") = ¢*(U). We will prove in lemma 4.6
that the first ternC, (.#*) is acyclic. Therefor&(1)[1] is quasi-isomorphic ta*.
This is the statement of the theorem 4.1, shifted once.

LEMMA 4.6. If X is a smooth scheme over k, then @ *)(X) is an acyclic
complex of abelian groups. Hence(C#*) is an acyclic complex of sheaves.

PrROOF. Let f € CPK(.Z*)(X) be a cycle, i.e., an element vanishing in
CPK(.#*)(X). Thenf is a regular function on some neighborhoddof Z =
X x Al x {0,00} in X x Al x P, andf = 1 on each facX x A~ x P, as well as on
Z. Consider the regular functidn (f) = 1—t(1— f) on the neighborhood?! x U
of Al x Zin Al x X x Al x P1, wheret denotes the coordinate functionf. Then
hy () is a cycle inCPK (L.#*) (A x X), because it equals 1 whefeequals 1. The
restrictions along = 0,1, fromCPK (L#*) (A x X) to CPX(Lz*)(X), sendhy(f)
to 1 andf, respectively. Since these restrictions are chain homotopy equivalent by
2.18,f is a boundary. O

This completes the proof of theorem 4.1.

REMARK 4.7. We will revisit this in lecture 7 in 7.11.

Lemma 4.6 works more generally to show tRat#*(Y;Z)(X) is acyclic for
every affineX, where.Z*(Y;Z)(X) is the group of rational functions aX x Y
which are regular in a neighborhoodXfx Z and equal to 1 oX x Z.

Now let us consider the comple%/I(1). By theorem 4.17(1) is quasi-
isomorphic toc*[—1]. Tensoring withZ/l we haveZ/I(1) ~ ¢*[-1] @ Z/I,
which is just the complexo™ LN 0*] in degrees 0 and 1. Then we have the
universal coefficients sequence:

0 —— HPY(X,Z)/| — HPYX,Z/I) — HP(X,Z) — 0.
COROLLARY 4.8. There is a quasi-isomorphism of complexegtafe sheaves
ZV (D) g~ 1y

PROOF Since sheafification is exactM[l80] p. 63), theorem 4.1 gives
Z(1)g ~ O4[—1], and hence

ZN(1) g~ O~ " 7)1 =~ . 0

COROLLARY 4.9. If 1/I € k and X is smooth, then®™(X,Z/I) = 0 for p #
0,1,2 while:

Ho’l(X7Z/I) =N (X)v Hl’l(xvz/l) = Hé}t(xnul)a
H2Y(X,Z/1) = Pic(X) /I Pig(X).

PrROOF. The calculation oHP for p # 1 follows from the universal coeffi-
cients sequence, since the only nonzero Zariski cohomology grougs ofh a
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smooth scheme ai¢® andH(X, 0*) = Pic(X). For p = 1 note that corollary 4.8
gives a natural map
Hyor (X, Z/1(1)) — H&(X, Z/1(1)g) = Ha(X, 1)
fitting into the diagram:
H%ar(x7z(l>)/| — H%ar(X,Zﬂ(l)) - |H§ar(X,Z(l))

~ ~

HE(X,Z(1)) /1 — H&(X,Z/1(1)) — HE(X,Z(1)).
SinceH4(X, 6*) = H3,,(X, &%) by Hilbert's Theorem 90 (seéV[il80, II 4.9]),
the 5-lemma concludes the proof. O

REMARK 4.10. (Deligne) If chak = | thenH (X, Z/1) = Hg (X, 1) In fact,
the proof of 4.9 is valid in this setting.



LECTURE 5

Relation to Milnor K-Theory

The Milnor K-theory KM (F) of a field F is defined to be the quotient of the
tensor algebrd (F*) overZ by the ideal generated by the elements of the form
X® (1—x) wherex € F*. In particularK)!(F) = Z andkM(F) = F*.

The goal of this lecture is to prove the following:

THEOREMDb.1. For any field F and any n we have:

H""(Sped,Z) = KM(F).

We have already seen that this holds foe 0,1, because by definition 3.4

HO%9(Sped,Z) = H2, (Sped, Z) = Z and by theorem 4.1:
HYY(Sped, Z) = Hz, (Sped, 0" [~1]) = Hzy (Sped, &) = F*.

The proof of theorem 5.1 will follow$VO00, 3.4] which is based oriNS89. It
will consist of three steps:

(1) Construction o® : H™"(Sped, Z) — KM(F). This will use lemma 5.5.

(2) Construction ofAx : KM(F) — H™"(Sped-,Z). This will be done using
lemmas 5.9 and 5.6. The proof of lemma 5.9 will need lemma 5.8.

5.6+ (5.8=5.9 =3 A

(3) Proof that these two maps are inverse to each other. For this we will need
lemma 5.10 (proved using lemma 5.11).
Before starting the proof of the theorem we need some additional properties of
motivic cohomology and MilnoK-theory.
Recall thatZ, (G)")(Sped) is a quotient ofZ,, ((A* — 0)")(Sped ), which
by 1.10 is the group of zero cycles @' —0)".
LEMMA 5.2. We have R9(Sped-, Z) = Hy_,(C.Z (G (Spedr)) for all p
and g. In particular we have
H™"(Sped, Z) =H, (C.Z (G") (Sped))
9p—0
—coker(Zy (Gy) (A1) =% 74 (GRY)(SpecF) ).
PROOFR Write A, for C.Z(GpY)(Sped ) so the right side isHy_ A =
HP~9A,.. By definition 3.1, the restriction dZ(q) to Sped- is the chain com-

plex A.[—q]. Since Zariski cohomology on SpEds just ordinary cohomology,
we have

HPY(SpeF, Z) = HP(A.[q]) = HP 9(A,) = H

31
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LeEMmA 5.3. If F C E is afinite field extension, then the proper push-forward
of cycles induces a mapchy. H**(Sped,Z) — H**(Sped-,Z). Moreover, if
x € H**(Spe®E,Z) and ye H**(Sped~,Z) then:
(1) Ngjg - HO0(SpeE,Z) = Z — 7 = H%O(Sped-, Z) is multiplication by
the degree of EF.
(2) Ngjg HY1(SpedE,Z) = E* — F* = HL(Sped,Z) is the classical
norm map E — F*.

(3) NE/F(yE'X):y'NE/ andN; X yE E/F(X)'y'
(4) If F C E C K, and K is normal over F, we have:

Nep(Ok =[E:Flinep > 1'% inH""(SpeK,Z).
jJE —— K
PrRoOOF All but property 2 follow immediately from the corresponding proper-

ties of proper push-forward. Property 2 follows from property 4 since this formula
also holds for the classical norm mNQ/F (Ef — F*, O

If F C E is a finite field extension, there is a “norm mal}le/F KM(E) —

KM(F) satisfying the analogue of lemma 5.3. In addition, it satisfies the following
condition (see$us83).

THEOREM 5.4 (Weil Reciprocity). Suppose that L is an algebraic function
field over k. For each discrete valuation w on L there is a map

At Knta (L) — Ky (k(w)),
and for all xe KM ; (L):

2 N ¥
COROLLARY 5.5. Let p: Z — At be a finite surjective morphism and suppose
that Z is integral. Let {,..., f, € 0*(Z) and:
pt{oh) =1nmz  pi({1})=ln'z

where ri are the multiplicities of the pointg z= Spe&f (e = 0,1). Define:

(Po = z nIONEIO/F({ f]_’ ) fn}EIO) (pl = Z nilNEil/F ({ f]_a ) fl’l}Eil)
then we have:
_ M
¢y =1 € Ky (F).

PrROOF LetL be the function field oZ and consider = {t/t —1,f,,..., fa}.
At every infinite placet/t — 1 equals 1 andy,(x) = 0. Similarly, dy(x) = 0 at
all finite places except those over 0 and 1.w{flies overt = 0 thendy, (x) =
nO{f,,....fa} in KM(ED); if w, lies overt = 1 thenay, (x) = —n{f,..., fa} in
K (El). By Weil Reciprocity 5.45 Now, (X) = @y — ¢, vanishes irkM(F). O
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We are now ready to define the mép By 5.2 it is enough to find a map
from Z, (Gi") (Sped) to KM(F) which composed with the difference of the face
operators is zero. Such a map must induce a uniquethaapthe cokernel:

on—3d
Zir (GAM(AY) 2= Zy (G (SpedF) — H™(SpedF, Z)

f

KY(F).

But nowZ, (G}")(Sped-) is a quotient of the free abelian group generated by
the closed points gfAt — {0})" (by exercise 1.10), modulo the subgroup generated
by all points of the form(x,,...,1,...,%,) where the 1's can be in any position.
If x is a closed point of At — {0})" with residue fieldE thenx is defined by a
canonical sequendg,, ...,%») of nonzero elements &. Now E is a finite field
extension ofF, and {x,,...,%} € KM(E). Using the norm map for MilnoK-
theoryN_ - : KM(E) — KM(F), we define

f(x) = NE/F({xl, s Xn})-

Since {x,...,1,...,%} = 0 in KM(E), this induces a well-defined map :
Zy (GHM) (Sped) — KM(F). By 5.5 the composition of with the face opera-
tors is zero. We defin@ to be the map induced on the cokernel.

If x is anF-point of (A — 0)" then its coordinates, ..., X, are nonzero ele-

E/F

ments ofF. We shall write[x, : --- : X, for the class ok in H""(Sped~,Z). The
map @ is obviously surjective SinC&([X; : --- : Xn]) = {X;,..., X} fOr X5, ..., Xn in
F.

Now let us build the opposite ma@g. For this, we will use the multiplica-
tive structure (3.12) oid**(X,Z). The following lemma is immediate from the
construction 3.11 and lemma 5.2.

LEMMA 5.6. Fora,,...,an € F we havea, : --- :an] = [a,] - - [an].

By definitionKM(F) = T(F*)/(x® (1—X)). Therefore we define a map:

T(F*) — ®&nH™"(Sped, Z), a®...Q0an— [ay]---[an].
We will prove that this maps factors througl) (F). By 5.6, it is enough to prove
that[a: 1— @ is zero, which is the statement of proposition 5.9 below.

ExAMPLE 5.7. We can use a special cycle to show tfzgat—a] = 0. Consider
the correspondencgfrom A (parametrized by) to X = Al — {0} (parametrized
by x) defined by

X2 —t(a+b)x— (1—1)(14ab)x+ab=0.

Restricting alongt = 0,1 yields correspondencesb] + [1] and [a] + [b] in
Cor(Sped X). Setting these equal recovers the idenfitp] = [a] + [b] in
HL1l(Sped,Z) = F*, becausél] = 0.
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LetY denote the composition & with the diagonal embedding —— X2.
Since[1: 1] = [1][1] = 0, equating the restrictions alohg- 0,1 yields the identity
[ab:abl =[ab:ab+[1:1] =[a:a] + [b: b] in H>2(Sped,Z). Bilinearity (5.6)
yields skew-commutativityfa: b] + [b: a] = 0. In particular, 2a: a] = 0.

Passing toE = F(\/a), we see that 0= 2[\/a: /a = [a: /& in
H22(SpeE,Z). By 5.3, applying\g ¢ yields 0= [a: —a] in H22(Sped,Z).

LEMMA 5.8. Supposéin > 0 so that ix: 1—x] = O for all finite extensions of
F and x#£0,1in F. Then[x: 1—x = 0in H?2?(Sped-, Z) for every x# 0, 1.

PROOF Suppose = m- pwherepis a prime; we want to provex: 1— x| =
0. Let us considey = y/xandE = F(y). Then 0=mpy:1—y]=mx:1-y], and
1-x= NE/F(l—y). Hence
0= NE/F(m[x: 1-x]) =m-[x: NE/F(l—y)] =mx:1-x.
The formula]x : 1 —x] = 0 follows by induction om. O

PROPOSITION5.9. The elemenix : 1—x] in H2?(Sped,7Z) is the zero ele-
ment.

PROOF. Let Z be the finite correspondence froit (parametrized by) to
X = Al — 0 (parametrized by) defined by:

X —t@+ 1) +t@+1)x—a=0.

Let w be a root ofx? +x+ 1, sow® = 1, andE = F(w). The fiber oveit = 0
consists ofa, wa, and w?a and the fiber ovet = 1 consists of® and two sixth
roots of 1. Using the embedding— (x,1—x) of A* —{0,1} into X?, Z yields a
correspondencg from A to X?. Then inH?2(SpedE, 7Z)

9(Z)=[a:1-a +[wa:1- wa +[w’a:1-w?a =
[a:1-a%+[w: (1- wa)(1- w?a)?
is equal to
0,(Z)=[a:1-a+[~0: 1+ 0] +[-0?: 1+ w?.

Multiplying by 3 eliminates termfw : bj, noting thaf—1: 1+ ] +[~1: 1+ ?] =
0 as(1+ o)(1+ w?) = 1. Therefore 6= 2[a®: 1— a3] overE. Applying the norm
yields 0= 4[a®: 1 —a’] over F. Passing to the extensidh(¥a) and norming
yields 0= 12[a: 1— a] over F. Applying lemma 5.8 withh = 12, we see that
O=[a:1—a aswell O

Proposition 5.9 shows that the algebra map of lemma 5.6 induces a map on the
quotientA. : KM(F) — H™"(Sped~, Z). Now we need to check that and6 are
inverse to each other. Sin@ A is the identity by construction, it is enough to
prove thatA; is surjective.

LEMMA 5.10. The map is surjective.
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PROOF. By 5.2, it suffices to show that iis a closed point oK = (A —0)"
then[x] € H""(Sped-, Z) belongs to the image df-. SetE = k(x), and choose a
lift X € Xg of x. Sincex is the proper push-forward of the definition of the norm
map (see 5.3) implies that:

}=Ne(®) %= (ay.....a0) € (A1~ 0)"(E).

Sincex’is a rational point oz, [X is the image undek; of its coordinates. So
X = NE/F)LE{al,...,an}. The lemma now follows from the assertion, proven in
5.11 below, that the diagram (5.10.1) commutes. O

A
KM (E) —E- H™(SpecE, Z)

(5.10.1) Ne e Ne e

KM(F) - H""(Sped~,Z).
F

LEMMA 5.11. If F C E is any finite field extension, then the diagram (5.10.1)
commutes.

PROOF By 5.3 (3) we may assume thaE : F] = | for some prime number
|. Assume first thaF has no extensions of degree primd ®nd[E : F] = 1. The
Bass-Tate lemma (5.3) iB[T 73] states that in this cag€ (E) is generated by the
symbolsa= {a,,...,a, ;,b} wherea, € F andb € E. The properties of the norm
onKM and 5.6 yield:

AeN{ay, ..., 8, 1,0} = Ae{ay,... 8, ,N(b)} =[a; :--- &, 4] [Nb].
But using the assertions of lemma 5.3 we have:

N2g(a) =Nfay -2, 3 5] Zlay a4 NIl L fay 12, 4] [N,

2

This concludes the proof in this case.

Now we use a standard reduction. For simplicity, we will wiité&9(F) for
HP4(Sped,Z). If F’ is a maximal prime-td-extension ofF then the kernel of
H™"(F) — H™"(F') is a torsion group of exponent primeltby (1) and(3) of 5.3.
Fix a€ KM(E). By the above casé,= NAz(a) — A-N(a) is a torsion element of
H™"(F), of exponent prime tb.

Since the kernel oH™"(F) — H""(E) has exponent, tz # 0 if and only if
t =0. If E is an inseparable extensionfthen by 5.3(4) we havg =11z (a) —
Ac(la) = 0. If E is separable ovef thenE ®¢ E is a finite product of field€;
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with [E; : E] < |. Moreover, Weil Reciprocity implies that the diagrams

diag diag

KM(E) — @Kp'(E) H"(E) — oH™(F)
Ne ¢ ONe g Ne ¢ ONg /e
Kh'(F) —— KY'(E) H™(F) —— H"(E)

commute (see p.387 oB[T73]). By induction onl, we have
Sincetz = 0 we also have = 0.

This completes the proof of theorem 5.1.



Part 2

Etale motivic theory






LECTURE 6

Ftale sheaves with transfers

The goal of this lecture will be to study the relations between presheaves with
transfers an@tale sheaves. The main result (6.17) will be that sheafification pre-
serves transfers.

DEFINITION 6.1. A presheaF of abelian groups o8nyk is anétale sheaif
it restricts to arétale sheaf on eackin Snyk. That is, if:

(1) the sequence & F(X) g FU) &), F(U x4 U) is exact for every

surjectiveétale morphism of smooth schemés— X;
(2 F(XY) =F(X)®F(Y) for all X andY.

We will write Sh,,(Snyk) for the category oétale sheaves, which is a full subcat-
egory of the category of presheaves of abelian groups.

A presheaf with transfers is anétale sheaf with transfersif its underlying
presheaf is agtale sheaf osnyk. We will write Sh, (Cor, ) for the full subcate-
gory of PST(k) whose objects are ttétale sheaves with transfers.

For example, we saw in lecture 2 that #tale sheaves andg™ have transfers,
so they areetale sheaves with transfers. Lemma 6.2 showsZp&Tl ) is anétale
sheaf with transfers, evenTfis singular (see 2.11).

LEMMA 6.2. For any scheme T over K, (T) is anétale sheaf.

PROOF SincePST(K) is an additive category, we have the required decom-
position of Z, (T)(X 11Y) = HomCork(X I1Y,T). To check the sheaf axiom for
surjectiveétale map&) — X, we proceed as in the proof of 3.2.

AsU x T — X x T is flat, the pullback of cycles is well-defined and is an
injection. Hence the subgrouf, (T)(X) = Cor, (X, T) of cycles onX x T injects
into the subgroug, (T)(U) = Cor, (U, T) of cycles orlJ x T.

To see that the sequence 6.1.1 is exacka(T)(U), takeZ, in Cor, (U,T)
whose images ilCor, (U x4 U, T) coincide. We may assume thdtandU are
integral, with function field= andL, respectively.  Sinc€org (F,T¢) is the
equalizer ofCorg (L, Tg) = Corg (L®g L, Tz) by 1.11,7, € Corc(L,Tz) comes
from a cycleZ. in Cor(F,T). Thus by 1.13 there is a Zariski opgnc X and a
cyclez, in Cor,(V,T) agreeing withZ, in Cor(U x, V,T). Writing Z, = S n,Z,,
we see that we can decompdge= 3 n,Z/ so thatZ; andZ agree inCor(U xy
V,T). By restricting attention td; andZ{, we may assume thay, is an elementary
correspondence.

39



40 6.ETALE SHEAVES WITH TRANSFERS

LetZ be the closure af,, in X x T; itis irreducible and dominant oves since
Z xy V is. Since the group of cycles @hx T meeting(U x, V) x T injects into
the group of cycles ofU x, V) x T, we see that the lift oZ to a cycle orlJ x T
must beZ ;. Hence the components @fx, U are finite ovetd. But by faithfully
flat descent, this implies that is finite overX, i.e., a finite correspondence in
Cor (X,T). O

COROLLARY 6.3. Let F be anétale sheaf with transfers. If X is smooth, then

Hom Zye (X),F) = Homogr(Zy (X),F) = F(X).

Sh,(Cor,) (

COROLLARY 6.4. For any abelian group A, the i) are complexes détale
sheaves. Ifl/n € k, the motivic complex oktale sheaveZ/n(1) is quasi-
isomorphic to thedtale sheafu,.

PROOF TheZ(n) are étale sheaves with transfers by lemmas 2.13 and 6.2,
as in 3.3.  We know that th&,,(T) are sheaves of free abelian groups. Hence
A® Z (T) areétale sheaves. We conclude that &{@) areétale sheaves by the
same argument we used for tfén). The last assertion is just a restatement of
corollary 4.8 using 6.2. O

EXERCISEG.5. Let 7 : X — Sbe a finiteétale map, and; the induced finite
correspondence frorB to X. If F is any étale sheaf with transfers, show that
' F(X) — F(S) is the étale trace map ofMil80, V.1.12]. Hint: If Y — Sis
Galois with groupG, and factors througl, thenCor(S X) = Cor(Y,X)® by 6.2.
Show that the image of in Cor(Y, X) is the sunt f of all Smaps fromf : Y — X,
and hence determiness € Cor(S X).

Locally constangétale sheaves form a second important classtale sheaves
with transfers.

DEFINITION 6.6. The full subcategoryEt/k of Snyk consists of all the
schemes of finite type ovée which are smooth of dimension zero. Evesyn
Et/k is a finite disjoint union of spectra of separable field extensiorks of

It is well known (seeMil80] and [SGA4, VIII 2.2]) that the category oétale
sheaves okt/k is equivalent to the category of discrete modules over the profinite
groupGal(ksep/K). If F corresponds to the Galois modiMeandS= Spe¢/) then
F(S) = M", whereH = Gal(ksep/!).

We have the following functors:

Sh(Et/k) == S(Sm/K),

where the restrictiom, is the right adjoint oft*; they are both exact functors.

DEFINITION 6.7. An étale sheaf isocally constantif 7*n,F — F is an iso-
morphism. We will writeSHg’t for the full subcategory oBh,,(Snyk) consisting of
all locally constant sheaves.
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EXERCISE6.8. Let F be the locally constant sheafM corresponding to the
G-moduleM. If X is connected, anbis the separable closure kin H(X, &),
show thatF (X) = MH whereH = Gal(ksep/l). Conclude thatr,F is the Galois
moduleM. Note thatF (X) = M" is also defined iX is normal.

LEMMA 6.9. The functors* and x, induce an equivalence between the
category SL‘{ and the category of discrete modules over the profinite group
Gal(ksep/K).

PROOF. If MisinSh,(Et/k), thenM — &, 7*M is an isomorphism by Ex. 6.8.
Thusz* is faithful. By category theoryr*m. n* = n*, so forF locally constant we
have a natural isomorphisai T, F = F. O

EXERCISEG.10. LetL be a Galois extension &f and letG = Gal(L /k). Show
thatZ, (L) is the locally constaritale sheaf corresponding to tBemoduleZ® of
mapsG — Z. Hint: (ZC)H = 7CG/M,

LEMMA 6.11. Any locally constanétale sheaf has a unique underlyiatale
sheaf with transfers.

PROOF Let Z' € X xY be an elementary correspondence andZléte the
normalization oZ’ in a normal field extensiob of F = k(X) containingk = k(Z’).

If G=Gal(L/F) then we also hav& = Aut, (Z), and it is well known that the set
Homy (Z,Z') of mapsq: Z — Z' overX is in one-one correspondence with the set
of field maps Horp (K, L). The cardinality of this set is the separable degrei of
overF.

Let M be a Galois module, considered as a locally consttale sheaf. It is
easy to check using exercise 6.8 thg(tX) is isomorphic tavi(Z')C.

Write i for the inseparable degreel§foverF. Then the transfer mad (Y) —
M(X) is defined to be the composite bf(Y) — M(Z’), multiplication byi, and
the sum over all mapg: Z — Z' overX of g* : M(Z') — M(2).

The verification that this giveB! the structure of a presheaf with transfers is
now straightforward, and we refer the reader to 5.15M9q for details. O

It is clear that the locally constaitale sheaves form an abelian subcategory
of Sh,(Cor,), i.e., the inclusion is an exact functor.

In order to describe the relation between presheavesttald sheaves with
transfers (see 6.18), we need two preliminary results.

If p:U — X is anétale cover, we definﬁtr(ﬂ) to be theCech complex

PR 7 (U s U) 2R 7 U) —— 0.

PROPOSITIONG.12. Let p: U — X be anétale covering of a scheme X. Then

Z4(U) is anétale resolution of the sheif, (X), i.e., the following complex is exact
as a complex oktale sheaves.

PR 7 (U s U) 27 7 0) P 20 (X) =0
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PROOF As this is a complex of sheaves it suffices to verify the exactness of
the sequence at evegtale point. Since points in thetale topology are strictly
Hensel local schemes, it is enough to prove that, for every Hensel local séheme
overk, the following sequence of abelian groups is exact.

(6.12.1) = 2 (U)(S) = Ze (X)(S) — .

HereSis an inverse limit of smooth schem§sand by abuse of notatidky, (T)(S)
denotes linZ, (T)(S).

To prove that (6.12.1) is exact we need another reduction stepZ bet a
closed subscheme of x Swhich is quasi-finite oves. We writeL(Z/S) for the
free abelian group generated by the irreducible connected componehtshi¢h
are finite and surjective ov& L(Z/S) is covariantly functorial orzZ with respect
to morphisms of quasi-finite schemes o%elIClearly, the sequence (6.12.1) is the
colimit of complexes of the form:

(6.12.2) = L(Zy x4,/ — L(4,/S) — L(Z/S) —0

whereZ; = Z x4 U and the limit is taken over all closed subschemes ¥fx S
which are finite and surjective ov8r Therefore the proof of 6.12 will be completed
once we show that the sequence (6.12.2) is exact for every subséhemex S
which is finite and surjective ove&.

SinceSis Hensel local and is finite overS, Z is also Hensel. Therefore the
coveringz, — Z splits. Lets, : Z — Z, be a splitting. We setZ,)% =z, x,
... Xz 2. Itis enough to check that the mags L((Z,)%/S) — L((Z,)51/S) are
contracting homotopies whesg= L (sl X5 id(zu)§>'

This is the end of the proof of 6.12. O

~

The proof shows théi,, (U) is also a Nisnevich resolution @, (X), i.e., the
sequence of 6.12 is also exact as a complex of Nisnevich sheaves. We can pinpoint
why this proof holds in thétale topology and in the Nisnevich topology, but does
not hold in the Zariski topology. This is because:

e If Sis strictly Hensel local (i.e., a point in thetale topology) and is
finite overSthenZ is strictly Hensel.

e If Sis Hensel local (i.e., a point in the Nisnevich topology) anid finite
overSthenZ is Hensel.

e If Sis local (i.e., a point in the Zariski topology) amdis finite overS
thenZ neednotbe local but will be semilocal.

EXAMPLE 6.13. Let X be a connected semilocal scheme finite over a local
schemeS. X is covered by its local subschemds If X is not local, its grapi
defines an element &, (X)(S) that cannot come fronpZ, (U;)(S), becausel
does not lie in anysx U;. (By 1.4, every elementary correspondence fidro,
to Sis an elementary correspondence frifhio S, and they form a basis for the
image of®Zy, (U;)(S) — Zy (X)(S).) HencedZ, (U;) — Z, (X) is not a surjection
of Zariski sheaves.
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We will see in 13.14 that T6E,Z, (U)) is a Zariski resolution of, Z, (X).
If  ={U; — X} is a Zariski covering, we can replace the infinite complex

Zy (U) of 6.12 by the bounded complex

Zo(%): 0—=ZyUN...NUp) = ... = §;Z;(U;) — O.

PROPOSITIONG.14. Let% = {U; — X} be a Zariski open covering of X. Then

Zy (%) is anétale resolution ofZ, (X), i.e., the following sequence is exact as a
complex oktale sheaves:

OHZtr(UlﬂﬂUn) — ... H@IZU(UI) HZn(X) — 0.

PROOF. If n= 2, we apply 6.12 t&J = U, ITU,. SinceU x, U =U,; ITU, II
(U;NU,), we see that the image @, (U>3) in Z, (U xy U) is Zy (U;) & Z, (U,)
in the exact complex of 6.12. It follows thﬁ,ﬁr(ﬁz)) — Zy(X) is exact forn = 2.
Forn > 2, the exactness follows by induction on O

EXAMPLE 6.15. If % is the cover of?! by A® = Sped[t] and Spe&(t~1], and
we mod out by the basepoint 1, we obtain the exact sequence

0 — Z(Gm) — ZZtr(Al, 1) — Ztr(Pla 1) —0.

Applying C., yields an exact sequence of complexes (see 2.14). Recalling that
C.Z (A,1) ~ 0, we obtain quasi-isomorphisms @fle complexes (or even Nis-
nevich complexes)

C.Zy (P*, 1) ~ C.Z (Gm)[1] = Z(1).

LEMMA 6.16. Let p:U — Y be arétale covering and fX — Y afinite corre-
spondence. Then there is atale covering f: V — X and a finite correspondence
f’:V — U so that the following diagram commutes in ¢or

f/

Vv U

p’ p

X Y

f

PROOF We may suppose thdtis defined by the elementary correspondence
Z C X xY. (For a general correspondentceve take a disjoint union of sush's.)
Form the pullbackZ, = Z x, U inside X x U. Since the projectioZ, — Z is
étale andZ — X is finite, the projection splitétale-locally onX. That is, there
is anétale covelV — X so thatV xy 7, —V x4 Z has a sectiors. But then
S(V xx Z) CV x U is finite overV and defines the required finite correspondence
VvV —U. O
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V Xy Z, -7, » X xU U

split

V xyZ »Zc » XxY Y
\% X

As in [Mil80] pp. 61-65, the inclusion: Sh,(Snyk) — PreSKHSnyk) has a
left adjointa,,, andi o a, is left exact. Hence the categoryé&thle sheaves ddimyk
is abelian, and the functey, is exact.

If F is a presheaf with transfers, the following theorem shows th&ttéke
sheafification admits transfers. The same holds in the Nisnevich topologgtiat
the Zariski topology. However, we will prove later (in 22.15) thdt is ahomotopy
invariant presheaf with transfers, its Zariski sheafification admits transfers.

Recall that there is a forgetful functer: PST(k) — PreSHSnyk).

THEOREMG6.17. Let F be a presheaf with transfers, and writg for a,¢F.
Then F; has a unique structure of presheaf with transfers such that F, is a
morphism of presheaves with transfers.

COROLLARY 6.18. The inclusion functor Si(Cor, ) . PST(k) has a left
adjoint a,,. The category Sh(Cor, ) is abelian, g, is exact and commutes with the
forgetful functorg to (pre)sheaves on Sik

The connections between these abelian categories, given by 6.17 and 6.18, are
described by the following diagram, where thare (exact) forgetful functors and
both functorsa,, are exact.

PrestSmyk) <7 PST(K)

Lo e

Sh,(SM/K) <2 Shy(Cor)

PROOF OF6.17. Uniqueness.Suppose that twétale sheaves with transfers
F, andF, satisfy the conditions of the theorem. We already know HaX) =
F,(X) = F,(X) for all X and we just need to check that( f) = F,(f) holds when
f : X — Y is a morphism irCor,. This is given iff comes fronSnyk.
Lety e F,(Y) = F,(Y) = F.,(Y). Choose argtale coveringp: U — Y so that
Yy € Fg(U) is the image of some € F(U). Lemma 6.16 yields the following
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diagram.
£
\ U
of p
X f Y
Becausegy|, comes fronF (U), we haveF, (f')(y|y) = F(f')(Yly)-
F(P)FL(F)(y) = F(f)F(p)(y) as the diagram commutes,
=F(f)(yly) asp comes fromsnyk,
=F,(f')(yly) asy|,, comes fronF (U),
=F,(p)F,(f)(y) as the diagram commutes,
=F(P)R(F)(y) asp comes fronsSnyk.

This implies thaf, (f) = F,(f) asp’ is a covering andF, is anétale sheaf.
ExistenceWe need to define a morphisifg,(Y) — F,(X) for each finite cor-
respondence frorK to Y. We first produce a map

Fer(Y) — Homg(Z (Y), Fyy)

natural inCor, and compatible withr (Y) — Homgg(Z, (Y),F).

For ally € F,(Y) there is arétale coveringp: U — Y and an element <
F(U) so thaty andu agree inF(U). By representability (see 2.8),determines
a morphismZ, (U) — F of presheaves with transfers. By shrinkidg we may
arrange that the difference map send® zero inF (U x,U). A chase in the
commutative diagram below (whet§ denoted) xy U) will produce the map of
sheavesy] : Z (Y) — F,. The top row is exact by 6.12.

0 — Homgy(Zy (Y), Fey) — Homg(Zy (U),Fy) — HomSh(Ztr(U\%)»Fét)

) t
HomPST(Ztr(U )’ F) - HO”\DST(ZU(U\?)> F)

It is easy to see thdy] is independent of the choice bf andu. We can now
define a pairingCor(X,Y) @ F.(Y) — F.(X). Let f be a correspondence frof
toY andy € F.,(Y). By the map just describeg ,induces a morphism of sheaves
V] : Zi (Y) — Fg. Consider the composition:

f
Zip(X) — 2 (Y) s

6t

Hence there is a map, (X)(X) — Fg(X). The image of the identity map will be

the pairing off andy. O
We conclude with an application of these ideas to homological algebra.
PROPOSITIONG.19. The abelian category $fiCor, ) has enough injectives.
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PROOF. The category” = Sh(Cor,) has products and filtered direct limits
are exact, because this is separately true for presheaves with transfers @atkfor
sheaves. That isy satisfies axioms AB5 and AB3BYy 6.3, the family of sheaves
Z4(X) is a family of generators of”. It is well known (seeGro57, 1.10.1]) that
this implies that¥” has enough injectives. O

EXAMPLE 6.20. LetF be arétale sheaf with transfers. We claim that the terms
E"(F) in its canonical flasque resolution (asé@tale sheaf, sedil80] p. 90) are
actually étale sheaves with transfers. For this it suffices to condiderE°(F).
Fix an algebraic closureof k. For everyX we define:

EX)= [ Fx
xeX (k)
whereX(K) is the set ok-points ofX, andFdenotes the fiber df atx. If U — X
is étale,E(U) is the producl] Fyoverx € U (k). From this it follows tha€k is an
étale sheaf, not only oK but on the bigétale site ofSnyk. It is also easy to see
thatF (X) — E(X) is an injection.

In addition,E is a presheaf with transfers aid— E is a morphism irPST.
For if Z C X xY is an elementary correspondence fréhto Y, we define the
transferE(Y) — E(X)

EY)= [1F— [] F=EX)

yeY(k) xeX (k)

by stating that the component fare X (k) is the sum of the induced transfers
F;— Fg taken over aly € Y (k) such thaz = (x,y) € Z(k). To see thaF — E is

a morphism inPST, we may takeX to be strictly Hensel local, sb(X) = E(X).
Since this force¥ to also be strictly Hensel semilocal, BgY) = E(Y), this is a
tautology.

The same construction works in the Nisnevich topology, letri¥) be the
product over all closed pointse X of F(Speoﬁ{g‘x) (see 13.3). However, exam-
ple 6.13 shows that it does not work in the Zariski topology, because the transfer
E(X) — E(S) need not factor through the sum of tBeJ,).

LEMMA 6.21. If F is any étale sheaf with transfers, then its cohomology
presheaves Ei(—,F) are presheaves with transfers.

PROOF The canonical flasque resolutiéh— E*(F) of 6.20 is a resolution
of sheaves with transfers. Since the forgetful functor flR&T(k) to presheaves is
exact, andH"(—,F) is the cohomolog¥*(F) as a presheaf, we see ti#t(—, F)
is also the cohomology d&*(F) in the abelian categofyST(k). O

EXAMPLE 6.22. By 2.4, F = G, is anétale sheaf with transfers. By 6.21,
both the Picard group Pi%) = H&(X,Gm) and the cohomological Brauer group
Br'(X) = HZ(X, Gm)ors are presheaves with transfers.

LEMMA 6.23. For any F € Sh,(Cor,) and any smooth X andd Z we have:
EX%%(Cork) (Z4s (X),F) = Hy(X, F).
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PROOFE The casd = 0 is HomZ, (X),F) = F(X); this is 6.3. For > 0 it
suffices to show that i is an injectiveétale sheaf with transfers thet (X, F) is
zero. Consider the canonical flasque resoluBd(F ) of example 6.20. SincE is
injective, the canonical inclusidh — E° must split, i.e.F is a direct factor oE°
in Shy(Cor,). SinceHL(X,F) is a direct summand dfi'(X,E?), it must vanish
fori > 0. O

If we restrict to the categorgh,(Cor,,R) of étale sheaves @&-modules with
transfersg°(F) is a flasque sheaf &t-modules with transfers by 6.20. The proof
of 6.23 goes through word for word to prove the following variation.

PORIsM6.24. For any F € Sh,(Cor,,R) and any smooth X andd Z:

Exty, cor, g (R (X), F) = HL(X,F).
The same proof also shows that lemmas 6.23 and 6.24 hold for the Nisnevich
topology (see 13.4). Se@rfCa, 3.1.8] for an alternative proof.

EXERCISE 6.25. Let K be any complex oétale sheaves dk-modules with
transfers. Show that its hyperext and hypercohomology agree in the sense that for
any smoothX andi € Z:

Ext (Ry (X),K) 2 HL,(X,K).
(For simplicity, the reader may assume tha(@g < c.)

If one is interested in extending the constructions of this lecture to possibly sin-
gular schemes, it would be useful to assumelti@tmits resolution of singularities
and use the cdh topology, which we will introduce in lecture 12.






LECTURE 7

Relative Picard group and Suslin’s Rigidity Theorem

In this lecture we introduce the relative Picard group Rie, ). WhenX is a
good compactification ok overS, its elements determine map$X) — F(S) for
every homotopy invariarfe. This pairing will be used to prove Suslin’s Rigidity
Theorem 7.20.

Recall from 1A.9 and 1A.10 that is a smooth connected scheme gnd
X — Sa smooth morphism then we writgX/S 0) for the free abelian group
generated by the irreducible closed subsetX afthich are finite and surjective
overS. In this lecture we will writeC, (X /S) for c(X/S0).

By 1A.12, given a ma8 — S, there is a maje,(X/S) — Cy(X x5S/S),
induced from

Co(X/S) = Zy (X)(§) = Cor (S X).
DEFINITION 7.1. We defineHgi“g(X/S) to be the cokernel of the map

Jp—0.
Co(X x Al/Sx ATy 2= Cy(X/9)

whered, is induced by t =i”: Speck — Af.
EXAMPLE 7.2. If X =Y x, SthenCy(X/S) =Cor(SY) = Z(Y)(S). In ad-
dition, X x Al =Y x, (Sx Al) and the following diagram commutes:

Co(X x Al/Sx Al) —+ Cy(X/9)
Zie(Y)(Sx AY) —— Z (Y)(S).
Taking cokernels, we conclude (using 2.27) that:
HIMO(Y x S/S) = HyC.Z (Y)(S) = Cor(S Y)/A'-homotopy.

In particular, this implies that two elements@br(SY) areA'-homotopic exactly
when they agree ikl5"9(Y x S/S).

If S= Sped thenHS"Y(X/S) is the cokerneHS"Y(X /k) of Z (X)(At) —
Zy (X)(S) discussed in exercise 2.21, becaGgeX /S) = Z, (X)(Spek). Also by

2.21, there is a natural surjectidrtg‘”Q(X/S) — CH,y(X). If X is projective, this
surjection is an isomorphism.

ExampLE 7.3. If S= Sped, then 7.16 below shows th&lging(IPﬂ/S) =
HS"9(A/S) = Z butHS"I(AL — 0/S) = Zak".
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REMARK 7.4. In [SV96] the groupsH"9(X /S) are defined to be the homol-
ogy of the evident chain complé&x.(X/S) with
Cn(X/S) =Cy(X x A"/Sx A").
We will consider the singular homolodgys$"9(X /S) in lecture 10 below wheS=
Sped, andC, (X/S) = C.Z (X)(S).
Let F be aPST. The map Tr Cy(X/S) ® F(X) — F(S) is defined to be the
inclusionCy(X/S) C Cor, (S X) (see 1A.12) followed by evaluation ¢(X).

G/ @F(X) v F(9)

I@Le

Cor (S X)®@F(X)
LEMMA 7.5. If F is homotopy invariant presheaf with transfers then the map
Tr factors through H"9(X/S) @ F (X) — F(S).
PROOF. SinceF (X) = F(X x Al), we have a diagram
Tr

Co(X x Al/Sx A) @ F(X) F(Sx Al
0y — 9y ig—i; =0
Cy(X/S) @ F(X) Ll F(S. O

ExAMPLE 7.6. If o0 :S— X is a section ofp, regarded as an element of
HS"9(X/S), thenTr (o, —) is the usual map™ : F(X) — F(S).

REMARK 7.7. The pairingHging(X/S) ®F(X) — F(9) is fundamental. It can
be defined more generally for homotopy invariant presheaves equipped only with
transfer maps : F(X) — F(S) for any relative smooth cur¢/Sand any effec-
tive divisorD C X which is finite and surjective oves, such that the transfer maps
form a “pseudo pretheory”. This construction applies toKhtheory presheaves
Kn(X), equipped with the transfer maps of exercise 2.7, even though these are not
presheaves with transfers.

In order to computé—lgmg(X/S), it is useful to embed in a slightly larger
schemeX.

_ DEFINITION 7.8. A smooth curvep : X — Sadmits agood compactification
X if it factors as:
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wherej is an open einbedding? is a proper normal but not necessarily smooth
curve overSandY = X — X has an affine open neighborhoodXdn

If Sis affine, for example, theX = A® x SadmitsP! x Sas a good compact-
ification. Similarly, ifC is any smooth affine curve ovirthenC x S— Sadmits
C x Sas a good compactification. The following result implies that every point
of everyX has an open neighborhotdwhich has a good compactification over a
generic projectiorX — A1,

LEMMA 7.9. Let p: X — Al be anétale map. If k is infinite, there exists a
linear projectionA! — A'~1 so that the composition %> A'~1 is a curve with a
good compactification.

PROOF. There is an opeld c A so thatX is quasi-finite and surjective over
U. Choose a linear projectiohl — A'~1 so that the restriction td' — U is finite;
A has good compactificatiori= P! x A'~1. By Zariski’s Main Theorem (as for-
mulated in EGA4, 8.12.6]), the maX — Y may be factored as an open immersion
X —— X followed by a finite map : X — Y. ReplacingX by its normalization,
we may assume that is normal. Note thap is an affine map. Sinc¥ is a good
compactification otJ, X is a good compactification of. O

DEFINITION 7.10. If Y« X is closed we seGy, = Ker(0y — i.05).
Therelative Picard group is defined to be: ’

PIC(X7Y> = H%ar(%a G)ay)'

By [Mil80] p. 124, we also have R, Y) = H&(X, Gy, ).

By [SV96, 2.1], the elements of PGK,Y) are the isomorphism classe¥’,t)
of line bundlesZ on X with a trivializationt onY. The group operation ig, i.e.,
(ZHe (L V)=(ZLeL tet).

REMARK 7.11. For X = Sx P! andY = Sx {0,}, the “stalk” (I"Gg)(Y)
of Gyy aty is the group#*(P*;0,)(S) of lecture 4.

The cohomology o* — 1,05 yields the exact sequence

0*(X) — 0*(Y) — Pic(X,Y) — Pic(X) — Pic(Y).

Comparing this exact sequence #0andX x Al yields:

COROLLARY 7.12. If X is a normal scheme and Y is reduced, we have:

Pic(X,Y) = Pic(X x ALY x A1).
Let us write] for the open embedding of = X — Y into X.
LEMMA 7.13. If 1/n € k, there is a natural injection

PiCOZ’Y)/n — Hgt()zaj!.un)-

Proor By Kummer Theory we have an exact sequencetale sheaves:

n

— Gy, — 0.

(7.13.1) 0— jjtn — G v

XY
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Applying étale cohomology yields:
va — n — va
Hl(xvjlun) - Hl(va)Z7y> - Hl(va)Z7y> - Hgt(xajgun>‘

But the middle groups are both X, Y). O

EXAMPLE 7.14. Suppose tha = Sped andk is algebraically closed. K
is a smooth connected curve, then(RicY) is an extension of P{X) by a finite
product of|Y| — 1 copies ok*. Hence Pi¢X,Y)/n= HZ(X, un) = Z/n.

Recall thatCy(X/S) is generated by closed subsgtsf X which are finite and
surjective overS. BecauseX is smooth, each such subset is an effective Cartier
divisor onX, and has an associated line bundfeequipped with a canonical map
0 — . This map gives a trivialization o’ on X — Z, which is a neighborhood
of Y. Thus a good compactificatiofinduces a homomorphism

Co(X/S) — Pic(X,Y).

WhenY lies in an affine open neighborhood, this map is onto because every trivi-
alization onY extends to a neighborhood 6f

EXERCISE7.15. In this exercise we make the lifting @) (X/S) explicit. Sup-
pose thatZ is a line bundle orX with a fixed trivializationt on an open neigh-
borhoodU of Y. Show that gives a canonical isomorphism ¢&f with a Cartier
divisor £ (D), i.e., an invertible subsheaf of the she#f of total quotient rings of
0. (See Har77, 11.6].) Show thatZ'(D) comes from a Weil divisoD = $ n;Z, on
X with the Z; supported orX —U. Then show that the ma@,(X/S) — Pic(X,Y)
sendsy nZ to (.Z,1).

BecauseC, (X/S) — Pic(X,Y) factors through PigX x ALY x A1), 7.12
shows thaC,(X/S) — Pic(X,Y) induces a homomorphism

Hging(x/s) — Pic(X,Y).

THEOREM 7.16. Let S be a smooth scheme. If ) — S is a smooth quasi-
affine curve with a good compactification,Y), then:

HSMI(X /S) — Pic(X,Y).

PROOF. The kernel ofC,(X/S) — Pic(X,Y) consists off € K(X) which are
defined and equal to 1 or. SinceX is quasi-affine ovel5, Y contains at least
one point in every irreducible component of every fibeXafverS. Therefore the
divisor D of tf + (1—t) defines an element &,(X x Al/Sx Al) with 9,D =0
andd,D = (f). Hence(f) represents O irh-Iging(X/S). This proves that the map

Hging(X/S) — Pic(X,Y) is an injection, hence an isomorphism. O

Theorem 7.16 also holds whefiis not quasi-affine oveg, but the proof is
more involved.
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COROLLARY 7.17. If F is a homotopy invariant presheaf with transfers, there

is a pairing B
Pic(X,Y)®F(X) — F(9).

EXAMPLE 7.18. If X is a smooth curve ovek and I/n € k, then any two
geometric pointx, X' : Spedk — X induce the same mdp(X) — F(Sped). Here
F is any homotopy invariant presheaf with transfers satisfyirg= 0. Indeed,
[X] = [X] in Pic(X,Y)/n by example 7.14. This phenomenon is known as “rigidity,”
and is a simple case of theorem 7.20 below.

COROLLARY 7.19. Let p: X — S be a smooth curve with a good compacti-
fication. Assume that S is Hensel local and Igt-X §, be the closed fiber of p.
Then for every n prime tohark the following map is injective:

Ha"9(X/S)/n — H3"¥(Xo/ ) /n.

PrRoOF Kummer Theory yields the exact sequence 7.13.&tafe sheaves,
and similarly for(X,,Yy). Applying étale cohomology yields:

=~ . vi n vi = .
Hl(X7J!“n) - Hl(va)zy) - Hl(XvG)Z’Y) - H(,Et(XaJ!.un)

HY (X, jutin) — HY(X0,Gy) — HY(Xg, Cgy) — HA(Xo, Jyitn).

SinceH2(>?, jiin) = H2(X, un), the right vertical map is an isomorphism by proper
base change with compact supports (94430, VI.3.2]). We have a diagram:

Pic()Z,Y)/n — Hgt()?, Jin)

l ~

Pic(Xo, Yo) /N — Hézt(fo, Jitn).
Corollary 7.19 now follows from theorem 7.16. O

It follows from 6.8 that every locally constaitale sheaf is homotopy in-
variant, becausel®(X x A, &) =2 HO(X, 0) ®,K[t]. The following result shows
that the converse is true for torsion sheaves. (8¥/96, 4.5].)

THEOREM7.20. (Suslin’s “Rigidity Theorem”) Let F be a homotopy invariant
presheaf with transfers, such that the groups<r are torsion of exponent prime
to chark. Then E, is locally constant.

PrROOF. Let Fy = m.n*(F) be the locally constant sheaf for the grolMp=
F (ksep). We want to show that the adjunctiéy — F is an isomorphism oétale
sheaves. It suffices to check this on stalks. Siﬁ;'g}( contains a separable closure
of k, we may assume thétis separably closed. In this case 7.20 assertsRhat
is the constant sheaf for the grovp= F(Spedk). SinceX is smooth ak, o5
is isomorphic to the Henselization éf at {0}. Thus the Rigidity Theorem is a
consequence of proposition 7.21 below. O
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PROPOSITION7.21. Let § be the Henselization 0} in Al over a separably
closed field k. Assume that F is as is 7.20. Theé§ F= F(Spe).

PROOF The hypothesis ofr is inherited byF (X), = {x € F(X) : nx= 0}.
Therefore we may assume tlahas exponent for some primen.
We use the following sequence of inclusions:

Spek=§,C...CS ,CS.

By induction onl, it is enough to prove that the mé&i) : F(S) — F(S_,) isan
isomorphism. For this it suffices to prove ttati) is an injection, because it is
split by the projectiorr

S, T=S.

But F(S§) = colim F(X) where the colimit is taken over all dia-

grams:

(X%9)—(A!,0)

§ - X oA
It suffices to show for everX that if ¢ € F(X) hasifz*¢ =0 thenz*¢ = 0. By

lemma 7.9 there is a curvé — A, , with a good compactification. Let’ be the
pullback in the following diagram:

St 3
\\
Id x/ q A X

T

§ S AT
The mapst andri, 7, : § — X induce two sections;, s, : § — X' of X’ — § which
agree on the closed fibef, = X xgS,. Given ¢ € F(X) we need to show that
m'if e = n* . Butn* e = s;q*(¢) andn’i n* ¢ = ;0" (¢). Thes coincide on
the closed point 0§ by construction. So we are left to prove tisaty) = ()*(y)
for all y € F(X’) and anys,s : § — X’ with sy = §,. Consider the following
diagram:

(Fs—Ty) @y - s (y) -5 (v)
Co(X'/§) @F(X') —— Hy(X'/§) @ F(X')

1

Ho(X0/S) @ F (X')

Tr
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By assumption, the eleme(fs —I'y) ® v in the top left group goes to zero in
Ho(X5/S) ® F(X'). Hence it vanishes iRy (X'/S) ® F(X’) by the immersion of
Ho(X'/S)/nin Hy(Xy/Sy)/n of 7.19. Therefores*(y) —s™(y) vanishes irF(S).

([

We conclude this lecture with a description of the behavior of the relative Pi-
card group for finite morphisms. We will need this description in the proof of 21.9.

DEFINITION 7.22. Let (Y,Y.) and (X, Xw) be two good compactifications,
say ofY andX, respectively. Any finite mag : Y — X which restricts to a map
f:Y — X, yields a mapf, : 0*(Ye) — 0*(X) constructed as follows.

Considera € 0*(Y»). We may extendx to & € ¢*(U) whereU is an affine
open neighborhood of... Sincef is finite, we may assume that = f~1(V),
whereV is an open neighborhood &§.. SinceV is normal, there is a norm map
N:0*(U) — 0*(V) (see 2.4). We defing (o) = N(a)|y_. By 7.23 below,f, («)
is independent of the choice of the extension

EXERCISE7.23. Let f : U — V be a finite morphism of normal schemes and
letZ C V be areduced closed subschemex ¥ *(U) ando. = 1 on the reduced
closed subschemi1(Z), show thalN(«) = 1 onZ.

LEMMA 7.24. Let (Y, Y.) and (X, X.) be good compactifications of Y and X,

respectively. Let f be a finite map: ¥ — X which restricts to a map fY — X.
Then the following diagram is commutative:

0" (Yoo) — Pic(Y,Yeo) = Hy(Y/S)
f.

0" (Xe) — PIC(X, X)) — Ho(X/S),
where { was defined in 7.22 and the right vertical map is induced by the push-
forward of cycles.

PROOF. Choosert € 0 (Y.,) and extend it to a rational functidronY which
is regular in a neighborhood of the forfir'(V). By definition, f,(a) extends to
the regular functiomN(t) onV. The horizontal maps serwand f.(a) to (05, )
and(0y, f.a). LetD andD’ be the Weil divisors ofY andX associated tb and
N(t), respectively. We may regafd andD’ as classes i€,(Y/S) andC,(X/S).
By 7.15,D andD’ represent the images OF, «) and (0, f.a) in Hy(Y/S) and
Hy(X/9S), respectively. The right vertical map seridi$o D’ becaus®’ = div(Nt)
is the push-forward db = div(t) (see Ful84, 1.4]). O






LECTURE 8

Derived tensor products

The goal of this lecture is to define a tensor product on the derived category of
étale sheaves with transfers, starting with the tensor prodadct = X x Y onCor,
defined in 1.9. For this we first need to build a total tensor product on the category
PST(k), and this construction makes sense in somewhat greater generality.

Let o be a small additive category. We defifie<7) to be the category of all
additive presheaves o, i.e., all contravariant additive functoFs: .« — Ab. It
is an abelian category. The Yoneda embeddiings — Z(.<7) allows us to define
the additive category7® as the closure ofy under infinite direct sums ifi(<).
If X; are in«Z, we will considerX = @¢X; to be the object of7® corresponding to
the presheadlfiy = GBh>§ inZ(<).

More generally, ifR is a ring, we defind( <) to be the (abelian) category of
all additive functord= : &7 — R-mod. By abuse of notation, we will writa, for
the functorA — R®, Hom_, (A, X) and call it “representable”.

LEMMA 8.1. Every representable presheaf s a projective object of R7),
every projective object of (®7) is a direct summand of a direct sum of repre-
sentable functors, and every F if{&) has a projective resolution.

PROOF. Since Hor’@{(m(hx,F) = F(X), eachhy is a projective object in
R(<). Moreover everyF in R(«/) is a quotient of soméy, X € &%, because

of the natural surjection
D Dh-F 0
Xing/ xeF(X)
x#0

Now suppose that” has an additive symmetric monoidal structgresuch as
«/ = Cor,. (By this, we mean that commutes with direct sums; see 8A.3.) We
may extendw to a tensor product on/? in the obvious way, and this extends to
tensor product of projectives. We now extendo a tensor product on all &(.«7).

If F andG are inR(<7), we can form the presheaf tensor prody€t®g
G)(X) =F(X)®rG(X). However, it does not belong B(.<7), sinceF @G is not
additive. In order to get a tensor product Bfe/'), we need a more complicated
construction.

Our construction ofy is dictated by the requirement thatXf andY are in
</, then the tensor produtt, @ h, of their representable presheaves should be
represented bX ®Y. As a first step, note that we can extendo a tensor product
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®: % x oY — /% commuting with&. Thus ifL; andL, are in the category
Ch™ («7?) of bounded above cochain complexes (-~ F" — 0 — ---), the chain
complexL; ® L, is defined as the total complex of the double complex L5.

DEFINITION 8.2. If F andG are objects oR(«/), choose projective resolu-
tionsP, — F andQ, — G and definec @G to beP® Q, i.e., To(P. ® Q,). We
define the tensor product ahtbm presheaves to be:

F®G=Hy(Fa"G)

Hom(F,G) : X — HomR(%)(F ®@hy,G)

Since any two projective resolutions Bfare chain homotopy equivalent, the
chain complexF @ G is well-defined up to chain homotopy equivalence, and
similarly for Hom(F,G). In particular, sincen, andh, are projective, we have
hy @ hy = hy @ hy, = hyy for all X andY in /.

The following result implies thaR(<7) is an additive symmetric monoidal
category (see 8A.3).

LEmMmMA 8.3. The functor HorfF, —) is right adjoint to F® —. In particular,
Hom(F, —) is left exact and & — is right exact.

PROOF BecauseR(.«7) has enough projectives, it suffices to observe that
HornR(@f)(hxvth?G)) = G(X ®Y) = HomR(d)(hx & hy,G) O

ExXAMPLE 8.4. If <7 is the category of freB-modules over a commutative ring
R, R(«) is equivalent to the category of &modules; the presheaf associated to
M is M®g, andHomand® are the familiar Horg and®x,.

EXERCISE8.5. If F; andG; are inR(«7), show that there is a natural map
Hom(F;, G;) @ Hom(F,, G,) — Hom(F, @ F,, G, © G,),

compatible with the monoidal pairing Hop{U x A, X;) @ Hom_, (U x A,, X,) —
Hom_, (U xU x A} x Ay, X x X5) — Hom_, (U x A; x Ay, X; X X,).

REMARK 8.6. If the (projective) objects, are flat, i.e.hy ® — is an exact
functor, thenw is called a balanced functoVifei94, 2.7.7]). In this cas€& @ G
agrees (up to chain equivalence) with the usual left derived furdigtbre —)G.
But we do not know when thiy are flat. It is true in example 8.4, but probably
not true iNPST = Z(Cor, ).

We can now extendb™ to a total tensor product on the categ@i R(.«/)
of bounded above cochain complexes (-~ F" — 0 — ---). This would be the
usual derived functor ik were balanced (se®\ei94, 10.6]), and our construction
is parallel. IfC is a complex ilCh~R(.«7), there is a quasi—isomorphislm—:» C
with P a complex of projective objects. Any such compkis called a projective
resolution ofC, and any other projective resolution ©fis chain homotopic td;
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see Wei94, 5.7]. If D is any other complex iIl€h~R(«7), andQ —~+Disa
projective resolution, we define

CeD=PxQ.

BecauseP and Q are bounded above, ea¢R® Q)" = &;, ;_,P ©Ql is a
finite sum, andC ®" D is bounded above. BecauBandQ are defined up to chain
homotopy, the comple @' D is independent (up to chain homotopy equivalence)
of the choice oP andQ. There is a natural map® D — C® D, which extends
the mapF @ G — F ® G of definition 8.2.

LEMMA 8.7. Let C,C’ and D be bounded above complexes of presheaves.

(1) If C and D are complexes over'®, or complexes of projectives, then
Ce-D — C®Dis achain homotopy equivalence.

(2) If f :C —~ Cis a quasi-isomorphism of complexes, thep'eD —
C' @™ D is a chain homotopy equivalence.

PrROOF If Cis a complex overy?, it is a complex of projectives. We may
take P = C in the definition of®™: C®*D =C® Q. If D is also a complex of
projectives, we may tak® = D as well. Part 1 is now immediate. In part 2,
we may takeP to be a projective resolution of both andC’, so thatC @D =
ColD=PxQ. O

PROPOSITIONS.8. The derived categorp~R(.«7), equipped witho, is a
tensor triangulated category.

PROOF The category? of projective objects ifR(</) is additive symmetric
monoidal, andD~R(.«7) is equivalent to the chain homotopy categéry(%?) by
[Wei94, 10.4.8]. By 8A.4, this is a tensor triangulated category urdéerhe result
now follows from the natural isomorphism = @ in &2 of 8.7. O

DEFINITION 8.9. If C andD are bounded above complexes of presheaves,
there is a canonical map from the presheaf tensor pradugi D to the tensor
productC® D of 8.2. By right exactness afz and® (see 8.3), it suffices to
construct a natural map of presheaveshy @z hy — hy,y. Foru in o, n is
just the monoidal product in/, followed by the diagonah: U — U @ U:

hy (U) ©@ghy (U) = Hom_, (U, X) @z Hom_ (U,Y) ——
Hom_, (U ®U,X®Y) —2 Hom_,(U,X®Y) = h,_,(U).

Having disposed with these generalities, we now specialize to the case where
</ isCor, and® is the tensor produX @Y = X x Y of 1.9. We have the Yoneda
embedding

Cor, C Cor, C PST(k).
We will write @' for the tensor product oRST = Z(Cor, ), or onPST(k,R) =
R(Cor,), ande{" for ®". Thus there are natural mafs{' D — C &' D.
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EXAMPLE 8.10. By lemma 8.1hy = R, (X) is projective and
R (X) @ Ry (Y) = R (X xY).

Similarly if (X;,x;) are pointed schemes then tRg(X;,x ) are projective and from
2.13 we see that

Rer (X1, %) @' @ Ry (Xn, Xn) = Rer (Xp:Xp) A+ A (Xa, %n)).
In particular,Ry (Gm)®"™ = Ry (GA).

The next example, in whicR = Z, shows thatx!" does not behave well on
locally constant sheaves.

ExAMPLE 8.11. The complexXZ ", 7zisa projective resolution dZ/n, so
we haveZ/n&" Zy (X) = Z/n®4 Zy (X) = (Z/n), (X) by 8.7.

If V—-1¢ kandl =k(v/-1), letZ, = Z(l)/Z denote the locally constant
sheaf corresponding to the sign representatio ef Gal(l /k). We see from 8.7
thatZ/n&\" Z, is quasi-isomorphic to the complé /n) @ (Z — Z (1)), i.e.,

0—Z/n— (Z/n)(l) — 0.

Hence the preshed?./n) @' Z, sends Spekcto 0 and Spekto Z/n. If n= 4, this
is not anétale sheaf becaug&,/4Z.)® +# 0. It is easy to see, however, that its
sheafification is the locally constagtiale sheaf:

(z/4 " Le) gy = My,

The étale sheafy, is the tensor produdiZ/4) @, Z, of the two underlyingetale
sheaves.

DEFINITION 8.12. If F andG are presheaves &8 modules with transfers, we
write F @Y, G for (F @' G),,, theétale sheaf associatedfaz"" G. If C andD are
bounded above complexes of presheaves with transfers, we shalOw}e for
(C®Y D), andC ! D for (C®\ D), =~ P&Y, Q, whereP andQ are complexes
of representable sheaves with transfers, AndC andQ ~ D. There is a natural
mapC &', D — C®Y D, induced byC®{' D — C&" D.

LEMMA 8.13. If F,F’ are étale sheaves of R-modules with transfers, and F is
locally constant, then the map of 8.9 induces an isomorphism

F 0gF — F§F.

PROOF. LetF correspond to the discrete Galois modMleAs M = UM and
®' commutes with colimits, we may assume that= MY for some open normal
H of Gal(ksep/k). ThusM is aG-module, wherés = Gal(ksep/k)/H. Choose a
presentation oveR[G]:

@R[G]a — @R[G]ﬁ — M —=D0.

As ®,, and®¥, are both right exact, we may assuMe= RG] andF’ = R;(X). If
L = (ksep™ @ndT = SpedL) thenF = R, (T) by exercise 6.10. But thdh@'"F’ =
Ry (T x X), so it suffices to observe th&, (T) ® Ry (X) — Ry (T x X) is an
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isomorphism. Sincd@ xY — Y is anétale cover, it suffices to observe that for
overT

R (T) ®¢ R (X)(Y) = RG] @ Cor(Y, X) =
=2 R®,Cor(Y,T x X) =R (T xX)(Y). O

We are now going to show (in 8.16) that the tensor proczﬂp{{;gt induces a
tensor triangulated structure on the derived categogtale sheaves &-modules
with transfers. Using proposition 8.8, we ha@e' ,, D =D |’ ,C, and it suffices
to show tha@t{’ét preserves quasi—isomorphismé.

As a first step, fixy and consider the right exact functax(F) = R, (Y) ®Y,
F, from the categoryPST(k,R) of presheaves dR-modules with transfers to the
category ofétale sheaves d®-modules with transfers. Its left derived functors
Lp o (F) are the homology sheaves of the total left derived furldlY ) " . F. If
Cisachain complex (bounded below in homological notation), the hypierhomology
spectral sequence (se&¢i94, 5.7.6]) is

Efq=Lp®(HC) = L, (C).

ExamMPLE 8.14. If U — X is an étale cover, consider the augmenféelch
complex

C: = RUxyU) =Ry (U) = Ry(X)—0.

Since(fét is exact by 6.12, each homology preshegfU /X) = Hq(é) satisfies
Hq(U /X)g = 0. By definition,R; (Y) @' C is the augmente@ech complex

= Ry (U xy)UxY) =Ry (UxY) =R (XxY)—=0

for the étale coveld x Y — X x Y, soR,(Y) @Y, C is again exact by 6.12. Thus
Ln®(C) = 0 for all n. In particular, the & homology presheafi,(U /X) satisfies

D Ho(U /X) = R (Y) @ Ho(U /X) = Hy (R (Y) ®%,C) = 0.

The following lemma shows that in fact every derived fundtgm vanishes
onH,y(U/X).

LEMMA 8.15. Fix Y and setp = R, (Y)®Y,. If F is a presheaf of R-modules
with transfers such thatf= 0, then Ly ®(F) = O for all n.

PROOF. Suppose thaF, = 0. Each mafR,(X) — F is defined by ax ¢
F(X), and there is aitale covetdy — X such that vanishes i (Uy). Thus the
compositionR, (Ux) — R, (X) — F is zero, i.e., the given map factors through the
cokernelH,(Uy/X) of R (Ux) — R (X). It follows that the canonical surjection
@y xR (X) — F factors through a surjectiohy ,Hy(Ux/X) — F. If K denotes the
kernel of this surjection thel{,, = 0.

We now proceed by induction an noting thatL,d = 0 forn < 0. Forn= 0,
we know thatp H,(Uy/X) = 0 by example 8.14. Sinas is right exact, this yields
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®(F) =0. Forn > 0, we may assume that the lemma holdslfgt> whenp < n.
From the exact sequence

Ox x(Ln®)Hp(Ux/X) — Lan®d(F) — L, _; d(K)

we see that it suffices to prove thdt, ®)Hy(U/X) = 0. We saw in 8.14 that
Hq(U/X)g = 0, soLpdHg(U/X) = 0 by the inductive assumption. Hence the
hypercohomology sequence for the complezollapses to yield

But we saw in example 8.14 thi & (C) = 0, whence the resullt. O

Now we prove tha@}_ﬂét preserves quasi-isomorphisms.

PROPOSITIONS8.16. Let f: C — C' be a morphism of bounded above com-
plexes of presheaves of R-modules with transfers. If f induces a quasi-isomorphism
Cg — Ci; between the associated complexe#tale sheaves, then@' D —
C'®|' D is a quasi-isomorphism for every D. '

PROOF. If P — C is a projective resolution of presheaves, thgn— C,,
is a quasi-isomorphism of complexeséible sheaves. Thus we may assume that
C, C' andD are complexes of representable presheaves dénotes the mapping
cone ofC — C', it suffices to show thad @}, D = A®g, D is acyclic. As each row
of the double complex underlyinfg=¥, D is a sum of term&&Y, R, (Y), it suffices
to show thaA @Y, R, (Y) is acyclic. As in the proof of 8.15, its homology sheaves
are the hyper-derived functoks, ®(A), ® = @R, (Y). In the hypercohomology
spectral sequence

Efq=Lp®(HeA) = Ly, q®(A)
the presheaveld A have(HgA),, = 0 becausé\, is acyclic. By lemma 8.15 we
havelq®(HgA) = 0 for all p andg. Hence the spectral sequence collapses to yield
Lad(A) =0foralln, i.e.,Ld(A) ~ R, (Y) L Ais acyclic. O

COROLLARY 8.17. The derived category of bounded above complexétatd
sheaves of R-modules with transfers is a tensor triangulated category.

PrROOF By 8.8,D"PST(k,R) is tensor triangulated. Now combine 8.16 and
8A.7, lettingW be the system of morphisms inducing quasi-isomorphisms on the
associated complexes efale sheaves. O

LEMMA 8.18. Let F be a locally constaréitale sheaf of flat R-modules. Then
the map Ex|' F — E @4 F is a quasi-isomorphism for evestale sheaf with
transfersE.

PROOF Suppose first thaE = R, (Y). Choose a resolutio@ — F in the
category of locally constant sheaves in which e@ghis a sum of representa-
blesR (Ln ) for finite Galois field extensionk, , of k. (This is equivalent to
resolving the Galois modul® corresponding td= by Galois moduleR[Gy, 4],
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and the existence of such a resolutionvbis well known.) By proposition 8.16,
E ®§ C = E [, C is quasi-isomorphic t& ®|' , F. By lemma 8.13,

EQYC=E®4C — E®4F ~— EQLF.
Hence the result is true fd = R, (Y).

In the general case, choose a projective resolufien E in the category of
presheaves dR-modules with transfers. Then we have quasi-isomorphisms

E@yF =Pall4F —~ PRLF — PeyF.
Because sheafification is exalt;— E is also a resolution in the category &tle
sheaves oR-modules. Sincé- is flat in this category, we have the final quasi-
isomorphism:
PoyF — EQuF «—— EQYF. O

It is clear that 8.18 also holdsH is a bounded above complexé&thle sheaves
with transfers.

COROLLARY 8.19. In the derived category dftale sheaves &f/m-modules
with transfers, the operation M> M(1) = M &' ., Z/m(1) is invertible.

PROOF Indeed, ifu, is the Pontrjagin dual gi,, then combining 8.18, 8.13,
and 4.8 yields:

* tr 818 . _tr 8#\113 * 4{"\J8 * ~
.um®L,étZ/m(1) = /-Lm@étZ/m(l) = .um®étZ/m(1) = .um®ét.um: Z/m' u

EXERCISE8.20. If E andF are bounded above complexes of locally constant
étale sheaves d&-modules, show thaE ®!", F is quasi-isomorphic t& @ F,
their total tensor product as complexesttdle sheaves ¢-modules. (Hint: Use
8.13, 8.16, and 8.18.)

REMARK 8.21. If B — | is a flasque resolution d as a sheaf with trans-
fers, we definlRHon(R,; X, B) to beHom(R,; X, 1), so thatRHon(R,X,B)(U) =
RHomU x X,B) for all U. If cd(k) < 0 andX is proper therRHomR;, X, B) is
bounded above by proper base change (citing 9.26); this construction extends to
bounded above complexBsn the usual way. 1A andB are both bounded above,

a short calculation shows that in the derived cateddryShCor,,R)) of sheaves
with transfers we have the adjunction:

Hom,_ (A& & Rer(X), B) 2 Homy,_ (A, RHOM(R; X, B)).






Appendix 8A - Tensor Triangulated Categories

The notion of a tensor triangulated category is a generalization of the tensor
product structure on the derived category of modules over a scheme, which played
a central role in the development of the subject.

DEFINITION 8A.1. A tensor triangulated categoryis an additive category
with two structures: that of a triangulated category and that of a symmetric
monoidal category. In addition, we are given natural isomorphisargd| of the
form

C[1]®D—.(C®D)[]i0®0[]

leo 'co
which commute in the obvious sense with the associativity, commutativity and
unity isomorphisms. There are two additional axioms:

o . P
(TTC1) For any distinguished triang(&, - C, - C, - Cy[1] and any
D, the following triangles are distinguished:

1(d ®D)

C,®D —— C,®D —— C,®D (Co®D)[1]

D®GC, "C99) bacy.

(TTC2) For anyC andD, the following diagram commutes up to multiplication
by —1,i.e.,rl =—Ir:

D®C, —— D®C,

Cl1®D[1] — (C[1®D)[Y

(CoD[1))[1] — (C®D)[2.

This description is not minimal. For example the commutativity isomorphism
7:C®D = D®C allows us to recover from | and vice versa using the formula
iz =r. In addition,| , can be recovered fron, j, : 1{1] ® D = D[1], wherel
is the identity object forz. Moreover, if either of the two triangles in (TTC1) is
distinguished, then both are distinguished.

The definition of tensor triangulated category that we have given is sufficient
for our purposes. However, it is possible to add extra axioms in order to work

65
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with a richer structure. For example, many more axioms are postulated by May in
[MayO01].

EXERCISE 8A.2. Show that the canonical isomorphisrisi,rill : C[i] ®
D[j] = (C®D)[i + j] differ by (—1), and are interchanged by the twist isomor-
phismt onC ® D andCJi] @ D[j].

DEFINITION 8A.3. Let .« be an additive category with a symmetric monoidal
structure®. We say thateZ is anadditive symmetric monoidal categoryif (1T
A) @B 11 (A ®B) for every direct suml A in <.

If C andD are bounded above complexesdf the tensor produd @ D has
(C®D)" = ®pq-nCP ® DY and differentiald ® 1+ (-1)P®d onCP o DY. Itis
associative.

We define the twist isomorphismt C® D — D ®C componentwise, as-1)P4
times the natural isomorphis@® @ D9 — DY®CP in /. It is a straightforward
exercise to verify that the catego6h™ (<) is an additive symmetric monoidal
category.

The degrea part of each o€ ® D[1], (C® D)[1], andC[1] ® D are the same,
and we definé; ;, to be the canonical isomorphism. The nigp, is multiplication
by (—=1)P on the summan@P  DU. A routine calculation verifies the following.

PrOPOSITIONBA.4. Let o/ be an additive symmetric monoidal category.
Then the chain homotopy categdfy (/) of bounded above cochain complexes
is a tensor triangulated category.

ExaMPLE 8A.5. (See Mer96].) Let o7 be the category of modules over a
commutative ring, or more generally over a scheme. Then not orty &)
a tensor triangulated category, but the total tensor progtictakes the derived
categonyD~ (&) into a tensor triangulated category. In effdat,(.«7) is equivalent
to the tensor triangulated subcategory of flat complexésing).

ExaMPLE 8A.6. The smash product of based topological spaces leads to an-
other example. IA — X — X /A — SAis a cofibration sequence, there is a natural
homeomorphisniX/A) AY = (XAY)/(AAY); see Whi78, 111.2.3]. The suspen-
sionSX= St A X has homeomorphisms

~

XA (SY) —— SXAY) < (SXAY

satisfying (TTC1) and (TTC2) up to homotopy. It follows easily that the stable
homotopy category, which is triangulated By/¢i94, 10.9.18] and a symmetric
monoidal category byAda74, I11.4], is a tensor triangulated category.

If W is a saturated multiplicative system of morphisms in a triangulated cate-
goryD, closed unde®, translations, and cones, Verdier proved\iei96] that the
localizationD|W~1] is also a triangulated category.

PROPOSITION8A.7. LetD be a tensor triangulated category. Suppose that if
C—ClisinW then@D — C ®@DisinW for every D irD. Then the localization
D[W1] is also a tensor triangulated category.
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PROOF Because eack®D : D — D preservedV, ® induces a symmetric
monoidal pairingD[W~1] x DW~1] — D]W~1] by the universal property of lo-
calization (applied t&W x W). Similarly, the natural isomorphismsand| descend
to D|W~1]. Axiom (TTC2) is automatic, and axiom (TTC1) may be routinely ver-
ified for Verdier's description of distinguished trianglesDw—1]. O

Inverting twistsX — X ® T is another construction which often preserves the
tensor triangulated structure. For example, it is used to construct the tensor trian-
gulated categor®M g (k, Z/m) from DM~ (k, Z/m); see 9.7.

Let T be an objectin a symmetric monoidal categeey ©, 1). Let%'[T 1] de-
note the category whose objects are p@sm) with X in € andm < Z; morphisms
(X,m) — (Y,n) in €[T~1] are just elements of the direct limit ljm, Hom(X ®
TeM™ Y @ T®) where the bonding maps are given by the funcidr: € — €.
Composition is defined in the obvious way, and it's easy to checkAliait!] is a
category. There is a universal functér— %'[T ~1] sendingX to (X,0). Note that
(X,m) = X@T®Min ¢[T~ form>0.

EXERCISE8A.8. Let T be an object in a tensor triangulated categéryShow
that#’[T 1] is a triangulated category, and tiét— %'[T ~1] is triangulated.

In order for the formulgX, m) ® (Y,n) = (X®Y, m+n) to extend to a bifunctor
on ¢[T1], we need to define the tensér g of two ¢[T ~1]-morphisms in a
natural way. In genera¥’[T ~1] need not be symmetric monoidal, as exercise 8A.9
shows.

EXERCISE8A.9. Let T be an invertible object in a symmetric monoidal cate-
gory %, i.e., an object such that® U = 1 for someU. Itis well known that endo-
morphisms ofl commute; show that the same must be true for endomorphisms of
T. Then show that the cyclic permutation df2 (T ® T) must equal the identity
morphism.

PROPOSITION8A.10. Let T be an object in a symmetric monoidal category
(¢,®,1) such that the cyclic permutation ori*¥ is the identity ing’[T~]. Then
(¢[T7Y,®,1) is also a symmetric monoidal category.

PROOF. The hypothesis implies that permutationsTofi' commute with each
other forn > 3. The many ways to definex gonX @ T™ @Y @ T"! are indexed
by the(i, j)-shuffles, and differ only by a permutation, $® g is independent of
this choice. Therefore the tensor product is a bifunctos¢fi—1]. The symmetric
monoidal axioms may now be routinely verified as Adf74, I11.4]. The hexag-
onal axiom, that the two isomorphisms frow (Y ® Z) to (Z® X) ® Y agree,
follows because the cyclic permutation ©f° is the identity. O

COROLLARY 8A.11. Let T be an object in a tensor triangulated categ@ry
such that the cyclic permutation or¥*¥ is the identity ing’[T ~1]. Then®' [T~ is
a tensor triangulated category.

PROOF. By 8A.8 and 8A.10,%[T 1] is both triangulated and symmetric
monoidal. The verification of the remaining axioms is straightforward. O
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EXERCISE8A.12. Let T be an object in a tensor triangulated categoryuch
that Hom(X,Y) — Hom(X® T,Y ® T) is an isomorphism for every andY in D.
Show thatD[T ~1] is a tensor triangulated category.



LECTURE 9

Al-weak equivalence

In this section we define the notion Af-weak equivalence between bounded
above cochain complexes efale sheaves with transfers, aittlocal complexes.
The categor;DMgfv* is obtained by inverting\!-weak equivalences. The main
result in this lecture (9.35) is that when we restrict to sheavés/ofmodules the
categoryDMgff is equivalent to the derived category of discrete Galois modules
for the groupGal(ksep/k). We will use these ideas in the next lecture to identify
étale motivic cohomology with ordinagtale cohomology.

Since quasi-isomorphic complexes will Bé-weak equivalent, it is appropri-
ate to define the notion in the derived categbry = D~ (Sh,(Cor,,R)) of étale
sheaves oR-modules with transfers. IB—, we have the usual shift, and

A+ B condf) — All]

is a distinguished triangle for each mdp We refer the reader tagMO03] or
[Wei94] for basic facts about derived categories. We will also need the notion of
a thick subcategory, which was introduced by Verdier\erp6]. We will use
Rickard’s definition (seeRic89)); this is slightly different from, but equivalent to,
Verdier’s definition.

DEFINITION 9.1. A full additive subcategory’ of D~ is thick if:

(1) Let A— B — C — A[1] be a distinguished triangle. Then if two out of
A B,C are in& then so is the third.
(2) if A@Bisin & then bothA andB are iné&'.

If & is a thick subcategory dd—, we can form a quotient triangulated cate-
gory D~ /& as follows (see\fer96]). Let W, be the set of maps whose cone is
in &; W, is a saturated multiplicative system of morphisms. TBery& is the
localizationD~ [W, 1], which may be constructed using calculus of fractions; see
[Wei94, 10.3.7]. In particular, a morphisih: C — C' becomes an isomorphism in
D~ (W, '] ifand only if f is inW,.

DEFINITION 9.2. A morphismf in D~ is called anA'-weak equivalencef f
is InW, =W, , wherec is the smallest thick subcategory so that:

(1) the cone oR; (X x Al) — R, (X) isin &, for every smooth scheni;
(2) &, is closed under any direct sum that exist®in.

ff,— = NA—
We setDM ¢~ (k,R) = D~ W, 1].
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REMARK 9.3. Alternatively, we can describ€, as the thick subcategory of
all complexe< such that, (E) is acyclic (i.e., quasi-isomorphic to zero). Indeed,
it follows from 2.24 thaC, (E) is acyclic for evenE in &,. Conversely, ifC, (E)
is acyclic therE — 0 is inW, by 9.15 below, and hendgis in & .

It is clear that the notion of\l-weak equivalence i~ = D~ (Sh(Cor,,R))
makes sense for other topologies. This includes the alternative description in 9.3.
For the Nisnevich topology, we will see in 14.11 that the localizafiivi ,e\lfif’;(k, R)
of D~ is the triangulated category of motivic complexes introduced and studied in
[TriCa].

LEMMA 9.4, The smallest class iD~ which contains all the R(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones idall of

PrROOF First we show that for any complé,, if all D, are in the class, then
so isD,. If B,D is the brutal truncation 8- D, — D, _; — --- of D,, thenD, is
the union of theB,D. Eachf,D is a finite complex, belonging to the class, as an
inductive argument shows. Since there is an exact sequence

00— @BnD—' @ﬁnD—’ D* —'Oa

it follows thatD, is in the class.

Thus it suffices to show that each shéafis in the class. Now there is a
resolutionL, — F by sums of the representable sheaRgéX), given by lemma
8.1. Since each, is in this class, so ik, and hencé-. O

LEMMA 9.5. If f :C — C'is an Al-weak equivalence, then for every D the
map fold:Cx|', D — C & D is anAl-weak equivalence.

PROOF. Sinceg) ., commutes with cones arfdis anA'-weak equivalence if
and only if its cone is in§, , it suffices to show that i€ is in &,, thenC @\, D is
in &, foranyD.

If D =R, (X), consider the subcatego#y of all C in D~ such thaC ®}_r7étD
isin&,. & is closed under direct sums and it is thick. Moreovey, i§ a smooth
scheme, the’ contains the cone d%, (Y x Al) — R, (Y). Therefores, C &.

Now fix C in &, and consider the full subcatego#y of all D in D~ such that
Ce'Disiné&,. 7 is closed under direct sums, it is thick and we have seen that
it containsR, (X) for all X. By 9.4, we conclude tha? =D~ O

COROLLARY 9.6. The producto{’ 5, endowsDMgf*(k, R) with the structure
of a tensor triangulated category.

PrROOF Given 8.17, this follows from 9.5 and proposition 8A.7. O

REMARK 9.7. The categorpM . (k,R) is obtained fronDM fo(k, R) by in-
verting the Tate twist operatiod — M(1) = M @[ R(1). If R=Z/m, then the
Tate twist is already invertible by 8.19, so we have

DM g(k, Z/m) = DM&"~ (k, Z/m).
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For any coefficientsR, it will follow from 8A.11 and 15.8 below that
DM (k,R) is always a tensor triangulated category.

f
DEFINITION 9.8. Two morphismsF —= G of sheaves oR-modules with

9
transfers are called-homotopic if there is a magh : F @' R, (A') — G so that

1
the restrictions oh alongR — R, (A!) coincide withf andg.
0

If Gis anétale sheafh factors through (and is determined by) a r‘rF%p@tLr’ét
Re(A) — G.

EXAMPLE 9.9. Suppose we are given two majpsg: X — Y such that the
induced map<Z, (X) — Z,(Y) are A*-homotopic in the sense of 9.8. By the
Yoneda lemma, this is equivalent to saying ttaandg are restrictions of some
h e Cor(X x A',Y), i.e., thatf andg are A'-homotopic maps in the sense of 2.25.

LEMMA 9.10. Let f,g: F — G be two maps betweétale sheaves with trans-
fers. If f and g areA’-homotopic, then & g in DMZ{f’*(k, R).

PROOF. Any two sections ofA! — Sped yield the same maR — R, (Al) in
the localized categorDMZIff(k, R), namely the inverse of tha'-weak equiva-

lenceR, (A') — R. Therefore the maps:

Fx0 1 tr h
F= R(A)® gF — G
Fx1 ’

are the same in the localized category. O

There is a mistake in the proof of the corresponding lemma 3.2'GiG4] as
the proof there assumes tt#gt (A?) is flat inCor,. If we replacex by ®, in loc.
cit., the proof goes through as written.

COROLLARY 9.11. Every Al-homotopy equivalence is ai'-weak equiva-
lence.

Our next goal is to show thaf, — C.F is always am\'-weak equivalence (see
9.15 below). Henc€ =~C.F in DM~ (k,R).

By the (direct sum) total complex Td) of a double compleB, we mean the
cochain complex witmth term @pﬂ:anvq; see Wei94, 1.2.6].

LEMMA 9.12. Let f: B — B’ be a map of double complexes which are verti-
cally bounded above in the sense that there is a Q so th&tB(B')*9 = 0 for all
q > Q. Suppose that the restriction of f to each row isihweak equivalence,
and thatTot(B) and Tot(B') are bounded above.

ThenTot(B) — Tot(B') is an A'-weak equivalence.

PROOF Let S(n) be the double subcomplex & consisting of theBPY for
g>n. Then ToS(n+1) is a subcomplex of T&n) whose cokernel is a shift of
the n-th row of B. If S(n) is defined similarly, then each T8n) — TotS(n) is
an Al-weak equivalence by induction an Now Sh,(Cor,,R) satisfies(AB4),
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meaning thatb, and hence Tot, is exact. Hence there is a short exact sequence of
complexes

2 id—shift
0 —— @PTotS(n) —— @ TotS(n) TotB 0
n=1 n=1

and similarly forB'. Since® TotS(n) — @ TotS(n) is anA'-weak equivalence, so
is TotB — TotB'. O

COROLLARY 9.13. If f : C — C’ is a morphism of bounded above complexes,
and f,: C, — Cj isin W, for every n, then f isin W\

PrROOFE This is a special case of 9.12. O

LEMMA 9.14. For every F and every n, the map+-—» Hom(R, (A"),F) =
Cn(F) is anAl-homotopy equivalence. A fortiori, it is aat-weak equivalence.

PROOF Since A" is isomorphic toA" as a scheme, we hawg,(F) =
C,C,_1(F). Thus we may suppose that= 1. We define a mam: C,F — C,F as
follows. For eaclX, the map

my 1 C,(F)(X) = F(X x AY) — F(X x A%) = C,(F)

is induced by the multiplication maf? — A by crossing it withX and applying
F. SinceC,F = Hom(R, (A?),C,F), the adjunction of 8.2 associatesrtoa map
h:C,F @R, (Al) — C,F. Similarly the inclusions\! x {i} ¢ A% induce maps, :
C,F — C,F, and the compositiong;m: C,F — C,F are adjoint to the restriction
of halongi : R— R, (AY). Henceh induces am\'-homotopy between the identity
(n,m) and the composite

9
CF 2+ F >, CF,
corresponding taj,m. Sinced,s is the identity onF, s and d, are inverseAl-
homotopy equivalences. They até-weak equivalences by 9.11. O

LEMMA 9.15. For every bounded above complex F of sheaves of R-modules
with transfers, the morphism F C.(F) is an Al-weak equivalence. Hence®¥
C.(F)in DM&" (k,R).

PrROOF By 9.12, we may assume thktis a sheaf. Consider the diagram
whose rows are chain complexes

F
- F
=
- F.
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The first two rows are quasi-isomorphic. Ndéw,;Cq(F) by 9.14. Using 9.13,
we see that the second and third rows Ateweak equivalent. O

EXAMPLE 9.16. The identity map or¢’ is A'-homotopic to zero by 2.23 and
9.15. Hencer is isomorphic to zero irDMgfv‘(k). When chak = ¢ > 0 the
Artin-Schrier sequence @ftale sheavedJil80, 11 2.18(c)]

0——»2z/f——06 %0 0
shows tha#/¢ = 0 in DM g{f,—(k)_ HereR may be eitheZ or Z/¢.

Etale Al-local complexes

In this section we will show thaDMg{fv‘(k, Z/m) can be identified with the
full subcategory? of Al-local complexes iD~(Sh,(Cor,,Z/m)).

DEFINITION 9.17. An objectL in D~ is called A'-local if for all Al-weak
equivalence&’ — K the induced map HofK,L) — Hom(K’,L) is bijective. We
write . for the full subcategory oh!-local objects irD.

It is easy to see tha¥ forms a thick triangulated subcategory®f.

REMARK 9.18. We will see in 9.31 below thak, is a functor fromD™ to .Z,
provided thaR = Z/m andcdy(k) < . Moreover, HonfC,(F),L) = Hom(F,L)
for everyL in . andF in D, by 9.15 and definition 9.17. Hen& is the left
adjoint to the inclusion c D~.

LEMMA 9.19. If L is Al-local then for every K iD~
HomDMZ?*(k,R)(K’ L) = Homy_(K,L).
Hence the natural functo” — DM va*(k, R) is full and faithful.

PrROOF By the calculus of fractions/}/ei94, 10.3.7], the left side consists of

equivalence classes of diagrafﬁss— K’ —— L with sin W, . It suffices to
show that ifK’ — K is an Al-weak equivalence then HdiiK,L) = Hom(K’,L).
But this holds sincé is Al-local. O

LEMMA 9.20. An object L inD~ is A'-local if and only ifHom(R,, (X)[n],L) —
Hom(R, (X x A1)[n],L) is an isomorphism for all X and n.

PROOF. Let .7 be the full subcategory of aK for which HomK|[n],L) =0
for all n. Clearly, 7 is a thick subcategory dD~ and it is closed under direct
sums and shifts. Under the given hypothest$,contains the cone of every map
R: (X x Al) — R (X). By definition, &, is a subcategory of#’, i.e., L is Al-
local. O

LEMMA 9.21.1f f : L — L’ is an Al-weak equivalence and L’ are A'-local
then f is an isomorphism iB—, i.e., a quasi-isomorphism of complexestdle
sheaves with transfers.
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PrROOF By definition, f induces bijections Hoft',L) = Hom(L,L) and
Hom(L',L’) = Hom(L,L’). Hence there is a uniqug: L’ — L so thatfg=1,
andf(gf) = (fg)f = f implies thatgf =1 ,. O

DEFINITION 9.22. An étale sheaf with transfels is strictly A'-homotopy
invariant if the mapHZ (X, F) — HS(X x AL, F) is bijective for all smootiX and
everyn € N. In particular forn = 0 we must have that is homotopy invariant
(2.15).

LEMMA 9.23. ([SGA4, XV 2.2]) If R is of torsion prime tachark then any
locally constant sheaf of R-modules is strictlf-homotopy invariant.

LEMMA 9.24. Let F be anétale sheaf of R-modules with transfers. Then F is
Al-local if and only if F is strictlyA'-homotopy invariant.

PROOF By 6.23 or 6.24, we have
Homy, (R (X), Fi]) = Extsy (cor &) (R (X),F) = Hy(X.F)
for every smootiX. SinceR, (X x A1)[n] — R, (X)[n] is anA'-weak equivalence
for all n, 9.20 shows that is Al-local if and only if the induced map
Hg"(X,F) = Hom(Ry (X)[n],F) — Hom(Ry (X x AN [n],F) = Hg"(X x AL, F)
is an isomorphism, that is, if and onlyFfis strictly A'-homotopy invariant. [

Here is a special case of 9.24 which includes the shea¥@s It follows by
combining 9.23 with 9.24.

COROLLARY 9.25. Let M be a locally constarétale sheaf of torsion prime to
chark. Then M isA!-local.

We now make the running assumption tiRais a commutative ring and that
cdy(k) < =, i.e., ks a field having finiteetale cohomological dimension for coef-
ficients inR. If R=Z/mwe will write cdy (k) for cdy(k). This assumption allows
us to invoke a classical result frorBGAA4].

LEMMA 9.26. ([SGA4], [Mil80]) Let X be a scheme of finite type over k. If k
has finite R-cohomological dimension d thep @) < d+ 2dim, X.

COROLLARY 9.27. Set iy = cdg(k) +2dim X. Then Ext"(R;(X),F) =0
when n> ny.

PROOF. Ext"(Ry(X),F) = HA(X,F) by 6.24. O

REMARK 9.28. If Bis Al-local then so is the compléXHon(R, X, B) of 8.21.
Indeed B is strictly Al-homotopy invariant by 9.24, so by 6.25, we have:

H*RHomR, X, B)(U) = H*(U x X,B)
~H*(U x X x AL,B) =2 H*RHon{R,X,B)(U x Al).

If Cis a cochain complex of presheaves, each cohomditBg€) is a presheaf.
We writea,H"(C) for its associateétale sheaf.
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LEMMA 9.29. Assume that ggk) < . Then for every (bounded above) chain
complex C there is a bounded, convergent spectral sequence:

EPY = ExtP(Ry (X), 85H%(C)) = Homy_ (R, (X),C[p+q)).

PrROOFE This is well-known; see\Wei94, 5.7.9]. The spectral sequence is
bounded, and hence converges, by 9.27. O

PrROPOSITION 9.30. Let C be a bounded above cochain complexétate
sheaves of R-modules with transfers, wherg(kp< . If the sheaves gH"(C)
are all strictly Al-homotopy invariant, then C i&-local.

PROOF. LetC be a complex oétale sheaves with transfers. By 9.20, it suffices
to prove that cong ) is in this class whetfi is the projectiorR, (X x A1) — R, (X).
The mapf induces a morphism between the spectral sequences of 9.X9od
X x Al. Because the sheavis= agHIC are strictlyA-homotopy invariant, they
areAl-local by 9.24. Thus

EXt°(Ry (X),L) = Homy, (R (X)[—pl.L)
> Homy, (R (X x AL)[—p],L) = EXtP(Ry (X x AY),L).

Hence the morphism of spectral sequences is an isomorphism &3 skms.
By the Comparison TheorenWei94, 5.2.12], f induces an isomorphism from
Hom,_ (R (X)[n],C) to Homy_ (R, (X x A1)[n],C) for eachn. Done. O

LEMMA 9.31. Suppose that/me k and cgh(K) < . If K is a bounded above
complex oféetale sheaves df/m-modules with transfers, théfotC,(K) is Al-
local.

PROOF. SetC = TotC,(K). By 2.19, eactH'C is an Al-homotopy invariant
presheaf oZ /m-modules with transfers. By the Rigidity Theorem 7.20, the sheaf
a,H'C is locally constant. By 9.233,,H'C is strictly A'-homotopy invariant. Fi-
nally, 9.30 lets us conclude th@tis A'-local. O

Combining 9.21 with 9.31, we obtain:
COROLLARY 9.32. If F is Al-local then F~C,F inD—.
COROLLARY 9.33. If 1/m € k thenZ/m(q) is Al-local for all q.

PROOF. TakeK to be(Z/m),G,9[—q]; Z/m(q) = C.K by definition 3.1.

DEFINITION 9.34. If 1/m € k, let # denote the full subcategory &f con-
sisting of Al-local complexes ofZ/m-modules with transfers. IE andF are
Al-local, we seE® ., F = TotC, (E ®tLr7ét F). By 9.31,E® ,Fis Al-local, so®
is a bifunctor from¥ x ¥ — Z.

Recall from 6.9 that the category of locally constétéle sheaves df /m-
modules is equivalent to the categavod(G,Z/m) of discreteZ/m-modules
over the Galois grouiis = Gal(ksep/k). Let D™(G,Z/m) denote the (bounded
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above) derived category of such modules. There is a triangulated furicfoym
D~ (G,Z/m)to D~ = D~ (Shy(Cor,,Z/m)).

THEOREM9.35. If 1/mck, (Z,® ) is a tensor triangulated category and
the functors

D (G,Z/m) -+ £ ——~ D~ W, Y = DM (K, Z/m)
are equivalences of tensor triangulated categories.

ProoOF Clearly, Z is a thick subcategory d—. By 9.19, the functorZ —

D~ (W, Y] is fully faithful. By 9.31, every object oD~[W, ] is isomorphic to an
object of.Z. Hence.Z is equivalent th—[WA‘l] as a triangulated category.

By 9.6, DMgfv‘(k, Z/m) is atensortriangulated category. Using the first part
of this proof, we conclude tha¥ is a tensor triangulated category as well. More-
over, if E andF areA’-local, thenE @ , F is isomorphic toE ®{' ,,F in D~ [W, ]
by 9.15, so the induced tensor operationtis isomorphic tax ..

Next we considerr™. It is easy to see from 6.9 and 6.11 theitinduces an
equivalence betwedd (G, Z/m) and the full subcategory of complexes of locally
constant sheaves b~. By exercise 8.207* sendsx’; /m 1O ®) ¢ It suffices to

show that evena-local complexF is isomorphic to such a complex. By 9.15,
9.31, and 9.2F — C,F is a quasi-isomorphism. By 2.19, eaaQH‘F is Al-
homotopy invariant. By 7.20 the shea@@H‘F are locally constant. Hence the
canonical mag- — n*x,F is a quasi-isomorphism of complexesaifle sheaves.
But .F is a complex of modules iMod (G, Z/m). O



LECTURE 10

Etale motivic cohomology and algebraic singular
homology

There are two ways one might define arale version of motivic cohomol-
ogy. One way, which is natural from the viewpoint of these notes, is to use the
morphisms in the triangulated categd .,, namely to define the integral coho-
mology group indexed byp,q) as Hom,,, (Z(X),Z(q)[p]), and similarly for
cohomology with coefficients in aA. The second approach, due to Lichtenbaum,
is to take theetale hypercohomology of the compléxq).

DEFINITION 10.1. For any abelian group, we define thedtale (or Lichten-
baum) motivic cohomologyof X as the hypercohomology &f(q):
HPA(X, A) = HE (X, A(g)ly, )-

If g <0 thenHP9(X,A) =0, becausé\(q) = 0. If =0 thenHPO(X,A) =
HE(X,A), becausé\(0) = A.

The two definitions agree in some cases of interest. We will see in 10.7 below
thatHP4(X,Z/n) = Homy,, (Z(X),Z/n(g)[p]) when ¥/n € k. Even further on,

ét
in 14.27, we will see thatl»4(X,Q) = Homy,, (Z(X),Q(a)[p]). However, the
ét
two definitions do not agree fdrtorsion coefficients, fof = chark). Indeed, for
q= 0 we have Horg,, (Z(X),Z/¢[p]) = 0 in characteristi¢ by 9.16, yet the
ét

groupsHLpD(X,Z/E) = HE(X,Z/¢) can certainly be nonzero.

By proposition 6.4 we havblf»l(X,Z/n) = HA(X, un) when ¥n e k. Here is
the generalization to atj.

THEOREM10.2. Let n be an integer prime to the characteristic of k. Then:

HP9(X,Z/n) = HE(X, uy'?) q>0,pcZ.

By 6.4 there is a quasi-isomorphispy, — Z/n(1) of complexes ofétale
sheaves. Becaugg and the terms oZ/n(1) are flat as sheaves @f/n-modules,
there is a morphismi@ — (Z/n)(1)®% in the category of complexes @ftale
sheaves of./n-modules. Combining with the multiplication of 3.11 gives a map

n ' — (Z/n) (D) — (Z/n)(q).
We may now reformulate theorem 10.2 as follows.

THEOREM10.3. The mapy? — Z/n(q) is a quasi-isomorphism of complexes

of étale sheaves.

i
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PROOF. The theorem is true fay = 1 by 6.4. By 9.25 and 9.31, bopi}’ and
7/n(q) are Al-local. We will show that the map®9 — Z/n(q) is an Al-weak
equivalence in 10.6 below. By 9.21, it is also a quasi-isomorphism. O

Let R be any commutative ring. Recall thR{n) = R®,, Z(n). Clearly, the
multiplication mapZ(m) ®, Z(n) — Z(m+n) of 3.11 induces a maR(m) ®g
R(n) — R(m+n).

PROPOSITION10.4. The multiplication map Bn) ® R(n) — R(m+-n) factors
through a magu : R(m) @' R(n) — R(m+n).

mult.

R(m) @z R(n) R(m+n)
R(m) @ R(n)

ProOFE We first reinterpret the left vertical map in simplicial language. Recall
that by definition 3.1R(n)[n] = C.(R;(Gjy")). Let us writeA] for the underlying
simplicial presheaf, vizAJ(U) = Z, (G") (U x A®), and write the associated un-
normalized chain complex &'. By 8.9, we have a natural map of bisimplicial
presheaved] @, Al — A'@'" A7, and a map of their diagonal chain complexes,
(A"@,A"), — (AM&TAM),. Asin 3.11, the Eilenberg-Zilber theorem yields quasi-
isomorphismd fitting into a commutative diagram:

R(m) ©g R(n)[m+-n] Al @Al

8.9 8.9 8.9

R(m) @ R(n)[m+n| AN AN s (AT AN,
Comparing with 3.11, we see that it suffices to find a simplicial map foX ahd
Y,

(10.4.1) diadC. R (X) @ CoR, (Y)) — CoRy (X x Y)

compatible with the corresponding construction 3.10cgr The mapu will be
the composite of] and the map induced by 10.4.1.

Let F be any presheaf with transfers. Definitions 8.2 and 2.14 imply that
Cn(F) = HomR(A"),F) as presheaves and tha§(F) = HomR, (Ay),F) as
simplicial presheaves. Using these identifications, we define the map 10.4.1 in
degreen as the composition:

Cal(Rer (X)) @ Co(Ry (Y)) =
Hom(R, (A", Ry (X)) @ Hom(Ry (A"), Ry (Y)) —=

diagonal

Hom(R (A" x A"), Ry (X x Y)) —— Hom(R (A"), Ry (X xY)) =
Cn(Rer (X xY)).

(A" @A),
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SinceHoM(R, (A" x A"), R (X X Y))(U) = R (X x Y)(U x A" x A"), the above
composition is the right vertical composition in the following commutative diagram
(see 8.5):

Re (X)(U x A") @Ry (V) (U X A7) —2+ (GRy (X) 8 GoRy (V) (U)
® 8.5
Ry (X xY)U xU XAnXAn) diagV) Ry (X xY)(U XAnXAn)
diagU x A") g &Y)

Rr (X xY)(U xA").

Since the left composite is the degme@art of construction 3.10, this shows that
the triangle in 10.4 commutes. O

PROPOSITION10.5. The mapZ/n(1)*'9 — Z/n(q) is an Al-weak equiva-
lence inD~ (Sh,(Cor,,Z/n)).

PROOF The assertion follows from the diagram in figure 1, remembering that

by definitionZ/n(q) is C.(Z/n) (GHM)[—q]. O
Z/n(1)®la - Z/n(q)
~,,|9.5+9.15 9.15~,,

(Z/M)r(Gm) [~ 1)L (Z/M) (G [~
8.7 8.10

~ —

(Z/M) (Gm)) ]

FIGURE 10.1. The factorization in proposition 10.5

PROPOSITION10.6. The mapu?9 — Z/n(q) is an Al-weak equivalence in
D~ (Shy(Cor,Z/n)).
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PROOF. Consider the following diagram, in whick"™ and®{" are to be un-
derstood irZ /n-modules.

pts — z/n(1)°t°

HioH

12

Hq

tr

B Z/n(1) 7 — - Z/n(g)

We already know that the top map is a quasi-isomorphism by 6.4 and 8.16. Lemma
8.13 proves that the bottom left magy? — ur?"q is a quasi-isomorphism. Lemma
8.18 proves that the left vertical map is a quasi-isomorphism. Hence the assertion
follows from proposition 10.5. O

Recall that when An € k we haveDM , = DMgf’*(k, Z/n).
PROPOSITION10.7. If 1/n€ kthen H9(X,Z/n) = Homy | (Z (X),Z/n(a)[p]).

PROOF. SinceA = Z/n(q) is Al-local by 9.33, the right side is
Homy,,  (Z (X), Z/n(g)[p]) =Homy, (Z (X), Z/n(a)[Pl)
= EXt®(Z4 (X), Z,/n()-
By 6.25, this Ext group i$If, (X,Z/n(q)), which is the left side. O

As a bonus for all our hard work, we are able to give a nice interpretation of
Suslin’s algebraic singular homology. Recall tRat( X) = Z;, (X) @ R.

DEFINITION 10.8. We define the algebraic singular homologyxoby:
H5"9(X,R) = Hp (C.Re (X) (Sped)) .

By remark 7.4HS"Y(X, Z) agrees with the grouplS"9(X / Sped) of lecture
7. Itis immediate from 5.2 that:

HP9(Spek, R) = HI"Y(GH, R).

Notice thatR, (G,?) is well-defined even though, is not a scheme.

The following theorem was first proven i5Y96, 7.8] under the assumption
of resolution of singularities ok. The proof we give here doesn’t need resolution
of singularities, so it extends the result to fields of positive characteristic.

THEOREM 10.9. Let k be a separably closed field and X a smooth scheme
over k, and let | be a prime number different fratmark. Then there exist natural
isomorphisms for all i:

HS"(X, Z/1)* = HA(X, Z/1)

where the’ denotes the dual vector space oef.
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It is amusing to note that this implies thief,(X,Z/1) is finite, because it is a
countable-dimensional dual module.

To prove 10.9, we need one more lemma. To clarify the role of the coefficient
ring R, we will write Dy for D~ (Sh,(Cor,,R)), so thatD, is just the usual derived
category ofSh,(Cor,).

LEMMA 10.10. Let k be a separably closed field and C a bounded above chain
complex oktale sheaves of R-modules with transfers. Assume that the cohomology
sheaves of C are locally constant and projective (as R-modules).Then foray n
we have:

HomDi (C,RIn]) = Homg_,,4(H"(C)(Spek),R).

PrROOF. For simplicity, let us write Extfor Ext in the categoryh,(Cor,,R).
(There are enough injectives to define Ext by 6.19.)
If Pis a summand ob,R, then Ext(P,R) injects into

Ext"(®4RR) = [ Ext"(RR) = [ Ext"(R,(Spek),R).

But Ext"(R; (Spek), R) = Hi\(Sped, R) by 6.24 and this vanishesiif# 0 ask is
separably closed. H = 0, this calculation yields EXR,R) = Rand Ex?(PR) =
Homemod(Pv R)-

Now recall that ExXt(F,R) = Hom,_(F,R[n]) for every sheaf; see (Wei94,

R
10.7.5]. More generally, iR — 1* is an injective resolution then the total Hom
cochain comple® Hom(C, R) of Hom*(C, 1[n]) satisfies
H"RHom(C,R) = Hom,_(C,R[n]).
R

(See Wei94, 10.7.4].) Since Horr(C,I[n]) is a bounded double complex, it gives
rise to a convergent spectral sequence which, a#/@i94, 5.7.9], may be written

EPY = Ext’(HC,R) = HP*9R Hom(C,R) = Hom,_(C,R[p-+ ).

The assumption onHYC makes the spectral sequence collapse to yield
Ext’(H"C,R) = Hom,_(C,R[n]), whence the result. O
R

PrROOF OF10.9. Taking R= Z/I, this means that aR-modules are projec-
tive. Consider the diagram:

>~

HomDﬁ (C* Rtr (X)a R[n]) W_lé Homemod(HrS\ing(Xa R)v R)

9.251;
Homy,_(Re(X),RIn|) ———

By 2.19, eactH" = H"C. R, (X) is a homotopy invariant presheaffI-modules

with transfers. Hence the sheawgd" are locally constant by the Rigidity Theo-
rem 7.20. Hence the top map is an isomorphism by 10.10. $Rise\'-local by

9.25, the left map is an isomorphism by 9.15. The bottom map is an isomorphism
by 6.24. O

Hgt(xa R)
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COROLLARY 10.11. Let k be a separably closed field and X a smooth scheme
over k, and let n be an integer relatively primedbark. Then there exist natural
isomorphisms for all i:

HS"(X, Z/n)* = HE (X, Z/n)
where the' denotes the Pontrjagin du&l/n-module.

PROOF. Using the sequences© Z/I — Z/Im — Z/m — 0, the 5-lemma
shows that we may assume tlmds prime. O



Part 3

Nisnevich sheaves with transfers






LECTURE 11

Standard triples

Our goal in this lecture is to prove proposition 11.1 below, which is one of
the main properties of homotopy invariant presheaves with transfers. It (or rather
its corollary 11.2) will be used in subsequent lectures to promote results from the
Nisnevich topology to the Zariski topology. It depends primarily upon the relative
Picard group introduced in lecture 7.

For all of this lectureF will be a homotopy invariant presheaf with transfers.

Recall that a subgroup of an abelian grou is calledpure if NnA=nBNA
for every integen. A homomorphismf : A— B of abelian groups is calleplure

Any semilocal subschent@of a smoothX is the intersection of the opex,
which contain it; by abuse we cafi smooth and writé=(S) for lim F(X,), as in
exercise 2.10. (I8is local, this is the stalk of at the closed point d8.)

PrROPOSITION11.1. For any smooth semilocal S over k, any Zariski dense
open subset \ S, and any homotopy invariant presheaf with transfers F, the map
F(S) — F(V) is pure injective.

The intersection of all sucH is the coproduct of the generic points Sgeof
S HenceF (S) injects (as a pure subgroup) inteF (Sped;) = lim F (V).

COROLLARY 11.2. Let F be a homotopy invariant presheaf with transfers. If
F(Sped) = O for every field E over k, then,E, = 0.

Here is the proof of proposition 11.1; it is a consequence of a more precise
result, theorem 11.3, whose proof will take up most of this lecture.

ProOF The semilocal schem@is the intersection of a famil, of smooth
varieties of finite type ovek andV is the intersection of dense open subschemes
Vo C Xo. HenceF(S) — F(V) is the filtered colimit of the mapg, : F(Xy) —
F(Vy). Since thdJ, given by 11.3 contains soméﬁ, the kernel of, vanishes in
F(XB) and the colimit is an injection. & € F(X,) equalsnb e F(V,) for some
b e F(Vy), then the image odin F(U,), and hence iffr (S), is n-divisible. O

THEOREM 11.3. Let X be smooth of finite type over a field k and let V be a
dense open subset. Then for every finite set of points.xx, € X there exists
an open neighborhood U of these points such that the restrictiof) F- F(U)
factors through FX) — F(V). That is, there is a map ) — F(U) such that the
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following diagram commutes.
F(X)

=

F(V) F(U)

EXAMPLE 11.4.1f V & X is a dense open subset, thers- Z, (X) /Z, (V) isa
presheaf with transfers, bEt(X) — F (V) is not injective. (% is nonzero irF (X)
but vanishes irfr (V).) This shows that homotopy invariance is necessary in 11.3.

To prepare for the proof of proposition 11.3, we need a technical digression.

DEFINITION 11.5. A standard triple is atriple()?—a» S Xw,Z) Wherepis
a proper morphism of relative dimension 1 ahendX, are closed subschemes of
X. The following conditions must be satisfied:

(1) Sis smooth anc is normal,

(2) X — X is quasi-affine and smooth ov8r

(3) ZNXe =0, _

(4) X»UZ lies in an affine open neighborhoodXn
Given a standard triple as above, we usually wxitéor X — X,,. Note thatX is a
good compactification of botk andX —Z (see 7.8) by parts 2 and 4.

Conversely, ifX is a good compactification of a smooth quasi-affine curve

X — S(see 7.8), thefiX, X — X, 0) is a standard triple.

We will see in 11.17 below that any pair of smooth quasi-projective varieties
Z C X is locally part of a standard triple, at least wHeis infinite.

REMARK 11.6. (Gabber) Parts 4 and 2 imply th&tis affine, and thaZ and
X are finite ovelS. Indeed X is finite and surjective oveB by part 2, and affine
by part 4, so Chevalley’s theorenH@r77, 1l Ex.4.2]) implies thatSis affine.

We will make use of the following observation. Recall from 7.10 that
Pic(X, X) is the group of isomorphism classes of pdifg,s) where.Z is a line
bundle onX andsis a trivialization onXe.

Given a standard tripleX, X, Z), any sectiorx: S— X of p defines an element
[X] of Pic(X, X). Indeed, there is a homomorphigy(X/S) — Pic(X, Xx).

REMARK 11.7. LetF be a homotopy invariant presheaf with transfers. Given
a standard tripl€¢X, X»,Z), by 7.5 there is a pairing:
(,):Pic(X,Xa) ®F (X) = F(S).
Letx: S— X be a section op. If [x] is the class ok in Pic(X, X ), then([x], f) =
F(x)(f) forall f € F(X).

LEMMA 11.8. Let (X,X»,Z) be a standard triple over S and % X — X
Then there is a commutative diagram for every homotopy invariant presheaf with
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transfers F.
Pic(X,Xe 11 Z) @ F (X) — Pic(X,Xe L1 Z) @ F (X — 2Z)

Pic(X, Xe) @ F (X) F(S)

PROOF. By definition, X is a good compactification of bot§ and X — Z.
Thus the pairings exist by 7.5 (or 7.16) and are induced by the transfers pairing
Cor (S X)®F(X) — F(S). Commutativity of the diagram is a restatement of the
fact that any presheaf with transfers is a functoCan, . O

COROLLARY 11.9. If x: S— X is a section andx] € Pic(X, X) lifts to A €
Pic(X, X, I1 Z), there is a commutative diagram:

F(X) — F(X—2)

[X] 2

F(S).

Moreover, ifA" € Cy)(X —Z/S) C Cor(S, X —Z) is any representative df (see 7.16
and 1A.12), the composition af with the inclusion X-Z ¢ X is Al-homotopic
to x in Cor(S, X).

EXERCISE11.10. Use example 7.14 witk = &* to show that there can be
more than one lifil : F(X —Z) — F(S).

More generally, observe that any umitof &(Z) gives a trivialization of
0(X) on Z; combining this with the trivialization 1 oiX, gives an element
o(s) = (0,110 s) of Pic(X,X» IT Z). Show thatd + o(s) is also a lift of [x] to
Pic(X, X» 11 Z), and that every other lift has this form for some ¢*(2).

DEFINITION 11.11. A standard triple issplit over an open subsét C X if
Lplyxg is trivial, where.Z), is the line bundle ot x X corresponding to the
graph of the diagonal map.

EXAMPLE 11.12. For any affineS, the standard tripl¢Sx P, S x 00, Sx 0)
is split over anyU in X = Sx Al. Indeed, the line bundle, is trivial on all of
X x X.

EXERCISE11.13. Let )?_be a smooth projective curve ovgrwith affine open
X = Spe¢A) and setX, = X — X. Then(X,X.,Z) is a standard triple for every
finite Z in X. Let P,,... be the prime ideals oA defining the points o, and
suppose for simplicity thad/P = k for all i. Show that the standard triple splits
overD(f) if and only if eachP, becomes a principal ideal in the ridgl/f].

In particular, ifX = P!, the triple splits over alX because in this caskis a
principal ideal domain.
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LEMMA 11.14. Any finite set of points in X has an open neighborhood U such
that the triple is split over U.

PrROOF. The mapf : X xgZ — X is finite, asZ is finite overS. Given points
X € X, eachf~1(x) is finite. Now the line bundleZ, is trivial in some neighbor-
hoodV of U; f~1(x), because every line bundle on a semilocal scheme is trivial.
But every suclhv contains an open of the forbh xgZ, and the triple is split over
such aJ. O

ProOPOSITION11.15. Consider a standard triple split over an affine U. Then
there is anA'-equivalence class of finite correspondenged) — (X —Z) such
that the composite d with (X —Z) c X is A*-homotopic to the inclusion - X.

In particular, F(X) — F(U) factors throughl : F(X —Z) — F(U):

F(X) — F(X-2)

A

FU).

ProOF Pulling back yields a standard trip(e) xS)Z,U X gXe,U X gZ) Over
the affineU. The diagonal : U — U xgX is a section and its class in Rt x g
X,U xgXs) is represented by the line bundl,. If the triple is split over an
affineU, then.%, has a trivialization otJ xgZ as well, so[A] lifts to a classA
in Pic(U xgX,U x5(X 11 Z)). By 7.2 and 7.162 is anAl-equivalence class of
maps inCor(U,X —Z). By 11.9 we have a commutative diagram

A
u st(x—z)ﬂ,x—z
4] l \
U xgX B L X
and it suffices to observe thptoA:U — U x X — Xis the inclusion. O

A different splitting (trivialization orlJ x sZ) may yield a different liftingd’.
By exercise 11.10}' = 4 + o (s) for some unisof (U xgZ).

EXERCISE 11.16. Suppose thatd is represented by an elemeit of
Cor(U,X-2Z) =Cy(U x (X—=2)/U), as in exercise 7.15. Show that the element
D — [A(U)] of Cor(U, X) is represented by a principal divispf) onU x X, with
f equal to 1 orJ x X.

THEOREM11.17. Let W be a connected quasi-projective smooth scheme over
an infinite field k, Y a proper closed subset of W apd.y,y, € Y. Then there is
an affine open neighborhood X of these points in W and a standard tdple
S Xw,Z) such that X, X NY) = (X — X, Z).
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PrROOF (Mark Walker) We may assume th@! is affine, a closedd + 1)-
dimensional subscheme af'. EmbedA" in AN by

(Xps -2 %n) = (Xgs X0, X5, XX, XX, X

Given a closed point € W, Bertini’s Theorem (see§GA4, X1.2.1]) implies that
the general linear projectiom: AN — A% is smooth near each point¥f lying on
p~1(p(x)). Itis also finite when restricted %, becausd has dimensior< d.

Let W denote the closure & in PN, H = PN — AN, andW, =WnNH. The
general projection defines a rational mapWw - ~ P9 whose cente€ is finite,
because lies in the intersection o\, with a codimensior linear subspace of
H. LetX,; be the closure of the graph gf: (W —C) — P4 in W x P4. ThenW is
naturally an open subschemeXjfandX; —W has finite fibers ovea?.

The singular point& of the projectionX; — P4 are closed, and finite over each
p(y;) becausep is smooth neaw/ N p~1(p(y;)). Therefore there is an affine open
neighborhoodsin A% of {p(y;)} over which is finite and disjoint fronY. Define
X to bep~1(S)NW —Z; by constructionp : X — Sis smooth. Defin&X C X; to
be the inverse image & andX., = X — X. ThenXNY — SandX, — Sare both
finite.

It remains to show thaX,, IT (XNY) lies in an affine open neighborhoodXf
As X is projective ovelS, there is a global section of some very ample line bundle
< whose divisoiD misses all of the finitely many points &f, andXNY over any
p(y;). BecauseZ is very ample andis affine,X — D is affine. Replacing by
a smaller affine neighborhood of tipgy;), we can assume th&t missesX,, and
XNY,i.e., that{, andXNY lie in X — D, as desired. O

Porism 11.18. If kis finite, the proof shows that there is a finite extendion
and an affine opeK’ of the points ilW x, Sped’ so that(X’, X’ NY’) comes from
a standard triple ove’, whereY’' =Y x, Sped'. In fact, for each primé we can
assume thdk' : k] is a power ofl.

Finally, we will use 11.15, 11.14 and 11.17 to prove 11.3.

PrROOF OF11.3. We first assume thadt is infinite. Since we may replacé
by V —{X,..., %}, we may assume that the closed poix{s..,x, of X lie in
Z=X—-V. We can use 11.17 to shrink about these points to assume that there
exists a standard triple withk = X — X,,. By 11.14 the triple splits over an open
neighborhoodJ of the points. AsX is quasi-projective, we may shritk to make
it affine. By 11.15 we get the mdp(X — Z) — F(U) factoringF (X) — F(U).

If kis finite, we proceed as follows. We see by porism 11.18 that there is an
openX’ of X x, Spec¢k’) fitting into a standard triple oved. The argument above
shows that there is an open neighborhabdf x,,...,x, (depending ork’) such
that if U’ = U x, Spe¢k’) andV’' =V x, Speck’), thenF (X') — F(U’) factors
through amapd’ : F (V') — F(U’). Let®(K') : F(V) — F(U) be the composite of
@’ and the transfeF (U’) — F(U). By 1.11,[K : k] timesF (X) — F(U) factors
throughd(k'). By 11.18, we can choose two such extensidrg with [k : k] and
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[K” : K] relatively prime. ShrinkindJ, we may assume th&t(U) is the target of
bothd (k') and®(k”). But thenF (X) — F(U) factors through a linear combination
of ®(K') andd(k”). O



LECTURE 12

Nisnevich sheaves

We have already mentioned the Nisnevich topology several times in previous
lectures, as an alternative to te&ale and Zariski topologies. In this lecture we
develop some of its more elementary properties.

We begin by recalling the definition of the Nisnevich topology (9¢s39).
A family of étale morphismgp; : U, — X} is said to be aNisnevich coveringof
X if it has the Nisnevich lifting property:

e for all x e X, there is an and au € U, so thatp;(u) = x and the induced
mapk(x) — k(u) is an isomorphism.

It is easy to check that this notion of cover satisfies the axioms for a Grothendieck
topology (in the sense oMil80, 1.1.1], or pre-topology in the sense GGA4)).
The Nisnevich topology is the class of all Nisnevich coverings.

EXAMPLE 12.1. Here is an example to illustrate the arithmetic nature of a
Nisnevich cover. When chiarz 2, the two morphisms, = Al —{a} —'~ Al and

U, =Al-{0} 2%, A1 form a Nisnevich covering ok if and only ifa € (k*)2.
They form arétale covering of\! for any nonzera € k.

ExXAMPLE 12.2. Letk be a field. The small Nisnevich site on Sjgemnsists
of the étaleU over Spek, together with their Nisnevich coverings. EvertaleU
over Speg is a finite disjoint uniorll Sped; with thel; finite and separable over
k; to be a Nisnevich cover, one of themust equak. Thus a Nisnevich she&f
on Spe& merely consists of a family of sets(l), natural in the finite separable
extension fields of k. In fact, each such determines a “point” of Spe),; in
the sense of3GA4, IV 6.1].

¢ From this description it follows that Sgebas Nisnevich cohomological di-
mension zero. This implies that the Nisnevich cohomological dimension of any
Noetherian schemxX is at most dinX; see KS86).

LEmMMA 12.3. If {U; — X} is a Nisnevich covering then there is a nonempty
openVC X and an index i such thatl) — V has a section.

PROOF. For each generic pointof X, there is a generic point€ U, so that
k(x) = k(u). HenceU; — X induces a rational isomorphism between the corre-
sponding components &f andX, i.e.,U; — X has a section over an open sub-
schemeé/ of X containingx. O
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ExampPLE 12.4. A Hensel local ring or scheme(R m) is a local ring such
that any finiteR-algebraSis a product of local rings. It is well-known (se®lil80,
1.4.2]) that if Sis finite andétale overR, and if R/m = S/m; for some maximal
idealm; of S thenR — S splits; one of the factors d is isomorphic toR. If
{U; — SpedR} is a Nisnevich covering then sortkis finite étale, sdJ; — Spe®R
splits. Thus every Nisnevich covering of Spelas the trivial covering as a refine-
ment. Consequently, the Hensel local schemes Bstermine “points” for the
Nisnevich topology.

As with any Grothendieck topology, the categ@ly;(Snyk) of Nisnevich
sheaves of abelian groups is abelian, and sheafifichtierF; is an exact functor.
We know that exactness 8h;(Snyk) may be tested at the Hensel local rir@gx
of all smoothX at all pointsx (see Nis89, 1.17]). That is, for every preshekf

e Fyis=0ifand only if F(Speasy ) = O for all (X, x);

b FNis(SpeCﬁ)r(],x) = F(Speoﬁ{{x).
By abuse of notation, we shall wrie(&3 ,) for F(Speoﬁny), and refer to it as
the stalkof Fy;e atx. '

DEFINITION 12.5. A commutative squar® = Q(X,Y,A) of the form

B Y

[
A X
is calledupper distinguishedif B=AxyY, f isétale,i: A— X is an open embed-
ding and(Y —B) — (X —A) is an isomorphism. Clearly, any upper distinguished
square determines a Nisnevich coveringkof{Y — X,A — X}.

EXERCISE 12.6. If dim X < 1 show that any Nisnevich cover &f admits a
refinemen{U,V} such thaQ(X,U,V) is upper distinguished. Show that this fails
if dim X > 2. Hint: CoverP" by copies ofA".

By definition, F(Q) is a pullback square if and only F(X) is the pullback
F(Y) XE(B) F(A),i.e., the kernel of —i: F(Y) x F(A) — F(B).

LEMMA 12.7. A presheaf F is a Nisnevich sheaf if and only {{ is a pull-
back square for every upper distinguished square Q.

PrROOF For the “if” part, suppose that eadh(Q) is a pullback square. To
prove thatF is a Nisnevich sheaf, fix a Nisnevich coverifid, — X}. Let us say
that an open subs¥t C X is good(for the covering) if

F(V) — |'| FU xyV) — r| F(U; xxUj xx V)
is an equalizer diagram. We need to show tKatiself is good

By Noetherian induction, we may assume that there is a laggesd V C X.
Suppose tha¥ = X and letZ =X —V. By lemma 12.3, there is a nonempty open
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W C Z and an index such that);},,, — W splits. LetX’ C X be the complement of
the closed seZ —W. ThenV andU/ = U], form an upper distinguished square
Q overX'. Pulling back along eadd = U |y, also yields an upper distinguished
square. Thus we have pullback squares

F(X)) F(U) F(U)) —— F(U xxU))

F(V) — F(U|y) F(Uj/’v) — F(U/ ><xUj/|v)-

A diagram chase shows th&t is alsogood contradicting the assumption that
V # X. HenceX is goodfor each cover, i.eF is a Nisnevich sheaf.

For “only if”, we assume thaF is a Nisnevich sheaf anQ is upper distin-
guished and need to prove that the nig(X) — F(Y) XEB) F(A) is an isomor-
phism. We already know the map is monic beca{gy'} is a Nisnevich cover
of X. For the surjectivity, note that the sheaf axiom for this covering yields the
equalizer sequence

F(X) = F(Y)xF(A)ZF(B) x F(A) x F(Y x4 Y).

Since{A(Y),B x, B} is a cover ofY x, Y, we have an injectiofr (Y xy Y) —
F(Y) xF(Bx,B). Now (a,y) € F(A) x F(Y) lies inF(A) XE@) F(Y) if the two
restrictions td~ (B) are the same. The two mapsiR@A) andF (Y) are the same, so
it suffices to consider the maps frdftY) to F (B x , B). These both factor through
F(B), so the images of are the same as the imagesaoBut by construction the
two mapsF (A)=F (B x , B) are the same. O

PoRIsM12.8. Suppose more generally thais a sheaf for some Grothendieck
topology, and thaQ = Q(X,Y,A) is a pullback square whose horizontal maps are
monomorphisms. IfA,Y} is a cover ofX and{B x, B,Y} is a cover ofY x Y,
the proof of 12.7 shows th&t(Q) is a pullback square.

EXERCISE 12.9. Write ¢* /0™ for the presheall — ¢*(U)/¢0* (U), and

0* | for the Zariski sheaf associated & /¢*. Show that there is an exact se-
quence

0— ¢*(U)/0" (U) — 6* /I(U) — PigU) —— Pic(U)
for all smoothU. Then show that*/| is a Nisnevich sheaf oBnyk. If 1/I €
k, this is an example of a Nisnevich sheaf which is notetale sheaf. In fact,
EXERCISE 12.10. If F is a Nisnevich sheaf, consider the preshe3(fF) de-
fined by:
EXF)(X) = [ F(O%0

closed
xeX
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Show that=(F) is a Nisnevich sheaf, and that the canonical Rap: EO(F) is
an injection. Using 12.2, show th&°(F) is a flasque sheaf, i.e., that it has no
higher cohomology (seeS[GA4, V.4.1]). Iteration of this construction yields the
canonical flasque resolution@ F — E°(F) — --- of a Nisnevich sheaf, which
may be used to compute the cohomology gradjs(X,F).

DEFINITION 12.11. Consider the presheh§ sendingJ toZ[HomSWk(U,X)].
We write Z(X) for its sheafificatiorihy ) ;s With respect to the Nisnevich topology.
Itis easily checked th&(X)(U) = Z[Hom(—, X)](U) for every connected opésh.
This is false for non-connectéd, sinceZ(X)(U; I1U,) = Z(X)(U;) ® Z(X)(U,)
buthy (Uy ITU,) = hy (U;) @ hy (Uy).

By the Yoneda lemma, Hof#(X),G) = G(X) for every shea6. SinceZ, (X)
is a Nisnevich sheaf by 6.2, we see tH&K) is a subsheaf df, (X).

Let Dy, denote the derived category of cohomologically bounded above com-
plexes inSh;(Snyk). If F andG are Nisnevich sheaves, it is well known that
Extyis(F,G) = HomDNis(F,G[n]) (see Wei94, 10.7.5]).

LEMMA 12.12. Let G be a complex of Nisnevich sheaves. Then for all X:
EXtﬂus(Z(X)aG) - H&is(XaG)-

PrROOF First suppose thdb is a sheaf. I{G — I* is a resolution by injective
Nisnevich sheaves, then thth cohomology ofG is H" of 1*(X). But by [Wei94,
10.7.4] we know that the left side 4" of Homsmis(SnYk) (Z(X),1*) =1"(X). A
similar argument applies whebis a complex. O

LEMMA 12.13. The smallest class iD;, which contains all théZ(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones iy||.0f

PrROOFE The proof of 9.4 goes through usi#gX) in place ofR (X). O

For the rest of this lecture, we shall write for the presheaf tensor prod-
uct, (F®G)(U) =F(U)®, G(U), and®,; for the tensor product of Nisnevich
sheaves, i.e., the sheafificationsof Note that if a shedf is flat as a presheaf then
F is also flat as a sheaf. This is true for example of the shea@¢s.

LEMMA 12.14. Z(X x Y) = Z(X) @pis Z(Y).

PROOF Since HonfU,X x Y) = Hom(U,X) x Hom(U,Y), we see that
Z[Hom(U,X xY)] = Z[Hom(U, X)] ® Z[Hom(U,Y)]. ThusZ[Hom(—,X x Y)] =
Z[Hom(—,X)] ® Z[Hom(—,Y)] as presheaves. Now sheafify. O

LEMMA 12.15. Let G be a Nisnevich sheaf on Bsuch that i, (—,G) is
homotopy invariant for all n. Then for all n and all bounded above C:
Hom,,_ (C,G[n]) = Hom,,_ (Conis Z(AY),G[N)).
PROOF By 12.12, our assumption yields BXZ(X),G) = Ext"(Z(X x
Al),G) for all X. SinceZ(X x Al) = Z(X) @y Z(A) by 12.14, the conclusion
holds forC = Z(X). If C andC’ are quasi-isomorphic, then so @&y Z(A®)
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andC @y Z(Al), becausé.(Al) is a flat sheaf. But the class of all complexgs
for which the conclusion holds is closed under direct sums and cones, so by 12.13
the conclusion holds for aC. O

We borrow yet another topological definition: deformation retract. For Each
note that the preshe&f® Z[Hom(—, Sped)] is justF.

DEFINITION 12.16. An injection of presheaves F — G is called a(strong)
deformation retract if there is a map : G — F such thatr oi = idr and a ho-
motopy h : G® Z[Hom(—,A)] — G so that the restrictioh|- is the projection
F ®Z[Hom(—,A})] — F,h(G®0) =ior andh(G®1) =d.

If F andG are sheaves, the condition in the definition is equivalent to the
condition that there is a sheaf mapG ®,; Z(A') — G so that the restrictioh|.
is the projectiorF @y Z(A') - F,h(G®0) =ior andh(G® 1) =id.

For example, the zero-section S;ke%c“ Al induces a deformation retract
7 — Z,(A'); the homotopy map is induced by the multiplicatiod® x A — Al
using 12.14. Ifit is the quotient preshedf(A')/Z, so thatZ(A') = Z @ 1%, then
0 C I'is also a deformation retract.

LEMMA 12.17.If F — G is a deformation retract, then the quotient presheaf
G/F is a direct summand of & ® 11,

PROOF The inclusion OC G/F is a deformation retract, whose homotopy is
induced fromh. Therefore we may assume that= 0.

Let K denote the kernel dfi. Since the evaluationt=1": G=6G®QZ —
G®Z(AY) is a section of botih and the projectios ® Z(A!) — G, we see thak
is isomorphic taG® 1. But“t = 0”: G — G® Z(A!) embedsG as a summand of
K. O

For every preshedf we defineCn(F) to be the quotient preshe@f,(F)/F.
That is,Cm(F)(U) is F(U x A™) /F(U). Thus we have split exact sequences:0

F — Cn(F) — Cn(F) — 0.
COROLLARY 12.18. Gy (F) is a direct summand a&,(F) @ I for all m > 0.

PROOEF It is easy to see that — CF is a deformation retract, so 12.18 is a
special case of 12.17. O

PROPOSITION 12.19. Let G be a Nisnevich sheaf on Bmsuch that
HNis(—, G) is homotopy invariant for all n. Then for all n and for all presheaves
F, there is an isomorphism

HomDNiS((C*F)NisaG{nD ; HomDNiS(FNin[n])'
PrOOF. Write Ext"(C,G) for Homy_ (C,G[n]). For each comple&, lemma
Nis

12.15 implies that ER(C @51, G) = 0 for all g. ForC = (CyF )., 12.18 yields
Ext((CpF)is; G) = 0.
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Note that EX¥(C,G) = HIRHom(C, G) for anyC; see WWei94, 10.7.4]. As in
the proof of 10.10, a resolutid® — |* yields a first quadrant Hom double complex
Hom((C,F)yis; 1) and hence a first quadrant spectral sequence

EP9 — Ext?((CoF )i G) = EX*H9((C.F ) is, G)

(see [WVei94, 5.6.1]). Since everyEP9 vanishes, this implies that
Ext”(((f*F)Nis, G) =0 for all n. In turn, this implies the conclusion of 12.19, viz.,
Ext"((C.F)yis: G) = Ext"(F,G) for all n. O

EXERCISE12.20.1f U isopeninX, Z(U) is a subsheaf ¢L(X); write Z(X,U)
for the quotient Nisnevich sheaf. ff:Y — X is anétale morphism of smooth
schemes oveék, andZ C X is a closed subscheme isomorphio‘t&(Z), show that

ZY,Y — £7Y(2)) —— Z(X,X - 2).

The cdh topology

In order to extend the main results of the following chapters to (possibly) sin-
gular schemes, we need to introduce another topology: the cdh topology on the
categorySchyk of schemes of finite type ovée A crucial part will be played by
the following notion.

DEFINITION 12.21. Let X be a scheme of finite type over a fidkdand let
i : Z— X be a closed immersion. Then ahstract blow-up of X with centerZ is
a proper map : X’ — X which induces an isomorphisX’ —Z'), ., = (X - 2)
whereZ' = X’ x Z. We will often refer to the cartesian square

red’

z X

p

Z—— X.

We will say thatp: X’ — X is an abstract blow-up if there exists&Zac X which
satisfies the conditions above.

EXERCISE12.22. Let X' — X be an abstract blow-up with centér Show that
both 0— Z(Z') — Z(X") @ Z(Z) — Z(X) and 0— Zy (Z') — Zy (X") ® Zy (Z) —
Z4(X) are exact sequences of Nisnevich sheaveSrofk.

DEFINITION 12.23. The cdh topology oischyk is the minimal Grothendieck
topology generated by Nisnevich covers and coxérH Z — X corresponding to
abstract blow-ups. Aroper cdh coveris a proper map which is also a cdh cover.
A proper cdh cover of a reduced scheme is callgaager birational cover if it
is an isomorphism over a dense open subscheme.

If F is any presheaf osclyk we will write F_y, for its sheafification with
respect to this topology.
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The name “cdh” stands for “completely decomposed h-topology”; “completely
decomposed” is the original term for the Nisnevich topology (88899), and the
h-topology was introduced in Voevodsky'’s thesis.

EXAMPLE 12.24. Itis easy to see from the definition thgf, — X is a proper
cdh cover, and that every cdh cover has the Nisnevich lifting property (see p. 91).
In particular, it follows as in 12.2 that every cover of Sgdms a section, and that
any 0-dimensional scheme has cdh cohomological dimension zero. In fact, the cdh
cohomological dimension of any Noetherian scheme is at mosKdsee V00,
5.13].

If X’ — X is an abstract blow-up with cent&r andZ contains no generic point
of X, thenX’ IT1 Z — X is a proper birational cdh cover.

EXAMPLE 12.25. If X is reduced, every proper cdh covér— X has a refine-
ment which is a proper birational cdh cover. To see this, note that the Nisnevich
lifting property applied to the generic point of yields a closed subschenmé
of X such thatX’ — X is a birational isomorphism, i.e., an isomorphism over
a dense open of the forrd —Z. But thenX’' II1 Z — X is a cdh cover, and
X' I (X xy Z) — X is a proper birational cdh cover.

To better understand the structure of the cdh topology, we need to study some
properties of its coverings.

LEMMA 12.26. (SegSV0Q, 5.8]) A proper map is a proper cdh cover if and
only if it satisfies the Nisnevich lifting property.

PROOF. LetX — X be a proper map satisfying the Nisnevich lifting property;
we must show that it is a cdh cover. By 12.24, this is true if Him 0, and we may
assume thaX is reduced and irreducible. We will proceed by induction onX¥im

Consider the proper birational cdh cowétIT1 Z — X constructed in 12.25.
The pullback ofX — X along this cover consists of Xy X" — X' (which is a
cover because it has a section) afhelx Z — Z (which is a cdh cover by induction
on dimX because the Nisnevich lifting property is satisfied). Sice X is a cdh
cover locally in the cdh topology, it is a cdh cover. O

For example, ifX is smooth then any blow-ug’ — X along a smooth center
Z is a proper birational cdh cover. Indeed, the inverse image iefa projective
bundle oveiZ, and such a bundle always satisfies the Nisnevich lifting property.

PrROPOSITION12.27. Any cdh cover of the form .u 4. X, where X
is integral, p is a proper cdh cover, and g is a Nisnevich cover, has a refinement of
the form

\% S

g
T P U g X
where f is a Nisnevich cover and g is a proper cdh cover.
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PrROOF. LetU =II; U; be the decomposition &} into its irreducible compo-
nents and leT; =T x, U;. RefiningT — U as in 12.25, we may assume that each
T, — U, is a proper birational cdh cover. By platification (sé&J71] or 1A.1)
applied toT — X, there is a blow-uX’ — X along aZ C X such that the proper
transformT,” of eachT; is flat overX’. We setU/ = U, x4 X’. The situation is
described by the following diagram in which all squares are cartesian:

h
T xy X/ - U/ - X!

]

T, - U, - X.

-I-i/

Now T/ — X’ is flat, andh is étale by base change, ga T/ — U/ is flat. But
g is also proper and birational, and therefgrés an isomorphism since boffY
andU/ are irreducible. Hence the pullback 5f— X to X’ admits the refinement
U'=nvu/=1T — X.

By induction on dinX, the induced covel xy Z — U xy Z — Z admits a
refinemenyV’ — S — Z with V/ — S a Nisnevich cover an8 — Z a proper cdh
cover. But then the required refinemenflof- X is the composition

V=VTIU —+S=STIX —ZIIX — X. O

PROPOSITION12.28. Every cdh cover of X in S¢k has a refinement of the
formU —» X’ —"+ X, where p is a proper cdh cover and g is a Nisnevich cover.

PROOF. SinceX 4 — X is a proper cdh cover, we may assuiXetself is
reduced. It will suffice to prove the statement for the irreducible components, and
therefore we may assume thitself is an integral scheme.

By definition, each cdh cover of can be refined to a cover of the foiy —

X1 — Xy — ... X, — X, where each map is either a Nisnevich cover or a proper
cdh cover. But using 12.27 we can move all Nisnevich covers to the left and all
proper cdh covers to the right, which is the statement. O

PROPOSITION12.29. Let F be a Nisnevich sheaf on S&h Then E,,, =0
if and only if for any scheme X and any<aF (X), there is a proper cdh cover
p: X" — X such that p(a) =0 F(X').

PrROOF. If F 4, = 0 andac F(X), there is a cdh covéd — X such that|, =

0. But by 12.28 we may assume that the cover is of the orm®. x' P X,
whereq is a Nisnevich cover ang is a proper cdh cover. We know that=0
(peq@)*(a) =qg*(p*(a)). Sinceqis a Nisnevich cover anfl is a Nisnevich sheaf,
g* is injective, and thereforp*(a) = 0 in F(X').

Now let us assume that the condition holds and consideF_,,(X). Replac-
ing X by a cover, we may assume tlat F(X). By assumption there is a proper
cdh coverp: X’ — X such thap*(a) = 0. But thena = 0 sinceF_,(X) injects into
FegnX'). O
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Consider the composite morphism of sites (Sclyk)q, — (Schyk)yis —
(Smyk)yis: If F is a Nisnevich sheaf oBnyk, the inverse image sheaf(F) is
a cdh sheaf osclyk. By abuse of notation, we will writg_, for r*(F).

If we have resolution of singularities, then not only does ewérin Schyk
have an abstract blow-ug — X with X’ smooth, but every proper birational cdh
coverX’ — X has a refinemerX” — X with X” smooth, obtained as a composite
of blow-ups along smooth centers. Thus every cdh she8tcfk is determined
by its restriction taSnyk. In fact, assuming resolution of singularities, the functor
F — F.q,, from Shy;s(Snyk) to Shy,(Schyk) is an exact functor by§VvoQ, 5.11].

LEMMA 12.30. Assume that k admits resolution of singularities. Let F be a
Nisnevich sheaf on Stk. Then Ey, = 0 if and only if for any smooth scheme
X and any ae F(X), there is a composition of blow-ups along smooth centers
p: X —X_;—---— X, — X such that p(a) =0e F(X’).

PROOF. AssumeF_y, = 0 and leta € F(X) for a smoothX. By 12.29 and
12.25, there is a proper birational cdh coyerX’ — X such thatp*(a) = 0. Re-
fining the cover, we may assungeis a composition of blow-ups along smooth
centers.

Conversely, assume that the condition holds. Ket Schyk and leta €
F.qn(X). Passing to a covering, we may assume#@f (X) and thaiX is smooth.
By assumption, there is a proper cdh coperX, — X._; — --- — X; — X such
thatp*(a) =0e F(X'). O

ExERCISE12.31. If Cis a nodal curve, show thatl, (C,Z) = Z.
EXERCISE12.32. This exercise shows th&td (X, Z) # HZ,(X,Z) for some
normal surfaces.
(1) If Xis normal, use$GAL, 1.10.1] to show thaHys(X,Z) = 0 forn > 0.
(2) Let X be a normal surface with a point singularity, whose exceptional
fiber is a node. Show th&t2,,(X,Z) # 0.






LECTURE 13

Nisnevich sheaves with transfers

We now consider the categoByy;;(Cor, ) of Nisnevich sheaves with transfers.
As with étale sheaves, we say that a presheaf with tranEfessNisnevich sheaf
with transfers if its underlying presheaf is a Nisnevich sheaf ®myk. Clearly,
everyétale sheaf with transfers is a Nisnevich sheaf with transfers.

THEOREM 13.1. Let F be a presheaf with transfers, and writg;Ffor the
sheafification of the underlying presheaf. Thepfas a unique structure of
presheaf with transfers such thatF Fy;s is a morphism of presheaves with trans-
fers.

Consequently, §f(Cor,) is an abelian category, and the forgetful functor
Shyis(Cor,) —— PST(k) has a left adjoint (F— Fy;s) which is exact and com-
mutes with the forgetful functor to (pre)sheaves on/lém

Finally, Sh;s(Cor,) has enough injectives.

ProoF The Nisnevich analogue of 6.16, is valid; just replagglte cover’ by
‘Nisnevich cover’ in the proof. As explained after 6.12, thech comple%tr(ﬂ)
is a Nisnevich resolution df,, (X). With these two observations, the proofs of
6.17, 6.18, and 6.19 go through for the Nisnevich topology. O

ExAMPLE 13.2. By theorem 4.17(1) ~ ¢*[—1] as complexes of Nisnevich
sheaves with transfers. By 12.87 /| = 0* @y Z/|. SinceZ/I(1) = Z(1) ®x;s
7/, itfollows that there is a distinguished triangle of Nisnevich sheaves with trans-
fers for eacH:

= Z/1(1) = 6N =1] — py [1].
Since(0* /l)g = 0, this recovers 4.8 ~ Z/1(1).

ExercISel13.3. If F is a Nisnevich sheaf with transfers, modify example 6.20
to show that the she&®(F) defined in 12.10 is a Nisnevich sheaf with transfers,

and that the canonical flasque resolutlr- E*(F) is a complex of Nisnevich
sheaves with transfers.

LEMMA 13.4. Let F be a Nisnevich sheaf with transfers. Then:

(1) Its cohomology presheavegEl—,F) are presheaves with transfers;
(2) For any smooth X, we have(K) = Homsmis( Zy (X),F);
(3) For any smooth X and anyaZ,

His(X, F) = EthrNis(cOrk) (Zgr (X),F).

101

Cor) (
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PrROOF (Cf. 6.3, 6.21, and 6.23.) Assertion 2 is immediate from 13.1 and the
Yoneda isomorphisni (X) = Homug(Z, (X),F). Now consider the canonical
flasque resolutior — E*(F) in Sh(Snyk). By 13.3, this is a resolution of
sheaves with transfers. Singd, (—,F) is the cohomology of*(F ) as a presheaf,
and hence as a presheaf with transfers, we get part 1.

For part 3, it suffices by part 2 to show thaFifis an injective sheaf with trans-
fers andn > 0, thenHJ(—,F) = 0. SinceF — E°(F) must split inSh;s(Cor,),
HOi(X,F) is a summand ofif};(X,E°(F)) = 0, and must vanish. O

EXERCISE 13.5. (Cf. 6.25.) LetK be any complex of Nisnevich sheaves
of R-modules with transfers and & be a smooth scheme. Use the fact that
cdyis(X) < dim(X) (by 12.2) to generalize 13.4, by showing that hyperext and
hypercohomology agree in the sense thatferZ:

Ext"(Ry (X), K) = Hyis(X, K).

Since Nisnevich hypercohomology commutes with infinite direct sums, this shows
that EXf](R’(I’ (X)7@Ka) = 6906 Eth(Rtr (X)7 KOC)

EXERCISE 13.6. Let F be a homotopy invariant Nisnevich sheaf Bf
modules with transfers. Show tha{(X) = Hom,_(C.Z (X),F), whereD~ =
D~ Shis(Cor,,R).

The following result allows us to bootstrap quasi-isomorphism results from the
field level to the sheaf level.

PrROPOSITION13.7. Let A— B be a morphism of complexes of presheaves
with transfers. Assume that their cohomology presheavésatd H'B are homo-
topy invariant, and that fASpedE) — B(Sped) is a quasi-isomorphism for every
field E over k. Then §, — B, is a quasi-isomorphism in the Zariski topology.

PROOF. LetC be the mapping cone. By the 5-lemma, eBIE® is a homotopy
invariant presheaf with transfers, which vanishes on &pfet every fieldE over
k. Corollary 11.2 states thgH"C),,, = 0. This implies thaC,_, is acyclic as
a complex of Zariski sheaves, i.e., thigt,, andB,,, are quasi-isomorphic in the
Zariski topology. O

The main result of this lecture, 13.12, as well as the next few lectures, depends
upon the following result, whose proof will not be completed until 24.1. Theorem
13.8 allows us to bypass the notion of stricily-homotopy invariance (see 9.22)
used in lecture 9. The case= 0 of 13.8, that; is homotopy invariant, will be
completed in 22.3.

THEOREM13.8. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then each preshegfH—, Fy;s) is homotopy invariant.

The proofs of the following results are all based upon a combination of theorem
13.8, lemma 13.4, and proposition 13.7.
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PrROPOSITION13.9. Let k be a perfect field. If F is a homotopy invariant
Nisnevich sheaf with transfers, then for all n and all smooth X:

Hgar(xa F) = HR“S(X, F)-

We will prove in 22.15 thaF,, is a presheaf with transfers. This would sim-
plify the proof of 13.9.

PROOF. Forn= 0 we haveHJ (X,F) = H2,,(X,F) = F(X) for every sheaf.
By the Leray spectral sequence, it now suffices to prove Hyal(S,F) = O for
all n > 0 whenSis a local scheme. By 13.4 and 13.8, eddfy,(—,F) is a
homotopy invariant presheaf with transfers. By 11.2, it suffices to show that
HNi(SpedE, F) = O for every fieldE overk. But fields are Hensel local rings,
and as such have no higher cohomology, H,;(Sped&,—) =0forn>0. O

PrROPOSITION 13.10. Let C be a be bounded above complex of Nisnevich
sheaves with transfers, whose cohomology sheaves are homotopy invariant. Then
its Zariski and Nisnevich hypercohomology agree:

HY,(X,C) 2 Hy(X,C)  forall smooth X and for all n

PrROOF We will proceed by descending induction or- p, whereC' = 0 for
i > p. IfdimX =d, thenHYS, (X,C) = HY;s(X,C) = 0 for alln > p+d, because
cd, .. (X) and cq;s(X) are at mostl. By 13.1, both the good Nisnevich truncation
7C and thep"-cohomology sheaHP = (C/1C),; are Nisnevich sheaves with
transfers. Settingh= n— p, we have a diagram

Hmfl(xaHp) - Hgar(xafc) - Hgar(x7c) - Hg]ar(vap) - HQZ}(XJC)

- | - .

ngl(x’Hp) - H&is(X,TC) - HR“S(X,C) - Hms(vap) - HRTSJ-(X?TC)'
The four outer verticals are isomorphisms, by induction and 13.9. The statement
now follows from the 5-lemma. O

ExampLE 13.11. The motivic complexR(i) is bounded above, and has ho-
motopy invariant conomology by 2.19. K is R-module, the same is true for
A(i) = A®gR(i). By 13.10, the motivic cohomology of a smoofrcould be com-
puted using Nisnevich hypercohomology:

HnJ(X:A) - Hgar(XaA(i)) - H&is(va(i))-
This is the definition of motivic cohomology used M$FOJ. Note that the mo-
tivic cohnomology group$i™ (X,A) are presheaves with transfers by 13.5.
By 12.12 and 13.5,
H™ (X, A) = Homy,_ (R(X), A()[N) & EXZ, o) (R (X), A1),

Nis

So motivic cohomology is representablelg,. andD~ (Sh;s(Cory)).
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THEOREM13.12. Let k be a perfect field and F a presheaf with transfers such
that K = 0. Then(C,F)y;s ~ 0 in the Nisnevich topology, an@.F),,, ~0in
the Zariski topology.

Zar

PROOF. Let F be a presheaf with transfers such thgf, = 0. We will first
prove thatC,F )y~ O or, equivalently, that the homology presheadgs- H,C.F
satisfy(H;)yis = 0 for alli. Fori < O this is trivial,C;F = 0 implies thatH,C.F = 0.
Since(Hp)yis IS @ quotient of;; = 0, itis also true foi = 0.

We shall proceed by induction dn so we assume thdH; )y = O for all
j <i. Thatis, we assume thafC.F ;s =~ (C.F)yis: Wheret(C.F)y;s denotes the
subcomplex of C,F),;s obtained by good truncation at level

T(CiF)nis 1S - = (G, 1F)nis — (GiF )nis — d(CGF)yis — O

There is a canonical morphism(C.F)y;s — (H;)nisli] and hence a morphism
f 1 (CiF)nis — (Hi)nisli] in the derived category;.. Since f induces an iso-
morphism on théth homology sheaves, it suffices to prove that 0.

The presheaf with transfetd is homotopy invariant by 2.19, so by 13.1 and
13.8 the shea® = (H,),; satisfies the hypothesis of 12.19. Sifgg, =0, 12.19
yields

Homy, ((CF)nis (Hinisli]) = Homp (Fyis, (Hiwisli]) = O-
Hencef = 0in Dy, and this implies thatH; ) ;s = 0.

We can now prove tha.F,,, ~ 0. Each cohomology preshedf = H'C.F is
a homotopy invariant presheaf with transfers by 2.19. S{a¢e),;s ~ 0, we have
C.(F)(SpecE) ~ 0 for every finitely generated field extensi&nof k (and hence
for every field ovek). IndeedE is ﬁQ,x for the generic point of some smoath
Now apply 13.7 t&C.F — 0. O

Here is a stalkwise restatement of theorem 13.12.

CoROLLARY 13.13. Let k be a perfect field and F a presheaf with transfers so
that F(Speoﬁgx) = Ofor all smooth X and all x X. Then(C.F)(Spedy ,) ~ 0
forall X and all xe X. '

COROLLARY 13.14. Let f:C; — C, be a map of bounded above cochain
complexes of presheaves with transfers. If f induces a quasi-isomorphism over
all Hensel local ringsSpeoﬁQJ(, then Tot(C,C,) — Tot(C.C,) induces a quasi-
isomorphism over all local rings.

PROOF. LetK = con€ f) denote the mapping cone bf By assumption, each
HPK is a presheaf with transfers which vanishes on all Hensel local schemes, i.e.,
Kyis =~ 0. By 13.12C,HPK ~ 0 in the Zariski topology.

SinceK is a bounded above cochain complex, the double compléX) is
bounded. Hence the usual spectral sequence of a double compleX\(sd, [
5.6.2]) converges tbl, TotC, (K). SinceCqK(X) = K(X x A%) we haveHPC(K =
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CqHPK for all p andqg, and we have seen that eadiC.HPK vanishes on ev-
ery local schemeX. The resulting collapse in the spectral sequence shows that
H. TotC,(K) vanishes on every local scheme, which yields the result. O

If % ={U,,...,Un} is a Zariski covering oK, we saw in 6.12 that th€ech
complex

T (%) : 0— Zy(UpN...0Up) — - — @2 (U,) — 0
is a resolution o, (X) in the étale topology (and the Nisnevich topology). Sur-
prisingly, this gets even better when we apply

PROPOSITION13.15. If 7 is a Zariski covering of X then théech resolution
TotC.Zy (% ) — C.Z (X) is a quasi-isomorphism in the Zariski topology.

PrROOF Apply 13.14 to 6.14. O

COROLLARY 13.16. If E is a vector bundle over X, @, (E) — C,Zy(X) is
a quasi-isomorphism.

PROOF Choose a Zariski covetz of X on whichE is a trivial bundle. By
2.24 and 13.15, the left vertical and the horizontal maps are quasi-isomorphisms in
the diagram:

C.Z (% %y E) — C.Z4 (E)

C*Ztr(@) — CiZy (X).
Hence the right vertical map is a quasi-isomorphism. O

EXAMPLE 13.17. Applying 13.15 to the usual cover & (by P! — {0} and
P! — {}) allows us to deduce th&, (Z (P*)/Z) ~ C.Zy (Gm)[1] = Z(1)[2] for
the Zariski topology, becau§s Z, (A') /Z ~ 0 by 2.24. This was already observed
in example 6.15 for thétale topology. This example will be generalized in theorem
15.2 below.

PROPOSITION13.18. Let k be a perfect field and F a homotopy invariant
Nisnevich sheaf with transfers. Then the Zariski sheaf Hssociated to KU) =
H9(U x X, F) vanishes for every g dim(X).

PROOF By 13.4 and 13.8H(U) is a homotopy invariant presheaf with trans-
fers. IfE is a field overk then the Nisnevich cohomological dimensiongfis at
most dim(Xg) = dim(X), soH(Spe&) = HY(X;,F) =0. By 11.2H,,, =0. O

We now consider the behavior of cohomology with respect to blow-ups along
smooth centers. We assume tkat perfect in order to invoke 13.8.

PROPOSITION13.19. Let p: X’ — X be the blow-up of a smooth X with a
smooth center Z. Let C (respectively, Q) denote the cokerng(X¥f) — Z(X)
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(respectivelyZ(Z) & Z(X") — Z(X)). Then for any homotopy invariant Nisnevich
sheaf with transfers FExt"(C,F) = Ext"(Q,F) = Ofor all n.

If L is a complex of Nisnevich sheaves with transfers whose cohomology
sheaves are homotopy invariafixt”(C,L) = Ext"(Q,L) = 0 for all n.

PROOF SetU = X —Z; by assumptiorZ(U) is a subsheaf of bothi(X’) and
Z(X). By the 5-lemmag is the cokernel oZ(X")/Z(U) — Z(X)/Z(U).

SinceZ is smooth, and exercise 12.20 allows us to pass tetale neighbor-
hood of Z without changingC or Q, we may assume that = T x A% and that
Z is identified withT x 0. But then the projectioxX’ — T x P9-1 defining the
blow-up is a vector bundle with fibek?, with sectionZ’ = Z x, X' = T x P4-1,
SinceF is a homotopy invariant presheaf with transfers, theorem 13.8 implies that
Ext"(Z(X"),F) = H"(X',F) = HNT x P41 F) andH"(T x A9, F) =2 H"(Z,F).

The result forF is now a straightforward calculation. Sinde— X factors
throughX'’ in this special case, we ha@= Q. If K denotes the kernel &(X) —
C,then Ext(Z(Z'),F) 2 Ext"(Z(X'),F) implies that Ext(K,F) = Ext"(Z(Z),F).
This in turn implies that EX{Z(X),F) — Ext*(K,F) is an isomorphism, whence
Ext'(C,F) =0.

The result forL follows from the hyperext spectral sequenEg%q =
Extd(—,HPL) = Ext*9(—,L). O

COROLLARY 13.20. Let F be a homotopy invariant Nisnevich sheaf with
transfers, and let pX’ — X be the blow-up of a smooth X along a smooth center
Z. Then there is a long exact sequence in Nisnevich cohomology (and, by 13.9,
Zariski cohomology)

. —HYZ F) - H(X,F) = H (X' F)aH (Z,F) - H(Z ,F) — ...
There is an analogous long exact sequence of hypercohomology gifsgpsL )

(either Nisnevich or Zariski by 13.10) if L is a complex of Nisnevich sheaves with
transfers whose cohomology sheaves are homotopy invariant.

PROOF. SinceH};s(X,F) = Ext(Z(X),F), and Ext(Q,F) = 0 by 13.19, this
follows from the Ext sequences associated to exercise 12.22. O

COROLLARY 13.21.Let X — X _; — ... = X; — X be a sequence of blow-
ups along smooth centers and letCZ (X, X) be the sheaf cokernel @f(X;) —
Z(X). ThenExt'(C,F) =0 if F is a homotopy invariant Nisnevich sheaf with
transfers.

PROOF. We proceed by induction an the caseé = 1 being 13.19. IX; — X
has centeZ, and we se¥; = Z xy X, Zy = Z xy X, thenZ, — Z, is a composition
of r — 1 blow-ups along smooth centers. Consider the diagram

Z(X) Z(Xy) — Z(%, X)) — 0

-]

Z(X) Z(X) —— Z(%,X) =0,
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It follows from 12.22 and a diagram chase that there is an exact sequence
0— Z(Z,2y) — Z(X%,X;) = C — Z(X;,X) — 0.

By induction, Ext(Z(Z,Z,),F) and Ext(Z(X,X;),F) vanish. Since
Ext(Z(X;,X),F) also vanishes, it follows from the Ext sequences that
Ext'(C,F) =0. O

Cdh sheaves with transfers

The main result of this section will be theorem 13.25.

LEMMA 13.22. Let C be the sheaf cokernel BfX’') — Z(X), where X — X
is a cdh cover. Then G, = 0.

PROOF To see this, pick a generatére Hom(U,X) of C(U) and consider
the pullback cdh coved’ = U xy, X’ — U of X’ — X along f. The image of
f in Hom(U’,X) comes fromf’ € Hom(U’,X’) and so vanishes i@(U’). Since
U’ — U is a cdh coverf vanishes irC 4, (U). O

PROPOSITION13.23. Suppose that k admits resolution of singularities. If F
is a Nisnevich sheaf on Sinsuch that £, = 0, and H is a homotopy invariant
Nisnevich sheaf with transfers, thent)(F,H) = 0 for all n.

PROOF We proceed by induction, the casec 0 being a definition. Consider
the canonical surjection of sheaves

D Z(X)

acF(X)

SinceF,,,= 0, 12.30 implies that factors throughk,, C,, —P. F, where eactt,

is the sheaf cokernel of a sequence of blow-ups along smooth centers K/fite
the kernel of the surjectiop. The sheaK_,, vanishes because it is a subsheaf of
®(Cq)gp Which is zero by 13.22. By 13.21, each EXt,,H) = 0, and therefore
Ext"(F,H) = Ext""1(K,H), which is zero by induction on. O

COROLLARY 13.24. Let H be a homotopy invariant Nisnevich sheaf with
transfers. Then KX) injects into HX') for any cdh cover X— X.
In particular, H(X) — H_4,(X) is an injection for all smooth X.

PROOF. Let C be the sheaf cokernel &(X’) — Z(X). Since Honi—,H)
is left exact, 0— Hom(C,H) — Hom(Z(X),H) — Hom(Z(X’),H) is exact. But
Hom(C,H) = 0 by 13.22 and 13.23, and Haf#(X),H) = H(X) by Yoneda. O

THEOREM 13.25. Assume that resolution of singularities holds over a perfect
field k. Let F be a Nisnevich sheaf with transfers such thgt £ 0. Then the
complex G(F) is acyclic.
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PrRoOEF If C.(F) is not acyclic, there is a smallest> 0 such that the sheaf
H = Hn(C.(F)) is non-zero. Using the good truncation@f(F ), we define a non-
zero mapC, (F) — HI[n] in Dy;.. By 2.19 and 13.8, the sheaf with transfetss
strictly homotopy invariant. By 12.19, Hg (C.F,H[n]) = Hom,_ (F,H[n]) =

Nis Nis

Extyis(F,H). But this Ext group is zero by 13.23. O

THEOREM 13.26. Assume that resolution of singularities holds over k. Let
X' — X be an abstract blow-up with center Z, and setZZ x4 X'. Then there is
a distinguished triangle i~ (Shy;s(Cor,)):

CiZyy (Z/) — CZy (Z) & CuZy (X/) - C*Ztr(x) — CZyy (Z/) [1]

PROOF. Let ® be the sequend®, (Z') — Z (Z) ® Z (X') — Z (X). LetQ
denote the cokernel &, (X') & Zy (Z) — Z4 (X); by exercise 12.22p = Q. We
have to show that, (Q) is acyclic; by 13.25, it suffices to show th@t,, = 0.

Pick a finite set of elementary correspondenges U x X representing gen-
eratorsa, of Z,(X)(U) and henc&®(U). We may assume that ™y lies inU x Z.
LetW' be the proper transform &% in U x X’. By platification RG71], there is a
blow-upU’ — U such that the proper transformé’ of W' in U’ x X’ are flat over
U’. Since eacW’ — U’ is generically finite, and flat, it is finite. Using resolu-
tion of singularities, we can find” — U’ with U” smooth such thd” — U is a
(proper birational) cdh cover; we may replddéby U” so that theM” represent
elements, € Z, (X")(U"). But the mapZ, (X)(U) — Z, (X)(U"”) sends each,
to the image ob,, and hence the injectioQ,,,(U) — Q.4,(U”) sends each; to
zero. By 12.30, this proves th& ,, = 0. O

PrROPOSITION13.27. Assume that resolution of singularities holds over k, and
let F be a homotopy invariant Nisnevich sheaf with transfers. Then for all smooth
X:

* chh(x> = F(X);
o H (X, Fogp) = HRis(X, F) for all n.

PROOF. Let us first show thal,,,(X) = F(X). By 13.24,F(X) — F_4,(X) is
an injection for all smoottX. Letting G be the sheaf cokernel, we have an exact
sequence of Nisnevich sheaves:

0—F—=F4,—/G—0.

By 13.23, Ext(G,F) = 0, and therefore the sequence splits. HefRds a direct
summand of_y,, and hence the restriction of a cdh sheabtyk. SoG = 0.

Let F — I* be a cdh injective resolution &f. The restriction *|y;s of I to
the Nisnevich topology is a complex of injective Nisnevich sheaves. It suffices to
show that this is also a resolution for the Nisnevich topology.B'eZ' andH' =
Z' /B' be thei-th boundaries, cycles and conomology sheaves of the corhplex
respectively. Sincel® = F by left exactness, we only need to show tHat= 0 for
i > 0. If not, there is a minimal> 0 such thaH' £ 0. By hypothesiiHi)th =0,
so by 13.23 and dimension shifting/gi94, Exercise 2.4.3], 6= Ext*1(H',F) =
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Ext'(H',B'). This implies that the sequence-©B' — Z' — H' — 0 splits, and
th_erefor_e thatd' is a summand of'. SinceZ' is a cdh sheaf, so id'. But then
HII(Hl)th:O. l:\






Part 4

The triangulated category of motives






LECTURE 14

The category of motives

In this lecture, we define the triangulated category of (effective) motives over
k, and the motive of a scheme in this category. The constructi ‘Tg(k, R)
is parallel to the construction @M Zf=‘(k, R) in 9.2, but more central. We list the
main properties of this category in 14.5 belowkladmits resolution of singulari-
ties, this category allows us to extend motivic conomology to all schemes of finite
type, as a cdh hypercohomology groupQIfc R, we will show thatDM ﬁf{é‘ (k,R)
andDME™~ (k, R) are equivalent.

Write D~ for D~Sh;s(Cor,R), and let&, denote the smallest thick sub-
category ofD~ containing evenR, (X x Al) — R, (X) and closed under direct
sums. (See 9.1 and 9.2.) The quotibnt/&), is the IocalizatiorD*[W&l], where
W, =W, isthe class of maps iD~ whose cone is i, . A map inW, is called

anAl-weak equivalence
As pointed out in 9.3, it follows from 2.24 and 14.4 below tiatis the thick
subcategory of all complex&sin D~ such thaC, (E) is acyclic.

DEeFINITION 14.1. The triangulated category of motives oveis defined to
be the localizatiorDM ™~ (k,R) = D~ W, 1] of D~ = D~Sh(Cor,,R). (Cf.
9.2)) If X is a smooth scheme ov&r we write M(X) for the class ofZ, (X) in
DM~ (k,Z) and call it themotive of X.

We defineDM T (K, R) to be the thick subcategory 8Me™:~(k R) generated
by the motivesM(X), whereX is smooth ovelk. Objects inDMSer(k, R) will
be calledeffective geometric motives If k admits resolution of singularities, it
follows from (14.5.3) and (14.5.5) th&xM gﬁ, containgV(Y) for everyY in Schyk,

and is generated byl (X), whereX is smooth and projective.

In 8.17, we showed that the derived categdry(Sh,(Cor,,R)) is a tensor
triangulated category. The same argument works in the Nisnevich topology for
D~Sh;s(Cor,,R). Here are the details.

DEFINITION 14.2. If C andD are bounded above complexes of presheaves
with transfers, we write€ @{" ;s D for (C®}" D)y;. Because 6.12 holds for the
Nisnevich topology, the Nisnevich analogues of 8.14, 8.15, 8.16, 8.17, and 8.18
hold. In particular, the derived categddy of bounded above complexes of Nis-
nevich sheaves with transfers is a tensor triangulated category @rﬁqﬁg By
8.10,M(X) @[ \isM(Y) = M(X xY).

113
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Given 14.2, the proofs of 9.5 and 9.6 go through to show that the t@[%@,g
on D~ also endows the IocalizatioIDMﬁfif{(k, R) of D~Sh;s(Cor,,R) with the
structure of a tensor triangulated category.

The categonPM ~ (k,R) is obtained fronDM ﬁlf{é‘(k, R) by inverting the Tate
twist operationM — M(1) = M @} \;sR(1). Thus every object idM ~ (k,R) is
isomorphic toM(—n) for somen > 0 and someM in DMﬁlfifé‘(k, R). For any co-
efficientsR, it will follow from 8A.11 and 15.8 below thabM ~ (k,R) is always a
tensor triangulated category. The localizatii ﬁfifé‘(k, R) — DM~ (k,R) is fully
faithful, by Voevodsky's Cancellation Theorem 16.25 below.

The categonPM gm(k, R) of geometric motivesis obtained fronrDM gﬁ](k, R)
by inverting the Tate twist operatidvl — M(1) = M ®|"\;sR(1). ¢From the previ-
ous paragraph, it is clear thetV gm(k, R) is a full tensor triangulated subcategory
of DM~ (k,R) and that the localizatioBM gf,;(k, R) — DMgm(k, R) is fully faithful.

REMARK 14.3. Because sheafification is exact, it induces a triangulated func-
tor from Dy;; = D™ (Shy;s(Cor,,R)) to D, = D~ (Sh,(Cor,,R)). By definitions
9.15 and 14.2, we haviK @|'\;sL)e = K ®| L. Comparing definitions, we
see thatDy, — D, sends NisnevichA'-weak equivalences tétale A'-weak

equivalences, so it induces a tensor triangulated funettom DM Efifé‘(k, R) to

DMZIf’*(k, R). We will show in 14.30 below that is an equivalence wheR= Q.

Our definitions ofDM Efifé*(k, R) andM(X) are equivalent to the definitions in
[TriCa, p. 205]. This follows by comparing the definition lioc. cit. to theorem
14.11 below, using the following lemma.

LEMMA 14.4. For every bounded above complex K of sheaves of R-modules
with transfers, the morphism K- TotC, (K) is an Al-weak equivalence. Hence
K 2 TotC,(K) in DM~ (k, R).

In particular, there is a natural isomorphism (M) = C,.Z, (X).

PrROOF The proof of lemmas 9.12 and 9.15 go through in this setting. J

PROPERTIES14.5. We now summarize the main properties of the category
DMﬁlfifg(k, R) for the convenience of the reader.
e By 14.4,M(X) = Z (X) = C,Zy (X). By 9.13M(X) @ M(Y) = M(X x
Y), and 2.24 yield$(X) = M(X x A1),
e For every smoothX and everyY, it follows from 14.16 that
H"(X,C.Ry (Y)) = Hom o« - (M(X),M(Y)[n]). In particular,
Nis
H™(X,R) = Homp,er- (M(X), R()[]).
For non-smooth, H™ (X,R) is defined via this formula; see 14.17.
e (Mayer-Vietoris) For each open covégt),V} of a smooth schem,

o . . . . ff— .
proposition 13.15 yields the Mayer-Vietoris trlangIeDM,‘i“é (k,R):

(14.5.1) MU NV) = MV)@&MU) = M(X) — MU NV)[1].
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e (Vector bundle) IfE — X is a vector bundle, by 13.16 we have an iso-
morphismM (E) = M(X).

e (Projective bundle) We will prove in 15.12 thatli{ &) — X is a projec-
tive bundle of ranki+ 1, then the canonical map induces an isomorphism:

(14.5.2) PMX)(i)[2i] — M(P(£)).
i=0

e (Blow-up triangle) Assume that resolution of singularities holds dwer
Let X’ — X be an abstract blow-up with centérand seZ’ = Z x, X'.
By 13.26, there is a distinguished triangle:

(14.5.3) M(Z') - M(X")B&M(Z) — M(X) — M(Z)[1].

If moreoverX andZ are smooth, and has codimension, we show in
15.13 that (14.5.2) and (14.5.3) easily yield an isomorphism:

(14.5.4) M(X') = M(X) @ (@} M(Z)(i)[2i]).

e (Gysin triangle) LeX be a smooth scheme oMeandZ a smooth closed
subscheme aX of codimensiorc. We will show in 15.15 that there is a
distinguished triangle:

(14.5.5) M(X —Z) — M(X) — M(Z)(c)[2] — M(X — Z)[1].

e (Cancellation) Assume th&t admits resolution of singularities. L&
andN be in DMﬁlfifé‘(k, R). Then we will see in 16.25 that there is an
isomorphism HortM,N) — Hom(M(1),N(1)).

¢ (Chow motives) We will show in 20.1 that Grothendieck’s category of
effective Chow motives embeds contravariantly i gfnfq(k, Z), and
hence intoDMﬁfifé‘(k, Z), in the sense that K andY are two smooth

projective schemes, then:
(14.5.6) HonfM (X),M(Y)) = CHI™X(X x Y) = Homepgu(Ys X)-

We will define the notion of a motive with compact support in lecture 16. We
will investigate its properties there and in lecture 20.

Nisnevich Al-local complexes

In this section we will show thaDMEfifé‘(k, R) can be identified with the full
subcategory? of Al-local complexes ilD~ = D~ (Shs(Cor,,R)).

DEFINITION 14.6. As is 9.17, we say that an objectof D~ is called A*-
local (for the Nisnevich topology) if Hom (—,L) sendsAl-weak equivalences to
isomorphisms. We writeZ for the full subcategory ah'-local objects irD~. The
proof of 9.19 goes through in the Nisnevich setting to show thatig A'-local
then for evenk:

(14.6.1) HonE)Meﬁ,,(K, L) = Homy_(K,L).

Nis
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REMARK 14.7. We will see in 14.9 below thag, is a functor fromD~ to .Z.
Moreover, Hom, (C.(K),L) = Hom,_(K,L) for everyL in .2 andK in D~ by
14.4 and definition 14.6. Hen€g is the left adjoint to the inclusiol C D~

Let F be a Nisnevich sheaf with transfers. THeiis Al-local if and only ifF
is homotopy invariant, because the proof of 9.24 goes through using 13.4 and 13.8.
This is the easy case of the following proposition.

PROPOSITION14.8. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. Thedklixal if
and only if the sheavega(H"K) are all homotopy invariant.

Hence.? is the categonp,(Shy;s(Cor,,R)) of complexes with homotopy in-
variant cohomology sheaves.

PROOF Suppose first that the cohomology sheavelk afe homotopy invari-
ant. By 13.8 applied t& = ay;(HIK), the presheavad(,(—,F) are homotopy
invariant. As in the proof of 9.24, this implies that eagf)(HK) is Al-local.
Becaused,;(X) < , the hyperext spectral sequence (3#eip4, 5.7.9])

EJ9(X) = Ext®(Ry(X), ay;HIK) = Hom,_ (R (X), K[p+q])

is bounded and converges. The magnduces a morphism from it to the cor-
responding spectral sequence Yok Al. By the Comparison TheoremWeio4,
5.2.12)),f induces an isomorphism from HM(R, (X)[n], K) to Homy_ (R (X x
AY)[n],K) for eachn. By 9.20,K is Al-local.

Now suppose thak is Al-local. The cohomology presheaves if =
TotC, (K) are homotopy invariant by 2.19. Theorem 13.8 applied to the cohomol-
ogy presheavel 9K’ shows that the sheaveg,(HK’) are homotopy invariant.
The first part of this proof shows th&t is Al-local. By lemma 14.4, the canon-
ical mapK — K’ is an Al-weak equivalence. By 9.21, which goes through for
the Nisnevich topologyK — K’ is an isomorphism irD~. Hence the sheaves
ayis(H"K) = ay;(H"K’) are homotopy invariant. O

COROLLARY 14.9. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. If the preshédt@s H
are all homotopy invariant, then K i&*-local.

In particular, C.(K) is Al-local, and if KisA!-local then K= C,(K) inD~.

PrROOF Combine 13.8 and 14.8. The hypothesis appli&3.ti) by 2.19, and
the final assertion follows immediately from 14.4, as inéét@&le case 9.32. [

EXAMPLE 14.10. Here is an example to show that the converse does not hold
in 14.9. Consider the complék of example 6.15:

0— Ztr(Gm) - ZZtr(Al» 1) - Zt,(}P’l, 1) — 0.

Evaluating at Spek) and atA?, it is easy to see that the cohomology presheaf
H2K is not homotopy invariant (consider an embedding\dfin P! whose image
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contains both 0 and 1). On the other hatds Al-local, because its conomology
sheavesy;H* (K) vanish by 6.14.

If E andF are in.Z, then we defin€ © , F = TotC. (E ®{' \;sF ).

THEOREM 14.11. The category.%\;s,® ) is a tensor triangulated category,
and the canonical functor

Lis— D W, ] =DM (k,R)

is an equivalence of tensor triangulated categories.

PROOF The category? = %, is a thick subcategory ob~. By 14.6.1
and 14.8, the functo¥ — D*[W&l] is fully faithful. By 14.4, every objecK
of D~ W, 1] is isomorphic to ToE,(K), which is in.Z by 14.9. Hence? is
equivalent tdD~[W, 1]

It follows that.# is a tensor triangulated category, becaDséwAfl] is. IfE
andF are Al-local, we have seen that the tensor prodact]’ ;s F is naturally
isomorphic toE @, F in D~[W,%]. That is,®,, is isomorphic to the induced
tensor operation ory’. O

In [TriCa, p. 210], the tensor structure dff;s was defined using .

REMARK 14.12. If X is smooth and- is a Nisnevich sheaf with transfers,
we defineRHomM R, X,F) to be the complex RHotw x X,F) of sheaves with
transfers, as in 8.21. K is perfect, this complex is bounded above by 13.18.
The RHon(R, X, F) construction extends in an evident way to the more general
situation wherf is replaced by a bounded above comdlexandR,, X is replaced
by a complex representing an effective geometric mdiveMoreover, ifL is an
Al-local complex, theiRHon{M, L) is alsoA'-local, by 14.9.

If K is another bounded above complex, then a short calculation shows that
in either the derived categof~ (Sh(Cor,,R)) or in DMﬁlfifg(k, R) we have the
adjunction (wherep is eithere{" ;s or © ):

Hom(K ® R (X),L) =2 Hom(K,RHOmMR, X,L)).

EXERCISE14.13. (a) Show thaRHon({R, X,L[n])) = RHomR; X,L))[n].
(b) Use 14.16 and 15.2 to show tiR#Hom(X,R) = RandRHon(X(r),R) =0
for all smoothX andr > 0.

Next, recall from 9.8 that two parallel morphisrhsandg of sheaves are said
to be Al-homotopicif there is a magF @l Z,, (Al) — G whose restrictions along
0 and 1 coincide withf andg, respectively. The proof of 9.10 shows thiat-
homotopic morphisms between Nisnevich sheaves become ecmmﬁﬁ‘y(k, R).
PROPOSITION14.14. Let C and D be bounded above complexes of Nisnevich
sheaves with transfers, whose cohomology sheaves are homotopy invariant. If C
and D areA'-local, thenA'-homotopic maps,fj: C — D induce the same maps
on hypercohomology:

f=g: H;ar(X,C) - Héar(x7 D).
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PROOF To prove the proposition, we writeM for DMET;‘(k). Combining
13.10 with 13.5, we see that

HZar(X,C) = Homy,_ (Zy (X),C[n)).

If Cis Al-local, this equals Hogy, (Z, (X),C[n]) by 14.6.1. Since andg agree
in DM, they induce the same map frofi"(X,C) = Hom,, (Z(X),C[n]) to
H"(X,D) = Homy,, (Z (X),DIn]), as asserted. O

We will need the following elementary result f&r= Q in 14.30 below. It is
proven by replacing.(X) by R (X) in the proof of 12.13.

LEMMA 14.15. The smallest class iD~ which contains all the R(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones idall of

One of the features of motivic cohomology is that it is representable by the
Al-local complexeR(i)[n].

PROPOSITION14.16. Let L beA*-local. Then for any X Snyk
Hgar(xv L) = HomDMEfif; (er (X)7 L[n])

In particular, the motivic cohomology functors» H™ (X,R) are representable
on Snyk by Ri)[n] in DM~ (k, R):
H™ (X, R) 22 Hom_ ¢ (R (X), R(i)[1]).

Nis

PROOF By 14.8 and 13.10, the left hand sideli§,(X,L). By 14.6.1, the
right side equals Hom (R (X),L[n]). These are isomorphic by 13.5. The final
representability formula follows from this and 13.11, becaRge[n] is Al-local
by 3.1 and 14.9. O

DEFINITION 14.17. Let X be any scheme of finite type ovkeiandi > 0. We
define the motivic conomology of with coefficients inR to be:

H™(X,R) = Hom, e (R (X), R() M),

whereR; (X) was defined in 2.11. This agrees with our original definition 3.4 for
smoothX by 14.16.
Dually, we define the motivic homolog, ; (X, R) to be

o (X, R) = Homy, s (R Ry (X).

Suslin’s algebraic singular homology, defined in 10.8, is the specialicafe
of motivic homology.

PrROPOSITION14.18. If X is any scheme of finite type over k, then

HY"(X,R) = H, o(X,R).
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PROOF Becauseél (Sped, —) is an exact functor, we ha&(Spek, K) =
H*(K(Sped)) for every complexXX. SettingR = R, (Spe), we compute:

HSMI(X,R) = Hp (C,Ry (X)(Spek)) by defn. 10.8,
= HyL(Spedk,C.R; (X)) by remark above
= Hom,_(R[n],C.R (X)) by 13.5,
= HomDMﬁ‘fi,;(kR)(R[n],C*Rﬂ(X)) by 14.9 and (14.6.1),
=Hpo(X;R) by definition. [J

If we assume thak admits resolution of singularities, we may use the cdh
topology to extend some of the previous results from smooth schemes to all
schemes of finite type. For example, applying H&(h)[n|,—) to the triangle
(14.5.3) yields:

ProOPOSITION14.19. Assume that resolution of singularities holds over k. Let
X" — X be an abstract blow-up with center Z, and setZZ x4 X'. Then there is
a long exact sequence in motivic homology:

Hni(Z',R) — Hy;(Z,R) @H,;(X',R) — H,;(X,R) — H,_1;(Z’,R).

Now if L is A'-local, we can identify Hom (K, L) with Hom, .« (K,L) by
Nis

(14.6.1). WherK = Z;,(X), we can identify these Hom groups with cdh hyper-
cohomology. Note that cdh hypercohomology makes sense by 12.24, because the
cdh cohomological dimension of any Noetherian scheme is finite.

THEOREM 14.20. Assume that resolution of singularities holds over k. Let L
be anA-local complex. Then for any X in Sthand all n> 0 we have:

Homy (Zy (X),L[N]) = Hgn(X, Legp)-
In particular, for any scheme X, and all positive n and i:
H™ (X, R) & Hgn(X, R(i) eqp)-

PROOF For anyX, the inclusion of Nisnevich sheavesZ(X) — Z, (X) in-
duces a sequence of maps:

Homy_ (Zy (X),L[N]) = EX} (Zgy (X),L) by definition,
= Extis(Zy (X), L) by forgetting transfers,
 Extus(Z(X).L) by 1,
L EXQn((Z(X)) e Legr) by change of sites,
= Hggn(X, Legp) by definition.

If X is smooth, the composité o u is an isomorphism by 13.5 and 12.12. By
mimicking the proof of 13.10 (using 13.27 in place of 13.9), we see that thermap
is an isomorphism too. This finishes the proof whers smooth.



120 14. THE CATEGORY OF MOTIVES

WhenX is any scheme, we proceed by induction on dimiWe may assume
thatX is reduced. By resolution of singularities, there is a smodtand a proper
birational morphisnp: X’ — X. LetZ be a proper subscheme (of lower dimension)
such thatp is an isomorphism oveX — Z. Note that the cdh sheafification of the
sequence 12.22 is exact for the cdh caX¥éil Z — X. By 13.22, we have a long
exact sequence of cdh hypercohomology groups. There is also a corresponding
long exact sequence of hyperext groups obtained by applying(Hol to the
triangle (14.5.3). Now consider the following morphism of long exact sequences:

Ext"1(Zy (Z'),L) — Ext"(Zy (X),L) — Ext"(Zy (X'),L) & Ext"(Zy (Z),L)

HQJ# (Z', Logn) — Hgn(X, Legn) — Hegn(X', Logn) ® Hegn(Z, Legr)-
The outside verticals are isomorphisms by induction and the smooth case. We
conclude the proof of the general result using the 5-lemma.

‘Now the complexR(i) is Al-local by 3.1 and 14.9, so by 14.17 and (14.6.1)
H™(X,R) = Homy_ (R (X),R(i)[n]). This yields the final assertion. O

Motives with Q-coefficients

We now consider the case when the coefficient gontainsQ. Our first
goal is to identifyétale and Nisnevich motivic cohomology (14.24). We will
then describeDME™~ (k,R) (in 14.28), and finally show thabM g~ (k,R) =
DME™ (K, R) (in 14.30).

LEMMA 14.21. Let F be a Zariski sheaf d)-modules with transfers. Then F
is also anétale sheaf with transfers.

PrROOF It suffices to show that the presheaf kernel and cokernél ef F,
vanish. By 6.17, these are presheaves with transfers. Thus we may suppose that
Fg. = 0. If F # 0 then there is a point € X and a nonzero elementc F(S),
S=Spedy ,. SinceF = 0, there is a finit&tale maS — Swith c|g = 0. As in

1.11, the composition of the transfers and inclusion
F(S) —F(S)—F(9

is multiplication byd, the degree o8 — S. Hence this composition is an iso-
morphism. Since it sendsto zero, we have = 0. This contradiction shows that
F =0, as desired. O

COROLLARY 14.22. If F is a presheaf ofQ-modules with transfers, then
Fuis = Far

PROOF By 13.1,F; is a sheaf with transfers, so 14.21 applies. O

ProPOSITION14.23. If F is an étale sheaf of)-modules, then
Hgt(*v F) = le\]is(*a F)'
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PROOF. We need to prove thad(S,F) = 0 for n > 0 whenSis Hensel local.
Given this, the result will follow from the Leray spectral sequence. Skdg
uniguely divisible, so is its cohomology. But &is the closed point of then
HZ& (S F) equalsH(s,F), which a torsion group. Hendg%(S,F) = 0. O

Recall from 10.1 that thettale (or Lichtenbaum) motivic cohomology
HP4(X,Q) is defined to be thétale hypercohomology of the compléXxa).

THEOREM14.24. Let k be a perfect field. If K is a bounded above complex of
presheaves d@-modules with transfers, thenK = K, and

Hzt(x’ Két) = Klis(xa KNis)
for every X in Snk. In particular, H*9(X,Q) = HP9(X, Q).

PrROOF. ConsiderF = HIC. By 14.22,K;s = K andFy;s = F. By 14.23,
we have isomorphismslf(X,Fg) — HY. (X, Fy;s), and these groups vanish for
p > dim(X) by 14.23. Comparing the hypercohomology spectral sequences for
the Nisnevich and thétale topology yields the result.

In particular, the result applies to the comp@x Q(q). O

For clarity, let us say that a complék is étale A'-local if it is Al-local for
the étale topology (as in 9.17), ardisnevich A'-local if it is A'-local for the
Nisnevich topology.

These notions coincide for argtale sheaf oR-modules with transfer§,
whereQ C R To see this, note that by 14.8, is NisnevichAl-local if and
only if it is homotopy invariant:F (X) = F(X x Al,F) for all smoothX. On the
other hand, we see from 9.24 tifais étaleA*-local if and only if it is strictlyAl-
homotopy invariant in the sense of 9.225(X,F) = HS(X x AL, F) for all smooth
X and alln. Hence ifF is étaleAl-local then it is Nisnevich\!-local. Conversely,
if F is NisnevichAl-local thenHJ(X,F) = HJi(X x ALF) for all smoothX
by 13.8. By 14.23F is strictly Al-homotopy invariant, i.e étaleA-local. This
proves the following lemma:

LEMMA 14.25. Let k be a perfect field, an@ C R. The following are equiva-
lent for everyétale sheaf of R-modules with transfers F: F is homotopy invariant;
F is NisnevichA!-local; and F isétale A'-local.

PrROPOSITION14.26. Let k be a perfect field and suppose tfatC R. If K
is a bounded above cochain complextdle sheaves of R-modules with transfers,
the following are equivalent: K igtaleA-local; K is NisnevichA'-local; and the
sheaves g(H"K) are homotopy invariant.

In particular, each Rj) is anétale A-local complex.

PROOF. By 14.22a,;s(H"K) = a,,(H"K) so, by 14.8K is NisnevichAl-local
if and only if the sheaves,,(H"K) are homotopy invariant.

Suppose that the sheawiggH"(K) are homotopy invariant. By 14.25, they are
étaleAl-local. SinceQ C R, we have cg(k) = 0, soK is étaleA!-local by 9.30.
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Conversely, suppose th#t is étale Al-local and setk’ = TotC,(K). By
2.19, eactH"(K') is Al-homotopy invariant. By theorem 13.8 and 14.21, each
étale sheaves,(H"K') is homotopy invariant. The first part of this proof shows
that K’ is étale Al-local. By 9.15,K — K’ is an @tale) Al-weak equivalence,
and an isomorphism ilﬁ)Meff'*(k R). By 9.21,K — K’ is an isomorphism in
D~ (Sh,(Cor,,R)). Hence each sheaf,(H"K) is isomorphic taa,(H"K'), and is
therefore also homotopy invariant. O

COROLLARY 14.27. If k is perfect andQ C R, theétale motivic cohomology
functors X— H™ (X, R) are representable by (R [n] in DM, = DM Z{ﬁ‘(k, R):

HM (X, R) = Homy,, (R (X), R(i)[)).

PROOF Write D, for D~(Shy(Cor,,R)). SinceR(i) is étale A'-local by
14.26, we know from 9.19 that

OMyy, (Rer (X), R()[n]) = Homy_ (R (X)), R(i)[n]) = Ext"(Ry (X),R(i)).
By 6.25, this Ext group i#1 (X, R) = H&(X,R(i)). O

Let 7, denote the full subcategory &f,, = D~ (Sh,(Cor,,R)) consisting of
complexes with homotopy invariant cohomology sheaves. By 14226js also
the subcategory dftaleA®-local complexes.

THEOREM 14.28. The natural functot?,, — DM g{f’*(k, R) is an equivalence
of triangulated categories i) C R.

ProoFE The functor is full and faithful by 9.19 and 14.26. Since evirin
D, becomes isomorphic to TG{(K) in DMgfv‘ by 9.15, and TdE, (K) is in Z,
by 2.19 and 14.26, the functor is an equivalence. O

REMARK 14.29. Theorem 14.28 implies tha¥, is a tensor triangulated cat-
egory. As in the proof of 9.35 and 14.11, 14.4 and 14.9 show that the tensor oper-
ation of £, is isomorphic to the operatiop ., defined in 9.34.

THEOREM 14.30. If Q C R, theno : DM~ (k,R) — DM&™—(k R) is an
equivalence of tensor triangulated categories.

PrROOF. Recall from 14.3 that there are tensor triangulated fund@ors- D,
and DM~ — DMef‘. Since they are onto on objects, it suffices to show
that the functorc is full and faithful, i.e., that we have HotmIeff (K,L) =

HolevIeff (Kgpy Lep)- By theorem 14.11, we may assume thas in EN,S The

class of objectK so that Homy o« (K, L[n]) = HomDNIeff (Kgp, Lg[N]) for all n
Nis

is closed under quasi-isomorphisms, direct sums, ShlftS and cones. By 14.15, it
suffices to show that eadR, (X) is in this class. But then by 14.6.1, 13.5, 9.19,
and 6.25, we have Hog, .- (R (X),L[n]) = Homy,,_ (R (X), L[n]) = Hy;s(X, L)

Nis
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and HonE)MEﬁ (R”( )’ et[ ]) Hom (Rtr( )’ et[ D Hn (X’Let) By theo-
rem 14.24, these groups are |somorph|c as required. O






LECTURE 15

The complexZ(n) and P"

The goal of this lecture is to interpret the motivic complg¢n) in terms of
Zy(P") and use this to show that the product on motivic cohomology is graded-
commutative. We also apply this to give a projective bundle theorem and a Gysin
map associated to a smooth blow-up. We begin by observingvi&t — 0) =
M(P"-1),

LEMMA 15.1. There is a chain homotopy equivalence:

C.Zy (P" —0) ~ C,Zy, (P"1).

PROOF. Consider the projectio(P" —0) — P"1 sending(X,: -+ : Xn) t0 (X, :
-+ 1Xn), Wwhere 0is(1:0:---:0). This map has affine fibers. The self homotopy
A(Xg: %) = (AXg 1% -+ 1 %) is well defined orP"— 0 x Al, even ford =0,
because one of;, ..., X, is always non zero. Hence the projection and the section
(X, 1+ 1%n) = (01X, 1 -+ Xn) are inverse\l-homotopy equivalences. The lemma
now follows from 2.26. O

THEOREM15.2. If k is a perfect field, there is a quasi-isomorphism of Zariski
sheaves for each n:

C. (Ztr(Pn)/Ztr(Pnil)) ~ C, Z (G [N] = Z(n)[2n].

In particular, C, (Zy (P")/Zy (P"1)) (X) ~ Z(n)[2n](X) for any smooth local X.

Our proof will use theorem 13.12, whose proof depended upon theorem 13.8,
a result whose proof we have postponed until lecture 24. The requiremektibat
perfect is only needed for 13.8 (and hence 13.12).

PROOF. Let % be the usual cover dP" by (n+ 1) copies of A" and note
thatn of these form a covey” of P" — 0. The intersection of+ 1 of theseA" is
AN x (A1 —0)'. By 6.14, we have quasi-isomorphisifig (%) — Z (P") and

~

Zy (V') — Zy (P"—0) of complexes of Nisnevich sheaves with transfers. Hence the
quotient complexQ, = Zy (% )/ Zy (V) is a resolution ofZ, (P")/Zy, (P" —0) as

a Nisnevich sheaf. By 13.14 and 15.1, or by 13.15C[&. is quasi-isomorphic

to C, (Zy (P")/Z (P"—0)) and hence t&, (Z, (P")/Z, (P"1)) for the Zariski

topology.
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On the other hand, we know from 2.13 that Toe= A — 0 the sequence

0— Zyr (Gpy") = Zgg (T") — B Zer (TM) — @Lthr(Tnfz) —
N @sztr(Tz) — ®iZy(T) = Z—0
is split exact. Rewriting this as @ Z (G}') = Rhn = R,_; — - = Ry — 0,
with Ry = Z (T"), R, ; = @,Z(T" 1), andR, = Z, we may regard it as a chain
homotopy equivalencg, (G;")[n] — R.. With this indexing there is a natural map
Q. — R, whose typical term is a direct sum of the projections
Ztr(Anii x Ti) - Ztr(Ti)-

These areA-homotopy equivalences (see 2.25). Applyi@gturns them into
quasi-isomorphisms by 2.26. Hence we have quasi-isomorphisms of total com-
plexes of presheaves with transfers

TotC.Q, —» TOtC,R, ~— C,Z (GAM)[n).

Combining with ToC.Q, ~C, (Z (P")/Z (P"~1)) yields the result in the Zariski
topology. O

If n=1, itis easy to see that the isomorphisms of 13.17 and 15.2 agree. Fig-
ure 1 illustrates the proof of theorem 15.2 whes- 2. We have written X’ for
C.Z (X) in order to save space, andl*—h.e.’ for Al-homotopy equivalence.

0 -0 - Al x (At -0) - 242 ~P2-0

0 (A'-0)? — 3(Atx (A'-0)) 3A2 P2

0 (A'-0)? — 2(A*x (A'-0)) A? P?/(P? - 0)
= Al—he Al-he

Gh2 — (A1—0)? 2(A1-0) pt 0

FIGURE 15.1. The casa = 2 of theorem 15.2

COROLLARY 15.3. For each n there is a quasi-isomorphism for the Zariski
topology
C. (Zy(A"—-0)/Z) ~ Z(n)[2n—1].

PrROOF Applying 13.15 and 15.1 to the cover Bf by A" andP" — 0, we see
that the sequence

0— C.Zy (A" —0) — C.Zy (A") ©C.Zy (Pnil) — CZy(P") — 0
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becomes exact for the Zariski topology. The result now follows from theorem 15.2,
sinceC,Z, (A") ~ C,Z, (Spek) ~ Z by 2.24 and 2.14. O

ExXERCISE 15.4. Show that the ma@*Ztr(IPi) — Z(i)[2i] of theorem 15.2
factors through the natural inclusi@Zy, (P') — C.Z, (P") for all n>i. Hint:
Fix Uy in % and construcZ, (% ) — Z(1)[2] vanishing orZ, (U,). Then form

- A ~ ~ i . .
Ine(U) — Ty (W)@ - @ Lo (%) — Z(1)[2]”" — Z(i)[2i].
COROLLARY 15.5. There is a quasi-isomorphism
M(P") = C.Z (P") — Z® Z(1)[2) @ --- ® Z(n)[2n].

PrROOF We proceed by induction, the care= 1 being 13.17. By exercise
15.4, the magZ,, (P"1) — Z, (P") is split injective inDM, because the quasi-
isomorphismZ, (P"~1) — @Z(i)[i] factors through it. Hence the distinguished
triangle of theorem 15.2 splits:

C.Zy (P" 1) — C.Zy (P") — Z(n)[n] — C.Z,(P" H[1]. O

Our re-interpretation of the motivic complexes allows us to show that the prod-
uct in motivic cohomology is skew-commutative. This will be a consequence of
the following construction, and some linear algebra.

EXAMPLE 15.6. Consider the reflection automorphignof P", n > 1, sending
(Xg 1 Xq i+ %n) tO (=Xp : Xy : -+~ i Xn). We claim that the induced automorphism
of C,Z, (P") is A'-homotopic to the identity map, so that it is the identity map in
DME™~ (see 14.1 and 9.10).

To see this, consider the elementary correspondence fBmx Al
(parametrized by, ..., X, andt) to P" (parametrized by, ...,yn) given by the

subvarietyZ of P" x Al x P" defined by the homogeneous equation(s)

yi (XoY: +t%Yo) = (12— 1)% Y3, i=1,...,n

together withxy; = X;y; for 1 <i,j <nif n>2. (Exercise: check that this is
an elementary correspondence!) The restrictions atoagt1 yield two finite
correspondences frofff' to itself, whose difference igl,, — .

Restricted tdP"1 x Al, this correspondence is the projection offol. Thus
it induces anA-homotopy between and the identity ofZ, (P")/Z, (P"1). Ap-
plying C., we see from theorem 15.2 that it inducesAdrhomotopy between the
reflection automorphism of Z(n)[2n] and the identity, so thatis the identity map
in DM~

The symmetric grouf, acts canonically oA" by permuting coordinates. By
inspection, this induces®,-action on the sheaf with transfefs (G,") and hence
on the motivic complexeg(n).

PROPOSITION15.7. The action of the symmetric grotjp on C.Z, (A" — 0)
is Al-homotopic to the trivial action.
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PROOF Because the action is induced from an embedding- GLj(k), and
every transposition acts as the reflectitimes an element &L, (k), we see from
example 15.6 that it suffices to show that the actioSf(k) on C.Z;, (A" —0) is
chain homotopic to the trivial action.

Since every matrix irsLy(K) is a product of elementary matrices, it suffices to
consider one elementary matey (a), a € k. But multiplication by this matrix is
A'-homotopic to the identity ah" — 0, by the homotopyx,t) — g; (at)x (see 9.9).

In particular it is anA'-homotopy equivalence (see 2.25). By 2.26, the resulting
endomorphism o€, Z, (A" — 0) is chain homotopic to the identity. O

COROLLARY 15.8. The action of the symmetric grody on Z(n) is Al-
homotopic to the trivial action. Hence it is trivial iDM,ffifé‘, and on the motivic
cohomology groupBIP(X,Z(n)).

Tensoring with a coefficient rinB does not affect the action, so it follows that
>, also acts trivially orR(n)[2n], and onHP (X, R(n)).

PROOF. The action of,, on A" extends to an action di fixing P"1. In fact,
all the constructions in the proof of theorem 15.2 and corollary 15.3 are equivariant.
By 15.3, it suffices to show that the actionfonC,Z, (A" —0) is Al-homotopic
to the trivial action. This follows from 15.7 and 14.14. O

Recall from 3.11 that there is a pairing of preshed@$® Z(j) — Z(i + j).
By inspection of 3.10, this pairing is compatible with the action of the subgroup
2 X2 of 2, as well as with the permutationinterchanging the firdtand last

j coordinates o (GA*)).
THEOREM 15.9. The pairing defined in 3.12 is skew-commutative:

HY o (X, Z(1)) © HZ (X, Z( ) — HY (X, Z(i + ).

Zar

PROOFE As in 8A.2, the permutation fits into the commutative diagram
HP(X, Z(1)) @ HY(X, Z(j)) — HPTYX,Z(i)) © Z(j)) — HPTI(X,Z(i + )))

(—1)Pd T T

HO(X, Z(})) @ HP(X, Z(i)) — HPTI(X, Z(}) ® Z(i)) — HP*I(X, Z(j +1))
and the right vertical map is the identity by proposition 15.8. O

We conclude this lecture with a generalization of the decomposition 15.5 of
M(P") to a projective bundle theorem.

CONSTRUCTION15.10. Let P = P(&) — X be a projective bundle associated
to a vector bundl&’ of rankn+ 1. From 4.2, 13.11, and 13.5 we have an isomor-
phism

Pic(P) = H{is(P, Z(1)) = Homy, (Zy (P), Z(1)[2)).

Therefore the canonical line bundle yields a canonical ma, (P) —

7Z(1)[2] in D~. Recall from 10.4 that there are multiplication maps forial 1,
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from Z(1)®"1 = Z(1) @' --- @' Z(1) to Z(i). Fori > 1, we lett' denote the com-
posite
A = tri &l tr . .
Zip(P) —> Zyy (Px - x P) — Zy (P)™" ——» 2(1)[2)" — 2(i)[2i].

Finally, we extend the structure mag: Zi, (P) — Z (X) to a canonical family

of maps inD~
A 0,®T s
0, Lty (P) — Zy (P) @ Zyy (P) —— Zy (X) @ Z(i) [2].

EXERCISE15.11. Show that the canonical map in 15.10 induces the isomor-
phismZ, (Py) = & 4Z(i)[2i] of 15.5.Hint: Use exercise 15.4.

THEOREM 15.12 (Projective Bundle Theoremlet p: P(&) — X be a pro-
jective bundle associated to a vector bundlef rank n+ 1. Then the canonical
map

BitoZe (X) (1) [2] — Zyt (P(£))
is an isomorphism ildM, and p is the projection onto the factg, (X).

PROOF Using induction on the number of open subsets in a trivialization of
&, together with the Mayer-Vietoris triangles (14.5.1), we are reduced to the case
whenP(&) = X x P". SinceZ (X x P") 2 Z,, (X) @ Z; (P"), we may even as-
sumeX = Speck). This case is given by 15.5 and exercise 15.11. O

COROLLARY 15.13. Let X be a smooth scheme and Z a smooth subscheme of
pure codimension c. Let:pX’ — X be the blow-up along Z. Then

C.Zuy (X') 2= C.Z4 (X) & (@1 CZy (2) (i) [21]).
Moreover, there is a natural “Gysin” map : C,Z, (X) — C.Z (Z)(c)[2c], which
is zero on GZ, (X — Z).

PROOF. SinceZ is smoothZ’ is the projective bundle associated to the normal
bundle ofZ in X. We claim that the morphisi@,Z, (X') — C.Z(X) is a split
surjection. By 13.26 and 15.12, this will prove the first assertion.

Let X” be the blow-up oK x Al alongZ x 0, and letZ” = (Z x 0) Xyosent X
Consider the following diagram, whose rows are distinguished triangles by 13.26:

a
C*Ztr(zl) - C*Ztr(z) @C*Ztr(xl)

C.Zu (X) — C.Z(Z)[1]

f g ~h=1,x0
C*Ztr(zﬂ) _C’ C*Ztr(z X 0) @C*Ztr(xﬂ) - C*Ztr(x X Al) - C*Ztr(zﬂ)[l]-
By 2.24, the mayh is a quasi-isomorphism. Biitis alsoA'-homotopic to I x1,
soh lifts to a mapC.,Z, (X) — C.Z (X”). This splitsd, and hence.
Let .4 be the normal bundle o in X. Then the morphisnz’ — Z" is
the canonical embedding &(.#") into P(.#" & ¢). By 15.12,f is a splitting
monomorphism. Composingwith the splittings ofc and f, we see thah splits
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naturally. Since the first row is a distinguished trianddealso splits naturally,
which implies the claim.

Note that the cokernel df is C.Z, (Z)(c)[2c]. Composing the splitting dd, g,
and the splitting o€ with the projection onto this cokernel yields the desired Gysin
mapy. A diagram chase shows thavanishes oi€,Z;, (X — Z). O

EXERCISE15.14. The Gysin map foX = A" or P" andZ = 0 induces a map

C.(Z4y (A")/Zuy (A" = 0)) — C.(Zyy (B") /24y (P — 0) —~ Z(n)[2n].
(The first map is a quasi-isomorphism by 12.20.) Show thagrees with the
quasi-isomorphism of 15.2.

THEOREM 15.15. Let X be a smooth scheme over a perfect field and Z a
smooth closed subscheme of X of codimension c. Then there is a “Gysin” triangle:

C.Zur (X — Z) = CZy (X) —~ C.Zy (Z)(¢)[2€] — C.Zy (X — Z)[1].

PROOF We have to show that the Gysin map C,(Z, (X)/Zy (X —Z)) —
C.Z(Z)(c)[2c] of 15.13 is a quasi-isomorphism. By 12.20 we may assume that
X =Y x A®andZ =Y x 0. But theny is the isomorphism of 15.14, tensored with
C.Z (Y). 0



LECTURE 16

Equidimensional cycles

In the first part of this lecture we introduce the notion of an equidimensional
cycle, and use it to construct the Suslin-Friedlander chain confpx). We
then show (in 16.7) thaSF(i) is quasi-isomorphic t&(i). In lecture 19 (19.4)
we shall comparéZSF(i) to the complex defining higher Chow groups. In the
second part of this lecture, we use equidimensional cycles to define motives with
compact support and investigate their basic properties. Finally we use Friedlander-
Voevodsky Duality (see 16.24) to prove the Cancellation Theorem 16.25.

LetZ be a scheme of finite type ovBsuch that every irreducible component of
Z dominates a component 8f We say that is equidimensional overSof relative
dimensionm if for every pointsof S eitherZg is empty or each of its components
have dimensiom. If S — Sis any map, the pullbac® x4Z is equidimensional
over S of relative dimensiom.

DEFINITION 16.1. Let T be any scheme of finite type ovkrandm > 0 an
integer. The presheaf (T,r) onSnykis defined as follows. For each smo&h
Zoqui(T-1)(S) is the free abelian group generated by the closed and irreducible sub-
varietiesZ of Sx T which are dominant and equidimensional of relative dimension
r over a component @. If S — Sis any map, the pullback of relative cycles (see
1A.6 and 1A.8) induces the required natural agp(T,)(S) — Zeqy(T,1)(S).

Itis not hard to see that,(T,r) is a Zariski sheaf, and even afale sheaf,
for eachT andr > 0. One can also check that eagh,(T,r) is contravariant
for flat maps inT, and covariant for proper maps i, both with the appropri-
ate change in the dimension index(see RelCh, 3.6.2 and 3.6.4]); sed3[086,
1.3]. In particular, ifT” — T is a closed immersion, there are canonical inclusions
Zoquil T's1) = Zoqi(T,r) forall r.

EXAMPLE 16.2. The case = 0 is of particular interest, since W is irre-
ducible the groug,,(T,0)(U) is free abelian on the irreducibleC U x T which
are quasi-finite and dominant oudr HenceZy (T)(U) C z,(T,0)(U), because
Zy(T)(U) is the free abelian group of cycleslthx T which are finite and sur-
jective overU. In fact, Z, (T) is a subsheaf of,,(T,0) because the structure
morphisms associated Yo— U are compatibleZ, (T)(U) — Z,(T)(V) is also
the pullback of relative cycles (see 1A.8 and 1A.11).

If T is projective, or proper, thef, (T) = zequi(T, 0). Indeed, each closed
subvarietyZ C U x T is proper oveld, soZ is quasi-finite ovel) if and only if Z
is finite overU (see Har77, Ex. 111.11.2]).
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We now define transfer maps fay,,(T,r). Given an elementary correspon-
denceV from X to'Y and a cycleZ” in zy,(T,r)(Y), the pullbackZ, is a well-
defined cycle ol x T by 1A.6 and 1A.8. We defing,, (2°) € z,q,,(T,r)(X) to
be the push-forward of%, along the finite mapy x T — X x T. This gives a
homomorphismp, : Zgq (T, 1) (Y) = Zequ(T, 1) (X).

If r =0, the restriction off, to Z, (T )(Y) is the transfer map constructed in
1.1 and 1A.11, as we see from 1A.11 and 1A.13.

We leave the verification of the following to the reader; &iMCy, 5.7].

EXERCISE 16.3. For all T andr, show that¢ makes eaclz,(T,r) into a
presheaf with transferddint: Use the identity 2.2(4) inqul75]. If S— T is flat
of relative dimensiord, show that the pullbacky,(T,r) — Zq(Sd+r) is a
morphism of presheaves with transfers.

EXAMPLE 16.4. For eactX, there is a natural mag,,(A', 0)(X) — CH' (A" x
X) = CH(X), sending a subvariet¥ of A" x X, quasi-finite oveiX, to its cycle.
Comparing the transfer map fag,(A',0) to the transfer map fo€H'(X) de-
fined in 2.5, we see that(A',0) — CH'(—) is a morphism of presheaves with
transfers.

We define theSuslin-Friedlander motivic complexesZS(i) by:
ZSF(i) :C*Zequi(Aivo>[_2i]'

We regardZSF(i) as a bounded above cochain complex, whose top term is
Zoqui(A', 0) in cohomological degreei 2As in 3.1,C, (F) stands for the chain com-
plex of presheaves associated to the simplicial prestheafF (U x A®).

EXAMPLE 16.5. It follows from 16.2 and 16.3 that there is a morphism of
presheaves with transfers frofy; (P') = Zyq ("', 0) to Zq(A',0), with kernel
Zy (P'1). Applying C. gives an exact sequence of complexes of presheaves with
transfers 0— C,Z (P'~1) — C.Z (P') — ZS%(i)[2i].

EXERCISE16.6. Let E be the function field of a smooth variety overShow
that the stalk at Spée of the sheafz,, ;(A},0) on Snyk is equal to the global
sectionsz,,(Ak,0)(SpeE) of the sheatz,,(Af,0) on SnyE. Similarly, show
that the stalk 0€mz.q,( A}, 0) at SpeE equalsCmZyq,( Ak, 0)(SpedE).

Conclude that the stalk &tSF(i) at Spe is independent of the choice kf
since it equal&SF(i)(SpeE) evaluated irBnyE.

Here are the two main results in this lecture. Figure 1 gives the scheme of
the proof of 16.7. It shows how this result ultimately depends on theorem 13.12,
whose proof will be completed in lectures 21-24 below.

THEOREM16.7. Assume that k is perfect. Then there is a quasi-isomorphism
in the Zariski topology:

Z(i) ~ Z5F(i).
In particular, H™ (X, Z) = H"(X, ZS%(i)) for all n and i.
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PROOF. As P! is proper,z.q,(P',0) = Z (P') by 16.2. Hence 16.7 follows
from combining 15.2 and 16.8. O

FIGURE 16.1. Scheme of the proof of 16.7

THEOREM 16.8. There is a quasi-isomorphism in the Zariski topology:

C* Zequi(Pno)/zequi(PiilaO)] i’ C*Zequi(Aivo)-

We now prepare for the proof of 16.8. We remark that an easier proof is avail-
able if k admits resolution of singularities, because tlien,(—,0) satisfies lo-
calization by BivCy, 4.10.2]. This may be compared to the localization property
for C,Zy, in 13.15.

Write F(U) for the (free abelian) subgroup a‘gqui(A‘,O)(U) generated by
the cycles inU x Al which do not touciJ x 0. The transferszequi(A‘,O)(U) —
zequi(A‘,O) (V) clearly send~ (U) to F, (V). HenceF, is a sub-presheaf with trans-
fers ofzy, (A’ 0).

LEMMA 16.9. There is a commutative diagram with exact row$®BT(k), in
which all three vertical maps are injections:

0 — Zy (B~ 0)/Zy (P —» Zy,(P')/Zy (P) — coker, —— O

A

: > Zoqui(A',0) coker, —— 0.

PROOF. By example 16.2, there is a natural map fragn(P') = Z,,,(P',0) to
ZequilA', 0) with kernelZ, (P'~1). Thuse is an injection; by exercise 16.,is a
morphism of presheaves with transfers. Now the inclugigtiP' — 0) C Z, (P') is
a morphism inPST by the Yoneda lemma; see 2.8. SiriGg(P' — 0)(U) consists
of cyclesZ c U x (P' — 0) finite overU, their restriction belongs to the subgroup
F.(U),i.e.,p send<Z, (P' - 0) to F,. Hence the diagram commutes.

By inspection, cokglU) is free abelian on the elementary correspondences
Z C U x P! which touchJ x 0 and cokey(U ) is free abelian on the equidimensional
W c U x Al which touchU x 0. SinceZ — ¢(Z) is a monomorphism on these
generators, it follows that cokgt) ) — coker,(U ) is an injection for allJ. O

0 -

LEMMA 16.10. C.(F) is chain contractible as a complex of presheaves.
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ProOF. Recall that (X) is a subgroup of the group of cycles &nx Al Let
hy : F(X) — F(X x Al) be the pullback of cycles along: X x Al x AT — X x A
defined by(x,r,t) — (x,r -t). This is a good pullback because the mays flat
overX x (A" — {0}). By construction, the following diagram commutes.

St=1 ; t=0 .
XxA - S XxA'x Al <= X x A

e ah

X x A
It follows thatF,(t = 1)hy is the identity and~ (t = O)hy = 0. Thus the require-
ments of lemma 2.22 are satisfied for O

LEMMA 16.11. For every Hensel local scheme S, the negker(S) —
coker,(S) in diagram 16.9 is an isomorphism.

PROOF Since cokef(S) — cokel,(S) is injective by 16.9, it suffices to prove

that it is surjective. LeZ be a equidimensional correspondence frBrio Al

As Z is quasi-finite over a Hensel scheme, the projection decompbsds the
disjoint union ofZ, (which doesn’t contain any point over the closed point of the
Hensel scheme) and, (which is finite over the base). We claim that tHgpart
comes fronF,. TakeZ, and consider its irreducible components. The intersection
Z,N {0} must be empty, otherwise it would project to the closed point of the base.
HenceZz, is zero in the cokernel. But no& comes froniZ, (P')/Z, (P'-1). O

LEMMA 16.12. Assume that k is perfect. Then the mapdOker) —
C.(cokey,) is a quasi-isomorphism of complexes of Zariski sheaves.

PROOF. Let ¢’ be the map between the cokernels in 16.9. By 1641,
is an isomorphism on all Hensel local schemes. By 13¢@4induces quasi-
isomorphism<, coker, (X) ~ C, coker,(X) for all local X. O

PrROOF 0F16.8. Applying C, to the diagram in 16.9 yields a commutative
diagram of chain complexes with exact rows. The left two complexes are acyclic by
15.1 and 16.10. The right two complexes are quasi-isomorphic by 16.12. Theorem
16.8 now follows from the 5-lemma. O

Motives with Compact Support

By 16.1 and 16.37,(X,0) is a Nisnevich sheaf with transfers for every
schemeX of finite type overk. As such, we can regard it as an element of
D~Shys(Cor,).

DEFINITION 16.13. For any schem& of finite type ovelrk, let M¢(X) denote
Zoqui( X, 0), regarded as an object M &~ (k). By 14.4,M¢(X) = CiZgqui(X,0) in

" Nis
DM (K).
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As pointed out in 16.1M¢(X) is contravariant inX for étale maps and co-
variant in X for proper maps. As observed in 16.2, there is a canonical map
M(X) — M®(X), induced byZ (X) C z,,(X,0). Moreover,M(X) = M¢(X) if
X is proper ovek.

EXAMPLE 16.14. We have an isomorphisM®(A') = Z(i)[2i] in DMﬁ,fifé‘(k).
To see this, recall from 16.7 that the Suslin-Friedlander motivic conipiéxi) =
CiZoqui(A', 0)[—2i] is quasi-isomorphic té(i).

THEOREM 16.15. Assume that k admits resolution of singularities. If

Z —' . X is a closed subscheme with complement—bjl—> X, there is a dis-
tinguished triangle:

MS(Z) o ME(X) v MS(U) — MS(Z)[1].

PROOE Itis easy to see from the definitions that there is an exact sequence of
sheaves with transfers:

0— Zequi(zvo) S Zequi(xvo) L Zequi(UvO) —-Q—0.

By 13.25 it suffices to show th&_,, = 0. By 12.30, It suffices to fi§in Snyk
and show that for ang € Q(S) there is a composition of blow-ugs: S — Ssuch
thatp*(q) = 0. Alift of qtoz,,(U,0)(S) is supported on a finite set of irreducible
subscheme¥/, |, C U x Swhich are quasi-finite and dominant over a component
of S We may assume that the closukg of W, |, in X x Sare not quasi-finite
overS. By platification (seeRG71] or 1A.1), there is a blow-up : S — Ssuch
that the proper transform&//, of W, are flat and dominant ove. By resolution

of singularities, we may assume tHitis smooth and thap is a composition of
blow-ups along smooth centers. But thetfW,) = j*(Wg,) in Z,,(U,0)(S) and
eachp* (W) vanishes irQ(S). O

COROLLARY 16.16. For every X and Y, FIX x Y) 2 M(X) ®{" \;sME(Y).
In particular, MS(X x A") 22 M¢(X)(i)[2i].

PrROOF If X andY are smooth and proper, this is just the identityX x Y) =
M(X) ®tL’7NiSM(Y). The case wheX andY are proper follows formally from this
using the axioms 8A.1 for the tensor triangulated structure and the blow-up triangle
13.26. Using the axioms and the closed subscheme triangle 16.15, we obtain the
general case. The last assertion comes from 16.14. O

COROLLARY 16.17. For every scheme X in Sgh, M®(X) is in DMS{;.

PrROOEF If X is proper, so thaM®(X) = M(X), this follows from (14.5.3), as
pointed out in 14.1. The general case follows from this, using theorem 16.15.

EXERCISE16.18. LetU,V be an open cover of. Show that (assuming reso-
lution of singularities) there is a distinguished triangléil Efifé‘:

MC(X) — ME(U) @& ME(V) — MS(U NV — ME(X)[1].
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EXERCISE 16.19. Assume thatk admits resolution of singularities. If

Z —+ Xis a closed subscheme with complerridnt—’» X, modify the proof of
16.15 to show that there is a distinguished triangle:

i it
C*Zequi(zvr) - C*Zequi(xv I’) - C*Zequi(Uvr) - C*Zequi(zvr)[l]‘
DEFINITION 16.20. Let X be any scheme of finite type ovkrandi > 0. We
define themotivic cohomology with compact supportsof X with coefficients in
Rto be: _
H (X, R) = Hom ¢ (MS(X), R(i)[N]).
Nis
Dually, we define théBorel-Moore) motivic homology with compact supports
HrEfiM(x, R) to be
Hal (X, R) = Hom,er (R()[]. ME(X)).
Applying Hom to the triangle in 16.15 yields the expected long exact localiza-
tion sequences for motivic cohomology and homology with compact supports:

HE'(U,Z) — H' (X, Z) — HM(Z,Z) — H* M (U, 2),
Hot'(Z,Z) — He (X, Z) — Hot' (U, Z) — HRY(Z,Z).
We will identify the motivic homology group$2M(X,R) with higher Chow
groups in lecture 20.

REMARK 16.21. Friedlander and Voevodsky introduced a bivariant cycle co-
homology groupA; (Y,X) in [BivCy, 4.3], as the cdh hypercohomology ®rof
CiZgqui(X,1). Using 14.20, their definition is equivalent to:

A (Y. X) = Hom, o (M(Y)[i.C.Zequ(X.1))

In [BivCy, 8.3], they proved the following result:

THEOREM 16.22. Let X be in Scjk, where k admits resolution of singulari-
ties. Then for any &> 0 and any M inDMﬁlfifg, there are natural isomorphisms:

HOMy,or (M(1)[2), C.Zequ(X.1) =, HOMyy o (M, CuZequi(X, T+ 1);

HomDMEf{é_(M(r)[Zr],MC(X)) — HomDMEfifé_(M,C*zequi(x,r)).

More precisely, they proved iBjvCy, 8.3] that there is a natural isomorphism
A (Y(1)[2],X) = A 1;(Y,X) for every X,Y in Schyk. Since theY[i] generate
DMeM, this is equivalent to the first isomorphism. Sindé&(X) is C.zy,(X, 0),
the second isomorphism follows from the first by inductiorron

COROLLARY 16.23. Let X — Y be a flat map of relative dimension r. Then
we have a morphism DM &~

ME(Y)(r)[2r] — M(X).

PROOF By 16.3, the pullback induces a morphisi@.z.,,(Y,.0) —

CiZoqui(X ). Now takeM = C.z,,(Y,0) in 16.22. O
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The Duality Theorem below is also due to Friedlander and VoevodBiyQly,
8.2]). We also cite it without proof.
THEOREM16.24. (Duality) Assume that k admits resolution of singularities. If
T is a smooth scheme of dimension d over k then there are canonical isomorphisms

Hom(M(X x T)[n],M¢(Y)) = Hom(M(X)(d)[2d + n], M%(T xY)).

THEOREM16.25. (Cancellation) Assume that k admits resolution of singulari-
ties. LetM and N be iMﬁ‘fifé‘. Then tensoring witi(1) induces an isomorphism
Hom(M,N) — Hom(M(1),N(1)).

PROOF Suppose first thaml = M(X)[n] andN = M(Y) for smooth proper
schemesX andY. Under this assumptionyI¢(Y) = M(Y) and M¢(Al x Y) =
MS(AY) @ ME(Y) = M(Y)(1)[2]. Applying 16.24 withT = A, homotopy invari-
ance yields isomorphisms:

Hom(M,N) = Hom(M(X)[n],M(Y)) = Hom(M(X x A)[n],M¢(Y)) =
Hom(M(X)(1)[2+n],M¢(A? x Y)) = Hom(M(1)[2],N(1)[2]).
Removing the shift yields HotM,N) = Hom(M(1),N(1)). To see that this iso-
morphism is induced by tensoring wi{1), it suffices to trace through the explicit

isomorphisms we used. We leave this to the reader.
Since these motives generdd® gf,; the theorem is true whell andN are

in DMST. By 13.5, HoniM, &4Ny) = &4 Hom(M,N,) for M in DM§h. Since

DMET ™ is generated bypM§h and direct sums, the theorem holds for Iliin

DME™ = whenM is in DM§T. Finally, Hom(@Mg,N) = &Hom(Mg,N) so we
may remove the restriction dvl. O

REMARK 16.26. The Cancellation Theorem 16.25 is also valid whkes per-
fect. This was proven in 2002 by Voevodsky Woe03.

The next three lectures will be devoted to a proof that Bloch’s higher Chow
groups agree with motivic cohomology on smooth schemes. We will generalize
this to all schemes of finite type at the end of lecture 19, replacing motivic coho-
mology with Borel-Moore motivic homology.
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LECTURE 17

Higher Chow groups

During the first part of this series of lectures we defined motivic cohomol-
ogy and we studied its basic properties. We also established relations with some
classical objects of algebraic geometry, such as MiKerheory, 5.1, andttale
cohomology, 10.2.

The goal of the next few lectures is to find a relation between motivic co-
homology and the classical Chow grouP$i’, generalizing the isomorphism
H21(X,Z) = Pic(X) = CHY(X) of 4.2. That is, we will prove that:

HZ1(X,Z) = CH'(X)

for any smooth varietX. There are at least three ways to prove this. The origi-
nal approach, which needs resolution of singularities, was developed in the book
“Cycles, Transfers and Motivic Homology Theorieg/SF0(. A second recent
approach is to use the Cancellation Theorem 16.25/0€(02 and the Gersten
resolution 24.11 for motivic cohomology sheaves.

A third approach, which is the one we shall develop here, uses Bloch’s higher
Chow group<CH' (X, m) to establish the more general isomorphisifi (X, Z) =
CH'(X,2i —n). This approach uses the equidimensional cycle groups of the pre-
vious lecture, but does not use resolution of singularities.

The main goal of this lecture is to prove that the higher Chow groups are
presheaves with transfers. (See theorem 17.21.) In particular, they are functo-
rial for maps between smooth schemes. (We will give a second proof of this in
19.15))

We begin with Bloch’s definition of higher Chow groups (s&¢oB6)]).

DEFINITION 17.1. Let X be an equidimensional scheme. We wteX, m)
for the free abelian group generated by all codimensismbvarieties orX x A™
which intersect all faceX x Al properly for allj < m (in the sense of 17A.1).

Each faceX x Al is defined by a regular sequence, and intersection of cycles
defines amag (X,m) — Z(X, j) (see 17A.1, orfful84, Example 7.1.2]). We write
Z (X, ) for the resulting simplicial abelian group— Z (X, m). We writeZ (X, *)
for the chain complex associatedz¢X e).

Thehigher Chow groupsof X are defined to be the groups:

CH (X, m) = min(Z (X, ®)) = Hn(Z (X, %)).

If X'is any scheme, it is easy to check tizt' (X, 0) is the classical Chow
groupCH'(X) (see 17.3). Indeed!(X,0) is the group of all codimensioincycles
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on X while Z(X,1) is generated by those codimensioaubvarietiesZ on X x
A which intersect botiX x {0} andX x {1} properly. Moreover the maps
Z(X,1) —= Z(X,0)sendZto ZN (X x {j}).

EXAMPLE 17.2. If i <d = dimX, thenz,,(X,d —i)(A™) C Z(X,m) for ev-
ery m, because cycles iX x A™ which are equidimensional ové&™ must meet
every face properly. By 1A.14, the inclusion is compatible with the face maps,
which are defined in 16.1 and 17.1, so this yields an inclusion of simplicial groups,
Zequi(x7d - I)(A.) - Zl(X7 .)'

EXERCISEL7.3. (a) If d = dimX, show that every irreducible cycle (X, 1)
is either disjoint fromX x {0, 1} or else is quasi-finite ovekx®. Use this to describe
Z2(X,1) — Z(X,0) explicitly and show tha€CHY(X,0) = CHY(X). (The group
CHY(X) is defined in Ful84, 1.6].)

(b) Show thatC,Z (X)(Sped) is a subcomplex o(X,*). On homology,
this yields map$15"9(X /k) — CHY(X, m). Form= 0, show that this is the surjec-
tion HSMY(X /) — CHy(X) = CHY(X) of 2.21, which is an isomorphism whet
is projective. By 7.3, it is not an isomorphism whxris A* or A1 — 0.

The push-forward of cycles makes the higher Chow groups covariant for finite
morphisms (see 17A.10). It also makes them covariant for proper morphisms (with
the appropriate change in codimension indesee Blo86, 1.3]).

At the chain level, it is easy to prove that the complezés., ), and hence
Bloch’s higher Chow groups, are functorial for flat morphisms. However, the com-
plexesZ (—, ) are not functorial for all maps. We will see in 17.21 below that the
higher Chow groups are functorial for maps between smooth schemes.

PrROPERTIESL7.4. We will need the following non-trivial properties of higher
Chow groups:

(1) Homotopy Invariance: The projectign: X x A — X induces an isomor-
phism

CH'(X,m) —~ CH(X x AL, m)

for any schem& overk. The proof is given inBlo86, 2.1].
(2) Localization Theorem: For arly X open, the cokernel of (X,e) —
Z(U,e) is acyclic. This is proven by Bloch iBJo94]. (Cf. [Blo86, 3.3].)
If the complemenZ = X —U has pure codimensiog) it is easy to
see that we have an exact sequence of simplicial abelian groups (and also
of complexes of abelian groups):

0—2Z7%Z,e)— Z(X,0) — Z(U,e) — coker— 0.

Thus the localization theorem yields long exact sequences of higher
Chow groups. The fact that we need to use Bloch’s Localization The-
orem is unfortunate, because its proof is very hard and complex.

Transfer maps associated to correspondences are not defined od (@l of.
We need to restrict to a subcomplex on whigtf may be defined.
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DEFINITION 17.5. Let # be a finite correspondence frokito Y. Write
Z(Y,m),, for the subgroup of (Y,m) generated by the irreducible subvarieties
T C Y x A™such that the pullbacX x T intersects#” x Al properly inX x Y x A™
for every faced) — A™. By constructionZ (Y, *),, is a subcomplex of (Y, ).

The proof of the following proposition, which is a refinement of the results in
[Lev9g], is due to Marc Levine.

PROPOSITION17.6. Let # be a finite correspondence from X to Y, with Y
affine. Then the inclusion(X, x),, C Z(Y,*) is a quasi-isomorphism.

PROOFE (Levine) Letw: W — Y be a morphism of schemes withsmooth,
andW locally equidimensional but not necessarily smooth. \\#it€, m),, for the
subgroup of (Y, m) generated by the irreducible subvariefles Y x A™ for which
every component ofi1(T) has codimension at leasin W x A™ and intersects
every face properly. By constructior(Y, ), is a subcomplex af (Y, *).

For example, ifV is the support of a finite corresponderige letw: W — Y
be the natural map. ThaN is locally equidimensional, and the grodpY, m),, is
the same as the groui{Y, m),, of 17.5.

Levine proves tha? (Y,m),, — Z(Y,m) is a quasi-isomorphism on p.102 of
[Lev9g] (in I.11.3.5.14), except thaWV is required to also be smooth in order to
cite lemma 1.11.3.5.2 ofop. cit. In loc. cit, a finite set{C;} of locally closed
irreducible subsets of and a sequence of integerg < i is constructed, with the
property thafT is in Z(Y,m)y if and only if T is in Z(Y,m) and the intersections
of T with C; x AP have codimension at least; for all j and for every fac@P of
A™. A reading of the proof of lemma I.11.3.5.2 shows that in féd¢tiheed only be
locally equidimensional. O

DEFINITION 17.7. Let # be a finite correspondence between two smooth
schemesX andY. For each cycle? in Z(Y,m),,, we define the cycle#™ (%)
onX x AMto be:

WNY)=nm. (W xD")- (X xZ)).
Herer : X xY x A™ — X x A™ is the canonical projection.

- For each?, it is clear that#* defines a homomorphism from the group
Z(Y,m),, to the group of all cycles oK x A".

EXAMPLE 17.8. Let f : X — Y be a morphism of smooth varieties, andet
be its graph. Foe? in Z(Y, O)Ff, 't (#) is just the classical pullback of cycles
f*(#') defined in Ber65 V-28] (see 17A.3).

REMARK 17.9. The map#* of 17.7 is compatible with the mag ™ defined
in 17A.8 in the following sense. Give#” in Cor(X,Y), # x diag/A™) is a finite

correspondence frod x ATtoY x A™. If # is a cycle inZ (Y, m),,, we may regard
it as a cycle inY x A™. The projection formula 17A.11 says that the following
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diagram commutes:
Z(Y,m),, — 2(Y xA™),,
v | (7 x diag(am))*
2 (X, m) —— Z(X x A™).
LEMMA 17.10. The maps#* define a chain map @, *),, — Z (X, *).

PROOFE Let aj :A™—» A™1he g face, and consider the following diagram,
whose vertical compositions av&™:

*

9,
z(Y x AT z(Y x A™)

fr fr
o
Z(X x Y x A™1) L Z2(X x Y x A™M)
W ox ™ML W ox A™. —

*

Z(X x Y x A™1) T Z(X x Y x A™)

T Ty

*

9
Z(X x A™1) —» Z(X x A™).

The horizontal mapsg; are only defined for cycles meeting the face properly (see

17A.4) and the intersection products in the middle are only defined on cycles in

good position for#’. The top square commutes because of the functoriality of

Bloch’s complex for flat maps, and the bottom square commutes by 17A.10.
Suppose that” is a cycle inX x Y x A™ 1 which intersects the facéx Y x A™

as well as? x A™1 and x A™ properly. By 17A.2:

WX DA™ (X XY xAM)- ) =X x Y x A" ((# x &™) . 7).

That is, the middle square commutes f#t Finally, if € Z (Y, m+ 1)y, the cycle
(W x A™1) . £*% is finite overX x A™!, sox, may be applied to it. A diagram
chase now shows th# ™ is a morphism of chain complexes. O

CoROLLARY 17.11.1f Y is affine, any finite correspondenge from X to Y
induces map® * : CH'(Y,m) — CH'(X, m) for all m.

PROOF On homology, 17.6 and/* give: CH!(Y,m) = Hy(Z(Y,%),,) —
Hn(Z (X, %)) = CHI (X, m). O

ExampLE 17.12.If f: X =Y isa mo_rphism of smooth varieties, aMdis
affine, we will write f* for the mapl; from Z (Y, m)rf to Z (X, m), and also for the

induced map fronCH'(Y,m) to CH'(X,m). It agrees with Levine’s map* (see
pp. 67 and 102 ofilev98]). This is not surprising, since we are using lemma 17.6,
which is taken from p. 102 ofljev98]. The mapf* may also be obtained from
[Blo86, 4.1] using Blo94].
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If fis flat, thenf* is just the flat pullback of cycles. That is,# = [V] then
f*(#) is the cycle associated to the schefmé(V). This fact is a special case of
17A.4.

We can now show that the higher Chow groups are functors on the subcategory
of affine schemes i@or,.

LEMMA 17.13. Let X, Y and Z be smooth affine schemes. Given finite corre-
spondence¥ in Cor(X,Y) and#, in Cor(Y,Z), then

(Wyo #)" =5 W5 :CHI(Z,m) — CH'(X,m).

In particular, if f, : X —Y and §:Y — Z are morphisms, theff, o f,)* =
5.

PROOF By 17.6 and 17.12, it suffices to show thait, o #;)* = #{*#5" as
maps fromz (Z,m),, — Z(X,m), where”?” € Cor(Y 1I X,Z) is the coproduct of
W, and#,0#;. An element o (Z,m),, is a cycle inZ (Z,m) which is in good po-
sition with respect to botl#,, and’#, o #;. Hence the result follows from theorem
17A.14, given the reinterpretation in 17.9. O

We now extend the definition of the transfer miéf’ from affine varieties to
all smooth varieties using Jouanolou’s devidey73 1.5] and Wei89, 4.4]: over
every smooth varietX there is a vector bundle tors®f — X with X’ affine.

LEMMA 17.14.Let X be a variety and pX’ — X a vector bundle torsor. Then
p* : CH*(X,*) — CH*(X’, %) is an isomorphism.

PROOF. By definition, there is a dense opBnin X so thatp=1(U) = U x A"
There is a commutative diagram

0—Z(X'=pHV)) — Z(X',%) — Z(p(V))

| ]

0 Z(X-U) Z'(X,x) — Z'(U).
By homotopy invariance of the higher Chow groups (see 17.4), the right vertical
arrow is a quasi-isomorphism. By Noetherian induction, the result is trié-fdy,
i.e., the left vertical arrow is a quasi-isomorphism. By the Localization Theorem
and and the five lemma* : CH*(X, ) — CH*(X’, %) is an isomorphism. O

LEMMA 17.15. Let p: Y/ — Y be a vector bundle torsor and let X be affine.

e Every morphism f X — Y has alift f : X — Y’ such that pf= f.
e Every finite correspondence has a lift, i.e,, :fCor(X,Y’) — Cor(X,Y)
is surjective.

ProoF Clearly, X xy Y’ — X is a vector bundle torsor. Buf is affine and
therefore every vector bundle torsor ovelis a vector bundle (se&\ei89, 4.2]).
Define f': X — Y’ to be the composition of the zero-sectionXok, Y’ followed
by the projection. Clearlypf’ = f.
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Now suppose thatV C X x Y is an elementary correspondence. SiW¢és
finite overX, it is affine. By the first part of this proof, the projectign W — Y
lifts to a mapp’ : W — Y. Together with the projectiow’ — X, p’ induces a lift
i:W— XxY of WcC X xY. Theni(W) is an elementary correspondence frEm
to Y’ whose image undeg, isW. O

LEMMA 17.16.Let X and Y be two smooth varieties over k and leKp— X
and g: Y’ — Y be vector bundle torsors with 4nd Y’ affine. Then for every finite
correspondenc®’ from X to Y, there exists a correspondeméfrom X to Y’ so
that go#’ = # o pin Cor (X',Y).

X' 7 Y’
] k
X 7 Y
PrROOF SinceCor(X',Y") — Cor(X',Y) is onto by 17.15,# o p has a lift
. O

DEFINITION 17.17. Let X andY be two smooth varieties ové&rand let”” be
a finite correspondence froMto Y. We define# * : CH'(Y,m) — CH' (X, m) as
follows.

By Jouanolou’s devicelpu73 1.5], there exist vector bundle torsqrs X’ —
X andq:Y’ — Y whereX’ andY’ are affine. BotlX’ andY’ are smooth, because
andY are. By lemma 17.14* andq* are isomorphisms. By 17.16 there is a finite
correspondenc®”’ from X' to Y’ so thatqo #” = # o pin Cor,(X",Y). SinceY’
is affine, the map?’" : CH*(Y’,m) — CH*(X’,m) was defined in 17.11. We set
W= (p*) 1w g : CH*(Y,m) — CH*(X,m).

%

cH () L cH (Y )
p*‘% q*}%
CH (X ) <L CH* (Y, %)

If f:X — Y is amorphism, we definé* : CH'(Y,m) — CH'(X,m) to bel%,
thatis, f* = (p*)~1(f/)*q*, wheref’ : X’ — Y’ lies overf.

LEMMA 17.18.1f X and Y are affine, the map defined in 17.17 agrees with the
map# * defined in 17.11.

PROOF By 17.13, the map defined in 17.17 equals:
(p") 7 a = (p) M@ )" = (p) (W ep) = (p) TP =" O

LEMMA 17.19. The definition of#* in 17.17 is independent of the choices.
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PROOF. Suppose given affine torsok’ — X andY” — Y and a lift #" €
Cor(X",Y") of #'. We have to show tha”’ and#" induce the same map.

We begin by making two reductions. First, we may assumeXhat X” and
Y =Y", by passing toX’ xyx X" andY’ x,, Y” and choosing lifts of#’ and#".
(This reduction uses 17.18.)

We may also assume thAtis affine and thaX’ = X, by replacingX by X'.
Thus we need to show that for any two lité& and#?; of 7, #,"q" = #;"q".

By lemma 17.20, there is a finite corresponde?%eso that the following dia-
gram commutes:

X x Al i \%4

~Y.

Since s, ands,; are both inverses to the projectign: X x Al — X, we have
$P* = s;p* by 17.13. Since higher Chow groups are homotopy invariphis
an isomorphism and we ggf=s;. SinceX andY’ are affine, and/; = 77051, we
may apply 17.13 again to get

Wy =W =siW* =Wy O

Recall from 2.25 that two correspondencés and #; from X to Y are said
to beAl—homotopic, writter, ~ %, if they are the restrictions of an element of
Cor(X x Al)Y) alongX x 0 andX x 1.

LEMMA 17.20. Let # be a finite correspondence between a smooth affine
scheme X and asmooth Y. Iff — Y is a vector bundle torsor, then any two lifts
#, and ¥, are A'-homotopic.

PROOF. LetV be the image of the union of the supports’f and %] in
X xY, and letv’ denote the fiber product & andY’ overY; p:V’ —V is a vector
bundle torsor. SincX is affine and the induced map— X is finite, V is affine
too. Hencep: V' — V is a vector bundle. Fix a sectienV — V'.

XxY \4

T
Ve———» XxY Y
Clearly, pis anAl-homotopy equivalence (in the sense of 2.25) with inver#eat
is, spis Al-homotopic to the identity.

Both %, and %] induce correspondenca% andVZfrom X toV’. Now the
compositiongo (#; x At) € Cor(X x A1,V’) is anAl-homotopy fromsp#; to #;,
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fori=0,1. Sincep%: p%, we have

Ty~ sply = sl ~ 7,
Since ] is the composition of/’/ivwith the mapV’ — Y, # is Al-homotopic to
Y. O

At last, we have the tools to show that the higher Chow groups are presheaves
with transfers, i.e., functors on the categ@yr, of smooth separated schemes
overk.

THEOREM17.21. The maps? ™ defined in 17.17 give the higher Chow groups
CH'(—, m) the structure of presheaves with transfers.

That is, for any two finite correspondencg$ and 7, from X to Y and from Y
to Z, respectively, and for alk € CH'(Z, m):

W (W (@) = (Wpo #1) (@),
In particular, if f, : X =Y and § : Y — Z are morphisms, theff,o f,)* = f; f5.

PROOF. By 17.16, there is a commutative diagranQar, of the form

X/ ,Wl, _ Y/ %’ _ Z/
P
X 4! ~Y 72 A

where the vertical maps are affine vector bundle torsors. By 17.13, we have
Wy = (#y o #])*. Since the definitions o#* and (#, 0 #,)* are inde-
pendent of the choices by 17.19, the statement now follows from an unwinding of
17.17:

NG = ()G @) TG = () (L o) T = (Mo W) D



Appendix 17A- Cycle maps

If % is a finite correspondence frokto Y, we can define a mag ™ from
“good” cycles onY to cycles onX. The formula is to pull the cycle back ¥ x Y,
intersect it with7", and push forward tX. In this appendix, we will make this
precise, in 17A.8. First we must explain what makes a cycle “good”.

DEFINITION 17A.1. Two subvarietieZ; andZ, of X are said tointersect
properly if every component oZ, NZ, has codimension codi# + codimZ, in
X. This is vacuously true iZ, N Z, = 0.

If the ambient varietyX is regular, the intersection cych - Z, is defined to
be the sumy n;[W;], where the indexing is over the irreducible componafits
of Z, N Z,, and then; are their (local) intersection multiplicities. Following Serre
[Ser69, the multiplicity n; is defined as follows. 1A is the local ring ofX at the
generic point ofV}, andl, are the ideals of definingZ,, then

n; = Z(—l)iIengthTonf\(A/Il,A/Iz).
|

If X is not regular, the multiplicity will only make sense when only finitely many

Tor-terms are non-zero.

We say that two equidimensional cyclés= 3y mV, and?” = 3 n;W; intersect
properly if eachV; andW; intersect properly. In this case, the intersection cycle
7 - W is defined to bg m;n; (V- W)).

EXERCISE17A.2. Let 71,7, and 75 be three cycles on a smooth schexe

Show that(7] - #5) - 75 = ¥, - (¥, - ¥3) whenever both sides are defined. (This is
proven in Ber65 V-24].)

DEFINITION 17A.3. Suppose thaf : X — Y is a morphism withX andY
regular, and that” is a codimensiomcycle onY. We say thaf *(#/) is definedif
each component df-1(Supg#/)) has codimensioi i in X. As in [Ser65 V-28],
we define the cycld*(#/) to bel; - (X x #') (see 17A.1), identifying the graph
I with X,

As noted in Ber65 V-29], the intersection cycle makes sense evefig not
regular, since the multiplicities may be computed ovdny flat base change for
Tor (see Wei94, 3.2.9)).

EXAMPLE 17A.4. If fisflatand? = V], thenf*(#/) is the cycle associated
to the schemd ~1(V). If X is a subvariety ofr, then the cyclef*(#) on X is

149
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the same as the cyck- # considered as a cycle ofL If X —— Y is a regu-
lar embedding, the coefficients éf (%) agree with the intersection multiplicities
defined in Ful84, 7.1.2].

REMARK 17A.5. Here is a variant of definition 17A.3 we will need in the next
lecture. Suppose th&andT are smooth, thaX is a scheme of finite type, and that
f:XxS— XxTisamorphism oveK. If V is a codimensiomcycle inX x T,
we say thatf*(V) is defined if every component df1(V) has codimensionin
X x S (Itis not hard to see that they have codimension)

As in 17A.3, f*(V) is defined to be the intersection produiGt- (Sx V) of
17A.1, wherd ; is the image of the graph embeddingok Sinto X x Sx T. The
Tor formula of 17A.1 makes sense because the inclusion X x Sx T is locally
defined by a regular sequence, and hence has finite Tor dimension.

DEFINITION 17A.6. Let f : Y — Y be a morphism of smooth varieties and
a cycle onY’. We say that a cycl& onY is in good positionfor % (relative to
f) if the cycle f*(#) is defined, and intersec# properly onY’. If % is in good
position for#, the intersection product - f*# is defined (see 17A.1). If the
map f is flat, the cyclef*(#) is always defined.

Let W be an irreducible subvariety &f and letw be the compositioV —
Y'—Y. By 17A.1 and 17A.3, a codimensiomycle % is in good position folW
if and only if codimy, w~(Supg#/)) > i, that is, ifw*(#) is defined.

As a special case, we will say that a cyéleis in good position for a finite
correspondenc®” from X to Y if ¢ is in good position for the cycle underlying
W, relative to the projectioX xY — Y.

REMARK 17A.7. Let f : X — Y be a morphism of smooth varieties and let
% be a cycle onX, supported on a closed subscherso that the composition
Z — X — Y is a proper map. Itis clear thdt(%) is well-defined even though
iS not proper.

DEFINITION 17A.8. Let # be a finite correspondence between two smooth
schemes andY. For every cycle? onY in good position for#’, we define

WD) = (WD),

wheref : X xY — Y andr : X x Y — X are the canonical projections. The inter-
section and the push-forward are well-defined by 17A.6 and 17A.7. The#tiap
induces the transfer map for Chow groups, see 17.11 and 17.17.

For any smootii', # x T is a finite correspondence frokix T toY x T over
T. By abuse of notation, we shall also wrig€* for (# x T)*.

ExaMPLE 17A.9. We can now reinterpret the composition of correspon-
dences. If#] and %, are finite correspondences franto Y and fromY to Z,
respectively, we have:

Wyo Wy =W x2) (Wp) = (XxHa) (W1).

Here are two formulas which are useful in the study/6f.
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LEMMA 17A.10. Consider the following diagram of varieties

/

x 9 .x
1
Y’ Y
g

where the square is fiber and both X and Y are smooth.Adbe a cycle on X
whose support is finite over Y and for whi@i)*.2" is defined. Then'd..2" is
defined and gf, 2" = f.(d)*2".

PROOF. If V is a component ofZ", then the mapf : V — (V) is fi-
nite. Hencef’: (¢)~1(V) — g~1(f(V)) is finite too, so that codifiy) (V) =
codimg~t(f(V)). By hypothesis, codirig/)~1(V) > i, which proves thag* f..2"
is defined. The equality now follows fronr {75, 2.2(4)]. O

LEMMA 17A.11 (Projection Formula)Let f: X —Y be a morphism of smooth
schemes. Suppose given a cy2leon X, whose supportis finite over Y, and a cycle
% onY which is in good position fo®” (see 17A.6). Then. £ and# intersect
properly, and the projection formula holds:

(2P =12 .

PROOF Since the restriction of to the support of2" is finite, it is clear that
f.(Z") and? intersect properly too. The result is now a consequence of the basic
identity 22(2) of [Ful75], or [Ser65 V-30]. O

EXERCISE17A.12. Leti be the inclusion of a closed subvari®tyin a smooth
schemeX and letf : X — Y be a map of smooth schemes. Prove that i a cycle
onY so that bothf*% and(fi)* (%) are defined, then (fi)*(#) =W- f*% . Hint:
Use [Ser65 V-30] or [Ful75, 2.2(2)].

Recall from 1A.10 that iV — Y is a morphism withY regular, then the pull-

back Z, of a relative cycleZ” in T xY is a well defined cycle off xV with
integer coefficients.

LEMMA 17A.13. Let T and Y be regular and le¥ be a cycle in Tx Y which
is dominant equidimensional over Y. If¥ — Y is a morphism, then the pullback
%, agrees with the pullback cycld x T)*(Z).

PROOF Note thatZ is a relative cycle by 1A.6, so thak, is defined. Its
coefficients are characterized by the equali(i€§ ), = 55}(\,) for everyv e V. By
[RelCh, 3.5.8 and 3.5.9], the coefficients &, are the same as the multiplicities
in 17A.1, i.e., the coefficients dff x T)*(2") given by 17A.3. O

THEOREM 17A.14. Let #, and %, be two finite correspondences from X to
Y and from Y to Z, respectively. Suppose t#fais a cycle on Z which is in good
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position with respect to botW, and %, o #,. Then
(Wao W) (Z) = W1 (W7 (Z))-
The term#y* (%, (Z')) makes sense by the following lemma.

LEMMA 17A.15. LetZ be in good position fo¥, and#, 0 #;. Then#5 (%)
is in good position with respect ¢ .

PROOF We may assume that the correspondences are elementary; iand
W, are subvarietie®, andW, of X x Y, andY x Z, respectively. In this spirit, we
will write W, oW, for the subvariety oK x Z which is the support of the composi-
tion of correspondence¥,, o #. Consider the following diagram:

W20W1
C
u
e

W, xy W, - W, g Y4

q p

b
W Y

By hypothesis, codid—1(2") > codim2 and codint~1(2’) > codim%’.
We claim that codirb~1pd=12 > codim%. Since the central square is carte-
sian,b~1p = ge L. Sinceqis finite, this yields
codimb~tpd~1% = codimge 'd 12 = codime 'd 1%,
Bute 1d~! =u1c 1, anduis finite, so:
codime *d~1% = codimu~!c 1% = codimc™1 .
But codimc™1.%Z > codimZ by hypothesis, as claimed. O

PROOF OF17A.14. The right side is defined by 17A.15. We will follow the
notation established in figure 1, where we have omitted the fAftor every entry
to simplify notation. Note that the central square is cartesian.

By definition 17.7, we have

(W7 (Z)) =r.(Wy- b (p.(#y- A" 2))).
Since the central square is cartesian, we Hayg = g.€* by 17A.10. Since the
pullbacke* is a ring homomorphism, we have
b*(p.(#3-d"Z)) = qu (€ (#5-d"Z)) = q. (€' (#3) - €d"Z).

Consider the two cycles?” = e*(%5) - (de)*(Z") and % = #; and the function
g. The intersection?” - % = €*(%5,) - (de)*(Z) - q*(W, ) is proper becausg is
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XxZ

XXYXZ oY xZ yi

FIGURE 17A.1. Composition of correspondences

in good position with respect ¥, oW,. Therefore the conditions for 17A.11 are
satisfied, and the projection formula yields-q. .2 = q.(q"'% - 2°), i.e.,

V(W3 (2)) =1.0. (A" () - (&) - €d° Z)).

Since the push-forward and pullback are functorial, we haeg = v.u, and
e*d* = u*c*. Our cycle then becomes

v, (q'(#y)-€ () u'e 2).

We may use the projection formula (17A.11) once again, this timearfpmvith
2 =q () e (W, and¥? = c"Z (the conditions are satisfied by the same ar-
gument we used above). ThisyieldS 2" -u*'%) = (u..2")- %, i.e.,

W W3 (Z2)) = V. (u(q () -€(#)) ¢ Z).

Since the composition o] and %, as correspondences is exaatly(q*(#) -
e'(#,)), the last equation becomes

WL (W3 (Z) =V (Wyo W) - € L) = (Wyo W) (Z).
This concludes the proof of 17A.14. O






LECTURE 18

Higher Chow groups and equidimensional cycles

The next step in the proof of theorem 19.1 (that motivic cohomology and higher
Chow groups agree) is the reduction to equidimensional cycles. The main refer-
ences for this lecture arél[ghCh] and [FS03.

DEeFINITION 18.1. For an equidimensionaK, andi < dimX, we write
4qui(x, m) for (X, dimX —i)(A™), the free abelian group generated by all codi-
mensioni subvarieties orX x A™ which are dominant and equidimensional over
A™ (of relative dimension diX —i). We writez‘equi(x,o) and 4qui(x,*) for the
simplicial abelian groupn +— 4qui(x, m) and its associated chain complex, respec-
tively.

By 17.2,Z,,(X,m) is a subgroup o (X,m) andz,(X,e) is a simplicial
subgroup of (X, e).

EXAMPLE 18.2. The inclusionz,(X,+) C Z(X,) will not be a quasi-
isomorphism in general. Indeed, iift> d then Z,,(X,m) = 0 while Z(X,m)
is not generally zero. For example, consider= Spedk. If i > 0 we have
Zequi(SPed, ) = 0. In contrastZ (Sped, i) is the group of points oa' which do
not lie on any proper face. We will see in 19.7 thit' (Sped, ) = H'' (Spek) =
KM(K).

THEOREM 18.3. (Suslin[HighCh, 2.1]) Let X be an equidimensional affine
scheme of finite type over k, then the inclusion map:

Zequil X, %) — Z(X, )
is a quasi-isomorphism for< dimX.
COROLLARY 18.4. Let X be an affine variety, then for albi O
CH'(X,m) = Hin(Zogui(X x A',%)).
In particular, CH (Spedk,m) = Hm(Zxq (A", )).

PROOFE This is an immediate corollary of 18.3, definition 17.1 and the homo-
topy invariance of the higher Chow groups; see 17.4. O

COROLLARY 18.5. Let X be an equidimensional quasi-projective scheme over
a field k which admits resolution of singularities. For alkidimX, the natural
inclusion Z,(X, ) —— Z(X, *) is a quasi-isomorphism, i.e., it induces isomor-
phisms
HinZequi( X, *) — HmZ (X, *) = CH'(X,m).

155
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PrRoOOF If U is affine,z';equi(u,*) — 7(U, ) is a quasi-isomorphism by
18.3. We proceed by induction on d¥n LetU be a dense open affine subscheme
of X with complemen¥ of codimension 1. The commutative diagram

Ziaai]i(Z?*) - Ziequi(x7*) - Ziequi(Uv*>

bk
27YZ,%) — Z(X,x) —— Z(U,%)

becomes a morphism of triangles by 16.19 and the Localization Theorem for higher
Chow groups (see 17.4). The result follows from the 5-lemma. O

We need lemmas 18.9, 18.12 and 18.14 to prove theorem 18.3. All of their
proofs rely on a technical theorem 18A.1, which will be proven in the appendix.
We begin by introducing some auxiliary notions. Débe a scheme oves.

DEFINITION 18.6. An N—skeletal map¢g overX, relative toX — S is a col-
lection {@n : X x A" — X x A"}N_ of Smorphisms, such thag, is the identity
14 and for every face mag, : A1 — A" with n < N the following diagram com-
mutes.

X x At -1y an-t

\1X><8j
X x A" X x A"

Note thate, determinesp, for all n < N. WhenS= X, we shall just callp an
n-skeletal map ovexX.

The condition that ariN — 1)-skeletal map oveK can be extended to ax-
skeletal map is a form of the homotopy extension property, and follows from the
Chinese Remainder Theorem whéris affine.

For example, a 1-skeletal map over= SpeR (relative toS = X) is deter-
mined by a polynomiaf € R[t] such thatf (0) =0 andf(1) =1; ¢, is Spec of the
R-algebra magR[t] — R[t] sending to f.

DEFINITION 18.7. Given anN-skeletal mapp over X andn < N, we de-
fine ¢Z(X,n) to be the subgroup of (X,n) generated by alV/ in X x A" such
that ¢ (V) is defined (in the sense of 17A.5) and isZfX,n). If n > N we set
@7 (X,n) = 0. In other wordsgZ (X,n) is the group of cycles iiX x A" which
intersect all the faces properly and whose pullbacks a{grigtersect all the faces
properly.

By definition 18.6 we know that the face map : Z(X,n) — Z(X,n—1)
sendspZ (X,n) to ¢Z (X,n—1). ThuseZ (X, *) is a chain subcomplex af(X, ).
Moreover it follows from 18.6 that the; assemble to define a chain mep :
07 (X, %) — Z2(X, ).

Similarly, we can definmz‘equi(x, n) to be the subgroup a'gqui(x, n) generated
by allV such thatp; (V) is defined and is ilz'équi(x, n). The same argument shows

1X><8j

®n
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that ¢Z,,(X, *) is a subcomplex of,,,(X,n) and that thep, form a chain map
0" (Pz‘equi(x7*) - Z|equi(xv”‘)-

0 07 (X,1) — @Z(X,0) 0
L e
Z(X,2) — Z(X,1) — Z(X,0) 0.

FIGURE 18.1. A 1-skeletal map and its chain magp*.

ExAmMPLE 18.8. If N =1, anda € k— {0,1}, the subvariety = X x {o}
of X x Alis in Z4(X,1) but notz,,(X,1). If X = Spe®, fix r € Rand lete, :

X x Al — X x Al be the 1-skeletal map defined by tRealgebra maR]t] — RJt]
sendingt to f(t) =t+r(t?—t). The condition thatp; (V) is in z5,(X,1), i.e.,
dominant and equidimensional out, is equivalent to the condition that the map
r: X — Alis equidimensional, i.e., that- 8 be nonzero in the domaRfor all 8 €

k. Indeed, the fiber op; (V) overt # 0,1 is supported oR/(r — (a —t/t> —t)),
and is empty it = 0,1. Suchr always exists when dik > 1.

LEMMA 18.9. (SegHighCh, 2.8]) Let C, be a finitely generated subcomplex
in Z(X,*) with i < dimX. Choose N so that{C= 0 for n > N. Then there is
an N-skeletal magp over X such that CC ¢Z (X, ), and the chain mag* :
@Z (X, *) — Z(X, %) satisfies

¢°C. C ziequi(X, *).

PROOF. Suppose that, is generated by{VK} C Z(X,n). Setd = dimX —
i and note thatl > 0 sincei < dimX. ThenV, = UVKX is closed inX x A" of
dimensiomn -+ d.

We proceed by induction oN. SinceN is finite, we may assume that the
9; (VK) are supported i, ;. Inductively, we may suppose that we have con-
structed an(N — 1)-skeletal map{¢n} such that the fibers of the projections
071(Vh) — A" have dimensiorx d. Let dAN be the union of the face8V. The
compatibility granted by definition 18.6 implies that these maps fit together to form
a map fromX x dAN to itself such that the fibers af (X x dAN) NV, — 9AN
have dimensior< d. By Generic Equidimensionality 18A.1, this map extends
to an N-skeletal mapg,, : X x AN — X x AN over X such that the fibers of
on1(Vy) — AN have dimensior< d. Because each componéit of ¢~1(VX)
satisfies the inequality div < n+d = dimVX, each cyclep;(VX) is defined and
lies in Z,,(X,n). SinceC, is generated by the, it lies in Z (X, n) and satisfies
o8 (Cn) - Ziequi(xv n)- O

DEFINITION 18.10. Let ¢° andg? beN-skeletal maps ovet. An N—skeletal
homotopy ® betweeng® and ¢! is an N-skeletal map{®, : X x A" x Al —



158 18. HIGHER CHOW GROUPS AND EQUIDIMENSIONAL CYCLES

X x A" x AT} 5 over X x A' relative to the projectioiX x A* — X, which is
compatible with thep! in the sense that the following diagram commutes for every
n.

i i
XxA" 9 X x A" x AT <1 X x A"

(Pr?{ lq)n \‘Pr}

i i

Xx A" 9% X x A" x AT <1 X x A

Recall from 2.17 that the simplicial decompositionfx Al is given by iso-
morphismse, : A™! — A" x Al, j =0,...,n. Eaché; identifies the subgroup
Z(X,n+1) of cycles inX x A" with a subgroup of cycles i x A" x AL,

The subgroupbZ (X, n) of Z (X, n) is defined to be the subgroup generated by
all V in X x A" such that: (a)¢°)*(V) and(¢*)*(V) are defined and i@ (X,n);
(b) eachd?(V x A1) is defined (see 17A.5); and (c) each isomorphﬁridentifies
®;(V x A1) with an element of (X,n+1). As in definition 18.7®Z (X, «) is a
subcomplex of (X, ). In fact, ®Z lies in (¢°2) N (¢'Z). _
' We define the subgr(_)upz'equi(x,n) of Zgqi(X,n) similarly, replacingz with
Zequi iN the definition of®Zz (X, n).

LEMMA 18.11. If ® is an N-skeletal homotopy betweeh and ¢, then the
maps(¢®)* and (¢')* are chain homotopic, both fromZ (X, *) to Z (X, *) and

from @z, (X, %) t0 Zg (X, %).

0 dZ(X,2) 9, D7 (X,1) 9. ®Z(X,0)
hoerl e et ) G el |90=1
Z(X,3) 9. Z(X,2) 9. Z(X,1) I Z(X,0)

FIGURE 18.2. The chain homotopy betweihand¢* whenN = 2.

PROOF For 0< j <n, leth; denote the composite

1, x 0, 0) r
X s A X7 A A P e an e al Poxoan
wherepr is the projection. That is, for in ®Z (X,n) we define
hi[V] = (®no (1 x 6)))"[V x Al € Z(X,n+1).

The hj form a simplicial homotopy (seeNei94, 8.3.11]) fromdyhg = (p1)* to

9n1hh = (9°)*. Hence their alternating sutn=y (—1)'h; satisfieshd + oh =

(1" — (¢°)*. (This is illustrated in figure 2 wheN = 2.) O
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PROPOSITION18.12. Let ¢ be an N-skeletal map, anfV¥} a finite set of
varieties inpZ (X,n), n < N. Then there exists an N-skeletal homotdplyetween
¢ and the identity map, such that eack Nes in ®Z (X, n).

If the {Vx} lie in 9z,,,(X,n), then thed; (VX x A1) lie in Z,,, (X x AL, n).

For the construction ofb, we may assume without loss of generality that the
set ofVX is closed under taking components of restrictions to faces.

PROOF. Setd = dim(X)—i, and letd (A" x A') denote the union qPA") x Al
andA" x {0,1}. As in the proof of 18.9, we shall construct lrskeletal homotopy
@ by induction onN satisfying the “fiber condition” that (for eadhandn < N)
the fibers of the projectior®, (VK x A1) — A" x Al have dimensiorc d over all
points not ind (A" x A1).

Inductively, we are giver®, (n < N) forming an(N — 1)-skeletal map which
satisfies the fiber condition. The compatibility with the facedAbfand withi,, i,
granted by definition 18.10 implies that ti® and ¢ fit together to form a map
d®, from X x 9(AN x Al) to itself. By Generic Equidimensionality 18A.1, with
A" = AN x Al this map extends to a mapy, from X x AN x Al to itself which
extendsd Py (i.e., dy is anN-skeletal homotopy from the identity & over X),
such that the fibers @b 1 (Vi x A1) — AN x A have dimensior< d over all points
of AN x Al not ond (AN x AY).

To complete the proof of 18.12, we need to show that eBgivY) is defined
and that each isomorphisajq identifies them with elements (X, N + 1) (resp.,
i Zqi(X,N + 1) whenV§ € 9z.,,(X,n)). SetW = U, D1 (V¥ x Ab).

Because th&y belong topZ (X, N) (resp., taz,,(X, N)), the part oW lying
overAN x {0,1} has dimensiom + N (resp., is equidimensional). The inductive
hypothesis implies that the part W lying over (AN x Al) has dimensiorn<
d+ N (resp., is equidimensional). LEtC AN x Al correspond to a face @\ +!
under one of the isomorphisr‘@. The fiber condition o, implies that the
part of W lying over F but not overd(A" x A') is equidimensional, and so has
dimension< d 4+ dim(F). HenceW has codimension at leasin X x F (resp., is
equidimensional). O

In order to prove that,., (X, *) — Z(X, *) is a quasi-isomorphism in theorem
18.3, we introduce the “topological” notion of weak homotopy.

DeFINITION 18.13. Two mapsf,g: K — L of complexes of abelian groups
are calledweakly homotopic if for every finitely generated subcomplé€xof K,
the restrictionsf | andg|. are chain homotopic.

It is easy to check that weakly homotopic maps induce the same maps on ho-
mology. IfK andL are bounded complexes of free abelian groups, this notion is
equivalent to the usual notion of chain homotopy between maps. To see that this
notion is weaker than chain homotopy, consider a pure subghafiB which is
not a summand, such asfZ C [7 Z. Then the canonical map fro® — B) to
(A — 0) is weakly homotopic to zero but not chain contractible.
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LEMMA 18.14. (Seg[HighCh, 2.3 and 2.6] Let ¢ be an N-skeletal map over
X. Then the inclusion mapand the mapp* are are weakly homotopic opz:

02 (X, %) —+ Z(X,*),

and also oz,

(Pziequi(xa *) — Zisqui(xa *).

PROOF. Consider a subcomple®, — ¢Z (X, %) generated by some closed
irreducible subvarietie¥¥ so thato, (VK) is a linear combination of generators.
By 18.12, there is aiN-skeletal homotopyb such thatC, c ®Z (X, ), and ifC,
lies in qoz'eqUI ) thenC, C qu'equ, (X,*). By 18.11,® induces a chain homotopy
betweenp* andl

Note that the following diagram commutes:

(leeqw Q’ (PZ| ( )

Tl e
Zagul X, =) = 2(X, =),

Moreover ifa€ ¢Z (X,n) ﬁz‘equi X,n), andp*ac z'equi X,n), thenae (pz"equi(x, n.
(]

PROOF OF THEOREM18.3. We have to prove that the induced map on homol-
ogy classes is an isomorphism:

(18.14.1) Hn(Zoqui(X, %)) — Hn(Z (X, %))

First we prove surjectivity. Lea € Z(X,n) be such thati(a) = 0. Lemma
18. 9 prowdes an integét and anN-skeletal mag{ ¢} such thaa € ¢Z (X,n) and
o*( ez‘equ, (X,n). By 18.14,a— ¢*ais a boundary ir¢ (X, n), i.e.,a and¢*(a)
represent the same class in homology. Hence the map 18.14.1 is surjective.

For injectivity we need to considexr € z"equi(x,n) so thatd(a) = 0 andb €
Z(X,n+1) with d(b) = a. Apply lemma 18.9 tcb anda. We find an(n+ 1)-
skeletal mapp such thaia,b € ¢Z (X, *) ande*a, ¢*b € z';equi(x,*). But now we
have:

¢*a=¢"(db) = d(¢"b) = 0.

From Iemma 18.14a and ¢*a = O represent the same class in the homology of
z'eqUI . Thereforea is a boundary |rz'eOIUI ,*). Hence the map (18.14.1) is
also |nject|ve O



Appendix 18A- Generic Equidimensionality

This appendix is devoted to a proof of the following Generic Equidimension-
ality Theorem, due to Suslin. (SeldighCh] 1.1.)

THEOREM18A.1. Let S be an affine scheme of finite type over a field. LetV be
a closed subscheme o&kS\", Z an effective divisor of" and¢ : Sx Z — Sx A"
any morphism over S. For everyt0 so thatdimV < n+t, there exists a map
®:Sx A" — Sx A" over S so that:
(1) Plg.z = ¢;
(2) the fibers of the projectio®~1(V) — A" have dimensior< t over the
points ofA" —Z.

The Smorphismeg : Sx Z — Sx A" is determined by its componeant : Sx
Z— A" If SC A™, we can extend’ to a morphismy’ : AMx Z — A". If we
knew the theorem foA™, there would exist an extensi®il : A™ x A" — A" of y/
such that, setting’(X,Y) = (X, ¥'(X,Y)), the fibers oW ~1(V) — A" over points
of A" —Z have dimensior< t, and the restrictio® of W to Sx A" would satisfy
the conclusion of the theorem. Thus we may supposeshai™.

Write A™ = Spe([Xy,...,Xm] andA" = Spe[y,,...,Yn|. If the divisorZ is
defined by a polynomiah € k[Y] then the componenp’ : A™x Z — A" of ¢
extends tof = (fy,..., fn) 1 A™x A" — A" for polynomialsf; € k[X,Y] defined up
to a multiple ofh. For eacn-tupleF = (F, ..., F,) of homogeneous forms kjX]
of degreeN, consider the maps

B AMx A" — A"
D (X,Y) = (£1(X,Y) +h(Y)Fy(X), ..., fu(X,Y) +h(Y)Fy(X)).

By construction, the restriction @b to Z x Sis ¢/, i.e., property(1) holds. It
suffices to show that iN >> 0 and theF; are in general position thet(X,Y) =
(X, ®Pe(X,Y)) has the desired proper(g).

If | =(0,,...,0s) is the ideal ok[X, Y] definingV, then the ideal of k[X, Y]
defining®~1(V) is generated by the polynomials

9 (X, @) = 9 (X33 Xm, Py, Py, @), Py = £ (X,Y) +h(Y)F (X).
If bis ak-point of A", the ideald, of k[X] defining the fiber oveb is generated by
theg; (X, ®(X,b)). We need to show that if ¢ Z, thenJ, has height>- m—t.

ExXAMPLE 18A.2. Suppose thah= 1 andt = 0. We may assume that din=
n, and thatV is defined byg(x,Y) = 0. Then® (V) is defined byg(x, ®¢),

161
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F.(x) = axV, and the fiber oveb € A" — Z is defined by
a(x, f;(x,b) +h(b)a,xN,...) = 0.

Sinceb ¢ Z, h(b) # 0. Hence the left side of this equation is a nonzero polynomial
in k[x] for almost all choices o, ...,a, whenN >> 0. Hence the fiber ovdyis
finite.

The same argument works more generally whenm— 1; we may assume
thatV is defined byg = 0, and the fiber oveb is defined byg(X, ®(X,b)) = 0.

In order to see that the left side is nonzero for almost all choicés,of ., F, one
just needs to analyze the leading formggK, ®; ) with respect toX.

For any ringRwe grade the polynomial rinB[X] = R[Xy, ..., Xm| with all x; in
degree 1. Any polynomial of degrekis the sumf = F,+ ... +F, whereF; is a
homogeneous form of degrgd~; is called thdeading form of f with respect tc.

If I is an ideal inR[X] the leading forms of elements bfjenerate a homogeneous
ideall” of R[X].

LEMMA 18A.3. Let R be a catenary Noetherian ringd R[X] an ideal, and

I” the ideal of leading forms in | with respect to X. THefl’) = ht(1).

PROOF. Letl, C S=R[X,,...,Xn] be the homogeneous ideal defining the clo-
sureV of V(1) in PR. Then htl) = htg(l,) = htg(l},,%,) — 1. Butl’ = (I,,%,)S/%,S
so h{l’) = htg(l,,,%,) — 1. O

Now the ringk[X, Y] is bigraded, with eack of bidegree(0,1) and eacly; of
bidegree(1,0). Thus each polynomial can be written as a sym > Gjj, where
the G have bidegreé¢i, j). Ordering the bidegrees lexicographically allows us to
talk about the bidegree gf namely the largesip, ) with Gpq # 0; thisGpq is the
bi-hnomogeneous leading form of

Without loss of generality, we assume that the generajgrs.,gs of | have
the following property: the bi-homogeneous leading fo@éX., Y) of g; generate
the ideal of the leading forms of

LEMMA 18A.4. If Fy, ..., F, are homogeneous forms inX¥ of degree N>
max{deg(f;),deg(g;)} then the ideal Jof leading forms in J with respect to X
contains forms I‘rGj(X, Fi,...,Fn), forr>>0.

PROOF. (See HighCh] 1.6.1.) Recall thadl is generated by thg (X, Pp).
For any choice of theN-forms F it is easy to see that dgg;(X,®¢) =
deg, G;(X,®¢) = Ndeg, G; +deg, G;, and that the leading form ig;(X, ®¢)
with respect toX is K% GiG, (X, Fy,..., Fy). O

PrROPOSITION1I8A.5. Let T C A™x A" be a closed subscheme of dimension
<n+t, t>0. If kis infinite, then for any N> 0 we can find forms F...,F, in
k[X] of degree N so that W= {w e A™: (w,F;(w),...,Fy(w)) € T} has dimension
at most t.
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PROOF The vector space oftuplesF = (F,...,F,) of homogeneous forms
of degreeN in k[X] is finite-dimensional, say of dimensi@ We identify it with
the set ok-rational points of the affine spagd€’. Consider the evaluation map

n:ATx AP — AT (W F) = (W F(w)).

If w0, the fibers ofy : wx AP — wx A" are isomorphic ta\P—", because
the linear homomorphism(w, —) : A® — A"is surjective. By inspectiom (0 x
AM) = 0x AP. It follows thatn—1(T) has dimension at mogt +t.

Now consider the projection : n=%(T) — AP. The theorem on dimension of
the fibers Har77] 111.9.6 implies that there is a nonempty ¢ AP whose fibers
have dimensior< t. Choosing a rational point id, the corresponding homoge-
neous formgF,, ..., F,) satisfy dim{we A™: (w,F(w)) e T} <t. O

REMARK 18A.6. The casdN = 0 is easy to visualize, sind@=n. There is an
open subsall of A" so that for each € U the fiberT N (A™ x b) of the projection
T — A" overb has dimension at most

If T is defined by bi-homogeneous polynomials, théis defined by homoge-
neous polynomials. Suslin states 18A.5 for the corresponding projective varieties
in [HighCh, 1.7].

We are now ready to complete the proof of theorem 18A.1. By 1848,
k[X] has the same height as the idéalof its leading forms. Suppose thkit >
max{degy (f;),deg(g;)}. Sinceh(b) # 0, J; contains all theG;(X,F) by 18A.4.
LetT c A™™" be the variety defined by the ideal of bi-homogeneous formsi@f.,
the G;(X,Y). Hence the variet = {w € A™: (w,F(w)) € T} is defined by the
Gj(X,F). By two applications of 18A.3, diffi = dimV < n+t. Thus dinWW <t
by 18A.5. But the height o], is at least the height of the ideal generated by the
Gj(X, F), i.e., the codimension &, which is at leastn—t.






LECTURE 19

Motivic cohomology and higher Chow groups

With the preparation of the last three lectures, we are ready to prove the funda-
mental comparison theorem:

THEOREM 19.1. Let X be a smooth separated scheme over a perfect field Kk,
then for all n and i> O there is a natural isomorphism:

H™(X,Z) — CHI(X,2i —n).

At the end of this lecture, we will generalize this to all schemes of finite type,
replacing motivic cohomology by Borel-Moore motivic homology. Assuming res-
olution of singularities we will prove in 19.18 th@H?~ (X, n) = HEY (X, Z).

Becaus€H'(X,0) is the classical Chow groupH'(X) we obtain:

COROLLARY 19.2. HZ(X,Z) =2 CH'(X)

It is clear from definition 17.1 tha@H' (X, m) = 0 for m < 0. We immediately
deduce the:

VANISHING THEOREM 19.3. For every smooth variety X and any abelian
group A, we have M (X,A) = 0for n> 2i.

The proof of 19.1 will proceed in two stages. First we will show (in theorem
19.8) thatZ(i)[2i] is quasi-isomorphic tt — Z (U x A',x) as a complex of Zariski
sheaves. Then we will show (in 19.12) that the hypercohomology(efx A',x)
isCH'(—, ).

We saw in 16.7 thaZ(i) is quasi-isomorphic to the Suslin-Friedlander mo-
tivic complexZF(i). Recall from page 132 that the shi#f" (i)[2i] is the chain
complexC,z,,(A',0) associated to the simplicial abelian presheaf with transfers
C.zequi(Ai,O), which sendsX to m— zequi(Ai,O)(X x A™). The following result
generalizes example 17.2.

LEMMA 19.4. Let T be smooth of dimension d. 0f< i < d then for all X
there is an embedding of simplicial abelian groups:

CoZoqui(T,d—=1)(X) = Z(X x T,e).
In particular (for T = A'), ZSF(i)[2i](X) is a subcomplex of X x Al ).

PROOF. The cycles inCmz,(T,d —1i)(X) are equidimensional ovet x A™

at all points, while the ones id(X x T,m) need only be equidimensional at the
generic points of the faces #fx T x A™. Hence the first group is contained in the
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second group of cycles. Moreover, the face maps of the two simplicial groups are
compatible by 1A.14. O

EXAMPLE 19.5. The complexZS(i)[2i](Y) is a subcomplex af (Y x A, %),
(see 17.6) for every finite corresponderngerom X toY. Indeedzequi(A',O) (Y x
A™ lies inZ (Y x Al,m) because every generating cycle is quasi-finite over
Y x A™M,

In contrast, it is easy to see thaf, (Y x A',dimY)(A™) need not lie irg (Y x
A',m),, .. by lettingX be a point ofY.

For any schemeX andT, consider the simplicial presheaf &h

U—Z(U xT,e).

W x Al

This can be regarded as a simplicial sheaf on the flat siteXo@gd hence on both
the (small)étale site and the Zariski site &fas well. We will writeZ (— x T, )
for the associated complex of sheaves. The homology( efx T, ) has the more
general structure of a presheaf with transfers by 17.21.

PROPOSITION19.6. The homology of the embedding in 19.4 is a morphism of
presheaves with transfers:

(19.6.1) Hmc*zequi(Aiao)(_) - Hmzi(— X Ai,*) = CHi(— X Ai,m).

PROOF The source and target are presheaves with transfers by 16.3 and 17.21,
respectively. It suffices to show that their transfer maps are compatible.

Let W be an elementary correspondence fr&no Y. We need to verify that
¢, andW* are compatible with the map (19.6.1).Wf is the graph of a flat map
from X toY, theng,, andW* are compatible because both are just the flat pullback
of cycles. Sinc&V* is defined in 17.17 by passing to an affine vector bundle torsor
Y’ —Y, asimple diagram chase (which we leave to the reader) shows that it suffices
to prove the statement whahis affine.

LetY be affine. SincédnZ (Y x A',m),, = HaZ (Y x Al,m) by 17.6, the result
will follow once we show that the following diagram commutes.

Zoqu( A1 0)(Y x &™) M 7 a1 0)(x x am)

19.51 119.4

Z(Y x A", m),, Z(X x Al m)

Leti, f andr, respectively, denote the products withx A™ of the inclusion
W —— X xY, and the canonical projectioXs<Y — Y andX xY — X. The trans-
fer mapw* was defined a#/*(2") = m. (W x Al x A™). f* %) in 17.7. According
to 16.3, the transfer map agqui(A‘ L0)(Y x AM) is y (2) = (im)«(Zy . am), Where
the pullbackZ,,, ,» Was defined on page 12. By 17A.13,,, \» = (fi)*(Z), so
we have:

O (Z) = (im).(fi)"(2) = mi. (1) (2).
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By 17A.12,i,(fi)*(2) = (W x A" x A™) - *2 and therefore for every? in
ZoquilA', 0)(Y x A™) we have:
A (2) = T (W x Al x A™) . % 2) = W*(Z). O

ExAMPLE 19.7. If E is a field ovelk, then the map of 19.6 evaluated at SRec
is an isomorphism:

HinC. Zeqi(A', 0) (SPEE) — HinZ (SpecE x A', ).

This follows from Suslin’s theorem 18.3 witk = A‘E , since we may identify
Zequi(AIoo) (AE) andzequi(AlEO) (Am) by 16.6.

This implies that theorem 19.1 is true when evaluated on fields. To see this, set
S= SpecE and recall thatI™(S,C*) = HMC*(S) for any complex of sheaves".
By 16.7, the above map fits into the sequence of isomorphisms:

H™(S,2) 22 HZ(i)(S) = H"Z3%(i)(S) =
H2i—nC*Zequi<Ai70)(S) i’ H2i—nzi( IEv*) =
CH'(AL,2i —n) ~CH'(S,2i —n).

THEOREM 19.8. The mapZ3©(i)[2i] = C.zyq,(A',0) — Z(— x Al,x) is a
guasi-isomorphism of complexes of Zariski sheaves.

PrROOF The induced homomorphisms on homology presheaves,
(19.8.1) HinC Zogui(A',0) — HimZ (— x A’ %)

are morphisms of presheaves with transfers by 19.6. The left side is homotopy
invariant by 2.19 and the right side is homotopy invariant because the higher Chow
groups are homotopy invariant (see 17.4). By 19.7, this is an isomorphism for all
fields. By 11.2, the sheafification of the map (19.8.1) is an isomorphism. Hence
C.Zoqui(A',0) — Z(— x Al %) is a quasi-isomorphism for the Zariski topologyt]

COROLLARY 19.9. For any smooth scheme X, the inclusion of 19.4 induces
an isomorphism:
HM(X,Z) — H"2(X,Z(— x Al %)).
PrROOF By 16.7 and 19.8, we have the sequence of isomorphisms:
HM™ (X, Z) = H"(X, Z(i)) = H"(X, Z57(i)) =
H"2 (X, ZSF(i)[2i]) —— H"2(X,Z(— x Al,+)). O

Corollary 19.9 is the first half of the proof of 19.1. The rest of this lecture is
dedicated to proving the second half, tHEt™(X,Z (— x Al, %)) = CH'(X,m). To
do this, we shall use Bloch’s Localization Theorem (see 17.4) to reinterpret the
higher Chow groups as the hypercohomology groups of a complex of sheaves.

A chain complex of presheavé&sis said to satisfyZariski descenton X if
H*(C(VU)) — H*(U,C,,,) is an isomorphism for every opé&hin X.
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DEFINITION 19.10. Let C be a complex of presheaves &4, (the small
Zariski site ofX). We say thaC has the (ZariskiMayer-Vietoris property if
for everyU C X, and any open coverirg =V, UV,, the diagram

C) C(V1)

T

C(Vz) - C(Vl ﬂvz)

is homotopy cartesian (i.e., the total complex is an acyclic presheaf). This implies
that there is a long exact sequence

- = H'(C(U)) = H'(C(Vy)) 8 H'(C(V)) — H'(C(V;NVy)) — -

For example, any chain complex of flasque sheaves has the Mayer-Vietoris
property. This is an easy consequence of the fact@dt) — C(V) is onto for
eachv C U.

The following result is proven ingG73).

THEOREM 19.11 (Brown-Gersten)Let C be a complex of presheaves on X
with the Mayer-Vietoris property. Then C satisfies Zariski descent. That is, the
maps H(C(U)) — H*(U,C,,,) are all isomorphisms.

Our main application of the Brown-Gersten theorem is to prove that Bloch’s
complexes satisfy Zariski descent.

PROPOSITION19.12. Let X be any scheme of finite type over a field. For any
scheme T, eacH(z- x T) satisfies Zariski descent on X. That is, for all m and i,
we have:

CH (X x T,m) =2 H M(X,Z(— xT)).

In particular (for T = A'),

CHI(X,m) — CH'(X x Al,m) — H™(X,Z (- x A").

PrROOF (Bloch [Blo86, 3.4]) By 19.11, we have to show th@fU) = Z (U x
T) has the Mayer-Vietoris property. For each coy®f,V,} of eachU we set
V, =V; NV, and consider the diagram:

0—CU-V,) — C(U) - C(V;) ~ coker, — 0

-

By Bloch’s Localization Theorem, the cokernels are both acyclic. A diagram chase
shows that the middle square is homotopy cartesian, i.e., the Mayer-Vietoris con-
dition is satisfied. O

We are now ready to prove the main result of this section, theorem 19.1.
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PROOF OF19.1. Using 19.9 and 19.12, we define the map to be the composi-
tions of isomorphisms:

HM(X,Z) = HY(X, Z(i)) —— H"2(X,Z(— x A))) 2 CH (X,2i —n). O

Zariski descent has also been used by Bloch and Levine to show that the higher
Chow groups are functorial for morphisms between smooth schemes. We first
recall their definition and then show in proposition 19.16 below that it agrees with
ours.

DEFINITION 19.13. (Bloch-Levine) Letf be a morphism fronX toY. Natural
mapsf* : CH'(Y,m) — CH'(X,m) for all mandi are defined as follows. As in the
proof of 17.6, writeZ (Y, %) for Z (Y, *)rf-

If U CYisopenZ(Y,x) restricts ta (U, ¥), andz is a complex of sheaves.

SinceY is locally affine,z; ~ 7 by 17.6 and there is a mag) — f.Z of com-
plexes of sheaves oh The map is now defined using Zariski descent 19.12 as the
composite:

CHI(Y,m) = H ™Y,72) 2 H ™(Y,Z) ——~ H ™(X,2) 2 CH (X, m).

EXAMPLE 19.14.1f q: Y’ — Y is flat, thenz, = Z, and the map* defined in
19.13 is just the flat pullback of cycles mgp described in 17.12.

LEMMA 19.15. 1f X —2+ Y LN Z are morphisms of smooth schemes, then
the maps defined in 19.13 sati$fiyg)* = g* f*.

- ProoF If fgIl f: XIIY — Z, we can restrict fg)* and f* to the subgroup
z'(Z,m)ngf. Since(fg)* = g"f* on cycles (seejer65 V-30]), f* maps this
subgroup inta (Y, m)g. By construction, the diagram of groups

zi(zvm)fgl_[f — zi(zvm)fg
{f* l(fg)*
Zl(Y’ m)g L Zl(xvm)

commutes. Sheafifying and applying hypercohomology, 17.6 and Zariski descent
19.12 show that the composite

CHI(Z,m) = H ™(Z, Zg¢) — = H (Y. 2) ~L+ H™(X,Z) = CHi(X, m)
is just(fg)*, as required. O

PROPOSITION19.16. The map f : CH'(Y,m) — CH'(X,m) defined in 19.13
agrees with the map*f= I} defined in 17.17.
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PROOF Suppose first thaX andY are affine, and consider the commutative
diagram

CH(Y,m) =H ™Z(Y,x) = HMZ(Y, %), — H ™Z(X,+)= CH'(X,m)

> 5

H™Y,Z) ~— H™Y,Z;) — H ™(X,7).

The arrows marked®’ are isomorphisms by 17.6 and 19.12. The top composite is
the map of 17.12, which by 17.18 is the miapof 17.17. The bottom composite
is the mapf* of 19.13, proving thaf* =TI} in this case.

In the general case, 17.15 gives a diagram

X! d Y’

S

X Y,
whereX’ — X andY’ — Y are affine vector bundle torsors. By definition 17.0L7,

is (p*)‘lrgq*, wherep* andg* are flat pullback of cycles. By 19.14, these are the
same as the mags andg” defined in 19.13. Sinck; = g* by the first part of the
proof andg*q* = (qg)* = (pf)* = p*f* by 19.15, we have:

P () g = () g () e = 1 O

12

We conclude this lecture by reinterpreting theorem 19.1 in terms of the Borel-
Moore motivic homology groupsig(X,Z) = Hom_ . _(Z(i)[n],M%(X)), as-
suming resolution of singularities. We begin with the smooth case.

ExAMPLE 19.17. WhenX is smooth of dimensiod, the identification follows
from the isomorphisnCH! (X,n) = HZ-"(X,Z) of 19.1. To see this we sgt=
d —i and compute:

CHJ(X,n) = HZ™(X,Z) by 19.1,
= Hom(M(X),Z(j)[2j —n]) by 14.16
= Hom(Z(d)[2d],M(X)(})[2j —n]) by 16.24.
= Hom(Z(i)[2i + n],M¢(X)) by 16.25.
=HZ¥i(X,Z) by definition 16.20.

We now establish this isomorphism whXris not smooth, using 16.22.

PrROPOSITION19.18. Assume that k admits resolution of singularities. Let X
be a quasi-projective equidimensional scheme over k of dimension d. Then for
every positive K d and n there is a canonical isomorphism:

CH(X,n) 2 HEY, (X, Z) = Hom(Z(i)[2i + 1], M*(X))
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PROOF. By 16.22, the right-hand side is isomorphic to H@m|, C..z,( X, 1)).
But by 13.5 this is isomorphic tnC. z,,(X, 1) (Spe), i.e., then-th homology of
the complex of abelian groupgaj"(x, ). We conclude using corollary 18.5. [

COROLLARY 19.19.If i > Othere are canonical isomorphisms:
CHY (X, n) = Hom(Z, ME(X)(i)[2i —n]).

PROOF. By homotopy invariance (see 17.@H" (X,n) =CHI (X x A’ n).
By 19.18, this is HorfZ[n],MS(X x A1), and MS(X x A') = ME(X)(i)[2i] by
16.16. O






LECTURE 20

Geometric motives

In lectures 14 and 16 we introduced the categblﬂxkgfrﬁ1 of effective geomet-
ric motives, and the categofM g, of all geometric motives. In this lecture we
complete our investigation of the properties of these categories.

We begin by comparing by embedding Grothendieck’s classic caté€tjuorw
of Chow motives intdM 4. We then construct the dual of any objectDM yp,
based on th&kRHomof 14.12. This allows us to construct internal Hom objects
Hom(X,Y). We will conclude this lecture by proving that the tensor triangulated
subcategorfpM gm of DM ™ is rigid.

Recall that Grothendieck’s category of effective Chow moti@esw" is the
idempotent completion of the category whose objects are smooth projective vari-
eties overk, and whose morphisms are given by: Hgp(Y,X) = CHIMX (X x
Y). There is a canonical decompositi®h = (Sped) & L, wherelL is the Lef-
schetz motive. The categoBhowof Chow motives is obtained by invertirfigand
Chowff is a full subcategory aEhow

In this lecturek will always be a perfect field which admits resolution of sin-
gularities and the coefficients will be taken over

PrOPOSITION20.1. Assume that k is a perfect field which admits resolution
of singularities. Then Grothendieck’s category of effective Chow motives embeds
contravariantly intoDMgg(k, Z), and hence inthMﬁfifé*(k, Z), in the sense that
if X and Y are two smooth projective schemes, then

Homy, o (Y, X) = Hom(M(X),M(Y)).

PROOF We setd = dimX and compute idoM &~

Nis *
CHY(X xY) =H?9(X xY,Z) by 19.2,
= Hom(M(X x Y),Z(d)[2d]) by 14.186,
=Hom(M(X)(d)[2d],M(Y)(d)[2d]) by 16.24 and’ proper
= Hom(M(X),M(Y)) by 16.25 .

173
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REMARK 20.2. The Lefschetz motivé. is mapped tdZ(1)[2] by 13.17. So
from 16.25 and 20.1 we have the following diagram of fully faithful tensor func-
tors:

ff ff ff,—
(Chowf)°P — DMl . pmef:

| I

Chow? ——— DMgyn —> DM e
The categonDMgyn, also has dual objects. We can construct the dual of any
object inDM ym, based on th&RHomof 14.12. Recall thatiBis in DMgﬁ1 andA,C
. ff,— . ff.— .
are inDM i~ then inDM ™ we have:
Hom(A® B,C) = Hom(A,RHon(B,C)).
By construction, the functdRHon{(B,C) is triangulated in both variables.

PROPOSITION20.3. If X is smooth of dimension d, the diagonalXX x X
induces isomorphisms for O:

A ME(X)(r)[—2d] 2 RHom(M(X),Z(d))(r) & RHom(M(X),Z(d +r)).
PROOF If A= M(U)[n] for a smooth schemd, we have:
Hom(A,M¢(X)(r)[—2d]) = Hom(A(d)[2d], M*(X)(d +T)) by 16.25
= HomA®@M(X),Z(d+r)) by 16.24
= Hom(A,RHonm(M(X),Z(d+r))) by 14.12
WhenA = M¢(X)[—2d], the graph of the identity oX (the diagonal) is the cor-
respondence inducing the identity &M(X) and onM¢(X), so it induces natural
mapsA; from M¢(X)(r)[—2d] to RHom(M(X),Z(d +r)).
The subcategory of objectsfor which Hom(A, A, ) is an isomorphism is tri-

angulated, and contains th&U )[n], so it is all ofDMﬁf{g. The Yoneda lemma
implies that eaclA, is a natural isomorphism. O

COROLLARY 20.4. If X is a scheme in S¢k, then RHortM (X),Z(i)) is in
DMEN for all i > dim(X).

PrROOF It suffices to recall from 16.17 that eabtf(X) is in DMgﬁ,. O

EXERCISE20.5. Show thaRHom(M(X),L) =2 RHom(M(X)(1),L(1)) for ev-
ery smoothX and eveny in DM ﬁlfifé*, by mimicking the proof of 20.3.
DEFINITION 20.6. If X is in Snyk andd = dimX, we define the dual to be:

M(X)" = RHomM(X), Z(d))(—d).

By 20.3,M(X)* is the same aRHomM(X),Z(i))(—i) for alli > d.

If M is any object oDMym, some twistM(r) is effective. We define the dual
M* to beRHon{M(r),Z(i))(r —i) for largei. Note thatM* is independent afand
r by 20.5 and 20.3, and belongs@iM gm by 20.4. his independence implies that
for everyr there is a canonical isomorphid(r)* = M*(—r).
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LEMMA 20.7. The assignment M» M* is a contravariant triangulated func-
tor from DM gn, to itself.

PROOF By construction, each contravariant funcRidon(—,Z(i)) and each
covariant functoM — M(—i) is triangulated. Given any diagramivi gfr; there is

ani such that the dual coincides with the triangulated funBigion{—, Z(i))(—i)
on the diagram. O

The following proposition justifies the terminology “dual”. For simplicity, we
write Homym(A, B) for HomDMgm(A, B).
PrRoOPOSITION20.8. The dual M of an object M irDM ¢, represents the func-
tor A— Homgm(A® M, Z), in the sense that there is a natural isomorphism:
Homym(A,M*) = Homgm(A® M, Z).

PROOF. Since M(r)*(r) = M*, Homym(A(—r),M(r)*) = Homgm(A,M*).
Hence we may assume thadl is effective. But then Hogm(A M*) =
Hom(A(i),RHon(M, Z(i)) for largei. By adjunction, this is HorfA(i) @ M, Z(i)).
By 16.25, it is Homm(A® M, Z). O

COROLLARY 20.9. There is a natural morphisrg, : M* @ M — Z for every
M in DM g, adjoint to the identity of M.

REMARK 20.10. The dual M* is not the same asRHon(M,Z) in
general. For the Lefschetz motivk = M(P')/M(Spedk), for example,
L* 2 RHomL,Z(1))(—-1) = Z(-1)[-2], while exercise 14.13 implies that
RHon(L,Z) = 0.

ExAMPLE 20.11. If X is smooth of dimension, the dualM(X)* is just an
untwisting ofM¢(X). To see this, we combine 20.3 with definition 20.6:

M¢(X) = RHom(M(X),Z(d))[2d] = M(X)*(d)[2d].
In particular, ifX is projective theM (X) = M(X)*(d)[2d].

PROPOSITION20.12. There is a natural isomorphism, : M e M* forM

in DM g,

PrROOF The identity ofM* gives a natural mag, : M — M** via 20.8, adjoint
to the mape,, of 20.9:
Homgm(M,M™) = Homgm(M @ M*,Z).

To prove thaty, is an isomorphism for alM, it suffices to prove it wheM =
M(X), whereX is a a smooth projective scheme of dimengiorSinceM (X)*(d)
is effective, we see by 20.6 and 20.3 that foriaH d:

(M(X)")" = RHom(M(X)"(d), Z(i))(d —i)
=~ RHom(M(X)[—2d], Z(i))(d — i) = M(X).

A careful comparison ofM(x) with this isomorphism shows that they are inverse
to each other. O
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PROPOSITION20.13. There is a natural isomorphism ™o N* =, (M®N)*
for every M and N irDM g,

PROOF. There is a natural mad* @ N* — (M ® N)* arising fromey, @ &y via
the isomorphism of 20.8:

Homgm (M* @ N*,(M®@N)*) = Homgm(M* @ N* @ (M@ N),Z)
= Homgm (M* ® M) @ (N* @N),Z).
To show that it is an isomorphism we may assume khat M(X) andN = M(Y),

whereX andY are smooth projective varieties of dimensiahsnde. Using 20.11
three times, and writingy. for Z(1)[2], we have:

M @N* QLI >~ M*@LY) @ (N* QL) 2 MaN = (Mo N)* @ LI+,
Since this isomorphism is our natural map, we are done. O

Using the dual, we can now show tHaM 4 has an internal Hom functor.

PROPOSITION20.14. Let L, M, and N be three objects DM gmn. Then there
is a natural isomorphism

Homgm(L® M,N) = Homgm(L,M* ®N).

PROOF Using theorem 20.12, which states th&tZ M** andN = N**, 20.8
and 20.13, we have:

Homgm(L ® M,N) = Homgm(L ® M @ N*, Z)
= Homgm(L® (M*®@N)*,Z) = Homgm(L,M*®@N). O
Proposition 20.14 says thdd* @ N represents the functdr — Homgm(L ®
M,N). This justifies the following definition.

DEFINITION 20.15. If M andN are two objects 0DM¢nm,, we define their
internal Hom to be:

Hom(M,N) = M*®N.
By 20.6,Hom(M, N) is a geometric motive, i.e., an objectDM gy, Moreover, it
is clear thaHom(M,Z) = M*.

EXERCISE 20.16. To see the relation betwedhomandRHom letM andN
be two effective geometric motives. First show tRdion(M,N(i)) is in DMS‘F{1
for largei. Then show thaHom(M,N) = RHom(M,N(i))(—i) for largei.

Recall from DPMOS82, p. 111] that a tensor category is said to berigid
if it has an internal Hom, bi-distributive for the tensor, andAif— (A*)* is an
isomorphism for evenA.

THEOREM20.17. The tensor categorM g, is rigid.
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PROOF. We have already shown in 20.15 thai¥ 4, has an internal Hom and
in 20.12 that every object is isomorphic to its double dual. It remains to check
bi-distributivity. But this is just the routine calculation:
Hom(M; @My, N; @ N,) = (M; @ M,)" @ (N; @ N,)
= (M{@N) ® (Mz ®N,) = Hom(M,N;) @ Hom(M,,N,). [






Part 6

Zariski sheaves with transfers






LECTURE 21

Covering morphisms of triples

The main goal of the rest of the lectures will be to prove th&t i€ a homo-
topy invariant presheaf with transfers, then the preskiaf(—, F) is homotopy
invariant. This was stated in theorem 13.8 and it was used in lectures 13-20. The
remaining lectures depend upon lectures 11, 12, and the first part of 13 (13.1-13.5),
but not on the material from 13.7 to the end of lecture 20.

DEFINITION 21.1. Let Ty = (Y,Y«,2Z,) and Ty = (X, Xw,Zy) be standard
triples (as defined in 11.5). For convenience,setY —Y, andX = X — Xo. A
covering morphism f : T, — Ty of standard triples is a finite morphismY — X
such that:

e f1(Xw) C Y (or equivalently,f(Y) C X);

o fly:Y — Xisétale;

¢ f induces an isomorphisi, . Z,, wherez, = f~1(Z,)NY.
Note thatf need not induce a finite morphisfnmY — X.

ZY
Yoo.2
X
Xeo Z,

FIGURE 21.1. A covering morphisnf : Y — X

By definition, the squar® = Q(X,Y, X —Z, ) induced by a covering morphism
of standard triples is upper distinguished (see 12.5):

(Y-2Zy) Y
.
(X—2Zy) X.

We say that this upper distinguished squamees fromthe covering morphism of
standard triples.

181
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EXAMPLE 21.2. Suppose that an affiné has a covering = U UV and a
good compactificatioiiX, X.,) over some smootB. Then the Zariski square

unv u
QX,U.V): {
Y X

comes from a morphism of triples, provided théat (UNV) lies in an affine open
neighborhood irX. _ o

Indeed, ifZ =X -V thenT = (X, X»,Z) is a standard triple anl’ = (X, X —
U,Z) is also a standard triple. The identity &hinduces a covering morphism
T’ — T and the above square comes from this morphism.

Recall from 11.11 that a splitting of a standard trip‘lé Xw,Z) overV C X is
a trivialization of.,iﬂAX onV x¢Z.

LEMMA 21.3. Let f: T, — Ty be a covering morphism of standard triples. A
splitting of T, over V induces a splitting of, Tover f-1(V)NY.

PROOF. SinceT, was split oveV C X, we are givert : Lnx \szx = 0. We
need a trivialization

P50 Lavl vz, = O

Now (f x f)~1(Ay) is the disjoint union o\, and someQ, so(f x f)*(L,y) is
Ly ® Zo, WhereZy is the associated line bundle. Sintenduces an isomor-
phismZ, — Z,, Qis disjoint fromY x Z,.. Since.Z, has a canonical trivialization
outsideQ, we have?, = & onY xgZ,. Since(f x f)*(t) is a trivialization of
L), ©Zgon (f x £)~1(V xgZy), we may regardf x f)*(t) as a trivialization of
Ly on(f7HV)NY) xgZ,. a

EXAMPLE 21.4. LetY — X be a finite separable morphism of smooth projec-
tive curves X, C X a finite nonempty set containing the branch locus,aadr a
k-rational point so thak = f(y) is not inX.. SetYe = f~1(Xe) II f~1(x) — {y}.
Then (Y, Y, {y}) — (X, X0,{X}) is a covering morphism of standard triples. If
X = Sped andP is the prime ideal ofA definingx, thenPB is prime in the co-
ordinate ringB of Y. If a € Athen by 11.13, lemma 21.3 states thaPjf/a] is
principal, then so i®B[1/a].

DEFINITION 21.5. Let Q be any commutative square of the form

[
B Y
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We write MV (Q) for the following chain complex i€or,:

MV@Q): 0—-B M asy U x Lo

If F is a presheaf, theR(MV (Q)) is the complex of abelian groups:

(If) (7f~,i)

0— F(X) F(A)@F(Y) F(B) — 0.

The general theorem below will involve an intricate set of data which we
now describe. Leff be a covering morphism of standard triples, frdn=
(Y,Ye,2Zy) to Ty = (X, Xw,Zy). LetQ denote the square that comes frédmLet
Q' = (X, Y',A’) be another upper distinguished square WitAndX’ affine so that

Q andQ’ are of the form:

(151 Q: ! f/ Q: f f

NI i

THEOREM21.6. Let j: Q — Q be a morphism of upper distinguished squares
of the form 21.5.1 such that:

e Q comes from a covering morphism F Ty of standard triples;
e X' — X is an open embedding, aiil, X, Zy) splits over X;
e X' andY are affine.

Then for any homotopy invariant presheaf with transfers F, the map of complexes
F(MV(Q)) — F(MV(Q')) is chain homotopic to zero.

0 - F(X) (i’f)~F(A)@F(Y) (=f.1)

ix (1) is

00—+ F(X) 1) FA)®F(Y) (=f1) F(B)

- F(B) - 0

0

The proof of 21.6 will be assembled from lemmas 21.7, 21.8 and 21.9 below.
We say that a diagram {Dor, is homotopy commutativeif every pair of com-
positesf,g: X — Y with the same source and target Afehomotopic. Any homo-
topy invariant presheaf with transfers identifieshomotopic maps, and converts
a homotopy commutative diagram into a commutative diagram.

LEMMA 21.7. Let j: Q — Q be as in the statement of 21.6. Then there are
mapsi, € Cor(X’,A) and A5 € Cor(Y’,B), well-defined up ta\'-homotopy, such
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that the following diagram is homotopy commutative.
f/

by g T, Ix
i f i
Y B A X.

Applying a homotopy invariant presheaf with transfers F gives a commutative di-
agram:

F(X) FA) —  FB) ' F(Y)

: =V g .
Ix Iy
f/
F(X') —— F(Y)).
The assertion in the lemma thay is only well defined up ta\-homotopy
equivalence reflects the identification

Cor(X',A)/Ah.e.= HSMI(X' xgA/X") — Pic(X' xgX, X xg(%e I12Zy))
arising from 7.2 and 7.16. A similar remark applies to the indeterminady of

PROOF By 21.3, both triple§y andT, split over an affine. Hence the maps in
question exist and the outer triangles commute ufténomotopy by 11.15. The
construction of the relative Picard classes represerijngnd Az from the com-
patible splittings in the proof of 11.15 shows that the middle square is homotopy
commutative. O

SinceCor(X,Y)/Al-homotopy= Hging(x xY/X) by 7.2, two elements of
Cor(X,Y) are A-homotopic exactly when they agree }Hging(x x Y /X). This
allows us to apply the relative Picard techniques of lecture 7.

LEMMA 21.8. Let h be a rational function oX x¢Y which is invertible in a
neighborhood U of A<gY. and A xgZ,, and equald on A xY.. Then the Weil
divisor D defined by h defines an elemegrif Cor(A’, B) such that the composition
iy € Cor(A',Y) is Al-homotopic to zero.

PROOF. As a divisor on the normal varie# xY, we can writeD = 5 n,D,
with eachD; integral and supported off &. Since eactD; missesA’ x g Yo, it
is quasi-finite ove\'. SinceD; is proper overA’, and has the same dimension
asA, itis finite and surjective ovel'. As such, eacld; and hencé defines an
element olCy(A' xgB/A’) which is a subgroup df,(A’ x B/A") = Cor(A',B). By
construction (see 7.15), the imageDfin Pic(A’' xsY, A" x5 (Yo II Z)) is given
by (€, h), the trivial line bundle with trivialization 1 oA\’ x Y., andh on A’ x g
Z,. The composition with : B — Y sendsD to an element oC,(A’ xgY/A)
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whose image in Pi&¥ xsY,A xsYa) is the class of @,h). By 7.16, this group
is isomorphic toHS"Y(A" x gB/A’). But in this group(&,h) = (€,1) is the zero
element. This implies that the image is zerd—lging(A’ x B/A). O

LEMMA 21.9. Let j: Q — Q be as in the statement of 21.6. Then there are
As € Cor(X',A), Ag € Cor(Y’,B), satisfying the conditions of lemma 21.7, and a
v in Cor, (A, B) fitting into a homotopy commutative diagram in ¢or

g el s g
b’.

e A
Ty

-
EN
Apoi’—ja

Moreover the composition’AL B—»Y is Al-homotopic taD.
Applying a homotopy invariant presheaf with transfers F gives a commutative
diagram:

FA) ' E(B)
"odp—ia ‘I/ "oAg— g
F(A) F(®),

f/
and the composite ) SN F(B) AN F(A) is zero.

PROOF OF21.9. In order to streamline notation, we writefor x .

Let .Z,,, be the line bundle oX’ x X corresponding to the graphX’ of
X' —— X, and.Z,,, for the line bundle ory’ x Y corresponding to the graph
AY' of Y ——— Y. In between these, we have the line bundie on X’ x Y,
obtained by pulling back?,,,.

Since these three line bundles come from effective divisors, they have canon-
ical global sections. We will writs, for the canonical global section ¢f),, on
X'xX,s , for.# onX' xY, ands, for Z,,, onY’ x Y. Each global section deter-
mines a section oK’ x Zy, X’ x Z,,, andY’ x Z,, respectively. Sinc&' C X' —Z,
andB’ CY'—-Z,, the restrictions of, s ,, s, also determine trivializations in each
case, ofZ,,, onA’' x Zy, of # onA x Z,, and of.%,,, onB' x Z,.

BecauseZ, = Z, the inclusion ofX’ x Z, in X’ x X lifts to X’ x Y, and we
may identify the pullbacks of/,,, and.# to X' x Z,,, together with their respective
trivializationss, ands , onA’ x Z,.

Since the standard tripl&, X, Zy) splits overX’, we are given a fixed trivial-
izationty of .Z,,, on X’ x Z,. As withs,, we may identifyt, with a trivialization
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t ,of .# onX'xZ,. By 21.3ty also induces a trivializatioy of .Z,, onY’ x Z,.
Sincezy lives in an affine neighborhodd in X, we extendy to X’ x Uy and we
fix this particular extension. Pulling back, the same is trug fprandt, and we
fix those two extensions too.

Becausey,t ,,t, are trivializations, there are regular functiogsr ,,ry so
that:

Sy =Tyty onX'xZy; s, =r ,t ;onX'xZ,; s, ,=ryt,onY xZ,.

Becauses, is a trivialization onA’ x Z, ry is invertible onA’ x Zy.. Similarly,r ,
is invertible onA’ x Z,, andry, is invertible onB’ x Z,. (See figure 2.)

A xY

FIGURE 21.2. The covering morphisth: Y — X overA’

Because(\?,YE,,ZY) is a standard triple, there is an affine open neighborhood
U of Yo, II Z, in Y. HenceX’ x U is an affine open neighborhood Xf x Z,, and
X' x Yo in X' x Y. SincezZ, andY,, are disjoint, the Chinese Remainder Theorem
yields a regular functioh on X" x U which equals 1 oiX’ x Y, and equals_, on
X'xZ,.LetD C X' x Y denote the principal divisor correspondingitdBy lemma
21.8, the divisor-D defines an element of Cor(A’,B) such that the composition
iy € Cor(A',Y) is homotopically trivial. By 7.15, the mapor(A’, B) — Pic(A’ x
Y,A x (Yo 11 Z)) sendsy to the class of 0, o, 1 111 7).

It remains to verify that the diagram in 21.9 is homotopy commutative.

We first interpret the horizontal maps in 21.9. By the constructioh,oénd
Agin11.15 and 21.7, the compositiohgoi’ € Cor(A’,A) andAgoi’ € Cor(B’ B)
represent the classes 0f/,,,S I ty) and (£yg,S I t,) in Plc(A’ X X, A x
(X 11 Z,)) and Pi¢B’ x Y,B' x (Yo, 11 Z,)), respectively. On the other hand, the
inclusionsj, and jg represent the classes @, ,,S» 11 8¢) and(Z,g,s0 II's)),
respectively. It follows that the differencggs — A, oi’ € Cor(A',A) and jg — Az o
i’ € Cor(B', B) represent the classes O, 1o  1y) and (0g, 1o 11 1y),
respectively. (Cf. exercise 11.16.)



21. COVERING MORPHISMS OF TRIPLES 187

The compositiony f’ € Cor(B',B) representgd,, -, f*h~1). Sincef*his
a rational function orB’ x V!vhich is 1 onB' x Y, andry on B’ x Z,, we have
yf' =Agoi’ — jgin Pic(B' xY,B x (Yo 11 Z)).

Now the compositionfy € Cor(A',A) represents the push-forward of
along Hy(A' x B/A') — Hy(A' x A/A'). By 7.24, this represents the class of
(Op 50 Fr(Lleo 1 r;/})). By definition 7.22, the norm ofi is a rational function
which extends the trivializatiofi.(1., ITr_, ) to an affine neighborhood. Sinbas
identically 1 onf1(Xe) C Yo, N(h) = 1 0n A’ x X, by 7.23. We will show that
N(h) =ry onA’ x Zy inlemma 21.10 below. Hencley = A,i" — j, in Cor(A', A),
as desired. O

LEMMA 21.10. Let f:U — V be a finite map with U and V normal. Suppose
that Zc V and Z c U are reduced closed subschemes such that the induced map
Z' — Z is an isomorphism, and U» V is étale in a neighborhood of'Z

Ifhe ¢*(U)islon f-1(Z)—Z', then Nh)|, and H,, are identified by 7~ Z.

PROOF. Suppose first thaf has a sectios:V — U sendingZ to Z'. Then
U =s(U) 11U’ andhis 1 onf~1(Z)NU’. In this case, the assertion follows from
the componentwise calculation of the nokith), together with 7.23.

In the general case, I&Y C U be a neighborhood &’ which isétale ovel,
and leth’ € *(U’ x,,U) be the pullback oh. The graptz” c U’ x,,U of Z' — Z
is isomorphic taZ’, andU’ x,, U’ is anétale neighborhood @&” in U’ x,,U. By
construction)Y is 1 onU’ x,, (f~1(Z) — Z") andU’ x,, U — U’ has a canonical
section sending’ to Z”; in this case we have shown théth’)|, is identified with
h|,,. Since norms commute with base change, we can ideNtify with N(I)
undero*(V) C ¢*(U’). This proves the lemma. O

PROOF OF21.6. From 21.7 and 21.8, we have mags= (1,,0) : F(A) @
F(Y)—=F(X)ands, = (y,Ag) : F(B) — F(A)®&F(Y’). In order for these maps to
form a chain homotopy fronpto zero, we must haved+ ds= j. This amounts to
six equations, three of which come from the commutativity of the trapezoid in 21.7.
The other three, which involvg are: yi ~0, j, ~1'A, —yf andjg ~i'Ag— f'y.
These are provided by 21.9. O

We isolate a special case of theorem 21.6 as a corollary, which will be needed
in the proof of theorem 22.2.

COROLLARY 21.11. Let Q= Q(X,Y,A) be an upper distinguished square of
smooth schemes coming from a covering morphism of standard triples ahtdet
a finite set of points in Y. Then there exist affine neighborhodds X(Z) in X
andY of ZinY N f~1(X’) such that:

e The induced square’@ Q(X',Y’,A’) is upper distinguished, wheré A
AnX'andB=BnNY’;
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e For any homotopy invariant presheaf with transfers F, the map
F(MV(Q)) — F(MV(Q))) is chain homotopic to zero.

F(X) — F(A)@F(Y) —— F(B) 0

0

0 FX) — FA)®F(Y) — F(B) 0

~ PrROOF By 11.14,f(X) has an affine neighborhood! over which the triple
(X, X,Z) splits.  Sety’ = X' x¢Y, Z, = Z, nX"andZ, = Z,NY', and note
thatz, — Z; is an isomorphism by 21.1. Sing¢ — X' is finite, Y’ is affine. The
subset,, NY’ andZ, UX of Y’ are closed iry’, and disjoint by 11.5. Hence there
is an affine open subschenéof Y’ which contains botlzy, andZ but is disjoint
from Yo NY’. SinceY’ is open inY, it is étale overX’. SinceB’ =BNY’ is the
complement iny’ of Z, = Z,NY’, andB’ = Ax, Y' = A’ x, Y, the squar€ =
Q(X',Y',A) is upper distinguished (see 12.5). Thus the hypotheses of theorem
21.6 are satisfied fa® — Q, and the final part of the corollary is the conclusion
of 21.6. O




LECTURE 22

Zariski sheaves with transfers

With the technical results of the last lecture in hand, we are ready to prove the
following results.

THEOREM22.1. Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf . is homotopy invariant.

THEOREM22.2. Let F be a homotopy invariant presheaf with transfers. Then
Frar = Fuis:

Combining 22.1 and 22.2, we obtain theorem 22.3 below, which is the case
n= 0 of theorem 13.8. This theorem does not reqkite be perfect.

THEOREM22.3. If F is a homotopy invariant presheaf with transfers, then the
Nisnevich sheaf\; is homotopy invariant.

We will prove theorems 22.1 and 22.2 in order, using a sequence of lemmas.
We make the running assumption thatis a homotopy invariant presheaf with
transfers. The Mayer-Vietoris sequerfeé@MV (Q)) associated to a commutative
squareQ is defined in 21.5.

LEMMA 22.4. LetU be an open subsetaf and U= U, UU, be a Zariski cov-
ering of U. Then the complex(MV (Q)) is split exact, where @ Q(U,U;,U,).

F(MV(Q)): 0—FU) — FU;)®FU,) — F(U;NU,) — 0
In particular, F is a Zariski sheaf oa!.

PROOF. SettingYe, = P! —U, Y., =P!-U, andZ=U —U,, the identity ofP*
is a covering morphisniP!, Y., Z) — (P!,Y.,Z) of standard triples as in example
21.2. Both triples are split ovér itself by 11.13, so by theorem 21.6 wifi = Q,
the compleXt (MV (Q)) is chain contractible, i.e., split exact. O

LEMMA 22.5. If F is a homotopy invariant Zariski sheaf with transfers, and
U is an open subset ¢f!, then H,,(U,F) = 0forn> 0.

PROOF. If % = {U,,...,Un} is a finite cover olJ, it follows from 22.4 and
induction onn that the following sequence is exact.

0—-FU)—-aFU) H@i,jF(UiﬂUj) —...—F(NV;) —0

Hence theég:ch cohomology of satisfiesH'(%,F) = 0 for i > 0. But then
H(U,F) =HY(U,F) = 0 by [Har77, Ex Ill.4.4]. Since dinU = 1, we must also
haveH'(U,F) =0 fori > 1 (see Har77, I11.2.7]). O

189
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EXERCISE22.6. Show that 22.4 and 22.5 fail fét = 0* if Alis replaced by
an affine elliptic curve.

LEMMA 22.7. If F is a homotopy invariant Nisnevich sheaf with transfers, and
U is an open subset af?, then H},;(U,F) = 0 for n > 0.

PrROOF Since dinU = 1, we haveHy(U,F) =0 for n > 1. By [Mil80,
11.2.10], Hy (U, F) = H(U, F). Therefore we only need to show thét(U,F) =
0.

SinceF takes disjoint unions to direct sums, tBech cohomology can be
computed using covering famili® — X, instead of the more generfl; — X}.
By 12.6, any such cover df has a refinement” = {AV}, whereAcC U is
dense operV — U is étale, and the squa@= Q(U,V,A) is upper distinguished

(see 12.5). Embed in a smooth projective curw¥ finite over P!, and set
Vo =V —V. By construction (see 21.1§ comes from the covering morphism
of standard triple§V,Ve,Z) — (P!,Uw,Z), whereU, =P —U andZ =U — A
Since(P!,Us,Z) splits overU by 11.13, theorem 21.6 wit®f = Q implies that
the complexF (MV (Q)) is split exact. That i#i1(%,F) = 0. Passing to the limit

over all such covers yieldd'(U,F) = 0. O

LEMMA 22.8. Let F be a homotopy invariant presheaf with transfers. If X is
smooth and U X is dense open, theg £(X) — F,,,(U) is injective.

PROOF As F,,, is a sheaf it suffices to verify this locally. Létc F,, (X)
be a nonzero section which vanishesHn, (U). Pick a pointx € X so thatf is
nonzero in the stalky = F(Spedy ,). By shrinkingX aroundx we may assume
thatf € F(X). By shrinkingU, we may assume thditvanishes ir (U ) and hence
in F(V) for V = Spe¢dy ,)NU. By 11.1, f is nonzero inF(V), and this is a
contradiction. 7 O

PROOF OF22.1. We have to prove that : F,, (X x Al) — F,,(X) is an iso-
morphism, wheré: X — X x A'. Itis enough to prove that is injective. We may
assume thaX is connected and therefore irreducible. lreSped —— X be the
generic point. We get a diagram:

FZar(X)
(yx1)* s

Frar(SpeK x AY) — F,_ (SpeK)
where the vertical maps are injective by 22.8. The bottom map is an isomorphism
by 22.4 since we may regafé as a homotopy invariant presheaf with transfers
over the fieldK by 2.10:

I:Zaro( X Al)

FZar(A%) = F(A&) — F(Sped() = FZar(Spe(K)'

Thusi* is injective. O
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Let s, (F) be the separated presheaf (with respect to the Zariski topology)
associated to the preshdaflt is defined by the formula:

Szar(F)(X) = F(X)/Fo(X),  Fo(X) = clim kerF (X) — [TF(U

{U ~>X}
LEMMA 22.9. s,,.(F) is a homotopy invariant presheaf with transfers.

PROOF. The homotopy invariance o, F is immediate from the fact that
homotopy invariance is preserved by quotient presheaves. The existence of trans-
fers is more difficult. LeZ C Sx X be an elementary correspondence frSno
X. We must show that the corresponding tran$féxX) — F(S) sendsF,(X) to
Fo(S), i.e., that the image dfy(X) vanishes at each stalk(Spey ). It suffices
to supposes local, so thatZ is semilocal. Hence there is a semilocal subscheme
X" of X with Z € Sx X’. But by 11.1,F(X’) injects intoF (U) for each dense
U c X/, soFy(X") = 0. HenceR,(X) — F(S) is zero, because it factors through
Fo(X') =0. O

For the next few lemmass will be the semilocal scheme of a smooth quasi-
projective varietyX at a finite set of points. Since any finite set of points lies in
an affine neighborhood, we may even assume hat affine. Clearly,Sis the
intersection of the filtered family of its affine open neighborhoXglsn X.

LEMMA 22.10. Suppose that F is a homotopy invariant presheaf with trans-
fers. Then for any open covering=SU, UV there is an open W= U, such that
S=U UV and the sequence(MV (Q)) is exact, where @ Q(SU,V):

0—F(S) = FU)®F(V) = FUNV) —0.

PrROOFE We may assume th& is connected, since we can work separately
with each component. By assumption, there are dﬁ@rf/ in X such thaty, =
snU,, V = SnV. SinceU, is open inX, there is an affine opeld contained in
U, which contains the finite set of closed pointdfyf Setting = SNU, we have
S=UUV. We will show that~ (MV(Q)) is exact for the squar® = Q(SU,V).

We first suppose thatis an infinite field. For eackr, setU, = X, NU and
V, = X, NV. The canonical map fro to the squar€, = Q(Xy,Uq,V, ) induces
a morphism of Mayer-Vietoris sequenc€MV (Q,)) — F(MV(Q)). It suffices
to show that these morphisms are chain homotopic to zero, beE&lMB&(Q)) is
the direct limit of theF (MV (Q,,)).

Let Z ¢ X denote the union oX — (U NV) and the closed points & For
eachX,, we know by 11.17 that there is an affine neighborh¥faf Sin X, and
a standard tripldy = (X Xoo o+ Za) with X;, = Xq — Xeo.q ANAZy = Xy NZ. Set

=X,,NU andV,, = X,,NV. SinceXy — (U, NV,) lies in Xe o UZy, it lies
in an affine open subset of, (by definition 11.5). By 21.2, the Zariski square
Q,, = Q(X},U.,V/,) comes from a covering morphism of tripl& — T,,.

By 11.14, the tripl€T, is split over an affine neighborhood; of Sin X;,. Set
U2 =X!nU andV/ = XNV, and form the squar®, = Q(X%,U%, V). Since
X” andU are affine, so i&)/. By theorem 21.6, the morphisf(MV (Q,,)) —
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F(MV(Q},)) is chain homotopic to zero. SinEEMV (Q,,)) — F(MV(Q)) factors
through this morphism, it too is chain homotopic to zero.

0 —— F(Xy) — F(Ug) &®F (Vo) — F(UgNVy) — 0

|

0 —— F(X},) — F(U})®F(\V,) — FU/,NV,) — 0

|

0 —— F(Xy) — F(Uy) ®F (Vy) — F(UgNV,) — 0
0 F(S FU@&FV)—FUNV)—0.
If kis finite, exactness follows by a transfer argument. Any eleraéntthe
homology of F(MV(Q)) must vanish when we pass @®, k' for any infinite
algebraic extensiok’ of k. Sincea must vanish for some finite subextensigna

has exponenfk; : k]. Since[kj : k] can be chosen to be a power of any prime, we
conclude thag = 0. O

Lemma 22.10 correct£johTh, 4.23], which omitted the passage fraigtoU.
COROLLARY 22.11. Let S and 3 be semilocal schemes of a smooth quasi-

projective scheme X at finite sets of points, and set$U S’. Then the Mayer-
Vietoris sequence MV (Q)) is exact, where @ Q(S S, S'):

0—-F(9 —F@)aF)—F(SnYg)—0.

PROOF. Write S as the intersection of opebk, € SandS’ as the intersection
of opensV; C S The sequenc€ (MV(Q)) is the direct limit of the sequences
F(MV(QQB)), whereQaﬁ = Q(SUa,VB). By 22.10, there arUaﬁ C Ugy such
that the sequencds(MV (Q(S, uaﬁ,vﬁ))) are exact. Hence the morphisms from
F(MV(QaB)) to F(MV(Q)) are zero on homology. Passing to the direct limit, we
see that the homology & (MV (Q)) is zero, i.e., it is exact. O

Note that the sequence8 .7 (S) — .#(S) @ .# (') — .#(8NT’) is always
exact when% is a Zariski sheaf oi%. This is because it is the direct limit of the
exact sequences-08 .7 (S) — #(Uy) @ 53(VB) — 7 (Ug NVy) associated to the
family of open covers{Ua,Vﬁ} of Swith S c U, andS’ C V-

LEMMA 22.12. Let S be the semilocal scheme of a smooth quasi-projective
scheme X at a finite set of points. Then FS) = F(S).

ProOF. By 11.1,F(S) = (s,,,F)(S). Sinces,,F is a homotopy invariant
presheaf with transfers by 22.9, we may replacey s, F and assume thdt is
separated. We now proceed by induction on the number of the closed pofits of
Let S be the local scheme at a closed poimtf S, andS’ the semilocal scheme at



22. ZARISKI SHEAVES WITH TRANSFERS 193

the remaining points. Consider the following commutative diagram.
0 - F(9 - F(S)oF(S) —— F(SNS)

l l: linto
00— FZar(S) - FZar(s’>EBFZar(S,,> - FZar(s’mS,/)

The top row is exact by 22.11, and we have noted that the bottom row is exact
becausd,, is a Zariski sheaf. The right vertical map is an injection bec&uise
separated. The middle vertical map is the identity by induction. A diagram chase
shows that the left vertical map is an isomorphism, as desired. O

We need an analogue of lemma 6.16 for the Zariski topology, showing that we
can lift finite correspondences to open covers under mild conditions.

LEMMA 22.13. LetW be a closed subset ofX, xe X a pointand VC Y an
open subset such that h(x) C {x} x V, where p W — X is the projection. Then
there is a neighborhood U of x such that¥y U is contained in Ux V.

PROOF The subseZ =W —WN (X x V) is closed, ana& ¢ p(Z). Becausep
is a closed mapp(Z) is closed and) = X — p(Z) is an open neighborhood &f
By constructionW x U is contained itJ x V. O

COROLLARY 22.14. Let # € Cor(X,Y) have support W and let pN/ — X
be the projection. If x X and VC Y are such that p(x) C {x} x V, then there
is a neighborhood U of x and a canonicé|, € Cor(U,V) such that the following
diagram commutes.

W
U U v
x_ 7 .y

PROOF Writing 7 = 3 n,[W], we may apply lemma 22.13 to eadh Since
W is finite overX, W x, U is finite overU, so#{, = 3 n,[W x4 U] is the required
finite correspondence. Itis canonical becaug¥ if U, the composition o)’ c U
with 7, is #(; = 3 ni[W x U] O

THEOREMZ22.15. Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf F,, has a unique structure of presheaf with transfers such that
F — F,, is a morphism of presheaves with transfers.

PROOF By 22.9 we may assume thitis separated, i.e., th&t(V) C F,, (V)
for everyV. We may also assume th&tandY are irreducible without loss of
generality. We begin by defining an elemerit (f) in F,, (X) for every element
f € F,,,(Y) and every finite corresponden#é from X toY.

The first step is to fix a poink € X and construct an elememt*(f)y of
F, . (Ux) for an appropriate neighborhotl of x. Sincep: W — X is finite, the im-

age ofp~1(x) under the natural mayy — Y consists of only finitely many points;
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let S denote the semilocal schemeYofat these points. Sinde(S) =F,,(S) by
22.12, there is an opevx C Y such thatfy = f|,, € F,,,(Vx) lies in the subgroup
F (W) € F,., (V). By 22.14, there is a neighborhobld of x such that#” restricts
to a finite correspondencg; from Uy to V. Let #*(f)x denote the image of
under#y : F(Vx) — F(Uy) C F,4(Ux).

Uniqueness o *(f)x. Suppose thaf — F,,, is a morphism of presheaves
with transfers. Giver## € Cor(X,Y) and f € F,,(Y), it suffices to show that
W* (1) € By, (X) is uniquely defined in some neighborhood of any painihe
construction above shows that the imag&6f( f ) in F, . (Ux) must equal? ™ (f )y,
which is defined using only the sheaf structuremor and the transfer structure on
F.

Existence of#*(f)x. Fix # € Cor(X,Y) andf € F,.(Y). In the above con-
struction, we produced a neighborhddgof every pointx € X, an open sé¥y in Y
so thatfy = f|,, belongs to the subgroup(Vy) of F,,.(Vx), and considered the im-
age? " (f)x = #y (fx) of fyxin F(Uyx) C F,,,(Ux). This construction corresponds
to the top row of Figure 1.

FZar(Y) FZar(X)

| y |

[1FzarM) ~—— []1F (W) — [1FUx) = []Fzar(Ux)

| e | |

W*
|—| Frar(V) ~— |_| F(Viw) % |_| FU) — |_| Fzar(Uye)

FIGURE 22.1. The transfer map fét, .,

To construct the rest of Figure 1, pick two poimts’ € X and set), , = UxN
U, Viw = VNV, SinceW x Uy lies inUy x V for all x (by 22.13), it follows
thatW x, U, liesinU,, x (V\xNV,,). Hence there is a finite correspondenig,
from U, lifting both %% and,, in the sense of 22.14. That is, the middle square
commutes in figure 1.

A diagram chase on 1 shows that € ( f )x agree on all intersections , =
UxNU,,. Thus the elemer? ™ (f) € F,,,(X) exists by the sheaf axiom.

Fix x € X and choos® C, f,, € F(V) andUy as above. Becauseis sepa-
rated we havé (V) C F,,.(V), so the element, € F(V) is well defined. Given a
denseV, C V, the mapF (V) — F(V,) sendsf,, to f X becausé, (V) C F,, (V)
by 22.8. GivenU, C Uy, the proof of 22.14 shows that the the canonical lift
#, € Cor(Uy,V) is the composition of the inclusiod, c U with the canoni-
cal lift 7, € Cor(U,V). HenceF,,,(Ux) — F,4,(U,) sends the elemet#t ™ (f)y to
the image off, underF(V;) — F(Ug) C Frar(Up).
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It is now easy to check using 22.8 that the m#fs are additive and give,,
the structure of a presheaf with transfers. O

PROOF OF22.2. We have to prove thef,,, = Fy;,. LetF’ andF” denote
the kernel and cokernel presheaved-of- F;., respectively. By 13.1, they are
presheaves with transfers whose associated Nisnevich sheaf is zero. Since sheafi-
fication is exact, it suffices to show thigf,, = F/,, = 0. That is, we may assume
thatFy;; = 0.

By 22.1 and 22.15F,,, is also a homotopy invariant presheaf with transfers.
SinceFy;s = (Fza)niss WE Mmay assume th&t=F, ., i.e., that~ is a Zariski sheaf.
Therefore it suffices to show th&t(S) = 0 for every local schem8 of a smooth
variety X. Let Sbe the local scheme associated to a prioit X.

By 12.7, it suffices to check that, for any upper distinguished square

b

(see definition 12.5), the squaf¢Q x« S) is a pullback. By 21.5, this is equivalent
to checking that the complex(MV (Q xy S)) is exact. This is evident ik € A,
whenA xy S=SandB xy S=Y x4 S so we may assume that Z,.

Shrinking X aroundx, we may suppose by 11.17 thétis affine and fits into
a standard triplgX,X.,Z) with A= X —Z. ShrinkingY around the finite set
s = f~1(x), we may also suppose by 11.17 tNais affine, and fits into a standard
triple so thatQ comes from a covering morphism of standard triples in the sense of
21.1. Hence 21.11 implies th& <, S— Q factors through an upper distinguished
squareQ’ in such a way that

F(MV(Q)) — F(MV(Q)) — F(MV(Qxx9))
is chain homotopic to zero.
00— F(X)

F(A)@F(Y) F(B)—— 0

Y

FA)aF(Y)

0—— F(X) F(B) —— 0

Y

0——F(S —— FANY BF(Y x«S) — F(BxyS) — 0
Taking the limit over smaller and smaller neighborhootiof x, we see that
F(MV(Qxy9)) is exact. But thefr (Q x S) is a pullback square, as claimed.]






LECTURE 23

Contractions

We need one final tool in order to prove theorem 13.8, which says that Nis-
nevich cohomology preserves homotopy invariance for sheaves with transfers. In
this lecture we associate Foa new preshedf_; (known as thecontraction of F
in the literature). Here is the definition.

Let F be a homotopy invariant presheaf. The preshegfis defined by the
formula:

F_(X) = coker(F(X x A') — F(X x (A'-0))).
Forr > 1 we defineF_, to be (F,_,)_,. Sometimes we will writeF (X)_, for
F (X).

Since the inclusion = 1 : X —— X x (At —0) ¢ X x A is split by the
projectionX x A — X, we have a canonical decompositiBiiX x (Al —0)) =
F(X)@F_;(X). HenceF_; is also homotopy invariant, andff is a sheaf then so
is F_,. Here are some examples of this construction.

EXAMPLE 23.1. If F = ¢0* thenF_; = Z, becaused*(X x (Al —0))
0*(X) x {t"} for every integraX. By 4.1, there is a quasi-isomorphisil) ,
Z[-1].

More generally, the higher Chow grou@'(—,n) are homotopy invariant
(see 17.4) and their contractions are given by the formula:

(23.1.1) CH'(X,n)_; =CHY(X,n-1).

This follows from the the Localization Theorem (see 17.4):
cHL(X,n) E% CHI(X x AL,n) — CHI(X x (A= 0),n) — CH"(X,n— 1),
which is split as above by the pullback aloing 1 (using 19.13).

Theorem 19.1 allows us to rewrite the formula in (23.1.1) as:

H™(X,Z)_y = HZa (X, (1) s 2 HE (X, Z(i — 1)) = H™ (X, Z).

Zar

This yields the formul& (i) _, ~ Z(i — 1)[—1] in the derived category, and DM .

ExAmMPLE 23.2. We will see in the next lecture (in 24.1 and 24.8) thaf if
is @ homotopy invariant Zariski sheaf with transfers th&H—,F) is homotopy
invariant andHz,,.(—,F)_; = HZ, (—,F_,).

ExamMpPLE 23.3. Suppose that /h € k, and letM be a locally constani-
torsion sheaf, such gs,. The argument of 23.1 applied &tale cohomology,
shows that

12

Hgt](xv M ®Nn)_1 = Hgtlil(xv M)
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EXERCISE 23.4. Let % be the standard covering of x (A" —0) by U, =
Xx (A'—0)x A1 . Uy=XxA"1x (A'—0). If F is homotopy invariant and
n> 2, show thatH%(#% ,F) = F(X), H"™ (% ,F) = F_,(X), and thaH" (% ,F) =
0 for all otherr.

Now suppose thd is a Zariski sheaf, and that its conomology groups are also
homotopy invariant. Show that, for attandn > 0, the cohomology with supports
satisfies:

H;”X{O}(X x A" F) 2 H™"(X,F)_,.
Hint: Use theCech spectral sequent®(% ,HIF) = HP+I(X x (A" —0),F).

PROPOSITION23.5. Let F be a homotopy invariant presheaf with transfers.
Then(FNis)—l = (F 1)Ni5'

ProoOF. By 13.1 and 22.3F,; is a homotopy invariant sheaf with transfers.
By inspection, the natural mafF_;)yis — (Fyis)_1 IS @ morphism of presheaves
with transfers. By 11.2 (applied to the kernel and cokernel), it suffices to show
thatF (S) = (Fyis)_1(S) WwhenS= SpecE for a fieldE. The left side i (AL —
0)/F (At) by definition, while the right side equalig (AL — 0)/Fyis(AL). These
are equal by 22.4 and 22.2. O

In the rest of this lecture, we will compake ; to various sheaveE(Y,z), which
we now define.

DEFINITION 23.6. Given a closed embedding Z —— Y, and a presheaf
F, we define a Nisnevich sheE{le) on Z as follows. LetK = K(Y_Z) denote the
presheaf cokernel &f — j. j*F, wherej :V —— Y is the complement af. That
is, K(U) is the cokernel oF (U) — F (U x, V) for allU. We sety 7 = (1K) nis-

Since sheafification is exact, there is a canonical exact sequence of sheaves
(23.6.1) Fnis — (j*j*F)Nis_)i*F(Y,z) — 0.

EXAMPLE 23.7. If Z = {z} is a closed point orY, then the value aZ of
F(Y,Z) is the cohomology with supportsi2 (Y, Fy;s). Indeed, ifSis the Hensel local
scheme off atZ thenF, , (2) is the cokernel ofy;s(S) — Fy;s(S—2Z,F), i.e.,
H2(S Fyie)- But this equal$i2 (Y, Fy;) by excision Har77, Ex.I11.2.3]. Similarly,

we haveH"(—,F) )= H2™(Y,F) for n > 0. This follows from excision and the
exact sequence

(Y7Z

H™Y(SF) —H"}U,F) - H)SF) —0.

ExampPLE 23.8. Fix a Nisnevich shedf and consider the presheddf'(—,F).
We claim that ifn > 0 then

H (= F) yz) = 1"RL(F).

Indeed, in 23.6.1 we havd"(—,F)\;s = 0, andR"j,(F) is the sheaf orY as-
sociated to the preshegfj*"H"(—,F) = j.H"(—,F|,). Hencei*H"(—,F)mZ
(j«i*H"(—,F))nis = R"j«(F). Now applyi* and observe thati. is the identity.

) &
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EXAMPLE 23.9. Leti: S—— Sx Al be the embedding’s) = (s,0), with
complemenBx (Al —0). By definition,F_;(U) = K(U x Al) where the cokernel
presheaK is defined in 23.6. The adjunction yields a natural map fkoftd x A1)
toi,i*K(U x A1) =i*K(U). That is, we have a natural morphism of sheaveS.on

(F_1)nis = Fiscatscoy

PROPOSITION23.10. Let F be a homotopy invariant presheaf with transfers.
Then(F_y)nisls = Fis, 1 5.0) for all smooth S.

PrROOF We need to comparé_; and j.j*F /F in a sufficiently small neigh-
borhood of any poins of any smooth affines. We will use the standard triple
T = (PL — S Sx 0,Sx 0), which is split overSx A' by 11.12. For each affine
neighborhood) of Sx 0in Sx Al, setT, = (PL,P{—-U,Sx0).

We claim that by shrinkingwe can makd|, into a standard triple. Atissue is
whether or nofP{—U) U (Sx 0) lies in an affine open subschemeRdf Since the
fiberUs oversis open inP%, there is an affine opevi C P; so thats x, V contains
both 0 and the finite seétl —Us. Hence the complements bf andSx V in P
intersect in a closed subset, disjoint from the fiBér SinceIP% is proper ovelS,
we may shrinkS abouts (keepingS affine) to assume that the complements are
disjoint. Hence the affin€ x V contains the complemei}i’%— U as well asSx 0,
as claimed.

Now the identity or[P’é is a finite morphism of standard tripldg — T in the
sense of 21.1 by 21.2. Settitly = U — (Sx 0), the squar& coming from this is:

Uy U

Sx (A1—0) )+ Sx Al
By the standard triples theorem 21.6 applie@te= Q, the complex (MV(Q)) is
split exact:

0— F(Sx AY) —» F(Sx (A'-0))@F(U) — F(U,) — 0.

SinceF is homotopy invariant, this implies th&(U) — F(U,) is injective and
thatF ,(S) 2 F(Uy)/F(U). Sincej:Sx (Al—0) — Sx Al hasj.j*F(U) =
F(Up), the right side ig. j*F /F (U). Passing to the limit oved andS, we get the
statement. (]

LEMMA 23.11.Let f:Y — X be anétale morphism and Z a closed subscheme
of X such that f1(Z) — Z is an isomorphism. Then for every presheaf F:

IR

Fxz) — Fv.i 1y
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PROOF Since this is to be an isomorphism of Nisnevich sheaves, we may
assume thaX is Hensel local, and thais not empty. ThelY is Hensel semilocal;
the assumption that—1(Z) = Z implies thatY is local and in facty = X. In this
case the two sides are the same, narfgly — Z2) /F(X) = F(Y - 2)/F(X). O

Lemma 23.11 uses the Nisnevich topology in a critical way. For the Zariski
topology, the corresponding result requiFe$o be a homotopy invariant presheaf
with transfers, and may be proven along the same lines as 23.10Ceb@&H,
4.13].

THEOREM23.12. Leti: Z — X be a closed embedding of smooth schemes of
codimensioril, and F a homotopy invariant presheaf with transfers. Then there
exists a covering % UU,, and isomorphisms on each,\(h Z:

F(Ua,UamZ) = (F—l)NiS'
That is, for eachx there is an exact sequence of Nisnevich sheaveg,on U

0—Fo— jarigFa — i*(F—l)Nisﬁ 0.

Here R, = <F|U )N_ and j, denotes the inclusionfn (X —Z) —— U,,.
“/ Nis
Moreover, for every smooth T we also have isomorphism&gmZ) x T:

FuuxT.uenz)xm) = (FoDnis
PROOF We have to show that every smooth p@ir,Z) of codimension one is
locally like (Sx A',Sx 0). If dim(Z) = d then, by shrinkingX about any point
(and writing X instead ofU), we may find arétale mapf : X — A% such that
Z=f-1(AY).

i
Z— X

Ad c Ad+lg Ad w« Al
By constructionZ x Al is étale overA? x A'. Form the pullback’ = X x .,
Z x A" and note that boti’ — X andX’ — Z x A' areétale withZ' =Z x ,, Z
lying aboveZ andZ x 0, respectively. Sincg’ — Z is étale and has a canonical
sectionA, we can writeZ' = A(Z) ITW. SettingX” = X —W, bothX” — X and
X" — Z x A' areétale, withA(Z) the inverse image df andZ x 0, respectively.
Applying lemma 23.11 twice and then 23.10, we obtain the required isomorphisms
of Nisnevich sheaves ot

Fix2) — Fvaw)
To see that the sequence of sheaves is exact, we only need to obseFyaniedts

into j. j*F, by lemma 22.8, sincg, = (F|U >z by 22.2.
*/ Zar

——F

(ZxALZx0) = (F_pnis
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In order to prove the final assertion, it suffices to repldc and A% with
ZxT,X xT andA? x T in the above argument. O

PoRIsm 23.13. The same proof shows that if2 X is a closed embedding of
smooth schemes of codimension r, then Ioca(LLyZF% F(ZxAr 7%0)"

ExXAMPLE 23.14. Let M be a locally constant-torsionétale sheaf and con-
siderF (X) = HY(X,M ® un). By 23.3,(F_;)yis = M. By [Mil80, p. 243], we also
haveF, , = M. Inthis case, the isomorphisrfg, ,, = (F_1)nis Of 23.12 hold for
any cover ofX.






LECTURE 24

Homotopy Invariance of Cohomology

We finally have all the tools to prove 13.8 which we restate here for the conve-
nience of the reader.

THEOREM24.1. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then fi(—, Fy;s) IS @ homotopy invariant presheaf (with transfers)
for every n.

ProOF It suffices to prove that thid[j,;(—, Fy;s) are homotopy invariant, since
we already know that they are presheaves with transfers from 13.4. We shall pro-
ceed by induction om. The casen = 0 was completed in theorem 22.3, so we
know thatF;, is homotopy invariant. Hence, we may assume Fhat F..

ConsiderX x A? —=+ X. Sincem.F(U) = F(U x Al) 2 F(U), we have
n.F = F. By induction we know thaR%r.F = 0 for 0< g < n. By theorem 24.2
below,R"7.F = 0 as well. Hence the Leray spectral sequence

HY. (X, R F) = HRLA(X x AL F)

collapses enough to yielJ(X,F) = HJ (X x ALF). That is, the presheaf
HNis(—, F) is homotopy invariant. 0

We have thus reduced the proof of 24.1 to the following theorem. Recall from
[EGA4, 17.5] that the Hensel local scheme S@®cof a smooth variety at some
point isformally smooth, i.e., geometrically regular.

THEOREMZ24.2. Let k be a perfect field, and F a homotopy invariant Nisnevich
sheaf with transfers such thatl®F = 0 for 0 < g < n. If S is a formally smooth
Hensel local scheme over k, thefiHSx AL, F) = 0.

The requirement thdt be perfect comes from the following fact (s&&JA0,
19.6.4]): ifk is perfect, every regular locktalgebra is formally smooth ovér

PrRoOF We will proceed by induction ol = dim(S). If d =0 thenS=
SpecK) for some fieldK; in this caseHY(Sx A, F) = HJis(A%,F) =0 by 22.7.
Here we have used exercise 2.10 to redass a homotopy invariant presheaf with
transfers ovekK.

If dim(S) > 0, andU is any proper open subscheme, then dimx d (Sis
local), soRr.F |, =0 for 0 < q < n, by induction ond. Thus the canonical map
7l  HGio(U,F) — HG (U x AL F) is an isomorphism, and its inverse is induced

203
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by the restrictiors|,, of the zero sectios: S— Sx Al toU. From the diagram

HOio(Sx ALF) Lo HIL(U x ALF)

s S | =

0=HJis(SF) HRis(U,F)

we see that the top mgp is zero for all suctJ.

Now S= Spe(R) for a regular local ringR,m); chooser € m —m? and set
Z = Spe¢R/r), U = S—Z. Because is regular and is perfect,Z is formally
smooth overk. For this choice, the map* is an injection by proposition 24.3
below. Hence the sourdel,((Sx Al F) of j* must be zero. a

ProOPOSITION24.3. Let k be a perfect field and S the Hensel local scheme of a
smooth scheme X at some point. Let U be the complement of a smooth divisor Z on
S. Under the inductive assumption th&ti = 0 for all 0 < g < n, the following
map is a monomorphism:

HRlis(Sx A%, F) — H{js(U x AL F).

PROOF. Leti and j denote the inclusions a x A' andU x Al into Sx Al
respectively. Regarding as a sheaf o8 x A', the map in question factors as:

His(Sx A',F) —— H{ig(Sx AL . [*F) —1> Hiji(U x A%, jF).
We first show that the right-hand magps injective. This will follow from 24.4 be-
low, once we have shown thet j.F = 0 for 0 < q < n. The inductive assumption
implies thatH9(F) is a homotopy invariant presheaf with transfers. Sigce0

we haveH9(F),;s = 0. Now see from 23.5 thaH(F) _;)nis = (HY(F)nis) 1 =0.
By 23.8 and 23.12 (witil = A') we have

RIj,F =i, HI(F) =i (HY(F)_1)nis=0.

(SxALZxAT)

We now prove that the left-hand magps injective as well. Sinc& is a ho-
motopy invariant presheaf with transfeFsjnjects intoj, j*F by lemma 22.8. By
23.6, there is a short exact sequence of Nisnevich shea\@s art:

0—F — j,J'F —i,F — 0.

(SxALZxAl)
SinceSis local, theorem 23.12 (witfi = A%) implies thatF(sml,zml) =F_,on
Z x A, Consider the associated long exact sequence in cohomology.

_ D _ 9
H™ 1 (Sx AL JLJ'F) = H™ Yz x AL F )

HY(Sx AL F) - H"(Sx AL j.j*F) = H"(Zx AL F ).

It suffices to show that the map"1(Sx AL, j.j*F) - H™1(Zx ALF ) is
onto. Ifn> 1, this follows from the homotopy invariance Bf ; and the fact that
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Z is Hensel local:
H™ Yz x AL F ) =H"ZF ;) =0.

If n=1, we argue as follows. Sinde andF_, are homotopy invariant, the
two left horizontal maps are isomorphisms in the commutative diagram:

>~

F(U x Al) <— HO(Sx AL j,j*F)

|

F o (Z) — > F_(ZxAY) < HYZx ALF_,).

The left vertical map is onto by 23.12, beca&is local. It follows that the right
vertical map is onto, as desired. O

FU)

23.12l onto

~

LEMMA 24.4. Let G be any sheaf onk Al such that Rj.G=0for0O< q<n.
Then the canonical map™MX x Al, j,G) — H"(U x A, G) is an injection.

PrROOF Consider the Leray spectral sequence
HP(X x AL, RAj,G) = HPTI(U x Al G).

Using the assumption on the vanishing of B..G, it is easy to see that there is a
short exact sequence:

0—H"XxALj,G) = H"(U x Al,G) - H(X x AL R"},G). O

We have now completed the proof of homotopy invariance of the cohomology
sheaves, which was promised in lecture 13 (as theorem 13.8).

For the rest of this lecture, we fix a homotopy invariant Zariski sheaf with
transfers= over a perfect fielk. Because we have proven theorem 13.8, we may
use proposition 13.9, which says tiét, (X, F) = His(X, F). We will sometimes
suppress the subscript and just wkté(X, F).

COROLLARY 24.5. If S is a smooth semilocal scheme over k and F is a homo-
topy invariant sheaf with transfers, then for albnO:

] Hn(S, F) =0
e H"(Sx T,F) = O for every open subset T af.

PrROOF (Cf. 13.9.) By 24.1, eachi"(—,F) is a homotopy invariant presheaf
with transfers. IfE is the field of fractions of, thenH"(Sped,F) =0 forn> 0
because dirk = 0. By 11.1, this implies that"(S F) = 0.

Now H"(X) = H"(X x T, F) is also a homotopy invariant presheaf with trans-
fers by 24.1, andH"(S) injects intoH"(SpeE) = H"(Sped¢E) x T,F) by 11.1.
By 2.10 and 22.7, this group vanishes for 0. O

EXAMPLE 24.6. Let (R,m) be a discrete valuation ring containihkg with
field of fractionsE and residue fieltk = R/m. SettingS= SpedR andZ = Spe,

theorem 23.12 yield§(sz) = F_, and an exact sequence of Nisnevich sheaves
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onS 0—F — j,F —i,F ; — 0. SinceHJ(SF) = 0 by 24.5, the Nisnevich
cohomology sequence yields the exact sequence:

0 — F(Spe®R) — F(SpeE&) — F_,(SpeK) — 0.

More generally, ifR is a semilocal principal ideal domain with maximal ideals
the same argument (using 24.5) yields an exact sequence:

0— F(Spe®R) — F(Spe&) — @;F_,(SpedR/m;) — 0.

EXERCISE24.7. If X is a smooth curve ovek, show thatF ;(x) = HL(X,F)
for every closed point € X. Conclude that there is an exact sequence

0— F(X) — F(Spek(X)) — EPF_;(x) — HZa(X,F) — 0.
xeX
PROPOSITION 24.8. Let k be a perfect field and F a homotopy invariant
Zariski sheaf with transfers. Then"t+,F) , = H"(—,F_,) for all smooth X.
That is, there is a natural isomorphism:

HZar (X x (A —0),F) = Ho (X,F) & HJo (X, F_y).

PrROOF Write T for A — 0 and consider the projection: X x T — X. LetS
be the local scheme at a poxf X. The stalk oR9z,F atxisHY(Sx T,F), which
vanishes foig > 0 by 24.5. Therefore the Leray spectral sequence degenerates to
yieldH"(X x T,F) = H"(X,n.F). Butm.F = F &F_, by the definitonof_;. [

EXAMPLE 24.9. Let F be a homotopy invariant Zariski sheaf with transfers.
Combining proposition 24.8 with 24.1 and 23.4, we get the formula:

HE, (o (Zx A" F) = H"(Z,F,).

If Z= Spe¢K) for a fieldK, this shows thait-l{”o} (Ak,F) vanishes fon # r, while
the value 01HE0}( k,F) at Spe¢K) is F_, (Spe¢K)).
LEMMA 24.10. Let S be a d-dimensional regular local scheme over a perfect

field k. If F is a homotopy invariant sheaf with transfers and Z is the closed point
of S, then H(S F) vanishes for 3£ d, while H(SF) 2 F ,(2).

PROOF Since the casd = 0 is trivial, andd = 1 is given in example 24.6, we
may assume that > 1. WriteU for S— Z. SinceF(9) injects intoF (U) by 11.1,
H2(SF) = 0. Forn > 0, we may uséi"~1(—,F), which is a homotopy invariant
presheaf with transfers by 24.1. By 23.11 and two applications of 23.7, we have

HA(SF) = H"(—,F) gz =H"(~.F) = H,o(Z x AYF).

(82)
By 24.9, this group vanishes far#£ d, and equal$_,(Z) if n=d. O

(ZxAY,Zx0)

If zis a point ofX with closureZ, andA is an abelian group, Iét;).(A) denote
the constant she#fon Z, extended to a sheaf of
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THEOREMZ24.11. Let X be smooth over k, and F a homotopy invariant Zariski
sheaf with transfers. Then there is a canonical exact sequence of Zariski sheaves
on X:

0—F— [[G2)-(F)— J[(2:(Fy) —-— []i2)
codimz=0 codimz=1 codimz=r

ProOF It suffices to assume that is local with generic poink, and closed
pointx,, and construct the exact sequence

0—F(S H "'_>H(F—d(z))_)"'_)F(Xd)_’o'

codimz=1 codimz=r

When dim(X) = 1 this is 24.6, so we may assume that dim(X) > 1. For
anyr <d, letH"(X",F) denote the direct limit of the grougs"(X — T,F) with
codim(T) > r. For any Zariski sheaf, andr > 0O, the direct limit (overT and
all Z of codimensiorr) of the long exact cohomology sequen¢EgX — T,F) —
H*(X-T,F) — H*(X—Z—T,F) yields an exact sequence

0—JJH (%, F) = F(X) — F(X"™H =] [ Hy (%, F) — HY(X",F)....

codimz codimz
=r =r

EachX; is anr-dimensional local scheme. Hence the grodp$§X;, F) vanish
except fom =r by 24.10, andH} (Xz,F) = F_,(z). Forr > 0 this yields:

F(X) 2 F(X% 1) 2. F(XT) .. 2 F(XD);
0= H'(X,F) = H' (XL F) ... & H (XL F);
and (sincex? is a point)
0=H"(X°,F) = H"(XLF)= ... 2 H' (XL F).
Using these, we get exact sequences:
0—F(X) = Flg) = JTH06F) = HI(XEF) —0;

codimz=1

R N

and (for 0O< r < d)
0—H (X1 F)— J]HI(XF)—H(X"F)—o0.
codimz=r

Splicing these together (and using 24.10) yields the required exact sequehnte.

REMARK 24.12. Since the sheavés,).(F_, ) are flasque, theorem 24.11 gives
a flasque resolution of the shdaf Taking global sections yields a chain complex
which computes the cohomology groug8(X,F). This shows that the coniveau
spectral sequence
EPI= P HPIUXF) = HPTIX,F)

codimx=p

degenerates, WItEpO HP(X,F) andE;9 =0 forq+# 0.






Glossary

@  total tensor product, 52

@ tensor product of presheaves with transfers, 53

®I"  tensor product of complexes of presheaves with transfers, 53

®Y  tensor product oétale sheaves with transfers, 54

@' nis tensor product o~ Sh;s(Cor,R), 101

@'y, tensor product of complexes éfale sheaves with transfers, 54

®, tensor product o, 69

ay(F) eétale sheafification df, 38

anis(F) Nisnevich sheafification d¥, 84

&% the closure ofe under infinite direct sums, 51

A(gq) the complex of presheaves with transféig) @ A, 19

A:;(Y,X) bivariant cycle cohomology group, 122

c(X/S,0) universally integral relative cycles of finite and surjective oves, 8

Co(X/S) same ag(X/S0), 43

C.F the complex obtained from the simplicial preshEgf- x A®), 14

CPKF normalized complex associatedGoF, 14

€[T~Y category obtained fror by inverting®T, 61

CH'(X) Chow group of codimensioincycles ofX, 12

Ch™(«7) category of bounded above cochain complexes/in52

CH'(X,m) Bloch’s higher Chow group, 125

Chow(Chow™) the category of (effective) Chow motives, 157

Cor, category of finite correspondences, 3

Cor(X,Y) group of finite correspondences frogto Y, 1

Corg category of finite correspondences over a Noetherian scierie

Corg(X,Y) the groupc(X xgY/X,0), 9

Cycl(X/Sr) free abelian group of the relative cycMson X overSsuch that each
component has dimensioroverS, 7

D~ or Dy, or D~ (Shy(Cor,,R)) derived category oétale sheaves d-modules
with transfers, 63

D~ or D~ (Shy;s(Cor,,R)) derived category of Nisnevich sheaves with transfers,
101

Dyis OF Dyis(Shyis(SnYK)) derived category of Nisnevich sheaves, 86

A° cosimplicial scheme witA" =~ A", 14

D~ (G,Z/m) derived category of discrefz/n-modules oveG, 70

DM~ (k,R) category of motives, 102
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DM~ or DME™~(k,R) category of effectivétale motives, 63

DM, or DM (k,R) category oftale motives, 64

DM g‘;ﬁ(k, R) category of effective geometric motives, 101

DMgm(k,R) category of geometric motives, 102

DMET = or DMET~(k,R) category of effective motives, 101

&,  the thick subcategory @~ such thaDM~ =D~ /&,, 63

Et/k category of smooth schemes okasf dimension zero, 34

F_, contraction of the preshe&f, 179

F.qn  cdh sheafification of, 89

Fy,  same asy(F), 38

Fnis  same asy;o(F), 84

F(sz) Nisnevich sheaf 0@ associated to a closed embeddingZafito Y, 180

I the graph off, 1

Gm  the pointed schem@!—0,1), 13

G)?,Y units of X equal to 1 orY, 45

HP4(X,A) motivic cohomology group, 20

Hr‘fi'\"(x, R) (Borel-Moore) motivic homology with compact supports, 122

HM(X,R) motivic cohomology with compact supports, 122

HP4(X,A) étale (or Lichtenbaum) motivic cohomology, 71

HS"9(X /k) the groupHLC.Z (X)(Sped), 16

H3"9(X /S) algebraic singular homology of overS, 43

H3"9(X,R) algebraic singular homology, 74

hy additive functor Hom), (—,X), 51

HYy,(X,L) cdh hypercohomology of a complex of cdh sheaves, 107

H(X,K) étale hypercohomology of a complex of sheaves, 41

HRis(X, K) Nisnevich hypercohomology of a complex of sheaves, 94

Hgar(x, L) Zariski hypercohomology of a complex of sheaves, 20

Hom(M,N) internal Hom inDMgn,, 160

Hom(F,G) Hom presheaf, 52

K~ (&) chain homotopy category of complexesdf, 53

KM(k) the MilnorK-theory of a fielck, 27

Kn K-theory group, 12

L the Lefschetz motiv&(1)[2], 157

£ or £, Al-local objects irD~ (Shy(Cor,,R)), 67

£ of 4s Al-local objects irD~ (Shy,s(Cor,,R)), 103

2, line bundle orlJ xgX corresponding to the diagonal map, 79

(Z,1) line bundleZ with a trivializationt, 45

M*(P1;0,00) sheaf sendin¥ to the rational functions o x P* which are regular
in a neighborhood oX x {0,«} and equal 1 0iX x {0,}, 23

M*  the dual of a motivéM, 158

M(q) Tate twistM @I \isR(q), 102

M¢(X) motive with compact support of, 120
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Un sheaf o™ roots of unity, 12

MV (Q) Mayer-Vietoris sequence of a squde 165

M(X) the motive ofX in DM~ DM~ or DMy, 101

7 sheaf of global functions, 11

o sheaf of global units, 11

0% . Hensel local ring oK atx, 40

Pic(X) the Picard group oX, 23

Pic(X,Y) relative Picard group, 45

PreSHCor,) category of additive presheaves with transfers, 11
PST(k) same a®reSHKCor, ), 11

Q(X,Y,A) cartesian square of schemes, 84

RHon(M, L) internal Hom inDM¢.~, 105

Schyk category of schemes of finite type over88

Sh,(Cor,) category ofetale sheaves with transfers, 33
Sh,(Snyk) category oftale sheaves on smooth schemes, 33
SHS  category of locally constant sheavesSh, (Snyk), 34
Shyis(Cor,) category of Nisnevich sheaves with transfers, 93
Shyis(Snyk) category of Nisnevich sheaves on smooth schemes, 84
S Henselization af0} in A!, 48

Smyk category of smooth separated schemes, 1

W,  multiplicative system of\l-weak equivalences, 63

(X, Xw,Z) standard triple, 78

Z,-Z, intersection product of cycles, 133

Z(</) category of additive presheaves.ofy 51

Zoqui(T,1) sheaf of equidimensional cycles of relative dimensipri17
Zoqui(X, M) same age, (X, dimX —i)(A™), 139

Z(X,m) Bloch’s cycle group, 125

Z(Y,m),, cyclesinZ(Y,m) meeting# properly, 127

Z(q) the motivic complexC.Z, (GL9)[—q], 19

ZSF(i) Suslin-Friedlander motivic complex, 118

Z4(Gm) the presheaf with transfef, (A —0)/Z, 13

Zy (GR9) smash product, 13

Z(U) Cech complex associated to a coleof X, 35

Z4(X) representable presheaf with transfers associat¥d tt?
Zy (X, X) cokernel of the map. : Z — Z (X), 13

Z(X) Nisnevich sheafification c%[HomSMk(—,X)}, 86
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Al-homotopy,19, 19-20
Al-homotopic,lg, 19-20, 47, 6969, 71,
85, 86, 115,115 125-127, 145, 146,
181-183
Al-homotopy equivalencd9, 19-20, 69,
124, 182
strict, 72, 72-74, 100
Al-local complexesseeNisnevichAl-local
Al-local objects, see étale Al-local, Nis-
nevichAl-local
Al-weak equivalencessee étale Al-weak
equivalences, Nisnevich!-weak equiv-
alences
abelian category, 13, 15, 39, 42—-44, 55, 90,
99
abstract blow-upseeblow-up
additive category, 3-5, 19, 37, 55-57, 63, 64,
67
adjoint functors, 6, 20, 38, 42, 51, 56, 61, 70,
71,99, 114, 115, 173, 197
algebraic singular homologyiSi“Q(X/S), 48,
47-53,78, 78-80, 183
and Chow groups, 140
and higher Chow groups, 140
and motivic homology, 116
and transfers, 48

balanced functor, 56
Bass-Tate lemma, 33
Bertini’s Theorem, 87
bivariant cycle cohomology group, 134
Bloch's cycle complexz (X, ), 139 139-
146, 153-158
and equidimensional cycle complex, 153
subcomplex 2 (X, ),,, 141, 140-143,
167-169
and equidimensional cycles, 164
is isomorphic wheiX affine, 141
Bloch's cycle presheafz‘(f x T,%), 164
164-167
Bloch, Spencer, 139, 166, 167
blow-up
abstract94, 94-97, 106, 111, 113, 117
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decomposition of motives, 127
sequence in cohomology, 104
sequence in motivic cohomology, 117
triangle, 106, 113

Borel-Moore motivic homologyseemotivic

homology with compact supports
Brauer group, 44
Brown-Gersten, 166

calculus of fractions, 67, 71
Cancellation Theorem, 112, 135, 139, 168,
171-173
canonical flasque resolutioseeflasque res-
olution
Cartier divisor, 50, 86, 184
cdh cohomology, 97
cdh hypercohomology, 134
and hyperext, 117
and motivic cohomology, 117
cdh resolution, 106
cdh sheaf, 133
cdh sheaves with transfers, 105-107
cdh topology, 4594, 94-97, 117
Cech cohomology, 187, 188, 196
Cech resolution, 39, 41, 59, 99, 103, 123, 125
Chevalley’s theorem, 84
Chow group, 14, 139, 140, 171
and algebraic singular homology, 140
and motivic cohomology, 163
andzyq,(T,r), 130
higher,seehigher Chow group
is a presheaf with transfers, 14
Chow motives, 171-173
cohomological dimension
cdh, 95, 117
étale, 45, 71-73, 119
Nisnevich, 89, 100, 101, 114
Zariski, 101
cohomology,seemotivic cohomology.éetale
cohomology, Nisnevich cohomology,
cdh cohomology
compact supportsee motive with compact
support
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compactificationseegood compactification
contraction, 195 202
of higher Chow groups, 195
of homotopy invariant Zariski sheaf, 204
of locally constanétale sheaf, 195
of motivic cohomology, 195
of motivic complex, 195
of relative sheaf, 197, 198
of Zariski cohomology, 195
corrections, 69, 190
correspondence
Al-homotopic,seeAl-homotopy
composition4
elementary3, 3-6, 125
finite, 3, 3—-6
lifts to a vector bundle torsor, 143
covering morphismseestandard triple
cycles
equidimensionalseeequidimensional cy-
cles
in good position, 142, 143,48 147-151
intersection, 139, 147
properly intersecting, 5, 139-142,47,
147-151, 154
pullback,seepullback
push-forwardseepush-forward

deformation retrac93

Deligne, Pierre, 28

direct limit, 6, 15, 83

Dold-Kan correspondence, 16

dual motive seegeometric motive
dual vector space, 78

Duality Theorem, 135, 168, 171, 172

effectiveétale motivesseeétale motives
effective geometric motivessee geometric
motives
effective motives]111, 111-121
and Chow motives, 171
and Nisnevichh1-local, 115
list of properties, 112
Q coefficients, 118-121
are effectiveetale motives, 120
Eilenberg-Zilber theorem, 24, 76
elementary correspondencsege correspon-
dences
elementary matrices, 126
enough injectives, 13, 43, 44, 79, 99
enough projectives, 13, 56
equidimensional cycle complez{aqui(x,*),
153 153-158
and Bloch’s cycle complex, 153

equidimensional cycle presheafg(T,r),
129 129-135, 139, 140, 163
and Chow group, 130
and motives with compact support, 132
is a presheaf with transfers, 130
is anétale sheaf, 129
is Zy, (T) if T proper, 129
equidimensional cycles, 9, 11, 147, 149
locally, 141
equidimensional scheme, 139, 153-154, 168
étaleA’-local, 71, 71-80, 119-121
andétale effective motives, 74
is NisnevichAl-local rationally, 119
etaleAl-weak equivalence§7, 67-80
etale cohomology, 27, 45
and Ext, 44
preserves transfers, 44
étale hypercohomology
and hyperext, 45
étale motives68
andétale effective motives, 68
effective,67, 67—-80
étale motivic cohomology, 6775, 75-80,
119, 120
andétale cohomology, 75
is motivic cohomology rationally, 119
is representable, 78, 120
étale resolution, 61, 103
étale sheaf37
locally constant38, 38—39, 51, 58, 60, 61,
72-74,79, 195, 199
with transfers37, 37-45
étale sheafification
preserves transfers, 42
étale topology, 40, 164
and Tate twistseeTate twist
Ext group, 78

fat point,8
ffp cohomology, 28
field
extensionseefield extension
perfect, 100-103, 105, 114, 115, 119, 120,
123, 128, 130, 132, 135, 163, 171, 187,
201-204
separable closure, 39, 51
separably closed, 51, 52, 78-80
field extension, 6-9, 23, 26, 30-33, 87, 102,
190
Galois, 6, 10, 39, 60
inseparable, 10, 33
inseparable degree, 39
normal, 39
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purely inseparable, 10
separable, 6, 10, 15, 20, 23, 33, 38, 89
separable degree, 39
finite correspondencsgecorrespondences
flasque resolution, 61, 166, 205
canonical, 44, 45, 92, 99, 100
flat presheafseetensor product
flat site, 164
formally smooth, 201
Friedlander, Eric, 134, 135
Friendlander-Voevodsky DualitgeeDuality
Theorem

Gabber, Offer, 84
Galois group, 6, 10, 38, 39, 67, 73
Galois module, 38, 39, 58, 60, 67
Generic Equidimensionality Theorem, 155,
157, 159
geometric motives]12 171-175
are rigid, 174
double dual isomorphism, 173
dual,172
dual and motive with compact supports,
173
dual and tensor product, 174
effective,111, 171-175
geometric point, 51
geometrically regular, 201
Gersten resolution, 139, 205
global functions
is a presheaf with transfers, 13
is zero in motives, 71
global units, 188, 195
is a presheaf with transfers, 13
is Z(1)[1], 25
good compactification, 47-53, 84, 85, 180
Gysin
map, 127
map for compact supports, 134
triangle, 113, 128

h-topology, 95
Hensel local ring or scheme, 40, 30, 101,
102, 119, 132, 196, 198, 201-203
strictly, 40, 44
Henselization, 51, 52
higher Chow groups, 129, 134, 13339
139-146, 153, 163-169, 195
and algebraic singular homology, 140
and Chow groups, 140
and vector bundle torsors, 143
are functors on affine schemes, 143
areHBM, 163, 168

in
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are hypercohomology, 166
are motivic cohomology, 163, 167
are presheaves with transfers, 146
are representable, 169
definition of transfer, 144
Homotopy Invariance, 140, 143, 153, 165,
169, 195
Localization Theorem, 140, 143, 154, 165,
195
Hom presheaf, 56, 61
homogeneous form, 160
homotopic
Al— seeAl-homotopy
weekly, seeweakly homotopic
homotopy commutativel,81, 181-185
homotopy invariancel7, 17-20, 83-88
higher Chow groups,see higher Chow
groups
NisnevichAl-local and, 114
Nisnevich cohomology preserves, 100,
201
Nisnevich sheaf, 100
is the Zariski sheaf, 187
Nisnevich sheaf and contractions, 196
Nisnevich sheafification preserves, 187
presheaH,C.F, 18
Zariski sheaf, 203
Zariski sheafification and, 187, 191
homotopy invariant presheaf with transfers,
seehomotopy invariance
hyperext,seecohomology

injective resolution, 79
internal Hom, 115, 172
of geometric motives, 174
intersection cycleseecycles
intersection multiplicity, 147, 148
and the Tor formula, 147

Jouanolou’s device, 143, 144

K-theory, 14, 48
Milnor, seeMilnor K-theory
Kummer Theory, 49, 51

leading form,160

Lefschetz motive, 171

Levine, Marc, 141, 142, 167

Lichtenbaum motivic cohomologeeétale
motivic cohomology

line bundle, 14, 50, 85-87, 126, 180, 182,
183

trivialization, 49, 50, 84-86, 127, 180,

182-185
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localization, 64, 65, 67, 68, 111, 112

localization sequence, 131, 140

Localization Theorem, see higher Chow
groups

locally constantseeétale sheaf

Mayer-Vietoris propertyl66
Mayer-Vietoris sequencklV (Q), 181, 187—
190, 193, 197
Mayer-Vietoris triangle, 103, 112, 127, 133
Milnor K-theory, 29-34
isH™M, 29
motiveM(X), see alseffective motives, geo-
metric motives, motives, 20,11
Chow,seeChow motive
decomposition of projective space, 125
dual,seegeometric motive
geometric seegeometric motive
is homotopy invariant, 20
isomorphic toC,Zy, (X), 112
list of properties, 112
projective bundle, 113, 127
vector bundle, 113
motive with compact suppom©(X), 132
132-135, 172-173
Duality Theorem, 135
embedding triangle, 133
is geometric, 133
is M(X) for X proper, 133
motivesDM ~ (k,R), 112, 172
motivic cohomology22
and cdh hypercohomology, 117
and Chow group, 163
and Nisnevich hypercohomology, 101
colimits, 23
independent ok, 23
is a presheaf with transfers, 14
is étale motivic cohomology rationally,
119
is higher Chow groups, 163
is representable, 101, 112, 116
pairing, 24, 126
product is graded-commutative, 126
singular X,116
with compact support4,34
motivic complex,21, 21-24
and the projective space, 123
is ZSF(i), 130
product, 24, 76, 126
motivic homology,116
with compact support4,34, 163, 168
is higher Chow groups, 168
multiplicative system, 64, 67, 111

NisnevichAl-local, 113 113-121
and effective motives, 115
and homotopy invariance, 114
is etaleAl-local rationally, 119
Nisnevich cohomology
and cdh cohomology, 97, 106
and Ext, 92, 99
and Zariski cohomology, 101
is étale cohomology rationally, 118
preserves homotopy invariance, 100, 201
preserves transfers, 99
Nisnevich cover, 96
Nisnevich hypercohomology
and hyperext, 100
and Zariski hypercohomology, 101
is étale hypercohomology rationally, 119
Nisnevich lifting property, 89, 95
Nisnevich resolution, 40, 92, 94, 99, 106
Nisnevich sheaf, 40, 89-94, 96, 102
criterion, 90
not étale sheaf, 91
with transfers, 99-107
is étale afterxQ, 118
7Z(X), 92, 92-94, 103-105, 117
Nisnevich sheafification
preserves transfers, 99
Nisnevich topology, 40-42, 44, 45, 68, 83,
89, 198
and Zariski topology, 102
points are Hensel local, 90
nodal curve, 97
norm map, 13, 30-34, 53, 185
Milnor K-theory, 30-34
normal bundle, 127
normal surface, 97

perfect field seefield

Picard group, 25-28, 44, 49, 50, 91, 126, 139
relative, 4749, 49-53, 83-86, 182-185

platification, 7, 96, 106, 133

Pontrjagin dual, 61, 80

presheaf with transfer43, 13-20
homotopy invariantseehomotopy invari-

ance

Zir (X), s€€Zyr (X)

Projection Formula, 141, 149

projective bundle, 95, 126, 127

Projective Bundle Theorem, 127

projective objects, 15, 16, 55-58, 79

projective resolution, 55-58, 60, 61

proper birational cove®4

proper cdh cove®4, 94-97

pseudo pretheory, 48
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pullback of cycles, 5, 130, 134, 141, 149—
151, 154, 164, 195
along a fat point8, 8—-11
along a finite correspondenci8
and relative cycles, 129, 149
flat, 7, 8, 14, 37, 132, 141, 143, 148, 164,
167, 168
is defined 147
pure subgroup, 83
push-forward of cycles, 4, 5, 11, 14, 30, 33,
53, 130, 140, 148, 151

relative cycle9, 8-11, 129, 149
universally integral, 710, 10-11
relative Picard groupseePicard group
relative sheaf, 196, 202
representable presheaf, 55
resolution of singularities, 45, 78, 97, 105,
106, 111, 113, 117, 118, 131, 133-135,
139, 153, 163, 168, 171
rigid tensor category, 172-175
Rigidity Theorem, 51, 73, 79
roots of unity, 14, 25, 27, 28, 38, 49-51, 58,
61,72,75,76, 78,99, 195, 199
vs.Z/1(1), 27, 99
uy9=2Z/n(q), 77

semilocal ring or scheme, 3, 40, 83, 86, 189,
190, 192, 203, 204
separable closure of a fielseefield
separably closed fieldgefield
separated presheaf, 189
sheaf, see Zariski sheaf,étale sheaf, Nis-
nevich sheaf, cdh sheaf
simplicial decomposition, 17, 156
simplicial group, 16, 24, 139, 140, 153, 163,
164
simplicial homotopy, 18, 156
simplicial map, 24, 76
simplicial presheaf, 16, 76, 130, 163, 164
singular schemesgeZ, (X), cdh topology
skeletal homotopy, 155
skeletal mapl54, 154-158
smash product, 15, 29, 31, 64, 76-78, 123—
126
and tensor product, 58
smooth curve, 85, 180, 188, 204
spectral sequence, 60, 73, 79, 94, 102, 103
Cech, 196
coniveau, 205
hypercohomology, 23, 119
hyperext, 104, 114
hyperhomology, 59
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Leray, 101, 119, 201, 203, 204
stable homotopy category, 64
standard triple84, 84-88, 193, 197
covering morphism179, 179-189
split, 85, 85-88, 180, 182, 183, 186
strong deformation retracgeedeformation
retract
Suslin, Andrei, 51, 78, 153, 159, 161
Suslin-Friedlander motivic complexSF(i),
130, 130-133, 163-167
is independent of, 130
is isomorphic to Bloch's cycles sheaf, 165
isZ(i), 130
suspension, 64
symmetric group, 125-126
symmetric monoidal category, 6, 55-57, 63—
65, 174

Tate twist,112
étale is invertible, 61, 68
tensor product
and smash product, 58
inCor,, 6
in derived category, 60
of Al-local objects, 115
of flat presheaves, 56, 92
of motives with compact support, 133
of Nisnevich sheaves, 92
of presheaves, 56-61, 92
of presheaves with transfers, 57
of sheaves, 58—-61
total, seetotal tensor product
tensor triangulated category, 57, @38, 63—
66, 68, 74,111, 115
€T 1isa, 65
of motives, 112
thick, 67, 68, 71, 74, 111, 115
topology, seeZariski topology, étale topol-
ogy, Nisnevich topology, cdh topology
total Hom, 79
trace map, 13, 38
truncation
brutal, 68
good, 102, 106

unibranch scheme
geometrically, 9
universally integral cycleseerelative cycles
upper distinguished squar@Q, 91, 179, 181,
185, 186, 188, 193
coming from a covering morphism of stan-
dard triples 179 180, 181, 185

Vanishing Theorems, 22, 163
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vector bundle, 103, 113, 126, 127
torsor, 143-146, 164, 168
Voevodsky, Vladimir, 95, 112, 134, 135

Walker, Mark, 87

weakly homotopicl57

Weil divisor, 25, 26, 50, 53, 182, 202
Weil Reciprocity, 30, 34

Yoneda lemma, 15, 55, 57, 69, 92, 100, 105,
131,172

Zariski covering, 187
Zariski descent] 65, 166, 167
Zariski resolution, 41
Zariski sheaf, 103, 132
with transfers, 118, 187-193, 195, 203
205
Zariski topology, 40, 42, 44, 83, 100, 191,
198
Zariski's Main Theorem, 49
Z4s (X)
and flatness, 56
is a sheaf, 21, 37
is projective, 15
singularX, 15, 37, 116, 117
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