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Introduction

Algebraic K-theory has two components: the classical theory which centers
around the Grothendieck group K0 of a category and uses explicit algebraic
presentations, and higher algebraic K-theory which requires topological or ho-
mological machinery to define.

There are three basic versions of the Grothendieck group K0. One involves
the group completion construction, and is used for projective modules over rings,
vector bundles over compact spaces and other symmetric monoidal categories.
Another adds relations for exact sequences, and is used for abelian categories
as well as exact categories; this is the version first used in algebraic geome-
try. A third adds relations for weak equivalences, and is used for categories of
chain complexes and other categories with cofibrations and weak equivalences
(“Waldhausen categories”).

Similarly, there are four basic constructions for higher algebraic K-theory:
the +–construction (for rings), the group completion constructions (for sym-
metric monoidal categories), Quillen’s Q-construction (for exact categories),
and Waldhausen’s wS. construction (for categories with cofibrations and weak
equivalences). All these constructions give the same K-theory of a ring, but are
useful in various distinct settings. These settings fit together like this:

number theory and
other classical topics

←→ algebraic geometry

↑↓ ↑↓

Homological and
+–constructions
K-theory of rings

←−−−−
Q–construction: K-theory of
vector bundles on schemes,
exact categories, modules
and abelian categories

↑ տ ↑
Group Completions
relations to L-theory,
topological K-theory,
stable homotopy theory

←−−−−
Waldhausen Construction:
K-theory of spaces,
K-theory of chain complexes
topological rings

l l
algebraic topology ↔ geometric topology
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Chapter

All the constructions have one feature in common: Some category C is
concocted from the given setup, and one defines a K-theory space associated
to the geometric realization BC of this category. The K-theory groups are then
the homotopy groups of the K-theory space. In the first chapter, we introduce
the basic cast of characters: projective modules and vector bundles (over a
topological space, and over a scheme). Large segments of this chapter will be
familiar to many readers, but which segments are familiar will depend upon the
background and interests of the reader. The unfamiliar parts of this material
may be skipped at first, and referred back to when relevant. We would like to
warn the complacent reader that the material on the Picard group and Chern
classes for topological vector bundles is in this first chapter.

In the second chapter, we define K0 for all the settings in the above figure,
and give the basic definitions appropriate to these settings: group completions
for symmetric monoidal categories, K0 for rings and topological spaces, λ-
operations, abelian and exact categories, Waldhausen categories. All definitions
and manipulations are in terms of generators and relations. Our philosophy is
that this algebraic beginning is the most gentle way to become acquainted with
the basic ideas of higher K-theory. The material on K-theory of schemes is
isolated in a separate section, so it may be skipped by those not interested in
algebraic geometry.

In the third chapter we give a brief overview of the classical K-theory for K1

and K2 of a ring. Via the Fundamental Theorem, this leads to Bass’ “negative
K-theory,” meaning groups K−1, K−2, etc. We cite Matsumoto’s presentation
for K2 of a field from

Milnor
[131], and “Hilbert’s Theorem 90 for K2” (from chapter

VI) in order to get to the main structure results. This chapter ends with a
section on Milnor K-theory, including the transfer map, Izhboldin’s theorem on
the lack of p-torsion, the norm residue symbol and the relation to the Witt ring
of a field.

In the fourth chapter we shall describe the four constructions for higher K-
theory, starting with the original BGL+ construction. In the case of P(R),
finitely generated projective R-modules, we show that all the constructions give
the sameK-groups: the groupsKn(R). The λ-operations are developed in terms
of the S−1S construction. Non-connective spectra and homotopy K-theory are
also presented. Very few theorems are present here, in order to keep this chapter
short. We do not want to get involved in the technicalities lying just under the
surface of each construction, so the key topological results we need are cited
from the literature when needed.

The fundamental structural theorems for higher K-theory are presented in
chapter V. This includes Additivity, Approximation, Cofinality, Resolution,
Devissage and Localization (including the Thomason-Trobaugh localization the-
orem for schemes). As applications, we compute the K-theory and G-theory of
projective spaces and Severi-Brauer varieties (§2), construct transfer maps sat-
isfying a projection formula (§3), prove the Fundamental Theorem for G-theory
(§6) and K-theory (§9). Several cases of Gersten’s DVR conjecture are estab-
lished in §6 and the Gersten-Quillen conjecture in §7. This is used to interpret
the coniveau spectral sequence in terms of K-cohomology, and establish Bloch’s
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Formula that CHp(X) ∼= Hp(X,Kp) for regular varieties.
In chapter 6 we describe the structure of the K-theory of fields. First we

handle algebraically closed fields (§1), and the real numbers R (§3), following
Suslin and Harris-Segal. The group K3(F ) can also be handled by comparison
to Bloch’s group B(F ) using these methods (§5). In order to say more, using
classical invariants such as étale cohomology, we introduce the spectral sequence
from Motivic Cohomology to K-theory in §4 and use it in §6–10 to describe the
K-theory of local and global fields.

The Back Story:

In 1985, I started hearing a persistent rumor that I was writing a book on
algebraic K-theory. This was a complete surprise to me! Someone else had
started the rumor, and I never knew who. After a few years, I had heard the
rumor from at least a dozen people.

It actually took a decade before the rumor had became true — like the
character Topsy1, the book project was never born, it just grew. In 1988 I
wrote out a brief outline, following Quillen’s paper Higher algebraic K-theory I
Q341
[153]. It was overwhelming. I talked to Hy Bass, the author of the classic book
Algebraic K-theory

Bass
[15], about what would be involved in writing such a book.

It was scary, because (in 1988) I didn’t know even how to write a book.
I needed a warm-up exercise, a practice book if you will. The result, An

introduction to homological algebra
WHomo
[223], took over five years to write.

By this time (1995), the K-theory landscape had changed, and with it my
vision of what my K-theory book should be. Was it an obsolete idea? After all,
the new developments in Motivic Cohomology were affecting our knowledge of
the K-theory of fields and varieties. In addition, there was no easily accessible
source for this new material. Nevertheless, I wrote early versions of Chapters
I-IV during 1994-1999. The project became known as the “K-book” at this
time.

In 1999, I was asked to turn a series of lectures by Voevodsky into a book.
This project took over six years, in collaboration with Carlo Mazza and Vladimir
Voevodsky. The result was the book Lecture Notes on Motivic Cohomology

MVW
[122],

published in 2006.
In 2004-2008, Chapters IV and V were completed. At the same time, the

final steps in the proof of the Norm Residue Theorem VI.
VI.4.1
4.1 were finished. (This

settles not just the Bloch-Kato Conjecture, but also the Beilinson-Lichtenbaum
Conjectures and Quillen-Lichtenbaum Conjectures.) The proof of this theorem
is scattered over a dozen papers and preprints, and writing it spanned over a
decade of work, mostly by Rost and Voevodsky. Didn’t it make sense to put this
house in order? It did. I am currently collaborating with Christian Haesemeyer
in writing a self-contained proof of this theorem.

Charles A. Weibel

1Topsy is a character in Harriet B. Stowe’s 1852 book Uncle Tom’s Cabin, who claimed to
have never been born: “Never was born... I ’spect I grow’d. Don’t think nobody never made
me.” (sic)
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Chapter I

Projective modules and

vector bundles

The basic objects studied in algebraic K-theory are projective modules over a
ring, and vector bundles over schemes. In this first chapter we introduce the
cast of characters. Much of this information is standard, but collected here for
ease of reference in later chapters.

Here are a few running conventions we will use. The word ring will always
mean an associative ring with 1 (1 6= 0). If R is a ring, the word R-module will
mean right R-module unless explicitly stated otherwise.

1 Free modules, GLn and stably free modules

If R is a field, or a division ring, then R-modules are called vector spaces.
Classical results in linear algebra state that every vector space has a basis, and
that the rank (or dimension) of a vector space is independent of the choice of
basis. However, much of this fails for arbitrary rings.

As with vector spaces, a basis of an R-module M is a subset {ei}i∈I such
that every element ofM can be expressed in a unique way as a finite sum

∑
eiri

with ri ∈ R. We say that a module M is free if it has a basis. If M has a fixed
ordered basis we call M a based free module, and define the rank of the based
free moduleM to be the cardinality of its given basis. Homomorphisms between
based free modules are naturally identified with matrices over R.

The canonical example of a based free module is Rn with the usual basis; it
consists of n-tuples of elements of R, or “column vectors” of length n.

Unfortunately, there are rings for which Rn ∼= Rn+t, t 6= 0. We make the
following definition to avoid this pathology, referring the curious reader to the
exercises for more details. (If κ is an infinite cardinal number, let R(κ) denote a
free module on a basis of cardinality κ; every basis of R(κ) has cardinality κ. In
particular R(κ) cannot be isomorphic to Rn for finite n. See Ch.2, 5.5 of

Cohn65
[44].)

1



Chapter I

I.1.1 Definition 1.1 (IBP). We say that a ring R satisfies the (right) invariant basis
property (or IBP) if Rm and Rn are not isomorphic for m 6= n. In this case, the
rank of a free R-module M is an invariant, independent of the choice of basis
of M .

Most of the rings we will consider satisfy the invariant basis property. For
example, commutative rings satisfy the invariant basis property, and so do group
rings Z[G]. This is because a ring R must satisfy the IBP if there exists a ring
map f : R → F from R to a field or division ring F . (If R is commutative we
may take F = R/m, where m is any maximal ideal of R.) To see this, note that
any basis of M maps to a basis of the vector space V = M ⊗R F ; since dimV
is independent of the choice of basis, any two bases of M must have the same
cardinality.

Our choice to use right modules dictates that we write R-module homomor-
phisms on the left. In particular, homomorphisms Rn → Rm may be thought
of as m× n matrices with entries in R, acting on the column vectors in Rn by
matrix multiplication. We writeMn(R) for the ring of n×n matrices, and write
GLn(R) for the group of invertible n × n matrices, i.e., the automorphisms of
Rn. We will usually write R× for the group U(R) = GL1(R) of units in R.

I.1.1.1 Example 1.1.1. Any finite-dimensional algebra R over a field (or division ring)
F must satisfy the IBP, because the rank of a free R-module M is an invariant:

rank(M) = dimF (M)/dimF (R).

For a simple artinian ring R we can say even more. Classical Artin-Wedderburn
theory states that R =Mn(F ) for some n and F , and that every right R-module
M is a direct sum of copies of the (projective) R-module V consisting of row
vectors over F of length n. Moreover, the number of copies of V is an invariant
of M , called its length; the length is also dimF (M)/n since dimF (V ) = n. In
this case we also have rank(M) = length(M)/n = dimF (M)/n2.

There are noncommutative rings which do not satisfy the IBP, i.e., which
have Rm ∼= Rn for some m 6= n. Rank is not an invariant of a free module over
these rings. One example is the infinite matrix ring EndF (F

∞) of endomor-
phisms of an infinite-dimensional vector space over a field F . Another is the
cone ring C(R) associated to a ring R. (See the exercises.)

Unimodular rows and stably free modules

I.1.2 Definition 1.2. An R-module P is called stably free (of rank n−m) if P⊕Rm ∼=
Rn for some m and n. (If R satisfies the IBP then the rank of a stably free
module is easily seen to be independent of the choice of m and n.) Conversely,
the kernel of any surjective m× n matrix σ : Rn → Rm is a stably free module,
because a lift of a basis for Rm yields a decomposition P ⊕Rm ∼= Rn.

This raises a question: when are stably free modules free? Over some rings
every stably free module is free (fields, Z and the matrix ringsMn(F ) of Example
I.1.1.1
1.1.1 are classical cases), but in general this is not so even if R is commutative;
see example

I.1.2.2
1.2.2 below.
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Chapter I

I.1.2.1 1.2.1. The most important special case, at least for inductive purposes, is when
m = 1, i.e., P ⊕ R ∼= Rn. In this case σ is a row vector, and we call σ a
unimodular row. It is not hard to see that the following conditions on a sequence
σ = (r1, ..., rn) of elements in R are equivalent for each n:
• σ is a unimodular row;
• Rn ∼= P ⊕R, where P = ker(σ) and the projection Rn → R is σ;
• R = r1R+ · · ·+ rnR;
• 1 = r1s1 + · · ·+ rnsn for some si ∈ R.
If Rn ∼= P ⊕ R with P free, then a basis of P would yield a new basis for

Rn and hence an invertible matrix g whose first row is the unimodular row
σ : Rn → R corresponding to P . This gives us a general criterion: P is a free
module if and only if the corresponding unimodular row may be completed to an
invertible matrix. (The invertible matrix is in GLn(R) if R satisfies the IBP).

When R is commutative, every unimodular row of length 2 may be com-
pleted. Indeed, if r1s1 + r2s2 = 1, then the desired matrix is:

(
r1 r2
−s2 s1

)

Hence R2 ∼= R⊕P implies that P ∼= R. In §3 we will obtain a stronger result:
every stably free module of rank 1 is free. The fact that R is commutative is
crucial; in Ex.

EI.1.6
1.6 we give an example of a unimodular row of length 2 which

cannot be completed over D[x, y], D a division ring.

I.1.2.2 Example 1.2.2. Here is an example of a unimodular row σ of length 3 which
cannot be completed to an element of GL3(R). Hence P = ker(σ) is a rank 2
stably free module P which is not free, yet P⊕R ∼= R3. Let σ be the unimodular
row σ = (x, y, z) over the commutative ring R = R[x, y, z]/(x2 + y2 + z2 = 1).
Every element (f, g, h) of R3 yields a vector field in 3-space (R3), and σ is the
vector field pointing radially outward. Therefore an element in P yields a vector
field in 3-space tangent to the 2-sphere S2. If P were free, a basis of P would
yield two tangent vector fields on S2 which are linearly independent at every
point of S2 (because together with σ they span the tangent space of 3-space at
every point). It is well known that this is impossible: you can’t comb the hair
on a coconut. Hence P cannot be free.

The following theorem describes a “stable range” in which stably free mod-
ules are free (see

I.2.3
2.3 for a stronger version). A proof, due to Bass, may be

found in
Bass
[15, V.3.5], using the “stable range” condition (Sn) of Ex.

EI.1.5
1.5 below.

Example
I.1.2.2
1.2.2 shows that this range is sharp.

I.1.3 Bass Cancellation Theorem for stably free modules 1.3. Let R be a
commutative noetherian ring of Krull dimension d. Then every stably free R-
module of rank > d is a free module. Equivalently, every unimodular row of
length n ≥ d+ 2 may be completed to an invertible matrix.
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The study of stably free modules has a rich history, and we cannot do it
justice here. An excellent source for further information is Lam’s book

Lam
[106].

EXERCISES

EI.1.1 1.1. Semisimple rings. A nonzero R-module M is called simple if it has no
submodules other than 0 and M , and semisimple if it is the direct sum of
simple modules. A ring R is called semisimple if R is a semisimple R-module. If
R is semisimple, show that R is a direct sum of a finite (say n) number of simple
modules. Then use the Jordan-Hölder Theorem, part of which states that the
length of a semisimple module is an invariant, to show that every stably free
module is free. In particular, this shows that semisimple rings satisfy the IBP.
Hint: Observe that length= n · rank is an invariant of free R-modules.

EI.1.2 1.2. (P.M. Cohn) Consider the following conditions on a ring R:

(I) R satisfies the invariant basis property (IBP);

(II) For all m and n, if Rm ∼= Rn ⊕ P then m ≥ n;

(III) For all n, if Rn ∼= Rn ⊕ P then P = 0.

If R 6= 0, show that (III) ⇒ (II) ⇒ (I). For examples of rings satisfying (I) but
not (II), resp. (II) but not (III), see

Cohn66
[45].

EI.1.3 1.3. Show that (III) and the following matrix conditions are equivalent:

(a) For all n, every surjection Rn → Rn is an isomorphism;

(b) For all n, and f, g ∈Mn(R), if fg = 1n, then gf = 1n and g ∈ GLn(R).

Then show that commutative rings satisfy (b), hence (III).

EI.1.4 1.4. Show that right noetherian rings satisfy condition (b) of the previous ex-
ercise. Hence they satisfy (III), and have the right invariant basis property.

EI.1.5 1.5. Stable Range Conditions. We say that a ring R satisfies condition (Sn)
if for every unimodular row (r0, r1, ..., rn) in Rn+1 there is a unimodular row
(r′1, ..., r

′
n) in R

n with r′i = ri − r0ti for some t1, ..., tn in R. The stable range of
R, sr(R), is defined to be the smallest n such that R satisfies condition (Sn).
(Warning: our (Sn) is the stable range condition SRn+1 of

Bass
[15].)

Bass’ Cancellation Theorem
Bass
[15, V.3.5], which is used to prove

I.1.3
1.3, and

I.2.3
2.3

below, states that sr(R) ≤ d+1 if R is a d-dimensional commutative noetherian
ring, or more generally if Max(R) is a finite union of spaces of dimension ≤ d.

(a) (Vaserstein) Show that (Sn) holds for all n ≥ sr(R).

(b) If sr(R) = n, show that all stably free projective modules of rank ≥ n are
free. Hint: compare (r0, ..., rn), (r0, r

′
1, ..., r

′
n) and (1, r′1, ..., r

′
n).
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Chapter I

(c) Show that sr(R) = 1 for every artinian ring R. Conclude that all stably
free projective R-modules are free over artinian rings.

(d) Show that if I is an ideal of R then sr(R) ≥ sr(R/I).

(e) (Veldkamp) If sr(R) = n for some n, show that R satisfies the invariant
basis property (IBP). Hint: Consider an isomorphism B : RN ∼= RN+n,
and apply (Sn) to convert B into a matrix of the form

(
C
0

)
.

EI.1.6 1.6. (Ojanguren-Sridharan) LetD be a division ring which is not a field. Choose
α, β ∈ D such that αβ−βα 6= 0, and show that σ = (x+α, y+β) is a unimodular
row over R = D[x, y]. Let P = ker(σ) be the associated rank 1 stably free
module; P ⊕ R ∼= R2. Prove that P is not a free D[x, y]-module, using these
steps:

(i) If P ∼= Rn, show that n = 1. Thus we may suppose that P ∼= R with
1 ∈ R corresponding to a vector

[
r
s

]
with r, s ∈ R.

(ii) Show that P contains a vector
[
f
g

]
with f = c1x+ c2y + c3xy + c4y

2 and
g = d1x+ d2y + d3xy + d4x

2, (ci, di ∈ D).

(iii) Show that P cannot contain any vector
[
f
g

]
with f and g linear polynomials

in x and y. Conclude that the vector in (i) must be quadratic, and may
be taken to be of the form given in (ii).

(iv) Show that P contains a vector
[
f
g

]
with f = γ0 + γ1y+ y2, g = δ0 + δ1x−

αy − xy and γ0 = βu−1βu 6= 0. This contradicts (iii), so we cannot have
P ∼= R.

EI.1.7 1.7. Direct sum rings. A ring R (with unit) is called a direct sum ring if there
is an R-module isomorphism R ∼= R2. This implies that R ∼= Rn for every finite
n. Any homomorphism R→ S makes S into a direct sum ring, so many direct
sum rings exist. In this exercise and the next, we give some examples of direct
sum rings.

For any ring R, let R∞ = R(ℵ0) be a fixed free R-module on a countably
infinite basis. Then R∞ is naturally a left module over the endomorphism
ring E = EndR(R

∞), and we identify E with the ring of infinite column-finite
matrices.

If R∞ = V1 ⊕ V2 as a left R-module, show that E = I1 ⊕ I2 for the right
ideals Ii = {f ∈ E : f(R∞) ⊆ Vi}. Conversely, if E = I1⊕ I2 as a right module,
show that R∞ = V1 ⊕ V2, where Vi = Ii ·R∞. Conclude that E is a direct sum
ring, and that I ⊕ J = E implies that I ⊕ E ∼= E for every right ideal I of E.

EI.1.8 1.8. Cone Ring. For any ring R, the endomorphism ring EndR(R
∞) of the

previous exercise contains a smaller ring, namely the subring C(R) consisting
of row-and-column finite matrices. The ring C(R) is called the cone ring of
R.Show that C(R) is a direct sum ring.
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EI.1.9 1.9. To see why our notion of stably free module involves only finitely generated
free modules, let R∞ be the infinitely generated free module of Exercise

EI.1.7
1.7.

Prove that if P ⊕Rm ∼= R∞ then P ∼= R∞. Hint: The image of Rm is contained
in some Rn ⊆ R∞. Writing R∞ ∼= Rn⊕F and Q = P∩Rn, show that P ∼= Q⊕F
and F ∼= F ⊕Rm. This trick is a version of the Eilenberg swindle

I.2.8
2.8 below.

EI.1.10 1.10. Excision for GLn. If I is a ring without unit, let Z⊕ I be the canonical
augmented ring with underlying abelian group Z ⊕ I. Let GLn(I) denote the
kernel of the map GLn(Z ⊕ I) → GLn(Z), and let Mn(I) denote the matrices
with entries in I. If g ∈ GLn(I) then clearly g − 1n ∈Mn(I).

(i) Characterize the set of all x ∈Mn(I) such that 1n + x ∈ GLn(I).

(ii) If I is an ideal in a ring R, show that GLn(I) is the kernel of GLn(R)→
GLn(R/I), and so is independent of the choice of R.

(iii) If I is a ring with unit, show that Z ⊕ I ∼= Z × I, and hence that the
nonunital and unital definitions of GL(I) agree. and conclude that

(iv) If x = (xij) is any nilpotent matrix in Mn(I), such as a strictly upper
triangular matrix, show that 1n + x ∈ GLn(I).

EI.1.11 1.11. (Whitehead) If g ∈ GLn(R), verify the following identity in GL2n(R) :

(
g 0
0 g−1

)
=

(
1 g
0 1

)(
1 0
−g−1 1

)(
1 g
0 1

)(
0 −1
1 0

)
.

Conclude that if S → R is a ring surjection then there is a matrix h ∈ GL2n(S)
mapping to the block diagonal matrix with entries g, g−1 displayed above.

EI.1.12 1.12. Radical Ideals. A 2-sided ideal I in R is called a radical ideal if 1 + x is a
unit of R for every x ∈ I, i.e., if (∀x ∈ I)(∃y ∈ I)(x+ y + xy = 0). Every ring
has a largest radical ideal, called the Jacobson radical of R; it is the intersection
of the maximal left ideals of R.

(i) Show that every nil ideal is a radical ideal. (A nil ideal is an ideal in which
every element is nilpotent.)

(ii) A ring R is local if it has a unique maximal 2-sided ideal m, and every
element of R − m is a unit. If R is local, show that R/m is a field or
division ring.

(iii) If I is a radical ideal of R, show thatMn(I) is a radical ideal ofMn(R) for
every n. Hint: Use elementary row operations to diagonalize any matrix
which is congruent to 1n modulo I.

(iv) If I is a radical ideal, show that GLn(R) → GLn(R/I) is surjective for
each n. That is, there is a short exact sequence of groups:

1→ GLn(I)→ GLn(R)→ GLn(R/I)→ 1.
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(v) If I is a radical ideal, show that sr(R) = sr(R/I), where sr is the stable
range of Exercise

EI.1.5
1.5. Conclude that sr(R) = 1 for every local ring R.

EI.1.13 1.13. A von Neumann regular ring is a ring R such that for every r ∈ R there
is an x ∈ R such that r = rxr. It is called unit-regular if for every r ∈ R there
is a unit x ∈ R such that r = rxr. If R is von Neumann regular, show that:

(a) for every r ∈ R, R = rR⊕ (1− rx)R. Hint: (rx)2 = rx.

(b) R is unit-regular ⇐⇒ R has stable range 1 (in the sense of Exercise
EI.1.5
1.5);

(c) If R is unit-regular then R satisfies condition (III) of Exercise
EI.1.2
1.2. (The

converse does not hold; see Example 5.10 of
Gdearl
[71].)

A rank function on R is a set map ρ : R → [0, 1] such that: (i) ρ(0) = 0 and
ρ(1) = 1; (ii) ρ(x) > 0 if x 6= 0; (iii) ρ(xy) ≤ ρ(x), ρ(y); and (iv) ρ(e + f) =
ρ(e) + ρ(f) if e, f are orthogonal idempotents in A. Goodearl and Handelman
proved (18.4 of

Gdearl
[71]) that if R is a simple von Neumann ring then:

(III) holds ⇐⇒ R has a rank function.

(d) Let F be a field or division ring. Show that the matrix ring Mn(F ) is
unit-regular, and that ρn(g) = rank(g)/n is a rank function on Mn(F ).
Then show that the ring EndF (F

∞) is von Neumann regular but not
unit-regular.

(e) Consider the union R of the matrix ringsMn!(F ), where we embedMn!(F )
in M(n+1)!(F ) ∼=Mn!(F )⊗Mn+1(F ) as Mn!⊗ 1. Show that R is a simple
von Neumann regular ring, and that the union of the ρn of (c) gives a
rank function ρ : R→ [0, 1] with image Q ∩ [0, 1].

(f) Show that a commutative ring R is von Neumann regular if and only if
it is reduced and has Krull dimension 0. These rings are called absolutely
flat rings by Bourbaki, since every R-module is flat. Use Exercise

EI.1.12
1.12

to conclude that every commutative 0-dimensional ring has stable range
1 (and is unit-regular).

2 Projective modules

I.2.1 Definition 2.1. An R-module P is called projective if there exists a module Q
so that the direct sum P ⊕Q is free. This is equivalent to saying that P satisfies
the projective lifting property: For every surjection s : M → N of R-modules
and every map g : P → N there exists a map f : P →M so that g = sf .

P

M
s

>

∃f

<
N

g

∨
> 0.
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To see that these are equivalent, first observe that free modules satisfy this
lifting property; in this case f is determined by lifting the image of a basis.
To see that all projective modules satisfy the lifting property, extend g to a
map from a free module P ⊕Q to N and lift that. Conversely, suppose that P
satisfies the projective lifting property. Choose a surjection π : F → P with F
a free module; the lifting property splits π, yielding F ∼= P ⊕ ker(π).

If P is a projective module, then P is generated by n elements if and only if
there is a decomposition P ⊕Q ∼= Rn. Indeed, the generators give a surjection
π : Rn → P , and the lifting property yields the decomposition.

We will focus most of our attention on the categoryP(R) of finitely generated
projective R-modules; the morphisms are the R-module maps. Since the direct
sum of projectives is projective, P(R) is an additive category. We may regard P

as a covariant functor on rings, since if R→ S is a ring map then up to coherence
there is an additive functor P(R) → P(S) sending P to P ⊗R S. (Formally,
there is an additive functor P′(R)→ P(S) and an equivalence P′(R)→ P(R);
see Ex.

EI.2.16
2.16.)

Hom and ⊗. If P is a projective R-module, then it is well-known that P ⊗R−
is an exact functor on the category of (left) R-modules, and that HomR(P,−) is
an exact functor on the category of (right) R-modules. (See

WHomo
[223], for example.)

That is, any exact sequence 0 → L → M → N → 0 of R-modules yields exact
sequences

0→ P ⊗ L→ P ⊗M → P ⊗N → 0

and
0→ Hom(P,L)→ Hom(P,M)→ Hom(P,N)→ 0.

I.2.1.1 Example 2.1.1. Of course free modules and stably free modules are projective.

(1) If F is a field (or a division ring) then every F -module (vector space) is
free, but this is not so for all rings.

(2) Consider the matrix ring R = Mn(F ), n > 1. The R-module V of Ex-
ample

I.1.1.1
1.1.1 is projective but not free, because length(V ) = 1 < n = length(R).

(3) Componentwise free modules. Another type of projective module arises
for rings of the form R = R1 × R2; both P = R1 × 0 and Q = 0 × R2 are
projective but cannot be free because the element e = (0, 1) ∈ R satisfies Pe = 0
yet Rne 6= 0. We say that a module M is componentwise free if there is a
decomposition R = R1×· · ·×Rc and integers ni such thatM ∼= Rn1

1 ×· · ·×Rnc
c .

It is easy to see that all componentwise free modules are projective.
(4) Topological Examples. Other examples of nonfree projective modules

come from topology, and will be discussed more in section 4 below. Consider
the ring R = C0(X) of continuous functions X → R on a compact topological
space X. If η : E → X is a vector bundle then by Ex.

I.4.8
4.8 the set Γ(E) =

{s : X → E : ηs = 1X} of continuous sections of η forms a projective R-module.
For example, if Tn is the trivial bundle Rn × X → X then Γ(Tn) = Rn. We
claim that if E is a nontrivial vector bundle then Γ(E) cannot be a free R-
module. To see this, observe that if Γ(E) were free then the sections {s1, ..., sn}
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in a basis would define a bundle map f : Tn → E such that Γ(Tn) = Γ(E).
Since the kernel and cokernel bundles of f have no nonzero sections they must
vanish, and f is an isomorphism.

When X is compact, the category P(R) of finitely generated projective
C0(X)-modules is actually equivalent to the category of vector bundles over
X; this result is called Swan’s Theorem. (See Ex.

EI.4.9
4.9 for a proof.)

I.2.1.2 Example 2.1.2 (Idempotents). An element e of a ring R is called idempotent
if e2 = e. If e ∈ R is idempotent then P = eR is projective because R =
eR ⊕ (1 − e)R. Conversely, given any decomposition R = P ⊕ Q, there are
unique elements e ∈ P , f ∈ Q such that 1 = e + f in R. By inspection, e and
f = 1 − e are idempotent, and ef = fe = 0. Thus idempotent elements of R
are in 1-1 correspondence with decompositions R ∼= P ⊕Q.

If e 6= 0, 1 and R is commutative then P = eR cannot be free, because
P (1−e) = 0 but R(1−e) 6= 0. The same is true for noetherian rings by Ex.

EI.1.4
1.4,

but obviously cannot be true for rings such that R ∼= R⊕R; see Ex.
EI.1.2
1.2 (III).

Every finitely generated projective R-module arises from an idempotent el-
ement in a matrix ring Mn(R). To see this, note that if P ⊕ Q = Rn then
the projection-inclusion Rn → P → Rn is an idempotent element e of Mn(R).
By inspection, the image e(Rn) of e is P . The study of projective modules via
idempotent elements can be useful, especially for rings of operators on a Banach
space. (See

Ro96
[162].)

If R is a Principal Ideal Domain (PID), such as Z or F [x], F a field, then
all projective R-modules are free. This follows from the Structure Theorem for
modules over a PID (even for infinitely generated projectives).

Not many other classes of rings have all (finitely generated) projective mod-
ules free. A famous theorem of Quillen and Suslin states that if R is a poly-
nomial ring (or a Laurent polynomial ring) over a field or a PID then all pro-
jective R-modules are free; a good reference for this is Lam’s book

Lam
[106]. In

particular, if G is a free abelian group then the group ring Z[G] is the Laurent
polynomial ring Z[x, x−1, ..., z, z−1], and has all projectives free. In contrast, if
G is a nonabelian torsion-free nilpotent group, Artamanov proved in

Art
[4] that

there are always projective Z[G]-modules P which are stably free but not free:
P ⊕ Z[G] ∼= (Z[G])2.

It is an open problem to determine whether all projective Z[G]-modules are
stably free when G is a finitely presented torsion-free group. Some partial results
and other examples are given in

Lam
[106].

For our purposes, local rings form the most important class of rings with
all projectives free. A ring R is called a local ring if R has a unique maximal
(2-sided) ideal m, and every element of R−m is a unit; R/m is either a field or
a division ring by Ex.

EI.1.12
1.12.

I.2.2 Lemma 2.2. If R is a local ring, then every finitely generated projective R-
module P is free. In fact P ∼= Rp, where p = dimR/m(P/mP ).
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Proof. We first observe that every element u ∈ R invertible in R/m is a unit of
R, i.e., uv = vu = 1 for some v. Indeed, by multiplying by a representative for
the inverse of ū ∈ R/m we may assume that u ∈ 1+m. Since m is the Jacobson
radical of R, any element of 1 +m must be a unit of R.

Suppose that P ⊕ Q ∼= Rn. As vector spaces over F = R/m, P/mP ∼= F p

and Q/mQ ∼= F q for some p and q. Since F p ⊕ F q ∼= Fn, p + q = n. Choose
elements {e1, ..., ep} of P and {e′1, ..., e′q} of Q mapping to bases of P/mP and
Q/mQ. The ei and e′j determine a homomorphism Rp ⊕ Rq → P ⊕ Q ∼= Rn,
which may be represented by a square matrix (rij) ∈ Mn(R) whose reduction
(r̄ij) ∈Mn(F ) is invertible. But every such matrix (rij) is invertible over R by
Exercise

EI.1.12
1.12. Therefore {e1, ..., ep, e′1, ..., e′q} is a basis for P ⊕Q, and from this

it follows that P is free on basis {e1, ..., ep}.

I.2.2.1 Remark 2.2.1. Even infinitely generated projective R-modules are free when
R is local. See Kaplansky

Kap58
[98].

I.2.2.2 Corollary 2.2.2. If p is a prime ideal of a commutative ring R and P is a
finitely generated projective R-module, then the localization Pp is isomorphic to
(Rp)

n for some n ≥ 0. Moreover, there is an s ∈ R−p such that the localization
of P away from s is free:

(P [
1

s
]) ∼= (R[

1

s
])n.

In particular, Pp′
∼= (Rp′)n for every other prime ideal p′ of R not containing s.

Proof. If P ⊕ Q = Rm then Pp ⊕ Qp = (Rp)
m, so Pp is a finitely generated

projective Rp-module. Since Rp is a local ring, Pp is free by
I.2.2
2.2. Now every

element of Pp is of the form p/s for some p ∈ P and s ∈ R − p. By clearing
denominators, we may find an R-module homomorphism f : Rn → P which
becomes an isomorphism upon localizing at p. As coker(f) is a finitely generated
R-module which vanishes upon localization, it is annihilated by some s ∈ R−p.
For this s, the map f [ 1s ] : (R[

1
s ])

n → P [ 1s ] is onto. Since P [ 1s ] is projective,
(R[ 1s ])

n is isomorphic to the direct sum of P [ 1s ] and a finitely generated R[ 1s ]-
module M with Mp = 0. Since M is annihilated by some t ∈ R− p we have

f [
1

st
] : (R[

1

st
])n

∼=−→ P [
1

st
].

Suppose that there is a ring homomorphism f : R→ F from R to a field or
a division ring F . If M is any R-module (projective or not) then the rank of
M at f is the integer dimF (M ⊗R F ). However, the rank depends upon f , as
the example R = F × F , M = F × 0 shows. When R is commutative, every
such homomorphism factors through the field k(p) = Rp/pRp for some prime
ideal p of R, so we may consider rank(M) as a function on the set Spec(R) of
prime ideals in R.
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Recall that the set Spec(R) of prime ideals of R has the natural structure of
a topological space in which the basic open sets are

D(s) = {p ∈ Spec(R) : s /∈ p} ∼= Spec(R[
1

s
]) for s ∈ R.

I.2.2.3 Definition 2.2.3 (Rank). Let R be a commutative ring. The rank of a finitely
generated R-moduleM at a prime ideal p of R is rankp(M) = dimk(p)M⊗Rk(p).
Since Mp/pMp

∼= k(p)rankp(M), rankp(M) is the minimal number of generators
of Mp.

If P is a finitely generated projective R-module then rank(P ) : p 7→ rankp(P )
is a continuous function from the topological space Spec(R) to the discrete
topological space N ⊂ Z, as we see from Corollary

I.2.2.2
2.2.2. In this way, we shall

view rank(P ) as an element of the two sets [Spec(R),N] and [Spec(R),Z] of
continuous maps from Spec(R) to N and to Z, respectively.

We say that P has constant rank n if n = rankp(P ) is independent of p.
If Spec(R) is topologically connected, every continuous function Spec(R) → N
must be constant, so every finitely generated projective R-module has constant
rank. For example, suppose that R is an integral domain with field of fractions
F ; then Spec(R) is connected, and every finitely generated projective R-module
P has constant rank: rank(P ) = dimF (P ⊗R F ). Conversely, if a projective P
has constant rank, then it is finitely generated; see Ex.

EI.2.13
2.13 and

EI.2.14
2.14.

If a module M is not projective, rank(M) need not be a continuous function
on Spec(R), as the example R = Z, M = Z/p shows.

I.2.2.4 Example 2.2.4 (Componentwise free modules). Every continuous function f :
Spec(R) → N induces a decomposition of Spec(R) into the disjoint union
of closed subspaces f−1(n). In fact, f takes only finitely many values (say
n1, . . . , nc), and it is possible to write R as R1 × · · · × Rc such that f−1(ni) is
homeomorphic to Spec(Ri). (See Ex.

EI.2.4
2.4.) Given such a function f , form the

componentwise free R-module:

Rf = Rn1
1 × · · · ×Rnc

c .

Clearly Rf has constant rank ni at every prime in Spec(Ri) and rank(Rf ) = f .
For n ≥ max{ni}, Rf ⊕ Rn−f = Rn, so Rf is a finitely generated projective
R-module. Hence continuous functions Spec(R)→ N are in 1-1 correspondence
with componentwise free modules.

The following variation allows us to focus on projective modules of constant
rank in many arguments. Suppose that P is a finitely generated projective R-
module, so that rank(P ) is a continuous function. Let R ∼= R1×· · ·×Rc be the
corresponding decomposition of R. Then each component Pi = P ⊗RRi of P is
a projective Ri-module of constant rank and there is an R-module isomorphism
P ∼= P1 × · · · × Pc.

The next theorem allows us to further restrict our attention to projective
modules of rank ≤ dim(R). Its proof may be found in

Bass
[15, IV]. We say that
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two R-modules M , M ′ are stably isomorphic if M ⊕ Rm ∼= M ′ ⊕ Rm for some
m ≥ 0.

I.2.3 Theorem 2.3 (Bass-Serre Cancellation). Let R be a commutative noetherian
ring of Krull dimension d, and let P be a projective R-module of constant rank
n > d.
(a) (Serre) P ∼=P0 ⊕Rn−d for some projective R-module P0 of constant rank d.
(b) (Bass) If P is stably isomorphic to P ′ then P ∼= P ′.
(c) (Bass) For allM,M ′, if P⊕M is stably isomorphic toM ′ then P⊕M ∼=M ′.

I.2.3.1 Remark 2.3.1. If P is a projective module whose rank is not constant, then
P ∼= P1 × · · · ×Pc for some decomposition R ∼= R1 × · · · ×Rc. (See Ex.

EI.2.4
2.4.) In

this case, we can apply the results in
I.2.3
2.3 to each Pi individually. The reader is

invited to phrase
I.2.3
2.3 in this generality.

I.2.4 Lemma 2.4 (Locally Free Modules). Let R be commutative. An R-module M
is called locally free if for every prime ideal p of R there is an s ∈ R − p so
that M [ 1s ] is a free module. We saw in Corollary

I.2.2.2
2.2.2 that finitely generated

projective R-modules are locally free. In fact, the following are equivalent:

(1) M is a finitely generated projective R-module;

(2) M is a locally free R-module of finite rank (i.e., rankp(M) < ∞ for all
prime ideals p);

(3) M is a finitely presented R-module, and for every prime ideal p of R:

Mp is a free Rp-module.

Proof. The implication (2) ⇒ (3) follows from the theory of faithfully flat de-
scent; a proof is in

B-AC
[32, II§5.2, Thm. 1]. Nowadays we would say that M is co-

herent (locally finitely presented), hence finitely presented; cf.
Hart
[85, II.5.4],

EGA
[EGA,

0I(1.4.3)]. To see that (3) ⇒ (1), note that finite presentation gives an exact
sequence

Rm → Rn
ε−→ M → 0.

We claim that the map ε∗ : HomR(M,Rn) → HomR(M,M) is onto. To see
this, recall that being onto is a local property; locally ε∗p is Hom(Mp, R

n
p ) →

Hom(Mp,Mp). This is a split surjection becauseMp is projective and εp : R
n
p →

Mp is a split surjection. If s : M → Rn is such that ε∗(s) = εs is idM , then
s makes M a direct summand of Rn, and M is a finitely generated projective
module.

I.2.5 Open Patching Data 2.5. It is sometimes useful to be able to build projec-
tive modules by patching free modules. The following data suffices. Suppose
that s1, ..., sc ∈ R form a unimodular row, i.e., s1R + · · · + scR = R. Then
Spec(R) is covered by the open sets D(si) ∼= Spec(R[ 1si ]). Suppose we are given
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gij ∈ GLn(R[ 1
sisj

]) with gii = 1 and gijgjk = gik in GLn(R[
1

sisjsk
]) for every

i, j, k. Then

P = {(x1, ..., xc) ∈
c∏

i=1

(R[
1

si
])n : gij(xj) = xi in R[

1

sisj
]n for all i, j}

is a finitely generated projective R-module by
I.2.4
2.4, because each P [ 1si ] is isomor-

phic to R[ 1si ]
n.

I.2.6 Example 2.6 (Milnor Squares). Another type of patching arises from an ideal
I in R and a ring map f : R→ S such that I is mapped isomorphically onto an
ideal of S, which we also call I. In this case R is the “pullback” of S and R/I :

R = {(r̄, s) ∈ (R/I)× S : f̄(r̄) = s modulo I};

the square

R
f

> S

R/I
∨ f̄

> S/I
∨

is called a Milnor square, because their importance for patching was emphasized
by J. Milnor in

Milnor
[131].

One special kind of Milnor square is the conductor square. This arises when
R is commutative and S is a finite extension of R with the same total ring of
fractions. (S is often the integral closure of R). The ideal I is chosen to be
the conductor ideal, i.e., the largest ideal of S contained in R, which is just
I = {x ∈ R : xS ⊂ R} = annR(S/R). If S is reduced then I cannot lie in any
minimal prime of R or S, so the rings R/I and S/I have lower Krull dimension.

Given a Milnor square, we can construct an R-module M = (M1, g,M2)
from the following “descent data”: an S-module M1, an R/I-module M2 and a
S/I-module isomorphism g : M2 ⊗R/I S/I ∼= M1/IM1. In fact M is the kernel
of the R-module map

M1 ×M2 →M1/IM1, (m1,m2) 7→ m̄1 − g(f̄(m2)).

We call M the R-module obtained by patching M1 and M2 together along g.
An important special case is when we patch Sn and (R/I)n together along

a matrix g ∈ GLn(S/I). For example, R is obtained by patching S and R/I
together along g = 1. We will return to this point when we study K1(R) and
K0(R).

Here is Milnor’s result.

I.2.7 Theorem 2.7 (Milnor Patching). In a Milnor square,
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1. If P is obtained by patching together a finitely generated projective S-
module P1 and a finitely generated projective R/I-module P2, then P is a
finitely generated projective R-module;

2. P ⊗R S ∼= P1 and P/IP ∼= P2;

3. Every finitely generated projective R-module arises in this way;

4. If P is obtained by patching free modules along g ∈ GLn(S/I), and Q is
obtained by patching free modules along g−1, then P ⊕Q ∼= R2n.

We shall prove part (3) here; the rest of the proof will be described in
Exercise

EI.2.8
2.8. If M is any R-module, the Milnor square gives a natural map

from M to the R-module M ′ obtained by patching M1 = M ⊗R S and M2 =
M ⊗R (R/I) =M/IM along the canonical isomorphism

(M/IM)⊗R/I (S/I) ∼=M ⊗R (S/I) ∼= (M ⊗R S)/I(M ⊗R S).

Tensoring M with 0→ R→ (R/I)⊕ S → S/I → 0 yields an exact sequence

TorR1 (M,S/I)→M →M ′ → 0,

so in general M ′ is just a quotient of M . However, if M is projective, the Tor-
term is zero and M ∼= M ′. Thus every projective R-module may be obtained
by patching, as (3) asserts.

I.2.7.1 Remark 2.7.1. Other examples of patching may be found in
Landsbg
[107].

I.2.8 Example 2.8 (Eilenberg Swindle). The following “swindle,” discovered by
Eilenberg, explains why we restrict our attention to finitely generated pro-
jective modules. Let R∞ be an infinitely generated free module. If P ⊕Q = Rn,
then

P ⊕R∞ ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · · ∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · · ∼= R∞.

Moreover R∞ ∼= R∞ ⊕ R∞, and if P ⊕ Rm ∼= R∞ then P ∼= R∞ (see Ex.
EI.1.9
1.9).

Here are a few more facts about infinitely generated projective modules:
• (Bass) If R is noetherian, every infinitely generated projective module P

is free, unless there is an ideal I such that P/IP has fewer generators than P ;
• (Kaplansky) Every infinitely generated projective module is the direct sum

of countably generated projective modules;
• (Kaplansky) There are infinitely generated projectives P whose rank is

finite but rank(P ) is not continuous on Spec(R). (See Ex.
EI.2.15
2.15.)

EXERCISES

EI.2.1 2.1. Radical ideals. Let I be a radical ideal in R (Exercise
EI.1.12
1.12). If P1, P2

are finitely generated projective R-modules such that P1/IP1
∼= P2/IP2, show

that P1
∼= P2. Hint: Modify the proof of

I.2.2
2.2, observing that Hom(P,Q) →

Hom(P/I,Q/I) is onto.
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EI.2.2 2.2. Idempotent lifting. Let I be a nilpotent ideal, or more generally an
ideal that is complete in the sense that every Cauchy sequence

∑∞
n=1 xn with

xn ∈ In converges to a unique element of I. Show that there is a bijection
between the isomorphism classes of finitely generated projective R-modules and
the isomorphism classes of finitely generated projective R/I-modules. To do
this, use Ex.

EI.2.1
2.1 and proceed in two stages:

(i) Show that every idempotent ē ∈ R/I is the image of an idempotent
e ∈ R, and that any other idempotent lift is ueu−1 for some u ∈ 1 + I. Hint:
it suffices to suppose that I2 = 0 (consider the tower of rings R/In). If r is
a lift of ē, consider elements of the form e = r + rxr + (1 − r)y(1 − r) and
(1 + xe)e(1 + xe)−1.

(ii) By applying (i) to Mn(R), show that every finitely generated projective
R/I-module is of the form P/IP for some finitely generated projective R-module
P .

EI.2.3 2.3. Let e, e1 be idempotents in Mn(R) defining projective modules P and P1.
If e1 = geg−1 for some g ∈ GLn(R), show that P ∼= P1. Conversely, if P ∼= P1

show that for some g ∈ GL2n(R):

(
e1 0
0 0

)
= g

(
e 0
0 0

)
g−1.

EI.2.4 2.4. Rank. If R is a commutative ring and f : Spec(R) → Z is a continuous
function, show that we can write R = R1×· · ·×Rc in such a way that Spec(R) is
the disjoint union of the Spec(Ri), and f is constant on each of the components
Spec(Ri) of R. To do this, proceed as follows.

(i) Show that Spec(R) is quasi-compact and conclude that f takes on only
finitely many values, say n1, ..., nc. Each Vi = f−1(ni) is a closed and open
subset of Spec(R) because Z is discrete.

(ii) It suffices to suppose that R is reduced, i.e., has no non-zero nilpotent
elements. To see this, let N be the ideal of all nilpotent elements in R, so
R/N is reduced. Since Spec(R) ∼= Spec(R/N), we may apply idempotent lifting
(Ex.

EI.2.2
2.2).

(iii) Let Ii be the ideal defining Vi, i.e., Ii = ∩{p : p ∈ Vi}. If R is reduced,
show that I1 + · · · + Ic = R and that for every i 6= j Ii ∩ Ij = ∅. Conclude
using the Chinese Remainder Theorem, which says that R ∼=

∏
Ri.

EI.2.5 2.5. Show that the following are equivalent for every commutative ring R:
(1) Spec(R) is topologically connected
(2) Every finitely generated projective R-module has constant rank
(3) R has no idempotent elements except 0 and 1.

EI.2.6 2.6. Dual Module. If P is a projective R-module, show that P̌ =HomR(P,R)
(its dual module) is a projective Rop-module, where Rop is R with multiplication
reversed.

Now suppose that R is commutative, so that R = Rop. Show that rank(P ) =
rank(P̌ ) as functions from Spec(R) to Z. The image τP of P̌ ⊗P → R is called
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the trace of P ; show that τ2P = τP , and that for p ∈ Spec(R), Pp 6= 0 if and
only if τP 6⊆ p.

EI.2.7 2.7. Tensor Product. Let P and Q be projective modules over a commutative
ring R. Show that the tensor product P ⊗R Q is also a projective R-module,
and is finitely generated if P and Q are. Finally, show that

rank(P ⊗R Q) = rank(P ) · rank(Q).

EI.2.8 2.8. Milnor Patching. In this exercise we prove the Milnor Patching Theo-
rem

I.2.7
2.7, that any R-module obtained by patching finitely generated projective

modules over S and R/I in a Milnor square is a finitely generated projective
R-module. Prove the following:

(i) If g ∈ GLn(S/I) is the image of a matrix in either GLn(S) or GLn(R/I),
the patched module P = (Sn, g, (R/I)n) is a free R-module.

(ii) Show that (P1, g, P2)⊕ (Q1, h,Q2) ∼= (P1 ⊕Q1,
(
g 0
0 h

)
, P2 ⊕Q2).

(iii) If g ∈ GLn(S/I), let M be the module obtained by patching S2n and

(R/I)2n together along the matrix

(
g 0
0 g−1

)
∈ GL2n(S/I). Use Ex.

EI.1.11
1.11

to prove that M ∼= R2n. This establishes Theorem
I.2.7
2.7, part (4).

(iv) Given P1 ⊕ Q1
∼= Sn, P2 ⊕ Q2

∼= (R/I)n and isomorphisms P1/IP1
∼=

P2 ⊗ S/I, Q1/IQ1
∼= Q2 ⊗ S/I, let P and Q be the R-modules obtained

by patching the Pi and Qi together. By (ii), P⊕Q is obtained by patching
Sn and (R/I)n together along some g ∈ GLn(S/I). Use (iii) to show that
P and Q are finitely generated projective.

(v) If P1⊕Q1
∼= Sm and P2⊕Q2

∼= (R/I)n, and g : P1/IP1
∼= P2⊗S/I, show

that (Q1 ⊕ Sn)⊗ S/I is isomorphic to (R/Im ⊕Q2)⊗ S/I. By (iv), this
proves that (P1, g, P2) is finitely generated projective, establishing part
(1) of Theorem

I.2.7
2.7.

(vi) Prove part (2) of Theorem
I.2.7
2.7 by analyzing the above steps.

EI.2.9 2.9. Consider a Milnor square as in Example
I.2.6
2.6). Let P1, Q1 be finitely

generated projective S-modules, and P2, Q2 be finitely generated projective
R/I-modules such that there are isomorphisms g : P2 ⊗ S/I ∼= P1/IP1 and
h : Q2 ⊗ S/I ∼= Q1/IQ1.

(i) If f : Q2⊗S/I ∼= P1/IP1, show that (P1, g, P2)⊕ (Q1, h,Q2) is isomorphic
to (Q1, gf

−1h, P2)⊕ (P1, f,Q2). Hint: Use Ex.
EI.2.8
2.8 and the decomposition

(
g 0
0 h

)
=

(
gf−1h 0

0 f

)(
h−1f 0
0 f−1h

)
.

(ii) Conclude that (Sn, g, R/In)⊕ (Sn, h,R/In) ∼= (Sn, gh,R/In)⊕Rn.
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EI.2.10 2.10. Suppose P,Q are modules over a commutative ring R such that P ⊗Q ∼=
Rn for some n 6= 0. Show that P and Q are finitely generated projective R-
modules. Hint: Find a generating set {pi ⊗ qi|i = 1, ...,m} for P ⊗ Q; the
pi ⊗ qj ⊗ pk generate P ⊗ Q ⊗ P . Show that {pi} define a split surjection
Rm → P .

EI.2.11 2.11. Let M be a finitely generated module over a commutative ring R. Show
that the following are equivalent for every n:

(1) M is a finitely generated projective module of constant rank n
(2) Mp

∼= Rnp for every prime ideal p of R.
Conclude that in Lemma

I.2.4
2.4 we may add:

(4) M is finitely generated, Mp is free for every prime ideal p of R, and
rank(M) is a continuous function on Spec(R).

EI.2.12 2.12. If f : R → S is a homomorphism of commutative rings, there is a con-
tinuous map f∗ : Spec(S) → Spec(R) sending p to f−1(p). If P is a finitely
generated projective R-module, show that rank(P ⊗R S) is the composition of
f∗ and rank(P ). In particular, if P has constant rank n, then so does P ⊗R S.

EI.2.13 2.13. If P is a projective module of constant rank 1, show that P is finitely
generated. Hint: Show that the trace τP = R, and write 1 =

∑
fi(xi).

EI.2.14 2.14. If P is a projective module of constant rank r, show that P is finitely
generated. Hint: Use Ex.

EI.2.13
2.13 to show that ∧r(P ) is finitely generated.

EI.2.15 2.15. (Kaplansky) Here is an example of an infinitely generated projective mod-
ule whose rank is not continuous. Let R be the ring of continuous functions
f : [0, 1]→ R on the unit interval and I the ideal of all functions f which vanish
on some neighborhood [0, ε) of 0. Show that I is a projective R-module, yet
rank(I) : Spec(R) → {0, 1} is not continuous, so I is neither finitely generated
nor free. We remark that every finitely generated projective R-module is free;
this follows from Swan’s Theorem, since every vector bundle on [0, 1] is trivial
(by

I.4.6.1
4.6.1 below).
Hint: Show that the functions fn = max{0, t− 1

n} generate I, and construct
a splitting to the map R∞ → I. To see that rank(I) is not continuous, consider
the rank of I at the primes mt = {f ∈ R : f(t) = 0}, 0 ≤ t ≤ 1.

EI.2.16 2.16. Kleisli rectification. Fix a small category of rings R. By a big projective
R-module we will mean the choice of a finitely generated projective S-module
PS for each morphism R → S in R, equipped with an isomorphism PS ⊗S
T → PT for every S → T over R such that: (i) to the identity of each S we
associate the identity of PS , and (ii) to each commutative triangle of algebras
we have a commutative triangle of modules. Let P′(R) denote the category of
big projective R-modules. Show that the forgetful functor P′(R)→ P(R) is an
equivalence, and that R 7→ P′(R) is a contravariant functor from R to exact
categories. In particular, P′(R)→ P(S) is an additive functor for each R→ S.
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3 The Picard Group of a commutative ring

An algebraic line bundle L over a commutative ring R is just a finitely generated
projectiveR-module of constant rank 1. The name comes from the fact that ifR
is the ring of continuous functions on a compact space X, then a topological line
bundle (vector bundle which is locally R×X → X) corresponds to an algebraic
line bundle by Swan’s Theorem (see example

I.2.1.1
2.1.1(4) or Ex.

EI.4.9
4.9 below).

The tensor product L⊗RM ∼=M ⊗RL of line bundles is again a line bundle
(by Ex.

EI.2.7
2.7), and L ⊗R R ∼= L for all L. Thus up to isomorphism the tensor

product is a commutative associative operation on line bundles, with identity
element R.

I.3.1 Lemma 3.1. If L is a line bundle, then the dual module Ľ = HomR(L,R) is
also a line bundle, and Ľ⊗R L ∼= R.

Proof. Since rank(Ľ) = rank(L) = 1 by Ex.
EI.2.6
2.6, Ľ is a line bundle. Consider

the evaluation map Ľ ⊗R L → R sending f ⊗ x to f(x). If L ∼= R, this map is
clearly an isomorphism. Therefore for every prime ideal p the localization

(Ľ⊗R L)p = (Lp)̌ ⊗Rp
Lp → Rp

is an isomorphism. Since being an isomorphism is a local property of an R-
module homomorphism, the evaluation map must be an isomorphism.

I.3.1.1 Definition 3.1.1. the Picard group Pic(R) of a commutative ring R is the
set of isomorphism classes of line bundles over R. As we have seen, the tensor
product ⊗R endows Pic(R) with the structure of an abelian group, the identity
element being [R] and the inverse being L−1 = Ľ.

I.3.2 Proposition 3.2. Pic is a functor from commutative rings to abelian groups.
That is, if R → S is a ring homomorphism then Pic(R) → Pic(S) is a homo-
morphism sending L to L⊗R S.
Proof. If L is a line bundle over R, then L ⊗R S is a line bundle over S (see
Ex.

EI.2.12
2.12), so ⊗RS maps Pic(R) to Pic(S). The natural isomorphism (L ⊗R

M) ⊗R S ∼= (L ⊗R S) ⊗S (M ⊗R S), valid for all R-modules L and M , shows
that ⊗RS is a group homomorphism.

I.3.3 Lemma 3.3. If L is a line bundle, then EndR(L) ∼= R.

Proof. Multiplication by elements in R yields a map from R to EndR(L). As it
is locally an isomorphism, it must be an isomorphism.

Determinant line bundle of a projective module

If M is any module over a commutative ring R and k ≥ 0, the kth exterior
power ∧kM is the quotient of the k-fold tensor product M ⊗ · · · ⊗M by the
submodule generated by terms m1⊗ · · ·⊗mk with mi = mj for some i 6= j. By
convention, ∧0M = R and ∧1M = M . Here are some classical facts; see

B-AC
[32,

ch. 2].
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(i) ∧k(Rn) is the free module of rank (nk ) generated by terms ei1 ∧ · · · ∧ eik
with 1 ≤ i1 < · · · < ik ≤ n. In particular, ∧n(Rn) ∼= R on e1 ∧ · · · ∧ en.

(ii) If R → S is a ring map, there is a natural isomorphism (∧kM) ⊗R S ∼=
∧k(M ⊗R S), the first ∧k being taken over R and the second taken over
S. In particular, rank(∧kM) =

(
rankM
k

)
as functions from Spec(R) to N.

(iii) (Sum Formula) There is a natural isomorphism

∧k(P ⊕Q) ∼=
k⊕

i=0

(∧iP )⊗ (∧k−iQ).

If P is a projective module of constant rank n, then ∧kP is a finitely generated
projective module of constant rank

(
n
k

)
, because ∧kP is locally free: if P [ 1s ]

∼=
(R[ 1s ])

n then (∧kP )[ 1s ] ∼= (R[ 1s ])
(nk). In particular, ∧nP is a line bundle, and

∧kP = 0 for k > n. We write det(P ) for ∧nP , and call it the determinant line
bundle of P .

If the rank of a projective module P is not constant, we define the deter-
minant line bundle det(P ) componentwise, using the following recipe. From §2
we find a decomposition R ∼= R1 × · · · × Rc so that P ∼= P1 × · · · × Pc and
each Pi has constant rank ni as an Ri-module. We then define det(P ) to be
(∧n1P1)× · · ·× (∧ncPc); clearly det(P ) is a line bundle on R. If P has constant
rank n, this agrees with our above definition: det(P ) = ∧nP .

As the name suggests, the determinant line bundle is related to the usual
determinant of a matrix. An n × n matrix g is just an endomorphism of Rn,
so it induces an endomorphism ∧ng of ∧nRn ∼= R. By inspection, ∧ng is
multiplication by det(g).

Using the determinant line bundle, we can also take the determinant of
an endomorphism g of a finitely generated projective R-module P . By the
naturality of ∧n, g induces an endomorphism det(g) of det(P ). By Lemma
I.3.3
3.3, det(g) is an element of R, acting by multiplication; we call det(g) the
determinant of the endomorphism g.

Here is an application of the determinant construction. Let L,L′ be stably
isomorphic line bundles. That is, P = L ⊕ Rn ∼= L′ ⊕ Rn for some n. The
Sum Formula (iii) shows that det(P ) = L, and det(P ) = L′, so L ∼= L′. Taking
L′ = R, this shows that R is the only stably free line bundle. It also gives
the following slight improvement upon the Cancellation Theorem

I.2.3
2.3 for 1-

dimensional rings:

I.3.4 Proposition 3.4. Let R be a commutative noetherian 1-dimensional ring.
Then all finitely generated projective R-modules are completely classified by
their rank and determinant. In particular, every finitely generated projective
R-module P of rank ≥ 1 is isomorphic to L ⊕ Rf , where L = det(P ) and
f = rank(P )− 1.
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Invertible Ideals

When R is a commutative integral domain (=domain), we can give a particularly
nice interpretation of Pic(R), using the following concepts. Let F be the field
of fractions of R; a fractional ideal is a nonzero R-submodule I of F such that
I ⊆ fR for some f ∈ F . If I and J are fractional ideals then their product
IJ = {∑xiyi : xi ∈ I, yi ∈ J} is also a fractional ideal, and the set Frac(R)
of fractional ideals becomes an abelian monoid with identity element R. A
fractional ideal I is called invertible if IJ = R for some other fractional ideal
J ; invertible ideals are sometimes called Cartier divisors. The set of invertible
ideals is therefore an abelian group, and one writes Cart(R) or Pic(R,F ) for
this group.

If f ∈ F×, the fractional ideal div(f) = fR is invertible because
(fR)(f−1R) = R; invertible ideals of this form are called principal divisors.
Since (fR)(gR) = (fg)R, the function div : F× → Cart(R) is a group homo-
morphism.

This all fits into the following overall picture (see Ex.
EI.3.7
3.7 for a generalization).

I.3.5 Proposition 3.5. If R is a commutative integral domain, every invertible ideal
is a line bundle, and every line bundle is isomorphic to an invertible ideal. If
I and J are fractional ideals, and I is invertible, then I ⊗R J ∼= IJ . Finally,
there is an exact sequence of abelian groups:

1→ R× → F×
div−→ Cart(R)→ Pic(R)→ 0.

Proof. If I and J are invertible ideals such that IJ ⊆ R, then we can interpret
elements of J as homomorphisms I → R. If IJ = R then we can find xi ∈ I and
yi ∈ J so that x1y1 + · · ·+ xnyn = 1. The {xi} assemble to give a map Rn → I
and the {yi} assemble to give a map I → Rn. The composite I → Rn → I is
the identity, because it sends r ∈ I to

∑
xiyir = r. Thus I is a summand of Rn,

i.e., I is a finitely generated projective module. As R is an integral domain
and I ⊆ F , rank(I) is the constant dimF (I ⊗R F ) = dimF (F ) = 1. Hence I is
a line bundle.

This construction gives a set map Cart(R) → Pic(R); to show that it is a
group homomorphism, it suffices to show that I⊗R J ∼= IJ for invertible ideals.
Suppose that I is a submodule of F which is also a line bundle over R. As I is
projective, I ⊗R − is an exact functor. Thus if J is an R-submodule of F then
I⊗R J is a submodule of I⊗RF . The map I⊗RF → F given by multiplication
in F is an isomorphism because I is locally free and F is a field. Therefore the
composite

I ⊗R J ⊆ I ⊗R F
multiply

> F

sends
∑
xi ⊗ yi to

∑
xiyi. Hence I ⊗R J is isomorphic to its image IJ ⊆ F .

This proves the third assertion.
The kernel of Cart(R) → Pic(R) is the set of invertible ideals I having an

isomorphism I ∼= R. If f ∈ I corresponds to 1 ∈ R under such an isomorphism
then I = fR = div(f). This proves exactness of the sequence at Cart(R).
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Clearly the units R× of R inject into F×. If f ∈ F× then fR = R if and
only if f ∈ R and f is in no proper ideal, i.e., if and only if f ∈ R×. This proves
exactness at R× and F×.

Finally, we have to show that every line bundle L is isomorphic to an
invertible ideal of R. Since rank(L) = 1, there is an isomorphism L⊗R F ∼= F .
This gives an injection L ∼= L ⊗R R ⊂ L ⊗R F ∼= F , i.e., an isomorphism of
L with an R-submodule I of F . Since L is finitely generated, I is a fractional
ideal. Choosing an isomorphism Ľ ∼= J , Lemma

I.3.1
3.1 yields

R ∼= L⊗R Ľ ∼= I ⊗R J ∼= IJ.

Hence IJ = fR for some f ∈ F×, and I(f−1J) = R, so I is invertible.

Dedekind domains

Historically, the most important applications of the Picard group have been
for Dedekind domains. A Dedekind domain is a commutative integral domain
which is noetherian, integrally closed and has Krull dimension 1.

There are many equivalent definitions of Dedekind domain in the literature.
Here is another: an integral domain R is Dedekind if and only if every fractional
ideal of R is invertible. In a Dedekind domain every nonzero ideal (and
fractional ideal) can be written uniquely as a product of prime ideals pn1

1 · · · pnr
r .

Therefore Cart(R) is the free abelian group on the set of (nonzero) prime ideals
of R, and Pic(R) is the set of isomorphism classes of (actual) ideals of R.

Another property of Dedekind domains is that every finitely generated
torsionfree R-module M is projective. To prove this fact we use induction
on rank0(M) = dimF (M ⊗ F ), the case rank0(M) = 0 being trivial. Set
rank0(M) = n + 1. As M is torsionfree, it is a submodule of M ⊗ F ∼= Fn+1.
The image of M under any nonzero coordinate projection Fn+1 → F is a frac-
tional ideal I0. As I0 is invertible, the projective lifting property for I0 shows
that M ∼= M ′ ⊕ I0 with rank0(M

′) = n. By induction, M ∼= I0 ⊕ · · · ⊕ In is a
sum of ideals. By Propositions

I.3.4
3.4 and

I.3.5
3.5, M ∼= I ⊕Rn for the invertible ideal

I = det(M) = I0 · · · In.
Examples. Here are some particularly interesting classes of Dedekind domains.

• A principal ideal domain (or PID) is a domain R in which every ideal is rR
for some r ∈ R. Clearly, these are just the Dedekind domains with Pic(R) = 0.
Examples of PID’s include Z and polynomial rings k[x] over a field k.

• A discrete valuation domain (or DVR) is a local Dedekind domain. By
Lemma

I.2.2
2.2, a DVR is a PID R with a unique maximal ideal M = πR. Fixing

π, it isn’t hard to see that every ideal of R is of the form πiR for some i ≥ 0.
Consequently every fractional ideal of R can be written as πiR for a unique
i ∈ Z. By Proposition

I.3.5
3.5, F× ∼= R× × {πi}. There is a (discrete) valuation ν

on the field of fractions F : ν(f) is that integer i such that fR ∼= πiR.

Examples of DVR’s include the p-adic integers Ẑp, the power series ring
k[[x]] over a field k, and localizations Z(p) of Z.
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• Let F be a number field, i.e., a finite field extension of Q. An algebraic integer
of F is an element which is integral over Z, i.e., a root of a monic polynomial
xn + a1x

n−1 + · · · + an with integer coefficients (ai ∈ Z). The set OF of all
algebraic integers of F is a ring—it is the integral closure of Z in F . A famous
result in ring theory asserts that OF is a Dedekind domain with field of fractions
F . It follows that OF is a lattice in F , i.e., a free abelian group of rank dimQ(F ).

In Number Theory, Pic(OF ) is called the ideal class group of the number field
F . A fundamental theorem states that Pic(OF ) is always a finite group, but
the precise structure of the ideal class group is only known for special number
fields of small dimension. For example, if ξp = e2πi/p then Z[ξp] is the ring of
algebraic integers of Q(ξp), and the class group is zero if and only if p ≤ 19;
Pic(Z[ξ23]) is Z/3. More details may be found in books on number theory, such
as

BSh
[31].

• If C is a smooth affine curve over a field k, then the coordinate ring R of C is
a Dedekind domain. One way to construct a smooth affine curve is to start with
a smooth projective curve C̄. If {p0, . . . , pn} is any nonempty set of points on
C̄, the Riemann-Roch theorem implies that C = C̄ − {p0, . . . , pn} is a smooth
affine curve.

If k is algebraically closed, Pic(R) is a divisible abelian group. Indeed, the
points of the Jacobian variety J(C̄) form a divisible abelian group, and Pic(R)
is the quotient of J(C̄) by the subgroup generated by the classes of the prime
ideals of R0 corresponding to p1, ..., pn, where C̄ − {p0} = Spec(R0).

This is best seen when k = C, because smooth projective curves over C are
the same as compact Riemann surfaces. If C̄ is a compact Riemann surface of
genus g, then as an abelian group the points of the Jacobian J(C̄) form the
divisible group (R/Z)2g. In particular, when C = C̄ − {p0} then Pic(R) ∼=
J(C̄) ∼= (R/Z)2g.

For example, R = C[x, y]/(y2 − x(x− 1)(x− β)) is a Dedekind domain with
Pic(R) ∼= (R/Z)2 if β 6= 0, 1. Indeed, R is the coordinate ring of a smooth affine
curve C obtained by removing one point from an elliptic curve (= a projective
curve of genus g = 1).

The Weil Divisor Class group

Let R be an integrally closed domain (= normal domain) with field of fractions
F . If R is a noetherian normal domain, it is well-known that:

(i) Rp is a discrete valuation ring (DVR) for all height 1 prime ideals p;
(ii) R = ∩Rp, the intersection being over all height 1 primes p of R, each Rp

being a subring of F ;
(iii) Every r 6= 0 in R is contained in only finitely many height 1 primes p.

An integral domain R satisfying (i), (ii) and (iii) is called a Krull domain.

Krull domains are integrally closed because every DVR Rp is integrally
closed. For a Krull domain R, the group D(R) of Weil divisors is the free
abelian group on the height 1 prime ideals of R. An effective Weil divisor is a
divisor D =

∑
ni[pi] with all the ni ≥ 0.

August 29, 2013 - Page 22 of
LastPage
568



Chapter I

We remark that effective divisors correspond to “divisorial” ideals of R, D

corresponding to the intersection ∩p(ni)
i of the symbolic powers of the pi.

If p is a height 1 prime of R, the p-adic valuation νp(I) of an invertible ideal
I is defined to be that integer ν such that Ip = pνRp. By (iii), vp(I) 6= 0 for
only finitely many p, so ν(I) =

∑
νp(I)[p] is a well-defined element of D(R).

By
I.3.5
3.5, this gives a group homomorphism:

ν : Cart(R)→ D(R).

If I is invertible, ν(I) is effective if and only if I ⊆ R. To see this, observe
that ν(I) is effective ⇐⇒ Ip ⊆ Rp for all p ⇐⇒ I ⊆ ∩Ip ⊆ ∩Rp = R. It follows
that ν is an injection, because if both ν(I) and ν(I−1) are effective then I and
I−1 are ideals with product R; this can only happen if I = R.

The divisor class group Cl(R) of R is defined to be the quotient of D(R) by
the subgroup of all ν(fR), f ∈ F×. This yields a map Pic(R) → Cl(R) which
is evidently an injection. Summarizing, we have proven:

I.3.6 Proposition 3.6. Let R be a Krull domain. Then Pic(R) is a subgroup of the
class group Cl(R), and there is a commutative diagram with exact rows:

1→ R× > F×
div

> Cart(R) > Pic(R) → 0

1→ R×

=∨
> F×

=∨
div

> D(R)

ν into
∨

> Cl(R)

into
∨

→ 0.

I.3.6.1 Remark 3.6.1. The Picard group and the divisor class group of a Krull domain
R are invariant under polynomial and Laurent polynomial extensions. That is,
Pic(R) = Pic(R[t]) = Pic(R[t, t−1]) and Cl(R) =Cl(R[t]) =Cl(R[t, t−1]). Most
of this assertion is proven in

B-AC
[32, ch.7,§1]; the Pic[t, t−1] part is proven in

BM
[20,

5.10].

Recall that an integral domain R is called factorial, or a Unique Factorization
Domain (UFD) if every nonzero element r ∈ R is either a unit or a product of
prime elements. (This implies that the product is unique up to order and primes
differing by a unit). It is not hard to see that UFD’s are Krull domains; the
following interpretation in terms of the class group is taken from

Matsu
[117, §20].

I.3.7 Theorem 3.7. Let R be a Krull domain. Then R is a UFD ⇐⇒ Cl(R) = 0.

I.3.7.1 Definition 3.7.1. A noetherian ring R is called regular if every R-module M
has a finite resolution 0 → Pn → · · · → P0 → M → 0 with the Pi projective.
Every localization S−1R of a regular ring R is also a regular ring, because
S−1R-modules are also R-modules, and a localization of an R-resolution is an
S−1R-resolution.

Now suppose that (R,m) is a regular local ring. It is well-known
Matsu
[117, §14,

19] that R is a noetherian, integrally closed domain (hence Krull), and that if
s ∈ m−m2 then sR is a prime ideal.
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I.3.8 Theorem 3.8. Every regular local ring is a UFD.

Proof. We proceed by induction on dim(R). If dim(R) = 0 then R is a field;
if dim(R) = 1 then R is a DVR, hence a UFD. Otherwise, choose s ∈ m − m2.
Since sR is prime, Ex.

EI.3.8
3.8(b) yields Cl(R) ∼= Cl(R[ 1s ]). Hence it suffices to

show that S = R[ 1s ] is a UFD. Let P be a height 1 prime of S; we have to
show that P is a principal ideal. For every prime ideal Q of S, SQ is a regular
local ring of smaller dimension than R, so by induction SQ is a UFD. Hence
PQ is principal: xSQ for some x ∈ S. By I.2.4

2.4, P is projective, hence invertible.
Let p be the prime ideal of R such that P = p[ 1s ] and choose an R-resolution
0 → Pn → · · · → P0 → p → 0 of p by finitely generated projective R-modules
Pi. Since R is local, the Pi are free. Since P is projective, the localized sequence
0→ Pn[

1
s ]→ · · · → P0[

1
s ]→ P→ 0 splits. Letting E (resp. F ) denote the direct

sum of the odd (resp. even) Pi[
1
s ], we have P ⊕ E ∼= F . Since stably free line

bundles are free, P is free. That is, P = xS for some x ∈ P, as desired.

I.3.8.1 Corollary 3.8.1. If R is a regular domain, then Cart(R) = D(R), and hence

Pic(R) = Cl(R).

Proof. We have to show that every height 1 prime ideal P of R is invertible.
For every prime ideal p of R we have Pp

∼= Rp in the UFD Rp. By
I.2.4
2.4 and

I.3.5
3.5,

P is an invertible ideal.

I.3.8.2 Remark 3.8.2. A ring is called locally factorial if Rp is factorial for every
prime ideal p of R. For example, regular rings are locally factorial by

I.3.8
3.8.

The proof of Cor.
I.3.8.1
3.8.1 shows that if R is a locally factorial Krull domain then

Pic(R) = Cl(R).

Non-normal rings

The above discussion should make it clear that the Picard group of a normal
domain is a classical object, even if it is hard to compute in practice. If R isn’t
normal, we can get a handle on Pic(R) using the techniques of the rest of this
section.

For example, the next lemma allows us to restrict attention to reduced noe-
therian rings with finite normalization, because the quotient Rred of any com-
mutative ring R by its nilradical (the ideal of nilpotent elements) is a reduced
ring, and every commutative ring is the filtered union of its finitely generated
subrings—rings having these properties.

If A is a small indexing category, every functor R : A → Rings has a
colimit colimα∈ARα. We say that A is filtered if for every α, β there are maps
α → γ ← β, and if for any two parallel arrows α ⇉ β there is a β → γ so that
the composites α→ γ agree; in this case we write lim−→ Rα for colim Rα and call
it the filtered direct limit. (See

WHomo
[223, 2.6.13].)

I.3.9 Lemma 3.9. (1) Pic(R) = Pic(Rred).

(2) Pic commutes with filtered direct limits of rings. In particular, if R is the
filtered union of subrings Rα, then Pic(R) ∼= lim−→Pic(Rα).
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Proof. Part (1) is an instance of idempotent lifting (Ex.
EI.2.2
2.2). To prove (2),

recall from
I.2.5
2.5 that a line bundle L over R may be given by patching data: a

unimodular row (s1, ..., sc) and units gij over the R[ 1
sisj

]. If R is the filtered

direct limit of rings Rα, this finite amount of data defines a line bundle Lα over
one of the Rα, and we have L = Lα⊗Rα

R. If Lα and L′α become isomorphic over
R, the isomorphism is defined over some Rβ , i.e., L and L′ become isomorphic
over Rβ .

If R is reduced noetherian, its normalization S is a finite product of normal
domains Si. We would like to describe Pic(R) in terms of the more classical
group Pic(S) =

∏
Pic(Si), using the conductor square of Example

I.2.6
2.6. For this

it is convenient to assume that S is finite over R, an assumption which is always
true for rings of finite type over a field.

More generally, suppose that we are given a Milnor square as in Example
I.2.6
2.6:

R
f

> S

R/I
∨ f̄

> S/I
∨

Given a unit β of S/I, the Milnor Patching Theorem
I.2.7
2.7 constructs a finitely

generated projective R-module Lβ = (S, β,R/I) with Lβ ⊗R S ∼= S and
Lβ/ILβ ∼= R/I. In fact Lβ is a line bundle, because rank(Lβ) = 1; every
map from R to a field factors through either R/I or S (for every prime ideal
p of R either I ⊆ p or Rp

∼= Sp). By Ex.
EI.2.9
2.9, Lα ⊕ Lβ ∼= Lαβ ⊕ R; applying

∧2 yields Lα ⊗R Lβ ∼= Lαβ . Hence the formula ∂(β) = [Lβ ] yields a group
homomorphism

∂ : (S/I)× → Pic(R).

I.3.10 Theorem 3.10 (Units-Pic sequence). Given a Milnor square, the following se-
quence is exact. Here ∆ denotes the diagonal map and ± denotes the difference
map sending (s, r̄) to s̄f(r̄)−1, resp. (L′, L) to L′ ⊗S S/I ⊗R/I L−1.

1→ R×
∆−→ S×× (R/I)×

±−→ (S/I)×
∂−→

Pic(R)
∆−→ Pic(S)× Pic(R/I)

±−→ Pic(S/I)

Proof. Since R is the pullback of S and R/I, exactness at the first two places is
clear. Milnor Patching

I.2.7
2.7 immediately yields exactness at the last two places,

leaving only the question of exactness at (S/I)×. Given s ∈ S× and r̄ ∈ (R/I)×,
set β = ±(s, r̄) = s̄f(r̄)−1, where s̄ denotes the reduction of s modulo I. By
inspection, λ = (s, r̄) ∈ Lβ ⊂ S × R/I, and every element of Lβ is a multiple
of λ. It follows that Lβ ∼= R. Conversely, suppose given β ∈ (S/I)× with
Lβ ∼= R. If λ = (s, r̄) is a generator of Lβ we claim that s and r̄ are units, which
implies that β = s̄f(r̄)−1 and finishes the proof. If s′ ∈ S maps to β ∈ S/I then
(s′, 1) ∈ Lβ ; since (s′, 1) = (xs, xr̄) for some x ∈ R this implies that r̄ ∈ (R/I)×.
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If t ∈ S maps to f(r̄)−1β−1 ∈ S/I then st ≡ 1 modulo I. Now I ⊂ sR because
I × 0 ⊂ Lβ , so st = 1+ sx for some x ∈ R. But then s(t− x) = 1, so s ∈ S× as
claimed.

I.3.10.1 Example 3.10.1 (Cusp). Let k be a field and let R be k[x, y]/(x3 = y2), the
coordinate ring of the cusp in the plane. Setting x = t2, y = t3 makes R
isomorphic to the subring k[t2, t3] of S = k[t]. The conductor ideal from S to
R is I = t2S, so we get a conductor square with R/I = k and S/I = k[t]/(t2).
Now Pic(k[t]) = 0 and (S/I)× ∼= k×× k with α ∈ k corresponding to (1+αt) ∈
(S/I)×. Hence Pic(R) ∼= k. A little algebra shows that a nonzero α ∈ k
corresponds to the invertible prime ideal p = (1− α2x, x− αy)R corresponding
to the point (x, y) = (α−2, α−3) on the cusp.

I.3.10.2 Example 3.10.2 (Node). Let R be k[x, y]/(y2 = x2 + x3), the coordinate ring
of the node in the plane over a field k with char(k) 6= 2. Setting x = t2 − 1
and y = tx makes R isomorphic to a subring of S = k[t] with conductor ideal
I = xS. We get a conductor square with R/I = k and S/I ∼= k × k. Since
(S/I)× ∼= k× × k× we see that Pic(R) ∼= k×. A little algebra shows that
α ∈ k× corresponds to the invertible prime ideal p corresponding to the point

(x, y) =
(

4α
(α−1)2 ,

4α(α+1)
(α−1)3

)
on the node corresponding to t =

(
1+α
1−α

)
.

Seminormal rings

A reduced commutative ring R is called seminormal if whenever x, y ∈ R satisfy
x3 = y2 there is an s ∈ R with s2 = x, s3 = y. If R is an integral domain, there
is an equivalent definition: R is seminormal if every s in the field of fractions
satisfying s2, s3 ∈ R belongs to R. Normal domains are clearly seminormal; the
node (

I.3.10.2
3.10.2) is not normal (t2 = 1 + x), but it is seminormal (see Ex.

EI.3.13
3.13).

Arbitrary products of seminormal rings are also seminormal, because s may be
found slotwise. The cusp (

I.3.10.1
3.10.1) is the universal example of a reduced ring

which is not seminormal.
Our interest in seminormal rings lies in the following theorem, first proven by

C. Traverso for geometric rings and extended by several authors. For normal
domains, it follows from Remark

I.3.6.1
3.6.1 above. Our formulation is taken from

Swan’s paper
Swan80
[197].

I.3.11 Theorem 3.11 (Traverso). The following are equivalent for any commutative
ring:

(1) Rred is seminormal;

(2) Pic(R) = Pic(R[t]);

(3) Pic(R) = Pic(R[t1, ..., tn]) for all n.

I.3.11.1 Remark 3.11.1. If R is seminormal, it follows that R[t] is also seminormal.
By Ex.

EI.3.11
3.11, R[t, t−1] and the local rings Rp are also seminormal. However, the

Pic[t, t−1] analogue of Theorem
I.3.11
3.11 fails. For example, if R is the node (

I.3.10.2
3.10.2)

then Pic(R[t, t−1]) ∼= Pic(R)× Z. For more details, see
We91
[221].
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To prove Traverso’s theorem, we shall need the following standard result
about units of polynomial rings.

I.3.12 Lemma 3.12. Let R be a commutative ring with nilradical N. If r0+r1t+· · ·+
rnt

n is a unit of R[t] then r0 ∈ R× and r1, ..., rn are nilpotent. Consequently, if
NU(R) denotes the subgroup 1 + tN[t] of R[t]× then:

(1) R[t]× = R× ×NU(R);

(2) If R is reduced then R× = R[t]×;

(3) Suppose that R is an algebra over a field k. If char(k) = p, NU(R) is a
p-group. If char(k) = 0, NU(R) is a uniquely divisible abelian group (=
a Q-module).

Proof of Traverso’s theorem. We refer the reader to Swan’s paper for the proof
that (1) implies (2) and (3). By Lemma

I.3.9
3.9, we may suppose that R is reduced

but not seminormal. Choose x, y ∈ R with x3 = y2 such that no s ∈ R satisfies
s2 = x, s3 = y. Then the reduced ring S = R[s]/(s2 − x, s3 − y)red is strictly
larger than R. Since I = xS is an ideal of both R and S, we have Milnor squares

R
f

> S

R/I
∨ f̄

> S/I
∨

and

R[t]
f

> S[t]

R/I[t]
∨ f̄

> S/I[t].
∨

The Units-Pic sequence
I.3.10
3.10 of the first square is a direct summand of the

Units-Pic sequence for the second square. Using Lemma
I.3.12
3.12, we obtain the

exact quotient sequence

0→ NU(R/I)→ NU(S/I)
∂−→ Pic(R[t])

Pic(R)
.

By construction, s /∈ R and s̄ /∈ R/I. Hence ∂(1 + s̄t) is a nonzero element
of the quotient Pic(R[t])/Pic(R). Therefore if R isn’t seminormal we have
Pic(R) 6= Pic(R[t]), which is the (3) ⇒ (2) ⇒ (1) half of Traverso’s theorem.

EXERCISES

In these exercises, R is always a commutative ring.

EI.3.1 3.1. Show that the following are equivalent for every R-module L:

(a) There is a R-module M such that L⊗M ∼= R.

(b) L is an algebraic line bundle.

(c) L is a finitely generated R-module and Lp
∼= Rp for every prime ideal p

of R.
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Hint: Use Exercises
EI.2.10
2.10 and

EI.2.11
2.11.

EI.3.2 3.2. Show that the tensor product P⊗RQ of two line bundles may be described
using “Open Patching”

I.2.5
2.5 as follows. Find s1, ..., sr ∈ R forming a unimodular

row, such that P (resp. Q) is obtained by patching the R[ 1si ] by units gij (resp.

hij) in R[
1
sisj

]×. Then P ⊗RQ is obtained by patching the R[ 1si ] using the units

fij = gijhij).

EI.3.3 3.3. Let P be a locally free R-module, obtained by patching free modules of
rank n by gij ∈ GLn(R[ 1

sisj
]). indexdeterminant line bundle—seeline bundle

Show that det(P ) is the line bundle obtained by patching free modules of rank
1 by the units det(gij) ∈ (R[ 1

sisj
])×.

EI.3.4 3.4. Let P and Q be finitely generated projective modules of constant ranks
m and n respectively. Show that there is a natural isomorphism (detP )⊗n ⊗
(detQ)⊗m → det(P⊗Q). Hint: Send (p11∧· · ·⊗· · ·∧pmn)⊗(q11∧· · ·⊗· · ·∧qmn)
to (p11 ⊗ q11) ∧ · · · ∧ (pmn ⊗ qmn). Then show that this map is locally an
isomorphism.

EI.3.5 3.5. If an ideal I ⊆ R is a projective R-module and J ⊆ R is any other ideal,
show that I ⊗R J is isomorphic to the ideal IJ of R.

EI.3.6 3.6. Excision for Pic. If I is a commutative ring without unit, let Pic(I) denote
the kernel of the canonical map Pic(Z ⊕ I) → Pic(Z). Write I× for the group
GL1(I) of Ex.

EI.1.10
1.10. Show that if I is an ideal of R then there is an exact

sequence:

1→ I× → R× → (R/I)×
∂−→ Pic(I)→ Pic(R)→ Pic(R/I).

EI.3.7 3.7. (Roberts-Singh) This exercise generalizes Proposition
I.3.5
3.5. Let R ⊆ S be

an inclusion of commutative rings. An R-submodule I of S is called an invertible
R-ideal of S if IJ = R for some other R-submodule J of S.

(i) If I ⊆ S is an invertible R-ideal of S, show that I is finitely generated
over R, and that IS = S.

(ii) Show that the invertible R-ideals of S form an abelian group Pic(R,S)
under multiplication.

(iii) Show that every invertible R-ideal of S is a line bundle over R. Hint: use
Ex.

EI.3.5
3.5 to compute its rank. Conversely, if I is a line bundle over R

contained in S and IS = S, then I is an R-ideal.

(iv) Show that there is a natural exact sequence:

1→ R× → S×
div−→ Pic(R,S)→ Pic(R)→ Pic(S).
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EI.3.8 3.8. Relative Class groups. Suppose that R is a Krull domain and that RS =
S−1R for some multiplicatively closed set S in R. Let D(R,RS) denote the free
abelian group on the height 1 primes p of R such that p ∩ S 6= φ. Since D(RS)
is free on the remaining height 1 primes of R, D(R) = D(R,RS)⊕D(RS).

(a) Show that the group Pic(R,RS) of Ex.
EI.3.7
3.7 is a subgroup of D(R,RS), and

that there is an exact sequence compatible with Ex.
EI.3.7
3.7

1→ R× → R×S → D(R,RS)→ Cl(R)→ Cl(RS)→ 0.

(b) Suppose that sR is a prime ideal of R. Prove that (R[ 1s ])
× ∼= R××Z and

that Cl(R) ∼= Cl(R[ 1s ]).

(c) Suppose that every height 1 prime p of R with p ∩ S 6= φ is an invertible
ideal. Show that Pic(R,RS) = D(R,RS) and that Pic(R) → Pic(RS) is
onto. (This always happens if R is a regular ring, or if the local rings RM
are unique factorization domains for every maximal ideal M of R with
M ∩ S 6= ∅.)

EI.3.9 3.9. Suppose that we are given a Milnor square with R ⊆ S. If s̄ ∈ (S/I)× is
the image of a nonzerodivisor s ∈ S, show that −∂(s̄) ∈ Pic(R) is the class of
the ideal (sS) ∩R.

EI.3.10 3.10. Let R be a 1-dimensional noetherian ring with finite normalization S,
and let I be the conductor ideal from S to R. Show that for every maximal
ideal p of R, p is a line bundle ⇐⇒ I 6⊆ p. Using Ex.

EI.3.9
3.9, show that these p

generate Pic(R).

EI.3.11 3.11. If R is seminormal, show that every localization S−1R is seminormal.

EI.3.12 3.12. Seminormality is a local property. Show that the following are equivalent:
(a) R is seminormal;
(b) Rm is seminormal for every maximal ideal m of R;
(c) Rp is seminormal for every prime ideal p of R.

EI.3.13 3.13. If R is a pullback of a diagram of seminormal rings, show that R is
seminormal. This shows that the node (

I.3.10.2
3.10.2) is seminormal.

EI.3.14 3.14. Normal rings. A ring R is called normal if each local ring Rp is an
integrally closed domain. If R and R′ are normal rings, so is the product R ×
R′. Show that normal domains are normal rings, and that every reduced 0-
dimensional ring is normal. Then show that every normal ring is seminormal.

EI.3.15 3.15. Seminormalization. Show that every reduced commutative ring R has
an extension R ⊆ +R with +R seminormal, satisfying the following universal
property: if S is seminormal, then every ring map R→ S has a unique extension
+R → S. The extension +R is unique up to isomorphism, and is called the
seminormalization of R. Hint: First show that it suffices to construct the
seminormalization of a noetherian ringR whose normalization S is finite. In that
case, construct the seminormalization as a subring of S, using the observation
that if x3 = y2 for x, y ∈ R, there is an s ∈ S with s2 = x, s3 = y.
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EI.3.16 3.16. An extension R ⊂ R′ is called subintegral if Spec(R′) → Spec(R) is a
bijection, and the residue fields k(p) = Rp/pRp and R′p/pR

′
p are isomorphic.

Show that the seminormalization R ⊂ +R of the previous exercise is a subinte-
gral extension.

EI.3.17 3.17. Let R be a commutative ring with nilradical N.

(a) Show that the subgroup 1 + N[t, t−1] of R[t, t−1]× is the product of the
three groups 1 +N, NtU(R) = 1 + tN[t], and Nt−1U(R) = 1 + t−1N[t−1].

(b) Show that there is a homomorphism t : [Spec(R),Z]→ R[t, t−1]× sending
f to the unit tf of R[t, t−1] which is tn on the factor Ri of R where f = n.
Here Ri is given by

I.2.2.4
2.2.4 and Ex.

EI.2.4
2.4.

(c) Show that there is a natural decomposition

R[t, t−1]× ∼= R× ×NtU(R)×Nt−1U(R)× [Spec(R),Z],

or equivalently, that there is a split exact sequence:

1→ R× → R[t]× ×R[t−1]× → R[t, t−1]× → [Spec(R),Z]→ 0.

EI.3.18 3.18. Show that the following sequence is exact:

1→ Pic(R)→ Pic(R[t])× Pic(R[t−1])→ Pic(R[t, t−1]).

Hint: If R is finitely generated, construct a diagram whose rows are Units-
Pic sequences

I.3.10
3.10, and whose first column is the naturally split sequence of

Ex.
EI.3.17
3.17.

EI.3.19 3.19. (NPic) Let NPic(R) denote the cokernel of the natural map Pic(R)→
Pic(R[t]). Show that Pic(R[t]) ∼= Pic(R) × NPic(R), and that NPic(R) = 0 if
and only if Rred is a seminormal ring. If R is an algebra over a field k, prove
that:

(a) If char(k) = p > 0 then NPic(R) is a p-group;

(b) If char(k) = 0 then NPic(R) is a uniquely divisible abelian group.

To do this, first reduce to the case when R is finitely generated, and proceed by
induction on dim(R) using conductor squares.
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4 Topological VectorBundles and ChernClasses

Because so much of the theory of projective modules is based on analogy with
the theory of topological vector bundles, it is instructive to review the main
aspects of the structure of vector bundles. Details and further information may
be found in

MSt
[135],

Atiyah
[7] or

Huse
[93]. We will work with vector spaces over F = R, C or

H.
Let X be a topological space. A family of vector spaces over X is a topologi-

cal space E, together with a continuous map η : E → X and a finite dimensional
vector space structure (over R, C or H) on each fiber Ex = η−1(x), x ∈ X. We
require the vector space structure on Ex to be compatible with the topology on
E. (This means scaling F × E → E and the addition map E ×X E → E are
continuous.) By a homomorphism from one family η : E → X to another family
ϕ : F → X we mean a continuous map f : E → F with η = ϕf , such that each
induced map fx : Ex → Fx is a linear map of vector spaces. There is an evident
category of families of vector spaces over X and their homomorphisms.

For example, if V is an n-dimensional vector space, the projection from
Tn = X × V to X forms a “constant” family of vector spaces. We call such a
family, and any family isomorphic to it, a trivial vector bundle over X.

If Y ⊆ X, we write E|Y for the restriction η−1(Y ) of E to Y ; the restriction
η|Y : E|Y → Y of η makes E|Y into a family of vector spaces over Y . More
generally, if f : Y → X is any continuous map then we can construct an induced
family f∗(η) : f∗E → Y as follows. The space f∗E is the subspace of Y ×
E consisting of all pairs (y, e) such that f(y) = η(e), and f∗E → Y is the
restriction of the projection map. Since the fiber of f∗E at y ∈ Y is Ef(y), f

∗E
is a family of vector spaces over Y .

A vector bundle over X is a family of vector spaces η : E → X such that
every point x ∈ X has a neighborhood U such that η|U : E|U → U is trivial. A
vector bundle is also called a locally trivial family of vector spaces.

The most historically important example of a vector bundle is the tangent
bundle TX → X of a smooth manifold X. Another famous example is the
Möbius bundle E over S1; E is the open Möbius strip and Ex ∼= R for each
x ∈ S1.

Suppose that f : X → Y is continuous. If E → Y is a vector bundle, then
the induced family f∗E → X is a vector bundle on X. To see this, note that if
E is trivial over a neighborhood U of f(x) then f∗E is trivial over f−1(U).

The symbol VB(X) denotes the category of vector bundles and homomor-
phisms over X. If clarification is needed, we write VBR(X), VBC(X) or
VBH(X). The induced bundle construction gives rise to an additive functor
f∗ : VB(X)→ VB(Y ).

The Whitney sum E⊕F of two vector bundles η : E → X and ϕ : F → X is
the family of all the vector spaces Ex⊕Fx, topologized as a subspace of E×F .
Since E and F are locally trivial, so is E ⊕ F ; hence E ⊕ F is a vector bundle.
By inspection, the Whitney sum is the product in the category VB(X). Since
there is a natural notion of the sum f + g of two homomorphisms f, g : E → F ,
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this makes VB(X) into an additive category with Whitney sum the direct sum
operation.

A sub-bundle of a vector bundle η : E → X is a subspace F of E which is
a vector bundle under the induced structure. That is, each fiber Fx is a vector
subspace of Ex and the family F → X is locally trivial. The quotient bundle
E/F is the union of all the vector spaces Ex/Fx, given the quotient topology.
Since F is locally a Whitney direct summand in E, we see that E/F is locally
trivial, hence a vector bundle. This gives a “short exact sequence” of vector
bundles in VB(X):

0→ F → E → E/F → 0.

A vector bundle E → X is said to be of finite type if there is a finite covering
U1, . . . , Un of X such that each each E|Ui is a trivial bundle. Every bundle
over a compact space X must be of finite type; the same is true if X is a finite-
dimensional CW complex

Huse
[93, §3.5], or more generally if there is an integer n

such that every open cover of X has a refinement V such that no point of X is
contained in more that n elements of V. We will see in Exercise

EI.4.15
4.15 that the

canonical line bundle on infinite dimensional projective space P∞ is an example
of a vector bundle which is not of finite type.

Riemannian Metrics Let E → X be a real vector bundle. A Riemannian
metric on E is a family of inner products βx : Ex × Ex → R, x ∈ X, which
varies continuously with x (in the sense that β is a continuous function on
the Whitney sum E ⊕ E). The notion of Hermitian metric on a complex (or
quaternionic) vector bundle is defined similarly. A fundamental result

Huse
[93, 3.5.5

and 3.9.5] states that every vector bundle over a paracompact space X has a
Riemannian (or Hermitian) metric; see Ex.

EI.4.17
4.17 for the quaternionic case.

Dimension of vector bundles

If E is a vector bundle over X then dim(Ex) is a locally constant function on X
with values in N = {0, 1, . . . }. Hence dim(E) is a continuous function from X
to the discrete topological space N; it is the analogue of the rank of a projective
module. An n-dimensional vector bundle is a bundle E such that dim(E) = n is
constant; 1-dimensional vector bundles are frequently called line bundles. The
Möbius bundle is an example of a nontrivial line bundle.

A vector bundle E is called componentwise trivial if we can write X as a
disjoint union of (closed and open) components Xi in such a way that each
E|Xi is trivial. Isomorphism classes of componentwise trivial bundles are in 1-1
correspondence with the set [X,N] of all continuous maps from X to N. To
see this, note that any continuous map f : X → N induces a decomposition of
X into components Xi = f−1(i). Given such an f , let T f denote the disjoint
union

T f =
∐

i∈N

Xi × F i, F = R,C or H.

The projection T f → ∐Xi = X makes T f into a componentwise trivial vector
bundle with dim(T f ) = f . Conversely, if E is componentwise trivial, then
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E ∼= T dim(E). Note that T f ⊕ T g ∼= T f+g. Thus if f is bounded then by
choosing g = n− f we can make T f into a summand of the trivial bundle Tn.

The following result, which we cite from
Huse
[93, 3.5.8 and 3.9.6], illustrates

some of the similarities between VB(X) and the category of finitely generated
projective modules. It is proven using a Riemannian (or Hermitian) metric
on E: F⊥x is the subspace of Ex perpendicular to Fx. (A topological space
is paracompact if it is Hausdorff and every open cover has a partition of unity
subordinate to it.)

I.4.1 Theorem 4.1 (Subbundle Theorem). Let E → X be a vector bundle on a para-
compact topological space X. Then:

1. If F is a sub-bundle of E, there is a sub-bundle F⊥ such that E ∼= F⊕F⊥.

2. E has finite type if and only if E is isomorphic to a sub-bundle of a trivial
bundle. That is, if and only if there is another bundle F such that E ⊕ F
is trivial.

I.4.1.1 Corollary 4.1.1. Suppose that X is compact, or that X is a finite-dimensional
CW complex. Then every vector bundle over X is a Whitney direct summand
of a trivial bundle.

I.4.1.2 Example 4.1.2. If X is a smooth d-dimensional manifold, its tangent bundle
TX → X is a d-dimensional real vector bundle. Embedding X in Rn allows
us to form the normal bundle NX → X; NxX is the orthogonal complement
of TxX in Rn. Clearly TX ⊕ NX is the trivial n-dimensional vector bundle
X × Rn → X over X.

I.4.1.3 Example 4.1.3. Consider the canonical line bundle E1 on projective n-space;
a point x of Pn corresponds to a line Lx in n+1-space, and the fiber of E1 at x
is just Lx. In fact, E1 is a subbundle of the trivial bundle Tn+1. Letting Fx be
the n-dimensional hyperplane perpendicular to Lx, the family of vector spaces
F forms a vector bundle such that E1 ⊕ F = Tn+1.

I.4.1.4 Example 4.1.4 (Global sections). Let η : E → X be a vector bundle. A global
section of η is a continuous map s : X → E such that ηs = 1X . It is nowhere
zero if s(x) 6= 0 for all x ∈ X. Every global section s determines a map from
the trivial line bundle T 1 to E; if s is nowhere zero then the image is a line
subbundle of E. If X is paracompact the Subbundle Theorem determines a
splitting E ∼= F ⊕ T 1.

Patching vector bundles

I.4.2 4.2. One technique for creating vector bundles uses transition functions. The
idea is to patch together a collection of vector bundles which are defined on
subspaces of X. A related technique is the clutching construction discussed in
I.4.7
4.7 below.
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Let η : E → X be an n-dimensional vector bundle on X over the field F (F
is R, C or H). Since E is locally trivial, we can find an open covering {Ui} of
X, and isomorphisms hi : Ui × Fn ∼= E|Ui. If Ui ∩ Uj 6= ∅, the isomorphism

h−1i hj : (Ui ∩ Uj)× Fn ∼= η|Ui ∩ Uj ∼= (Ui ∩ Uj)× Fn

sends (x, v) ∈ (Ui ∩ Uj)× Fn to (x, gij(x)(v)) for some gij(x) ∈ GLn(F ).
Conversely, suppose we are given maps gij : Ui ∩ Uj → GLn(F ) such that

gii = 1 and gijgjk = gik on Ui ∩ Uj ∩ Uk. On the disjoint union of the Ui × Fn,
form the equivalence relation ∼ which is generated by the relation that (x, v) ∈
Uj × Fn and (x, gij(x)(v)) ∈ Ui × Fn are equivalent for every x ∈ Ui ∩ Uj . Let
E denote the quotient space (

∐
Ui×Fn)/ ∼. It is not hard to see that there is

an induced map η : E → X making E into a vector bundle over X.
We call E the vector bundle obtained by patching via the transition functions

gij ; this patching construction is the geometric motivation for open patching of
projective modules in

I.2.5
2.5.

I.4.2.1 Construction 4.2.1 (Tensor product). Let E and F be real or complex vector
bundles over X. There is a vector bundle E⊗F over X whose fiber over x ∈ X
is the vector space tensor product Ex⊗Fx, and dim(E ⊗F ) = dim(E) dim(F ).

To construct E ⊗ F , we first suppose that E and F are trivial bundles, i.e.,
E = X × V and F = X × W for vector spaces V , W . In this case we let
E ⊗ F be the trivial bundle X × (V ⊗ W ). In the general case, we proceed
as follows. Restricting to a component of X on which dim(E) and dim(F )
are constant, we may assume that E and F have constant ranks m and n
respectively. Choose a covering {Ui} and transition maps gij , g

′
ij defining E

and F by patching. Identifying Mm(F ) ⊗Mn(F ) with Mmn(F ) gives a map
GLm(F )×GLn(F )→ GLmn(F ), and the elements gij⊗g′ij give transition maps
for E⊗F from Ui∩Uj to GLmn(F ). The last assertion comes from the classical
vector space formula dim(Ex ⊗ Fx) = dim(Ex) dim(Fx).

I.4.2.2 Construction 4.2.2. (Determinant bundle). For every n-dimensional real or
complex vector bundle E, there is an associated “determinant” line bundle
det(E) = ∧nE whose fibers are the 1-dimensional vector spaces ∧n(Ex). In
fact, det(E) is a line bundle obtained by patching, the transition functions for
det(E) being the determinants det(gij) of the transition functions gij of E. More
generally, if E is any vector bundle then this construction may be performed
componentwise to form a line bundle det(E) = ∧dim(E)E. As in §3, if L is a line
bundle and E = L⊕T f , then det(E) = L, so E uniquely determines L. Taking
E trivial, this shows that nontrivial line bundles cannot be stably trivial.

I.4.2.3 Orthogonal, unitary & symplectic structure groups 4.2.3. An n-dimen-
sional vector bundle E → X is said to have structure group On, Un or Spn if the
transition functions gij map Ui∩Uj to the subgroup On of GLn(R) the subgroup
Un of GLn(C) or the subgroup Spn of GLn(H). If X is paracompact, this can
always be arranged, because then E has a (Riemannian or Hermitian) metric.
Indeed, it is easy to continuously modify the isomorphisms hi : Ui×Fn → E|Ui
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so that on each fiber the map Fn ∼= Ex is an isometry. But then the fiber isomor-
phisms gij(x) are isometries, and so belong to On, Un or Spn. Using the same
continuous modification trick, any vector bundle isomorphism between vector
bundles with a metric gives rise to a metric-preserving isomorphism. If X is
paracompact, this implies that VBn(X) is also the set of equivalence classes of
vector bundles with structure group On, Un or Spn.

The following pair of results forms the historical motivation for the Bass-
Serre Cancellation Theorem

I.2.3
2.3. Their proofs may be found in

Huse
[93, 8.1].

I.4.3 Real Cancellation Theorem 4.3. Suppose X is a d-dimensional CW com-
plex, and η : E → X is an n-dimensional real vector bundle with n > d. Then

(i) E ∼= E0 ⊕ Tn−d for some d-dimensional vector bundle E0

(ii) If F is another bundle and E ⊕ T k ∼= F ⊕ T k, then E ∼= F .

I.4.3.1 Corollary 4.3.1. Over a 1-dimensional CW complex, every real vector bundle
E of rank ≥ 1 is isomorphic to L⊕T f , where L = det(E) and f = dim(E)− 1.

I.4.4 Complex Cancellation Theorem 4.4. Suppose X is a d-dimensional CW
complex, and that η : E → X is a complex vector bundle with dim(E) ≥ d/2.

(i) E ∼= E0 ⊕ T k for some vector bundle E0 of dimension ≤ d/2

(ii) If F is another bundle and E ⊕ T k ∼= F ⊕ T k, then E ∼= F .

I.4.4.1 Corollary 4.4.1. Let X be a CW complex of dimension ≤ 3. Every complex
vector bundle E of rank ≥ 1 is isomorphic to L ⊕ T f , where L = det(E) and
f = dim(E)− 1.

There is also a cancellation theorem for a quaternionic vector bundle E with
dim(E) ≥ d/4, d = dim(X). If d ≤ 3 it implies that all quaternionic vector
bundles are trivial; the splitting E ∼= L⊕ T f occurs when d ≤ 7.

Vector bundles are somewhat more tractable than projective modules, as
the following result shows. Its proof may be found in

Huse
[93, 3.4.7].

I.4.5 Homotopy Invariance Theorem 4.5. If f, g : Y → X are homotopic maps
and Y is paracompact, then f∗E ∼= g∗E for every vector bundle E over X.

I.4.6 Corollary 4.6. If X and Y are homotopy equivalent paracompact spaces,
there is a 1–1 correspondence between isomorphism classes of vector bundles
on X and Y.

I.4.6.1 Application 4.6.1. If Y is a contractible paracompact space then every vector
bundle over Y is trivial.
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I.4.7 Construction 4.7 (Clutching). Here is an analogue for vector bundles of Mil-
nor Patching

I.2.7
2.7 for projective modules. Suppose that X is a paracom-

pact space, expressed as the union of two closed subspaces X1 and X2,
with X1 ∩ X2 = A. Given vector bundles Ei → Xi and an isomorphism
g : E1|A → E2|A, we form a vector bundle E = E1 ∪g E2 over X as follows.
As a topological space E is the quotient of the disjoint union (E1

∐
E2) by the

equivalence relation identifying e1 ∈ E1|A with g(e1) ∈ E2|A. Clearly the nat-
ural projection η : E → X makes E a family of vector spaces, and E|Xi

∼= Ei.
Moreover, E is locally trivial over X (see

Atiyah
[7, p. 21]; paracompactness is needed

to extend g off of A). The isomorphism g : E1|A ∼= E2|A is called the clutching
map of the construction. As with Milnor patching, every vector bundle over
X arises by this clutching construction. A new feature, however, is homotopy
invariance: if f, g are homotopic clutching isomorphisms E1|A ∼= E2|A, then
E1 ∪f E2 and E1 ∪g E2 are isomorphic vector bundles over X.

I.4.8 Proposition 4.8. Let SX denote the suspension of a paracompact space X. A
choice of basepoint for X yields a 1-1 correspondence between the set VBn(SX)
of isomorphism classes of n-dimensional (resp. real, complex or quaternionic)
vector bundles over SX and the respective set of based homotopy classes of maps

[X,On]∗, [X,Un]∗ or [X,Spn]∗

from X to the orthogonal group On, unitary group Un or symplectic group Spn.

Sketch of Proof. SX is the union of two contractible cones C1 and C2 whose
intersection is X. As every vector bundle on the cones Ci is trivial, every vector
bundle on SX is obtained from an isomorphism of trivial bundles over X via
the clutching construction. Such an isomorphism is given by a homotopy class
of maps from X to GLn, or equivalently to the appropriate deformation retract
(On, Un or Spn) of GLn. The indeterminacy in the resulting map from [X,GLn]
to classes of vector bundles is eliminated by insisting that the basepoint of X
map to 1 ∈ GLn.

Vector Bundles on Spheres

I.4.9 4.9. Proposition
I.4.8
4.8 allows us to use homotopy theory to determine the vec-

tor bundles on the sphere Sd, because Sd is the suspension of Sd−1. Hence
n-dimensional (real, complex or symplectic) bundles on Sd are in 1-1 correspon-
dence with elements of πd−1(On), πd−1(Un) and πd−1(Spn), respectively. For
example, every real or complex line bundle over Sd is trivial if d ≥ 3, because
the appropriate homotopy groups of O1

∼= S0 and U1
∼= S1 vanish. This is not

true for Sp1 ∼= S3; for example there are infinitely many symplectic line bundles
on S4 because π3Sp1 = Z. The classical calculation of the homotopy groups of
On, Un and Spn (see

Huse
[93, 7.12]) yields the following facts:

I.4.9.1 4.9.1. On S1, there are |π0(On)| = 2 real vector bundles of dimension n for all
n ≥ 1. The nontrivial line bundle on S1 is the Möbius bundle. The Whitney
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sum of the Möbius bundle with trivial bundles yields all the other nontrivial
bundles. Since |π0(Un)| = 1 for all n, every complex vector bundle on S1 is
trivial.

I.4.9.2 4.9.2. On S2, the situation is more complicated. Since π1(O1) = 0 there are
no nontrivial real line bundles on S2. There are infinitely many 2-dimensional
real vector bundles on S2 (indexed by the degree d of their clutching maps),
because π1(O2) = Z. However, there is only one nontrivial n-dimensional real
vector bundle for each n ≥ 3, because π1(On) = Z/2. A real 2-dimensional
bundle E is stably trivial (and E ⊕ T ∼= T 3) if and only if the degree d is even.
The tangent bundle of S2 has degree d = 2.

There are infinitely many complex line bundles Ld on S2, indexed by the
degree d (in π1(U1) = Z) of their clutching maps. The Complex Cancellation
theorem (4.4) states that every other complex vector bundle on S2 is isomorphic
to a Whitney sum Ld ⊕ Tn, and that all the Ld ⊕ Tn are distinct.

I.4.9.3 4.9.3. Every vector bundle on S3 is trivial. This is a consequence of the classical
result that π2(G) = 0 for every compact Lie group G, such as G = On, Un, Spn.

I.4.9.4 4.9.4. As noted above, every real or complex line bundle on S4 is trivial.
S4 carries infinitely many distinct n-dimensional vector bundles for n ≥ 5 over
R, for n ≥ 2 over C, and for n ≥ 1 over H because π3(On) = Z for n ≥ 5,
π3(Un) = Z for n ≥ 2 and π3(Spn) = Z for n ≥ 1. In the intermediate range,
we have π3(O2) = 0, π3(O3) = Z and π3(O4) = Z⊕Z. Every 5-dimensional real
bundle comes from a unique 3-dimensional bundle but every 4-dimensional real
bundle on S4 is stably isomorphic to infinitely many other distinct 4-dimensional
vector bundles.

I.4.9.5 4.9.5. There are no 2-dimensional real vector bundles on Sd for d ≥ 3, because
the appropriate homotopy groups of O2

∼= S1 × Z/2 vanish. This vanishing
phenomenon doesn’t persist though; if d ≥ 5 the 2-dimensional complex bundles,
as well as the 3-dimensional real bundles on Sd, correspond to elements of
πd−1(O3) ∼= πd−1(U2) ∼= πd−1(S

3). This is a finite group which is rarely trivial.

Classifying Vector Bundles

One feature present in the theory of vector bundles, yet absent in the theory of
projective modules, is the classification of vector bundles using Grassmannians.

If V is any finite-dimensional vector space, the set Grassn(V ) of all n-
dimensional linear subspaces of V is a smooth manifold, called the Grassmann
manifold of n-planes in V . If V ⊂W , then Grassn(V ) is naturally a submanifold
of Grassn(W ). The infinite Grassmannian Grassn is the union of the Grassn(V )
as V ranges over all finite-dimensional subspaces of a fixed infinite-dimensional
vector space (R∞, C∞ or H∞); thus Grassn is an infinite-dimensional CW com-
plex (see

MSt
[135]). For example, if n = 1 then Grass1 is either RP∞, CP∞ or

HP∞, depending on whether the vector spaces are over R, C or H.
There is a canonical n-dimensional vector bundle over each Grassn(V ),

called En(V ), whose fibre over each x ∈ Grassn(V ) is the linear subspace of V
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corresponding to x. To topologize this family of vector spaces, and see that it
is a vector bundle, we define En(V ) to be the sub-bundle of the trivial bundle
Grassn(V )×V → Grassn(V ) having the prescribed fibers. For n = 1 this is just
the canonical line bundle on projective space described in Example

I.4.1.3
4.1.3.

The union (as V varies) of the En(V ) yields an n-dimensional vector bun-
dle En → Grassn, called the n-dimensional classifying bundle because of the
following theorem (see

Huse
[93, 3.7.2]).

I.4.10 Classification Theorem 4.10. Let X be a paracompact space. Then the set
VBn(X) of isomorphism classes of n-dimensional vector bundles over X is
in 1–1 correspondence with the set [X,Grassn] of homotopy classes of maps
X → Grassn:

VBn(X) ∼= [X,Grassn].

In more detail, every n-dimensional vector bundle η : E → X is isomorphic to
f∗(En) for some map f : X → Grassn, and E determines f up to homotopy.

I.4.10.1 Remark 4.10.1. (Classifying Spaces) The Classification Theorem
I.4.10
4.10 states

that the contravariant functor VBn is representable by the infinite Grassman-
nian Grassn. Because X is paracompact we may assume (by

I.4.2.3
4.2.3) that all

vector bundles have structure group On, Un or Spn, respectively. For this
reason, the infinite Grassmannian Grassn is called the classifying space of On,
Un or Spn (depending on the choice of R, C or H). It is the custom to write
BOn, BUn and BSpn for the Grassmannians Grassn (or any spaces homotopy
equivalent to it) over R, C and H, respectively.

In fact, there are homotopy equivalences Ω(BG) ≃ G for any Lie group G. If
G is On, Un or Spn, we can deduce this from

I.4.8
4.8 and

I.4.10
4.10: for any paracompact

space X we have [X,G]∗ ∼= VBn(SX) ∼= [SX,BG] ∼= [X,Ω(BG)]∗. Taking X
to be G and Ω(BG) yields the homotopy equivalences.

It is well-known that there are canonical isomorphisms [X,RP∞] ∼=
H1(X;Z/2) and [X,CP∞] ∼= H2(X;Z) respectively. Therefore the case n = 1
may be reformulated as follows over R and C.

I.4.11 Classification Theorem 4.11 (for line bundles). For any paracompact space
X, there are natural isomorphisms:

w1 : VB1,R(X) = {real line bundles on X} ∼= H1(X;Z/2)

c1 : VB1,C(X) = {complex line bundles on X} ∼= H2(X;Z).

I.4.11.1 Remark 4.11.1. Since H1(X) and H2(X) are abelian groups, it follows that
the set VB1(X) of isomorphism classes of line bundles is an abelian group. We
can understand this group structure in a more elementary way, as follows. The
tensor product E ⊗ F of line bundles is again a line bundle by

I.4.2.1
4.2.1, and ⊗ is

the product in the group VB1(X). The inverse of E in this group is the dual
bundle Ě of Ex.

EI.4.3
4.3, because Ě ⊗ E is a trivial line bundle (see Ex.

EI.4.4
4.4).
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I.4.11.2 Example 4.11.2 (Riemann Surfaces). Here is a complete classification of com-
plex vector bundles on a Riemann surface X. Recall that a Riemann surface
is a compact 2-dimensional oriented manifold; the orientation gives a canonical
isomorphism H2(X;Z) = Z. If L is a complex line bundle, the degree of L is
that integer d such that c1(L) = d. By Theorem

I.4.11
4.11, there is a unique complex

line bundle O(d) of each degree on X. By Corollary
I.4.4.1
4.4.1, every complex vector

bundle of rank r on X is isomorphic to O(d) ⊕ T r−1 for some d. Therefore
complex vector bundles on a Riemann surface are completely classified by their
rank and degree.

For example, the tangent bundle TX of a Riemann surface X has the struc-
ture of a complex line bundle, because every Riemann surface has the structure
of a 1-dimensional complex manifold. The Riemann-Roch Theorem states that
TX has degree 2 − 2g, where g is the genus of X. (Riemann surfaces are com-
pletely classified by their genus g ≥ 0, a Riemann surface of genus g being a
surface with g “handles.”)

In contrast, there are 22g distinct real line bundles on X, classified by
H1(X;Z/2) ∼= (Z/2)2g. The Real Cancellation Theorem

I.4.3
4.3 shows that ev-

ery real vector bundle is the sum of a trivial bundle and a bundle of dimension
≤ 2, but there are infinitely many 2-dimensional bundles over X. For example,
the complex line bundles O(d) all give distinct oriented 2-dimensional real vec-
tor bundles on X; they are distinguished by an invariant called the Euler class
(see

MSt
[135]).

Characteristic Classes

By Theorem
I.4.11
4.11, the determinant line bundle det(E) of a vector bundle E

yields a cohomology class: if E is a real vector bundle, it is the first Stiefel–
Whitney class w1(E) in H1(X;Z/2); if E is a complex vector bundle, it is the
first Chern class c1(E) in H2(X;Z). These classes fit into a more general theory
of characteristic classes, which are constructed and described in the book

MSt
[135].

Here is an axiomatic description of these classes.

I.4.12 Axioms for Stiefel-Whitney classes 4.12. The Stiefel–Whitney classes of a
real vector bundle E over X are elements wi(E) ∈ Hi(X;Z/2), which satisfy
the following axioms. By convention w0(E) = 1.

(SW1) (Dimension) If i > dim(E) then wi(E) = 0.

(SW2) (Naturality) If Y
f→X is continuous then f∗ : Hi(X;Z/2)→ Hi(Y ;Z/2)

sends wi(E) to wi(f
∗E). If E and E′ are isomorphic bundles then wi(E) =

wi(E
′).

(SW3) (Whitney sum formula) If E and F are bundles, then in the graded
cohomology ring H∗(X;Z/2) we have:

wn(E ⊕ F ) =
∑

wi(E)wn−i(F ) = wn(E) + wn−1(E)w1(F ) + · · ·+ wn(F ).

(SW4) (Normalization) For the canonical line bundle E1 over RP∞, w1(E1) is
the unique nonzero element of H1(RP∞;Z/2) ∼= Z/2.
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Axioms (SW2) and (SW4), together with the Classification Theorem
I.4.10
4.10, show

that w1 classifies real line bundles in the sense that it gives the isomorphism
VB1(X) ∼= H1(X;Z/2) of Theorem

I.4.11
4.11. The fact that w1(E) = w1(detE) is

a consequence of the “Splitting Principle” for vector bundles, and is left to the
exercises.

Since trivial bundles are induced from the map X → {∗}, it follows from
(SW1) and (SW2) that wi(T

n) = 0 for every trivial bundle Tn (and i 6= 0).
The same is true for componentwise trivial bundles; see Ex.

EI.4.2
4.2. From (SW3)

it follows that wi(E⊕Tn) = wi(E) for every bundle E and every trivial bundle
Tn.

The total Stiefel–Whitney class w(E) of E is defined to be the formal sum

w(E) = 1 + w1(E) + · · ·+ wi(E) + · · ·

in the complete cohomology ring Ĥ∗(X;Z/2) =
∏
iH

i(X;Z/2), which consists
of all formal infinite series a0 + a1 + · · · with ai ∈ Hi(X;Z/2). With this
formalism, the Whitney sum formula becomes a product formula: w(E ⊕ F ) =
w(E)w(F ). Now the collection U of all formal sums 1+ a1 + · · · in Ĥ∗(X;Z/2)
forms an abelian group under multiplication (the group of units of Ĥ∗(X;Z/2)
if X is connected). Therefore if E ⊕ F is trivial we can compute w(F ) via the
formula w(F ) = w(E)−1.

For example, consider the canonical line bundle E1(Rn) over RP
n. By axiom

(SW4) we have w(E1) = 1 + x in the ring H∗(RPn;Z/2) ∼= F2[x]/(x
n+1). We

saw in Example
I.4.1.3
4.1.3 that there is an n-dimensional vector bundle F with

F ⊕ E1 = Tn+1. Using the Whitney Sum formula (SW3), we compute that
w(F ) = 1 + x+ · · ·+ xn. Thus wi(F ) = xi for i≤n and wi(F ) = 0 for i > n.

Stiefel–Whitney classes were named for E. Stiefel and H. Whitney, who dis-
covered the wi independently in 1935, and used them to study the tangent
bundle of a smooth manifold.

4.13 Axioms for Chern classes 4.13. If E is a complex vector bundle over X, the
Chern classes of E are certain elements ci(E) ∈ H2i(X;Z), with c0(E) = 1.
They satisfy the following axioms. Note that the natural inclusion of S2 ∼= CP1

in CP∞ induces a canonical isomorphism H2(CP∞;Z) ∼= H2(S2;Z) ∼= Z.

(C1) (Dimension) If i > dim(E) then ci(E) = 0.

(C2) (Naturality) If f : Y → X is continuous then f∗ : H2i(X;Z) → H2i(Y ;Z)
sends ci(E) to ci(f

∗E). If E ∼= E′ then ci(E) = ci(E
′).

(C3) (Whitney sum formula) If E and F are bundles then

cn(E ⊕ F ) =
∑

ci(E)cn−i(F ) = cn(E) + cn−1(E)c1(F ) + · · ·+ cn(F ).

(C4) (Normalization) For the canonical line bundle E1 over CP∞, c1(E1) is the
canonical generator x of H2(CP∞;Z) ∼= Z.
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Axioms (C2) and (C4) and the Classification Theorem
I.4.10
4.10 imply that the

first Chern class c1 classifies complex line bundles; it gives the isomorphism
VB1(X) ∼= H2(X;Z) of Theorem

I.4.11
4.11. The identity c1(E) = c1(detE) is left

to the exercises.

The total Chern class c(E) of E is defined to be the formal sum

c(E) = 1 + c1(E) + · · ·+ ci(E) + · · · .

in the complete cohomology ring Ĥ∗(X;Z) =
∏
iH

i(X;Z). With this for-
malism, the Whitney sum formula becomes c(E ⊕ F ) = c(E)c(F ). As with
Stiefel–Whitney classes, axioms (C1) and (C2) imply that for a trivial bundle
Tn we have ci(T

n) = 0 (i 6= 0), and axiom (C3) implies that for all E

ci(E ⊕ Tn) = ci(E).

For example, consider the canonical line bundle E1(Cn) over CP
n. By axiom

(C4), c(E1) = 1+x in the truncated polynomial ringH∗(CPn;Z) ∼= Z[x]/(xn+1).
We saw in Example

I.4.1.3
4.1.3 that there is a canonical n-dimensional vector bundle

F with F ⊕ E1 = Tn+1. Using the Whitney Sum Formula (C3), we compute
that c(F ) =

∑
(−1)ixi. Thus ci(F ) = (−1)ixi for all i ≤ n. Chern classes are

named for S.-S. Chern, who discovered them in 1946 while studying L. Pontr-
jagin’s 1942 construction of cohomology classes pi(E) ∈ H4i(X;Z) associated
to a real vector bundle E. In fact, pi(E) is (−1)ic2i(E ⊗ C), where E ⊗ C is
the complexification of E (see Ex.

EI.4.5
4.5). However, the Whitney sum formula

for Pontrjagin classes only holds up to elements of order 2 in H4n(X;Z); see
Ex.

EI.4.13
4.13.

EXERCISES

EI.4.1 4.1. Let η : E → X and ϕ : F → X be two vector bundles, and form the induced
bundle η∗F over E. Show that the Whitney sum E⊕F → X is η∗F , considered
as a bundle over X by the map η∗F → E → X.

EI.4.2 4.2. Show that all of the uncountably many vector bundles on the discrete space
X = N are componentwise trivial. Let TN → N be the bundle with dim(TN

n ) = n
for all n. Show that every componentwise trivial vector bundle T f → Y over
every space Y is isomorphic to f∗TN. Use this to show that the Stiefel–Whitney
and Chern classes vanish for componentwise trivial vector bundles.

EI.4.3 4.3. If E and F are vector bundles over X, show that there are vector bundles
Hom(E,F ), Ě and ∧kE over X whose fibers are, respectively: Hom(Ex, Fx),
the dual space (Ěx) and the exterior power ∧k(Ex). Then show that there are
natural isomorphisms (E ⊕ F )̌ ∼= Ě ⊕ F̌ , Ě ⊗ F ∼= Hom(E,F ), ∧1E ∼= E and

∧k(E ⊕ F ) ∼= ∧kE ⊕ (∧k−1E ⊗ F )⊕ · · · ⊕ (∧iE ⊗ ∧k−iF )⊕ · · · ⊕ ∧kF.

EI.4.4 4.4. Show that the global sections of the bundle Hom(E,F ) of Ex.
EI.4.3
4.3 are in

1-1 correspondence with vector bundle maps E → F . (Cf.
I.4.1.4
4.1.4.) If E is a line

bundle, show that the vector bundle Ě ⊗ E ∼= Hom(E,E) is trivial.
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EI.4.5 4.5. Complexification. Let E → X be a real vector bundle. Show that there is a
complex vector bundle EC → X with fibers Ex⊗RC and that there is a natural
isomorphism (E ⊕F )C ∼= (EC)⊕ (FC). Then show that EC → X, considered as
a real vector bundle, is isomorphic to the Whitney sum E ⊕ E.

EI.4.6 4.6. Complex conjugate bundle. If F → X is a complex vector bundle on a
paracompact space, given by transition functions gij , let F̄ denote the complex
vector bundle obtained by using the complex conjugates ḡij for transition func-
tions; F̄ is called the complex conjugate bundle of F . Show that F and F̄ are
isomorphic as real vector bundles, and that the complexification FC → X of
Ex.

EI.4.5
4.5 is isomorphic to the Whitney sum F ⊕ F̄ . If F = EC for some real

bundle E, show that F ∼= F̄ . Finally, show that for every complex line bundle
L on X we have L̄ ∼= Ľ.

EI.4.7 4.7. Use the formula L̄ ∼= Ľ of Ex.
EI.4.6
4.6 to show that c1(Ē) = −c1(E) inH2(X;Z)

for every complex vector bundle E on a paracompact space.

EI.4.8 4.8. Global sections. If η : E → X is a vector bundle, let Γ(E) denote the set
of all global sections of E (see

I.4.1.4
4.1.4). Show that Γ(E) is a module over the

ring C0(X) of continuous functions on X (taking values in R or C). If E is an
n-dimensional trivial bundle, show that Γ(E) is a free C0(X)-module of rank
n.

Conclude that ifX is paracompact then Γ(E) is a locally free C0(X)-module
in the sense of

I.2.4
2.4, and that Γ(E) is a finitely generated projective module if X

is compact or if E is of finite type. This is the easy half of Swan’s theorem; the
rest is given in the next exercise.

EI.4.9 4.9. Swan’s Theorem. Let X be a compact Hausdorff space, and write R
for C0(X). Show that the functor Γ of the previous exercise is a functor from
VB(X) to the category P(R) of finitely generated projective modules, and that
the homomorphisms

Γ: HomVB(X)(E,F )→ HomP(R)(Γ(E),Γ(F )) (∗)
are isomorphisms. This proves Swan’s Theorem, that Γ is an equivalence of
categories VB(X) ≈ P(C0(X)). Hint: First show that (∗) holds when E and
F are trivial bundles, and then use Corollary

I.4.1.1
4.1.1.

EI.4.10 4.10. Projective and Flag bundles. If E → X is a vector bundle, consider
the subspace E0 = E − X of E, where X lies in E as the zero section. The
units R× (or C×) act fiberwise on E0, and the quotient space P(E) obtained
by dividing out by this action is called the projective bundle associated to E. If
p : P(E)→ X is the projection, the fibers p−1(x) are projective spaces.

(a) Show that there is a line sub-bundle L of p∗E over P(E). Use the Sub-
bundle Theorem to conclude that p∗E ∼= E′ ⊕ L.
Now suppose that E → X is an n-dimensional vector bundle, and let F(E)
be the flag bundle f : F(E)→ X obtained by iterating the construction

· · · → P(E′′)→ P(E′)→ P(E)→ X.
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(b) Show that f∗E → F(E) is a direct sum L1 ⊕ · · · ⊕ Ln of line bundles.

EI.4.11 4.11. If E is a direct sum L1 ⊕ · · · ⊕ Ln of line bundles, show that det(E) ∼=
L1 ⊗ · · · ⊗ Ln. Then use the Whitney Sum formula to show that w1(E) =
w1(det(E)), resp. c1(E) = c1(det(E)). Prove that every wi(E), resp. ci(E) is
the ith elementary symmetric function of the n cohomology classes {w1(Li)},
resp. {c1(Li)}.

EI.4.12 4.12. Splitting Principle. WriteHi(X) forHi(X;Z/2) orH2i(X;Z), depending
on whether our base field is R or C, and let p : F(E)→ X be the flag bundle of
a vector bundle E over X (see Ex.

EI.4.10
4.10). Prove that p∗ : Hi(X)→ Hi(F(E)) is

an injection. Then use Ex.
EI.4.11
4.11 to show that the characteristic classes wi(E) or

ci(E) in Hi(X) may be calculated inside Hi(F(E)). Hint: For a trivial bundle
this follows easily from the Künneth formula for H∗(X × F).

EI.4.13 4.13. Pontrjagin classes. In this exercise we assume the results of Ex.
EI.4.6
4.6 on

the conjugate bundle F̄ of a complex bundle F . Use the Splitting Principle to
show that ci(F̄ ) = (−1)ici(F ). Then prove the following:

(i) The Pontrjagin classes pn(F ) of F (considered as a real bundle) are

pn(F ) = cn(F )
2 + 2

n−1∑

i=1

(−1)icn−i(F )cn+i(F ) + (−1)n2c2n(F ).

(ii) If F = E ⊗ C for some real bundle E, the odd Chern classes c1(F ),
c3(F ), . . . all have order 2 in H∗(X;Z).

(iii) The Whitney sum formula for Pontrjagin classes holds modulo 2:

pn(E ⊕ E′)−
∑

pi(E)pn−i(E
′) has order 2 in H4n(X;Z).

EI.4.14 4.14. Disk with double origin. The classification theorems
I.4.10
4.10 and

I.4.11
4.11 can fail

for locally compact spaces which aren’t Hausdorff. To see this, let D denote the
closed unit disk in R2. The disk with double origin is the non-Hausdorff space X
obtained from the disjoint union of two copies of D by identifying together the
common subsets D − {0}. For all n ≥ 1, show that [X,BUn] = [X,BOn] = 0,
yet: VBn,C(X) ∼= Z ∼= H2(X;Z); VB2,R(X) ∼= Z ; and VBn,R(X) ∼= Z/2 for
n ≥ 3.

EI.4.15 4.15. Show that the canonical line bundles E1 over RP∞ and CP∞ do not have
finite type. Hint: Use characteristic classes and the Subbundle Theorem, or
II.

II.3.7.2
3.7.2.

EI.4.16 4.16. Consider the suspension SX of a paracompact space X. Show that every
vector bundle E over SX has finite type. Hint: If dim(E) = n, use

I.4.8
4.8 and

Ex.
EI.1.11
1.11 to construct a bundle E′ such that E ⊕ E′ ∼= T 2n.

August 29, 2013 - Page 43 of
LastPage
568



Chapter I

EI.4.17 4.17. Let V be a complex vector space. A quaternionic structure map on V
is a complex conjugate-linear automorphism j satisfying j2 = −1. A (complex)
Hermitian metric β on V is said to be quaternionic if β(jv, jw) = β(v, w).

(a) Show that structure maps on V are in 1-1 correspondence with underlying
H-vector space structures on V in which j ∈ H acts as j.

(b) Given a structure map and a complex Hermitian metric β on V , show that
the Hermitian metric 1

2

(
β(v, w) + β(jv, jw)

)
is quaternionic. Conclude

that every quaternionic vector bundle over a paracompact space has a
quaternionic Hermitian metric.

(c) If V is a vector space over H, show that its dual V̌ = HomC(V,C) is also
a vector space over H. If E is a quaternionic vector bundle, show that
there is a quaternionic vector bundle Ě whose fibers are Ěx. Hint: If V is
a right H-module, first construct V̌ as a left H-module using Ex.

EI.2.6
2.6 and

then use H ∼= Hop to make it a right module.

EI.4.18 4.18. Let E be a quaternionic vector bundle, and uE its underlying real vector
bundle. If F is any real bundle, show that Hm ⊗R Rn ∼= Hmn endows the real
bundle uE⊗F with the natural structure of a quaternionic vector bundle, which
we write as E ⊗ F . Then show that (E ⊗ F1)⊗ F2

∼= E ⊗ (F1 ⊗ F2).

EI.4.19 4.19. If E and F are quaternionic vector bundles over X, show that there are
real vector bundles E ⊗H F and HomH(E,F ), whose fibers are, respectively:
Ex ⊗H Fx and HomH(Ex, Fx). Then show that HomH(E,F ) ∼= Ě ⊗H F .
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5 Algebraic Vector Bundles

Modern Algebraic Geometry studies sheaves of modules over schemes. This
generalizes modules over commutative rings, and has many features in common
with the topological vector bundles that we considered in the last section. In
this section we discuss the main aspects of the structure of algebraic vector
bundles.

We will assume the reader has some rudimentary knowledge of the language
of schemes, in order to get to the main points quickly. Here is a glossary of the
basic concepts; details for most things may be found in Hartshorne’s book

Hart
[85],

but the ultimate source is
EGA
[EGA].

A ringed space (X,OX) is a topological space X equipped with a sheaf of
rings OX ; it is a locally ringed space if each OX(U) is a commutative ring, and
if for every x ∈ X the stalk ring OX,x = lim−→x∈U

OX(U) is a local ring. By

definition, an affine scheme is a locally ringed space isomorphic to (Spec(R), R̃)
for some commutative ring R (where R̃ is the canonical structure sheaf), and
a scheme is a ringed space (X,OX) which can be covered by open sets Ui such
that each (Ui,OX |Ui) is an affine scheme.

An OX -module is a sheaf F on X such that (i) for each open U ⊆ X the
set F(U) is an OX(U)-module, and (ii) if V ⊂ U then the restriction map
F(U) → F(V ) is compatible with the module structures. A morphism F → G
of OX -modules is a sheaf map such that each F(U) → G(U) is OX(U)-linear.
The category OX -mod of all OX -modules is an abelian category.

A global section of an OX -module F is an element ei of F(X). We say that
F is generated by global sections if there is a set {ei}i∈I of global sections of
F whose restrictions ei|U generate F(U) as an OX(U)-module for every open
U ⊆ X. We can reinterpret these definitions as follows. Giving a global section
e of F is equivalent to giving a morphism OX → F of OX -modules, and to say
that F is generated by the global sections {ei} is equivalent to saying that the
corresponding morphism ⊕i∈I OX → F is a surjection.

Free modules We say that F is a free OX-module if it is isomorphic to a direct
sum of copies of OX . A set {ei} ⊂ F(X) is called a basis of F if the restrictions
ei|U form a basis of each F(U), i.e., if the ei provide an explicit isomorphism
⊕OX ∼= F .

The rank of a free OX -module F is not well-defined over all ringed spaces.
For example, if X is a 1-point space then OX is just a ring R and an OX -module
is just an R-module, so our remarks in §1 about the invariant basis property
(IBP) apply. There is no difficulty in defining the rank of a free OX -module
when (X,OX) is a scheme, or a locally ringed space, or even more generally
when any of the rings OX(U) satisfy the IBP. We shall avoid these difficulties
by assuming henceforth that (X,OX) is a locally ringed space.

We say that an OX -module F is locally free if X can be covered by open
sets U for which F|U is a free OU -module. The rank of a locally free module
F is defined at each point x of X: rankx(F) is the rank of the free OU -module
F|U , where U is a neighborhood of x on which F|U is free. Since the function
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x 7→ rankx(F) is locally constant, rank(F) is a continuous function on X. In
particular, if X is a connected space then every locally free module has constant
rank.

I.5.1 Definition 5.1 (Vector Bundles). A vector bundle over a ringed space X is a
locally free OX -module whose rank is finite at every point. We will write
VB(X) or VB(X,OX) for the category of vector bundles on (X,OX); the
morphisms in VB(X) are just morphisms of OX -modules. Since the direct sum
of locally free modules is locally free, VB(X) is an additive category.

A line bundle L is a locally free module of constant rank 1. A line bundle
is also called an invertible sheaf because as we shall see in

I.5.3
5.3 there is another

sheaf L′ such that L ⊗ L′ = OX .
These notions are the analogues for ringed spaces of finitely generated pro-

jective modules and algebraic line bundles, as can be seen from the discussion
in

I.2.4
2.4 and §3. However, the analogy breaks down if X is not locally ringed; in

effect locally projective modules need not be locally free.

I.5.1.1 Example 5.1.1 (Topological spaces). Fix a topological space X. Then Xtop =
(X,Otop) is a locally ringed space, where Otop is the sheaf of (R or C-valued)
continuous functions on X: Otop(U) = C0(U) for all U ⊆ X. The following
constructions give an equivalence between the category VB(Xtop) of vector
bundles over the ringed spaceXtop and the categoryVB(X) of (real or complex)
topological vector bundles over X in the sense of §4. Thus our notation is
consistent with the notation of §4.

If η : E → X is a topological vector bundle, then the sheaf E of continuous
sections of E is defined by E(U) = {s : U → E : ηs = 1U}. By Ex.

EI.4.8
4.8 we know

that E is a locally freeOtop-module. Conversely, given a locally freeOtop-module
E , choose a cover {Ui} and bases for the free Otop-modules E|Ui; the base change
isomorphisms over the Ui∩Uj are elements gij of GLn(C

0(Ui∩Uj)). Interpreting
the gij as maps Ui ∩ Uj → GLn(C), they become transition functions for a
topological vector bundle E → X in the sense of

I.4.2
4.2.

I.5.1.2 Example 5.1.2 (Affine schemes). Suppose X = Spec(R). Every R-module M
yields an OX -module M̃ , and R̃ = OX . Hence every free OX -module arises
as M̃ for a free R-module M . The OX -module F = P̃ associated to a finitely
generated projective R-module P is locally free by

I.2.4
2.4, and the two rank func-

tions agree: rank(P ) = rank(F). Conversely, if F is locally free OX -module,
it can be made trivial on a covering by open sets of the form Ui = D(si), i.e.,
there are free modulesMi such that F|Ui

= M̃i. The isomorphisms between the
restrictions of M̃i and M̃j to Ui ∩ Uj amount to open patching data defining a

projective R-module P as in
I.2.5
2.5. In fact it is not hard to see that F ∼= P̃ . Thus

vector bundles on Spec(R) are in 1-1 correspondence with finitely generated
projective R-modules. And it is no accident that the notion of an algebraic
line bundle over a ring R in §3 corresponds exactly to the notion of a line
bundle over the ringed space (Spec(R), R̃).

More is true: the categories VB(X) and P(R) are equivalent when X =
Spec(R). To see this, recall that an OX -module is called quasicoherent if it is
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isomorphic to some M̃ (
Hart
[85, II.5.4]). The above correspondence shows that every

vector bundle is quasicoherent. It turns out that the category OX -modqcoh
of quasicoherent OX -modules is equivalent to the category R-mod of all R-
modules (see

Hart
[85, II.5.5]). Since the subcategories VB(SpecR) and P(R) cor-

respond, they are equivalent.

Definition (Coherent modules). Suppose that X is any scheme. We say that
a sheaf of OX -modules F is quasicoherent if X may be covered by affine opens
Ui = Spec(Ri) such that each F|Ui is M̃i for an Ri-module Mi. (If X is affine,
this agrees with the definition of quasicoherent in Example

I.5.1.2
5.1.2 by

Hart
[85, II.5.4].)

We say that F is coherent if moreover eachMi is a finitely presented Ri-module.
The category of quasicoherent OX -modules is abelian; if X is noetherian

then so is the category of coherent OX -modules.

If X is affine then F = M̃ is coherent if and only if M is a finitely presented
R-module, by

EGA
[EGA, I(1.4.3)]. In particular, if R is noetherian then “coherent”

is just a synonym for “finitely generated.” If X is a noetherian scheme, our
definition of coherent module agrees with

Hart
[85] and

EGA
[EGA]. For general schemes,

our definition is slightly stronger than in Hartshorne
Hart
[85], and slightly weaker

than in
EGA
[EGA, 0I(5.3.1)]; OX is always coherent in our sense, but not in the

sense of
EGA
[EGA].

The equivalent conditions for locally free modules in
I.2.4
2.4 translate into:

I.5.1.3 Lemma 5.1.3. For every scheme X and OX-module F , the following condi-
tions are equivalent:

1. F is a vector bundle (i.e., is locally free of finite rank);

2. F is quasicoherent and the stalks Fx are free OX,x-modules of finite rank;

3. F is coherent and the stalks Fx are free OX,x-modules;

4. For every affine open U = Spec(R) in X, F|U is the sheaf of a finitely
generated projective R-module.

I.5.1.4 Example 5.1.4 (Analytic spaces). Analytic spaces form another family of lo-
cally ringed spaces. To define them, one proceeds as follows. On the topolog-
ical space Cn, the subsheaf Oan of Otop consisting of analytic functions makes
(Cn,Oan) into a locally ringed space. A basic analytic set in an open subset
U of Cn is the zero locus V of a finite number of holomorphic functions, made
into a locally ringed space (V,OV,an) as follows. If IV is the subsheaf of OU,an
consisting of functions vanishing on V , the quotient sheaf OV,an = OU,an/IV is
supported on V , and is a subsheaf of the sheaf OV,top. By definition, a (reduced)
analytic space Xan = (X,Oan) is a ringed space which is locally isomorphic to
a basic analytic set. A good reference for (reduced) analytic spaces is

GA
[79]; the

original source is Serre’s
GAGA
[GAGA].

Let Xan be an analytic space. For clarity, a vector bundle over Xan (in the
sense of Definition

I.5.1
5.1) is sometimes called an analytic vector bundle. Since
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finitely generated Oan(U)-modules are finitely presented, there is also good a
notion of coherence on an analytic space: an Oan-module F is called coherent
if it is locally finitely presented in the sense that in a neighborhood U of any
point it is presented as a cokernel:

OnU,an → OmU,an → F|U → 0.

One special class of analytic spaces is the class of Stein spaces. It is known
that analytic vector bundles are the same as topological vector bundles over a
Stein space. For example, any analytic subspace of Cn is a Stein space. See
GR
[73].

Morphisms of ringed spaces

I.5.2 5.2. Here are two basic ways to construct new ringed spaces and morphisms:

(1) If A is a sheaf of OX -algebras, (X,A) is a ringed space;

(2) If f : Y → X is a continuous map and (Y,OY ) is a ringed space, the direct
image sheaf f∗OY is a sheaf of rings on X, so (X, f∗OY ) is a ringed space.

A morphism of ringed spaces f : (Y,OY ) → (X,OX) is a continuous map
f : Y → X together with a map f# : OX → f∗OY of sheaves of rings on
X. In case (1) there is a morphism i : (X,A) → (X,OX); in case (2) the
morphism is (Y,OY ) → (X, f∗OY ); in general, every morphism factors as
(Y,OY )→ (X, f∗OY )→ (X,OX).

A morphism of ringed spaces f : X → Y between two locally ringed spaces is
a morphism of locally ringed spaces if in addition for each point y ∈ Y the map of
stalk rings OX,f(y) → OY,y sends the maximal ideal mf(y) into the maximal ideal
my. A morphism of schemes is a morphism of locally ringed spaces f : Y → X
between schemes.

If F is an OY -module, then the direct image sheaf f∗F is an f∗OY -module,
and hence also an OX -module. Thus f∗ is a functor from OY -modules to OX -
modules, making OX -mod covariant in X. If F is a vector bundle over Y then
f∗F is a vector bundle over (X, f∗OY ). However, f∗F will not be a vector
bundle over (X,OX) unless f∗OY is a locally free OX -module of finite rank,
which rarely occurs.

If f : Y → X is a proper morphism between noetherian schemes then Serre’s
“Theorem B” states that if F is a coherent OY -module then the direct image
f∗F is a coherent OX -module. (See

EGA
[EGA, III(3.2.2)] or

Hart
[85, III.5.2 and II.5.19].)

I.5.2.1 Example 5.2.1 (Projective Schemes). When Y is a projective scheme over a
field k, the structural map π : Y → Spec(k) is proper. In this case the direct
image π∗F = H0(Y,F) is a finite-dimensional vector space over k. Indeed,
every coherent k-module is finitely generated. Not surprisingly, dimkH

0(Y,F)
gives an important invariant for coherent modules (and vector bundles) over
projective schemes.
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The functor f∗ has a left adjoint f∗ (from OX -modules to OY -modules):

HomOY
(f∗E ,F) ∼= HomOX

(E , f∗F)

for every OX -module E and OY -module F . The explicit construction is given
in

Hart
[85, II.5], and shows that f∗ sends free OX -modules to free OY -modules,

with f∗OX ∼= OY . If i : U ⊂ X is the inclusion of an open subset then i∗E
is just E|U ; it follows that if E|U is free then (f∗E)|f−1(U) is free. Thus f∗

sends locally free OX -modules to locally free OY -modules, and yields a functor
f∗ : VB(X)→ VB(Y ), making VB(X) contravariant in the ringed space X.

I.5.2.2 Example 5.2.2. If R and S are commutative rings then ring maps f# : R→ S
are in 1–1 correspondence with morphisms f : Spec(S) → Spec(R) of ringed
spaces. The direct image functor f∗ corresponds to the forgetful functor from
S-modules to R-modules, and the functor f∗ corresponds to the functor ⊗RS
from R-modules to S-modules.

I.5.2.3 Example 5.2.3 (Associated analytic and topological bundles).
Let X be a scheme of finite type over C, such as a subvariety of either PnC
or AnC = Spec(C[x1, ..., xn]). The closed points X(C) of X have the natural
structure of an analytic space; in particular it is a locally compact topological
space. Indeed, X(C) is covered by open sets U(C) homeomorphic to analytic
subspaces of An(C), and An(C) ∼= Cn. Note that if X is a projective variety
then X(C) is compact, because it is a closed subspace of the compact space
Pn(C) ∼= CPn.

Considering X(C) as topological and analytic ringed spaces as in Examples
I.5.1.1
5.1.1 and

I.5.1.4
5.1.4, the evident continuous map τ : X(C)→ X induces morphisms of

ringed spaces X(C)top → X(C)an → X. This yields functors from VB(X,OX)
to VB(X(C)an), and from VB(Xan) to VB(X(C)top) ∼= VBC(X(C)). Thus
every vector bundle E over the scheme X has an associated analytic vector
bundle Ean, as well as an associated complex vector bundle τ∗E over X(C). In
particular, every vector bundle E on X has topological Chern classes ci(E) =
ci(τ

∗E) in the group H2i(X(C);Z).
The main theorem of

GAGA
[GAGA] is that if X is a projective algebraic variety

over C then there is an equivalence between the categories of coherent modules
over X and over Xan. In particular, the categories of vector bundles VB(X)
and VB(Xan) are equivalent.

A similar situation arises if X is a scheme of finite type over R. Let X(R)
denote the closed points of X with residue field R; it too is a locally compact
space. We consider X(R) as a ringed space, using R-valued functions as in
Example

I.5.1.1
5.1.1. There is a morphism of ringed spaces τ : X(R) → X, and

the functor τ∗ sends VB(X) to VBR(X(R)). That is, every vector bundle
F over X has an associated real vector bundle τ∗F over X(R); in particular,
every vector bundle F over X has Stiefel–Whitney classes wi(F) = wi(τ

∗F) ∈
Hi(X(R);Z/2).

I.5.3 5.3 (Patching and Operations). Just as we built up projective modules by
patching in

I.2.5
2.5, we can obtain a locally free sheaf F by patching (or glueing)
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locally free sheaves Fi of OUi
-modules via isomorphisms gij between Fj |Ui∩Uj

and Fi|Ui ∩ Uj , as long as gii = 1 and gijgjk = gik for all i, j, k.
The patching process allows us to take any natural operation on free modules

and extend it to locally free modules. For example, if OX is commutative we
can construct tensor products F ⊗ G, Hom-modules Hom(F ,G), dual modules
F̌ and exterior powers ∧iF using P ⊗R Q, HomR(P,Q), P̌ and ∧iP . If F and
G are vector bundles, then so are F ⊗ G, Hom(F ,G), F̌ and ∧iF . All of the
natural isomorphisms such as F̌ ⊗G ∼= Hom(F ,G) hold for locally free modules,
because a sheaf map is an isomorphism if it is locally an isomorphism.

The Picard group and determinant bundles

If (X,OX) is a commutative ringed space, the set Pic(X) of isomorphism classes
of line bundles forms a group, called the Picard group of X. To see this, we
modify the proof in §3: the dual Ľ of a line bundle L is again a line bundle
and Ľ ⊗ L ∼= OX because by Lemma

I.3.1
3.1 this is true locally. Note that if X is

Spec(R), we recover the definition of §3: Pic(Spec(R)) = Pic(R).
If F is locally free of rank n, then det(F) = ∧n(F) is a line bundle. Operat-

ing componentwise as in §3, every locally free OX -module F has an associated
determinant line bundle det(F). The natural map det(F)⊗det(G)→ det(F⊕G)
is an isomorphism because this is true locally by the Sum Formula in §3 (see
Ex.

EI.5.4
5.4 for a generalization). Thus det is a useful invariant of a locally free

OX -module. We will discuss Pic(X) in terms of divisors at the end of this
section.

Projective schemes

If X is a projective variety, maps between vector bundles are most easily de-
scribed using graded modules. Following

Hart
[85, II.2] this trick works more gener-

ally if X is Proj(S) for a commutative graded ring S = S0⊕S1⊕· · · . By defini-
tion, the scheme Proj(S) is the union of the affine open sets D+(f) = SpecS(f),
where f ∈ Sn (n ≥ 1) and S(f) is the degree 0 subring of the Z-graded ring

S[ 1f ]. To cover Proj(S), it suffices to use D+(f) for a family of f ’s generating
the ideal S+ = S1 ⊕ S2 ⊕ · · · of S. For example, projective n-space over R is
PnR = Proj(R[X0, ..., Xn]); it is covered by the D+(Xi) and if xj = Xj/Xi then
D+(Xi) = Spec(R[x1, ..., xn]).

If M = ⊕i∈ZMi is a graded S-module, there is an associated OX -module

M̃ on X = Proj(S). The restriction of M̃ to D+(f) is the sheaf associated to
M(f), the S(f)-module which constitutes the degree 0 submodule of M [ 1f ]; more

details of the construction of M̃ are given in
Hart
[85, II.5.11]. Clearly S̃ = OX . The

functor M 7→ M̃ is exact, and has the property that M̃ = 0 whenever Mi = 0
for large i.

I.5.3.1 Example 5.3.1 (Twisting Line Bundles). The most important example of this
construction is when M is S(n), the module S regraded so that the degree i
part is Sn+i; the associated sheaf S̃(n) is written as OX(n). If f ∈ S1 then
S(n)(f) ∼= S(f), so if S is generated by S1 as an S0-algebra then OX(n) is a line
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bundle on X = Proj(S); it is called the nth twisting line bundle. If F is any
OX -module, we write F(n) for F ⊗OX(n), and call it “F twisted n times.”

We will usually assume that S is generated by S1 as an S0-algebra, so that
the OX(n) are line bundles. This hypothesis ensures that every quasicoherent

OX -module has the form M̃ for some M (
Hart
[85, II.5.15]). It also ensures that the

canonical maps M̃ ⊗OX
Ñ → (M ⊗S N )̃ are isomorphisms, so if F = M̃ then

F(n) is the OX -module associated toM(n) =M⊗S S(n). Since S(m)⊗S(n) ∼=
S(m+ n) we have the formula

OX(m)⊗OX(n) ∼= OX(m+ n).

Thus there is a homomorphism from Z to Pic(X) sending n toOX(n). Operating
componentwise, the same formula yields a homomorphism [X,Z]→ Pic(X).

Here is another application of twisting line bundles. An element x ∈ Mn

gives rise to a graded map S(−n) → M and hence a sheaf map OX(−n) →
M̃ . Taking the direct sum over a generating set for M , we see that for every
quasicoherent OX -module F there is a surjection from a locally free module
⊕OX(−ni) onto F . In contrast, there is a surjection from a free OX -module
onto F if and only if F can be generated by global sections, which is not always
the case.

If P is a graded finitely generated projective S-module, the OX -module P̃
is a vector bundle over Proj(S). To see this, suppose the generators of P lie
in degrees n1, ..., nr and set F = S(−n1) ⊕ · · · ⊕ S(−nr). The kernel Q of the
surjection F → P is a graded S-module, and that the projective lifting property
implies that P ⊕Q ∼= F . Hence P̃ ⊕ Q̃ is the direct sum F̃ of the line bundles
OX(−ni), proving that P̃ is a vector bundle.

I.5.4 Example 5.4 (No vector bundles are projective). Consider the projective line
P1
R = Proj(S), S = R[x, y]. Associated to the “Koszul” exact sequence of graded
S-modules

0→ S(−2) (y,−x)−→ S(−1)⊕ S(−1) (x,y)−→ S → R→ 0 (5.4.1) I.5.4.1

is the short exact sequence of vector bundles over P1
R:

0→ OP1(−2)→ OP1(−1)⊕OP1(−1)→ OP1 → 0. (5.4.2) I.5.4.2

The sequence (
I.5.4.2
5.4.2) cannot split, because there are no nonzero maps from OP1

to OP1(−1) (see Ex.
EI.5.2
5.2). This shows that the projective lifting property of

§2 fails for the free module OP1 . In fact, the projective lifting property fails
for every vector bundle over P1

R; the category of OP1 -modules has no “projec-
tive objects.” This failure is the single biggest difference between the study of
projective modules over rings and vector bundles over schemes.

The strict analogue of the Cancellation Theorem
I.2.3
2.3 does not hold for pro-

jective schemes. To see this, we cite the following result from
Atiy56
[5]. A vector

bundle is called indecomposable if it cannot be written as the sum of two proper
sub-bundles. For example, every line bundle is indecomposable.
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I.5.5 Krull-Schmidt Theorem 5.5. (Atiyah) Let X be a projective scheme over a
field k. Then the Krull-Schmidt theorem holds for vector bundles over X. That
is, every vector bundle over X can be written uniquely (up to reordering) as a
direct sum of indecomposable vector bundles.

In particular, the direct sums of line bundles OX(n1)⊕ · · · ⊕OX(nr) are all
distinct whenever dim(X) 6= 0, because then all the OX(ni) are distinct.

I.5.5.1 Example 5.5.1. If X is a smooth projective curve over C, then the associated
topological space X(C) is a Riemann surface. We saw in

I.4.11.2
4.11.2 that every

topological line bundle on X(C) is completely determined by its topological
degree, and that every topological vector bundle is completely determined by its
rank and degree. Now it is not hard to show that the twisting line bundle OX(d)
has degree d. Hence every topological vector bundle E of rank r and degree d is
isomorphic to the direct sum OX(d)⊕T r−1. Moreover, the topological degree of
a line bundle agrees with the usual algebraic degree one encounters in Algebraic
Geometry.

The Krull-Schmidt Theorem shows that for each r ≥ 2 and d ∈ Z there
are infinitely many vector bundles over X with rank r and degree d. Indeed,
there are infinitely many ways to choose integers d1, . . . , dr so that

∑
di = d,

and these choices yield the vector bundles OX(d1)⊕· · ·⊕OX(dr), which are all
distinct with rank r and degree d.

For X = P1
k, the only indecomposable vector bundles are the line bundles

O(n). This is a theorem of A. Grothendieck, proven in
Groth57
[80]. Using the Krull-

Schmidt Theorem, we obtain the following classification.

I.5.6 Theorem 5.6 (Classification of Vector Bundles over P1
k).

Let k be an algebraically closed field. Every vector bundle F over X = P1
k is a

direct sum of the line bundles OX(n) in a unique way. That is, F determines
a finite decreasing family of integers n1 ≥ · · · ≥ nr such that

F ∼= OX(n1)⊕ · · · ⊕ OX(nr).

The classification over other spaces is much more complicated than it is for
P1. The following example is taken from

Atiy57
[6]. Atiyah’s result holds over any

algebraically closed field k, but we shall state it for k = C because we have not
yet introduced the notion on the degree of a line bundle. (Using the Riemann-
Roch theorem, we could define the degree of a line bundle L over an elliptic
curve as the integer dimH0(X,L(n))− n for n≫ 0.)

I.5.7 Example 5.7 (Classification of vector bundles over elliptic curves).
Let X be a smooth elliptic curve over C. Every vector bundle E over X has two
integer invariants: its rank, and its degree, which we saw in

I.5.5.1
5.5.1 is just the

Chern class c1(E) ∈ H2(X(C);Z) ∼= Z of the associated topological vector bun-
dle over the Riemann surface X(C) of genus 1, defined in

I.5.2.3
5.2.3. Let VBind

r,d (X)
denote the set of isomorphism classes of indecomposable vector bundles over X
having rank r and degree d. Then for all r ≥ 1 and d ∈ Z:
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(1) All the vector bundles in the set VBind
r,d (X) yield the same topological

vector bundle E over X(C). This follows from Example
I.5.5.1
5.5.1.

(2) There is a natural identification of each VBind
r,d (X) with the set X(C); in

particular, there are uncountably many indecomposable vector bundles of
rank r and degree d.

(3) Tensoring with the twisting bundle OX(d) induces a bijection between
VBind

r,0 (X) and VBind
r,d (X).

(4) The rth exterior power ∧r maps VBind
r,d (X) onto VBind

1,d (X). This map is
a bijection if and only if r and d are relatively prime. If (r, d) = h then for
each line bundle L of degree d there are h2 vector bundles E with rank r
and determinant L.

I.5.8 Construction 5.8 (Projective bundles). If E is an vector bundle over a scheme
X, we can form a projective space bundle P(E), which is a scheme equipped
with a map π : P(E)→ X and a canonical line bundle O(1). To do this, we first
construct P(E) when X is affine, and then glue the resulting schemes together.

If M is any module over a commutative ring R, the ith symmetric prod-
uct SymiM is the quotient of the i-fold tensor product M ⊗ · · · ⊗M by the
permutation action of the symmetric group, identifying m1 ⊗ · · · ⊗ mi with
mσ(1) ⊗ · · · ⊗mσ(i) for every permutation σ. The obvious concatenation prod-
uct (SymiM)⊗R (SymjM)→ Symi+jM makes Sym(M) = ⊕Symi(M) into a
graded commutative R-algebra, called the symmetric algebra of M . As an ex-
ample, note that if M = Rn then Sym(M) is the polynomial ring R[x1, ..., xn].
This construction is natural in R: if R → S is a ring homomorphism, then
Sym(M)⊗R S ∼= Sym(M ⊗R S).

If E is a finitely generated projective R-module, let P(E) denote the scheme
Proj(Sym(E)). This scheme comes equipped with a map π : P(E) → Spec(R)
and a canonical line bundle O(1); the scheme P(E) with this data is called
the projective space bundle associated to E. If E = Rn, then P(E) is just the
projective space Pn−1R . In general, the fact that E is locally free implies that
Spec(R) is covered by open sets D(s) = Spec(R[ 1s ]) on which E is free. If E[ 1s ]
is free of rank n then the restriction of P(E) to D(s) is

P(E[
1

s
]) ∼= Proj(R[

1

s
][x1, ..., xn]) = Pn−1D(s).

Hence P(E) is locally just a projective space over Spec(R). The vector bundles
O(1) and π∗Ẽ on P(E) are the sheaves associated to the graded S-modules
S(1) and E ⊗R S, where S is Sym(E). The concatenation E ⊗ Symj(E) →
Sym1+j(E) yields an exact sequence of graded modules,

0→ E1 → E ⊗R S → S(1)→ R(−1)→ 0 (5.8.1) I.5.8.1

hence a natural short exact sequence of P(E)-modules

0→ E1 → π∗Ẽ → O(1)→ 0. (5.8.2) I.5.8.2
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Since π∗Ẽ andO(1) are locally free, E1 is locally free and rank(E1) = rank(E)−1.
For example, if E = R2 then P(E) is P1

R and E1 is O(−1) because (
I.5.8.1
5.8.1) is the

sequence (
I.5.4.1
5.4.1) tensored with S(1). That is, (

I.5.8.2
5.8.2) is just (

I.5.4.2
5.4.2):

0→ O(−1)→ O⊕O → O(+1)→ 0.

Having constructed P(E) over affine schemes, we now suppose that E is
a vector bundle over any scheme X. We can cover X by affine open sets U
and construct the projective bundles P(E|U) over each U . By naturality of the
construction of P(E|U), the restrictions of P(E|U) and P(E|V ) to U ∩ V may be
identified with each other. Thus we can glue the P(E|U) together to obtain a
projective space bundle P(E) over X; a patching process similar to that in

I.5.3
5.3

yields a canonical line bundle O(1) over P(E).
By naturality of E⊗RSym(E)→ Sym(E)(1), we have a natural short exact

sequence of vector bundles on P(E), which is locally the sequence (
I.5.8.2
5.8.2):

0→ E1 → π∗E → O(1)→ 0. (5.8.3) I.5.8.3

Let ρ denote the projective space bundle P(E1) → P(E) and let E2 denote the
kernel of ρ∗E1 → O(1). Then (πρ)∗E has a filtration E2 ⊂ ρ∗E1 ⊂ (ρπ)∗E with
filtration quotients O(1) and ρ∗O(1). This yields a projective space bundle
P(E2) → P(E1). As long as Ei has rank ≥ 2 we can iterate this construc-
tion, forming a new projective space bundle P(Ei) and a vector bundle Ei+1. If
rank E = r, Er−1 will be a line bundle. We write F(E) for P(Er−2), and call
it the flag bundle of E . We may summarize the results of this construction as
follows.

I.5.9 Theorem 5.9 (Splitting Principle). Given a vector bundle E of rank r on a
scheme X, there exists a morphism f : F(E)→ X such that f∗E has a filtration

f∗E = E ′0 ⊃ E ′1 ⊃ · · · ⊃ E ′r = 0

by sub-vector bundles whose successive quotients E ′i/E ′i+1 are all line bundles.

Cohomological classification of vector bundles

The formation of vector bundles via the patching process in
I.5.3
5.3 may be cod-

ified into a classification of rank n vector bundles via a Čech cohomology set
Ȟ1(X,GLn(OX)) which is associated to the sheaf of groups G = GLn(OX).
This cohomology set is defined more generally for any sheaf of groups G as fol-
lows. A Čech 1-cocycle for an open cover U = {Ui} of X is a family of elements
gij in G(Ui∩Uj) such that gii = 1 and gijgjk = gik for all i, j, k. Two 1-cocycles
{gij} and {hij} are said to be equivalent if there are fi ∈ G(Ui) such that
hij = figijf

−1
j . The equivalence classes of 1-cocycles form the set Ȟ1(U ,G). If

V is a refinement of a cover U , there is a set map from Ȟ1(U ,G) to Ȟ1(V,G).
The cohomology set Ȟ1(X,G) is defined to be the direct limit of the Ȟ1(U ,G)
as U ranges over the system of all open covers of X.

We saw in
I.5.3
5.3 that every rank n vector bundle arises from patching, using

a 1-cocycle for G = GLn(OX). It isn’t hard to see that equivalent cocycles give
isomorphic vector bundles. From this, we deduce the following result.
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I.5.10 Classification Theorem 5.10. For every ringed space X, the set VBn(X) of
isomorphism classes of vector bundles of rank n over X is in 1-1 correspondence
with the cohomology set Ȟ1(X,GLn(OX)):

VBn(X) ∼= Ȟ1(X,GLn(OX)).

When G is an abelian sheaf of groups, such as O×X = GL1(OX), it is known
that the Čech set Ȟ1(X,G) agrees with the usual sheaf cohomology group
H1(X,G) (see Ex. III.4.4 of

Hart
[85]). In particular, each Ȟ1(X,G) is an abelian

group. A little work, detailed in
EGA
[EGA, 0I(5.6.3)]) establishes:

I.5.10.1 Corollary 5.10.1. For every locally ringed space X the isomorphism of Theo-
rem

I.5.10
5.10 is a group isomorphism:

Pic(X) ∼= H1(X,O×X).

As an application, suppose that X is the union of two open sets V1 and
V2. Write U(X) for the group H0(X,O×X) = O×X(X) of global units on X.
The cohomology Mayer-Vietoris sequence translates to the following exact se-
quence.

1→ U(X)→ U(V1)× U(V2)→ U(V1 ∩ V2) ∂−→
∂−→ Pic(X)→ Pic(V1)× Pic(V2)→ Pic(V1 ∩ V2).

(5.10.2) I.5.10.2

To illustrate how this sequence works, consider the standard covering of P1
R by

Spec(R[t]) and Spec(R[t−1]). Their intersection is Spec(R[t, t−1]). Comparing
(
I.5.10.2
5.10.2) with the sequences of Ex.

EI.3.17
3.17 and Ex.

EI.3.18
3.18 yields

I.5.11 Theorem 5.11. For any commutative ring R,

U(P1
R) = U(R) = R× and Pic(P1

R)
∼= Pic(R)× [Spec(R),Z].

As in
I.5.3.1
5.3.1, the continuous function Spec(R)

n−→ Z corresponds to the line
bundle O(n) on P1

R obtained by patching R[t] and R[t−1] together via tn ∈
R[t, t−1]×.

Here is an application of Corollary
I.5.10.1
5.10.1 to nonreduced schemes. Sup-

pose that I is a sheaf of nilpotent ideals, and let X0 denote the ringed space
(X,OX/I). Writing I× for the sheaf GL1(I) of Ex.

EI.1.10
1.10, we have an exact

sequence of sheaves of abelian groups:

1→ I× → O×X → O×X0
→ 1.

The resulting long exact cohomology sequence starts with global units:

U(X)→ U(X0)→ H1(X, I×)→ Pic(X)→ Pic(X0)→ H2(X, I×) · · · .
(5.11.1) I.5.11.1

Thus Pic(X)→ Pic(X0) may not be an isomorphism, as it is in the affine case
(Lemma

I.3.9
3.9).
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Invertible ideal sheaves

Suppose that X is an integral scheme, i.e., that each OX(U) is an integral
domain. The function field k(X) of X is the common quotient field of the
integral domains OX(U). Following the discussion in §3, we use K to denote
the constant sheaf U 7→ k(X) and consider OX -submodules of K. Those that
lie in some fOX we call fractional; a fractional ideal I is called invertible if
IJ = OX for some J . As in Proposition

I.3.5
3.5, invertible ideals are line bundles

and I ⊗ J ∼= IJ . The set Cart(X) of invertible ideals in K is therefore an
abelian group.

I.5.12 Proposition 5.12. If X is an integral scheme, there is an exact sequence

1→ U(X)→ k(X)× → Cart(X)→ Pic(X)→ 1. (5.12.1) I.5.12.1

Proof. The proof of
I.3.5
3.5 goes through to prove everything except that every

line bundle L on X is isomorphic to an invertible ideal. On any affine open
set U we have (L ⊗ K)|U ∼= K|U , a constant sheaf on U . This implies that
L ⊗ K ∼= K, because over an irreducible scheme like X any locally constant
sheaf must be constant. Thus the natural inclusion of L in L ⊗ K expresses L
as an OX -submodule of K, and the rest of the proof of

I.3.5
3.5 goes through.

Here is another way to understand Cart(X). Let K× denote the constant
sheaf of units of K; it contains the sheaf O×X . Associated to the exact sequence

1→ O×X → K× → K×/O×X → 1

is a long exact cohomology sequence. Since X is irreducible and K× is constant,
we have H0(X,K×) = k(X)× and H1(X,K×) = 0. Since U(X) = H0(X,O×X)
we get the exact sequence

1→ U(X)→ k(X)× → H0(X,K×/O×X)→ Pic(X)→ 1. (5.12.2) I.5.12.2

Motivated by this sequence, we use the term Cartier divisor for a global section
of the sheaf K×/O×X . A Cartier divisor can be described by giving an open cover
{Ui} of X and fi ∈ k(X)× such that fi/fj is in O×X(Ui ∩ Uj) for each i and j.

I.5.13 Lemma 5.13. Over every integral scheme X, there is a 1-1 correspondence
between Cartier divisors on X and invertible ideal sheaves. Under this identi-
fication the sequences (

I.5.12.1
5.12.1) and (

I.5.12.2
5.12.2) are the same.

Proof. If I ⊂ K is an invertible ideal, there is a cover {Ui} on which I is trivial,
i.e., I|Ui ∼= OUi

. Choosing fi ∈ I(Ui) ⊆ k(X) generating I|Ui gives a Cartier
divisor. This gives a set map Cart(X) → H0(X,K×/O×X); it is easily seen to
be a group homomorphism compatible with the map from k(X)×, and with the
map to Pic(X) = H1(X,O×X). This gives a map between the sequences (

I.5.12.1
5.12.1)

and (
I.5.12.2
5.12.2); the 5-lemma implies that Cart(X) ∼= H0(X,K×/O×X).
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I.5.13.1 Variant 5.13.1. Let D be a Cartier divisor, represented by {(Ui, fi)}. His-
torically, the invertible ideal sheaf associated to D is the subsheaf L(D) of K
defined by letting L(D)|Ui be the submodule of k(X) generated by f−1i . Since
fi/fj is a unit on Ui ∩ Uj , these patch to yield an invertible ideal. If I is in-
vertible and D is the Cartier divisor attached to I by

I.5.13
5.13, then L(D) is I−1.

Under the correspondence D ↔ L(D) the sequences (
I.5.12.1
5.12.1) and (

I.5.12.2
5.12.2) differ

by a minus sign.
For example ifX = P1

R, letD be the Cartier divisor given by tn on Spec(R[t])
and 1 on Spec(R[t−1]). The correspondence of Lemma

I.5.13
5.13 sends D to O(n),

but L(D) ∼= O(−n).

Weil divisors

There is a notion of Weil divisor corresponding to that for rings (see
I.3.6
3.6). We

say that a scheme X is normal if all the local rings OX,x are normal domains (if
X is affine this is the definition of Ex.

EI.3.14
3.14), and Krull if it is integral, separated

and has an affine cover {Spec(Ri)} with the Ri Krull domains. For example,
if X is noetherian, integral and separated, then X is Krull if and only if it is
normal.

A prime divisor on X is a closed integral subscheme Y of codimension 1;
this is the analogue of a height 1 prime ideal. A Weil divisor is an element of
the free abelian group D(X) on the set of prime divisors of X; we call a Weil
divisor D =

∑
niYi effective if all the ni ≥ 0.

Let k(X) be the function field of X. Every prime divisor Y yields a discrete
valuation on k(X), because the local ring OX,y at the generic point y of Y
is a DVR. Conversely, each discrete valuation on k(X) determines a unique
prime divisor on X, because X is separated

Hart
[85, Ex. II(4.5)]. Having made

these observations, the discussion in §3 applies to yield group homomorphisms
ν : k(X)× → D(X) and ν : Cart(X)→ D(X). We define the divisor class group
Cl(X) to be the quotient of D(X) by the subgroup of all Weil divisors ν(f),
f ∈ k(X)×. The proof of Proposition

I.3.6
3.6 establishes the following result.

I.5.14 Proposition 5.14. Let X be Krull. Then Pic(X) is a subgroup of the divisor
class group Cl(X), and there is a commutative diagram with exact rows:

1→ U(X) > k(X)× > Cart(X) > Pic(X) → 1

∩

1→ U(X)
∨

> k(X)×
∨

> D(X)

ν
∨

> Cl(X) → 1.

A schemeX is called regular (resp. locally factorial) if the local ringsOX,x are
all regular local rings (resp. UFD’s). By

I.3.8
3.8, regular schemes are locally factorial.

Suppose that X is locally factorial and Krull. If IY is the ideal of a prime
divisor Y and U = Spec(R) is an affine open subset of X, IY |U is invertible
by Corollary

I.3.8.1
3.8.1. Since ν(IY ) = Y , this proves that ν : Cart(X) → D(X) is

onto. Inspecting the diagram of Proposition
I.5.14
5.14, we have:
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I.5.15 Proposition 5.15. Let X be an integral, separated and locally factorial scheme.
Then

Cart(X) ∼= D(X) and Pic(X) ∼= Cl(X).

I.5.15.1 Example 5.15.1. (
Hart
[85, II(6.4)]). If X is the projective space Pnk over a field k,

then Pic(Pnk ) ∼= Cl(Pnk ) ∼= Z. By Theorem
I.5.11
5.11, Pic(Pn) is generated by O(1).

The class group Cl(Pn) is generated by the class of a hyperplane H, whose
corresponding ideal sheaf IH is isomorphic to O(1). If Y is a hypersurface
defined by a homogeneous polynomial of degree d, we say deg(Y ) = d; Y ∼ dH
in D(Pn).

The degree of a Weil divisor D =
∑
niYi is defined to be

∑
ni deg(Yi); the

degree function D(Pn) → Z induces the isomorphism Cl(Pn) ∼= Z. We remark
that when k = C the degree of a Weil divisor agrees with the topological degree
of the associated line bundle in H2(CPn;Z) = Z, defined by the first Chern
class as in Example

I.4.11.2
4.11.2.

I.5.15.2 Example 5.15.2 (Blowing Up). Let X be a smooth variety over an alge-
braically closed field, and let Y be a smooth subvariety of codimension ≥ 2.
If the ideal sheaf of Y is I, then I/I2 is a vector bundle on Y . The blow-
ing up of X along Y is a nonsingular variety X̃, containing a prime divisor
Ỹ ∼= P(I/I2), together with a map π : X̃ → X such that π−1(Y ) = Ỹ and
X̃ − Ỹ ∼= X − Y (see

Hart
[85, II.7]). For example, the blowing up of a smooth

surface X at a point x is a smooth surface X̃, and the smooth curve Ỹ ∼= P1 is
called the exceptional divisor.

The maps π∗ : Pic(X) → Pic(X̃) and Z → Pic(X̃) sending n to n[Ỹ ] give
rise to an isomorphism (see

Hart
[85, Ex. II.8.5 or V.3.2]):

Pic(X̃) ∼= Pic(X)⊕ Z.

I.5.15.3 Example 5.15.3. Consider the rational ruled surface S in P1×P2, defined by
XiYj = XjYi (i, j = 1, 2), and the smooth quadric surface Q in P3, defined by
xy = zw. Now S is obtained by blowing up P2

k at a point
Hart
[85, V.2.11.5], while Q

is obtained from P2
k by first blowing up two points, and then blowing down the

line between them
Hart
[85, Ex. V.4.1]. Thus Pic(S) = Cl(S) and Pic(Q) = Cl(Q)

are both isomorphic to Z×Z. For both surfaces, divisors are classified by a pair
(a, b) of integers (see

Hart
[85, II.6.6.1]).

I.5.16 Example 5.16. Let X be a smooth projective curve over an algebraically
closed field k. In this case a Weil divisor is a formal sum of closed points on X:
D =

∑
nixi. The degree of D is defined to be

∑
ni; a point has degree 1. Since

the divisor of a function has degree 0
Hart
[85, II(6.4)], the degree induces a surjec-

tive homomorphism Pic(X)→ Z. Writing Pic0(X) for the kernel, the choice of
a basepoint ∞ ∈ X determines a splitting Pic(X) ∼= Z ⊕ Pic0(X). The group
Pic0(X) is divisible and has the same cardinality as k; its torsion subgroup is
(Q/Z)2g if char(k) = 0. If k is perfect of characteristic p > 0, the torsion sub-
group lies between (Q/Z[ 1p ])

2g and (Q/Z)2g. These facts are established in
MmAB
[140,

II].
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If X has genus 0, then X ∼= P1 and Pic0(X) = 0. If X has genus 1, the
map x 7→ x − ∞ gives a canonical bijection X(k) ∼= Pic0(X). In general,
if X has genus g there is an abelian variety J(X) of dimension g, called the
Jacobian variety of X

Hart
[85, IV.4.10] such that the closed points of J(X) are in

1–1 correspondence with the elements of Pic0(X). The Jacobian variety is a
generalization of the Picard variety of Exercise

EI.5.9
5.9 below.

I.5.17 Example 5.17. Let X be a smooth projective curve over a finite field F = Fq.
As observed in

Hart
[85, IV.4.10.4], the elements of the kernel Pic0(X) of the degree

map Pic(X) → Z are in 1–1 correspondence with the set J(X)(F) of closed
points of the Jacobian variety J(X) whose coordinates belong to F. Since J(X)
is contained in some projective space, the set J(X)(F) is finite. Thus Pic(X) is
the direct sum of Z and a finite group. We may assume that H0(X,OX) = F,
so that U(X) = F×.

Now let S be any nonempty set of closed points of X and consider the affine
curve X − S; the coordinate ring R of X − S is called the ring of S-integers
in the function field F(X). Comparing the sequences of Proposition

I.5.14
5.14 for X

and X − S yields the exact sequence

1→ F× → R× → ZS → Pic(X)→ Pic(R)→ 0. (5.17.1) I.5.17.1

(See Ex.
EI.5.12
5.12.) The image of the map ZS → Pic(X) is the subgroup generated

by the lines bundles associated to the points of S via the identification of Weil
divisors with Cartier divisors given by Proposition

I.5.15
5.15 (compare with Ex.

EI.3.8
3.8.)

When S = {s} is a single point, the map Z→ Pic(X)
deg−→ Z is multiplication

by the degree of the field extension [F(s) : F], so Pic(R) is a finite group: it is
an extension of Pic0(X) by a cyclic group of order [k(s) : F]. (See Ex.

EI.5.12
5.12(b).)

From the exact sequence, we see that R× = F×. By induction on |S|, it follows
easily from (

I.5.17.1
5.17.1) that Pic(R) is finite and R× ∼= F× ⊕ Z|S|−1.

I.5.18 Remark 5.18 (Historical Note). The term “Picard group” (of a scheme or
commutative ring), and the notation Pic(X), was introduced by Grothendieck
around 1960. Of course the construction itself was familiar to the topologists
of the early 1950’s, and the connection to invertible ideals was clear from to
framework of Serre’s 1954 paper “Faisceaux algébriques cohérents,”

S-FAC
[166], but

had not been given a name.
Grothendieck’s choice of terminology followed André Weil’s usage of the

term Picard variety in his 1950 paper Variétés Abéliennes. Weil says that, “ac-
cidentally enough,” his choice coincided with the introduction by Castelnuovo
in 1905 of the “Picard variety associated with continuous systems of curves” on
a surface X (Sugli integrali semplici appartenenti ad una superficie irregolare,
Rend. Accad. dei Lincei, vol XIV, 1905). In turn, Castelnuovo named it in honor
of Picard’s paper Sur la théorie des groupes et des surfaces algébriques (Rend.
Circolo Mat. Palermo, IX, 1895), which studied the number of integrals of the
first kind attached to algebraic surfaces. (I am grateful to Serre and Pedrini for
the historical information.)
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EXERCISES

EI.5.1 5.1. Give an example of a ringed space (X,OX) such that the rank of OX(X)
is well-defined, but such that the rank of OX(U) is not well-defined for any
proper open U ⊆ X.

EI.5.2 5.2. Show that the global sections of the vector bundle Hom(E ,F) are in 1-1
correspondence with vector bundle maps E → F . Conclude that there is a
non-zero map O(m)→ O(n) over P1

R only if m ≤ n.
EI.5.3 5.3. Projection Formula. If f : (X,OX) → (Y,OY ) is a morphism of ringed

spaces, F is an OX -module and E is a locally free OY -module of finite rank,
show that there is a natural isomorphism f∗(F ⊗OX

f∗E) ∼= f∗(F)⊗OY
E .

EI.5.4 5.4. Let 0 → E → F → G → 0 be an exact sequence of locally free sheaves.
Show that each ∧nF has a finite filtration

∧nF = F 0 ⊇ F 1 ⊇ · · · ⊇ Fn+1 = 0

with successive quotients F i/F i+1 ∼= (∧iE)⊗ (∧n−iG). In particular, show that
det(F) ∼= det(E)⊗ det(G).

EI.5.5 5.5. Let S be a graded ring generated by S1 and set X = Proj(S). Show that
OX(n)̌ ∼= OX(−n) and Hom(OX(m),OX(n)) ∼= OX(n−m).

EI.5.6 5.6. Serre’s “Theorem A.” Suppose that X is Proj(S) for a graded ring S
which is finitely generated as an S0-algebra by S1. Recall from

I.5.3.1
5.3.1 (or

Hart
[85,

II.5.15]) that every quasicoherent OX -module F is isomorphic to M̃ for some
graded S-module M . In fact, we can take Mn to be H0(X,F(n)).
(a) If M is generated by M0 and the Mi with i < 0, show that the sheaf M̃

is generated by global sections. Hint: consider M0 ⊕M1 ⊕ · · · .
(b) By (a), OX(n) is generated by global sections if n ≥ 0. Is the converse

true?

(c) If M is a finitely generated S-module, show that M̃(n) is generated by
global sections for all large n (i.e., for all n ≥ n0 for some n0).

(d) If F is a coherent OX -module, show that F(n) is generated by global
sections for all large n. This result is known as Serre’s “Theorem A,”
and it implies that OX(1) is an ample line bundle in the sense of

EGA
[EGA,

II(4.5.5)].

EI.5.7 5.7. Let X be a d-dimensional quasi-projective variety, i.e., a locally closed
integral subscheme of some Pnk , where k is an algebraically closed field.

(a) Suppose that E is a vector bundle generated by global sections. If
rank(E) > d, Bertini’s Theorem implies that E has a global section s
such that sx /∈ mxEx for each x ∈ X. Establish the analogue of the Serre
Cancellation Theorem

I.2.3
2.3(a), that there is a short exact sequence of vector

bundles
0→ OX s−→ E → F → 0.
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(b) Now suppose that X is a curve. Show that every vector bundle E is
a successive extension of invertible sheaves in the sense that there is a
filtration of E

E = E0 ⊃ E1 ⊃ · · · ⊃ Er = 0.

by sub-bundles such that each Ei/Ei+1 is a line bundle. Hint: by Ex.
EI.5.6
5.6(d),

E(n) is generated by global sections for large n.

EI.5.8 5.8. Complex analytic spaces. Recall from Example
I.5.1.4
5.1.4 that a complex an-

alytic space is a ringed space (X,OX) which is locally isomorphic to a basic
analytic subset of Cn.

(a) Use Example
I.5.2.3
5.2.3 to show that every analytic vector bundle on Cn is

free, i.e., Oran for some r. What about Cn − 0?

(b) LetX be the complex affine node defined by the equation y2 = x3−x2. We
saw in

I.3.10.2
3.10.2 that Pic(X) ∼= C×. Use (

I.4.9.1
4.9.1) to show that Pic(X(C)an) =0.

(c) (Serre) Let X be the scheme Spec(C[x, y]) − {0}, 0 being the origin. For
the affine cover of X by D(x) and D(y), show that Pic(X) = 0 but
Pic(Xan) 6= 0.

EI.5.9 5.9. Picard Variety. Let X be a scheme over C and Xan = X(C)an the asso-
ciated complex analytic space of Example

I.5.1.4
5.1.4. There is an exact sequence of

sheaves of abelian groups on the topological space X(C) underlying Xan:

0→ Z
2πi−→ OXan

exp−→ O×Xan
→ 0, (∗)

where Z is the constant sheaf on X(C).

(a) Show that the Chern class c1 : Pic(Xan) → H2(X(C)top;Z) of Example
I.5.2.3
5.2.3 is naturally isomorphic to the composite map

Pic(Xan) ∼= H1(Xan,O×Xan
) ∼= H1(X(C)top;O×Xtop

)
∂−→ H2(X(C)top;Z)

coming from Corollary
I.5.10.1
5.10.1, the map Xan → X(C)top of Example

I.5.1.4
5.1.4,

and the boundary map of (∗).
Now suppose that X is projective. The image of Pic(X) ∼= Pic(Xan)
in H2(X(C);Z) is called the Néron-Severi group NS(X) and the ker-
nel of Pic(X) → NS(X) is written as Pic0(X). Since H2(X(C);Z)
is a finitely generated abelian group, so is NS(X). It turns out that
H1(X(C),OXan

) ∼= Cn for some n, and that H1(X(C);Z) ∼= Z2n is a
lattice in H1(X,OXan

).

(b) Show that Pic0(X) is isomorphic to H1(X,OX)/H1(X(C);Z). Thus
Pic0(X) is a complex analytic torus; in fact it is the set of closed points
of an abelian variety, called the Picard variety of X.
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EI.5.10 5.10. If E and F are finitely generated projective R-modules, show that their
projective bundles P(E) and P(F ) are isomorphic as schemes over R if and only
if E ∼= F ⊗R L for some line bundle L on R.

EI.5.11 5.11. Let X be a Krull scheme and Z an irreducible closed subset with comple-
ment U . Define a map ρ : Cl(X) → Cl(U) of class groups by sending the Weil
divisor

∑
niYi to

∑
ni(Yi ∩ U), ignoring terms niYi for which Yi ∩ U = ∅. (Cf.

Ex.
EI.3.8
3.8.)

(a) If Z has codimension ≥ 2, show that ρ : Cl(X) ∼= Cl(U).

(b) If Z has codimension 1, show that there is an exact sequence

Z
[Z]−→ Cl(X)

ρ−→ Cl(U)→ 0.

EI.5.12 5.12. Let X be a smooth curve over a field k, and let S be a finite nonempty
set of closed points in X. By Riemann-Roch, the complement U = X − S is
affine; set R = H0(U,O) so that U = Spec(R).

(a) Using Propositions
I.5.12
5.12 and

I.5.14
5.14, show that there is an exact sequence

1→ H0(X,O×X)→ R× → ZS → Pic(X)→ Pic(R)→ 0.

(b) If X is a smooth projective curve over k and s ∈ X is a closed point, show

that the map Z
[s]−→ Pic(X) = Cl(X) in (a) is injective. (It is the map

of Ex.
EI.5.11
5.11(b).) If k(x) = k, conclude that Pic(X) ∼= Pic(U) × Z. What

happens if k(x) 6= k?
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The Grothendieck Group

K0

There are several ways to construct the “Grothendieck group” of a mathemati-
cal object. We begin with the group completion version, because it has been the
most historically important. After giving the applications to rings and topo-
logical spaces, we discuss λ-operations in §4. In sections 6 and 7 we describe
the Grothendieck group of an “exact category,” and apply it to the K-theory of
schemes in §8. This construction is generalized to the Grothendieck group of a
“Waldhausen category” in §9.

1 The Group Completion of a monoid

BothK0(R) andK
0(X) are formed by taking the group completion of an abelian

monoid—the monoid P(R) of finitely generated projective R-modules and the
monoid VB(X) of vector bundles over X, respectively. We begin with a de-
scription of this construction.

Recall that an abelian monoid is a set M together with an associative, com-
mutative operation + and an “additive” identity element 0. A monoid map
f : M → N is a set map such that f(0) = 0 and f(m +m′) = f(m) + f(m′).
The most famous example of an abelian monoid is N = {0, 1, 2, ...}, the natural
numbers with additive identity zero. If A is an abelian group then not only is
A an abelian monoid, but so is any additively closed subset of A containing 0.

The group completion of an abelian monoid M is an abelian group M−1M ,
together with a monoid map [ ] : M → M−1M which is universal in the sense
that, for every abelian group A and every monoid map α : M → A, there is a
unique abelian group homomorphism α̃ : M−1M → A such that α̃([m]) = α(m)
for all m ∈M .
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For example, the group completion of N is Z. If A is an abelian group then
clearly A−1A = A; ifM is a submonoid of A (additively closed subset containing
0), then M−1M is the subgroup of A generated by M .

Every abelian monoid M has a group completion. One way to contruct it is
to form the free abelian group F (M) on symbols [m], m ∈ M , and then factor
out by the subgroup R(M) generated by the relations [m + n] − [m] − [n]. By
universality, if M → N is a monoid map, the map M → N → N−1N extends
uniquely to a homomorphism from M−1M to N−1N . Thus group completion
is a functor from abelian monoids to abelian groups. A little decoding shows
that in fact it is left adjoint to the forgetful functor, because of the natural
isomorphism

Hom abelian
monoids

(M,A) ∼= Homabelian
groups

(M−1M,A).

II.1.1 Proposition 1.1. Let M be an abelian monoid. Then:

(a) Every element of M−1M is of the form [m]− [n] for some m,n ∈M ;

(b) If m,n ∈ M then [m] = [n] in M−1M if and only if m + p = n + p for
some p ∈M ;

(c) The monoid mapM×M→M−1M sending (m,n) to [m]−[n] is surjective.

(d) Hence M−1M is the set-theoretic quotient of M ×M by the equivalence
relation generated by (m,n) ∼ (m+ p, n+ p).

Proof. Every element of a free abelian group is a difference of sums of generators,
and in F (M) we have ([m1] + [m2] + · · · ) ≡ [m1 + m2 + · · · ] modulo R(M).
Hence every element of M−1M is a difference of generators. This establishes
(a) and (c). For (b), suppose that [m] − [n] = 0 in M−1M . Then in the free
abelian group F (M) we have

[m]− [n] =
∑

([ai + bi]− [ai]− [bi])−
∑

([cj + dj ]− [cj ]− [dj ]) .

Translating negative terms to the other side yields the following equation:

[m] +
∑

([ai] + [bi]) +
∑

[cj + dj ] = [n] +
∑

[ai+ bi] +
∑

([cj ] + [dj ]). (1.1.1) II.1.1.1

Now in a free abelian group two sums of generators
∑

[xi] and
∑

[yj ] can only
be equal if they have the same number of terms, and the generators differ by
a permutation σ in the sense that yi = xσ(i). Hence the generators on the left
and right of (

II.1.1.1
1.1.1) differ only by a permutation. This means that in M the

sum of the terms on the left and right of (
II.1.1.1
1.1.1) are the same, i.e.,

m+
∑

(ai + bi) +
∑

(cj + dj) = n+
∑

(ai + bi) +
∑

(cj + dj)

in M . This yields (b), and part (d) follows from (a) and (b).
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The two corollaries below are immediate from Proposition
II.1.1
1.1, given the

following definitions. An (abelian) cancellation monoid is an abelian monoid M
such that for all m,n, p ∈M , m+ p = n+ p implies m = n. A submonoid L of
an abelian monoid M is called cofinal if for every m ∈ M there is an m′ ∈ M
so that m+m′ ∈ L.

II.1.2 Corollary 1.2. M injects into M−1M if and only if M is a cancellation
monoid.

II.1.3 Corollary 1.3. If L is cofinal in an abelian monoid M , then:

(a) L−1L is a subgroup of M−1M ;

(b) Every element of M−1M is of the form [m]− [ℓ] for some m ∈M , ℓ ∈ L;

(c) If [m] = [m′] in M−1M then m+ ℓ = m′ + ℓ for some ℓ ∈ L.

A semiring is an abelian monoid (M,+), together with an associative prod-
uct · which distributes over +, and a 2-sided multiplicative identity element 1.
That is, a semiring satisfies all the axioms for a ring except for the existence of
subtraction. The prototype semiring is N.

The group completion M−1M (with respect to +) of a semiring M is a ring,
the product on M−1M being extended from the product on M using

II.1.1
1.1. If

M → N is a semiring map, then the induced map M−1M → N−1N is a ring
homomorphism. Hence group completion is also a functor from semirings to
rings, and from commutative semirings to commutative rings.

II.1.4 Example 1.4. Let X be a topological space. The set [X,N] of continuous maps
X → N is a semiring under pointwise + and ·. The group completion of [X,N]
is the ring [X,Z] of all continuous maps X → Z.

If X is (quasi-)compact, [X,Z] is a free abelian group. Indeed, [X,Z] is a
subgroup of the group S of all bounded set functions from X to Z, and S is a
free abelian group (S is a “Specker group”; see

Fuchs
[57]).

II.1.5 Example 1.5 (Burnside Ring). Let G be a finite group. The set M of (iso-
morphism classes of) finite G-sets is an abelian monoid under disjoint union,
‘0’ being the empty set ∅. Suppose there are c distinct G-orbits. Since every
G-set is a disjoint union of orbits, M is the free abelian monoid Nc, a basis of
M being the classes of the c distinct orbits of G. Each orbit is isomorphic to a
coset G/H, where H is the stabilizer of an element, and G/H ∼= G/H ′ if and
only if H and H ′ are conjugate subgroups of G, so c is the number of conjugacy
classes of subgroups of G. Therefore the group completion A(G) of M is the
free abelian group Zc, a basis being the set of all c coset spaces [G/H].

The direct product of two G-sets is again a G-set, so M is a semiring with
‘1’ the 1-element G-set. Therefore A(G) is a commutative ring; it is called the
Burnside ring of G. The forgetful functor from G-sets to sets induces a map
M → N and hence an augmentation map ǫ : A(G) → Z. For example, if G is
cyclic of prime order p, then A(G) is the ring Z[x]/(x2 = px) and x = [G] has
ǫ(x) = p.
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II.1.6 Example 1.6 (Representation ring). Let G be a finite group. The set RepC(G)
of finite-dimensional representations ρ : G→ GLn(C) (up to isomorphism) is an
abelian monoid under ⊕. By Maschke’s Theorem, C[G] is semisimple and
RepC(G) ∼= Nr, where r is the number of conjugacy classes of elements of G.
Therefore the group completion R(G) of RepC(G) is isomorphic to Zr as an
abelian group.

The tensor product V ⊗C W of two representations is also a representation,
so RepC(G) is a semiring (the element 1 is the 1-dimensional trivial represen-
tation). Therefore R(G) is a commutative ring; it is called the Representation
ring of G. For example, if G is cyclic of prime order p then R(G) is isomorphic
to the group ring Z[G], a subring of Q[G] = Q×Q(ζ), ζp = 1.

Every representation is determined by its character χ : G → C, and irre-
ducible representations have linearly independent characters. Therefore R(G)
is isomorphic to the ring of all complex characters χ : G → C, a subring of the
ring Map(G,C) of all functions G→ C.

Definition. A (connected) partially ordered abelian group (A,P ) is an abelian
group A, together with a submonoid P of A which generates A (so A = P−1P )
and P ∩ (−P ) = {0}. This structure induces a translation-invariant partial
ordering ≥ on A: a ≥ b if a − b ∈ P . Conversely, given a translation-invariant
partial order on A, let P be {a ∈ A : a ≥ 0}. If a, b ≥ 0 then a + b ≥ a ≥ 0,
so P is a submonoid of A. If P generates A then (A,P ) is a partially ordered
abelian group.

If M is an abelian monoid, M−1M need not be partially ordered (by the
image of M), because we may have [a] + [b] = 0 for a, b ∈ M . However,
interesting examples are often partially ordered. For example, the Burnside
ring A(G) and Representation ring R(G) are partially ordered (by G-sets and
representations).

When it exists, the ordering on M−1M is an extra piece of structure. For
example, Zr is the group completion of both Nr and M = {0} ∪ {(n1, ..., nr) ∈
Nr : n1, ..., nr > 0}. However, the two partially ordered structures on Zr are
different.

EXERCISES

EII.1.1 1.1. The group completion of a non-abelian monoid M is a group M̂ , together
with a monoid map M → M̂ which is universal for maps from M to groups.
Show that every monoid has a group completion in this sense, and that if M is
abelian then M̂ = M−1M . If M is the free monoid on a set X, show that the
group completion of M is the free group on the set X.

Note: The results in this section fail for non-abelian monoids. Proposition
II.1.1
1.1

fails for the free monoid on X. Corollary
II.1.2
1.2 can also fail: an example of a

cancellation monoid M which does not inject into M̂ was given by Mal’cev in
1937.
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EII.1.2 1.2. If M = M1 ×M2, show that M−1M is the product group (M−11 M1) ×
(M−12 M2).

EII.1.3 1.3. If M is the filtered colimit of abelian monoids Mα, show that M−1M is
the filtered colimit of the abelian groups M−1α Mα.

EII.1.4 1.4. Mayer-Vietoris for group completions. Suppose that a sequence L →
M1×M2 → N of abelian monoids is “exact” in the sense that wheneverm1 ∈M1

and m2 ∈ M2 agree in N then m1 and m2 are the images of a common ℓ ∈ L.
If L is cofinal in M1, M2 and N , show that there is an exact sequence of groups
L−1L → (M−11 M1)⊕ (M−12 M2) → N−1N , where the first map is the diagonal
inclusion and the second map is the difference map (m1,m2) 7→ m̄1 − m̄2.

EII.1.5 1.5. Classify all abelian monoids which are quotients of N = {0, 1, . . . } and
show that they are all finite. How many quotient monoids M = N/∼ of N have

m elements and group completion M̂ = Z/nZ?

EII.1.6 1.6. Here is another description of the Burnside ring A(G) of a finite group G.
For each subgroup H, and finite G-set X, let χH(X) denote the cardinality of
XH .

(a) Show that χH defines a ring homomorphism A(G)→ Z, and ǫ = χ
1
.

(b) Deduce that the product χ of the χH (over the c conjugacy classes of
subgroups) induces an injection of A(G) into the product ring

∏c
1 Z.

(c) Conclude that A(G)⊗Q ∼=
∏c

1 Q.

EII.1.7 1.7 (T-Y Lam). Let φ : G → H be a homomorphism of finite groups. Show
that the restriction functor from H-sets to G-sets (gx = φ(g)x) induces a ring
homomorphism φ∗ : A(H) → A(G). If X is a G-set, we can form the H-set
H ×G X = H × X/{(h, gx) ∼ (hφ(g), x))}. Show that H×G induces a group
homomorphism φ∗ : A(G)→ A(H). If φ is an injection, show that the Frobenius
Reciprocity formula holds: φ∗(φ

∗(x) · y) = x · φ∗(y) for all x ∈ A(H), y ∈ A(G).
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2 K0 of a ring

Let R be a ring. The set P(R) of isomorphism classes of finitely generated
projective R-modules, together with direct sum ⊕ and identity 0, forms an
abelian monoid. The Grothendieck group of R, K0(R), is the group completion
P−1P of P(R).

When R is commutative, K0(R) is a commutative ring with 1 = [R], because
the monoid P(R) is a commutative semiring with product ⊗R. This follows
from the following facts: ⊗ distributes over ⊕; P ⊗RQ ∼= Q⊗RP and P ⊗RR ∼=
P ; if P,Q are finitely generated projective modules then so is P ⊗R Q (by
Ex. I.

EI.2.7
2.7).

For example, let k be a field or division ring. Then the abelian monoid P(k)
is isomorphic to N = {0, 1, 2, . . . }, so K0(k) = Z. The same argument applies
to show that K0(R) = Z for every local ring R by

I.2.2
2.2, and also for every PID

(by the Structure Theorem for modules over a PID). In particular, K0(Z) = Z.
The Eilenberg Swindle I.

I.2.8
2.8 shows why we restrict to finitely generated

projectives. If we had included the module R∞ (defined in Ex. I.
EI.1.7
1.7), then the

formula P ⊕ R∞ ∼= R∞ would imply that [P ] = 0 for every finitely generated
projective R-module, and we would have K0(R) = 0.

K0 is a functor from rings to abelian groups, and from commutative rings to
commutative rings. To see this, suppose that R → S is a ring homomorphism.
The functor ⊗RS : P(R) → P(S) (sending P to P ⊗R S) yields a monoid map
P(R)→ P(S), hence a group homomorphism K0(R)→ K0(S). If R,S are com-
mutative rings then ⊗RS : K0(R) → K0(S) is a ring homomorphism, because
⊗RS : P(R)→ P(S) is a semiring map:

(P ⊗R Q)⊗R S ∼= (P ⊗R S)⊗S (Q⊗R S).

The free modules play a special role in understanding K0(R) because they
are cofinal in P(R). By Corollary

II.1.3
1.3 every element of K0(R) can be written as

[P ]− [Rn] for some P and n. Moreover, [P ] = [Q] in K0(R) if and only if P,Q
are stably isomorphic: P ⊕Rm ∼= Q⊕Rm for some m. In particular, [P ] = [Rn]
if and only if P is stably free. The monoid L of isomorphism classes of free
modules is N if and only if R satisfies the Invariant Basis Property of Chapter
I, §1. This yields the following information about K0(R).

II.2.1 Lemma 2.1. The monoid map N → P(R) sending n to Rn induces a group
homomorphism Z→ K0(R). We have:

(1) Z → K0(R) is injective if and only if R satisfies the Invariant Basis
Property (IBP);

(2) Suppose that R satisfies the IBP (e.g., R is commutative). Then

K0(R) ∼= Z ⇐⇒every finitely generated projective R-module is stably free.

II.2.1.1 Example 2.1.1. Suppose that R is commutative, or more generally that there
is a ring map R→ F to a field F . In this case Z is a direct summand of K0(R),
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because the map K0(R)→ K0(F ) ∼= Z takes [R] to 1. A ring with K0(R) = Q
is given in Exercise

EII.2.12
2.12 below.

II.2.1.2 Example 2.1.2 (Simple rings). Consider the matrix ring R = Mn(F ) over a
field F . We saw in Example I.

I.1.1.1
1.1.1 that every R-module is projective (because

it is a sum of copies of the projective module V ∼= Fn), and that length is
an invariant of finitely generated R-modules. Thus length is an abelian group

isomorphism K0(Mn(F ))
∼=−→ Z sending [V ] to 1. Since R has length n, the sub-

group of K0(R) ∼= Z generated by the free modules has index n. In particular,
the inclusion Z ⊂ K0(R) of Lemma

II.2.1
2.1 does not split.

II.2.1.3 Example 2.1.3. (Karoubi) We say a ring R is flasque if there is an R-bimodule
M , finitely generated projective as a right module, and a bimodule isomorphism
θ : R ⊕M ∼= M . If R is flasque then K0(R) = 0. This is because for every P
we have a natural isomorphism P ⊕ (P ⊗RM) ∼= P ⊗R (R⊕M) ∼= (P ⊗RM).

If R is flasque and the underlying right R-module structure on M is R, we
say that R is an infinite sum ring. The right module isomorphism R2 ∼= R
underlying θ makes R a direct sum ring (Ex. I.

EI.1.7
1.7). The cone rings of Ex. I.

EI.1.8
1.8,

and the rings EndR(R
∞) of Ex. I.

EI.1.7
1.7, are examples of infinite sum rings, and

hence flasque rings; see Exercise
EII.2.15
2.15.

If R = R1×R2 then P(R) ∼= P(R1)×P(R2). As in Exercise
II.1.2
1.2, this implies

that K0(R) ∼= K0(R1)×K0(R2). Thus K0 may be computed componentwise.

II.2.1.4 Example 2.1.4 (Semisimple rings). Let R be a semisimple ring, with simple
modules V1, ..., Vr (see Ex. I.

EI.1.1
1.1). Schur’s Lemma states that each Di =

HomR(Vi, Vi) is a division ring; the Artin-Wedderburn Theorem states that

R ∼=Mn1
(D1)× · · · ×Mnr

(Dr),

where dimDi
(Vi) = ni. By

II.2.1.2
2.1.2, K0(R) ∼=

∏
K0(Mni

(Di)) ∼= Zr.
Another way to see that K0(R) ∼= Zr is to use the fact that P(R) ∼= Nr: the

Krull-Schmidt Theorem states that every finitely generated (projective) module
M is V ℓ11 × · · · × V ℓrr for well-defined integers ℓ1, ..., ℓr.

II.2.1.5 Example 2.1.5 (Von Neumann regular rings). A ring R is said to be von Neu-
mann regular if for every r ∈ R there is an x ∈ R such that rxr = r. Since
rxrx = rx, the element e = rx is idempotent, and the ideal rR = eR is a projec-
tive module. In fact, every finitely generated right ideal of R is of the form eR
for some idempotent, and these form a lattice. Declaring e ≃ e′ if eR = e′R, the
equivalence classes of idempotents in R form a lattice: (e1∧e2) and (e1∨e2) are
defined to be the idempotents generating e1R+e2R and e1R∩e2R, respectively.
Kaplansky proved in

Kap58
[98] that every projective R-module is a direct sum of the

modules eR. It follows that K0(R) is determined by the lattice of idempotents
(modulo ≃) in R. We will see several examples of von Neumann regular rings
in the exercises.

Many von Neumann regular rings do not satisfy the (IBP), the ring
EndF (F

∞) of Ex. I.
EI.1.7
1.7 being a case in point.
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We call a ring R unit-regular if for every r ∈ R there is a unit x ∈ R such
that rxr = r. Every unit-regular ring is von Neumann regular, has stable
range 1, and satisfies the (IBP) (Ex. I.

EI.1.13
1.13). In particular, Z ⊆ K0(R). It

is unknown whether for every simple unit-regular ring R the group K0(R)
is strictly unperforated, meaning that whenever x ∈ K0(R) and nx = [Q] for
some Q, then x = [P ] for some P . Goodearl

Gdrl1
[72] has given examples of simple

unit-regular rings R in which the group K0(R) is strictly unperforated, but has
torsion.

An example of a von Neumann regular ring R having the IBP, stable range
2 and K0(R) = Z⊕ Z/n is given in

MM82
[123].

II.2.1.6 2.1.6. Suppose that R is the direct limit of a filtered system {Ri} of rings.
Then every finitely generated projective R-module is of the form Pi ⊗Ri

R for
some i and some finitely generated projective Ri-module Pi. Any isomorphism
Pi ⊗Ri

R ∼= P ′i ⊗Ri
R may be expressed using finitely many elements of R, and

hence Pi ⊗Ri
Rj ∼= P ′i ⊗Ri

Rj for some j. That is, P(R) is the filtered colimit
of the P(Ri). By Ex.

EII.1.3
1.3 we have

K0(R) ∼= lim−→K0(Ri).

This observation is useful when studying K0(R) of a commutative ring R, be-
cause R is the direct limit of its finitely generated subrings. As finitely generated
commutative rings are noetherian with finite normalization, properties of K0(R)
may be deduced from properties of K0 of these nice subrings. If R is integrally
closed we may restrict to finitely generated normal subrings, so K0(R) is deter-
mined by K0 of noetherian integrally closed domains.

Here is another useful reduction; it follows immediately from the observation
that if I is nilpotent (or complete) then idempotent lifting (Ex. I.

EI.2.2
2.2) yields a

monoid isomorphism P(R) ∼= P(R/I). Recall that an ideal I is said to be
complete if every Cauchy sequence

∑∞
n=1 xn with xn ∈ In converges to a unique

element of I.

II.2.2 Lemma 2.2. If I is a nilpotent ideal of R, or more generally a complete ideal,
then

K0(R) ∼= K0(R/I).

In particular, if R is commutative then K0(R) ∼= K0(Rred).

II.2.2.1 Example 2.2.1 (0-dimensional commutative rings). Let R be a commutative
ring. It is elementary that Rred is Artinian if and only if Spec(R) is finite and
discrete. More generally, it is known (see Ex. I.

EI.1.13
1.13 and

AM
[8, Ex. 3.11]) that the

following are equivalent:

(i) Rred is a commutative von Neumann regular ring (
II.2.1.5
2.1.5);

(ii) R has Krull dimension 0;

(iii) X = Spec(R) is compact, Hausdorff and totally disconnected.
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(For example, to see that a commutative von Neumann regular R must be
reduced, observe that if r2 = 0 then r = rxr = 0.)

When R is a commutative von Neumann regular ring, the modules eR are
componentwise free; Kaplansky’s result states that every projective module is
componentwise free. By §I.2, the monoid P(R) is just [X,N], X = Spec(R). By
II.1.4
1.4 this yields K0(R) = [X,Z]. By Lemma

II.2.2
2.2, this proves

II.2.2.2 Pierce’s Theorem 2.2.2. For every 0-dimensional commutative ring R:

K0(R) = [Spec(R),Z].

II.2.2.3 Example 2.2.3 (K0 does not commute with infinite products). Suppose that
R =

∏
Fi is an infinite product of fields. Then R is von Neumann regular,

so X = Spec(R) is an uncountable totally disconnected compact Hausdorff
space. By Pierce’s Theorem, K0(R) ∼= [X,Z]. This is contained in but not
equal to the product

∏
K0(Fi) ∼=

∏
Z.

Rank and H0

Definition. When R is commutative, we write H0(R) for [Spec(R),Z], the ring
of all continuous maps from Spec(R) to Z. Since Spec(R) is quasi-compact, we
know by

II.1.4
1.4 that H0(R) is always a free abelian group. If R is a noetherian

ring, then Spec(R) has only finitely many (say c) components, and H0(R) ∼= Zc.
If R is a domain, or more generally if Spec(R) is connected, then H0(R) = Z.

H0(R) is a subring of K0(R). To see this, consider the submonoid L of
P(R) consisting of componentwise free modules Rf . Not only is L cofinal in
P(R), but L → P(R) is a semiring map: Rf ⊗ Rg ∼= Rfg; by

II.1.3
1.3, L−1L is a

subring of K0(R). Finally, L is isomorphic to [Spec(R),N], so as in
II.1.4
1.4 we have

L−1L ∼= H0(R). For example, Pierce’s theorem
II.2.2.2
2.2.2 states that if dim(R) = 0

then K0(R) ∼= H0(R).
Recall from §I.2 that the rank of a projective module gives a map from P(R)

to [Spec(R),N]. Since rank(P ⊕ Q) = rank(P ) + rank(Q) and rank(P ⊗ Q) =
rank(P ) rank(Q) (by Ex. I.

EI.2.7
2.7, this is a semiring map. As such it induces a ring

map
rank: K0(R)→ H0(R).

Since rank(Rf ) = f for every componentwise free module, the composition
H0(R) ⊂ K0(R) → H0(R) is the identity. Thus H0(R) is a direct summand of
K0(R).

II.2.3 Definition 2.3. The ideal K̃0(R) of the ring K0(R) is defined as the kernel of
the rank map. By the above remarks, there is a natural decomposition

K0(R) ∼= H0(R)⊕ K̃0(R).

We will see later (in
II.4.6.1
4.6.1) that K̃0(R) is a nil ideal. Since H0(R) is visibly a

reduced ring, K̃0(R) is the nilradical of K0(R).
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II.2.3.1 Lemma 2.3.1. If R is commutative, let Pn(R) denote the subset of all modules
in P(R) consisting of projective modules of constant rank n. There is a map
Pn(R) → K0(R) sending P to [P ] − [Rn]. This map is compatible with the
stabilization map Pn(R)→ Pn+1(R) sending P to P ⊕R, and the induced map
is an isomorphism:

lim−→Pn(R) ∼= K̃0(R).

Proof. This follows easily from Corollary
II.1.3
1.3.

II.2.3.2 Corollary 2.3.2. Let R be a commutative noetherian ring of Krull dimension
d — or more generally any commutative ring of stable range d+ 1 (Ex. I.

EI.1.5
1.5).

For every n > d the above maps are bijections: Pn(R) ∼= K̃0(R).

Proof. If P and Q are finitely generated projective modules of rank > d, then
by Bass Cancellation (I.

I.2.3
2.3b) we may conclude that

[P ] = [Q] in K0(R) if and only if P ∼= Q.

Here is another interpretation of K̃0(R): it is the intersection of the kernels
of K0(R)→ K0(F ) over all maps R→ F , F a field. This follows from naturality

of rank and the observation that K̃0(F ) = 0 for every field F .
This motivates the following definition for a noncommutative ring R: let

K̃0(R) denote the intersection of the kernels of K0(R) → K0(S) over all maps
R → S, where S is a simple artinian ring. If no such map R → S exists, we
set K̃0(R) = K0(R). We define H0(R) to be the quotient of K0(R) by K̃0(R).

When R is commutative, this agrees with the above definitions of H0 and K̃0,
because the maximal commutative subrings of a simple artinian ring S are finite
products of 0-dimensional local rings.

H0(R) is a torsionfree abelian group for every ring R. To see this, note that
there is a set X of maps R → Sx through which every other R → S′ factors.
Since each K0(Sx) → K0(S

′) is an isomorphism, K̃0(R) is the intersection of
the kernels of the maps K0(R)→ K0(Sx), x ∈ X. Hence H0(R) is the image of
K0(R) in the torsionfree group

∏
x∈X K0(Sx) ∼=

∏
x Z
∼=Map(X,Z).

II.2.4 Example 2.4 (Whitehead group Wh0). If R is the group ring Z[G] of a group
G, Whitehead group—Wh0 the (zero-th) Whitehead group Wh0(G) is the
quotient of K0(Z[G]) by the subgroup K0(Z) = Z. The augmentation map
ε : Z[G]→ Z sending G to 1 induces a decomposition K0(Z[G]) ∼= Z⊕Wh0(G),

and clearly K̃0(Z[G]) ⊆ Wh0(G). It follows from a theorem of Swan ([Bass,

XI(5.2)]) that if G is finite then K̃0(ZG) = Wh0(G) and H0(ZG) = Z. The

author does not know whether K̃0(ZG) =Wh0(G) for every group.
The groupWh0(G) arose in topology via the following result of C.T.C. Wall.

We say that a CW complex X is dominated by a complex K if there is a map
f : K → X having a right homotopy inverse; this says that X is a retract of K
in the homotopy category.
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II.2.4.1 Theorem 2.4.1 (Wall’s Finiteness Obstruction). Whitehead group—Wh0 Sup-
pose that X is dominated by a finite CW complex, with fundamental group
G = π1(X). This data determines an element w(X) of Wh0(G) such that
w(X) = 0 if and only if X is homotopy equivalent to a finite CW complex.

Hattori-Stallings trace map

For any associative ring R, let [R,R] denote the subgroup of R generated by
the elements [r, s] = rs− sr, r, s ∈ R.

For each n, the trace of an n×nmatrix provides an additive map fromMn(R)
to R/[R,R] invariant under conjugation; the inclusion of Mn(R) in Mn+1(R)

via g 7→
(
g 0
0 0

)
is compatible with the trace map. It is not hard to show that

the trace Mn(R)→ R/[R,R] induces an isomorphism:

Mn(R)/[Mn(R),Mn(R)] ∼= R/[R,R].

If P is a finitely generated projective module, choosing an isomorphism P ⊕
Q ∼= Rn yields an idempotent e in Mn(R) such that P = e(Rn) and End(P ) =
eMn(R)e. By Ex. I.

EI.2.3
2.3, any other choice yields an e1 which is conjugate to

e in some larger Mm(R). Therefore the trace of an endomorphism of P is a
well-defined element of R/[R,R], independent of the choice of e. This gives the
trace map End(P ) → R/[R,R]. In particular, the trace of the identity map of
P is the trace of e; we call it the trace of P .

If P ′ is represented by an idempotent matrix f then P ⊕ P ′ is represented
by the idempotent matrix

(
e
0
0
f

)
so the trace of P ⊕ P ′ is trace(P ) + trace(P ′).

Therefore the trace is an additive map on the monoid P(R). The map K0(R)→
R/[R,R] induced by universality is called the Hattori-Stallings trace map, after
the two individuals who first studied it.

When R is commutative, we can provide a direct description of the ring
map H0(R) → R obtained by restricting the trace map to the subring H0(R)
of K0(R). Any continuous map f : Spec(R) → Z induces a decomposition
R = R1×· · ·×Rc by Ex. I.

EI.2.4
2.4; the coordinate idempotents e1, ..., ec are elements

of R. Since trace(eiR) is ei, it follows immediately that trace(f) is
∑
f(i)ei.

The identity trace(fg) = trace(f)trace(g) which follows immediately from this
formula shows that trace is a ring map.

II.2.5 Proposition 2.5. If R is commutative, the Hattori-Stallings trace factors as

K0(R)
rank−→ H0(R)→ R.

Proof. The product over all p in Spec(R) yields the commutative diagram:

K0(R) >
∏

K0(Rp)

R

trace
∨ diagonal

inclusion
>
∏

Rp.

trace
∨

The kernel of the top arrow is K̃0(R), so the left arrow factors as claimed.
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II.2.5.1 Example 2.5.1 (Group rings). Let k be a commutative ring, and suppose that
R is the group ring k[G] of a group G. If g and h are conjugate elements of G
then h− g ∈ [R,R] because xgx−1 − g = [xg, x−1]. From this it is not hard to
see that R/[R,R] is isomorphic to the free k-module ⊕k[g] whose basis is the
set G/∼ of conjugacy classes of elements of G. Relative to this basis, we may
write

trace(P ) =
∑

rP (g)[g].

Clearly, the coefficients rP (g) of trace(P ) are functions of the set G/∼ for each
P .

If G is finite, then any finitely generated projective k[G]-module P is also a
projective k-module, and we may also form the trace map Endk(P ) → k and
hence the “character” χP : G → k by the formula χP (g) = trace(g). Hattori
proved that if ZG(g) denotes the centralizer of g ∈ G then Hattori’s formula
holds (see

Bass76
[16, 5.8]):

χP (g) = |ZG(g)| rP (g−1). (2.5.2) II.2.5.2

II.2.5.3 Corollary 2.5.3. If G is a finite group, the ring Z[G] has no idempotents except
0 and 1.

Proof. Let e be an idempotent element of Z[G]. χP (1) is the rank of the Z-
module P = eZ[G], which must be less than the rank |G| of Z[G]. Since
rP (1) ∈ Z, this contradicts Hattori’s formula χP (1) = |G| rP (1).

Bass has conjectured that for every group G and every finitely gener-
ated projective Z[G]-module P we have rP (g) = 0 for g 6= 1 and rP (1) =
rankZ(P ⊗Z[G] Z). For G finite, this follows from Hattori’s formula and Swan’s

theorem (cited in
II.2.4
2.4) that K̃0 =Wh0. See

Bass76
[16].

II.2.5.4 Example 2.5.4. Suppose that k is a field of characteristic 0 and kG = k[G]
is the group ring of a finite group G with c conjugacy classes. By Maschke’s
theorem, kG is a product of simple k-algebras: S1×· · ·×Sc, so kG/[kG, kG] is
kc. By

II.2.1.4
2.1.4K0(kG) ∼= Zc. Hattori’s formula (and some classical representation

theory) shows that the trace map from K0(kG) to kG/[kG, kG] is isomorphic
to the natural inclusion of Zc in kc.

Determinant

Suppose now that R is a commutative ring. Recall from §I.3 that the deter-
minant of a finitely generated projective module P is an element of the Picard
group Pic(R).

II.2.6 Proposition 2.6. The determinant induces a surjective group homomorphism

det : K0(R)→ Pic(R)

Proof. By the universal property of K0, it suffices to show that det(P ⊕ Q) ∼=
det(P )⊗R det(Q). We may assume that P and Q have constant rank m and n,
respectively. Then ∧m+n(P ⊕Q) is the sum over all i, j such that i+ j = m+n
of (∧iQ)⊗ (∧jP ). If i > m or j > n we have ∧iP = 0 or ∧jQ = 0, respectively.
Hence ∧m+n(P ⊕Q) = (∧mP )⊗ (∧nQ), as asserted.
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II.2.6.1 Definition 2.6.1. Let SK0(R) denote the subset of K0(R) consisting of the
classes x = [P ] − [Rm], where P has constant rank m and ∧mP ∼= R. This is

the kernel of det : K̃0(R)→ Pic(R), by Lemma
II.2.3.1
2.3.1 and Proposition

II.2.6
2.6.

SK0(R) is an ideal of K0(R). To see this, we use Exercise I.
EI.3.4
3.4: if

x = [P ] − [Rm] is in SK0(R) and Q has rank n then det(x · Q) equals
(detP )⊗n(detQ)⊗m(detQ)⊗−m = R.

II.2.6.2 Corollary 2.6.2. For every commutative ring R, H0(R) ⊕ Pic(R) is a ring
with square-zero ideal Pic(R), and there is a surjective ring homomorphism with
kernel SK0(R):

rank⊕ det : K0(R)→ H0(R)⊕ Pic(R)

II.2.6.3 Corollary 2.6.3. If R is a 1-dimensional commutative noetherian ring, then
the classification of finitely generated projective R-modules in I.

I.3.4
3.4 induces an

isomorphism:
K0(R) ∼= H0(R)⊕ Pic(R).

Morita Equivalence

We say that two rings R and S are Morita equivalent if mod-R and mod-S are
equivalent as abelian categories, that is, if there exist additive functors T and
U

mod-R
T
>

<
U

mod-S

such that UT ∼= idR and TU ∼= idS . This implies that T and U preserve
filtered colimits. Set P = T (R) and Q = U(S); P is an R-S bimodule and

Q is a S–R bimodule via the maps R = EndR(R)
T−→ EndS(P ) and S =

EndS(S)
U−→ EndR(Q). Since T (⊕R) = ⊕P and U(⊕S) = ⊕Q it follows

that we have T (M) ∼= M ⊗R P and U(N) ∼= N ⊗S Q for all M,N . Both
UT (R) ∼= P ⊗S Q ∼= R and TU(S) ∼= Q⊗R P ∼= S are bimodule isomorphisms.
Here is the main structure theorem, taken from

Bass
[15, II.3].

II.2.7 Theorem 2.7 (Structure Theorem for Morita Equivalence). If R and S are
Morita equivalent, and P,Q are as above, then:

(a) P and Q are finitely generated projective, both as R-modules and as S-
modules;

(b) EndS(P ) ∼= R ∼= EndS(Q)op and EndR(Q) ∼= S ∼= EndR(P )
op;

(c) P and Q are dual S-modules: P ∼= HomS(Q,S) and Q ∼= HomS(P, S);

(d) T (M) ∼=M ⊗R P and U(N) ∼= N ⊗S Q for every M and N ;

(e) P is a “faithful” S-module in the sense that the functor HomS(P,−) from
mod-S to abelian groups is a faithful functor. (If S is commutative then
P is faithful if and only if rank(P ) ≥ 1.) Similarly, Q is a “faithful”
R-module.
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Since P and Q are finitely generated projective, the Morita functors T and U
also induce an equivalence between the categories P(R) and P(S). This implies
the following:

II.2.7.1 Corollary 2.7.1. If R and S are Morita equivalent then K0(R) ∼= K0(S).

II.2.7.2 Example 2.7.2. R = Mn(S) is always Morita equivalent to S; P is the bi-
module Sn of “column vectors” and Q is the bimodule (Sn)t of “row vectors.”
More generally suppose that P is a “faithful” finitely generated projective S-
module. Then R = EndS(P ) is Morita equivalent to S, the bimodules being P
and Q = HomS(P, S). By

II.2.7.1
2.7.1, we see that K0(S) ∼= K0(Mn(S)).

II.2.8 Remark 2.8 (Additive Functors). Any R-S bimodule P which is finitely gen-
erated projective as a right S-module, induces an additive (hence exact) func-
tor T (M) = M ⊗R P from P(R) to P(S), and therefore induces a map
K0(R) → K0(S). If all we want is an additive functor T from P(R) to P(S),
we do not need the full strength of Morita equivalence. Given T , set P = T (R).
By additivity we have T (Rn) = Pn ∼= Rn ⊗R P ; from this it is not hard to see
that T (M) ∼=M ⊗R P for every finitely generated projective M , and that T is
isomorphic to –⊗RP . See Ex.

EII.2.14
2.14 for more details.

A bimodule map (resp., isomorphism) P → P ′ induces an additive natural
transformation (resp., isomorphism) T → T ′. This is the case, for example,
with the bimodule isomorphism R⊕M ∼=M defining a flasque ring (

II.2.1.3
2.1.3).

II.2.8.1 Example 2.8.1 (Base change and Transfer maps). Suppose that R
f−→ S is a

ring map. Then S is an R–S bimodule, and it represents the base change functor
f∗ : K0(R)→ K0(S) sending P to P ⊗R S. If in addition S is finitely generated
projective as a right R-module then there is a forgetful functor from P(S) to
P(R); it is represented by S as a S–R bimodule because it sends Q to Q⊗S S.
The induced map f∗ : K0(S)→ K0(R) is called the transfer map. We will return
to this point in

II.7.9
7.9 below, explaining why we have selected the contravariant

notation f∗ and f∗.

Mayer-Vietoris sequences

For any ring R with unit, we can include GLn(R) in GLn+1(R) as the matrices(
g 0
0 1

)
. The group GL(R) is the union of the groups GLn(R). Now suppose we

are given a Milnor square of rings, as in §I.2:

R
f

> S

R/I
∨ f̄

> S/I
∨

Define ∂n : GLn(S/I)→ K0(R) by Milnor patching: ∂n(g) is [P ]−[Rn], where P
is the projective R-module obtained by patching free modules along g as in I.

I.2.6
2.6.
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The formulas of Ex. I.
EI.2.9
2.9 imply that ∂n(g) = ∂n+1

(
g
0
0
1

)
and ∂n(g) + ∂n(h) =

∂n(gh). Therefore the {∂n} assemble to give a group homomorphism ∂ from
GL(S/I) to K0(R). The following result now follows from I.

I.2.6
2.6 and Ex.

EII.1.4
1.4.

II.2.9 Theorem 2.9 (Mayer-Vietoris). Given a Milnor square as above, the sequence

GL(S/I)
∂−→ K0(R)

∆−→ K0(S)⊕K0(R/I)
±−→ K0(S/I)

is exact. The image of ∂ is the double coset space

GL(S)\GL(S/I)/GL(R/I) = GL(S/I)/ ∼

where x ∼ gxh for x ∈ GL(S/I), g ∈ GL(S) and h ∈ GL(R/I).

II.2.9.1 Example 2.9.1. If R is the coordinate ring of the node over a field k (I.
I.3.10.2
3.10.2)

then K0(R) ∼= Z⊕ k×. If R is the coordinate ring of the cusp over k (I.
I.3.10.1
3.10.1)

then K0(R) ∼= Z⊕ k. Indeed, the coordinate rings of the node and the cusp are
1-dimensional noetherian rings, so

II.2.6.3
2.6.3 reduces the Mayer-Vietoris sequence to

the Units-Pic sequence I.
I.3.10
3.10.

We conclude with a useful construction, anticipating several later develop-
ments.

II.2.10 Definition 2.10. Let T : P(R) → P(S) be an additive functor, such as the
base change or transfer of

II.2.8.1
2.8.1. P(T ) is the category whose objects are triples

(P, α,Q), where P,Q ∈ P(R) and α : T (P ) → T (Q) is an isomorphism. A
morphism (P, α,Q) → (P ′, α′, Q′) is a pair of R-module maps p : P → P ′,
q : Q→ Q′ such that α′T (p) = T (q)α. An exact sequence in P(T ) is a sequence

0→ (P ′, α′, Q′)→ (P, α,Q)→ (P ′′, α′′, Q′′)→ 0 (2.10.1) II.2.10.1

whose underlying sequences 0 → P ′ → P → P ′′ → 0 and 0 → Q′ → Q →
Q′′ → 0 are exact. We define K0(T ) to be the abelian group with generators
the objects of P(T ) and relations:

(a) [(P, α,Q)] = [(P ′, α′, Q′)] + [(P ′′, α′′, Q′′)] for every exact sequence
(
II.2.10.1
2.10.1);

(b) [(P1, α, P2)] + [(P2, β, P3)] = [(P1, βα, P3)].

If T is the base change f∗, we write K0(f) for K0(T ).

It is easy to see that there is a map K0(T ) → K0(R) sending [(P, α,Q)] to
[P ] − [Q]. If T is a base change functor f∗ associated to f : R → S, or more
generally if the T (Rn) are cofinal in P(S), then there is an exact sequence:

GL(S)
∂−→ K0(T )→ K0(R)→ K0(S). (2.10.2) II.2.10.2

The construction of ∂ and verification of exactness is not hard, but lengthy
enough to relegate to Exercise

EII.2.17
2.17. If f : R → R/I then K0(f

∗) is the group
K0(I) of Ex.

EII.2.4
2.4; see Ex.

EII.2.4
2.4(e).
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EXERCISES

EII.2.1 2.1. Let R be a commutative ring. If A is an R-algebra, show that the functor
⊗R : P(A) × P(R) → P(A) yields a map K0(A) ⊗Z K0(R) → K0(A) making
K0(A) into a K0(R)-module. If A→ B is an algebra map, show that K0(A)→
K0(B) is a K0(R)-module homomorphism.

EII.2.2 2.2. Projection Formula. Let R be a commutative ring, and A an R-algebra
which as an R-module is finitely generated projective of rank n. By Ex.

EII.2.1
2.1,

K0(A) is a K0(R)-module, and the base change map f∗ : K0(R) → K0(A) is a
module homomorphism. We shall write x · f∗y for the product in K0(A) of x ∈
K0(A) and y ∈ K0(R); this is an abuse of notation when A is noncommutative.

(a) Show that the transfer map f∗ : K0(A) → K0(R) of Example
II.2.8.1
2.8.1 is a

K0(R)-module homomorphism, i.e., that the projection formula holds:

f∗(x · f∗y) = f∗(x) · y for every x ∈ K0(A), y ∈ K0(R).

(b) Show that both compositions f∗f∗ and f∗f
∗ are multiplication by [A].

(c) Show that the kernels of f∗f∗ and f∗f
∗ are annihilated by a power of n.

EII.2.3 2.3. Excision for K0. If I is an ideal in a ring R, form the augmented ring
R⊕ I and let K0(I) = K0(R, I) denote the kernel of K0(R⊕ I)→ K0(R).

(a) If R→ S is a ring map sending I isomorphically onto an ideal of S, show
that K0(R, I) ∼= K0(S, I). Thus K0(I) is independent of R. Hint. Show
that GL(S)/GL(S ⊕ I) = 1.

(b) If I ∩ J = 0, show that K0(I + J) ∼= K0(I)⊕K0(J).

(c) Ideal sequence. Show that there is an exact sequence

GL(R)→ GL(R/I)
∂−→ K0(I)→ K0(R)→ K0(R/I).

(d) If R is commutative, use Ex. I.
EI.3.6
3.6 to show that there is a commutative

diagram with exact rows, the vertical maps being determinants:

GL(R) > GL(R/I)
∂
> K0(I) > K0(R) > K0(R/I)

R×
∨

> (R/I)×
∨

∂
> Pic(I)

∨
> Pic(R)

∨
> Pic(R/I).

∨
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EII.2.4 2.4. K0(I). If I is a ring without unit, we define K0(I) as follows. Let R be
a ring with unit acting upon I, form the augmented ring R ⊕ I, and let K0(I)
be the kernel of K0(R ⊕ I) → K0(R). Thus K0(R ⊕ I) ∼= K0(R) ⊕ K0(I) by
definition.

(a) If I has a unit, show that R ⊕ I ∼= R × I as rings with unit. Since
K0(R × I) = K0(R) × K0(I), this shows that the definition of Ex.

EII.2.3
2.3

agrees with the usual definition of K0(I).

(b) Show that a map I → J of rings without unit induces a map K0(I) →
K0(J)

(c) LetM∞(R) denote the union ∪Mn(R) of the matrix groups, whereMn(R)
is included in Mn+1(R) as the matrices

(
g
0
0
0

)
. M∞(R) is a ring without

unit. Show that the inclusion of R = M1(R) in M∞(R) induces an iso-
morphism

K0(R) ∼= K0(M∞(R)).

(d) If k is a field, show that R = k ⊕M∞(k) is a von Neumann regular ring.
Then show that H0(R) = Z and K0(R) ∼= Z⊕ Z.

(e) If f : R → R/I, show that K0(I) is the group K0(f) of
II.2.10
2.10. Hint: Use

f0 : R⊕ I → R and Ex.
EII.2.3
2.3(c).

EII.2.5 2.5. Radical ideals. Let I be a radical ideal in a ring R (see Ex. I.
EI.1.12
1.12, I.

EI.2.1
2.1).

(a) Show that K0(I) = 0, and that K0(R)→ K0(R/I) is an injection.

(b) If I is a complete ideal, K0(R) ∼= K0(R/I) by Lemma
II.2.2
2.2. If R is a

semilocal but not local domain, show that K0(R) → K0(R/I) is not an
isomorphism when I is the Jacobson radical.

EII.2.6 2.6. Semilocal rings. A ring R is called semilocal if R/J is semisimple for some
radical ideal J . Show that if R is semilocal then K0(R) ∼= Zn for some n > 0.

EII.2.7 2.7. Show that if f : R→ S is a map of commutative rings, then:

ker(f) contains no idempotents( 6= 0)⇔ H0(R)→ H0(S) is an injection.

Conclude that H0(R) = H0(R[t]) = H0(R[t, t
−1]).

EII.2.8 2.8. Consider the following conditions on a ring R (cf. Ex. I.
EI.1.2
1.2):

(IBP) R satisfies the Invariant Basis Property (IBP);
(PO) K0(R) is a partially ordered abelian group (see §1);
(III) For all n, if Rn ∼= Rn ⊕ P then P = 0.
Show that (III)⇒ (PO)⇒ (IBP). This implies that K0(R) is a partially ordered
abelian group if R is either commutative or noetherian. (See Ex. I.

EI.1.4
1.4.)
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EII.2.9 2.9. Rim squares. Let G be a cyclic group of prime order p, and ζ = e2πi/p a
primitive pth root of unity. Show that the map Z[G]→ Z[ζ] sending a generator
of G to ζ induces an isomorphism K0(Z[G]) ∼= K0(Z[ζ]) and hence Wh0(G) ∼=
Pic(Z[ζ]). Hint: Form a Milnor square with Z[G]/I = Z, Z[ζ]/I = Fp, and

consider the cyclotomic units u = ζi−1
ζ−1 , 1 ≤ i < p.

EII.2.10 2.10. Let R be a commutative ring. Prove that

(a) If rank(x) > 0 for some x ∈ K0(R), then there is an n > 0 and a finitely
generated projective module P so that nx = [P ]. (This says that the
partially ordered group K0(R) is “unperforated” in the sense of

Gdearl
[71].)

(b) If P , Q are finitely generated projectives such that [P ] = [Q] in K0(R),
then there is an n > 0 such that P ⊕ · · · ⊕ P ∼= Q ⊕ · · · ⊕ Q (n copies of
P , n copies of Q).

Hint: First assume that R is noetherian of Krull dimension d < ∞, and use
Bass-Serre Cancellation. In the general case, write R as a direct limit.

EII.2.11 2.11. A (normalized) dimension function for a von Neumann regular ring R is
a group homomorphism d : K0(R) → R so that d(Rn) = n and d(P ) > 0 for
every nonzero finitely generated projective P .

(a) If P ⊆ Q, show that any dimension function must have d(P ) ≤ d(Q)

(b) If R has a dimension function, show that the formula ρ(r) = d(rR) defines
a rank function ρ : R → [0, 1] in the sense of Ex. I.

EI.1.13
1.13. Then show that

this gives a 1-1 correspondence between rank functions onR and dimension
functions on K0(R).

EII.2.12 2.12. Let R be the union of the matrix rings Mn!(F ) constructed in Ex. I.
EI.1.13
1.13.

Show that the inclusion Z ⊂ K0(R) extends to an isomorphism K0(R) ∼= Q.

EII.2.13 2.13. Let R be the infinite product of the matrix rings Mi(C), i = 1, 2, ...

(a) Show that every finitely generated projective R-module P is componen-
twise trivial in the sense that P ∼=

∏
Pi, the Pi being finitely generated

projective Mi(C)-modules.

(b) Show that the map from K0(R) to the group
∏
K0(Mi(C)) =

∏
Z of

infinite sequences (n1, n2, ...) of integers is an injection, and that K0(R) =
H0(R) is isomorphic to the group of bounded sequences.

(c) Show that K0(R) is not a free abelian group, even though it is torsionfree.
Hint: Consider the subgroup S of sequences (n1, ...) such that the power
of 2 dividing ni approaches ∞ as i→∞; show that S is uncountable but
that S/2S is countable.
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EII.2.14 2.14. Bivariant K0. If R and R′ are rings, let Rep(R,R′) denote the set of
isomorphism classes of R–R′ bimodules M such that M is finitely generated
projective as a right R′-module. Each M gives a functor ⊗RM from P(R) to
P(R′) sending P to P ⊗RM . This induces a monoid map P(R) → P(R′) and
hence a homomorphism from K0(R) to K0(R

′). For example, if f : R → R′

is a ring homomorphism and R′ is considered as an element of Rep(R,R′), we
obtain the map ⊗RR′. Show that:

(a) Every additive functor P(R) → P(R′) is induced from an M in
Rep(R,R′);

(b) If K0(R,R
′) denotes the group completion of Rep(R,R′), then M ⊗R′ N

induces a bilinear map from K0(R,R
′)⊗K0(R

′, R′′) to K0(R,R
′′);

(c) K0(Z, R) isK0(R), and ifM ∈ Rep(R,R′) then the map ⊗RM : K0(R)→
K0(R

′) is induced from the product of (b).

(d) If R and R′ are Morita equivalent, and P is the R-R′ bimodule giving
the isomorphism mod-R ∼= mod-R′, the class of P in K0(R,R

′) gives the
Morita isomorphism K0(R) ∼= K0(R

′).

EII.2.15 2.15. In this exercise, we connect the definition of infinite sum ring in Ex-
ample

II.2.1.3
2.1.3 with a more elementary description due to Wagoner. If R is

a direct sum ring, the isomorphism R2 ∼= R induces a ring homomorphism
⊕ : R×R ⊂ EndR(R

2) ∼= EndR(R) = R.
(a) Suppose that R is an infinite sum ring with bimodule M , and write

r 7→ r∞ for the ring homomorphism R → EndR(M) ∼= R arising from the left
action of R on the right R-module M . Show that r ⊕ r∞ = r∞ for all r ∈ R.

(b) Conversely, suppose that R is a direct sum ring, and R
∞−→ R is a ring

map so that r ⊕ r∞ = r∞ for all r ∈ R. Show that R is an infinite sum ring.
(c) (Wagoner) Show that the cone rings of Ex. I.

EI.1.8
1.8, and the rings

EndR(R
∞) of Ex. I.

EI.1.7
1.7, are infinite sum rings. Hint: R∞ ∼=

∐∞
i=1R

∞, so a
version of the Eilenberg Swindle I.

I.2.8
2.8 applies.

EII.2.16 2.16. For any ring R, let J be the (nonunital) subring of E = EndR(R
∞) of

all f such that f(R∞) is finitely generated (Ex. I.
EI.1.7
1.7). Show that M∞(R) ⊂ Jn

induces an isomorphism K0(R) ∼= K0(J). Hint: For the projection en : R∞ →
Rn, Jn = enE maps onto Mn(R) = enEen with nilpotent kernel. But J = ∪Jn.

EII.2.17 2.17. This exercise shows that there is an exact sequence (
II.2.10.2
2.10.2) when T is

cofinal.

(a) Show that [(P, α,Q)]+[(Q,−α−1, P )] = 0 and [(P, T (γ), Q)] = 0 inK0(T ).

(b) Show that every element of K0(T ) has the form [(P, α,Rn)].

(c) Use cofinality and the maps Aut(TRn)
∂
> K0(T ), ∂(α)= [(Rn, α,Rn)]

of (
II.2.10.2
2.10.2) to show that there is a homomorphism ∂ : GL(S)→ K0(T ).

(d) Use (a), (b) and (c) to show that (
II.2.10.2
2.10.2) is exact at K0(T ).

(e) Show that (
II.2.10.2
2.10.2) is exact at K0(R).
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3 K(X),KO(X) andKU(X) of a topological space

Let X be a paracompact topological space. The sets VBR(X) and VBC(X)
of isomorphism classes of real and complex vector bundles over X are abelian
monoids under Whitney sum. By Construction I.

I.4.2.1
4.2.1, they are commutative

semirings under ⊗. Hence the group completions KO(X) of VBR(X) and
KU(X) of VBC(X) are commutative rings with identity 1 = [T 1]. If the choice
of R or C is understood, we will just write K(X) for simplicity.

Similarly, the set VBH(X) is an abelian monoid under ⊕, and we write
KSp(X) for its group completion. Although it has no natural ring structure,
the construction of Ex. I.

EI.4.18
4.18 endows KSp(X) with the structure of a module

over the ring KO(X).
For example if ∗ denotes a 1-point space then K(∗) = Z. If X is contractible,

then KO(X) = KU(X) = Z by I.
I.4.6.1
4.6.1. More generally, K(X) ∼= K(Y ) when-

ever X and Y are homotopy equivalent by I.
I.4.6
4.6.

The functor K(X) is contravariant in X. Indeed, if f : Y → X is continuous,
the induced bundle construction E 7→ f∗E yields a function f∗ : VB(X) →
VB(Y ) which is a morphism of monoids and semirings; hence it induces a ring
homomorphism f∗ : K(X) → K(Y ). By the Homotopy Invariance Theorem
I.
I.4.5
4.5, the map f∗ depends only upon the homotopy class of f in [Y,X].
For example, the universal map X → ∗ induces a ring map from Z = K(∗)

into K(X), sending n > 0 to the class of the trivial bundle Tn over X. If X 6= ∅
then any point of X yields a map ∗ → X splitting the universal map X → ∗.
Thus the subring Z is a direct summand of K(X) when X 6= ∅. (But if X = ∅
then K(∅) = 0.) For the rest of this section, we will assume X 6= ∅ in order to
avoid awkward hypotheses.

The trivial vector bundles Tn and the componentwise trivial vector bundles
T f form sub-semirings of VB(X), naturally isomorphic to N and [X,N], respec-
tively. When X is compact, the semirings N and [X,N] are cofinal in VB(X)
by the Subbundle theorem I.

I.4.1
4.1, so by Corollary

II.1.3
1.3 we have subrings

Z ⊂ [X,Z] ⊂ K(X).

More generally, it follows from Construction I.
I.4.2.1
4.2.1 that dim: VB(X)→ [X,N]

is a semiring map splitting the inclusion [X,N] ⊂ VB(X). Passing to Group
Completions, we get a natural ring map

dim: K(X)→ [X,Z]

splitting the inclusion of [X,Z] in K(X).

The kernel of dim will be written as K̃(X), or as K̃O(X) or K̃U(X) if we

wish to emphasize the choice of R or C. Thus K̃(X) is an ideal in K(X), and
there is a natural decomposition

K(X) ∼= K̃(X)⊕ [X,Z].

Warning. If X is not connected, our group K̃(X) differs slightly from the
notation in the literature. However, most applications will involve connected
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spaces, where the notation is the same. This will be clarified by Theorem
II.3.2
3.2

below.

Consider the set map VBn(X) → K̃(X) sending E to [E] − n. This map
is compatible with the stabilization map VBn(X)→ VBn+1(X) sending E to
E ⊕ T , giving a map

lim−→VBn(X)→ K̃(X). (3.1.0) II.3.1.0

We can interpret this in terms of maps between the infinite Grassmannian
spaces Grassn (= BOn, BUn orBSpn) as follows. Recall from the Classification
Theorem I.

I.4.10
4.10 that the set VBn(X) is isomorphic to the set [X,Grassn] of

homotopy classes of maps. Adding a trivial bundle T to the universal bundle
En over Grassn gives a vector bundle over Grassn, so again by the Classification
Theorem there is a map in : Grassn → Grassn+1 such that En⊕ T ∼= i∗n(En+1).
By Cellular Approximation there is no harm in assuming in is cellular. Using
I.
I.4.10.1
4.10.1, the map Ωin : ΩGrassn → ΩGrassn+1 is homotopic to the standard

inclusion On →֒ On+1 (resp. Un →֒ Un+1 or Spn →֒ Spn+1), which sends

an n × n matrix g to the n+ 1 × n+ 1 matrix

(
g 0
0 1

)
. By construction, the

resulting map in : [X,Grassn] → [X,Grassn+1] corresponds to the stabilization
map. The direct limit lim−→ [X,Grassn] is then in 1-1 correspondence with the
direct limit lim−→VBn(X) of (

II.3.1.0
3.1.0).

II.3.1 Stabilization Theorem 3.1. Let X be either a compact space or a finite di-
mensional connected CW complex. Then the map (

II.3.1.0
3.1.0) induces an isomor-

phism K̃(X) ∼= lim−→VB(X) ∼= lim−→ [X,Grassn]. In particular,

K̃O(X) ∼= lim−→ [X,BOn], K̃U(X) ∼= lim−→ [X,BUn] and K̃Sp(X) ∼= lim−→ [X,BSpn].

Proof. We argue as in Lemma
II.2.3.1
2.3.1. Since the monoid of (componentwise)

trivial vector bundles T f is cofinal in VB(X) (I.
I.4.1
4.1), we see from Corollary

II.1.3
1.3 that every element of K̃(X) is represented by an element [E] − n of some
VBn(X), and if [E]− n = [F ]− n then E ⊕ T ℓ ∼= F ⊕ T ℓ in some VBn+ℓ(X).

Thus K̃(X) ∼= lim−→VBn(X), as claimed.

II.3.1.1 Example 3.1.1 (Spheres). From I(
I.4.9
4.9) we see that KO(S1) ∼= Z ⊕ Z/2 but

KU(S1) = Z, KO(S2) = Z⊕Z/2 butKU(S2) = Z⊕Z, KO(S3) = KU(S3) = Z
and KO(S4) ∼= KU(S4) = Z⊕ Z.

By Prop. I.
I.4.8
4.8, the n-dimensional (R, C or H) vector bundles on Sd are

classified by the homotopy groups πd−1(On), πd−1(Un) and πd−1(Spn), re-

spectively. By the Stabilization Theorem, K̃O(Sd) = lim
n→∞

πd−1(On) and

K̃U(Sd) = lim
n→∞

πd−1(Un).

Now Bott Periodicity says that the homotopy groups of On, Un and Spn
stabilize for n ≫ 0. Moreover, if n ≥ d/2 then πd−1(Un) is 0 for d odd and Z

for d even. Thus KU(Sd) = Z ⊕ K̃U(Sd) is periodic of order 2 in d > 0: the

ideal K̃U(Sd) is 0 for d odd and Z for d even, d 6= 0.
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Similarly, the πd−1(On) and πd−1(Spn) stabilize for n ≥ d+ 1 and n ≥ d/4;
both are periodic of order 8. Thus KO(Sd) = Z⊕ K̃O(Sd) and KSp(Sd) = Z⊕
K̃Sp(Sd) are periodic of order 8 in d > 0, with the groups K̃O(Sd) = πd−1(O)

and K̃Sp(Sd) = πd−1(Sp) being tabulated in the following table.

d (mod 8) 1 2 3 4 5 6 7 8

K̃O(Sd) Z/2 Z/2 0 Z 0 0 0 Z

K̃Sp(Sd) 0 0 0 Z Z/2 Z/2 0 Z

Both of the ideals K̃O(Sd) and K̃U(Sd) are of square zero.

II.3.1.2 Remark 3.1.2. The complexification maps Z ∼= K̃O(S4k) → K̃U(S4k) ∼= Z
are multiplication by 2 if k is odd, and by 1 if k is even. (The forgetful maps

K̃U(S4k) → K̃O(S4k) have the opposite parity in k.) Similarly, the maps

Z ∼= K̃U(S4k)→ K̃Sp(S4k) ∼= Z are multiplication by 2 if k is odd, and by 1 if

k is even. (The forgetful maps K̃Sp(S4k)→ K̃U(S4k) have the opposite parity
in k.) These calculations are taken from

MimTo
[136], IV.5.12 and IV.6.1.

Let BO (resp. BU , BSp) denote the direct limit of the Grassmannians
Grassn. As noted after (

II.3.1.0
3.1.0) and in I.

I.4.10.1
4.10.1, the notation reflects the fact that

ΩGrassn is On (resp. Un, Spn), and the maps in the direct limit correspond to
the standard inclusions, so that we have ΩBO ≃ O =

⋃
On, ΩBU ≃ U =

⋃
Un

and ΩBSp ≃ Sp = ⋃Spn.
II.3.2 Theorem 3.2. For every compact space X:

KO(X) ∼= [X,Z×BO] and K̃O(X) ∼= [X,BO];

KU(X) ∼= [X,Z×BU ] and K̃U(X) ∼= [X,BU ];

KSp(X) ∼= [X,Z×BSp] and K̃Sp(X) ∼= [X,BSp].

In particular, the homotopy groups πn(BO) = K̃O(Sn), πn(BU) = K̃U(Sn)

and πn(BSp) = K̃Sp(Sn) are periodic and given in Example
II.3.1.1
3.1.1.

Proof. If X is compact then we have [X,BO] = lim−→ [X,BOn] and similarly for
[X,BU ] and [X,BSp]. The result now follows from Theorem

II.3.1
3.1 for connected

X. For non-connected compact spaces, we only need to show that the maps

[X,BO] → K̃O(X), [X,BU ] → K̃U(X) and [X,BSp] → K̃Sp(X) of Theorem
II.3.1
3.1 are still isomorphisms.

Since X is compact, every continuous map X → Z is bounded. Hence the
rank of every vector bundle E is bounded, say rankE ≤ n for some n ∈ N. If
f = n−rankE then F = E⊕T f has constant rank n, and [E]−rankE = [F ]−n.
Hence every element of K̃(X) comes from some VBn(X).

To see that these maps are injective, suppose that E,F ∈ VBn(X) are such
that [E] − n = [F ] − n. By

II.1.3
1.3 we have E ⊕ T f = F ⊕ T f in VBn+f (X) for

some f ∈ [X,N]. If f ≤ p, p ∈ N, then adding T p−f yields E ⊕ T p = F ⊕ T p.
Hence E and F agree in VBn+p(X).
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II.3.2.1 Definition 3.2.1 (K0). For every paracompact X we write KO0(X) for
[X,Z×BO], KU0(X) for [X,Z×BU ] and KSp0(X) for [X,Z×BSp]. By The-
orem

II.3.2
3.2, we have KO0(X) ∼= KO(X), KU0(X) ∼= KU(X) and KSp0(X) ∼=

KSp(X) for every compact X. Similarly, we shall write K̃O0(X), K̃U0(X) and

K̃Sp0(X) for [X,BO], [X,BU ] and [X,BSp]. When the choice of R, C or H is

clear, we will just write K0(X) and K̃0(X).
If Y is a subcomplex of X, we define relative groups K0(X,Y ) =

K0(X/Y )/Z and K̃0(X,Y ) = K̃0(X/Y ).

When X is paracompact but not compact, K̃0(X) and K̃(X) are connected
by stabilization and the map (

II.3.1.0
3.1.0):

K̃O(X) < lim−→VBn(X) ∼= lim−→[X,BOn] > [X,BO] = K̃O0(X)

and similarly for K̃U(X) and K̃Sp(X). We will see in Example
II.3.7.2
3.7.2 and Ex.

EII.3.2
3.2

that the left map need not be an isomorphism. Here are two examples showing
that the right map need not be an isomorphism either.

II.3.2.2 Example 3.2.2 (McGibbon). Let X be S3 ∨S5 ∨S7 ∨ · · · , an infinite bouquet
of odd-dimensional spheres. By homotopy theory, there is a map f : X → BO3

whose restriction to S2p+1 is essential of order p for each odd prime p. If E
denotes the 3-dimensional vector bundle f∗E3 on X, then the class of f in
lim−→[X,BOn] corresponds to [E]− 3 ∈ KO(X). In fact, since X is a suspension,

we have lim−→[X,BOn] ∼= K̃O(X) by Ex.
EII.3.8
3.8.

Each (n+3)-dimensional vector bundle E⊕Tn is nontrivial, since its restric-
tion to S2p+1 is nontrivial whenever 2p > n + 3 (again by homotopy theory).

Hence [E] − 3 is a nontrivial element of K̃O(X). However, the corresponding

element in K̃O0(X) = [X,BO] is zero, because the homotopy groups of BO
have no odd torsion.

II.3.2.3 Example 3.2.3. If X is the union of compact CW complexes Xi, Milnor
showed in

M-Axiom
[129] that (in the notation of

II.3.5
3.5 below) there is an exact sequence

for each n

0→ lim←−
1Kn−1(Xi)→ Kn(X)→ lim←−K

n(Xi)→ 0.

In particular, KU0(CP∞) ∼= Z[[x]] by Ex.
EII.3.7
3.7.

II.3.3 Proposition 3.3. If Y is a subcomplex of a CW complex X, the following
sequences are exact:

K̃0(X/Y )→ K̃0(X)→ K̃0(Y ),

K0(X,Y )→ K0(X)→ K0(Y ).

Proof. Since Y ⊂ X is a cofibration, we have an exact sequence [X/Y,B] →
[X,B] → [Y,B] for every connected space B; see III(6.3) in

Wh
[228]. This yields

the first sequence (B is BO, BU or BSp). The second follows from this and

the classical exact sequence H̃0(X/Y ;Z)→ H0(X;Z)→ H0(Y ;Z).
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II.3.4 Example 3.4 (Change of structure field). If X is any space, the monoid (or
semiring) map VBR(X) → VBC(X) sending [E] to [E ⊗ C] (see Ex. I.

EI.4.5
4.5)

extends by universality to a ring homomorphism KO(X) → KU(X). For ex-

ample, KO(S8n) → KU(S8n) is an isomorphism but K̃O(S8n+4) ∼= Z embeds

in K̃U(S8n+4) ∼= Z as a subgroup of index 2.
Similarly, the forgetful map VBC(X) → VBR(X) extends to a group ho-

momorphism KU(X) → KO(X). As dimR(V ) = 2 · dimC(V ), the sum-
mand [X,Z] of KU(X) embeds as 2[X,Z] in the summand [X,Z] of KO(X).
Since E ⊗ C ∼= E ⊕ E as real vector bundles (by Ex. I.

EI.4.5
4.5), the composition

KO(X) → KU(X) → KO(X) is multiplication by 2. The composition in the
other direction is more complicated; see Exercise

EII.3.1
3.1. For example, it is the zero

map on K̃U(S8n+4) ∼= Z but is multiplication by 2 on K̃U(S8n) ∼= Z.
There are analogous maps KU(X) → KSp(X) and KSp(X) → KU(X),

whose properties we leave to the exercises.

Higher Topological K-theory

Once we have a representable functor such asK0, standard techniques in infinite
loop space theory allow us to expand it into a generalized cohomology theory.
Rather than get distracted by infinite loop spaces now, we choose to adopt a
rather pedestrian approach, ignoring the groups Kn for n > 0. For this we use
the suspensions SnX of X, which are all connected paracompact spaces.

II.3.5 Definition 3.5. For each integer n > 0, we define K̃O−n(X) and KO−n(X)
by:

K̃O−n(X) = K̃O0(SnX) = [SnX,BO]; KO−n(X) = K̃O
−n

(X)⊕ K̃O(Sn).

Replacing ‘O’ by ‘U ’ yields definitions K̃U−n(X) = K̃U0(SnX) = [SnX,BU ]

and KU−n(X) = K̃U
−n

(X)⊕ K̃U(Sn); replacing ‘O’ by ‘Sp’ yields definitions

for K̃Sp−n(X) and KSp−n(X). When the choice of R, C or H is clear, we shall

drop the ‘O,’ ‘U ’ and ‘Sp,’, writing simply K̃−n(X) and K−n(X).
We shall also define relative groups as follows. If Y is a subcomplex of X,

and n > 0, we set K−n(X,Y ) = K̃−n(X/Y ).

II.3.5.1 Based Maps 3.5.1. Note that our definitions do not assume X to have a base-
point. If X has a nondegenerate basepoint and Y is an H-space with homotopy
inverse (such as BO, BU or BSp), then the group [X,Y ] is isomorphic to the
group π0(Y )×[X,Y ]∗, where the second term denotes homotopy classes of based
maps from X to Y ; see pp. 100 and 119 of

Wh
[228]. For such spaces X we can

interpret the formulas for KO−n(X), KU−n(X) and KSp−n(X) in terms of
based maps, as is done in Atiyah

Atiyah
[7, p.68].

If X∗ denotes the disjoint union of X and a basepoint ∗, then we have the
usual formula for an unreduced cohomology theory: K−n(X) = K̃(Sn(X∗)).
This easily leads (see Ex.

EII.3.11
3.11) to the formulas for n ≥ 1:

KO−n(X) ∼= [X,ΩnBO], KU−n(X) ∼= [X,ΩnBU ]
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and KSp−n(X) ∼= [X,ΩnBSp].

II.3.6 Theorem 3.6. If Y is a subcomplex of a CW complex X, we have the exact
sequences (infinite to the left):

· · · K̃−2(Y )→K̃−1(X/Y )→K̃−1(X)→K̃−1(Y )→K̃0(X/Y )→K̃0(X)→K̃0(Y ),

· · ·K−2(Y )→K−1(X,Y )→K−1(X)→K−1(Y )→K0(X,Y )→K0(X)→K0(Y ).

Proof. Exactness at K0(X) was proven in Proposition
II.3.3
3.3. The mapping cone

cone(i) of i : Y ⊂ X is homotopy equivalent toX/Y , and j : X ⊂ cone(i) induces
cone(i)/X ≃ SY . This gives exactness at K0(X,Y ). Similarly, cone(j) ≃
SY and cone(j)/cone(i) ≃ SX, giving exactness at K−1(Y ). The long exact
sequences follows by replacing Y ⊂ X by SY ⊂ SX.

II.3.7 Characteristic Classes 3.7. The total Stiefel–Whitney class w(E) of a real
vector bundle E was defined in chapter I, §4. By (SW3) it satisfies the prod-
uct formula: w(E ⊕ F ) = w(E)w(F ). Therefore if we interpret w(E) as an
element of the abelian group U of all formal sums 1 + a1 + · · · in Ĥ∗(X;Z/2)
we get a group homomorphism w : KO(X) → U . It follows that each Stiefel–
Whitney class induces a well-defined set map wi : KO(X) → Hi(X;Z/2). In
fact, since w vanishes on each componentwise trivial bundle T f it follows that
w([E]− [T f ]) = w(E). Hence each Stiefel–Whitney class wi factors through the

projection KO(X)→ K̃O(X).
Similarly, the total Chern class c(E) = 1 + c1(E) + · · · satisfies c(E ⊕ F ) =

c(E)c(F ), so we may think of it as a group homomorphism from KU(X) to the
abelian group U of all formal sums 1+a2+a4+ · · · in Ĥ∗(X;Z). It follows that
the Chern classes ci(E) ∈ H2i(X;Z) of a complex vector bundle define set maps
ci : KU(X) −→ H2i(X;Z). Again, since c vanishes on componentwise trivial

bundles, each Chern class ci factors through the projection KU(X)→ K̃U(X).

II.3.7.1 Example 3.7.1. For even spheres the Chern class cn : K̃U(S2n)→ H2n(Sn;Z)
is an isomorphism. We will return to this point in Ex.

EII.3.6
3.6 and in §4.

II.3.7.2 Example 3.7.2. The map lim−→[RP∞, BOn] → K̃O(RP∞) of (
II.3.1.0
3.1.0) cannot be

onto. To see this, consider the element η = 1 − [E1] of K̃O(RP∞), where E1

is the canonical line bundle. Since w(−η) = w(E1) = 1 + x we have w(η) =
(1+ x)−1 =

∑∞
i=0 x

i, and wi(η) 6= 0 for every i ≥ 0. Axiom (SW1) implies that
η cannot equal [F ]− dim(F ) for any bundle F .

Similarly, lim−→[CP∞, BUn] → K̃U(CP∞) cannot be onto; the argument is
similar, again using the canonical line bundle: ci(1− [E1]) 6= 0 for every i ≥ 0.
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EXERCISES

EII.3.1 3.1. Let X be a topological space. Show that there is an involution of VBC(X)
sending [E] to the complex conjugate bundle [Ē] of Ex. I.

EI.4.6
4.6. The correspond-

ing involution c on KU(X) can be nontrivial; use I.
I.4.9.2
4.9.2 to show that c is

multiplication by −1 on K̃U(S2) ∼= Z. (By Bott periodicity, this implies that c

is multiplication by (−1)k on K̃U(S2k) ∼= Z.) Finally, show that the composite
KU(X)→ KO(X)→ KU(X) is the map 1 + c sending [E] to [E] + [Ē].

EII.3.2 3.2. If ∐Xi is the disjoint union of spaces Xi, show that K(∐Xi) ∼=
∏
K(Xi).

Then construct a space X such that the map lim−→VBn(X) → K̃(X) of (
II.3.1.0
3.1.0)

is not onto.

EII.3.3 3.3. External products. Show that there is a bilinear map K(X1) ⊗K(X2) →
K(X1 × X2) for every X1 and X2, sending [E1] ⊗ [E2] to [π∗1(E1) ⊗ π∗2(E2)],
where πi : X1×X2 → Xi is the projection. Then show that if X1 = X2 = X the
composition with the diagonal map ∆∗ : K(X × X) → K(X) yields the usual
product in the ring K(X), sending [E1]⊗ [E2] to [E1 ⊗ E2].

EII.3.4 3.4. Recall that the smash product X ∧ Y of two based spaces is the quotient
X × Y/X ∨ Y , where X ∨ Y is the union of X × {∗} and {∗} × Y . Show that

K̃−n(X × Y ) ∼= K̃−n(X ∧ Y )⊕ K̃−n(X)⊕ K̃−n(Y ).

EII.3.5 3.5. Show that KU−2(∗) ⊗ KU−n(X) → KU−n−2(X) induces a “periodic-
ity” isomorphism β : KU−n(X)

∼−→ KU−n−2(X) for all n. Hint: Let β be a
generator of KU−2(∗) ∼= Z, and use S2 ∧ SnX ≃ Sn+2X.

EII.3.6 3.6. Let X be a finite CW complex with only even-dimensional cells, such as
CPn. Show that KU(X) is a free abelian group on the set of cells of X, and that
KU(SX) = Z, so that KU−1(X) = 0. Then use Example

II.3.7.1
3.7.1 to show that

the total Chern class injects the group K̃U(X) into
∏
H2i(X;Z). Hint: Use

induction on dim(X) and the fact that X2n/X2n−2 is a bouquet of 2n-spheres.

EII.3.7 3.7. Chern character for CPn. Let E1 be the canonical line bundle on CPn, and
let x denote the class [E1]−1 in KU(CPn). Use Chern classes and the previous
exercise to show that {1, [E1], [E1⊗E1], . . . , [E

⊗n
1 ]}, and hence {1, x, x2, . . . , xn},

forms a basis of the free abelian group KU(CPn). Then show that xn+1 = 0, so
that the ring KU(CPn) is isomorphic to Z[x]/(xn+1). We will see in Ex.

EII.4.11
4.11

below that the Chern character ch maps the ring KU(CPn) isomorphically onto
the subring Z[t]/(tn+1) of H∗(CPn;Q) generated by t = ec1(x) − 1.

EII.3.8 3.8. Consider the suspensionX = SY of a paracompact space Y . Use Ex. I.
EI.4.16
4.16

to show that lim−→[X,BOn] ∼= K̃O(X).

EII.3.9 3.9. If X is a finite CW complex, show by induction on the number of cells
that both KO(X) and KU(X) are finitely generated abelian groups.
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EII.3.10 3.10. Show that KU(RP2n) = KU(RP2n+1) = Z ⊕ Z/2n. Hint: Try the total
Stiefel–Whitney class, using Proposition

II.3.3
3.3.

EII.3.11 3.11. Let X be a compact space with a nondegenerate basepoint. Show
that KO−n(X) ∼= [X,ΩnBO] ∼= [X,Ωn−1O] and KU−n(X) ∼= [X,ΩnBU ] ∼=
[X,Ωn−1U ] for all n ≥ 1. In particular, KU−1(X) ∼= [X,U ] and KO−1(X) ∼=
[X,O].

EII.3.12 3.12. Let X be a compact space with a nondegenerate basepoint. Show that
the homotopy groups of the topological groups GL(RX) = Hom(X,GL(R)) and
GL(CX) = Hom(X,GL(C)) are (for n > 0):

πn−1GL(R
X) = KO−n(X) and πn−1GL(C

X) = KU−n(X).

EII.3.13 3.13. If E → X is a complex bundle, there is a quaternionic vector bundle
EH → X with fibers Ex ⊗C H, as in Ex. I.

EI.4.5
4.5; this induces the map KU(X)→

KSp(X) mentioned in
II.3.4
3.4. Show that EH → X, considered as a complex vector

bundle, is isomorphic to the Whitney sum E⊕E. Deduce that the composition
KU(X)→ KSp(X)→ KU(X) is multiplication by 2.

EII.3.14 3.14. Show that H⊗CH is isomorphic to H⊕H as an H-bimodule, on generators
1 ⊗ 1 ± j ⊗ j. This induces a natural isomorphism V ⊗C H ∼= V ⊕ V of vector
spaces over H. If E → X is a quaternionic vector bundle, with underlying
complex bundle uE → X, show that there is a natural isomorphism (uE)H ∼=
E ⊕ E. Conclude that the composition KSp(X) → KU(X) → KSp(X) is
multiplication by 2.

EII.3.15 3.15. Let Ē be the complex conjugate bundle of a complex vector bundle
E → X; see Ex. I.

EI.4.6
4.6. Show that ĒH

∼= EH as quaternionic vector bundles.
This shows that KU(X)→ KSp(X) commutes with the involution c of Ex.

EII.3.1
3.1.

Using exercises
EII.3.1
3.1 and

EII.3.14
3.14, show that the composition KSp(X) →

KO(X)→ KSp(X) is multiplication by 4.
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4 Lambda and Adams Operations

II.4.1 4.1. A commutative ring K is called a λ-ring if we are given a family of set
operations λk : K → K for k ≥ 0 such that for all x, y ∈ K:

• λ0(x) = 1 and λ1(x) = x for all x ∈ K;
• λk(x+ y) =

∑
k
i=0 λi(x)λk−i(y) = λk(x) + λk−1(x)λ1(y) + · · ·+ λk(y).

This last condition is equivalent to the assertion that there is a group ho-
momorphism λt from the additive group of K to the multiplicative group
W (K) = 1 + tK[[t]] given by the formula λt(x) =

∑
λk(x)tk. A λ-ideal of

K is an ideal I with λn(I) ⊆ I for all n ≥ 1.
Warning: Our notation of λ-ring follows Atiyah; Grothendieck and other

authors call this a pre-λ-ring, reserving the term λ-ring for what we call a special
λ-ring; see Definition

II.4.3.1
4.3.1 below.

II.4.1.1 Example 4.1.1 (Binomial Rings). The integers Z and the rationals Q are λ-

rings with λk(n) =
(
n
k

)
. If K is any Q-algebra, we define

(
x
k

)
= x(x−1)···(x−k+1)

k!
for x ∈ K and k ≥ 1; again the formula λk(x) = (xk) makes K into a λ-ring.

More generally, a binomial ring is a subring K of a Q-algebra KQ such that
for all x ∈ K and k ≥ 1,

(
x
k

)
∈ K. We make a binomial ring into a λ-ring by

setting λk(x) =
(
x
k

)
. If K is a binomial ring then formally λt is given by the

formula λt(x) = (1+ t)x. For example, if X is a topological space, then the ring

[X,Z] is a λ-ring with λk(f) =
(
f
k

)
, the function sending x to

(
f(x)
k

)
.

The notion of λ-semiring is very useful in constructing λ-rings. Let M be a
semiring (see §1); we know that the group completion M−1M of M is a ring.
We callM a λ–semiring if it is equipped with operations λk : M →M such that
λ0(x) = 1, λ1(x) = x and λk(x+ y) =

∑
λi(x)λk−i(y).

If M is a λ-semiring then the group completion K = M−1M is a λ-ring.
To see this, note that sending x ∈ M to the power series

∑
λk(x)tk defines a

monoid map λt : M → 1+ tK[[t]]. By universality of K, this extends to a group
homomorphism λt from K to 1+ tK[[t]], and the coefficients of λt(x) define the
operations λk(x).

II.4.1.2 Example 4.1.2 (Algebraic K0). Let R be a commutative ring and set K =
K0(R). If P is a finitely generated projective R-module, consider the formula
λk(P ) = [∧kP ]. The decomposition ∧k(P ⊕ Q) ∼=

∑
(∧iP ) ⊗ (∧k−iQ) given in

ch. I, §3 shows that P(R) is a λ-semiring. Hence K0(R) is a λ-ring.
Since rank(∧kP ) =

(
rankP
k

)
, it follows that the map rank: K0(R) → H0(R)

of
II.2.3
2.3 is a morphism of λ-rings, and hence that K̃0(R) is a λ-ideal of K0(R).

II.4.1.3 Example 4.1.3 (Topological K0). Let X be a topological space and let K(X)
be either KO(X) or KU(X). If E → X is a vector bundle, let λk(E) be the
exterior power bundle ∧kE of Ex. I.

EI.4.3
4.3. The decomposition of ∧k(E⊕F ) given

in Ex. I.
EI.4.3
4.3 shows that the monoid VB(X) is a λ-semiring. Hence KO(X) and

KU(X) are λ-rings, and KO(X)→ KU(X) is a morphism of λ-rings.
Since dim(∧kE) =

(
dimE
k

)
, it follows that KO(X)→ [X,Z] and KU(X)→

[X,Z] are λ-ring morphisms, and that K̃O(X) and K̃U(X) are λ-ideals.
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II.4.1.4 Example 4.1.4 (Representation Ring). Let G be a finite group, and consider
the complex representation ring R(G), constructed in Example

II.1.6
1.6 as the group

completion of RepC(G), the semiring of finite dimensional representations of G;
as an abelian group R(G) ∼= Zc, where c is the number of conjugacy classes of
elements in G. The exterior powers Λi(V ) of a representation V are also G-
modules, and the decomposition of Λk(V ⊕W ) as complex vector spaces used
in

II.4.1.2
4.1.2 shows that RepC(G) is a λ-semiring. Hence R(G) is a λ-ring. (It is

true, but harder to show, that R(G) is a special λ-ring; see Ex.
EII.4.2
4.2.)

If d = dimC(V ) then dimC(Λ
kV ) =

(
d
k

)
, so dimC is a λ-ring map from R(G)

to Z. The kernel R̃(G) of this map is a λ-ideal of R(G).

II.4.1.5 Example 4.1.5. Let X be a scheme, or more generally a locally ringed space
(Ch. I, §5). We will define a ring K0(X) in §7 below, using the category VB(X).
As an abelian group it is generated by the classes of vector bundles on X. We
will see in Proposition

II.8.8
8.8 that the operations λk[E ] = [∧kE ] are well-defined on

K0(X) and make it into a λ-ring. (The formula for λk(x + y) will follow from
Ex. I.

EI.5.4
5.4.)

Positive structures

4.2. Not every λ-ring is well-behaved. In order to avoid pathologies, we intro-
duce a further condition, satisfied by the above examples: the λ-ring K must
have a positive structure and satisfy the Splitting Principle.

II.4.2.1 Definition 4.2.1. By a positive structure on a λ-ring K we mean: (i) a λ-
subring H0 of K which is a binomial ring; (ii) a λ-ring surjection ε : K → H0

which is the identity on H0 (ε is called the augmentation); and (iii) a subset
P ⊂ K (the positive elements), such that

(1) N = {0, 1, 2, · · · } is contained in P.

(2) P is a λ-sub-semiring of K. That is, P is closed under addition, multipli-
cation, and the operations λk.

(3) Every element of the kernel K̃ of ε can be written as p − q for some p,
q ∈ P .

(4) If p ∈ P then ε(p) = n ∈ N. Moreover, λi(p) = 0 for i > n and λn(p) is a
unit of K.

Condition (2) states that the group completion P−1P of P is a λ-subring of K;

by (3) we have P−1P = Z ⊕ K̃. By (4), ε(p) > 0 for p 6= 0, so P ∩ (−P ) = 0;
therefore P−1P is a partially ordered abelian group in the sense of §1. An
element ℓ ∈ P with ε(ℓ) = 1 is called a line element; by (4), λ1(ℓ) = ℓ and ℓ is
a unit of K. That is, the line elements form a subgroup L of the units of K.

The λ-rings in examples
II.4.1.2
4.1.2–

II.4.1.5
4.1.5 all have positive structures. The λ-ring

K0(R) has a positive structure with

H0 = H0(R) = [Spec(R),Z] and P = {[P ] : rank(P ) is constant};
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the line elements are the classes of line bundles, so L = Pic(R). Simi-
larly, the λ-rings KO(X) and KU(X) have a positive structure in which H0 is
H0(X,Z) = [X,Z] and P is {[E] : dim(E) is constant}, as long as we restrict
to compact spaces or spaces with π0(X) finite, so that I.

I.4.1.1
4.1.1 applies. Again,

line elements are the classes of line bundles; for KO(X) and KU(X) we have
L = H1(X;Z/2) and L = H2(X;Z), respectively. For R(G), the classes [V ]
of representations V are the positive elements; H0 is Z, and L is the set of
1-dimensional representations of G. Finally, if X is a scheme (or locally ringed
space) then in the positive structure on K0(X) we have H0 = H0(X;Z) and
P is {[E ] : rank(E) is constant}; see I.

I.5.1
5.1. The line bundles are again the line

elements, so L = Pic(X) = H1(X,O×X) by I.
I.5.10.1
5.10.1.

There is a natural group homomorphism “det” from K to L, which vanishes
on H0. If p ∈ P we define det(p) = λn(p), where ε(p) = n. The formula for
λn(p + q) and the vanishing of λi(p) for i > ε(p) imply that det : P → L is a
monoid map, i.e., that det(p + q) = det(p) det(q). Thus det extends to a map
from P−1P to L. As det(n) = (nn) = 1 for every n ≥ 0, det(Z) = 1. By (iii),
defining det(H0) = 1 extends det to a map from K to L. When K is K0(R)
the map det was introduced in §2. For KO(X), det is the first Stiefel–Whitney
class; for KU(X), det is the first Chern class.

Having described what we mean by a positive structure on K, we can now
state the Splitting Principle.

II.4.2.2 Splitting Principle 4.2.2. The Splitting Principle states that for every pos-
itive element p in K there is a extension K ⊂ K ′ (of λ-rings with positive
structure) such that p is a sum of line elements in K ′.

The Splitting Principle for KO(X) and KU(X) holds by Ex.
EII.4.12
4.12. Using

algebraic geometry, we will show in
II.8.8
8.8 that the Splitting Principle holds for

K0(R) as well as K0 of a scheme. The Splitting Principle also holds for R(G);
see

AT
[9, 1.5]. The importance of the Splitting Principle lies in its relation to

“special λ-rings,” a notion we shall define after citing the following motivational
result from

FL
[59, ch. I].

II.4.2.3 Theorem 4.2.3. If K is a λ-ring with a positive structure, and N is cofinal
in P , the Splitting Principle holds if and only if K is a special λ-ring.

In order to define special λ-ring, we need the following technical example:

II.4.3 Example 4.3 (Witt Vectors). For every commutative ring R, the abelian
group W (R) = 1+ tR[[t]] has the structure of a commutative ring, natural in R;
W (R) is called the ring of (big) Witt vectors of R. The multiplicative identity
of the ring W (R) is (1 − t), and multiplication ∗ is completely determined by
naturality, formal factorization of elements of W (R) as f(t) =

∏∞
i=1(1 − riti)

and the formula:
(1− rt) ∗ f(t) = f(rt).

It is not hard to see that there are “universal” polynomials Pn in 2n variables
so:

(
∑

ait
i) ∗ (

∑
bjt

j) =
∑

cnt
n, with cn = Pn(a1, . . . , an; b1, . . . , bn).
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IfQ ⊆ R there is an isomorphism
∞∏
n=1

R→W (R), (r1, . . . ) 7→
∏

exp(1−rntn/n).
Grothendieck observed that there are operations λk onW (R) making it into

a λ-ring; they are defined by naturality, formal factorization and the formula

λk(1− rt) = 0 for all k ≥ 2.

Another way to put it is that there are universal polynomials Pn,k such that:

λk(
∑

ait
i) =

∑
bnt

n, with bn = Pn,k(a1, ..., ank).

II.4.3.1 Definition 4.3.1. A special λ-ring is a λ-ringK such that the group homomor-
phism λt : K → W (K) is a λ-ring homomorphism. Since λt(x) =

∑
λk(x)tk, a

special λ-ring is a λ-ring K such that
• λk(1) = 0 for k 6= 0, 1
• λk(xy) is Pk(λ1(x), ..., λk(x);λ1(y), ..., λk(y)), and
• λn(λk(x)) = Pn,k(λ

1(x), ..., λnk(x)).

II.4.3.2 Example 4.3.2. The formula λn(s1) = sn defines a special λ-ring structure on
the polynomial ring U = Z[s1, ..., sn, ...]; see

AT
[9, §2]. It is the free special λ-ring

on the generator s1, because if x is any element in any special λ-ring K then
the map U → K sending sn to λn(x) is a λ-ring homomorphism. The λ-ring U
cannot have a positive structure by Theorem

II.4.6
4.6 below, since U has no nilpotent

elements except 0.

Adams operations

For every augmented λ-ring K we can define the Adams operations ψk : K → K
for k ≥ 0 by setting ψ0(x) = ε(x), ψ1(x) = x, ψ2(x) = x2 − 2λ2(x) and
inductively

ψk(x) = λ1(x)ψk−1(x)− λ2(x)ψk−2(x) + · · ·
+ (−1)kλk−1(x)ψ1(x) + (−1)k−1kλk(x).

From this inductive definition we immediately deduce three facts:
• if ℓ is a line element then ψk(ℓ) = ℓk;
• if I is a λ-ideal with I2 = 0 then ψk(x) = (−1)k−1kλk(x) for all x ∈ I;
• For every binomial ring H we have ψk = 1. Indeed, the formal identity

x
∑k−1
i=0 (−1)i

(
x
i

)
= (−1)k+1k

(
x
k

)
shows that ψk(x) = x for all x ∈ H.

The operations ψk are named after J.F. Adams, who first introduced them in
1962 in his study of vector fields on spheres.

Here is a slicker, more formal presentation of the Adams operations. Define
ψk(x) to be the coefficient of tk in the power series:

ψt(x) =
∑

ψk(x)tk = ε(x)− t d
dt

log λ
−t
(x).

The proof that this agrees with the inductive definition of ψk(x) is an exercise
in formal algebra, which we relegate to Exercise

EII.4.6
4.6 below.
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II.4.4 Proposition 4.4. Assume K satisfies the Splitting Principle. Then each ψk is
a ring endomorphism of K, and ψjψk = ψjk for all j, k ≥ 0.

Proof. The logarithm in the definition of ψt implies that ψt(x + y) = ψt(x) +
ψt(y), so each ψ

k is additive. The Splitting Principle and the formula ψk(ℓ) = ℓk

for line elements yield the formulas ψk(pq) = ψk(p)ψk(q) and ψj(ψk(p)) =
ψjk(p) for positive p. The extension of these formulas to K is clear.

II.4.4.1 Example 4.4.1. Consider the λ-ring KU(S2n) = Z⊕ Z of
II.3.1.1
3.1.1. On H0 = Z,

ψk = 1, but on K̃U(S2n) ∼= Z, ψk is multiplication by kn. (See
Atiyah
[7, 3.2.2].)

II.4.4.2 Example 4.4.2. Consider KU(RP2n), which by Ex.
EII.3.10
3.10 is Z⊕Z/2n. I claim

that for all x ∈ K̃U(RP2n):

ψk(x) =

{
x if k is odd

0 if k is even.

To see this, note that K̃U(RP2n) ∼= Z/2n is additively generated by (ℓ − 1),
where ℓ is the nonzero element of L = H2(RP2n;Z) = Z/2. Since ℓ2 = 1, we see
that ψk(ℓ− 1) = (ℓk − 1) is 0 if k is even and (ℓ− 1) if k is odd. The assertion
follows.

γ-operations

Associated to the operations λk are the operations γk : K → K. To construct
them, we assume that λk(1) = 0 for k 6= 0, 1. Note that if we set s = t/(1 − t)
then K[[t]] = K[[s]] and t = s/(1 + s). Therefore we can rewrite λs(x) =∑
λi(x)si as a power series γt(x) =

∑
γk(x)tk in t. By definition, γk(x) is the

coefficient of tk in γt(x). Since γt(x) = λs(x) we have γt(x + y) = γt(x)γt(y).
In particular γ0(x) = 1, γ1(x) = x and γk(x + y) =

∑
γi(x)γk−i(y). That is,

the γ-operations satisfy the axioms for a λ-ring structure on K. An elementary
calculation, left to the reader, yields the useful identity:

II.4.5 Formula 4.5. γk(x) = λk(x+ k− 1). This implies that γ2(x) = λ2(x) + x and

γk(x) = λk(x+ k − 1) = λk(x) +

(
k − 1

1

)
λk−1(x) + · · ·+

(
k − 1

k − 2

)
λ2(x) + x.

II.4.5.1 Example 4.5.1. If H is a binomial ring then for all x ∈ H we have

γk(x) =

(
x+ k − 1

k

)
= (−1)k

(−x
k

)
.

II.4.5.2 Example 4.5.2. γk(1) = 1 for all k, because λs(1) = 1 + s = 1/(1− t). More
generally, if ℓ is a line element then γk(ℓ) = ℓ for all k ≥ 1.

II.4.5.3 Lemma 4.5.3. If p ∈ P is a positive element with ε(p) = n, then γk(p−n) = 0
for all k > n. In particular, if ℓ ∈ K is a line element then γk(ℓ − 1) = 0 for
every k > 1.
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Proof. If k > n then q = p+ (k−n− 1) is a positive element with ε(q) = k− 1.
Thus γk(p− n) = λk(q) = 0.

If x ∈ K, the γ-dimension dimγ(x) of x is defined to be the largest integer
n for which γn(x− ε(x)) 6= 0, provided n exists. For example, dimγ(h) = 0 for
every h ∈ H0 and dimγ(ℓ) = 1 for every line element ℓ (except ℓ = 1 of course).
By the above remarks if p ∈ P and n = ε(p) then dimγ(p) = dimγ(p− n) ≤ n.
The supremum of the dimγ(x) for x ∈ K is called the γ-dimension of K.

II.4.5.4 Example 4.5.4. If R is a commutative noetherian ring, the Bass-Serre Cancel-
lation I.

I.2.4
2.4 states that every element of K̃0(R) is represented by [P ]− n, where

P is a finitely generated projective module of rank < dim(R). Hence K0(R) has
γ-dimension at most dim(R).

Suppose that X is a CW complex with finite dimension d. The Real Cancel-
lation Theorem I.

I.4.3
4.3 allows us to use the same argument to deduce that KO(X)

has γ-dimension at most d; the Complex Cancellation Theorem I.
I.4.4
4.4 shows that

KU(X) has γ-dimension at most d/2.

II.4.5.5 Corollary 4.5.5. If K has a positive structure in which N is cofinal in P , then
every element of K̃ has finite γ-dimension.

Proof. Recall that “N is cofinal in P” means that for every p there is a p′ so that
p+ p′ = n for some n ∈ N. Therefore every x ∈ K̃ can be written as x = p−m
for some p ∈ P with m = ε(p). By Lemma

II.4.5.3
4.5.3, dimγ(x) ≤ m.

II.4.6 Theorem 4.6. If every element of K has finite γ-dimension (e.g., K has a

positive structure in which N is cofinal in P ), then K̃ is a nil ideal. That is,

every element of K̃ is nilpotent.

Proof. Fix x ∈ K̃, and set m = dimγ(x), n = dimγ(−x). Then both γt(x) =
1 + xt + γ2(x)t2 + · · · + γm(x)tm and γt(−x) = 1 − xt + · · · + γn(−x)tn are
polynomials in t. Since γt(x)γt(−x) = γt(0) = 1, the polynomials γt(x) and
γt(−x) are units in the polynomial ring K[t]. By I.

I.3.12
3.12, the coefficients of these

polynomials are nilpotent elements of K.

II.4.6.1 Corollary 4.6.1. The ideal K̃0(R) is the nilradical of K0(R) for every com-
mutative ring R.

If X is compact then K̃O(X) and K̃U(X) are the nilradicals of the rings
KO(X) and KU(X), respectively.

II.4.6.2 Example 4.6.2. The conclusion of Theorem
II.4.6
4.6 fails for the representation

ring R(G) of a cyclic group of order 2. If σ denotes the 1-dimensional sign

representation, then L = {1, σ} and R̃(G) ∼= Z is generated by (σ − 1). Since
(σ−1)2 = (σ2−2σ+1) = (−2)(σ−1), we see that (σ−1) is not nilpotent, and

in fact that R̃(G)n = (2n−1)R̃(G) for every n ≥ 1. The hypothesis of Corollary
II.4.5.5
4.5.5 fails here because σ cannot be a summand of a trivial representation. In
fact dimγ(1−σ) =∞, because γn(1−σ) = (1−σ)n = 2n−1(1−σ) for all n ≥ 1.
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The γ-Filtration

The γ-filtration on K is a descending sequence of ideals:

K = F 0
γK ⊃ F 1

γK ⊃ · · · ⊃ Fnγ K ⊃ · · · .

It starts with F 0
γK = K and F 1

γK = K̃ (the kernel of ε). The first quotient

F 0
γ /F

1
γ is clearly H0 = K/K̃. For n ≥ 2, Fnγ K is defined to be the ideal of K

generated by the products γk1(x1) · · · γkm(xm) with xi ∈ K̃ and
∑
ki ≥ n. In

particular, Fnγ K contains γk(x) for all x ∈ K̃ and k ≥ n.
It follows immediately from the definition that F iγF

j
γ ⊆ F i+jγ . For j = 1, this

implies that the quotients F iγK/F
i+1
γ K are H0-modules. We will prove that the

quotient F 1
γ /F

2
γ is the group L of line elements in K:

II.4.7 Theorem 4.7. If K satisfies the Splitting Principle, then the map ℓ 7→ ℓ − 1
induces a group isomorphism, split by the map det:

L
∼=−→ F 1

γK/F
2
γK.

II.4.7.1 Corollary 4.7.1. For every commutative ring R, the first two ideals in the
γ-filtration of K0(R) are F 1

γ = K̃0(R) and F 2
γ = SK0(R). (See

II.2.6.2
2.6.2.) In

particular,
F 0
γ /F

1
γ
∼= H0(R) and F 1

γ /F
2
γ
∼= Pic(R).

II.4.7.2 Corollary 4.7.2. The first two quotients in the γ-filtration of KO(X) are

F 0
γ /F

1
γ
∼= [X,Z] and F 1

γ /F
2
γ
∼= H1(X;Z/2).

The first few quotients in the γ-filtration of KU(X) are

F 0
γ /F

1
γ
∼= [X,Z] and F 1

γ /F
2
γ
∼= H2(X;Z).

For the proof of Theorem
II.4.7
4.7, we shall need the following consequence of the

Splitting Principle. A proof of this principle may be found in Fulton-Lang
FL
[59,

III.1].

Filtered Splitting Principle. Let K be a λ-ring satisfying the Splitting Prin-
ciple, and let x be an element of Fnγ K. Then there exists a λ-ring extension
K ⊂ K ′ such that Fnγ K = K ∩ Fnγ K ′, and x is an H-linear combination of
products (ℓ1 − 1) · · · (ℓm − 1), where the ℓi are line elements of K ′ and m ≥ n.
Proof of Theorem

II.4.7
4.7. Since (ℓ1 − 1)(ℓ2 − 1) ∈ F 2

γK, the map ℓ 7→ ℓ − 1 is a
homomorphism. If ℓ1, ℓ2, ℓ3 are line elements of K,

det((ℓ1 − 1)(ℓ2 − 1)ℓ3) = det(ℓ1ℓ2ℓ3) det(ℓ3)/det(ℓ1ℓ3) det(ℓ2ℓ3) = 1.

By Ex.
EII.4.3
4.3, the Filtered Splitting Principle implies that every element of F 2

γK
can be written as a sum of terms (ℓ1 − 1)(ℓ2 − 1)ℓ3 in some extension K ′ of K.

This shows that det(F 2
γ ) = 1, so det induces a map K̃/F 2

γK → L. Now det is
the inverse of the map ℓ 7→ ℓ−1 because for p ∈ P the Splitting Principle shows
that p− ε(p) ≡ det(p)− 1 modulo F 2

γK.
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II.4.8 Proposition 4.8. If the γ-filtration on K is finite then K̃ is a nilpotent ideal.
If K̃ is a nilpotent ideal which is finitely generated as an abelian group, then the
γ-filtration on K is finite. That is, FNγ K = 0 for some N .

Proof. The first assertion follows from the fact that K̃n ⊂ Fnγ K for all n. If

K̃ is additively generated by {x1, ..., xs}, then there is an upper bound on the
k for which γk(xi) 6= 0; using the sum formula there is an upper bound n on

the k for which γk is nonzero on K̃. If K̃m = 0 then clearly we must have
Fmnγ K = 0.

II.4.8.1 Example 4.8.1. If X is a finite CW complex, both KO(X) and KU(X) are
finitely generated abelian groups by Ex.

EII.3.9
3.9. Therefore they have finite γ-

filtrations.

II.4.8.2 Example 4.8.2. If R is a commutative noetherian ring of Krull dimension d,
then F d+1

γ K0(R) = 0 by
FL
[59, V.3.10], even though K0(R) may not be a finitely

generated abelian group.

II.4.8.3 Example 4.8.3. For the representation ring R(G), G cyclic of order 2, we saw

in Example
II.4.6.2
4.6.2 that R̃ is not nilpotent. In fact Fnγ R(G) = R̃n = 2n−1R̃ 6= 0.

An even worse example is the λ-ring RQ = R(G)⊗Q, because Fnγ RQ = R̃Q
∼= Q

for all n ≥ 1.

II.4.8.4 Remark 4.8.4. Fix x ∈ K̃. It follows from the nilpotence of the γk(x) that
there is an integer N such that xN = 0, and for every k1, . . . , kn with

∑
ki ≥ N

we have
γk1(x)γk2(x) · · · γkn(x) = 0.

The best general bound for such an N is N = mn = dimγ(x) dimγ(−x).
II.4.9 Proposition 4.9. Let k, n ≥ 1 be integers. If x ∈ Fnγ K then modulo Fn+1

γ K:

ψk(x) ≡ knx; and λk(x) ≡ (−1)kkn−1x.

Proof. If ℓ is a line element then modulo (ℓ− 1)2 we have

ψk(ℓ− 1) = (ℓk−1 + ...+ ℓ+ 1)(ℓ− 1) ≡ k(ℓ− 1).

Therefore if ℓ1, · · · , ℓm are line elements and m ≥ n we have

ψk((ℓ1 − 1) · · · (ℓn − 1)) ≡ kn(ℓ1 − 1) · · · (ℓn − 1) modulo Fn+1
γ K.

The Filtered Splitting Principle implies that ψk(x) ≡ knx modulo Fn+1
γ K

for every x ∈ Fnγ K. For λk, we use the inductive definition of ψk to see that

knx = (−1)k−1kλk(x) for every x ∈ Fnγ K. The Filtered Splitting Principle
allows us to consider the universal case W = Ws of Exercise

EII.4.4
4.4. Since there is

no torsion in FnγW/F
n+1
γ W, we can divide by k to obtain the formula kn−1x =

(−1)k−1λk(x).
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II.4.10 Theorem 4.10 (Structure of K ⊗Q). Suppose that a λ-ring K has a positive
structure in which every element has finite γ-dimension e.g., if N is cofinal in
P. Then:

(1) The eigenvalues of ψk on KQ= K ⊗Q are a subset of {1, k, k2, k3, ...} for
each k;

(2) The subspace K
(n)
Q =K

(n,k)
Q of eigenvectors for ψk=kn is independent of k;

(3) K
(n)
Q is isomorphic to Fnγ KQ/F

n+1
γ KQ

∼= (Fnγ K/F
n+1
γ K)⊗Q;

(4) K
(0)
Q
∼= H0 ⊗Q and K

(1)
Q
∼= L⊗Q;

(5) K ⊗Q is isomorphic to the graded ring K
(0)
Q ⊕K(1)

Q ⊕ · · · ⊕K(n)
Q ⊕ · · · .

Proof. For every positive p, consider the universal λ-ring UQ = Q[s1, ...] of
Example

II.4.3.2
4.3.2, and the map UQ → KQ sending s1 to p and sk to λk(p). If

ε(p) = n then si maps to zero for i > n and each si −
(
n
i

)
maps to a nilpotent

element by Theorem
II.4.6
4.6. The image A of this map is a λ-ring which is finite-

dimensional over Q, so A is an artinian ring. Clearly FNγ A = 0 for some large

N . Consider the linear operation
∏N
n=0(ψ

k − kn) on A; by Proposition
II.4.9
4.9 it

is trivial on each Fnγ /F
n+1
γ , so it must be zero. Therefore the characteristic

polynomial of ψk on A divides Π(t − kn), and has distinct integer eigenvalues.

This proves (1) and that KQ is the direct sum of the eigenspaces K
(n,k)
Q for ψk.

As ψk preserves products, Proposition
II.4.9
4.9 now implies (3) and (4). The rest is

immediate from Theorem
II.4.7
4.7.

Chern class homomorphisms

II.4.11 4.11. The formalism in §3 for the Chern classes ci : KU(X) → H2i(X;Z) ex-
tends to the current setting. Suppose we are given a λ-ring K with a positive
structure and a commutative graded ring A = A0 ⊕ A1 ⊕ · · · . Chern classes
on K with values in A are set maps cn : K → An for n ≥ 0 with c0(x) = 1,
satisfying the following axioms:

(CC0) The cn send H0 to zero (for n ≥ 1): cn(h) = 0 for every h ∈ H0.

(CC1) Dimension. cn(p) = 0 whenever p is positive and n ≥ ε(p).
(CC2) Sum Formula. For every x, y in K and every n:

cn(x+ y) =

n∑

i=0

ci(x)cn−i(y).

(CC3) Normalization. c1 : L→ A1 is a group homomorphism. That is, for ℓ, ℓ′:

c1(ℓℓ
′) = c1(ℓ) + c1(ℓ

′).
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The total Chern class of x is the element c(x) =
∑
ci(x) of the completion

Â =
∏
Ai of A. In terms of the total Chern class, (CC2) becomes the product

formula
c(x+ y) = c(x)c(y).

II.4.11.1 Example 4.11.1. The Stiefel–Whitney classes wi : KO(X)→ Hi(X;Z/2) (=
Ai) and the Chern classes ci : KU(X) → H2i(X;Z) (= Ai) are both Chern
classes in this sense.

II.4.11.2 Example 4.11.2. Associated to the γ-filtration on K we have the associated
graded ring Gr•γK with GriγK = F iγ/F

i+1
γ . For a positive element p in K, define

ci(p) to be γi(p− ε(p)) modulo F i+1
γ . The multiplicative formula for γt implies

that ci(p + q) = ci(p) + ci(q), so that the ci extend to classes ci : K → Gr•γK.
The total Chern class c : K → Gr•γK is a group homomorphism with torsion
kernel and cokernel, because by Theorem

II.4.10
4.10 and Ex.

EII.4.10
4.10 the induced map

cn : K
(n)
Q → GrnγKQ

∼= K
(n)
Q is multiplication by (−1)n(n− 1)!.

The Splitting Principle
II.4.2.2
4.2.2 implies the following additional Splitting Principle

(see
FL
[59, I.3.1]).

Chern Splitting Principle. Given a finite set {pi} of positive elements of
K, there is a λ-ring extension K ⊂ K ′ in which each pi splits as a sum of
line elements, and a graded extension A ⊂ A′ such that the ci extend to maps
ci : K

′ → (A′)i satisfying (CC1) and (CC2).

The existence of “Chern roots” is an important consequence of this Splitting
Principle. Suppose that p ∈ K is positive, and that in an extension K ′ of K we
can write p = ℓ1 + · · · + ℓn, n = ε(p). The Chern roots of p are the elements
ai = c1(ℓi) in (A′)1; they determine the ck(p) in A

k. Indeed, because c(p) is the
product of the c(ℓi) = 1+ ai, we see that ck(p) is the k

th elementary symmetric
polynomial σk(a1, ..., an) of the ai in the larger ring A′. In particular, the first
Chern class is c1(p) =

∑
ai and the “top” Chern class is cn(p) =

∏
ai.

A famous theorem of Isaac Newton states that every symmetric polynomial
in n variables t1, ..., tn is in fact a polynomial in the symmetric polynomials
σk = σk(t1, ..., tn), k = 1, 2, · · · . Therefore every symmetric polynomial in the
Chern roots of p is also a polynomial in the Chern classes ck(p), and as such
belongs to the subring A of A′. Here is an elementary application of these ideas.

II.4.11.3 Proposition 4.11.3. Suppose that K satisfies the Splitting Principle
II.4.2.2
4.2.2.

Then cn(ψ
kx) = kncn(x) for all x ∈ K. That is, the following diagram com-

mutes:

K
cn

> An

K

ψk

∨ cn
> An.

kn

∨

II.4.11.4 Corollary 4.11.4. If Q ⊂ A then cn vanishes on K
(i)
Q , i 6= n.
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Chern character

As an application of the notion of Chern roots, suppose given Chern classes
ci : K → Ai, where for simplicity A is an algebra over Q. If p ∈ K is a positive
element, with Chern roots ai, define ch(p) to be the formal expansion

ch(p) =
n∑

i=0

exp(ai) =
∞∑

k=0

1

k!

(
n∑

i=0

aki

)

of terms in A′. The kth term 1
k!

∑
aki is symmetric in the Chern roots, so

it is a polynomial in the Chern classes c1(p), ..., ck(p) and hence belongs to
Ak. Therefore ch(p) is a formal expansion of terms in A, i.e., an element of
Â =

∏
Ak. For example, if ℓ is a line element of K then ch(ℓ) is just exp(c1(ℓ)).

From the definition, it is immediate that ch(p+q) = ch(p)+ch(q), so ch extends
to a map from P−1P to Â. Since ch(1) = 1, this is compatible with the given
map H0 → A0, and so it defines a map ch : K → Â, called the Chern character
on K. The first few terms in the expansion of the Chern character are

ch(x) = ε(x)+ c1(x)+
1

2
[c1(x)

2− c2(x)]+
1

6
[c1(x)

3− 3c1(x)c2(x)+3c3(x)]+ · · ·

An inductive formula for the term in ch(x) is given in Exercise
EII.4.14
4.14.

II.4.12 Proposition 4.12. If Q ⊂ A then the Chern character is a ring homomorphism

ch : K → Â.

Proof. By the Splitting Principle, it suffices to verify that ch(pq) = ch(p)ch(q)
when p and q are sums of line elements. Suppose that p =

∑
ℓi and q =

∑
mj

have Chern roots ai = c1(ℓi) and bj = c1(mj), respectively. Since pq =
∑
ℓimj ,

the Chern roots of pq are the c1(ℓimj) = c1(ℓi) + c1(mj) = ai + bj . Hence

ch(pq) =
∑

ch(ℓimj) =
∑

exp(ai + bj) =
∑

exp(ai) exp(bj)=ch(p)ch(q).

II.4.12.1 Corollary 4.12.1. Suppose that K has a positive structure in which every x ∈
K has finite γ-dimension (e.g., N is cofinal in P ). Then the Chern character

lands in A, and the induced map from KQ = ⊕K(n)
Q to A is a graded ring map.

That is, the nth term chn : KQ → An vanishes on K
(i)
Q for i 6= n.

II.4.12.2 Example 4.12.2. The universal Chern character ch : KQ → KQ is the identity
map. Indeed, by Ex.

EII.4.10
4.10(b) and Ex.

EII.4.14
4.14 we see that chn is the identity map

on each K
(n)
Q .

The following result was proven by M. Karoubi in
Kar63
[99]. (See Exercise

EII.4.11
4.11

for the proof when X is a finite CW complex.)

II.4.13 Theorem 4.13. If X is a compact topological space and Ȟ denotes Čech coho-
mology, then the Chern character is an isomorphism of graded rings.

ch : KU(X)⊗Q ∼=
⊕

Ȟ2i(X;Q)
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II.4.13.1 Example 4.13.1 (Spheres). For each even sphere, we know by Example
II.3.7.1
3.7.1

that cn maps K̃U(S2n) isomorphically onto H2n(S2n;Z) = Z. The inductive
formula for chn shows that in this case ch(x) = dim(x)+(−1)ncn(x)/(n−1)! for
all x ∈ KU(X). In this case it is easy to see directly that ch : KU(S2n)⊗Q ∼=
H2∗(S2n;Q)

EXERCISES

EII.4.1 4.1. Show that in K0(R) or K
0(X) we have

λk([P ]− n) =
∑

(−1)i
(
n+ i− 1

i

)
[∧k−iP ].

EII.4.2 4.2. For every group G and every commutative ring A, let RA(G) denote
the group K0(AG,A) of Ex.

EII.2.14
2.14, i.e., the group completion of the monoid

Rep(AG,A) of all AG-modules which are finitely generated projective as A-
modules. Show that the ∧k make RA(G) into a λ-ring with a positive structure
given by Rep(AG,A).

(a) If A = C, show that RC(G) satisfies the Splitting Principle and hence is
a special λ-ring (by

II.4.2.3
4.2.3); the line elements are the characters. Swan proved in

Swan70
[194] that RA(G) satisfies the Splitting Principle for every A; another proof is
in

SGA6
[SGA6], VI(3.3).) This proves that RA(G) is a special λ-ring for every A.
(b) When p = 0 in A, show that ψp = Φ∗ in RA(G), where Φ : A→ A is the

Frobenius Φ(a) = ap. To do this, reduce to the case in which χ is a character
and show that ψkχ(g) = χ(gp) = χ(g)p.

EII.4.3 4.3. Suppose that a λ-ring K is generated as an H-algebra by line elements.
Show that Fnγ = K̃n for all n, so the γ-filtration is the adic filtration defined by

the ideal K̃. Then show that if K is any λ-ring satisfying the Splitting Principle
every element x of Fnγ K can be written in an extension K ′ of K as a product

x = (ℓ1 − 1) · · · (ℓm − 1)

of line elements with m ≥ n. In particular, show that every x ∈ F 2
γ can be

written as a sum of terms (ℓi − 1)(ℓj − 1)ℓ in K ′.

EII.4.4 4.4. Universal special λ-ring. Let Ws denote the Laurent polynomial ring
Z[u1, u

−1
1 , ..., us, u

−1
s ], and ε : Ws → Z the augmentation defined by ε(ui) = 1.

(a) Show that Ws is a λ-ring with a positive structure; the line elements are
the monomials uα =

∏
uni
i . This implies that Ws is generated by the

group L ∼= Zs of line elements, so by Exercise
EII.4.3
4.3 the ideal FnγWs is W̃n.

(b) Show that each FnγW/F
n+1
γ W is a torsionfree abelian group.

(c) If K is a special λ-ring show that any family {ℓ1, ..., ℓs} of line elements
determines a λ-ring map Ws → K sending ui to ℓi.
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(d) (Splitting Principle for the free λ-ring) Let U → Ws be the λ-ring ho-
momorphism sending s1 to

∑
ui (see

II.4.3.2
4.3.2). Show that U injects into

lim←−Ws.

EII.4.5 4.5. A line element ℓ is called ample for K if for every x ∈ K̃ there is an
integer N = N(x) such that for every n ≥ N there is a positive element pn so
that ℓnx = pn − ε(pn). (The terminology comes from Algebraic Geometry; see
II.8.8.4
8.8.4 below.) If K has an ample line element, show that every element of K̃ is
nilpotent.

EII.4.6 4.6. Verify that the inductive definition of ψk and the ψt definition of ψk agree.

EII.4.7 4.7. If p is prime, use the Splitting Principle to verify that ψp(x) ≡ xp modulo
p for every x ∈ K.

EII.4.8 4.8. Adams e-invariant. Suppose given a map f : S2m−1 → S2n. The mapping

cone C(f) fits into a cofibration sequence S2n >
i
> C(f)

j
>> S2m. Associated

to this is the exact sequence:

0→ K̃U(S2m)
j∗−→ K̃U(C)

i∗−→ K̃U(S2n)→ 0.

Choose x, y ∈ K̃U(C) so that i∗(x) generates K̃U(S2n) ∼= Z and y is the image

of a generator of K̃U(S2m) ∼= Z. Since j∗ is a ring map, y2 = 0.

(a) Show by applying ψk that xy = 0, and that ifm 6= 2n then x2 = 0. (When
m = 2n, x2 defines the Hopf invariant of f ; see the next exercise.)

(b) Show that ψk(x) = knx+aky for appropriate integers ak. Then show (for
fixed x and y) that the rational number

e(f) =
ak

km − kn

is independent of the choice of k.

(c) Show that a different choice of x only changes e(f) by an integer, so that
e(f) is a well-defined element of Q/Z; e(f) is called the Adams e-invariant
of f .

(d) If f and f ′ are homotopic maps, it follows from the homotopy equivalence
between C(f) and C(f ′) that e(f) = e(f ′). By considering the mapping
cone of f ∨ g, show that the well-defined set map e : π2m−1(S

2n) → Q/Z
is a group homomorphism. J.F. Adams used this e-invariant to detect an
important cyclic subgroup of π2m−1(S

2n), namely the “image of J.”

EII.4.9 4.9. Hopf Invariant One. Given a continuous map f : S4n−1 → S2n, define an
integer H(f) as follows. Let C(f) be the mapping cone of f . As in the previous
exercise, we have an exact sequence:

0→ K̃U(S4n)
j∗−→ K̃U(C(f))

i∗−→ K̃U(S2n)→ 0.
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Choose x, y ∈ K̃U(C(f)) so that i∗(x) generates K̃U(S2n) ∼= Z and y is the

image of a generator of K̃U(S4n) ∼= Z. Since i∗(x2) = 0, we can write x2 = Hy
for some integer H; this integer H = H(f) is called the Hopf invariant of f .

(a) Show that H(f) is well-defined, up to ± sign.

(b) If H(f) is odd, show that n is 1, 2, or 4. Hint: Use Ex.
EII.4.7
4.7 to show that

the integer a2 of the previous exercise is odd. Considering e(f), show that
2n divides pn − 1 for every odd p.

It turns out that the classical “Hopf maps” S3 → S2, S7 → S4 and S15 → S8

all have Hopf invariant H(f) = 1. In contrast, for every even integer H there is
a map S4n−1 → S2n with Hopf invariant H.

EII.4.10 4.10. Operations. A natural operation τ on λ-rings is a map τ : K → K defined
for every λ-ring K such that fτ = τf for every λ-ring map f : K → K ′. The
operations λk, γk, and ψk are all natural operations on λ-rings.

(a) If K satisfies the Splitting Principle
II.4.2.2
4.2.2, generalize Proposition

II.4.9
4.9 to

show that every natural operation τ preserves the γ-filtration of K and
that there are integers ωn = ωn(τ), independent of K, such that for every
x ∈ Fnγ K

τ(x) ≡ ωnx modulo Fn+1
γ K.

(b) Show that for τ = γk and x ∈ Fnγ we have:

ωn(γ
k) =





0 if n < k

(−1)k−1(k − 1)! if n = k

ωn 6= 0 if n > k

(c) Show that sk 7→ λk and τ 7→ τ(s1) give λ-ring isomorphisms from the free
λ-ring U = Z[s1, s2, · · · ] of

II.4.3.2
4.3.2 to the ring of all natural operations on

λ-rings. (See
Atiyah
[7, 3.1.7].)

EII.4.11 4.11. By Example
II.4.13.1
4.13.1, the Chern character ch : KU(Sn)⊗Q→ H2∗(Sn;Q)

is an isomorphism for every sphere Sn. Use this to show that ch : KU(X)⊗Q→
H2∗(X;Q) is an isomorphism for every finite CW complex X. Hint: If Xn is
the n-skeleton of X then Xn/Xn−1 is a bouquet of n-spheres.

EII.4.12 4.12. Let K be a λ-ring. Given a K-module M , construct the ring K ⊕M in
which M2 = 0. Given a sequence of K-linear endomorphisms ϕk of M with
ϕ1(x) = x, show that the formulae λk(x) = ϕk(x) extend the λ-ring structure
on K to a λ-ring structure on K ⊕M . Then show that K ⊕M has a positive
structure if K does, and that K ⊕M satisfies the Splitting Principle whenever
K does. (The elements in 1 +M are to be the new line elements.)
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EII.4.13 4.13. Hirzebruch characters. Suppose that A is an H0-algebra and we fix a
power series α(t) = 1+α1t+α2t

2 + · · · in A0[[t]]. Suppose given Chern classes
ci : K → Ai. If p ∈ K is a positive element, with Chern roots ai, define chα(p)
to be the formal expansion

chα(p) =
n∑

i=0

α(ai)
∞∑

k=0

αk

(
n∑

i=0

aki

)

of terms in A′. Show that chα(p) belongs to the formal completion Â of A, and
that it defines a group homomorphism chα : K → Â. This map is called the
Hirzebruch character for α.

EII.4.14 4.14. Establish the following inductive formula for the nth term chn in the
Chern character:

chn −
1

n
c1chn−1 + · · · ±

1

i!
(
n
i

) cichn−i + · · ·+
(−1)n
(n− 1)!

cn = 0.

To do this, set x = −ti in the identity
∏
(x+ ai) = xn + c1x

n−1 + · · ·+ cn.

5 K0 of a Symmetric Monoidal Category

The idea of group completion in §1 can be applied to more categories than just
the categories P(R) in §2 and VB(X) in §3. It applies to any category with a
“direct sum”, or more generally any natural product � making the isomorphism
classes of objects into an abelian monoid. This leads us to the notion of a
symmetric monoidal category.

II.5.1 Definition 5.1. A symmetric monoidal category is a category S, equipped with
a functor � : S × S → S, a distinguished object e and four basic natural iso-
morphisms:

e�s ∼= s, s�e ∼= s, s�(t�u) ∼= (s�t)�u, and s�t ∼= t�s.

These basic isomorphisms must be “coherent” in the sense that two natural
isomorphisms of products of s1, . . . , sn built up from the four basic ones are
the same whenever they have the same source and target. (We refer the reader
to

Mac
[116] for the technical details needed to make this definition of “coherent”

precise.) Coherence permits us to write expressions without parentheses like
s1� · · ·�sn unambiguously (up to natural isomorphism).

II.5.1.1 Example 5.1.1. Any category with a direct sum ⊕ is symmetric monoidal;
this includes additive categories like P(R) and VB(X) as we have mentioned.
More generally, a category with finite coproducts is symmetric monoidal with
s�t = s ∐ t. Dually, any category with finite products is symmetric monoidal
with s�t = s× t.
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II.5.1.2 Definition 5.1.2 (K0S). Suppose that the isomorphism classes of objects of S
form a set, which we call Siso. If S is symmetric monoidal, this set Siso is an
abelian monoid with product � and identity e. The group completion of this
abelian monoid is called the Grothendieck group of S, and is written as K�

0 (S),
or simply as K0(S) if � is understood.

From §1 we see that K�
0 (S) may be presented with one generator [s] for each

isomorphism class of objects, with relations that [s�t] = [s] + [t] for each s and
t. From Proposition

II.1.1
1.1 we see that every element of K�

0 (S) may be written as
a difference [s]− [t] for some objects s and t.

II.5.2 Examples 5.2. (1) The category P(R) of finitely generated projective modules
over a ring R is symmetric monoidal under direct sum. Since the above definition
is identical to that in §2, we see that we have K0(R) = K⊕0 (P(R)).

(2) Similarly, the category VB(X) of (real or complex) vector bundles over
a topological space X is symmetric monoidal, with � being the Whitney sum
⊕. From the definition we see that we also have K(X) = K⊕0 (VB(X)), or more
explicitly:

KO(X) = K⊕0 (VBR(X)), KU(X) = K⊕0 (VBC(X)).

(3) If R is a commutative ring, let Pic(R) denote the category of alge-
braic line bundles L over R and their isomorphisms (§I.3). This is a symmetric
monoidal category with � = ⊗R, and the isomorphism classes of objects already
form a group, so K0Pic(R) = Pic(R).

II.5.2.1 Example 5.2.1 (Finite Sets). Let Setsfin denote the category of finite sets.
The coproduct is the disjoint sum ∐, and it is not hard to see thatK∐0 (Setsfin) =
Z.

Another monoidal operation on Setsfin is the product (×). However, since
the empty set satisfies ∅ = ∅ ×X for all X we have K×0 (Setsfin) = 0.

The category Sets×fin of nonempty finite sets has for its isomorphism classes
the set N>0 = {1, 2, . . . } of positive integers, and the product of finite sets
corresponds to multiplication. Since the group completion of (N>0,×) is the
multiplicative monoid Q×>0 of positive rational numbers, we have K×0 (Sets×fin)

∼=
Q×>0.

II.5.2.2 Example 5.2.2 (Burnside Ring). Suppose that G is a finite group, and let
G-Setsfin denote the category of finite G-sets. It is a symmetric monoidal
category under disjoint union. We saw in Example

II.1.5
1.5 that K0(G-Setsfin) is

the Burnside Ring A(G) ∼= Zc, where c is the number of conjugacy classes of
subgroups of G.

II.5.2.3 Example 5.2.3 (Representation ring). The finite-dimensional complex repre-
sentations of a finite group G form a category RepC(G). It is symmetric
monoidal under ⊕. We saw in Example

II.1.6
1.6 that K0RepC(G) is the representa-

tion ring R(G) of G, which is a free abelian group on the classes [V1], ..., [Vr] of
the irreducible representations of G.
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Cofinality

Let T be a full subcategory of a symmetric monoidal category S. If T contains
e and is closed under finite products, then T is also symmetric monoidal. We
say that T is cofinal in S if for every s in S there is an s′ in S such that s�s′ is
isomorphic to an element in T , i.e., if the abelian monoid T iso is cofinal in Siso

in the sense of §1. When this happens, we may restate Corollary
II.1.3
1.3 as follows.

II.5.3 Cofinality Theorem 5.3. Let T be cofinal in a symmetric monoidal category
S. Then (assuming Siso is a set):

(1) K0(T ) is a subgroup of K0(S);

(2) Every element of K0(S) is of the form [s] − [t] for some s in S and t in
T ;

(3) If [s] = [s′] in K0(S) then s�t ∼= s′�t for some t in T .

II.5.4.1 Example 5.4.1 (Free modules). Let R be a ring. The category Free(R) of
finitely generated free R-modules is cofinal (for � = ⊕) in the category P(R)
of finitely generated projective modules. Hence K0Free(R) is a subgroup of
K0(R). In fact K0Free(R) is a cyclic abelian group, and equals Z whenever R
satisfies the Invariant Basis Property. Moreover, the subgroup K0Free(R) of
K0(R) = K0P(R) is the image of the map Z→ K0(R) described in Lemma

II.2.1
2.1.

Free(R) is also cofinal in the smaller categoryPst.free(R) of finitely generated
stably free modules. Since every stably free module P satisfies P ⊕ Rm ∼= Rn

for some m and n, the Cofinality theorem yields K0Free(R) = K0P
st.free(R).

II.5.4.2 Example 5.4.2. Let R be a commutative ring. A finitely generated projective
R-module is called faithfully projective if its rank is never zero. The tensor prod-
uct of faithfully projective modules is again faithfully projective by Ex. I.

EI.2.7
2.7.

Hence the category FP(R) of faithfully projective R-modules is a symmetric
monoidal category under the tensor product ⊗R. For example, if R is a field
then the monoid FPiso is the multiplicative monoid (N>0,×) of Example

II.5.2.1
5.2.1,

so in this case we haveK⊗0 FP(R) ∼= Q×>0. We will describe the groupK⊗0 FP(R)
in the exercises below.

II.5.4.3 Example 5.4.3 (Brauer groups). Suppose first that F is a field, and let Az(F )
denote the category of central simple F -algebras. This is a symmetric monoidal
category with product ⊗F , because if A and B are central simple then so is
A⊗F B. The matrix rings Mn(F ) form a cofinal subcategory, with Mm(F )⊗F
Mn(F ) ∼= Mmn(F ). From the previous example we see that the Grothendieck
group of this subcategory is Q×>0. The classical Brauer group Br(F ) of the field
F is the quotient of K0Az(F ) by this subgroup. That is, Br(F ) is generated by
classes [A] of central simple algebras with two families of relations: [A⊗F B] =
[A] + [B] and [Mn(F )] = 0.

More generally, suppose that R is a commutative ring. Recall (from
Milne
[127,

IV]) that an R-algebra A is is called an Azumaya algebra if there is another
R-algebra B such that A ⊗R B ∼= Mn(R) for some n. The category Az(R)
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of Azumaya R-algebras is thus symmetric monoidal with product ⊗R. If P
is a faithfully projective R-module, EndR(P ) is an Azumaya algebra. Since
EndR(P ⊗R P ′) ∼= EndR(P ) ⊗R EndR(P

′), there is a monoidal functor EndR
from FP(R) to Az(R), and a group homomorphism K0FP(R) → K0Az(R).
The cokernel Br(R) of this map is called the Brauer group of R. That is, Br(R)
is generated by classes [A] of Azumaya algebras with two families of relations:
[A⊗R B] = [A] + [B] and [EndR(P )] = 0.

G-bundles and equivariant K-theory

The following discussion is taken from Atiyah’s very readable book
Atiyah
[7]. Suppose

that G is a finite group and that X is a topological space on which G acts con-
tinuously. A (complex) vector bundle E over X is called a G-vector bundle if G
acts continuously on E, the map E → X commutes with the action of G, and
for each g ∈ G and x ∈ X the map Ex → Egx is a vector space homomorphism.
The category VBG(X) of G-vector bundles over X is symmetric monoidal un-
der the usual Whitney sum, and we write K0

G(X) for the Grothendieck group
K⊕0 VBG(X). For example, if X is a point then VBG(X) = RepC(G), so we
haveK0

G(point) = R(G). More generally, if x is a fixed point of X, then E 7→ Ex
defines a monoidal functor from VBG(X) to RepC(G), and hence a group map
K0
G(X)→ R(G).
If G acts trivially on X, every vector bundle E on X can be considered as a

G-bundle with trivial action, and the tensor product E⊗V with a representation
V of G is another G-bundle. The following result is proven on p. 38 of

Atiyah
[7].

II.5.5 Proposition 5.5 (Krull-Schmidt Theorem). Let V1, ..., Vr be a complete set of
irreducible G-modules, and suppose that G acts trivially on X. Then for every
G-bundle F over X there are unique vector bundles Ei = HomG(Vi, F ) so that

F ∼= (E1 ⊗ V1)⊕ · · · ⊕ (Er ⊗ Vr).

II.5.5.1 Corollary 5.5.1. If G acts trivially on X then K0
G(X) ∼= KU(X)⊗Z R(G).

The Witt ring W (F ) of a field

II.5.6 5.6. Symmetric bilinear forms over a field F provide another classical appli-
cation of the K0 construction. The following discussion is largely taken from
Milnor and Husemoller’s pretty book

M-SBF
[133], and the reader is encouraged to look

there for the connections with other branches of mathematics.
A symmetric inner product space (V,B) is a finite dimensional vector space

V , equipped with a nondegenerate symmetric bilinear form B : V ⊗ V → F .
The category SBil(F ) of symmetric inner product spaces and form-preserving
maps is symmetric monoidal, where the operation � is the orthogonal sum
(V,B)⊕ (V ′, B′), defined as the vector space V ⊕V ′, equipped with the bilinear
form β(v ⊕ v′, w ⊕ w′) = B(v, w) +B′(v′, w′).

A crucial role is played by the hyperbolic plane H, which is V = F 2 equipped
with the bilinear form B represented by the symmetric matrix

(
0
1
1
0

)
. An inner
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product space is called hyperbolic if it is isometric to an orthogonal sum of
hyperbolic planes.

Let (V,B) ⊗ (V ′, B′) denote the tensor product V ⊗ V ′, equipped with the
bilinear form β(v ⊗ v′, w ⊗ w′) = B(v, w)B′(v′, w′); this is also a symmetric
inner product space, and the isometry classes of inner product spaces forms
a semiring under ⊕ and ⊗ (see Ex.

EII.5.10
5.10). Thus the Grothendieck group

GW (F ) = K0SBil(F ) is a commutative ring with unit 1 = 〈1〉; it is called
the Grothendieck-Witt ring of F . The forgetful functor SBil(F )→ P(F ) send-
ing (V,B) to V induces a ring augmentation ε : GW (F ) → K0(F ) ∼= Z. We
write Î for the augmentation ideal of GW (F ).

II.5.6.1 Example 5.6.1. For each a ∈ F×, we write 〈a〉 for the inner product space
with V = F and B(v, w) = avw. Clearly 〈a〉⊗〈b〉 ∼= 〈ab〉. Note that a change of
basis 1 7→ b of F induces an isometry 〈a〉 ∼= 〈ab2〉 for every unit b, so the inner
product space only determines a up to a square.

If char(F ) 6= 2, it is well known that every symmetric bilinear form is diago-
nalizable. Thus every symmetric inner product space is isometric to an orthog-
onal sum 〈a1〉 ⊕ · · · ⊕ 〈an〉. For example, it is easy to see that H ∼= 〈1〉 ⊕ 〈−1〉.
This also implies that Î is additively generated by the elements 〈a〉 − 1.

If char(F ) = 2, every symmetric inner product space is isomorphic to 〈a1〉⊕
· · ·⊕〈an〉⊕N , where N is hyperbolic; see

M-SBF
[133, I.3]. In this case Î has the extra

generator H − 2.

If char(F ) 6= 2, there is a Cancellation Theorem due to Witt: if X, Y , Z
are inner product spaces, then X⊕Y ∼= X⊕Z implies that Y ∼= Z. For a proof,
we refer the reader to

M-SBF
[133]. We remark that cancellation fails if char(F ) = 2;

see Ex.
EII.5.11
5.11(d). The following definition is due to Knebusch.

II.5.6.2 Definition 5.6.2. Suppose that char(F ) 6= 2. The Witt ring W (F ) of F is
defined to be the quotient of the ring GW (F ) by the subgroup {nH} generated
by the hyperbolic plane H. This subgroup is an ideal by Ex.

EII.5.11
5.11, so W (F ) is

also a commutative ring.
The augmentation GW (F )→ Z has H 7→ 2, so it induces an augmentation

W (F )
ε−→ Z/2. We write I for the augmentation ideal ker(ε) of W (F ).

When char(F ) = 2, W (F ) is defined similarly, as the quotient of GW (F ) by
the subgroup of “split” spaces; see Ex.

EII.5.11
5.11. In this case we have 2 = 0 in the

Witt ringW (F ), because the inner product space 〈1〉⊕〈1〉 is split (Ex. EII.5.115.11(d)).

When char(F ) 6= 2, the augmentation ideals of GW (F ) and W (F ) are iso-
morphic: Î ∼= I. This is because ε(nH) = 2n, so that {nH} ∩ Î = 0 in GW (F ).

Since (V,B) + (V,−B) = 0 in W (F ) by Ex.
EII.5.11
5.11, every element of W (F ) is

represented by an inner product space. In particular, I is additively generated
by the classes 〈a〉 + 〈−1〉, even if char(F ) = 2. The powers In of I form a
decreasing chain of ideals W (F ) ⊃ I ⊃ I2 ⊃ · · · . We shall describe I/I2 now,
and return to this topic in chapter III, §7.

The discriminant of an inner product space (V,B) is a classical invariant
with values in F×/F×2, where F×2 denotes {a2|a ∈ F×}. For each basis of V ,

August 29, 2013 - Page 108 of
LastPage
568



Chapter II

there is a matrix M representing B, and the determinant of M is a unit of F .
A change of basis replaces M by AtMA, and det(AtMA) = det(M) det(A)2, so
w1(V,B) = det(M) is a well defined element in F×/F×2, called the first Stiefel–
Whitney class of (V,B). Since w1(H) = −1, we have to modify the definition
slightly in order to get an invariant on the Witt ring.

II.5.6.3 Definition 5.6.3. If dim(V ) = r, the discriminant of (V,B) is defined to be
the element d(V,B) = (−1)r(r−1)/2 det(M) of F×/F×2.

For example, we have d(H) = d(1) = 1 but d(2) = −1. It is easy to
verify that the discriminant of (V,B)⊕(V ′, B′) is (−1)rr′d(V,B)d(V ′, B′), where
r = dim(V ) and r′ = dim(V ′). In particular, (V,B) and (V,B) ⊕ H have the
same discriminant. It follows that the discriminant is a well-defined map from
W (F ) to F×/F×2, and its restriction to I is additive.

II.5.6.4 Theorem 5.6.4. (Pfister) The discriminant induces an isomorphism between
I/I2 and F×/F×2.

Proof. Since the discriminant of 〈a〉 ⊕ 〈−1〉 is a, the map d : I → F×/F×2 is
onto. This homomorphism annihilates I2 because I2 is additively generated by
products of the form

(
〈a〉 − 1

)(
〈b〉 − 1

)
= 〈ab〉+ 〈−a〉+ 〈−b〉+ 1,

and these have discriminant 1. Setting these products equal to zero, the identity
〈a〉+ 〈−a〉 = 0 yields the congruence

(
〈a〉 − 1

)
+
(
〈b〉 − 1

)
≡ 〈ab〉 − 1 mod I2. (5.6.5) II.5.6.5

Hence the formula s(a) = 〈a〉−1 defines a surjective homomorphism F×
s→ I/I2.

Since ds(a) = a, it follows that s is an isomorphism with inverse induced by
d.

II.5.6.6 Corollary 5.6.6. W (F ) contains Z/2 as a subring (i.e., 2 = 0) if and only if
−1 is a square in F .

II.5.6.7 Classical Examples 5.6.7. If F is an algebraically closed field, or more gen-
erally every element of F is a square, then 〈a〉 ∼= 〈1〉 and W (F ) = Z/2.

If F = R, every bilinear form is classified by its rank and signature. For
example, 〈1〉 has signature 1 but H has signature 0, with H ⊗ H ∼= H ⊕ H.
Thus GW (R) ∼= Z[H]/(H2−2H) and the signature induces a ring isomorphism
W (R) ∼= Z.

If F = Fq is a finite field with q odd, then I/I2 ∼= Z/2, and an elementary
argument due to Steinberg shows that the ideal I2 is zero (Ex.

EII.5.12
5.12). The

structure of the ring W (F ) now follows from
II.5.6.6
5.6.6: if q ≡ 3 (mod 4) then

W (F ) = Z/4; if q ≡ 1 (mod 4), W (Fq) = Z/2[η]/(η2), where η = 〈a〉 − 1 for
some a ∈ F .

If F is a finite field extension of the p-adic rationals, then I3 = 0 and I2 is
cyclic of order 2. If p is odd and the residue field is Fq, then W (F ) contains
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Z/2 as a subring if q ≡ 1 (mod 4) and contains Z/4 if q ≡ 3 (mod 4). If p = 2
then W (F ) contains Z/2 as a subring if and only if

√
−1 ∈ F . Otherwise W (F )

contains Z/4 or Z/8, according to whether −1 is a sum of two squares, an issue
which is somewhat subtle.

If F = Q, the ring mapW (Q)→W (R) = Z is onto, with kernel N satisfying
N3 = 0. Since I/I2 = Q×/Q×2, the kernel is infinite but under control.

Quadratic Forms

The theory of symmetric bilinear forms is closely related to the theory of
quadratic forms, which we now sketch.

II.5.7 Definition 5.7. Let V be a vector space over a field F . A quadratic form on
V is a function q : V → F such that q(av) = a2 q(v) for every a ∈ F and
v ∈ V , and such that the formula Bq(v, w) = q(v + w) − q(v) − q(w) defines
a symmetric bilinear form Bq on V . We call (V, q) a quadratic space if Bq is
nondegenerate, and call (V,Bq) the underlying symmetric inner product space.
We write Quad(F ) for the category of quadratic spaces and form-preserving
maps.

The orthogonal sum (V, q) ⊕ (V ′, q′) of two quadratic spaces is defined to
be V ⊕ V ′ equipped with the quadratic form v ⊕ v′ 7→ q(v) + q′(v′). This
is a quadratic space, whose underlying symmetric inner product space is the
orthogonal sum (V,Bq) ⊕ (V ′, Bq′). Thus Quad(F ) is a symmetric monoidal
category, and the underlying space functor Quad(F )→ SBil(F ) sending (V, q)
to (V,Bq) is monoidal.

Here is one source of quadratic spaces. Suppose that β is a (possibly non-
symmetric) bilinear form on V . The function q(v) = β(v, v) is visibly quadratic,
with associated symmetric bilinear form Bq(v, w) = β(v, w)+β(w, v). By choos-
ing an ordered basis of V , it is easy to see that every quadratic form arises in
this way. Note that when β is symmetric we have Bq = 2β; if char(F ) 6= 2 this
shows that β 7→ 1

2q defines a monoidal functor SBil(F )→ Quad(F ) inverse to
the underlying functor, and proves the following result.

II.5.7.1 Lemma 5.7.1. If char(F ) 6= 2 then the underlying space functor Quad(F )→
SBil(F ) is an equivalence of monoidal categories.

A quadratic space (V, q) is said to be split if it contains a subspace N so
that q(N) = 0 and dim(V ) = 2 dim(N). For example, the quadratic forms
q(x, y) = xy + cy2 on V = F 2 are split.

II.5.7.2 Definition 5.7.2. The groupWQ(F ) is defined to be the quotient of the group
K0Quad(F ) by the subgroup of all split quadratic spaces.

It follows from Ex.
EII.5.11
5.11 that the underlying space functor defines a homo-

morphism WQ(F ) → W (F ). By Lemma
II.5.7.1
5.7.1, this is an isomorphism when

char(F ) 6= 2.
When char(F ) = 2, the underlying symmetric inner product space of a

quadratic space (V, q) is always hyperbolic, and V is always even-dimensional;
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see Ex.
EII.5.13
5.13. In particular,WQ(F )→W (F ) is the zero map when char(F ) = 2.

By Ex.
EII.5.13
5.13, WQ(F ) is a W (F )-module with WQ(F )/I ·WQ(F ) given by the

Arf invariant. We will describe the rest of the filtration In · WQ(F ) in III.
III.7.10.4
7.10.4.

EXERCISES

EII.5.1 5.1. Let R be a ring and let P∞(R) denote the category of all countably gen-
erated projective R-modules. Show that K⊕0 P∞(R) = 0.

EII.5.2 5.2. Suppose that the Krull-Schmidt Theorem holds in an additive category C,
i.e., every object of C can be written as a finite direct sum of indecomposable
objects, in a way that is unique up to permutation. Show that K⊕0 (C) is the
free abelian group on the set of isomorphism classes of indecomposable objects.

EII.5.3 5.3. Use Ex.
EII.5.2
5.2 to prove Corollary

II.5.5.1
5.5.1.

EII.5.4 5.4. Let R be a commutative ring, and let H0(SpecR,Q×>0) denote the free
abelian group of all continuous maps Spec(R)→ Q×>0. Show that [P ] 7→ rank(P )
induces a split surjection fromK0FP(R) ontoH0(SpecR,Q×>0). In the next two

exercises, we shall show that the kernel of this map is isomorphic to K̃0(R)⊗Q.

EII.5.5 5.5. Let R be a commutative ring, and let U+ denote the subset of the ring
K0(R)⊗Q consisting of all x such that rank(x) takes only positive values.

(a) Use the fact (Corollary
II.4.6.1
4.6.1) that the ideal K̃0(R) is nilpotent to show

that U+ is an abelian group under multiplication, and that there is a split
exact sequence

0→ K̃0(R)⊗Q
exp
> U+

rank
> H0(SpecR,Q×>0)→ 0.

(b) Show that P 7→ [P ]⊗ 1 is an additive function from FP(R) to the multi-
plicative group U+, and that it induces a map K0FP(R)→ U+.

EII.5.6 5.6. (Bass) Let R be a commutative ring. Show that the map K0FP(R)→ U+

of the previous exercise is an isomorphism. Hint: The map is onto by Ex.
EII.2.10
2.10.

Conversely, if [P ]⊗ 1 = [Q]⊗ 1 in U+, show that P ⊗Rn ∼= Q⊗Rn for some n.

EII.5.7 5.7. Suppose that a finite group G acts freely on X, and let X/G denote the
orbit space. Show that VBG(X) is equivalent to the category VB(X/G), and
conclude that K0

G(X) ∼= KU(X/G).

EII.5.8 5.8. Let R be a commutative ring. Show that the determinant of a projective
module induces a monoidal functor det : P(R)→ Pic(R), and that the resulting
map K0(det) : K0P(R) → K0Pic(R) is the determinant map K0(R) → Pic(R)
of Proposition

II.2.6
2.6.
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EII.5.9 5.9. Let G be a finite group. Given a finite G-set X and a Z[G]-module M , the
abelian group X ×M carries a Z[G]-module structure by g(x,m) = (gx, gm).
Show that X×− induces an additive functor from P(Z[G]) to itself (

II.2.8
2.8). Then

show that the pairing (X,M) 7→ X ×M makes K0(Z[G]) into a module over
the Burnside ring A(G).

EII.5.10 5.10. If X = (V,B) and X ′ = (V ′, B′) are two inner product spaces, show that
there is a nondegenerate bilinear form β on V ⊗V ′ satisfying β(v⊗v′, w⊗w′) =
B(v, w)B′(v′, w′) for all v, w ∈ V and v′, w′ ∈ V ′. Writing X ⊗ X ′ for this
inner product space, show that X ⊗ X ′ ∼= X ′ ⊗ X and (X1 ⊕ X2) ⊗ X ′ ∼=
(X1 ⊗X ′)⊕ (X2 ⊗X ′). Then show that X ⊗H ∼= H ⊕ · · · ⊕H.

EII.5.11 5.11. A symmetric inner product space S = (V,B) is called split if it has a
basis so that B is represented by a matrix

(
0
I
I
A

)
. Note that the sum of split

spaces is also split, and that the hyperbolic plane is split. We define W (F ) to
be the quotient of GW (F ) by the subgroup of classes [S] of split spaces.

(a) If char(F ) 6= 2, show that every split space S is hyperbolic. Conclude that
this definition of W (F ) agrees with the definition given in

II.5.6.2
5.6.2.

(b) For any a ∈ F×, show that 〈a〉 ⊕ 〈−a〉 is split.

(c) If S is split, show that each (V,B) ⊗ S is split. In particular, (V,B) ⊕
(V,−B) = (V,B) ⊗

(
〈1〉 ⊕ 〈−1〉

)
is split. Conclude that W (F ) is also a

ring when char(F ) = 2.

(d) If char(F ) = 2, show that the split space S = 〈1〉⊕〈1〉 is not hyperbolic, yet
〈1〉⊕S ∼= 〈1〉⊕H. This shows that Witt Cancellation fails if char(F ) = 2.
Hint: consider the associated quadratic forms. Then consider the basis
(1, 1, 1), (1, 0, 1), (1, 1, 0) of 〈1〉 ⊕ S.

EII.5.12 5.12. If a+ b = 1 in F , show that 〈a〉⊕ 〈b〉 ∼= 〈ab〉⊕ 〈1〉. Conclude that in both
GW (F ) and W (F ) we have the Steinberg identity

(
〈a〉 − 1

)(
〈b〉 − 1

)
= 0.

EII.5.13 5.13. Suppose that char(F ) = 2 and that (V, q) is a quadratic form.

(a) Show that Bq(v, v) = 0 for every v ∈ V .

(b) Show that the underlying inner product space (V,Bq) is hyperbolic, hence
split in the sense of Ex.

EII.5.11
5.11. This shows that dim(V ) is even, and that

the map WQ(F ) → W (F ) is zero. Hint: Find two elements x, y in V so
that Bq(x, y) = 1, and show that they span an orthogonal summand of V .

(c) If (W,β) is a symmetric inner product space, show that there is a unique
quadratic form q′ on V ′ = V ⊗ W satisfying q′(v ⊕ w) = q(v)β(w,w),
such that the underlying bilinear form satisfies Bq′(v ⊗ w, v′ ⊗ w′) =
Bq(v, v

′)β(w,w′). Show that this product makes WQ(F ) into a module
over W (F ).
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(d) (Arf invariant) Let ℘ : F → F denote the additive map ℘(a) = a2+a. By
(b), we may choose a basis x1, . . . , xn, y1 . . . , yn of V so that each xi, yi
span a hyperbolic plane. Show that the element ∆(V, q) =

∑
q(xi)q(yi) of

F/℘(F ) is independent of the choice of basis, called the Arf invariant of
the quadratic space (after C. Arf, who discovered it in 1941). Then show
that ∆ is an additive surjection. Using (c), H. Sah showed that the Arf
invariant induces an isomorphism WQ(F )/I ·WQ(F ) ∼= F/℘(F ).

(e) Consider the quadratic forms q(a, b) = a2 + ab + b2 and q′(a, b) = ab on
V =F 2. Show they are isometric if and only if F contains the field F4.

EII.5.14 5.14. (Kato) If char(F ) = 2, show that there is a ring homomorphismW (F )→
F ⊗F 2 F sending 〈a〉 to a−1 ⊗ a.

6 K0 of an Abelian Category

Another important situation in which we can define Grothendieck groups is
when we have a (skeletally) small abelian category. This is due to the natural
notion of exact sequence in an abelian category. We begin by quickly reminding
the reader what an abelian category is, defining K0 and then making a set-
theoretic remark.

It helps to read the definitions below with some examples in mind. The
reader should remember that the prototype abelian category is the category
mod-R of right modules over a ring R, the morphisms being R-module homo-
morphisms. The full subcategory with objects the free R-modules {0, R,R2, . . . }
is additive, and so is the slightly larger full subcategory P(R) of finitely gen-
erated projective R-modules (this observation was already made in chapter I).
For more information on abelian categories, see textbooks like

Mac
[116] or

WHomo
[223].

II.6.1 Definition 6.1. (1) An additive category is a category containing a zero object
‘0’ (an object which is both initial and terminal), having all products A × B,
and such that every set Hom(A,B) is given the structure of an abelian group
in such a way that composition is bilinear. In an additive category the product
A × B is also the coproduct A ∐ B of A and B; we call it the direct sum and
write it as A⊕B to remind ourselves of this fact.

(2) An abelian category A is an additive category in which (i) every morphism
f : B → C has a kernel and a cokernel, and (ii) every monic arrow is a kernel, and
every epi is a cokernel. (Recall that f : B → C is called monic if fe1 6= fe2 for
every e1 6= e2 : A→ B; it is called epi if g1f 6= g2f for every g1 6= g2 : C → D.)

(3) In an abelian category, we call a sequence A
f−→ B

g−→ C exact if ker(g)
equals im(f) ≡ ker{B → coker(f)}. A longer sequence is exact if it is exact
at all places. By the phrase short exact sequence in an abelian category A we
mean an exact sequence of the form:

0→ A′ → A→ A′′ → 0. (∗)
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II.6.1.1 Definition 6.1.1 (K0A). Let A be an abelian category. Its Grothendieck group
K0(A) is the abelian group presented as having one generator [A] for each object
A of A, with one relation [A] = [A′] + [A′′] for every short exact sequence (∗)
in A.

Here are some useful identities which hold in K0(A).
(a) [0] = 0 (take A = A′).
(b) if A ∼= A′ then [A] = [A′] (take A′′ = 0).
(c) [A′ ⊕A′′] = [A′] + [A′′] (take A = A′ ⊕A′′).

If two abelian categories are equivalent, their Grothendieck groups are naturally
isomorphic, as (b) implies they have the same presentation. By (c), the group
K0(A) is a quotient of the group K⊕0 (A) defined in §5 by considering A as a
symmetric monoidal category.

II.6.1.2 Universal Property 6.1.2. An additive function from A to an abelian group
Γ is a function f from the objects of A to Γ such that f(A) = f(A′) + f(A′′)
for every short exact sequence (∗) in A. By construction, the function A 7→ [A]
defines an additive function from A to K0(A). This has the following universal
property: any additive function f from A to Γ induces a unique group homo-
morphism f : K0(A)→ Γ, with f([A]) = f(A) for every A.

For example, the direct sum A1⊕A2 of two abelian categories is also abelian.
Using the universal property of K0 it is clear that K0(A1 ⊕ A2) ∼= K0(A1) ⊕
K0(A2). More generally, an arbitrary direct sum

⊕Ai of abelian categories is
abelian, and we have K0(

⊕Ai) ∼=
⊕
K0(Ai).

II.6.1.3 Set-theoretic Considerations 6.1.3. There is an obvious set-theoretic diffi-
culty in defining K0A when A is not small; recall that a category A is called
small if the class of objects of A forms a set.

We will always implicitly assume that our abelian category A is skeletally
small, i.e., it is equivalent to a small abelian category A′. In this case we define
K0(A) to be K0(A′). Since any other small abelian category equivalent to A
will also be equivalent to A′, the definition of K0(A) is independent of this
choice.

II.6.1.4 Example 6.1.4 (All R-modules). We cannot take the Grothendieck group of
the abelian category mod-R because it is not skeletally small. To finesse
this difficulty, fix an infinite cardinal number κ and let modκ-R denote the
full subcategory of mod-R consisting of all R-modules of cardinality < κ. As
long as κ ≥ |R|, modκ-R is an abelian subcategory of mod-R having a set
of isomorphism classes of objects. The Eilenberg Swindle I.

I.2.8
2.8 applies to give

K0(modκ-R) = 0. In effect, the formula M ⊕M∞ ∼=M∞ implies that [M ] = 0
for every module M .

II.6.1.5 6.1.5. The natural type of functor F : A → B between two abelian categories
is an additive functor; this is a functor for which all the maps Hom(A,A′) →
Hom(FA,FA′) are group homomorphisms. However, not all additive functors
induce homomorphisms K0(A)→ K0(B).
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We say that an additive functor F is exact if it preserves exact sequences—
that is, for every exact sequence (∗) in A, the sequence 0→ F (A′) → F (A)→
F (A′′)→ 0 is exact in B. The presentation of K0 implies that any exact functor
F defines a group homomorphismK0(A)→ K0(B) by the formula [A] 7→ [F (A)].

Suppose given an inclusion A ⊂ B of abelian categories, with A a full sub-
category of B. If the inclusion is an exact functor, we say that A is an exact
abelian subcategory of B. As with all exact functors, the inclusion induces a
natural map K0(A)→ K0(B).

II.6.2 Definition 6.2 (G0R). If R is a (right) noetherian ring, let M(R) denote the
subcategory of mod-R consisting of all finitely generated R-modules. The noe-
therian hypothesis implies thatM(R) is an abelian category, and we writeG0(R)
for K0M(R). (We will give a definition of M(R) and G0(R) for non-noetherian
rings in Example

II.7.1.4
7.1.4 below.)

The presentation of K0(R) in §2 shows that there is a natural map K0(R)→
G0(R), called the Cartan homomorphism (send [P ] to [P ]).

Associated to a ring homomorphism f : R → S are two possible maps on
G0: the contravariant transfer map and the covariant base change map.

When S is finitely generated as an R-module (e.g., S = R/I), there is a
“transfer” homomorphism f∗ : G0(S)→ G0(R). It is induced from the forgetful
functor f∗ : M(S)→M(R), which is exact.

Whenever S is flat as an R-module, there is a “base change” homomorphism
f∗ : G0(R) → G0(S). Indeed, the base change functor f∗ : M(R) → M(S),
f∗(M) = M ⊗R S, is exact if and only if S is flat over R. We will extend
the definition of f∗ in §7 to the case in which S has a finite resolution by flat
R-modules using Serre’s Formula

II.7.9.3
7.9.3: f∗([M ]) =

∑
(−1)i[TorRi (M,S)].

If F is a field then every exact sequence in M(F ) splits, and it is easy to see
that G0(F ) ∼= K0(F ) ∼= Z. In particular, if R is an integral domain with field
of fractions F , then there is a natural map G0(R) → G0(F ) = Z, sending [M ]
to the integer dimF (M ⊗R F ).

II.6.2.1 Example 6.2.1 (Abelian groups). When R = Z the Cartan homomorphism
is an isomorphism: K0(Z) ∼= G0(Z) ∼= Z. To see this, first observe that the
sequences

0→ Z
n−→ Z→ Z/nZ→ 0

imply that [Z/nZ] = [Z] − [Z] = 0 in G0(Z) for every n. By the Fundamental
Theorem of finitely generated Abelian Groups, every finitely generated abelian
group M is a finite sum of copies of the groups Z and Z/n, n ≥ 2. Hence
G0(Z) is generated by [Z]. To see that G0(Z) ∼= Z, observe that since Q is a flat
Z-module there is a homomorphism from G0(Z) to G0(Q) ∼= Z sending [M ] to
r(M) = dimQ(M ⊗Q). In effect, r is an additive function; as such it induces a
homomorphism r : G0(Z)→ Z. As r(Z) = 1, r is an isomorphism.

More generally, the Cartan homomorphism is an isomorphism whenever R
is a principal ideal domain, and K0(R) ∼= G0(R) ∼= Z. The proof is identical.
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II.6.2.2 Example 6.2.2 (p-groups). Let Abp denote the abelian category of all finite
abelian p-groups for some prime p. Then K0(Abp) ∼= Z on generator [Z/p]. To
see this, we observe that the length ℓ(M) of a composition series for a finite
p-group M is well-defined by the Jordan-Hölder Theorem. Moreover ℓ is an
additive function, and defines a homomorphism K0(Abp)→ Z with ℓ(Z/p) = 1.
To finish we need only observe that Z/p generates K0(Abp); this follows by
induction on the length of a p-group, once we observe that any L ⊂ M yields
[M ] = [L] + [M/L] in K0(Abp).

II.6.2.3 Example 6.2.3. The category Abfin of all finite abelian groups is the di-
rect sum of the categories Abp of Example

II.6.2.2
6.2.2. Therefore K0(Abfin) =⊕

K0(Abp) is the free abelian group on the set {[Z/p], p prime}.
II.6.2.4 Example 6.2.4. The category M(Z/pn) of all finite Z/pn-modules is an exact

abelian subcategory of Abp, and the argument above applies verbatim to prove
that the simple module [Z/p] generates the group G0(Z/pn) ∼= Z. In partic-
ular, the canonical maps from G0(Z/pn) = K0M(Z/pn) to K0(Abp) are all
isomorphisms.

Recall from Lemma
II.2.2
2.2 that K0(Z/pn) ∼= Z on [Z/pn]. The Cartan homo-

morphism from K0
∼= Z to G0

∼= Z is not an isomorphism; it sends [Z/pn] to
n[Z/p].

II.6.2.5 Definition 6.2.5 (G0(X)). Let X be a noetherian scheme. The category
M(X) of all coherent OX -modules is an abelian category. (See

Hart
[85, II.5.7].)

We write G0(X) for K0M(X). When X = Spec(R) this agrees with Definition
II.6.2
6.2: G0(X) ∼= G0(R), because of the equivalence of M(X) and M(R).

If f : X → Y is a morphism of schemes, there is a base change functor
f∗ : M(Y )→M(X) sending F to f∗F = F ⊗OY

OX ; see I.
I.5.2
5.2. When f is flat,

the base change f∗ is exact and therefore the formula f∗([F ]) = [f∗F ] defines a
homomorphism f∗ : G0(Y )→ G0(X). Thus G0 is contravariant for flat maps.

If f : X → Y is a finite morphism, the direct image f∗F of a coherent sheaf F
is coherent, and f∗ : M(X)→M(Y ) is an exact functor

EGA
[EGA, I(1.7.8)]. In this

case the formula f∗([F ]) = [f∗F ] defines a “transfer” map f∗ : G0(X)→ G0(Y ).
If f : X → Y is a proper morphism, the direct image f∗F of a coherent

sheaf F is coherent, and so are its higher direct images Rif∗F . (This is Serre’s
“Theorem B”; see I.

I.5.2
5.2 or

EGA
[EGA, III(3.2.1)].) The functor f∗ : M(X) →M(Y )

is not usually exact (unless f is finite). Instead we have:

II.6.2.6 Lemma 6.2.6. If f : X → Y is a proper morphism of noetherian schemes,
there is a “transfer” homomorphism f∗ : G0(X) → G0(Y ). It is defined by
the formula f∗([F ]) =

∑
(−1)i[Rif∗F ]. The transfer homomorphism makes G0

functorial for proper maps.

Proof. For each coherent F the Rif∗F vanish for large i, so the sum is finite.
By

II.6.2.1
6.2.1 it suffices to show that the formula gives an additive function. But if

0 → F ′ → F → F ′′ → 0 is a short exact sequence in M(X) there is a finite
long exact sequence in M(Y ):

0→ f∗F ′ → f∗F → f∗F ′′ → R1f∗F ′ → R1f∗F → R1f∗F ′′ → R2f∗F ′ → · · ·
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and the alternating sum of the terms is f∗[F ′]− f∗[F ] + f∗[F ′′]. This alternat-
ing sum must be zero by Proposition

II.6.6
6.6 below, so f∗ is additive as desired.

(Functoriality is relegated to Ex.
EII.6.15
6.15.)

The next lemma follows by inspection of the definition of the direct limit (or
filtered colimit) A = lim−→Ai of a filtered system of small categories; the objects
and morphisms of A are the direct limits of the object and morphisms of the
Ai.

II.6.2.7 Lemma 6.2.7 (Filtered colimits). Suppose that {Ai}i∈I is a filtered family of
small abelian categories and exact functors. Then the direct limit A = lim−→Ai is
also an abelian category, and

K0(A) = lim−→K0(Ai).

II.6.2.8 Example 6.2.8 (S-torsion modules). Suppose that S is a multiplicatively
closed set of elements in a noetherian ring R. Let MS(R) be the subcategory
of M(R) consisting of all finitely generated R-modules M such that Ms = 0 for
some s ∈ S. For example, if S = {pn} then MS(Z) = Abp was discussed in
Example

II.6.2.2
6.2.2. In general MS(R) is not only the union of the M(R/RsR), but

is also the union of the M(R/I) as I ranges over the ideals of R with I ∩S 6= φ.
By

II.6.2.7
6.2.7,

K0MS(R) = lim−→
I∩S 6=φ

G0(R/I) = lim−→
s∈S

G0(R/RsR).

Devissage

The method behind the computation in Example
II.6.2.4
6.2.4 that G0(Z/pn) ∼= K0Abp

is called devissage, a French word referring to the “unscrewing” of the compo-
sition series. Here is a formal statement of the process, due to Alex Heller.

II.6.3 Devissage Theorem 6.3. Let B ⊂ A be small abelian categories. Suppose
that (a) B is an exact abelian subcategory of A, closed in A under subobjects
and quotient objects; and (b) Every object A of A has a finite filtration A =
A0 ⊃ A1 ⊃ · · · ⊃ An = 0 with all quotients Ai/Ai+1 in B.
Then the inclusion functor B ⊂ A is exact and induces an isomorphism

K0(B) ∼= K0(A).

Proof. Let i∗ : K0(B) → K0(A) denote the canonical homomorphism. To see
that i∗ is onto, observe that every filtration A = A0 ⊃ A1 ⊃ · · · ⊃ An = 0
yields [A] =

∑
[Ai/Ai+1] in K0(A). This follows by induction on n, using the

observation that [Ai] = [Ai+1] + [Ai/Ai+1]. Since by (b) such a filtration exists
with the Ai/Ai+1 in B, this shows that the canonical i∗ is onto.

For each A in A, fix a filtration A = A0 ⊃ A1 ⊃ · · · ⊃ An = 0 with each
Ai/Ai+1 in B, and define f(A) to be the element

∑
[Ai/Ai+1] of K0(B). We

claim that f(A) is independent of the choice of filtration. Because any two
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filtrations have equivalent refinements (Ex.
EII.6.2
6.2), we only need check refinements

of our given filtration. By induction we need only check for one insertion, say
changing Ai ⊃ Ai+1 to Ai ⊃ A′ ⊃ Ai+1. Appealing to the exact sequence

0→ A′/Ai+1 → Ai/Ai+1 → Ai/A
′ → 0,

we see that [Ai/Ai+1] = [Ai/A
′] + [A′/Ai+1] in K0(B), as claimed.

Given a short exact sequence 0 → A′ → A → A′′ → 0, we may construct
a filtration {Ai} on A by combining our chosen filtration for A′ with the in-
verse image in A of our chosen filtration for A′′. For this filtration we have∑

[Ai/Ai+1] = f(A′) + f(A′′). Therefore f is an additive function, and defines
a map K0(A) → K0(B). By inspection, f is the inverse of the canonical map
i∗.

II.6.3.1 Corollary 6.3.1. Let I be a nilpotent ideal of a noetherian ring R. Then the
inclusion mod-(R/I) ⊂mod-R induces an isomorphism

G0(R/I) ∼= G0(R).

Proof. To apply devissage, we need to observe that if M is a finitely generated
R-module, the filtration M ⊇ MI ⊇ MI2 ⊇ · · · ⊇ MIn = 0 is finite, and all
the quotients MIn/MIn+1 are finitely generated R/I-modules.

Notice that this also proves the scheme version:

II.6.3.2 Corollary 6.3.2. Let X be a noetherian scheme, and Xred the associated re-
duced scheme. Then G0(X) ∼= G0(Xred).

II.6.3.3 Application 6.3.3 (R-modules with support). Example
II.6.2.2
6.2.2 can be gener-

alized as follows. Given a central element s in a ring R, let Ms(R) de-
note the abelian subcategory of M(R) consisting of all finitely generated R-
modules M such that Msn = 0 for some n. That is, modules such that
M ⊃Ms ⊃Ms2 ⊃ · · · is a finite filtration. By devissage,

K0Ms(R) ∼= G0(R/sR).

More generally, suppose we are given an ideal I of R. Let MI(R) be the (ex-
act) abelian subcategory of M(R) consisting of all finitely generated R-modules
M such that the filtration M ⊃ MI ⊃ MI2 ⊃ · · · is finite, i.e., such that
MIn = 0 for some n. By devissage,

K0MI(R) ∼= K0M(R/I) = G0(R/I).

II.6.3.4 Example 6.3.4. Let X be a noetherian scheme, and i : Z ⊂ X the inclusion
of a closed subscheme. Let MZ(X) denote the abelian category of coherent
OX -modules Z supported on Z, and I the ideal sheaf in OX such that OX/I ∼=
OZ . Via the direct image i∗ : M(Z) ⊂ M(X), we can consider M(Z) as the
subcategory of all modules M in MZ(X) such that IM = 0. Every M in
MZ(X) has a finite filtration M ⊃MI ⊃MI2 ⊃ · · · with quotients in M(Z),
so by devissage:

K0MZ(X) ∼= K0M(Z) = G0(Z).
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The Localization Theorem

LetA be an abelian category. A Serre subcategory ofA is an abelian subcategory
B which is closed under subobjects, quotients and extensions. That is, if 0 →
B → C → D → 0 is exact in A then

C ∈ B ⇔ B,D ∈ B.

Now assume for simplicity that A is small. If B is a Serre subcategory of A,
we can form a quotient abelian category A/B as follows. Call a morphism f in
A a B-iso if ker(f) and coker(f) are in B. The objects of A/B are the objects
of A, and morphisms A1 → A2 are equivalence classes of diagrams in A:

A1
f←−A′ g−→ A2, f a B-iso.

Such a morphism is equivalent to A1 ← A′′ → A2 if and only if there is a
commutative diagram:

A′

A1 <
<

A

∧

> A2

>

A′′
∨

><
where A′ ← A→ A′′ are B-isos.

The composition with A2
f ′

←−A′′′ h−→ A3 is A1
f←−A′←−A −→ A′′′

h−→ A3,
where A is the pullback of A′ and A′′′ over A2. The proof that A/B is abelian,
and that the quotient functor loc : A → A/B is exact, may be found in

Swan
[193,

p. 44ff] or
Gabriel
[61]. (See the appendix to this chapter.)

It is immediate from the construction of A/B that loc(A) ∼= 0 if and only
if A is an object of B, and that for a morphism f : A → A′ in A, loc(f) is an
isomorphism if and only if f is a B-iso. In fact A/B solves a universal problem
(see op. cit.): if T : A → C is an exact functor such that T (B) ∼= 0 for all B in
B, then there is a unique exact functor T ′ : A/B → C so that T = T ′ ◦ loc.

II.6.4 Localization Theorem 6.4. (Heller) Let A be a small abelian category, and
B a Serre subcategory of A. Then the following sequence is exact:

K0(B)→ K0(A) loc−→ K0(A/B)→ 0.

Proof. By the construction of A/B, K0(A) maps onto K0(A/B) and the com-
position K0(B) → K0(A/B) is zero. Hence if Γ denotes the cokernel of the
map K0(B) → K0(A) there is a natural surjection Γ → K0(A/B); to prove
the theorem it suffices to give an inverse. For this it suffices to show that
γ(loc(A)) = [A] defines an additive function from A/B to Γ, because the induced
map γ : K0(A/B)→ Γ will be inverse to the natural surjection Γ→ K0(A/B).
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Since loc : A → A/B is a bijection on objects, γ is well-defined. We claim
that if loc(A1) ∼= loc(A2) in A/B then [A1] = [A2] in Γ. To see this, represent

the isomorphism by a diagram A1
f←−A g−→ A2 with f a B-iso. As loc(g) is an

isomorphism in A/B, g is also a B-iso. In K0(A) we have

[A] = [A1] + [ker(f)]− [coker(f)] = [A2] + [ker(g)]− [coker(g)].

Hence [A] = [A1] = [A2] in Γ, as claimed.
To see that γ is an additive function, suppose given an exact sequence in

A/B of the form:

0→ loc(A0)
i−→ loc(A1)

j−→ loc(A2)→ 0;

we have to show that [A1] = [A0] + [A2] in Γ. Represent j by a diagram

A1
f←−A g−→ A2 with f a B-iso. Since [A] = [A1] + [ker(f)] − [coker(f)] in

K0(A), [A] = [A1] in Γ. Applying the exact functor loc to

0→ ker(g)→ A
g−→ A2 → coker(g)→ 0,

we see that coker(g) is in B and that loc(ker(g)) ∼= loc(A0) in A/B. Hence
[ker(g)] ≡ [A0] in Γ, and in Γ we have

[A1] = [A] = [A2] + [ker(g)]− [coker(g)] ≡ [A0] + [A2]

proving that γ is additive, and finishing the proof of the Localization Theorem.

II.6.4.1 Application 6.4.1. Let S be a central multiplicative set in a ring R, and let
modS(R) denote the Serre subcategory of mod-R consisting of S-torsion mod-
ules, i.e., those R-modules M such that every m ∈ M has ms = 0 for some
s ∈ S. Then there is a natural equivalence between mod-(S−1R) and the quo-
tient category mod-R/modS(R). If R is noetherian and MS(R) denotes the
Serre subcategory of M(R) consisting of finitely generated S-torsion modules,
thenM(S−1R) is equivalent toM(R)/MS(R). The Localization exact sequence
becomes:

K0MS(R)→ G0(R)→ G0(S
−1R)→ 0.

In particular, if S = {sn} for some s then by Application
II.6.3.3
6.3.3 we have an exact

sequence

G0(R/sR)→ G0(R)→ G0(R[
1

s
])→ 0.

More generally, if I is an ideal of a noetherian ring R, we can consider
the Serre subcategory MI(R) of modules with some MIn = 0 discussed
in Application

II.6.3.3
6.3.3. The quotient category M(R)/MI(R) is known to be

isomorphic to the category M(U) of coherent OU -modules, where U is the
open subset of Spec(R) defined by I. The composition of the isomorphism
K0M(R/I) ∼= K0MI(R) of

II.6.3.3
6.3.3 with K0MI(R) → K0M(R) is evidently the
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transfer map i∗ : G0(R/I)→ G0(R). Hence the Localization Sequence becomes
the exact sequence

G0(R/I)
i∗−→ G0(R)→ G0(U)→ 0.

II.6.4.2 Application 6.4.2. Let X be a scheme, and i : Z ⊂ X a closed subscheme
with complement j : U ⊂ X. Let modZ(X) denote the Serre subcategory of
OX -mod consisting of all OX -modules F with support in Z, i.e., such that
F|U = 0. Gabriel proved

Gabriel
[61] that j∗ induces an equivalence: OU -mod ∼=

OX -mod/modZ(X).
Morover, if X is noetherian and MZ(X) denotes the category of coherent

sheaves supported in Z, then M(X)/MZ(X) ∼= M(U). The inclusion i : Z ⊂
X induces an exact functor i∗ : M(Z) ⊂ M(X), and G0(Z) ∼= K0MZ(X) by
Example

II.6.3.4
6.3.4. Therefore the Localization Sequence becomes:

G0(Z)
i∗−→ G0(X)

j∗−→ G0(U)→ 0.

For example, ifX = Spec(R) and Z = Spec(R/I), we recover the exact sequence
in the previous application.

II.6.4.3 Application 6.4.3 (Higher Divisor Class Groups). Given a commutative noe-
therian ring R, let Di(R) denote the free abelian group on the set of prime ideals
of height exactly i; this is generalizes the group of Weil divisors in Ch.I, §3. Let
Mi(R) denote the category of finitely generated R-modulesM whose associated
prime ideals all have height ≥ i. Each Mi(R) is a Serre subcategory of M(R);
see Ex.

EII.6.9
6.9. Let F iG0(R) denote the image of K0M

i(R) in G0(R) = K0M(R).
These subgroups form a filtration · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 = G0(R), called the
coniveau filtration of G0(R).

It turns out that there is an equivalenceMi/Mi+1(R) ∼=
⊕

Mp(Rp), ht(p) =
i. By Application

II.6.3.3
6.3.3 of devissage, K0Mp(Rp) ∼= G0(Rp/pRp) ∼= Z, so there is

an isomorphism Di(R)
∼=−→ K0M

i/Mi+1(R), [p] 7→ [R/p]. By the Localization
Theorem, we have an exact sequence

K0M
i+1(R)→ K0M

i(R)→ Di(R)→ 0.

ThusG0(R)/F
1 ∼= D0(R), and each subquotient F i/F i+1 is a quotient ofDi(R).

For i ≥ 1, the generalized Weil divisor class group CHi(R) is defined to be
the subgroup of K0M

i−1/Mi+1(R) generated by the classes [R/p], ht(p) ≥ i.
This definition is due to L. Claborn and R. Fossum; the notation reflects a
theorem (in V.9 below) that the kernel of Di(R) → CHi(R) is generated by
rational equivalence. For example, we will see in Ex.

EII.6.9
6.9 that if R is a Krull

domain then CH1(R) is the usual divisor class group Cl(R), and G0(R)/F
2 ∼=

Z⊕ Cl(R).
Similarly, ifX is a noetherian scheme, there is a coniveau filtration onG0(X).

Let Mi(X) denote the subcategory of M(X) consisting of coherent modules
whose support has codimension ≥ i, and let Di(X) denote the free abelian
group on the set of points of X having codimension i. Then each Mi(X) is a
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Serre subcategory and Mi/Mi+1(X) ∼=
⊕

Mx(OX,x), where x runs over all
points of codimension i in X. Again by devissage, there is an isomorphism
K0M

i/Mi+1(X) ∼= Di(X) and hence G0(X)/F 1 ∼= D0(X). For i ≥ 1, the
generalized Weil divisor class group CHi(X) is defined to be the subgroup of
K0M

i−1/Mi+1(X) generated by the classes [OZ ], codimX(Z) = i. We will see
later on (in V.

V.9.4.1
9.4.1) that CHi(X) is the usual Chow group of codimension i

cycles on X modulo rational equivalence, as defined in
Fulton
[58]. The verification

that CH1(X) = Cl(X) is left to Ex.
EII.6.10
6.10.

We now turn to a clasical application of the Localization Theorem: the Fun-
damental Theorem for G0 of a noetherian ring R. Via the ring map π : R[t]→ R
sending t to zero, we have an inclusion M(R) ⊂M(R[t]) and hence a transfer
map π∗ : G0(R)→ G0(R[t]). By

II.6.4.1
6.4.1 there is an exact localization sequence

G0(R)
π∗−→ G0(R[t])

j∗−→ G0(R[t, t
−1])→ 0. (6.4.4) II.6.4.4

Given an R-module M , the exact sequence of R[t]-modules

0→M [t]
t−→ M [t]→M → 0

shows that in G0(R[t]) we have

π∗[M ] = [M ] = [M [t]]− [M [t]] = 0.

Thus π∗ = 0, because every generator [M ] of G0(R) becomes zero in G0(R[t]).
From the Localization sequence (

II.6.4.4
6.4.4) it follows that j∗ is an isomorphism.

This proves the easy part of the following result.

II.6.5 Fundamental Theorem for G0-theory of Rings 6.5. For every noether-

ian ring R, the inclusions R
i→֒ R[t]

j→֒ R[t, t−1] induce isomorphisms

G0(R) ∼= G0(R[t]) ∼= G0(R[t, t
−1]).

Proof. The ring inclusions are flat, so they induce maps i∗ : G0(R)→ G0(R[t])
and j∗ : G0(R[t]) → G0(R[t, t

−1]). We have already seen that j∗ is an isomor-
phism; it remains to show that i∗ is an isomorphism.

Because R = R[t]/tR[t], there is a map π∗ : G0(R[t]) → G0(R), given by
Serre’s formula: π∗[M ] = [M/Mt]− [annM (t)], where annM (t) = {x ∈M : xt =
0}. (See Ex.

EII.6.6
6.6 or

II.7.9.3
7.9.3 below.) Since π∗i∗[M ] = π∗[M [t]] = [M ], the map i∗

is an injection split by π∗.
We shall present Grothendieck’s proof that i∗ : G0(R) → G0(R[t]) is onto,

which assumes that R is a commutative ring. A proof in the non-commutative
case (due to Serre) will be sketched in Ex.

EII.6.13
6.13.

If G0(R) 6= G0(R[t]), we proceed by noetherian induction to a contradiction.
Among all ideals J for which G0(R/J) 6= G0(R/J [t]), there is a maximal one.
Replacing R by R/J , we may assume that G0(R/I) = G0(R/I[t]) for each
I 6= 0 in R. Such a ring R must be reduced by Corollary

II.6.3.1
6.3.1. Let S be the set
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of non-zero divisors in R; by elementary ring theory S−1R is a finite product∏
Fi of fields Fi, so G0(S

−1R) ∼= ⊕G0(Fi). Similarly S−1R[t] =
∏
Fi[t] and

G0(S
−1R[t]) ∼= ⊕G0(Fi[t]). By Application

II.6.4.1
6.4.1 and Example

II.6.2.8
6.2.8 we have a

diagram with exact rows:

lim−→G0(R/sR) > G0(R) > ⊕G0(Fi) > 0

lim−→G0(R/sR[t])

∼= i∗

∨
> G0(R[t])

i∗

∨
> ⊕G0(Fi[t])

∨
> 0.

Since the direct limits are taken over all s ∈ S, the left vertical arrow is an iso-
morphism by induction. Because each Fi[t] is a principal ideal domain,

II.2.6.3
2.6.3 and

Example
II.6.2.1
6.2.1 imply that the right vertical arrow is the sum of the isomorphisms

G0(Fi) ∼= K0(Fi) ∼= Z ∼= K0(Fi[t]) ∼= G0(Fi[t]).

By the 5-lemma, the middle vertical arrow is onto, hence an isomorphism.

We can generalize the Fundamental Theorem from rings to schemes by a
slight modification of the proof. For every scheme X, let X[t] and X[t, t−1]
denote the schemes X×Spec(Z[t]) and X×Spec(Z[t, t−1]) respectively. Thus if
X = Spec(R) we have X[t] = Spec(R[t]) and X[t, t−1] = Spec(R[t, t−1]). Now
suppose that X is noetherian. Via the map π : X → X[t] defined by t = 0, we
have an inclusion M(X) ⊂ M(X[t]) and hence a transfer map π∗ : G0(X) →
G0(X[t]) as before. The argument we gave after (

II.6.4.4
6.4.4) above goes through to

show that π∗ = 0 here too, because any generator [F ] of G0(X) becomes zero
in G0(X[t]). By

II.6.4.2
6.4.2 we have an exact sequence

G0(X)
π∗−→ G0(X[t])→ G0(X[t, t−1])→ 0

and therefore G0(X[t]) ∼= G0(X[t, t−1]).

II.6.5.1 Fundamental Theorem for G0-theory of Schemes 6.5.1. For every noe-

therian scheme X, the flat maps X[t, t−1]
j→֒ X[t]

i−→ X induce isomorphisms:

G0(X) ∼= G0(X[t]) ∼= G0(X[t, t−1]).

Proof. We have already seen that j∗ is an isomorphism. By Ex.
EII.6.7
6.7 there is a

map π∗ : G0(X[t])→ G0(X) sending [F ] to [F/tF ]− [annF (t)]. Since π
∗i∗[F ] =

(iπ)∗[F ] = [F ], we again see that i∗ is an injection, split by π∗.
It suffices to show that i∗ is a surjection for all X. By noetherian induction,

we may suppose that the result is true for all proper closed subschemes Z of X.
In particular, if Z is the complement of an affine open subscheme U = Spec(R)
of X, we have a commutative diagram whose rows are exact by Application
II.6.4.2
6.4.2.

G0(Z) > G0(X) > G0(R) > 0

G0(Z[t])

∼= i∗

∨
> G0(X[t])

i∗

∨
> G0(R[t])

∼= i∗

∨
> 0
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The outside vertical arrows are isomorphisms, by induction and Theorem
II.6.5
6.5.

By the 5-lemma, G0(X)
i∗−→ G0(X[t]) is onto, and hence an isomorphism.

Euler Characteristics

Suppose that C• : 0 → Cm → · · · → Cn → 0 is a bounded chain complex of
objects in an abelian category A. We define the Euler characteristic χ(C•) of
C• to be the following element of K0(A):

χ(C•) =
∑

(−1)i[Ci].

II.6.6 Proposition 6.6. If C• is a bounded complex of objects in A, the element χ(C•)
depends only upon the homology of C•:

χ(C•) =
∑

(−1)i[Hi(C•)].

In particular, if C• is acyclic (exact as a sequence) then χ(C•) = 0.

Proof. Write Zi and Bi−1 for the kernel and image of the map Ci → Ci−1,
respectively. Since Bi−1 = Ci/Zi and Hi(C•) = Zi/Bi, we compute in K0(A):

∑
(−1)i[Hi(C•)] =

∑
(−1)i[Zi]−

∑
(−1)i[Bi]

=
∑

(−1)i[Zi] +
∑

(−1)i[Bi−1]

=
∑

(−1)i[Ci] = χ(C•).

Let Chhb(A) denote the abelian category of (possibly unbounded) chain
complexes of objects in A having only finitely many nonzero homology groups.
We call such complexes homologically bounded.

II.6.6.1 Corollary 6.6.1. There is a natural surjection χH : K0(Chhb)→ K0(A) send-
ing C• to

∑
(−1)i[Hi(C•)]. In particular, if 0→ A• → B• → C• → 0 is a exact

sequence of homologically bounded complexes then:

χH(B•) = χH(A•) + χH(C•).

EXERCISES

EII.6.1 6.1. Let R be a ring and modf l(R) the abelian category of R-modules with
finite length. Show that K0modf l(R) is the free abelian group

⊕
m Z, a ba-

sis being {[R/m],m a maximal right ideal of R}. Hint: Use the Jordan-Hölder
Theorem for modules of finite length.

EII.6.2 6.2. Schreier Refinement Theorem. Let A = A0 ⊇ A1 ⊇ · · · ⊇ Ar = 0 and A =
A′0 ⊇ A′1 ⊇ · · · ⊇ A′s = 0 be two filtrations of an object A in an abelian category
A. Show that the subobjects Ai,j = (Ai∩A′j)+Ai+1, ordered lexicographically,
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form a filtration of A which refines the filtration {Ai}. By symmetry, there is
also a filtration by the A′j,i = (Ai∩A′j)+A′j+1 which refines the filtration {A′j}.

Prove Zassenhaus’ Lemma, that Ai,j/Ai,j+1
∼= A′j,i/A

′
j,i+1. This shows that

the factors in the two refined filtrations are isomorphic up to a permutation;
the slogan is that “any two filtrations have equivalent refinements.”

EII.6.3 6.3. Jordan-Hölder Theorem in A. An object A in an abelian category A is
called simple if it has no proper subobjects. We say that an object A has
finite length if it has a composition series A = A0 ⊃ · · · ⊃ As = 0 in which
all the quotients Ai/Ai+1 are simple. By Ex.

EII.6.2
6.2, the Jordan-Hölder Theorem

holds in Af l: the simple factors in any composition series of A are unique up to
permutation and isomorphism. Let Af l denote the subcategory of objects in A
of finite length. Show that Af l is a Serre subcategory of A, and that K0(Af l)
is the free abelian group on the set of isomorphism classes of simple objects.

EII.6.4 6.4. Let A be a small abelian category. If [A1] = [A2] in K0(A), show that
there are short exact sequences in A

0→ C ′ → C1 → C ′′ → 0, 0→ C ′ → C2 → C ′′ → 0

such that A1⊕C1
∼= A2⊕C2. Hint: First find sequences 0→ D′i → Di → D′′i →

0 such that A1⊕D′1⊕D′′1⊕D2
∼= A2⊕D′2⊕D′′2⊕D1, and set Ci = D′i⊕D′′i ⊕Dj .

EII.6.5 6.5. Resolution. Suppose that R is a regular noetherian ring, i.e., that every R-
module has a finite projective resolution. Show that the Cartan homomorphism
K0(R)→ G0(R) is onto. (We will see in Theorem

II.7.8
7.8 that it is an isomorphism.)

EII.6.6 6.6. Serre’s Formula. (Cf.
II.7.9.3
7.9.3) If s is a central element of a ring R, show that

there is a map π∗ : G0(R) → G0(R/sR) sending [M ] to [M/Ms] − [annM (s)],
where annM (s) = {x ∈ M : xs = 0}. Theorem

II.6.5
6.5 gives an example where π∗

is onto, and if s is nilpotent the map is zero by devissage
II.6.3.1
6.3.1. Hint: Use the

map M
s−→ M .

EII.6.7 6.7. Let Y be a noetherian scheme over the ring Z[t], and let X ⊂
π
> Y be the

closed subscheme defined by t = 0. If F is an OY -module, let annF (t) denote the
submodule of F annihilated by t. Show that there is a map π∗ : G0(Y )→ G0(X)
sending [F ] to [F/tF ]− [annF (t)].

EII.6.8 6.8. (Heller-Reiner) Let R be a commutative domain with field of fractions F .
If S = R − {0}, show that there is a well-defined map ∆ : F× → K0MS(R)
sending the fraction r/s ∈ F× to [R/rR] − [R/sR]. Then use Ex.

EII.6.4
6.4 to show

that the localization sequence extends to the exact sequence

1→ R× → F×
∆−→ K0MS(R)→ G0(R)→ Z→ 0.

EII.6.9 6.9. Weil Divisor Class groups. Let R be a commutative noetherian ring.

(a) Show that each Mi(R) is a Serre subcategory of M(R).
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(b) Show that K0M
i−1/Mi+1(R) ∼= CHi(R) ⊕ Di−1(R). In particular, if R

is a 1-dimensional domain then G0(R) = Z⊕ CH1(R).

(c) Show that each F iG0(R)/F
i+1G0(R) is a quotient of the group CHi(R),

defined in Application
II.6.4.3
6.4.3.

(d) Suppose that R is a domain with field of fractions F . As in Ex.
EII.6.8
6.8, show

that there is an exact sequence generalizing Proposition I.
I.3.6
3.6:

0→ R× → F×
∆−→ D1(R)→ CH1(R)→ 0.

In particular, if R is a Krull domain, conclude that CH1(R) ∼= Cl(R) and
G0(R)/F

2 ∼= Z⊕ Cl(R).

(e) If (R,m) is a 1-dimensional local domain and k1, . . . , kn are the residue
fields of the normalization of R over k = R/m, show that CH1(R) ∼=
Z/ gcd{[ki : k]}.

EII.6.10 6.10. Generalize the preceding exercise to a noetherian scheme X, as indicated
in Application

II.6.4.3
6.4.3. Hint: F becomes the function field of X, and (d) becomes

I.
I.5.12
5.12.

EII.6.11 6.11. If S is a multiplicatively closed set of central elements in a noetherian
ring R, show that

K0MS(R) ∼= K0MS(R[t]) ∼= K0MS(R[t, t
−1]).

EII.6.12 6.12. Graded modules. When S = R⊕S1⊕S2⊕· · · is a noetherian graded ring,
let Mgr(S) denote the abelian category of finitely generated graded S-modules.
Write σ for the shift automorphismM 7→M(−1) of the category Mgr(S). Show
that:

(a) K0Mgr(S) is a module over the ring Z[σ, σ−1].

(b) If S is flat over R, there is a map from the direct sum G0(R)[σ, σ
−1] =⊕

n∈ZG0(R)σ
n to K0Mgr(S) sending [M ]σn to [σn(M ⊗ S)].

(c) If S = R, the map in (b) is an isomorphism: K0Mgr(R) ∼= G0(R)[σ, σ
−1].

(d) If S = R[x1, · · · , xm] with x1, · · · , xm in S1, the map is surjective, i.e.,
K0Mgr(S) is generated by the classes [σnM [x1, ..., xm]]. We will see in
Ex.

EII.7.14
7.14 that the map in (b) is an isomorphism for S = R[x1, · · · , xm].

(e) Let B be the subcategory of Mgr(R[x, y]) of modules on which y is nilpo-
tent. Show that B is a Serre subcategory, and that

K0B ∼= K0Mgr(R) ∼= G0(R)[σ, σ
−1].
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EII.6.13 6.13. In this exercise we sketch Serre’s proof of the Fundamental Theorem
II.6.5
6.5

when R is a non-commutative ring. We assume the results of the previous
exercise. Show that the formula j(M) = M/(y − 1)M defines an exact functor
j : Mgr(R[x, y])→M(R[x]), sending B to zero. In fact, j induces an equivalence

Mgr(R[x, y])/B ∼= M(R[x]).

Then use this equivalence to show that the map i∗ : G0(R)→ G0(R[x]) is onto.

EII.6.14 6.14. G0 of projective space. Let k be a field and set S = k[x0, . . . , xm], with
X = Pmk . Using the notation of Exercises

EII.6.3
6.3 and

EII.6.12
6.12, let Mb

gr(S) denote the
Serre subcategory of Mgr(S) consisting of graded modules of finite length. It is

well-known (see
Hart
[85, II.5.15]) that every coherent OX -module is of the form M̃

for someM in Mgr(S), i.e., that the associated sheaf functor Mgr(S)→M(X)

is onto, and that if M has finite length then M̃ = 0. In fact, there is an
equivalence

Mgr(S)/M
b
gr(S)

∼= M(Pmk ).

(See
Hart
[85, Ex. II.5.9(c)].) Under this equivalence σi(S) represents OX(−i).

(a) Let F denote the graded S-module Sm+1, whose basis lies in degree 0.
Use the Koszul exact sequence of I(

I.5.4
5.4):

0→ σm+1(
∧m+1

F )→ · · · → σ2(
∧2

F )→ σ F
x0,...
> S → k → 0

to show that in K0Mgr(S) every finitely generated k-module M satisfies

[M ] =

m+1∑

i=0

(−1)i
(
m+ 1

i

)
σi [M ⊗k S] = (1− σ)m+1[M ⊗k S].

(b) Show that in G0(P
m
k ) every [OX(n)] is a linear combination of the classes

[OX ], [OX(−1)], · · · , [OX(−m)], and that

∑m+1

i=0
(−1)i

(
m+ 1

i

)
[O(−i)] = 0 in G0 P

m
k .

(c) We will see in Ex.
EII.7.14
7.14 that the map in Ex.

EII.6.12
6.12(b) is an isomorphism:

K0Mgr(S) ∼= G0(R)[σ, σ
−1].

Assume this calculation, and show that

G0(P
m
k ) ∼= Zm on generators [OX ], [OX(−1)], · · · , [OX(−m)].

EII.6.15 6.15. Naturality of f∗. Suppose that X
f−→ Y

g−→ Z are proper morphisms
between noetherian schemes. Show that (gf)∗ = g∗ f∗ as mapsG0(X)→ G0(Z).
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EII.6.16 6.16. Let R be a noetherian ring, and r ∈ R. If r is a nonzerodivisor on modules
Mj whose associated primes all have height i, and 0 =

∑±[Mj ] in K0M
i(R),

show that 0 =
∑±[Mj/rMj ] in K0M

i+1(R). Hint: By devissage, the formula
holds in K0(R/I) for some product I of height i primes. Modify r to be a
nonzerodivisor on R/I without changing the Mj/rMj and use f∗ : G0(R/I)→
G0(R/(I + rR)).
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7 K0 of an Exact Category

If C is an additive subcategory of an abelian category A, we may still talk about
exact sequences: an exact sequence in C is a sequence of objects (and maps) in
C which is exact as a sequence in A. With hindsight, we know that it helps
to require C to be closed under extensions. Thus we formulate the following
definitions.

II.7.0 Definition 7.0 (Exact categories). An exact category is a pair (C, E), where C
is an additive category and E is a family of sequences in C of the form

0→ B
i−→ C

j−→ D → 0, (†)

satisfying the following condition: there is an embedding of C as a full subcate-
gory of an abelian category A so that

(1) E is the class of all sequences (†) in C which are exact in A;

(2) C is closed under extensions in A in the sense that if (†) is an exact
sequence in A with B,D ∈ C then C is isomorphic to an object in C.

The sequences in E are called the short exact sequences of C. We will often abuse
notation and just say that C is an exact category when the class E is clear. We
call a map in C an admissible monomorphism (resp. an admissible epimorphism)
if it occurs as the monomorphism i (resp. as the epi j) in some sequence (†) in
E .

The following hypothesis is commonly satisfied in applications, and is needed
for Euler characteristics and the Resolution Theorem

II.7.6
7.6 below.

II.7.0.1 7.0.1. We say that C is closed under kernels of surjections in A provided that
whenever a map f : B → C in C is a surjection in A then ker(f) ∈ C. The
well-read reader will observe that Bass’ definition of exact category in

Bass
[15] is

what we call an exact category closed under kernels of surjections.

An exact functor F : B → C between exact categories is an additive functor
F carrying short exact sequences in B to exact sequences in C. If B is a full
subcategory of C, and the exact sequences in B are precisely the sequences (†)
in B which are exact in C, we call B an exact subcategory of C. This is consistent
with the notion of an exact abelian subcategory in

II.6.1.5
6.1.5.

II.7.1 Definition 7.1 (K0). Let C be a small exact category. K0(C) is the abelian
group having generators [C], one for each object C of C, and relations [C] =
[B] + [D] for every short exact sequence 0→ B → C → D → 0 in C.

As in
II.6.1.1
6.1.1, we have [0] = 0, [B⊕D] = [B]+[D] and [B] = [C] if B and C are

isomorphic. As before, we could actually define K0(C) when C is only skeletally
small, but we shall not dwell on these set-theoretic intricacies. Clearly, K0(C)
satisfies the universal property

II.6.1.2
6.1.2 for additive functions from C to abelian

groups.
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II.7.1.1 Example 7.1.1. The category P(R) of finitely generated projective R-modules
is exact by virtue of its embedding in mod-R. As every exact sequence of
projective modules splits, we have K0P(R) = K0(R).

Any additive category is a symmetric monoidal category under ⊕, and the
above remarks show that K0(C) is a quotient of the group K⊕0 (C) of §5. Since
abelian categories are exact, Examples

II.6.2.1
6.2.1–

II.6.2.4
6.2.4 show that these groups are

not identical.

II.7.1.2 Example 7.1.2 (Split exact categories). A split exact category C is an exact
category in which every short exact sequence in E is split (i.e., isomorphic to
0→ B → B⊕D → D → 0). In this case we have K0(C) = K⊕0 (C) by definition.
For example, the category P(R) is split exact.

If X is a topological space, embedding VB(X) in the abelian category of
families of vector spaces over X makes VB(X) into an exact category. When X
is paracompact then, by the Subbundle Theorem I.

I.4.1
4.1, VB(X) is a split exact

category, so that K0(X) = K0(VB(X)).
We will see in Exercise

II.7.7
7.7 that any additive category C may be made into a

split exact category by equipping it with the class Esplit of sequences isomorphic
to 0→ B → B ⊕D → D → 0

Warning. Every abelian category A has a natural exact category structure,
but it also has the split exact structure. These will yield different K0 groups
in general, unless something like a Krull-Schmidt Theorem holds in A. We will
always use the natural exact structure unless otherwise indicated.

II.7.1.3 Example 7.1.3 (K0 of a scheme). Let X be a scheme (or more generally a
ringed space). The category VB(X) of algebraic vector bundles on X, intro-
duced in (§I.5), is an exact category by virtue of its being an additive sub-
category of the abelian category OX -mod of all OX -modules. If X is quasi-
projective over a commutative ring, we write K0(X) for K0VB(X). If X is
noetherian, the inclusion VB(X) ⊂ M(X) yields a Cartan homomorphism
K0(X) → G0(X). We saw in I.

I.5.3
5.3 that exact sequences in VB(X) do not

always split, so VB(X) is not always a split exact category.

II.7.1.4 Example 7.1.4 (G0 of non-noetherian rings). If R is a non-noetherian ring,
the category modfg(R) of all finitely generated R-modules will not be abelian,
because R → R/I has no kernel inside this category. However, it is still an
exact subcategory of mod-R, so once again we might try to consider the group
K0modfg(R). However, it turns out that this definition does not have good
properties (see Ex.

EII.7.3
7.3 and

EII.7.4
7.4).

Here is a more suitable definition, based upon
SGA6
[SGA6, I.2.9]. An R-module

M is called pseudo-coherent if it has an infinite resolution · · · → P1 → P0 →
M → 0 by finitely generated projective R-modules. Pseudo-coherent modules
are clearly finitely presented, and if R is right noetherian then every finitely
generated module is pseudo-coherent. Let M(R) denote the category of all
pseudo-coherent R-modules. The “Horseshoe Lemma”

WHomo
[223, 2.2.8] shows that

M(R) is closed under extensions in mod-R, so it is an exact category. (It is
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also closed under kernels of surjections, and cokernels of injections in mod-R,
as can be seen using the mapping cone.)

Now we define G0(R) = K0M(R). Note that if R is right noetherian then
M(R) is the usual category of §6, and we have recovered the definition of G0(R)
in

II.6.2
6.2.

II.7.1.5 Example 7.1.5. The opposite category Cop has an obvious notion of exact
sequence: turn the arrows around in the exact sequences of C. Formally, this
arises from the inclusion of Cop in Aop . Clearly K0(C) ∼= K0(Cop).

II.7.1.6 Example 7.1.6. The direct sum C1 ⊕ C2 of two exact categories is also exact,
the ambient abelian category being A1 ⊕A2. Clearly K0(C1 ⊕ C2) ∼= K0(C1)⊕
K0(C2). More generally, the direct sum

⊕ Ci of exact categories is an exact
category (inside the abelian category ⊕Ai), and as in

II.6.1.2
6.1.2 this yieldsK0(⊕Ci) ∼=

⊕K0(Ci).

II.7.1.7 Example 7.1.7 (Filtered colimits). Suppose that {Ci} is a filtered family of
exact subcategories of a fixed abelian category A. Then C = ∪Ci is also an
exact subcategory of A, and by inspection of the definition we see that

K0(
⋃
Ci) = lim−→K0(Ci).

The ambient A is unnecessary: if {Ci} is a filtered family of exact categories and
exact functors, then K0(lim−→Ci) = lim−→K0(Ci); see Ex.

EII.7.9
7.9. As a case in point, if

a ring R is the union of subrings Rα then P(R) is the direct limit of the P(Rα),
because every P in P(R) is finitely presented; we have K0(R) = lim−→K0(Rα), as
in

II.2.1.6
2.1.6.

II.7.2 Lemma 7.2 (Cofinality Lemma). Let B be an exact subcategory of C which is
closed under extensions in C, and which is cofinal in the sense that for every C
in C there is a C ′ in C so that C ⊕C ′ is in B. Then K0B is a subgroup of K0C.

Proof. By
II.1.3
1.3 we know that K⊕0 B is a subgroup of K⊕0 C. Given a short exact

sequence 0 → C0 → C1 → C2 → 0 in C, choose C ′0 and C ′2 in C so that
B0 = C0⊕C ′0 and B2 = C2⊕C ′2 are in B. Setting B1 = C1⊕C ′0⊕C ′2, we have
the short exact sequence 0 → B0 → B1 → B2 → 0 in C. As B is closed under
extensions in C, B1 ∈ B. Therefore in K⊕0 C:

[C1]− [C0]− [C2] = [B1]− [B0]− [B2].

Thus the kernel ofK⊕0 C → K0C equals the kernel ofK⊕0 B → K0B, which implies
that K0B → K0C is an injection.

II.7.2.1 Remark 7.2.1. The proof shows that K0(C)/K0(B) ∼= K⊕0 C/K⊕0 B, and that
every element of K0(C) has the form [C]− [B] for some B in B and C in C.
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Idempotent completion.

II.7.3 7.3. A category C is called idempotent complete if every idempotent endomor-
phism e of an object C factors as C → B → C with the composite B → C → B
being the identity. Given C, we can form a new category Ĉ whose objects are
pairs (C, e) with e an idempotent endomorphism of an object C of C; a mor-
phism from (C, e) to (C ′, e′) is a map f : C → C ′ in C such that f = e′fe.

The category Ĉ is idempotent complete, since an idempotent endomorphism f
of (C, e) factors through the object (C, efe).

Ĉ is called the idempotent completion of C. To see why, consider the natural
embedding of C into Ĉ sending C to (C, id). It is easy to see that any functor
from C to an idempotent complete category D must factor through a functor
Ĉ → D that is unique up to natural equivalence. In particular, if C is idempotent
complete then C ∼= Ĉ.

If C is an additive subcategory of an abelian category A, then Ĉ is equivalent
to a larger additive subcategory C′ of A (see Ex.

EII.7.6
7.6). Moreover, C is cofinal in

Ĉ, because (C, e) is a summand of C in A. By the Cofinality Lemma
II.7.2
7.2, we

see that K0(C) is a subgroup of K0(Ĉ).
II.7.3.1 Example 7.3.1. Consider the subcategory Free(R) of M(R) consisting of

finitely generated free R-modules. The idempotent completion of Free(R) is
the category P(R) of finitely generated projective modules. Thus the cyclic
group K0Free(R) is a subgroup of K0(R). If R satisfies the Invariant Basis
Property (IBP), then K0Free(R) ∼= Z and we have recovered the conclusion of
Lemma

II.2.1
2.1.

II.7.3.2 Example 7.3.2. Let R→ S be a ring homomorphism, and let B denote the full
subcategory of P(S) on the modules of the form P ⊗R S for P in P(R). Since
it contains all the free modules Sn, B is cofinal in P(S), so K0B is a subgroup
of K0(S). Indeed, K0B is the image of the natural map K0(R)→ K0(S).

Products

Let A, B and C be exact categories. A functor F : A× B → C is called biexact
if F (A,−) and F (−, B) are exact functors for every A in A and B in B, and
F (0,−) = F (−, 0) = 0. (The last condition, not needed in this chapter, can
always be arranged by replacing C by an equivalent category.) The following
result is completely elementary.

II.7.4 Lemma 7.4. A biexact functor F : A× B → C induces a bilinear map

K0A⊗K0B → K0C.
[A]⊗ [B] 7→ [F (A,B)]

II.7.4.1 Application 7.4.1. Let R be a commutative ring. The tensor product ⊗R
defines a biexact functor P(R) × P(R) → P(R), as well as a biexact functor
P(R) ×M(R) → M(R). The former defines the product [P ][Q] = [P ⊗ Q] in
the commutative ring K0(R), as we saw in §2. The latter defines an action of
K0(R) on G0(R), making G0(R) into a K0(R)-module.
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II.7.4.2 Application 7.4.2. Let X be a scheme (or more generally a locally ringed
space) The tensor product of vector bundles defines a biexact functor VB(X)×
VB(X) → VB(X) (see I.

I.5.3
5.3). This defines a product on K0(X) satisfying

[E ][F ] = [E ⊗ F ]. This product is clearly commutative and associative, so it
makes K0(X) into a commutative ring. We will discuss this ring further in the
next section.

If X is noetherian, recall from
II.6.2.5
6.2.5 that G0(X) denotes K0M(X). Since

the tensor product of a vector bundle and a coherent module is coherent, we
have a functor VB(X)×M(X)→M(X). It is biexact (why?), so it defines an
action of K0(X) on G0(X), making G0(X) into a K0(X)-module.

II.7.4.3 Application 7.4.3. (Almkvist) If R is a ring, let End(R) denote the exact
category whose objects (P, α) are pairs, where P is a finitely generated projective
R-module and α is an endomorphism of P . A morphism (P, α) → (Q, β) in
End(R) is a morphism f : P → Q in P(R) such that fα = βf , and exactness
in End(R) is determined by exactness in P(R).

If R is commutative, the tensor product of modules gives a biexact functor

⊗R : End(R)×End(R)→ End(R),

((P, α), (Q, β)) 7→ (P ⊗R Q,α⊗R β).

As ⊗R is associative and symmetric up to isomorphism, the induced product
makes K0End(R) into a commutative ring with unit [(R, 1)]. The inclusion
of P(R) in End(R) by α = 0 is split by the forgetful functor, and the kernel
End0(R) of K0End(R) → K0(R) is not only an ideal but a commutative ring
with unit 1 = [(R, 1)] − [(R, 0)]. Almkvist proved that (P, α) 7→ det(1 − αt)
defines an isomorphism of End0(R) with the subgroup of the multiplicative
group W (R) = 1 + tR[[t]] consisting of all quotients f(t)/g(t) of polynomials
in 1 + tR[t] (see Ex.

EII.7.18
7.18). Almkvist also proved that End0(R) is a subring of

W (R) under the ring structure of
II.4.3
4.3.

If A is an R-algebra, ⊗R is also a pairing End(R) × End(A) → End(A),
making End0(A) into an End0(R)-module. We leave the routine details to the
reader.

II.7.4.4 Example 7.4.4. If R is a ring, let Nil(R) denote the category whose objects
(P, ν) are pairs, where P is a finitely generated projective R-module and ν
is a nilpotent endomorphism of P . This is an exact subcategory of End(R).
The forgetful functor Nil(R) → P(R) sending (P, ν) to P is exact, and is
split by the exact functor P(R) → Nil(R) sending P to (P, 0). Therefore
K0(R) = K0P(R) is a direct summand of K0Nil(R). We write Nil0(R) for
the kernel of K0Nil(R) → P(R), so that there is a direct sum decomposition
K0Nil(R) = K0(R)⊕Nil0(R). Since [P, ν] = [P ⊕Q, ν⊕0]− [Q, 0] in K0Nil(R),
we see that Nil0(R) is generated by elements of the form

[
(Rn, ν)

]
− n

[
(R, 0)

]

for some n and some nilpotent matrix ν.
If A is an R-algebra, then the tensor product pairing on End restricts to

a biexact functor F : End(R) ×Nil(A) → Nil(A). The resulting bilinear map
K0End(R) ×K0Nil(A) → K0Nil(A) is associative, and makes Nil0(A) into a
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module over the ring End0(R), and makes Nil0(A) → End0(A) an End0(R)-
module map.

Any additive functor T : P(A)→ P(B) induces an exact functor Nil(A)→
Nil(B) and a homomorphism Nil0(A) → Nil0(B). If A and B are R-algebras
and T is R-linear, Nil0(A) → Nil0(B) is an End0(R)-module homomorphism.
(Exercise!)

II.7.4.5 Example 7.4.5. If R is a commutative regular ring, and A = R[x]/(xN ), we
will see in III.

III.3.8.1
3.8.1 that Nil0(A)→ End0(A) is an injection, identifying Nil0(A)

with the ideal (1 + xtA[t])× of End0(A), and identifying [(A, x)] with 1− xt.
This isomorphism Nil0(A) ∼= (1+xtA[t])× is universal in the following sense.

If B is an R-algebra and (P, ν) is in Nil(B), with νN = 0, we may regard P as
an A–B bimodule. By

II.2.8
2.8, this yields an R-linear functor Nil0(A) → Nil0(B)

sending (A, x) to (P, ν). By
II.7.4.4
7.4.4, there is an End0(R)-module homomorphism

(1 + xtA[t])× → Nil0(B) sending 1− xt to [(P, ν)].

Euler characteristics can be useful in exact categories as well as in abelian
categories, as the following analogue of Proposition

II.6.6
6.6 shows.

II.7.5 Proposition 7.5. Suppose that C is closed under kernels of surjections in an
abelian category A. If C• is a bounded chain complex in C whose homology
Hi(C•) is also in C then in K0(C):

χ(C•) =
∑

(−1)i[Ci] equals
∑

(−1)i[Hi(C•)].

In particular, if C• is any exact sequence in C then χ(C•) = 0.

Proof. The proof we gave of
II.6.6
6.6 for abelian categories will go through, provided

that the Zi and Bi are objects of C. Consider the exact sequences:

0→ Zi →Ci → Bi−1 → 0

0→ Bi →Zi → Hi(C•)→ 0.

Since Bi = 0 for i≪ 0, the following inductive argument shows that all the Bi
and Zi belong to C. If Bi−1 ∈ C then the first sequence shows that Zi ∈ C; since
Hi(C•) is in C, the second sequence shows that Bi ∈ C.

II.7.5.1 Corollary 7.5.1. Suppose C is closed under kernels of surjections in A. If
f : C ′

•
→ C• is a morphism of bounded complexes in C, inducing an isomorphism

on homology, then
χ(C ′

•
) = χ(C•).

Proof. Form cone(f), the mapping cone of f , which has Cn⊕C ′n−1 in degree n.
By inspection, χ(cone(f)) = χ(C•) − χ(C ′•). But cone(f) is an exact complex
because f is a homology isomorphism, so χ(cone(f)) = 0.
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The Resolution Theorem

We need a definition in order to state our next result. Suppose that P is an
additive subcategory of an abelian category A. A P-resolution P• → C of an
object C of A is an exact sequence in A

· · · → Pn → · · · → P1 → P0 → C → 0

in which all the Pi are in P. The P-dimension of C is the minimum n (if it
exists) such that there is a resolution P• → C with Pi = 0 for i > n.

II.7.6 Theorem 7.6 (Resolution Theorem). Let P ⊂ C ⊂ A be an inclusion of addi-
tive categories with A abelian (A gives the notion of exact sequence to P and
C). Assume that:

(a) Every object C of C has finite P-dimension; and

(b) C is closed under kernels of surjections in A.

Then the inclusion P ⊂ C induces an isomorphism K0(P) ∼= K0(C).

Proof. To see that K0(P) maps onto K0(C), observe that if P• → C is a finite
P-resolution, then the exact sequence

0→ Pn → · · · → P0 → C → 0

has χ = 0 by
II.7.5
7.5, so [C] =

∑
(−1)i[P ] = χ(P•) in K0(C). To see that K0(P) ∼=

K0(C), we will show that the formula χ(C) = χ(P•) defines an additive function
from C to K0(P). For this, we need the following lemma, due to Grothendieck.

II.7.6.1 Lemma 7.6.1. Given a map f : C ′ → C in C and a finite P-resolution P• → C,
there is a finite P-resolution P ′

•
→ C ′ and a commutative diagram

0 −→ P ′m −→ · · · −→ P ′n −→ · · · −→P ′1 > P ′0 > C ′−→ 0

0 −→ Pn
∨
−→ · · · −→P1

∨
> P0

∨
> C−→ 0

f
∨

We will prove this lemma in a moment. First we shall use it to finish the
proof of Theorem

II.7.6
7.6. Suppose given two finite P-resolutions P• → C and

P ′
•
→ C of an object C. Applying the lemma to the diagonal map C → C ⊕ C

and P• ⊕ P ′
•
→ C ⊕ C, we get a P-resolution P ′′

•
→ C and a map P ′′

•
→

P• ⊕ P ′• of complexes. Since the maps P• ← P ′′
•
→ P ′

•
are quasi-isomorphisms,

Corollary
II.7.5.1
7.5.1 implies that χ(P•) = χ(P ′′

•
) = χ(P ′

•
). Hence χ(C) = χ(P•) is

independent of the choice of P-resolution.
Given a short exact sequence 0 → C ′ → C → C ′′ → 0 in C and a P-

resolution P• → C, the lemma provides a P-resolution P ′
•
→ C ′ and a map

f : P ′
•
→ P•. Form the mapping cone complex cone(f), which has Pn ⊕P ′n−1 in
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degree n, and observe that χ(cone(f)) = χ(P•) − χ(P ′•). The homology exact
sequence

Hi(P
′)→ Hi(P )→ Hi(cone(f))→ Hi−1(P

′)→ Hi−1(P )

shows that Hicone(f) = 0 for i 6= 0, and H0(cone(f)) = C ′′. Thus cone(f) →
C ′′ is a finite P-resolution, and so

χ(C ′′) = χ(cone(f)) = χ(P•)− χ(P ′•) = χ(C)− χ(C ′).
This proves that χ is an additive function, so it induces a map χ : K0C → K0(P).
If P is in P then evidently χ(P ) = [P ], so χ is the inverse isomorphism to the
mapK0(P)→ K0(C). This finishes the proof of the Resolution Theorem

II.7.6
7.6.

Proof of Lemma
II.7.6.1
7.6.1. We proceed by induction on the length n of P•. If n = 0,

we may choose any P-resolution of C ′; the only nonzero map P ′n → Pn is
P ′0 → C ′ → C ∼= P0. If n ≥ 1, let Z denote the kernel (in A) of ε : P0 → C and
let B denote the kernel (in A) of (ε,−f) : P0 ⊕ C ′ → C. As C is closed under
kernels, both Z and B are in C. Moreover, the sequence

0→ Z → B → C ′ → 0

is exact in C (because it is exact in A). Choose a surjection P ′0 → B with P ′0 in
P, let f0 be the composition P ′0 → B → P0 and let Y denote the kernel of the
surjection P ′0 → B → C ′. By induction applied to the induced map Y → Z, we
can find a P-resolution P ′

•
[+1] of Y and maps fi : P

′
i → Pi making the following

diagram commute (the rows are not exact at Y and Z):

· · · P ′2 > P ′1 >> Y > > P ′0 > C ′ −→ 0

· · · P2

∨
> P1

∨
>> Z
∨
> > P0

f0
∨

> C −→ 0.

f
∨

Splicing the rows by deleting Y and Z yields the desired P-resolution of C ′.

II.7.7 Definition 7.7 (H(R)). Given a ring R, let H(R) denote the category of all R-
modules M having a finite resolution by finitely generated projective modules,
and let Hn(R) denote the subcategory in which the resolutions have length ≤ n.
We write pdR(M) for the length of the smallest such resolution of M .

By the Horseshoe Lemma
WHomo
[223, 2.2.8], both H(R) and Hn(R) are exact

subcategories of mod-R. The following Lemma shows that they are also closed
under kernels of surjections in mod-R.

II.7.7.1 Lemma 7.7.1. If 0→ L→M
f→N → 0 is a short exact sequence of modules,

withM in Hm(R) and N in Hn(R), then L is in Hℓ(R), where ℓ=min{m,n−1}.
Proof. If P• → M and Q• → N are projective resolutions, and P• → Q• lifts
f , then the kernel P ′0 of the surjection P0 ⊕ Q1 → Q0 is finitely generated
projective, and the truncated mapping cone · · · → P1⊕Q2 → P ′0 is a resolution
of L.
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II.7.7.2 Corollary 7.7.2. K0(R) ∼= K0H(R) ∼= K0Hn(R) for all n ≥ 1.

Proof. Apply the Resolution Theorem to P(R) ⊂ H(R).

Here is a useful variant of the above construction. Let S be a multiplicatively
closed set of central nonzerodivisors in a ring R. We say a moduleM is S-torsion
if Ms = 0 for some s ∈ S (cf. Example

II.6.2.8
6.2.8), and write HS(R) for the exact

subcategory H(R) ∩MS(R) of S-torsion modules M in H(R). Similarly, we
write Hn,S(R) for the S-torsion modules in Hn(R). Note that H0,S(R) = 0,
and that the modules R/sR belong to H1,S(R).

II.7.7.3 Corollary 7.7.3. K0HS(R) ∼= K0Hn,S(R) ∼= K0H1,S(R) for all n ≥ 1.

Proof. We apply the Resolution Theorem with P = H1,S(R). By Lemma
II.7.7.1
7.7.1,

each Hn,S(R) is closed under kernels of surjections. Every N in Hn,S(R) is
finitely generated, so if Ns = 0 there is an exact sequence

0→ L→ (R/sR)m → N → 0.

If n ≥ 2 then L is in Hn−1,S(R) by Lemma
II.7.7.1
7.7.1. By induction, L and hence

N has a P-resolution.

II.7.7.4 Corollary 7.7.4. If S is a multiplicatively closed set of central nonzerodivisors
in a ring R, the sequence K0HS(R)→ K0(R)→ K0(S

−1R) is exact.

Proof. If [P ] − [Rn] ∈ K0(R) vanishes in K0(S
−1R), S−1P is stably free

(Cor.
II.1.3
1.3). Hence there is an isomorphism (S−1R)m+n ≃−→ S−1P ⊕ (S−1R)m.

Clearing denominators yields a map f : Rm+n → P ⊕Rm whose kernel and cok-
ernel are S-torsion. But ker(f) = 0 because S consists of nonzerodivisors, and
therefore M = coker(f) is in H1,S(R). But the map K0HS(R) → K0H(R) =
K0(R) sends [M ] to [M ] = [P ]− [Rn].

Let R be a regular noetherian ring. Since every module has finite projective
dimension, H(R) is the abelian category M(R) discussed in §6. Combining
Corollary

II.7.7.2
7.7.2 with the Fundamental Theorem for G0 (

II.6.5
6.5), we have:

II.7.8 Theorem 7.8 (Fundamental Theorem for K0 of regular rings). If R is a regu-
lar noetherian ring, then K0(R) ∼= G0(R). Moreover,

K0(R) ∼= K0(R[t]) ∼= K0(R[t, t
−1]).

If R is not regular, we can still use the localization sequence
II.7.7.4
7.7.4 to get

a partial result, which will be considerably strengthened by the Fundamental
Theorem for K0 in chapter III.

II.7.8.1 Proposition 7.8.1. K0(R[t])→ K0(R[t, t
−1]) is injective for every ring R.

To prove this, we need the following lemma. Recall from Example
II.7.4.4
7.4.4

that Nil(R) is the category of pairs (P, ν) with ν a nilpotent endomorphism of
P ∈ P(R).
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II.7.8.2 Lemma 7.8.2. Let S be the multiplicative set {tn} in the polynomial ring
R[t]. Then Nil(R) is equivalent to the category H1,S(R[t]) of all t-torsion R[t]-
modules M in H1(R[t]).

Proof. If (P, ν) is in Nil(R), let Pν denote the R[t]-module P on which t acts
as ν. It is a t-torsion module because tnPν = νnP = 0 for large n. A projective
resolution of Pν is given by the “characteristic sequence” of ν:

0→ P [t]
t−ν−→ P [t]→ Pν → 0, (7.8.3) II.7.8.3

Thus Pν is an object of H1,S(R[t]). Conversely, each M in H1,S(R[t]) has a
projective resolution 0 → P → Q → M → 0 by finitely generated projective
R[t]-modules, and M is killed by some power tn of t. From the exact sequence

0→ Tor
R[t]
1

(
M,R[t]/(tn)

)
→ P/tnP → Q/tnQ→M → 0

and the identification of the first term with M we obtain the exact sequence

0 → M
tn−→ P/tnP → P/tnQ → 0. Since P/tnP is a projective R-module and

pdR(P/t
nQ) ≤ 1, we see that M must be a projective R-module. Thus (M, t)

is an object of Nil(R).

Combining Lemma
II.7.8.2
7.8.2 with Corollary

II.7.7.3
7.7.3 yields:

II.7.8.4 Corollary 7.8.4. K0Nil(R) ∼= K0HS(R[t]).

Proof of Proposition
II.7.8.1
7.8.1. By Corollaries

II.7.7.4
7.7.4 and

II.7.8.4
7.8.4, we have an exact

sequence
K0Nil(R)→ K0(R[t])→ K0(R[t, t

−1]).

It suffices to show that the left map is zero. This map is induced by the forgetful
functorNil(R)→ H(R[t]) sending (P, ν) to P . Since the characteristic sequence
(
II.7.8.3
7.8.3) of ν shows that [P ] = 0 in K0(R[t]), we are done.

Base change and Transfer Maps for Rings

II.7.9 7.9. Let f : R → S be a ring homomorphism. We have already seen that the
base change ⊗RS : P(R) → P(S) is an exact functor, inducing f∗ : K0(R) →
K0(S). If S ∈ P(R), we observed in

II.2.8.1
2.8.1 that the forgetful functor P(S) →

P(R) is exact, inducing the transfer map f∗ : K0(S)→ K0(R).
Using the Resolution Theorem, we can also define a transfer map f∗ if S ∈

H(R). In this case every finitely generated projective S-module is in H(R),
because if P ⊕Q = Sn then pdR(P ) ≤ pdR(Sn) = pdR(S) <∞. Hence there is
an (exact) forgetful functor P(S) → H(R), and we define the transfer map to
be the induced map

f∗ : K0(S) = K0P(S)→ K0H(R) ∼= K0(R). (7.9.1) II.7.9.1

A similar trick works to construct base change maps for the groups G0.
We saw in

II.6.2
6.2 that if S is flat as an R-module then ⊗RS is an exact functor
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M(R) → M(S) and we obtained a map f∗ : G0(R) → G0(S). More generally,
suppose that S has finite flat dimension fdR(S) = n as a left R-module, i.e.,
that there is an exact sequence

0→ Fn → · · · → F1 → F0 → S → 0

of R-modules, with the Fi flat. Let F denote the full subcategory of M(R)
consisting of all finitely generated R-modulesM with TorRi (M,S) = 0 for i 6= 0;
F is an exact category concocted so that ⊗RS defines an exact functor from F to
M(S). Not only does F contain P(R), but from homological algebra one knows
that (if R is noetherian) every finitely generated R-module has a finite resolution
by objects in F ; for any projective resolution P• →M the kernel of Pn → Pn−1
(the nth syzygy) of any projective resolution will be in F . The long exact
Tor sequence shows that F is closed under kernels, so the Resolution Theorem
applies to yield K0(F) ∼= K0M(R) = G0(R). Therefore if R is noetherian and
fdR(S) < ∞ we can define the base change map f∗ : G0(R) → G0(S) as the
composite

G0(R) ∼= K0(F) ⊗−→ K0M(S) = G0(S). (7.9.2) II.7.9.2

The following formula for f∗ was used in §6 to show that G0(R) ∼= G0(R[x]).

II.7.9.3 Serre’s Formula 7.9.3. Let f : R → S be a map between noetherian rings
with fdR(S) < ∞. Then the base change map f∗ : G0(R) → G0(S) of (

II.7.9.2
7.9.2)

satisfies:
f∗([M ]) =

∑
(−1)i

[
TorRi (M,S)

]
.

Proof. Choose an F-resolution L• →M (by R-modules Li in F):
0→ Ln → · · · → L1 → L0 →M → 0.

From homological algebra, we know that TorRi (M,S) is the ith homology of the
chain complex L• ⊗R S. By Prop.

II.7.5
7.5, the right-hand side of

II.7.9.3
7.9.3 equals

χ(L• ⊗R S) =
∑

(−1)i[Li ⊗R S] = f∗(
∑

(−1)i[Li]) = f∗([M ]).

EXERCISES

EII.7.1 7.1. Suppose that P is an exact subcategory of an abelian category A, closed
under kernels of surjections in A. Suppose further that every object of A is
a quotient of an object of P (as in Corollary

II.7.7.2
7.7.2). Let Pn ⊂ A be the full

subcategory of objects having P-dimension ≤ n. Show that each Pn is an exact
category closed under kernels of surjections, so that by the Resolution Theorem
K0(P) ∼= K0(Pn). Hint. If 0 → L → P → M → 0 is exact with P ∈ P and
M ∈ P1, show that L ∈ P.

EII.7.2 7.2. Let A be a small exact category. If [A1] = [A2] in K0(A), show that there
are short exact sequences in A

0→ C ′ → C1 → C ′′ → 0, 0→ C ′ → C2 → C ′′ → 0

such that A1 ⊕ C1
∼= A2 ⊕ C2. (Cf. Ex.

EII.6.4
6.4.)
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EII.7.3 7.3. This exercise shows why the noetherian hypothesis was needed for G0 in
Corollary

II.6.3.1
6.3.1, and motivates the definition of G0(R) in

II.7.1.4
7.1.4. Let R be the

ring k ⊕ I, where I is an infinite-dimensional vector space over a field k, with
multiplication given by I2 = 0.

(a) (Swan) Show that K0modfg(R) = 0 but K0modfg(R/I) = G0(R/I) = Z.

(b) Show that every pseudo-coherent R-module (
II.7.1.4
7.1.4) is isomorphic to Rn

for some n. Conclude that G0(R) = Z.

EII.7.4 7.4. The groups G0(Z[G]) and K0modfg(Z[G]) are very different for the free
group G on two generators x and y. Let I be the two-sided ideal of Z[G]
generated by y, so that Z[G]/I = Z[x, x−1]. As a right module, Z[G]/I is not
finitely presented.

(a) (Lück) Construct resolutions 0 → Z[G]2 → Z[G] → Z → 0 and 0 →
Z[G]/I → Z[G]/I → Z→ 0. Conclude that K0modfg(Z[G]) = 0.

(b) Gersten proved in
Ger74
[65] that K0(Z[G]) = Z by showing that every finitely

presented Z[G]-module is inH(Z[G]), i.e., has a finite resolution by finitely
generated projective modules. Show that G0(Z[G]) ∼= K0(Z[G]) ∼= Z.

EII.7.5 7.5. Naturality of base change. Let R
f−→ S

g−→ T be maps between noetherian
rings, with fdR(S) and fdS(T ) finite. Show that g∗f∗ = (gf)∗ as maps G0(R)→
G0(T ).

EII.7.6 7.6. Idempotent completion. Suppose that (C, E) is an exact category. Show

that there is a natural way to make the idempotent completion Ĉ of C into an
exact category, with C an exact subcategory. As noted in

II.7.3
7.3, this proves that

K0(C) is a subgroup of K0(Ĉ).

EII.7.7 7.7. Let C be a small additive category, and A = AbC
op

the (abelian) category
of all additive contravariant functors from C to Ab. The Yoneda embedding
h : C → A, defined by h(C) = HomC(−, C), embeds C as a full subcategory of
A. Show that every object of C is a projective object in A. Then conclude
that this embedding makes C into a split exact category (see

II.7.1.2
7.1.2).

EII.7.8 7.8. (Quillen) Let C be an exact category, with the family E of short exact
sequences (and admissible monics i and admissible epis j)

0→ B
i−→ C

j−→ D → 0 (†)

as in Definition
II.7.0
7.0. Show that the following three conditions hold:

(1) Any sequence in C isomorphic to a sequence in E is in E . If (†) is a sequence
in E then i is a kernel for j (resp. j is a cokernel for i) in C. The class E
contains all of the sequences

0→ B
(1,0)−→ B ⊕D (0,1)−→ D → 0.
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(2) The class of admissible epimorphisms (resp. monomorphisms) is closed
under composition. If (†) is in E and B → B′′, D′ → D are maps in C
then the base change sequence 0 → B → (C ×D D′) → D′ → 0 and the
cobase change sequence 0→ B′′ → (B′′ ∐B C)→ D → 0 are in E .

(3) If C → D is a map in C possessing a kernel, and there is a map C ′ → C
in C so that C ′ → D is an admissible epimorphism, then C → D is
an admissible epimorphism. Dually, if B → C has a cokernel and some
B → C → C ′′ is admissible monomorphism, then so is B → C.

Keller
Ke90
[102, App. A] has proven that (1) and (2) imply (3).

Quillen observed that a converse is true: let C be an additive category,
equipped with a family E of sequences of the form (†). If conditions (1) and (2)
hold, then C is an exact category in the sense of Definition

II.7.0
7.0. The ambient

abelian category used in
II.7.0
7.0 is the category L of contravariant left exact functors:

additive functors F : C → Ab which carry each (†) to a “left” exact sequence

0→ F (D)→ F (C)→ F (B),

and the embedding C ⊂ L is the Yoneda embedding.
We refer the reader to Appendix A of

TT
[200] for a detailed proof that E is

the class of sequences in C which are exact in L, as well as the following useful
result: If C is idempotent complete then it is closed under kernels of surjections
in L.

EII.7.9 7.9. Let {Ci} be a filtered system of exact categories and exact functors. Use
Ex.

EII.7.8
7.8 to generalize Example

II.7.1.7
7.1.7, showing that C = lim−→Ci is an exact category

and that K0(C) = lim−→K0(Ci).
EII.7.10 7.10. Projection Formula for rings. Suppose that R is a commutative ring,

and A is an R-algebra which as an R-module is in H(R). By Ex.
EII.2.1
2.1, ⊗R makes

K0(A) into a K0(R)-module. Generalize Ex.
EII.2.2
2.2 to show that the transfer map

f∗ : K0(A) → K0(R) is a K0(R)-module map, i.e., that the projection formula
holds:

f∗(x · f∗y) = f∗(x) · y for every x ∈ K0(A), y ∈ K0(R).

EII.7.11 7.11. For a localization f : R → S−1R at a central set of nonzerodivisors,
every α : S−1P → S−1Q has the form α = γ/s for some γ ∈ HomR(P,Q) and
s ∈ S. Show that [(P, γ/s,Q)] 7→ [Q/γ(P )] − [Q/sQ] defines an isomorphism
K0(f)→ K0HS(R) identifying the sequences (

II.2.10.2
2.10.2) and

II.7.7.4
7.7.4.

EII.7.12 7.12. This exercise generalizes the Localization Theorem
II.6.4
6.4. Let C be an exact

subcategory of an abelian category A, closed under extensions and kernels of
surjections, and suppose that C contains a Serre subcategory B of A. Let C/B
denote the full subcategory of A/B on the objects of C. Considering B-isos
A→ C with C in C, show that the following sequence is exact:

K0(B)→ K0(C) loc−→ K0(C/B)→ 0.
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EII.7.13 7.13. δ-functors. Let T = {Ti : C → A, i ≥ 0} be a bounded homological δ-
functor from an exact category C to an abelian category A, i.e., for every exact
sequence (†) in C we have a finite long exact sequence in A:

0→ Tn(B)→ Tn(C)→ · · · → T1(D)
δ−→ T0(B)→ T0(C)→ T0(D)→ 0.

Let F denote the category of all C in C such that Ti(C) = 0 for all i > 0, and
assume that every C in C is a quotient of some object of F .
(a) Show that K0(F) ∼= K0(C), and that T defines a map K0(C) → K0(A)

sending [C] to
∑

(−1)i[TiC]. (Cf. Ex.
EII.6.6
6.6 and

II.8.4
8.4 below.)

(b) Suppose that f : X → Y is a map of noetherian schemes, and that OX
has finite flat dimension over f−1OY . Show that there is a base change
map f∗ : G0(Y ) → G0(X) satisfying f∗g∗ = (gf)∗, generalizing (

II.7.9.2
7.9.2)

and Ex.
EII.7.5
7.5.

EII.7.14 7.14. This exercise is a refined version of Ex.
EII.6.12
6.12. Consider S = R[x0, · · · , xm]

as a graded ring with x1, · · · , xn in S1, and letMgr(S) denote the exact category
of finitely generated graded S-modules.

(a) Use Exercise
EII.7.13
7.13 with Ti = TorSi (−, R) to show that K0Mgr(S) ∼=

G0(R)[σ, σ
−1].

(b) Use (a) and Ex.
EII.6.12
6.12(e) to obtain an exact sequence

G0(R)[σ, σ
−1]

i−→ G0(R)[σ, σ
−1]→ G0(R[x])→ 0.

Then show that the map i sends α to α− σα.
(c) Conclude that G0(R) ∼= G0(R[x]).

EII.7.15 7.15. Let R be a noetherian ring. Show that the groups K0Mi(R) of Appli-
cation

II.6.4.3
6.4.3 are all K0(R)-modules, and that the subgroups F i in the coniveau

filtration of G0(R) are K0(R)-submodules. Conclude that if R is regular then
the F i are ideals in the ring K0(R).

EII.7.16 7.16. (Grayson) Show that the operations λn(P, α) = (∧nP,∧nα) make
K0End(R) and End0(R) into λ-rings. Then show that the ring map End0(R)→
W (R) (of

II.7.4.3
7.4.3) is a λ-ring injection, whereW (R) is the ring of big Witt vectors

of R (see Example
II.4.3
4.3). Conclude that End0(R) is a special λ-ring (

II.4.3.1
4.3.1).

The exact endofunctors Fm : (P, α) 7→ (P, αm) and Vm : (P, α) 7→ (P [t]/tm−
α, t) on End(R) induce operators Fm and Vm on End0(R). Show that they agree
with the classical Frobenius and Verschiebung operators, respectively.

EII.7.17 7.17. This exercise is a refinement of
II.7.4.4
7.4.4. Let FnNil(R) denote the full sub-

category of Nil(R) on the (P, ν) with νn = 0. Show that FnNil(R) is an exact
subcategory of Nil(R). If R is an algebra over a commutative ring k, show that
the kernel FnNil0(R) of K0FnNil(R) → K0P(R) is an End0(k)-module, and
FnNil0(R)→ Nil0(R) is a module map.
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The exact endofunctor Fm : (P, ν) 7→ (P, νm) on Nil(R) is zero on
FnNil(R). For α ∈ End0(k) and (P, ν) ∈ Nil0(R), show that (Vmα) · (P, ν) =
Vm(α · Fm(P, ν)), and conclude that Vm End0(k) acts trivially on the image of
FmNil0(A) in Nil0(A).

EII.7.18 7.18. Let αn = αn(a1, ..., an) denote the n×n matrix over a commutative ring
R:

αn(a1, ..., an) =




0 −an
1 0 −an−1

. . .
. . .

...
1 −a1


 .

(a) Show that [(Rn, αn)] = 1 + a1t + · · · + ant
n in W (R). Conclude that

the image of the map End0(R) → W (R) in
II.7.4.3
7.4.3 is indeed the subgroup of all

quotients f(t)/g(t) of polynomials in 1 + tR[t].
(b) Let A be an R-algebra. Recall that (Rn, αn) ∗ [(P, ν)] = [(Pn, αnν)] in

the End0(R)-module Nil0(A) (see
II.7.4.4
7.4.4). Show that (Rn+1, αn+1(a1, . . . , an, 0))∗

[(P, ν)] = (Rn, αn) ∗ [(P, ν)].
(c) Use

II.7.4.5
7.4.5 with R = Z[a1, ..., an] to show that (Rn, αn) ∗ [(P, ν)] =

[(Pn, β)], β = αn(a1ν, ..., anν
n). If νN = 0, this is clearly independent of

the ai for i ≥ N .
(d) Conclude that the End0(R)-module structure on Nil0(A) extends to a

W (R)-module structure by the formula

(
1 +

∑
ait

i
)
∗ [(P, ν)] = (Rn, αn(a1, ..., an)) ∗ [(P, ν)], n≫ 0.

EII.7.19 7.19. (Lam) If R is a commutative ring, and Λ is an R-algebra, we write GR0 (Λ)
for K0RepR(Λ), where RepR(Λ) denotes the full subcategory of mod-Λ con-
sisting of modules M which are finitely generated and projective as R-modules.
If Λ = R[G] is the group ring of a group G, the tensor product M ⊗R N of two
R[G]-modules is again an R[G]-module where g ∈ G acts by (m⊗n)g = mg⊗ng.
Show that:

(a) ⊗R makes GR0 (R[G]) an associative, commutative ring with identity [R].

(b) GR0 (R[G]) is an algebra over the ring K0(R), and K0(R[G]) is a G
R
0 (R[G])-

module.

(c) If R is a regular ring and Λ is finitely generated projective as an R-module,
GR0 (Λ)

∼= G0(Λ).

(d) If R is regular and G is finite, then G0(R[G]) is a commutative K0(R)-
algebra, and that K0(R[G]) is a module over G0(R[G]).

EII.7.20 7.20. (Deligne) A filtered object in an abelian category A is an object A together
with a finite filtration · · · ⊆ WnA ⊆ Wn+1A ⊆ · · · ; if A and B are filtered, a
morphism f : A→ B in A is filtered if F (WnA) ⊆WnB for all n. The category
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Afilt of filtered objects in A is additive but not abelian (because images and
coimages can differ). Let E denote the family of all sequences 0 → A → B →
C → 0 in Afilt such that each sequence 0 → grWn A → grWn B → grWn C → 0 is
exact in A.

(a) Show that (Afilt, E) is an exact category. (See
BBD
[22, 1.1.4].)

(b) Show that K0(Afilt) ∼= Z×K0(A).
EII.7.21 7.21. Replete exact categories. Let C be an additive category. A sequence

0 → B
i−→ C

j−→ D → 0 in C is called replete if i is the categorical kernel of
j, and j is the categorical cokernel of i. Let Erep denote the class of all replete
sequences, and show that (C, Erep) is an exact category.

EII.7.22 7.22. Fix a prime p, let Abp be the category of all finite abelian p-groups
(
II.6.2.2
6.2.2), and let C denote the full subcategory of all groups in Abp whose cyclic
summands have even length (e.g., Z/p2i). Show that C is an additive category,
but not an exact subcategory of Abp (

II.7.0.1
7.0.1). Let E be the sequences in C which

are exact in Abp; is (C, E) an exact category?

EII.7.23 7.23. Give an example of a cofinal exact subcategory B of an exact category C,
such that the map K0B → K0C is not an injection (see

II.7.2
7.2).

EII.7.24 7.24. Suppose that Ci are exact categories. Show that the product category∏ Ci is an exact category. Need K0(
∏ Ci)→

∏
K0(Ci) be an isomorphism?

EII.7.25 7.25. (Claborn-Fossum). Set Rn = C[x0, · · · , xn]/(
∑
x2i = 1). This is the

complex coordinate ring of the n-sphere; it is a regular ring for every n, and
R1
∼= C[z, z−1]. In this exercise, we show that

K̃0(Rn) ∼= K̃U(Sn) ∼=
{
0 if n is odd

Z if n is even, (n 6= 0).

(a) Set z = x0 + ix1 and z̄ = x0 − ix1, so that zz̄ = x20 + x21. Show that

Rn[z
−1] ∼= C[z, z−1, x2, . . . , xn] and Rn/zRn ∼= Rn−2[z̄], n ≥ 2.

(b) Use (a) to show that K̃0(Rn) = 0 for n odd, and that if n is even there is
a surjection β : K0(Rn−2)→ K̃0(Rn).

(c) If n is even, show that β sends [Rn−2] to zero, and conclude that there is
a surjection Z→ K̃0(Rn).

Fossum produced a finitely generated projective R2n-module Pn such that the
map K̃0(R2n)→ K̃U(S2n) ∼= Z sends [Pn] to the generator. (See

Foss
[55].)

(d) Use the existence of Pn to finish the calculation of K0(Rn).

EII.7.26 7.26. (Keller) Recall that any exact category C embeds into the abelian cat-
egory L of left exact functors C → Ab, and is closed under extensions (see
Ex.

EII.7.8
7.8). The countable envelope Ce of C is the full subcategory of L consisting

of all colimits of sequences A0  A1  · · · of admissible monics in C. Show
that countable direct sums exist in Ce. Then use the Eilenberg Swindle (I.

I.2.8
2.8)

to show that K0(Ce) = 0.
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8 K0 of Schemes and Varieties

We have already introduced the Grothendieck group K0(X) of a scheme X
in Example

II.7.1.3
7.1.3. By definition, it is K0VB(X), where VB(X) denotes the

(exact) category of vector bundles on X. The tensor product of vector bundles
makes K0(X) into a commutative ring, as we saw in

II.7.4.2
7.4.2. This ring structure is

natural in X: K0 is a contravariant functor from schemes to commutative rings.
Indeed, we saw in I.

I.5.2
5.2 that a morphism of schemes f : X → Y induces an exact

base change functor f∗ : VB(Y ) → VB(X), preserving tensor products, and
such an exact functor induces a (ring) homomorphism f∗ : K0(Y )→ K0(X).

In this section we shall study K0(X) in more depth. Such a study requires
that the reader has somewhat more familiarity with algebraic geometry than we
assumed in the previous section, which is why this study has been isolated in its
own section. We begin with two general invariants: the rank and determinant
of a vector bundle.

The ring of continuous functions X → Z is isomorphic to the global sections
of the constant sheaf Z, i.e., to the cohomology group H0(X;Z); see

Hart
[85, I.1.0.3].

We saw in I.
I.5.1
5.1 that the rank of a vector bundle F is a continuous function, so

rank(F) ∈ H0(X;Z). Similarly, we saw in I.
I.5.3
5.3 that the determinant of F is a

line bundle on X, i.e., det(F) ∈ Pic(X).

II.8.1 Theorem 8.1. Let X be a scheme. Then H0(X;Z) is isomorphic to a subring
of K0(X), and the rank of a vector bundle induces a split surjection of rings

rank: K0(X)→ H0(X;Z).

Similarly, the determinant of a vector bundle induces a surjection of abelian
groups

det : K0(X)→ Pic(X).

Their sum rank⊕ det : K0(X)→ H0(X;Z)⊕ Pic(X) is a surjective ring map.

The ring structure onH0(X;Z)⊕Pic(X) is (a1,L1)·(a2,L2) = (a1a2,La21 ⊗La12 ).

Proof. Let 0 → E → F → G → 0 be a short exact sequence of vector bundles
on X. At any point x of X we have an isomorphism of free Ox-modules Fx ∼=
Ex ⊕Gx, so rankx(F) = rankx(E) + rankx(G). Hence each rankx is an additive
function on VB(X). As x varies rank becomes an additive function with values
in H0(X;Z), so by

II.6.1.2
6.1.2 it induces a map rank: K0(X)→ H0(X;Z). This is a

ring map, since the formula rank(E ⊗ F) = rank(E) · rank(F) may be checked
at each point x. If f : X → N is continuous, the componentwise free module
OfX has rank f . It follows that rank is onto. Since the class of componentwise

free OX -modules is closed under ⊕ and ⊗, the elements [OfX ]− [OgX ] in K0(X)
form a subring isomorphic to H0(X;Z).

Similarly, det is an additive function, because we have det(F) ∼= det(E) ⊗
det(G) by Ex. I.

EI.5.4
5.4. Hence det induces a map K0(X) → Pic(X) by

II.6.1.2
6.1.2. If

L is a line bundle on X, then the element [L] − [OX ] of K0(X) has rank zero

August 29, 2013 - Page 145 of
LastPage
568



Chapter II

and determinant L. Hence rank⊕ det is onto; the proof that it is a ring map is
given in Ex.

EII.8.5
8.5.

II.8.1.1 Definition 8.1.1. As in
II.2.3
2.3 and

II.2.6.1
2.6.1, the ideal K̃0(X) of K0(X) is defined

to be the kernel of the rank map, so that K0(X) = H0(X;Z) ⊕ K̃0(X) as an
abelian group. In addition, we let SK0(X) denote the kernel of rank⊕ det. By
Theorem

II.8.1
8.1, these are both ideals of the ring K0(X). In fact, they form the

beginning of the γ-filtration; see Theorem
II.4.7
4.7.

Regular Noetherian Schemes and the Cartan Map

Historically, the group K0(X) first arose when X is a smooth projective variety,
in Grothendieck’s proof of the Riemann-Roch Theorem

II.8.10
8.10 (see

BoSe
[30]). The

following theorem was central to that proof.
Recall from §6 that G0(X) is the Grothendieck group of the category M(X)

of coherent OX -modules. The inclusion VB(X) ⊂ M(X) induces a natural
map K0(X)→ G0(X), called the Cartan homomorphism (see

II.7.1.3
7.1.3).

II.8.2 Theorem 8.2. If X is a separated regular noetherian scheme, then every co-
herent OX-module has a finite resolution by vector bundles, and the Cartan
homomorphism is an isomorphism:

K0(X)
∼=−→ G0(X).

Proof. The first assertion is
SGA6
[SGA6, II, 2.2.3 and 2.2.7.1]. It implies that the

Resolution Theorem
II.7.6
7.6 applies to the inclusion VB(X) ⊂M(X).

II.8.2.1 Proposition 8.2.1 (Nonsingular Curves). Let X be a 1-dimensional separated
regular noetherian scheme, such as a nonsingular curve. Then SK0(X) = 0,
and

K0(X) = H0(X;Z)⊕ Pic(X).

Proof. Given Theorem
II.8.2
8.2, this does follow from Ex.

EII.6.10
6.10 (see Example

II.8.2.2
8.2.2

below). However, we shall give a slightly different proof here.
Without loss of generality, we may assume that X is irreducible. If X is

affine, this is just Corollary
II.2.6.3
2.6.3. Otherwise, choose any closed point P on X.

By
Hart
[85, Ex. IV.1.3] the complement U = X−P is affine, say U = Spec(R). Under

the isomorphism Pic(X) ∼= Cl(X) of I.
I.5.14
5.14, the line bundle L(P ) corresponds

to the class of the Weil divisor [P ]. Hence the right-hand square commutes in
the following diagram

G0(P )
i∗

> K̃0(X) > K̃0(R) > 0

0 > Z
∨ {L(P )}

> Pic(X)

det
∨

> Pic(R)

∼= det
∨

> 0.

The top row is exact by
II.6.4.2
6.4.2 (and

II.8.2
8.2), and the bottom row is exact by I.

I.5.14
5.14

and Ex. I.
EI.5.12
5.12. The right vertical map is an isomorphism by

II.2.6.2
2.6.2.
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Now G0(P ) ∼= Z on the class [OP ]. From the exact sequence 0 →
L(−P ) → OX → OP → 0 we see that i∗[OP ] = [OX ] − [L(−P )] in
K0(X), and det(i∗[OP ]) = detL(−P )−1 in Pic(X). Hence the isomorphism
G0(P ) ∼= Z is compatible with the above diagram. A diagram chase yields

K̃0(X) ∼= Pic(X).

II.8.2.2 Example 8.2.2 (Classes of subschemes). Let X be a separated regular noe-
therian scheme. Given a subscheme Z of X, it is convenient to write [Z] for
the element [OZ ] in K0M(X) = K0(X). By Ex.

EII.6.10
6.10(d) we see that SK0(X)

is the subgroup of K0(X) generated by the classes [Z] as Z runs through the
irreducible subschemes of codimension ≥ 2. In particular, if dim(X) = 2 then
SK0(X) is generated by the classes [P ] of closed points (of codimension 2).

II.8.2.3 Example 8.2.3 (Transfer for finite and proper maps). Let f : X → Y be a fi-
nite morphism of separated noetherian schemes with Y regular. As pointed out
in

II.6.2.5
6.2.5, the direct image f∗ is an exact functor M(X) → M(Y ). In this case

we have a transfer map f∗ on K0 sending [F ] to [f∗F ]: K0(X) → G0(X) →
G0(Y ) ∼= K0(Y ).

If f : X → Y is a proper morphism of separated noetherian schemes with Y
regular, we can use the transfer G0(X)→ G0(Y ) of Lemma

II.6.2.6
6.2.6 to get a functo-

rial transfer map f∗ : K0(X)→ K0(Y ), this time sending [F ] to∑(−1)i[Rif∗F ].
II.8.2.4 Example 8.2.4 (A non-separated scheme). Here is an example of a regular but

non-separated scheme X with K0VB(X) 6= G0(X). Let X be “affine n-space
with a double origin” over a field k, where n ≥ 2. This scheme is the union of
two copies of An = Spec(k[x1, . . . , xn]) along An − {0}. Using the localization
sequence for either origin and the Fundamental Theorem

II.6.5
6.5, one can show

that G0(X) = Z ⊕ Z. However the inclusion An ⊂ X is known to induce an
equivalence VB(X) ∼= VB(An) (see

EGA
[EGA, IV(5.9)]), so by Theorem

II.7.8
7.8 we

have K0VB(X) ∼= K0(k[x1, . . . , xn]) ∼= Z.

II.8.3 Definition 8.3. Let H(X) denote the category consisting of all quasi-coherent
OX -modules F such that, for each affine open subscheme U = Spec(R) of X,
F|U has a finite resolution by vector bundles. Since F|U is defined by the finitely
generated R-module M = F(U) this condition just means that M is in H(R).

If X is regular and separated, then we saw in Theorem
II.8.2
8.2 that H(X) =

M(X). If X = Spec(R), it is easy to see that H(X) is equivalent to H(R).
H(X) is an exact subcategory of OX -mod, closed under kernels of surjec-

tions, because each H(R) is closed under extensions and kernels of surjections
in R-mod.

To say much more about the relation between H(X) and K0(X), we need to
restrict our attention to quasi-compact schemes such that every F in H(X) is a
quotient of a vector bundle E0. This implies that every module F ∈ H(X) has a
finite resolution 0→ Ed → · · · → E1 → E0 → F → 0 by vector bundles. Indeed,
the kernel F ′ of a quotient map E0 → F is always locally of lower projective
dimension than F , and X has a finite affine cover by Ui = Spec(Ri), it follows
that the dth syzygy is a vector bundle, where d = max{pdRi

Mi}, Mi = F(Ui).
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For this condition to hold, it is easiest to assume that X is quasi-projective
(over a commutative ring k), i.e., a locally closed subscheme of some projective
space Pnk . By

EGA
[EGA, II, 4.5.5 and 4.5.10], this implies that every quasicoherent

OX -module of finite type F is a quotient of some vector bundle E0 of the form
E0 =

⊕OX(ni).

II.8.3.1 Proposition 8.3.1. If X is quasi-projective (over a commutative ring), then
K0(X) ∼= K0H(X).

Proof. Because H(X) is closed under kernels of surjections in OX -mod, and
every object in H(X) has a finite resolution by vector bundles, the Resolution
Theorem

II.7.6
7.6 applies to VB(X) ⊂ H(X).

II.8.3.2 Technical remark 8.3.2. Another assumption that guarantees that every F
in H(X) is a quotient of a vector bundle is that X be quasi-separated and
quasi-compact with an ample family of line bundles. Such schemes are called
divisorial in

SGA6
[SGA6, II.2.2.4]. For such schemes, the proof of

II.8.3.1
8.3.1 goes through

to show that we again have K0VB(X) ∼= K0H(X).

II.8.3.3 Example 8.3.3 (Restricting Bundles). Given an open subscheme U of a quasi-
projective scheme X, let B denote the full subcategory of VB(U) consisting of
vector bundles F whose class in K0(U) is in the image of j∗ : K0(X)→ K0(U).
We claim that the category B is cofinal in VB(U), so that K0B is a subgroup of
K0(U) by the Cofinality Lemma

II.7.2
7.2. To see this, note that each vector bundle F

on U fits into an exact sequence 0→ F ′ → E0 → F → 0, where E0 =
⊕OU (ni).

But then F ⊕ F ′ is in B, because in K0(U)

[F ⊕ F ′] = [F ] + [F ′] = [E0] =
∑

j∗[OX(ni)].

Transfer Maps for Schemes

II.8.4 8.4. We can define a transfer map f∗ : K0(X) → K0(Y ) with (gf)∗ = g∗f∗
associated to various morphisms f : X → Y . If Y is regular, we have already
done this in

II.8.2.3
8.2.3.

Suppose first that f is a finite map. In this case, the inverse image of any
affine open U = Spec(R) of Y is an affine open f−1U = Spec(S) of X, S is
finitely generated as an R-module, and the direct image sheaf f∗OX satisfies
f∗O(U) = S. Thus the direct image functor f∗ is an exact functor from VB(X)
to OY -modules (as pointed out in

II.6.2.5
6.2.5).

If f is finite and f∗OX is a vector bundle then f∗ is an exact functor from
VB(X) to VB(Y ). Indeed, locally it sends each finitely generated projective
S-module to a finitely generated projective R-module, as described in Example
II.2.8.1
2.8.1. Thus there is a canonical transfer map f∗ : K0(X)→ K0(Y ) sending [F ]
to [f∗F ].

If f is finite and f∗OX is in H(X) then f∗ sends VB(X) into H(X), because
locally it is the forgetful functor P(S)→ H(R) of (

II.7.9.1
7.9.1). Therefore f∗ defines

a homomorphism K0(X)→ K0H(Y ). If Y is quasi-projective then composition
with K0H(Y ) ∼= K0(Y ) yields a “finite” transfer map K0(X)→ K0(Y ).
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Now suppose that f : X → Y is a proper map between quasi-projective
noetherian schemes. The transfer homomorphism f∗ : G0(X) → G0(Y ) was
constructed in Lemma

II.6.2.6
6.2.6, with f∗[F ] =

∑
(−1)i[Rif∗F ].

If in addition f has finite Tor-dimension, then we can also define a transfer
map f∗ : K0(X) → K0(Y ), following

SGA6
[SGA6, IV.2.12.3]. Recall that an OX -

module F is called f∗-acyclic if Rqf∗F = 0 for all q > 0. Let P(f) denote
the category of all vector bundles F on X such that F(n) is f∗-acyclic for all
n ≥ 0. By the usual yoga of homological algebra, P(f) is an exact category,
closed under cokernels of injections, and f∗ is an exact functor from P(f) to
H(Y ). Hence the following lemma allows us to define the transfer map as

K0(X)
∼=←−K0P(f)

f∗−→ K0H(Y )
∼=←−K0(Y ) (8.4.1) II.8.4.1

II.8.4.2 Lemma 8.4.2. Every vector bundle F on a quasi-projective X has a finite res-
olution

0→ F → P0 → · · · → Pm → 0

by vector bundles in P(f). Hence by the Resolution Theorem K0P(f) ∼= K0(X).

Proof. For n ≥ 0 the vector bundle OX(n) is generated by global sections.
Dualizing the resulting surjection OrX → OX(n) and twisting n times yields a
short exact sequence of vector bundles 0→ OX → OX(n)r → E → 0. Hence for
every vector bundle F on X we have a short exact sequence of vector bundles
0→ F → F(n)r → E ⊗F → 0. For all large n, the sheaf F(n) is f∗-acyclic (seeEGA
[EGA, III.3.2.1] or

Hart
[85, III.8.8]), and F(n) is in P(f). Repeating this process

with E ⊗ F in place of F , we obtain the desired resolution of F .

Like the transfer map for rings, the transfer map f∗ is a K0(Y )-module
homomorphism. (This is the projection formula; see Ex.

EII.7.10
7.10 and Ex.

EII.8.3
8.3.)

Projective Space Bundles

Let E be a vector bundle of rank r+1 over a quasi-compact scheme X, and let
P = P(E) denote the projective space bundle of Example I.

I.5.8
5.8. (If E|U is free

over U ⊆ X then P |U is the usual projective space PrU .) Via the structural map
π : P→ X, the base change map is a ring homomorphism π∗ : K0(X)→ K0(P),
sending [M] to [f∗M], where f∗M = OP⊗XM. In this section we give Quillen’s
proof

Q341
[153, §8] of the following result, originally due to Berthelot

SGA6
[SGA6, VI.1.1].

II.8.5 Projective Bundle Theorem 8.5. Let P be the projective space bundle of E
over a quasi-compact scheme X. Then K0(P) is a free K0(X)-module with basis
the twisting line bundles {1 = [OP], [OP(−1)], . . . , [OP(−r)]}.

II.8.6 Corollary 8.6. As a ring, K0(P
r
Z) = Z[z]/(zr+1), where z = 1− [O(−1)]. (The

relation zr+1 = 0 is Ex.
EII.6.14
6.14(b); note that z = [Pr−1].)

Hence K0(P
r
X) ∼= K0(X)⊗K0(P

r
Z) = K0(X)[z]/(zr+1).
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8.7. To prove Theorem
II.8.5
8.5, we would like to apply the direct image functor

π∗ to a vector bundle F and get a vector bundle. This requires a vanishing
condition. The proof of this result rests upon the following notion, which is
originally due to Castelnuovo. It is named after David Mumford, who exploited
it in

Mum
[139].

II.8.7.1 Definition 8.7.1. A quasicoherent OP-module F is called Mumford-regular if
for all q > 0 the higher derived sheaves Rqπ∗F(−q) vanish. Here F(n) is
F ⊗ OP(n), as in Example I.

I.5.3.1
5.3.1. We write MR for the additive category of

all Mumford-regular vector bundles, and abbreviate ⊗X for ⊗OX
.

II.8.7.2 Example 8.7.2. If N is a quasicoherent OX -module then the standard co-
homology calculations on projective spaces show that π∗N = OP ⊗X N is
Mumford-regular, with π∗π

∗N = N . More generally, if n ≥ 0 then π∗N (n)
is Mumford-regular, with π∗π

∗N (n) = SymnE ⊗X N . For n < 0 we have
π∗π

∗N (n) = 0. In particular, OP(n) = π∗OX(n) is Mumford-regular for all
n ≥ 0.

If X is noetherian and F is coherent, then for n ≫ 0 the twists F(n) are
Mumford-regular, because the higher derived functors Rqπ∗F(n) vanish for large
n and also for q > r (see

Hart
[85, III.8.8]).

The following facts were discovered by Castelnuovo when X = Spec(C), and
proven in

Mum
[139, Lecture 14] as well as

Q341
[153, §8]:

II.8.7.3 Proposition 8.7.3. If F is Mumford-regular, then

(1) The twists F(n) are Mumford-regular for all n ≥ 0;

(2) Mumford-regular modules are π∗-acyclic, and in fact Rqπ∗F(n) = 0 for
all q > 0 and n ≥ −q;

(3) The canonical map ε : π∗π∗(F)→ F is onto.

Remark. Suppose that X is affine. Since π∗π∗(F) = OP ⊗X π∗F , and π∗F is
quasicoherent, item (3) states that Mumford-regular sheaves are generated by
their global sections.

II.8.7.4 Lemma 8.7.4. Mumford-regular modules form an exact subcategory of OP-
mod, and π∗ is an exact functor from Mumford-regular modules to OX-modules.

Proof. Suppose that 0 → F ′ → F → F ′′ → 0 is a short exact sequence of OP-
modules with both F ′ and F ′′ Mumford-regular. From the long exact sequence

· · · → Rqπ∗F ′(−q)→ Rqπ∗F(−q)→ Rqπ∗F ′′(−q)→ · · ·
we see that F is also Mumford-regular. Thus Mumford-regular modules are
closed under extensions, i.e., they form an exact subcategory of OP-mod. Since
F ′(1) is Mumford-regular, R1π∗F ′ = 0, and so we have an exact sequence

0→ π∗F ′ → π∗F → π∗F ′′ → 0.

This proves that π∗ is an exact functor.
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The following results were proven by Quillen in
Q341
[153, §8].

II.8.7.5 Lemma 8.7.5. Let F be a vector bundle on P.

(1) F(n) is a Mumford-regular vector bundle on P for all large enough n;

(2) If F(n) is π∗-acyclic for all n ≥ 0 then π∗F is a vector bundle on X.

(3) Hence by
II.8.7.3
8.7.3, if Fis Mumford-regular then π∗F is a vector bundle on X.

(4) π∗N ⊗P F(n) is Mumford-regular for all large enough n, and all quasico-
herent OX-modules N .

II.8.7.6 Definition 8.7.6 (Tn). Given a Mumford-regular OP-module F , we define a
natural sequence of OX -modules Tn = TnF and OP-modules Zn = ZnF ,
starting with T0F = π∗F and Z−1 = F . Let Z0 be the kernel of the
natural map ε : π∗π∗F → F of Proposition

II.8.7.3
8.7.3. Inductively, we define

TnF = π∗Zn−1(n) and define Zn to be ker(ε)(−n), where ε is the canonical
map from π∗Tn = π∗π∗Zn−1(n) to Zn−1(n).

Thus we have sequences (exact except possibly at Zn−1(n))

0→ Zn(n)→ π∗(TnF) ε−→ Zn−1(n)→ 0 (8.7.7) II.8.7.7

whose twists fit together into the sequence of the following theorem.

II.8.7.8 Theorem 8.7.8 (Quillen’s Resolution Theorem). Let F be a vector bundle on
P(E), rank(E) = r+1. If F is Mumford-regular then Zr = 0, and the sequences
(
II.8.7.7
8.7.7) are exact for n ≥ 0, so there is an exact sequence

0→ (π∗TrF)(−r)
ε(−r)−→ · · · → (π∗TiF)(−i)

ε(−i)−→ · · · ε(−1)−→ (π∗T0F) ε→F → 0.

Moreover, each F 7→ TiF is an exact functor from Mumford-regular modules to
OX-modules.

Proof. We first prove by induction on n ≥ 0 that (a) the module Zn−1(n)
is Mumford-regular, (b) π∗Zn(n) = 0 and (c) the canonical map ε : π∗Tn →
Zn−1(n) is onto, i.e., that (

II.8.7.7
8.7.7) is exact for n.

We are given that (a) holds for n = 0, so we suppose that (a) holds for n.
This implies part (c) for n by Proposition

II.8.7.3
8.7.3. Inductively then, we are given

that (
II.8.7.7
8.7.7) is exact, so π∗Zn(n) = 0 and the module Zn(n + 1) is Mumford-

regular by Ex.
EII.8.6
8.6. That is, (b) holds for n and (a) holds for n+1. This finishes

the first proof by induction.
Using (

II.8.7.7
8.7.7), another induction on n shows that (d) each F 7→ Zn−1F(n) is

an exact functor from Mumford-regular modules to itself, and (e) each F 7→ TnF
is an exact functor from Mumford-regular modules to OX -modules. Note that
(d) implies (e) by Lemma

II.8.7.4
8.7.4, since Tn = π∗Zn−1(n).

Since the canonical resolution is obtained by splicing the exact sequences
(
II.8.7.7
8.7.7) together for n = 0, ..., r, all that remains is to prove that Zr = 0, or
equivalently, that Zr(r) = 0. From (

II.8.7.7
8.7.7) we get the exact sequence

Rq−1π∗Zn+q−1(n)→ Rqπ∗Zn+q(n)→ Rqπ∗(π
∗Tn+q(−q))
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which allows us to conclude, starting from (b) and
II.8.7.2
8.7.2, that Rqπ∗(Zn+q) = 0

for all n, q ≥ 0. Since Rqπ∗ = 0 for all q > r, this shows that Zr(r) is Mumford-
regular. Since π∗π∗Zr(r) = 0 by (b), we see from Proposition

II.8.7.3
8.7.3(3) that

Zr(r) = 0 as well.

II.8.7.9 Corollary 8.7.9. If F is Mumford-regular, each TiF is a vector bundle on X.

Proof. For every n ≥ 0, the nth twist of Quillen’s resolution
II.8.7.8
8.7.8 yields exact

sequences of π∗-acyclic modules. Thus applying π∗ yields an exact sequence of
OX -modules, which by

II.8.7.2
8.7.2 is

0→ Tn → E ⊗ Tn−1 → · · · → Symn−iE ⊗ Ti → · · · → π∗F(n)→ 0.

The result follows from this sequence and induction on i, since π∗F(n) is a
vector bundle by Lemma

II.8.7.5
8.7.5(3).

Let MR(n) denote the nth twist of MR; it is the full subcategory of VB(P)
consisting of vector bundles F such that F(−n) is Mumford-regular. Since
twisting is an exact functor, each MR(n) is an exact category. By Lemma

II.8.7.3
8.7.3

we have

MR = MR(0) ⊆MR(−1) ⊆ · · · ⊆MR(n) ⊆MR(n− 1) ⊆ · · · .
II.8.7.10 Proposition 8.7.10. The inclusions MR(n) ⊂ VB(P) induce isomorphisms

K0MR ∼= K0MR(n) ∼= K0(P).

Proof. The union of the MR(n) is VB(P) by Lemma
II.8.7.5
8.7.5(1). By Exam-

ple
II.7.1.7
7.1.7 we have K0VB(P) = lim−→K0MR(n), so it suffices to show that each

inclusion MR(n) ⊂ MR(n − 1) induces an isomorphism on K0. For i > 0,
let ui : MR(n − 1) → MR(n) be the exact functor F 7→ F(i) ⊗X ∧iE . It in-
duces a homomorphism ui : K0MR(n − 1) → K0MR(n). By Proposition

II.7.5
7.5

(Additivity), applied to the Koszul resolution

0→ F → F(1)⊗X E → · · · → F(r + 1)⊗X ∧r+1E → 0

we see that the map
∑
i>0(−1)i−1ui is an inverse to the map ιn : K0MR(n)→

K0MR(n−1) induced by the inclusion. Hence ιn is an isomorphism, as desired.

Proof of Projective Bundle Theorem
II.8.5
8.5. Each Tn is an exact functor from MR

to VB(X) by Theorem
II.8.7.8
8.7.8 and

II.8.7.9
8.7.9. Hence we have a homomorphism

t : K0MR→ K0(X)r+1, [F ] 7→ ([T0F ],−[T1F ], . . . , (−1)r[TrF ]).
This fits into the diagram

K0(P)
∼=←−K0MR

t−→ K0(X)r+1 u−→ K0(P)
∼=←−K0MR

v−→ K0(X)r+1

where u(a0, ..., ar) = π∗a0 + π∗a1 · [OP(−1)] + · · ·+ π∗ar · [OP(−r)] and v[F ] =
([π∗F ], [π∗F(1)], . . . , [π∗F(r)]). The composition ut sends [F ] to the alternating
sum of the [(π∗TiF)(−i)], which equals [F ] by Quillen’s Resolution Theorem
II.8.7.8
8.7.8. Hence u is a surjection.
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Since the (i, j) component of vu sends Nj to π∗(π∗Nj(i−j)) = Symi−jE⊗X
Nj by Example

II.8.7.2
8.7.2, it follows that the composition vu is given by a lower

triangular matrix with ones on the diagonal. Therefore vu is an isomorphism,
so u is injective.

λ-operations in K0(X)

The following result was promised in Example
II.4.1.5
4.1.5.

II.8.8 Proposition 8.8. The operations λk[F ] = [∧kF ] are well-defined on K0(X),
and make K0(X) into a λ-ring.

Proof. It suffices to show that the formula λt(F) =
∑

[∧kF ]tk defines an addi-
tive homomorphism from VB(X) to the multiplicative group 1 + tK0(X)[[t]].
Note that the constant term in λt(F) is 1 because ∧0F = OX . Suppose given
an exact sequence of vector bundles 0 → F ′ → F → F ′′ → 0. By Ex. I.

I.5.4
5.4,

each ∧kF has a finite filtration whose associated quotient modules are the
∧iF ′ ⊗ ∧k−iF ′′, so in K0(X) we have

[∧kF ] =
∑

[∧iF ′ ⊗ ∧k−iF ′′] =
∑

[∧iF ′] · [∧k−iF ′′].

Assembling these equations yields the formula λt(F) = λt(F ′)λt(F ′′) in the
group 1+tK0(X)[[t]], proving that λt is additive. Hence λt (and each coefficient
λk) is well-defined on K0(X).

II.8.8.1 Splitting Principle 8.8.1. (see
II.4.2.2
4.2.2) Let f : F(E)→ X be the flag bundle of

a vector bundle E over a quasi-compact scheme X. Then K0(F(E)) is a free
module over the ring K0(X), and f∗[E ] is a sum of line bundles

∑
[Li].

Proof. Let f : F(E) → X be the flag bundle of E ; by Theorem I.
I.5.9
5.9 the bundle

f∗E has a filtration by sub-vector bundles whose successive quotients Li are line
bundles. Hence f∗[E ] =∑[Li] in K0(F(E)). Moreover, we saw in I.

I.5.8
5.8 that the

flag bundle is obtained from X by a sequence of projective space bundle exten-
sions, beginning with P(E). By the Projective Bundle Theorem

II.8.5
8.5, K0(F(E))

is obtained from K0(X) by a sequence of finite free extensions.

The λ-ring K0(X) has a positive structure in the sense of Definition
II.4.2.1
4.2.1.

The “positive elements” are the classes [F ] of vector bundles, and the augmen-
tation ε : K0(X) → H0(X;Z) is given by Theorem

II.8.1
8.1. In this vocabulary, the

“line elements” are the classes [L] of line bundles on X, and the subgroup L
of units in K0(X) is just Pic(X). The following corollary now follows from
Theorems

II.4.2.3
4.2.3 and

II.4.7
4.7.

II.8.8.2 Corollary 8.8.2. K0(X) is a special λ-ring. Consequently, the first two ideals

in the γ-filtration of K0(X) are F 1
γ = K̃0(X) and F 2

γ = SK0(X). In particular,

F 0
γ /F

1
γ
∼= H0(X;Z) and F 1

γ /F
2
γ
∼= Pic(X).

II.8.8.3 Corollary 8.8.3. For every commutative ring R, K0(R) is a special λ-ring.
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II.8.8.4 Proposition 8.8.4. If X is quasi-projective, or more generally if X has an
ample line bundle L then every element of K̃0(X) is nilpotent. Hence K̃0(X) is
a nil ideal of K0(X).

Proof. By Ex.
EII.4.5
4.5, it suffices to show that ℓ = [L] is an ample line element. Given

x = [E ]− [F ] in K̃0(X), the fact that L is ample implies that F(n) = F ⊗L⊗n
is generated by global sections for all large n. Hence there are short exact
sequences

0→ Gn → OrnX → F(n)→ 0

and therefore in K0(X) we have the required equation:

ℓnx = [E(n)]− [OrnX ] + [Gn] = [E(n)⊕ Gn]− rn.
II.8.8.5 Remark 8.8.5. If X is noetherian and quasiprojective of dimension d, then

K̃0(X)d+1 = 0, because it lies inside F d+1
γ , which vanishes by

SGA6
[SGA6, VI.6.6] or

FL
[59, V.3.10]. (See Example

II.4.8.2
4.8.2.)

If X is a nonsingular algebraic variety, the Chow groups CHi(X) are de-
fined to be the quotient of Di(X), the free group on the integral codimension i
subvarieties, by rational equivalence; see

II.6.4.3
6.4.3. If E is a locally free OX -module

of rank n, form the projective space bundle P(E) and flag bundle F(E) of E ; see
I.
I.4.10
4.10. The Projective Bundle Theorem (see

Fulton
[58]) states that the Chow group

CH∗(P(E)) is a free graded module over CH∗(X) with basis {1, ξ, . . . , ξn−1},
where ξ ∈ CH1(P(E)) is the class of a divisor corresponding to O(1). We de-
fine the Chern classes ci(E) in CHi(X) to be (−1)i times the coefficients of ξn

relative to this basis, with ci(E) = 0 for i > n, with c0(E) = 1. Thus we have
the equation in CHn(P(E)):

ξn − c1ξn−1 + · · ·+ (−1)iciξn−i + · · ·+ (−1)ncn = 0.

If E is trivial then ξn = 0, and all the ci vanish except c0. If E has rank 1 then
there is a divisor D with E = L(D) and ξ = [D] and c1(E) = ξ = [D].

II.8.9 Proposition 8.9. The classes ci(E) define Chern classes on K0(X) with values
in CH∗(X).

Proof. (Grothendieck, 1957) We have already established axioms (CC0) and
(CC1); the Normalization axiom (CC3) follows from the observation that

c1(L(D1)⊗ L(D2)) = [D1] + [D2] = c1(L(D1)) + c1(L(D2)).

We now invoke the Splitting Principle, that we may assume that E has a filtra-
tion with invertible sheaves Lj as quotients; this is because CH∗(P(E)) embeds
into CH∗(F(E)), where such a filtration exists; see I.

I.5.9
5.9. Since

∏
(ξ−c1(Lj)) = 0

in CHn(F(E)), expanding the product gives the coefficients ci(E); the coefficients
of each ξk establish the Sum Formula (CC2).

II.8.9.1 Corollary 8.9.1. If X is nonsingular, the Chern classes induce isomorphisms

ci : K
(i)
0 (X) ∼= CHi(X) ⊗ Q, and the Chern character induces a ring isomor-

phism ch : K0(X)⊗Q ∼= CH∗(X)⊗Q.
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Proof. By
II.4.12
4.12 the Chern character K0(X)→ CH∗(X)⊗Q is a ring homomor-

phism. By
II.4.11.4
4.11.4, cn vanishes on K

(i)
0 (X) for i 6= n, and by

II.4.12.1
4.12.1 it is a graded

ring map, where K0(X)⊗Q is given the γ-filtration. Let F rK0(X) denote the
image of K0M(X) → K0(X); it is well known (see

FL
[59, V.3] that F rγK0(X) ⊆

F rK0(X). We will prove by induction on r that F rK0(X) ∼= ⊕i≥rCHi(X). By
II.6.4.3
6.4.3, there is a canonical surjection CHi(X) → F iK0(X)/F i+1K0(X) send-
ing [Z] to the class of [OZ ]; removing a closed subvariety of Z, we can assume
that Z is a complete intersection. In that case, ci(OZ) ∼= (−1)i(i − 1)![Z] by
Ex.

EII.8.7
8.7.

We cite the following result from Fulton
Fulton
[58]. For any smooth X, the Todd

class td(X) is defined to be the Hirzebruch character (Ex.
EII.4.13
4.13) of the tangent

bundle of X for the power series x/(1 − e−x). If a = a0 + · · · + ad ∈ CH∗(X)
with ai ∈ CHi(X) and d = dim(X), we write deg(a) for the image of ad under
the degree map CHd(X)→ Z.

II.8.10 Theorem 8.10 (Riemann-Roch Theorem). Let X be a nonsingular projective
variety over a field k, and let E be a locally free sheaf of rank n on X. Then
the Euler characteristic χ(E) =∑(−1)i dimHi(X, E) equals deg(ch(E) · td(X)).

More generally, if f : X → Y is a smooth projective morphism, then the
pushforward f∗ : K0(X)→ K0(Y ) satisfies

ch(f∗x) = f∗(ch(x) · td(Tf )),
where Tf is the relative tangent sheaf of f .

K0(X)
ch(·td)

> CH∗(X)⊗Q

K0(Y )

f∗
∨ ch

> CH∗(Y )⊗Q

f∗
∨

II.8.11 Limits of schemes 8.11. Here is the analogue for schemes of the fact that
every commutative ring is the filtered union of its finitely generated (noetherian)
subrings. By

EGA
[EGA, IV.8.2.3], every quasi-compact separated scheme X is the

inverse limit of a filtered inverse system i 7→ Xi of noetherian schemes, each
finitely presented over Z, with affine transition maps.

Let i 7→ Xi be any filtered inverse system of schemes such that the transition
morphisms Xi → Xj are affine, and let X be the inverse limit scheme lim←−Xi.
This scheme exists by

EGA
[EGA, IV.8.2]. In fact, over an affine open subscheme

Spec(Rj) of any Xj we have affine open subschemes Spec(Ri) of each Xi, and
the corresponding affine open subscheme of X is Spec(lim−→Ri). By

EGA
[EGA, IV.8.5]

every vector bundle on X comes from a bundle on some Xj , and two bundles on
Xj are isomorphic over X just in case they are isomorphic over some Xi. Thus
the filtered system of groups K0(Xi) has the property that

K0(X) = lim−→K0(Xi).
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EXERCISES

EII.8.1 8.1. Suppose that Z is a closed subscheme of a quasi-projective scheme X,
with complement U . Let HZ(X) denote the subcategory of H(X) consisting of
modules supported on Z.

(a) Suppose that U=Spec(R) for some ring R, and that Z is locally defined by
a nonzerodivisor. (The ideal IZ is invertible; see I.

I.5.12
5.12.) As in Cor.

II.7.7.4
7.7.4,

show that there is an exact sequence: K0HZ(X)→ K0(X)→ K0(U).

(b) Suppose that Z is contained in an open subset V of X which is regu-
lar. Show that HZ(X) is the abelian category MZ(X) of

II.6.4.2
6.4.2, so that

K0HZ(X) ∼= G0(Z). Then apply Ex.
EII.7.12
7.12 to show that there is an exact

sequence
G0(Z)→ K0(X)→ K0(U)→ 0.

(c) (Deligne) Let R be a 2-dimensional noetherian domain which is not Cohen-
Macaulay. IfM is inH(R) then pd(M) = 1, by the Auslander-Buchsbaum
equality

WHomo
[223, 4.4.15]. Setting X = Spec(R) and Z = {m}, show that

HZ(X) = 0. Hint: If M is the cokernel of f : Rm → Rm, show that
det(f) must lie in a height 1 prime p and conclude that Mp 6= 0.

There are 2-dimensional normal domains where K0(R) → G0(R) is not into
We80
[217]; for these R the sequence K0HZ(X)→ K0(X)→ K0(U) is not exact.

EII.8.2 8.2. Let X be a curve over an algebraically closed field. By Ex. I.
EI.5.7
5.7, K0(X) is

generated by classes of line bundles. Show that K0(X) = H0(X;Z)⊕ Pic(X).

EII.8.3 8.3. Projection Formula for schemes. Suppose that f : X → Y is a proper map
between quasi-projective schemes, both of which have finite Tor-dimension.

(a) Given E in VB(X), consider the subcategory L(f) of M(Y ) consisting of
coherent OY -modules which are Tor-independent of both f∗E and f∗OX .
Show that G0(Y ) ∼= K0L(f).

(b) Set x = [E] ∈ K0(X). By (
II.8.4.1
8.4.1), we can regard f∗x as an element of

K0(Y ). Show that f∗(x · f∗y) = f∗(x) · y for every y ∈ G0(Y ).

(c) Using
II.7.4.2
7.4.2 and the ring map f∗ : K0(Y ) → K0(X), both K0(X) and

G0(X) are K0(Y )-modules. Show that the transfer maps f∗ : G0(X) →
G0(Y ) of Lemma

II.6.2.6
6.2.6 and f∗ : K0(X) → K0(Y ) of (

II.8.4.1
8.4.1) are K0(Y )-

module homomorphisms, i.e., that the projection formula holds for every
y ∈ K0(Y ):

f∗(x · f∗y) = f∗(x) · y for every x ∈ K0(X) or x ∈ G0(X).
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EII.8.4 8.4. Suppose given a commutative square of quasi-projective schemes

X ′
g′

> X

Y ′

f ′

∨ g
> Y

f
∨

with X ′ = X ×Y Y ′ and f proper. Assume that g has finite flat dimension,
and that X and Y ′ are Tor-independent over Y , i.e., for q > 0 and all x ∈ X,
y′ ∈ Y ′ and y ∈ Y with y = f(x) = g(y′) we have

TorOY,y
q (OX,x,OY ′,y′) = 0.

Show that g∗f∗ = f ′∗g
′∗ as maps G0(X)→ G0(Y

′).

EII.8.5 8.5. Let F1 and F2 be vector bundles of ranks r1 and r2, respectively. Modify
Ex. I.

EI.2.7
2.7 to show that det(F1 ⊗ F2) ∼= (detF1)

r2 ⊗ (detF2)
r1 . Conclude that

K0(X)→ H0(X;Z)⊕ Pic(X) is a ring map.

EII.8.6 8.6. Let π : P → X be a projective space bundle as in
II.8.5
8.5, and let F be a

Mumford-regular OP-module. Let N denote the kernel of the canonical map
ε : π∗π∗F → F . Show that N (1) is Mumford-regular, and that π∗N = 0.

EII.8.7 8.7. Suppose that Z is a codimension i subvariety of a nonsingular X, with
conormal bundle E ; E → OX → OZ → 0 is exact. Show that ci([OZ ]) =
(−1)i(i−1)![Z] in CHi(X). Hint: Passing to a flag bundle of E , show that [OZ ]
is a product of terms 1 − Lj , for line bundles Lj = [ODj

] of divisors Dj . Now
use the product formula for the total Chern class and c1(Lj) = [Dj ]. Since this
is a formal computation, it suffices to compute ln c([OZ ]).
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9 K0 of a Waldhausen category

It is useful to be able to define the Grothendieck group K0(C) of a more general
type of category than exact categories, by adding a notion of weak equivalence.
A structure that generalizes well to higher K-theory is that of a category of
cofibrations and weak equivalences, which we shall call a “Waldhausen cate-
gory” for brevity. The definitions we shall use are due to Friedhelm Waldhausen,
although the ideas for K0 are due to Grothendieck and were used in

SGA6
[SGA6].

We need to consider two families of distinguished morphisms in a category
C, the cofibrations and the weak equivalences. For this we use the following
device. Suppose that we are given a family F of distinguished morphisms in
a category C. We assume that these distinguished morphisms are closed under
composition, and contain every identity. It is convenient to regard these distin-
guished morphisms as the morphisms of a subcategory of C, which by abuse of
notation we also call F .

II.9.1 Definition 9.1. Let C be a category equipped with a subcategory co = co(C) of
morphisms in a category C, called “cofibrations” (and indicated with feathered
arrows ). The pair (C, co) is called a category with cofibrations if the following
axioms are satisfied:
(W0) Every isomorphism in C is a cofibration;
(W1) There is a distinguished zero object ‘0’ in C, and the unique map 0  A
in C is a cofibration for every A in C;
(W2) If A  B is a cofibration, and A → C is any morphism in C, then
the pushout B ∪A C of these two maps exists in C, and moreover the map
C  B ∪A C is a cofibration.

A > > B

C
∨
> > B ∪A C

∨

These axioms imply that two constructions make sense in C: (1) the coproduct
B ∐ C of any two objects exists in C (it is the pushout B ∪0 C), and (2) every
cofibration i : A  B in C has a cokernel B/A (this is the pushout B ∪A 0 of i
along A→ 0). We refer to A B ։ B/A as a cofibration sequence in C.

For example, any abelian category is naturally a category with cofibrations:
the cofibrations are the monomorphisms. More generally, we can regard any
exact category as a category with cofibrations by letting the cofibrations be the
admissible monics; axiom (W2) follows from Ex.

EII.7.8
7.8(2). In an exact category,

the cofibration sequences are exactly the admissible exact sequences.

II.9.1.1 Definition 9.1.1. A Waldhausen category C is a category with cofibrations,
together with a family w(C) of morphisms in C called “weak equivalences” (ab-
breviated ‘w.e.’ and indicated with decorated arrows

∼−→ ). Every isomorphism
in C is to be a weak equivalence, and weak equivalences are to be closed under
composition (so we may regard w(C) as a subcategory of C). In addition, the
following “Glueing axiom” must be satisfied:
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(W3) Glueing for weak equivalences. For every commutative diagram of the
form

C < A > > B

C ′

∼
∨
< A′

∼
∨
> > B′

∼
∨

(in which the vertical maps are weak equivalences and the two right hori-
zontal maps are cofibrations), the induced map

B ∪A C → B′ ∪A′ C ′

is also a weak equivalence.

Although a Waldhausen category is really a triple (C, co, w), we will usually drop
the (co, w) from the notation and just write C. We say that C (or just wC) is
saturated if: whenever f, g are composable maps and fg is a weak equivalence,
f is a weak equivalence if and only if g is.

II.9.1.2 Definition 9.1.2 (K0(C)). Let C be a Waldhausen category. K0(C) is the
abelian group presented as having one generator [C] for each object C of C,
subject to the relations

(1) [C] = [C ′] if there is a weak equivalence C
∼−→ C ′

(2) [C] = [B] + [C/B] for every cofibration sequence B  C ։ C/B.

Of course, in order for this to be set-theoretically meaningful, we must assume
that the weak equivalence classes of objects form a set. We shall occasionally
use the notation K0(wC) for K0(C) to emphasize the choice of wC as weak
equivalences.

These relations imply that [0] = 0 and [B ∐ C] = [B] + [C], as they did
in §6 for abelian categories. Because pushouts preserve cokernels, we also have
[B ∪A C] = [B] + [C] − [A]. However, weak equivalences add a new feature:
[C] = 0 whenever 0 ≃ C.

II.9.1.3 Example 9.1.3. Any exact category A becomes a Waldhausen category, with
cofibrations being admissible monics and weak equivalences being isomorphisms.
By construction, the Waldhausen definition of K0(A) agrees with the exact
category definition of K0(A) given in §7.

More generally, any category with cofibrations (C, co) may be considered
as a Waldhausen category in which the category of weak equivalences is the
category iso C of all isomorphisms. In this case K0(C) = K0(iso C) has only the
relation (2). We could of course have developed this theory in §7 as an easy
generalization of the preceding paragraph.

II.9.1.4 Topological Example 9.1.4. To show that we need not have additive cate-
gories, we give a topological example due to Waldhausen. Let R = R(∗) be
the category of based CW complexes with countably many cells (we need a
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bound on the cardinality of the cells for set-theoretic reasons). Morphisms are
cellular maps, and Rf = Rf (∗) is the subcategory of finite based CW com-
plexes. Both are Waldhausen categories: “cofibration” is a cellular inclusion,
and “weak equivalence” means weak homotopy equivalence (isomorphism on
homotopy groups). The coproduct B ∨C is obtained from the disjoint union of
B and C by identifying their basepoints.

The Eilenberg Swindle shows that K0R = 0. In effect, the infinite coproduct
C∞ of copies of a fixed complex C exists in R, and equals C ∨C∞. In contrast,
the finite complexes have interesting K-theory:

II.9.1.5 Proposition 9.1.5. K0Rf ∼= Z.

Proof. The inclusion of Sn−1 in the n-disk Dn has Dn/Sn−1 ∼= Sn, so [Sn−1] +
[Sn] = [Dn] = 0. Hence [Sn] = (−1)n[S0]. If C is obtained from B by attaching
an n-cell, C/B ∼= Sn and [C] = [B] + [Sn]. Hence K0Rf is generated by [S0].

Finally, the reduced Euler characteristic χ(C) =
∑

(−1)i dim H̃i(X;Q) defines
a surjection from K0Rf onto Z, which must therefore be an isomorphism.

II.9.1.6 BiWaldhausen Categories 9.1.6. In general, the opposite Cop need not be
a Waldhausen category, because the quotients B ։ B/A need not be closed
under composition: the family quot(C) of these quotient maps need not be a
subcategory of Cop. We call C a category with bifibrations if C is a category
with cofibrations, Cop is a category with cofibrations, co(Cop) = quot(C), the
canonical map A ∐ B → A × B is always an isomorphism, and A is the kernel
of each quotient map B ։ B/A. We call C a biWaldhausen category if C is a
category with bifibrations, having a subcategory w(C) so that both (C, co, w)
and (Cop, quot, wop) are Waldhausen categories. The notions of bifibrations and
biWaldhausen category are self-dual, so we have:

II.9.1.7 Lemma 9.1.7. K0(C) ∼= K0(Cop) for every biWaldhausen category.

Example
II.9.1.3
9.1.3 shows that exact categories are biWaldhausen categories. We

will see in
II.9.2
9.2 below that chain complexes form another important family of

biWaldhausen categories.

II.9.1.8 Exact Functors 9.1.8. A functor F : C → D between Waldhausen categories
is called an exact functor if it preserves all the relevant structure: zero, cofibra-
tions, weak equivalences and pushouts along a cofibration. The last condition
means that the canonical map FB ∪FA FC → F (B ∪A C) is an isomorphism
for every cofibration A  B. Clearly, an exact functor induces a group homo-
morphism K0(F ) : K0C → K0D.

A Waldhausen subcategory A of a Waldhausen category C is a subcategory
which is also a Waldhausen category in such a way that: (i) the inclusion A ⊆ C
is an exact functor, (ii) the cofibrations in A are the maps in A which are
cofibrations in C and whose cokernel lies in A, and (iii) the weak equivalences
in A are the weak equivalences of C which lie in A.

For example, suppose that C and D are exact categories (in the sense of §7),
considered as Waldhausen categories. A functor F : C → D is exact in the above
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sense if and only if F is additive and preserves short exact sequences, i.e., F
is an exact functor between exact categories in the sense of §7. The routine
verification of this assertion is left to the reader.

Here is an elementary consequence of the definition of exact functor. Let A
and C be Waldhausen categories and F , F ′, F ′′ three exact functors from A to
C. Suppose moreover that there are natural transformations F ′ ⇒ F ⇒ F ′′ so
that for all A in A

F ′A FA։ F ′′A

is a cofibration sequence in C. Then [FA] = [F ′A] + [F ′′A] in K0C, so as maps
from K0A to K0C we have K0(F ) = K0(F

′) +K0(F
′′).

Chain complexes

II.9.2 9.2. Historically, one of the most important families of Waldhausen categories
are those arising from chain complexes. The definition of K0 for a category
of (co)chain complexes dates to the 1960’s, being used in

SGA6
[SGA6] to study the

Riemann-Roch Theorem. We will work with chain complexes here, although by
reindexing we could equally well work with cochain complexes.

Given a small abelian category A, let Ch = Ch(A) denote the category of
all chain complexes in A, and let Chb denote the full subcategory of all bounded
complexes. The following structure makes Ch into a Waldhausen category, with
Chb(A) as a Waldhausen subcategory. We will show below that K0Ch(A) = 0
but that K0Chb(A) ∼= K0(A).

A cofibration C → D is a chain map such that every map Cn  Dn is
monic in A. Thus a cofibration sequence is just a short exact sequence of chain
complexes. A weak equivalence C

∼−→ D is a quasi-isomorphism, i.e., a chain
map inducing isomorphisms on homology.

Here is a slightly more general construction, taken from
SGA6
[SGA6, IV(1.5.2)].

Suppose that B is an exact category, embedded in an abelian category A. Let
Ch(B), resp. Chb(B), denote the category of all (resp. all bounded) chain com-
plexes in B. A cofibration A•  B• in Ch(B) (resp. ChbB) is a map which is
a degreewise admissible monomorphism, i.e., such that each Cn = Bn/An is in
B, yielding short exact sequences An  Bn ։ Cn in B. To define the weak
equivalences, we use the notion of homology in the ambient abelian category
A: let wCh(B) denote the family of all chain maps in Ch(B) which are quasi-
isomorphisms of complexes in Ch(A). With this structure, both Ch(B) and
Chb(B) become Waldhausen subcategories of Ch(A).

Subtraction in K0Ch and K0Chb is given by shifting indices on complexes.
To see this, recall from

WHomo
[223, 1.2.8] that the nth translate of C is defined to be

the chain complex C[n] which has Ci+n in degree i. (If we work with cochain
complexes then Ci−n is in degree i.) Moreover, the mapping cone complex
cone(f) of a chain complex map f : B → C fits into a short exact sequence of
complexes:

0→ C → cone(f)→ B[−1]→ 0.
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Therefore in K0 we have [C] + [B[−1]] = [cone(f)]. In particular, if f is the
identity map on C, the cone complex is exact and hence w.e. to 0. Thus we
have [C] + [C[−1]] = [cone(id)] = 0. We record this observation as follows.

II.9.2.1 Lemma 9.2.1. Let C be any Waldhausen subcategory of Ch(A) closed under
translates and the formation of mapping cones. Then [C[n]] = (−1)n[C] in
K0(C). In particular, this is true in K0Ch(B) and K0Chb(B) for every exact
subcategory B of A.

A chain complex C is called bounded below (resp. bounded above) if Cn = 0
for all n≪ 0 (resp. all n≫ 0). If C is bounded above, then each infinite direct
sum Cn ⊕ Cn+2 ⊕ · · · is finite, so the infinite direct sum of shifts

B = C ⊕ C[2]⊕ C[4]⊕ · · · ⊕ C[2n]⊕ · · ·

is defined in Ch. From the exact sequence 0 → B[2] → B → C → 0, we see
that in K0Ch we have the Eilenberg swindle: [C] = [B]− [B[2]] = [B]− [B] = 0.
A similar argument shows that [C] = 0 if C is bounded below. But every chain
complex C fits into a short exact sequence

0→ B → C → D → 0

in which B is bounded above and D is bounded below. (For example, take
Bn = 0 for n > 0 and Bn = Cn otherwise.) Hence [C] = [B] + [D] = 0 in
K0Ch. This shows that K0Ch = 0, as asserted.

If B is any exact category, the natural inclusion of B intoChb(B) as the chain
complexes concentrated in degree zero is an exact functor. Hence it induces a
homomorphism K0(B)→ K0Chb(B).

II.9.2.2 Theorem 9.2.2. (
SGA6
[SGA6, I.6.4]) Let A be an abelian category. Then

K0(A) ∼= K0Chb(A),

and the class [C] of a chain complex C in K0A is the same as its Euler char-
acteristic, namely χ(C) =

∑
(−1)i[Ci].

Similarly, if B is an exact category closed under kernels of surjections in an
abelian category (in the sense of

II.7.0.1
7.0.1), then K0(B) ∼= K0Chb(B), and again we

have χ(C) =
∑

(−1)i[Ci] in K0(B).
Proof. We give the proof for A; the proof for B is the same, except one cites

II.7.5
7.5

in place of
II.6.6
6.6. As in Proposition

II.6.6
6.6 (or

II.7.5
7.5), the Euler characteristic χ(C) of

a bounded complex is the element
∑

(−1)i[Ci] of K0(A). We saw in
II.6.6
6.6 (and

II.7.5.1
7.5.1) that χ(B) = χ(C) if B → C is a weak equivalence (quasi-isomorphism).
If B  C ։ D is a cofibration sequence in Chb, then from the short exact
sequences 0 → Bn → Cn → Dn → 0 in A we obtain χ(C) = χ(B) + χ(C/B)
by inspection (as in

II.7.5.1
7.5.1). Hence χ satisfies the relations needed to define a

homomorphism χ from K0(Chb) to K0(A). If C is concentrated in degree 0
then χ(C) = [C0], so the composite map K0(A) → K0(Chb) → K0(A) is the
identity.
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It remains to show that [C] = χ(C) in K0Chb for every complex

C : 0→ Cm → · · · → Cn → 0.

If m = n, then C = Cn[−n] is the object Cn of A concentrated in degree n;
we have already observed that [C] = (−1)n[Cn[0]] = (−1)n[Cn] in this case. If
m > n, let B denote the subcomplex consisting of Cn in degree n, and zero
elsewhere. Then B  C is a cofibration whose cokernel C/B has shorter length
than C. By induction, we have the desired relation in K0Chb, finishing the
proof:

[C] = [B] + [C/B] = χ(B) + χ(C/B) = χ(C).

II.9.2.3 Remark 9.2.3 (K0 and derived categories). Let B be an exact category. The-
orem

II.9.2.2
9.2.2 states that the group K0Chb(B) is independent of the choice of

ambient abelian category A, as long as B is closed under kernels of surjections
in A. This is the group k(B) introduced in

SGA6
[SGA6], Expose IV(1.5.2). (The

context of
SGA6
[SGA6] was triangulated categories, and the main observation in op.

cit. is that this definition only depends upon the derived category Db
B(A). See

Ex.
EII.9.5
9.5 below.)
We warn the reader that if B is not closed under kernels of surjections in A,

then K0Chb(B) can differ from K0(B). (See Ex.
EII.9.11
9.11).

If A is an abelian category, or even an exact category, the category Chb =
Chb(A) has another Waldhausen structure with the same weak equivalences: we
redefine cofibration so that B → C is a cofibration if and only if each Bi → Ci
is a split injection in A. If splitChb denotes Chb with this new Waldhausen
structure, then the inclusion splitChb → Chb is an exact functor, so it induces
a surjection K0(splitChb)→ K0(Chb).

II.9.2.4 Lemma 9.2.4. If A is an exact category then

K0(splitChb) ∼= K0(Chb) ∼= K0(A).

Proof. Lemma
II.9.2.1
9.2.1 and enough of the proof of

II.9.2.2
9.2.2 go through to prove that

[C[n]] = (−1)n[C] and [C] =
∑

(−1)n[Cn] in K0(splitChb). Hence it suffices to
show that A 7→ [A] defines an additive function from A to K0(splitChb). If A is
an object ofA, let [A] denote the class inK0(splitChb) of the complex which isA
concentrated in degree zero. Any short exact sequence E : 0→ A→ B → C → 0
in A may be regarded as an (exact) chain complex concentrated in degrees 0, 1
and 2 so:

[E] = [A]− [B] + [C]

inK0(splitChb). But E is weakly equivalent to zero, so [E] = 0. Hence A 7→ [A]
is an additive function, defining a map K0(A)→ K0(splitChb).
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II.9.3 Example 9.3 (Extension Categories). If B is a category with cofibrations, the
cofibration sequences A B ։ C in B form the objects of a category E = E(B).
A morphism E → E′ in E is a commutative diagram:

E : A > > B >> C

E′ :
∨

A′
∨
> > B′

∨
>> C ′
∨

We make E into a category with cofibrations by declaring that a morphism E →
E′ in E is a cofibration if A→ A′, C → C ′ and A′ ∪A B → B′ are cofibrations
in B. This is required by axiom (W2), and implies that the composite B 

A′ ∪A B  B′ is a cofibration too. If B is a Waldhausen category then so is
E(B): a weak equivalence in E is a morphism whose component maps A→ A′,
B → B′, C → C ′ are weak equivalences in B.

Here is a useful variant. If A and C are Waldhausen subcategories of B, the
extension category E(A,B, C) of C by A is the Waldhausen subcategory of the
extension category of B consisting of cofibration sequences A  B ։ C with
A in A and C in C. Clearly, E(B) = E(B,B,B).

There is an exact functor ∐ : A×C → E , sending (A,C) to A A∐C ։ C.
Conversely, there are three exact functors (s, t and q) from E(A,B, C) to A, B
and C, which send A  B ։ C to A, B and C, respectively. By the above
remarks, if A = B = C then t∗ = s∗ + q∗ as maps K0(E)→ K0(B).

II.9.3.1 Proposition 9.3.1. K0(E(A,B, C)) ∼= K0(A)×K0(C).

Proof. Since (s, q) is a left inverse to ∐, ∐∗ is a split injection from K0(A) ×
K0(C) to K0(E). Thus it suffices to show that for every E : A  B ։ C in
E we have [E] = [∐(A, 0)] + [∐(0, C)] in K0(E). This relation follows from the
fundamental relation

II.9.1.2
9.1.2(2) of K0, given that

∐(A, 0) : A >
=

> A >> 0

E :
∨

∨

A

wwwwwww
> > B

∨

∨

>> C
∨

is a cofibration in E with cokernel ∐(0, C) : 0  C ։ C.

II.9.3.2 Example 9.3.2 (Higher Extension categories). Here is a generalization of the
extension category E = E2 constructed above. Let En be the category whose
objects are sequences of n cofibrations in a Waldhausen category C:

A : 0 = A0  A1  · · · An.

A morphism A → B in En is a natural transformation of sequences, and is a
weak equivalence if each component Ai → Bi is a w.e. in C. It is a cofibration
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when for each 0 ≤ i < j < k ≤ n the map of cofibration sequences

Aj/Ai > > Ak/Ai >> Ak/Aj

Bj/Bi

∨
> > Bk/Bi

∨
>> Bk/Bj

∨

is a cofibration in E . The reader is encouraged in Ex.
EII.9.4
9.4 to check that En is a

Waldhausen category, and to compute K0(En).
II.9.4 Theorem 9.4 (Cofinality Theorem). Let B be a Waldhausen subcategory of C

closed under extensions. If B is cofinal in C (in the sense that for all C in C
there is a C ′ in C so that C ∐ C ′ is in B), then K0(B) is a subgroup of K0(C).
Proof. Considering B and C as symmetric monoidal categories with product ∐,
we have K∐0 (B) ⊂ K∐0 (C) by

II.1.3
1.3. The proof of cofinality for exact categories

(Lemma
II.7.2
7.2) goes through verbatim to prove that K0(B) ⊂ K0(C).

II.9.4.1 Remark 9.4.1. The proof shows that K0(C)/K0(B) ∼= K∐0 C/K∐0 B, and that
every element of K0(C) has the form [C]− [B] for some B in B and C in C.

Products

II.9.5 9.5. Our discussion in
II.7.4
7.4 about products in exact categories carries over to the

Waldhausen setting. Let A, B and C be Waldhausen categories, and suppose
given a functor F : A× B → C. The following result is completely elementary:

II.9.5.1 Lemma 9.5.1. If each F (A,−) : B → C and F (−, B) : A → C is an exact
functor, then F : A× B → C induces a bilinear map

K0A⊗K0B → K0C
[A]⊗ [B] 7→ [F (A,B)].

Note that the 3× 3 diagram in C determined by F (A A′, B  B′) yields the
following relation in K0(C).

[F (A′, B′)] = [F (A,B)] + [F (A′/A,B)] + [F (A,B′/B)] + [F (A′/A,B′/B)]

Higher K-theory will need this relation to follow from more symmetric consid-
erations, viz. that F (A  A′, B  B′) should represent a cofibration in the
category E of all cofibration sequences in C. With this in mind, we introduce
the following definition.

II.9.5.2 Definition 9.5.2. A functor F : A×B C between Waldhausen categories is
called biexact if each F (A,−) and F (−, B) is exact, and the following condition
is satisfied:

• For every pair of cofibrations (A  A′ in A, B  B′ in B) the following
map must be a cofibration in C:

F (A′, B) ∪F (A,B) F (A,B
′) > > F (A′, B′).
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Our next result requires some notation. Suppose that a category with cofi-
brations C has two notions of weak equivalence, a weak one v and a stronger
one w. (Every map in v belongs to w.) We write vC and wC for the two Wald-
hausen categories (C, co, v) and (C, co, w). The identity on C is an exact functor
vC → wC.

Let Cw denote the full subcategory of all w-acyclic objects in C, i.e., those
C for which 0  C is in w(C); Cw is a Waldhausen subcategory (

II.9.1.8
9.1.8) of vC,

i.e., of the category C with the v-notion of weak equivalence.
Recall from

II.9.1.1
9.1.1 that wC is called saturated if, whenever f, g are composable

maps and fg is a weak equivalence, f is a weak equivalence if and only if g is.

II.9.6 Theorem 9.6 (Localization Theorem). Suppose that C is a category with cofi-
brations, endowed with two notions (v ⊂ w) of weak equivalence, with wC satu-
rated, and that Cw is defined as above.

Assume in addition that every map f : C1 → C2 in C factors as the compo-
sition of a cofibration C1  C and an equivalence C

∼−→ C2 in v(C).
Then the exact inclusions Cw → vC → wC induce an exact sequence

K0(Cw)→ K0(vC)→ K0(wC)→ 0.

Proof. Our proof of this is similar to the proof of the Localization Theorem
II.6.4
6.4

for abelian categories. Clearly K0(vC) maps onto K0(wC) and K0(Cw) maps to
zero. Let L denote the cokernel of K0(Cw)→ K0(vC); we will prove the theorem
by showing that λ(C) = [C] induces a map K0(wC)→ L inverse to the natural
surjection L → K0(wC). As vC and wC have the same notion of cofibration, it
suffices to show that [C1] = [C2] in L for every equivalence f : C1 → C2 in wC.
Our hypothesis that f factors as C1  C

∼−→ C2 implies that in K0(vC) we
have [C2] = [C] = [C1] + [C/C1]. Since wC is saturated, it contains C1  C.
The following lemma implies that C/C1 is in Cw, so that [C2] = [C1] in L. This
is the relation we needed to have λ define a map K0(wC) → L, proving the
theorem.

II.9.6.1 Lemma 9.6.1. If B
∼
 C is both a cofibration and a weak equivalence in a

Waldhausen category, then 0  C/B is also a weak equivalence.

Proof. Apply the Glueing Axiom (W3) to the following diagram.

0 < B ======= B

0

wwwwwww
< B

∼

wwwwwww
> > C.

∼

wwwwwww

Here is a simple application of the Localization Theorem. Let (C, co, v) be
a Waldhausen category, and G an abelian group. Given a surjective homo-
morphism π : K0(C) → G, we let Cπ denote the Waldhausen subcategory of C
consisting of all objects C such that π([C]) = 0.
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II.9.6.2 Proposition 9.6.2. Assume that every morphism in a Waldhausen category C
factors as the composition of a cofibration and a weak equivalence. There is a
short exact sequence

0→ K0(Cπ)→ K0(C) π−→ G→ 0.

Proof. Define wC to be the family of all morphisms A→ B in C with π([A]) =
π([B]). This satisfies axiom (W3) because [C ∪A B] = [B] + [C]− [A], and the
factorization hypothesis ensures that the Localization Theorem

II.9.6
9.6 applies to

v ⊆ w. Since Cπ is the category Cw of w-acyclic objects, this yields exactness
at K0(C). Exactness at K0(Cπ) will follow from the Cofinality theorem

II.9.4
9.4,

provided we show that Cπ is cofinal. Given an object C, factor the map C → 0
as a cofibration C  C ′′ followed by a weak equivalence C ′′

∼−→ 0. If C ′ denotes
C ′′/C, we compute in G that

π([C ∐ C ′]) = π([C]) + π([C ′]) = π([C] + [C ′]) = π([C ′′]) = 0.

Hence C ∐ C ′ is in Cπ, and Cπ is cofinal in C.
II.9.7 Theorem 9.7 (Approximation Theorem). Let F : A → B be an exact functor

between two Waldhausen categories. Suppose also that F satisfies the following
conditions:

(a) A morphism f in A is a weak equivalence if and only if F (f) is a weak
equivalence in B.

(b) Given any map b : F (A)→ B in B, there is a cofibration a : A A′ in A
and a weak equivalence b′ : F (A′)

∼−→ B in B so that b = b′ ◦ F (a).
(c) If b is a weak equivalence, we may choose a to be a weak equivalence in A.

Then F induces an isomorphism K0A ∼= K0B.
Proof. Applying (b) to 0  B, we see that for every B in B there is a weak
equivalence F (A′)

∼−→ B. If F (A)
∼−→ B is a weak equivalence, so is A

∼−→ A′ by
(c). Therefore not only is K0A → K0B onto, but the set W of weak equivalence
classes of objects of A is isomorphic to the set of w.e. classes of objects in B.

Now K0B is obtained from the free abelian group Z[W ] on the set W by
modding out by the relations [C] = [B]+[C/B] corresponding to the cofibrations
B  C in B. Given F (A)

∼−→ B, hypothesis (b) yields A  A′ in A and a
weak equivalence F (A′)

∼−→ C in B. Finally, the Glueing Axiom (W3) applied
to

0 < F (A) > > F (A′)

0

wwwwwww
< B

∼
∨
> > C

∼
∨

implies that the map F (A′/A) → C/B is a weak equivalence. Therefore the
relation [C] = [B]+[C/B] is equivalent to the relation [A′] = [A]+[A′/A] in the
free abelian group Z[W ], and already holds in K0A. This yields K0A ∼= K0B,
as asserted.
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II.9.7.1 Approximation for saturated categories 9.7.1. If B is saturated (
II.9.1.1
9.1.1),

then condition (c) is redundant in the Approximation Theorem, because F (a)
is a weak equivalence by (b) and hence by (a) the map a is a w.e. in A.

II.9.7.2 Example 9.7.2. Recall from Example
II.9.1.4
9.1.4 that the category R(∗) of based

CW complexes is a Waldhausen category. Let Rhf (∗) denote the Waldhausen
subcategory of all based CW-complexes weakly homotopic to a finite CW com-
plex. The Approximation Theorem applies to the inclusion of Rf (∗) into
Rhf (∗); this may be seen by using the Whitehead Theorem and elementary
obstruction theory. Hence

K0Rhf (∗) ∼= K0Rf (∗) ∼= Z.

II.9.7.3 Example 9.7.3. If A is an exact category, the Approximation Theorem applies
to the inclusion splitChb ⊂ Chb = Chb(A) of Lemma

II.9.2.4
9.2.4, yielding a more

elegant proof that K0(splitChb) = K0(Chb). To see this, observe that any
chain complex map f : A → B factors through the mapping cylinder complex
cyl(f) as the composite A  cyl(f)

∼−→ B, and that splitChb is saturated
(
II.9.1.1
9.1.1).

II.9.7.4 Homologically bounded complexes 9.7.4. Fix an abelian category A, and
consider the Waldhausen category Ch(A) of all chain complexes over A, as in
II.9.2
9.2. We call a complex C• homologically bounded if it is exact almost everywhere,
i.e., if only finitely many of the Hi(C) are nonzero. Let Chhb(A) denote the
Waldhausen subcategory of Ch(A) consisting of the homologically bounded
complexes, and let Chhb− (A) ⊂ Chhb(A) denote the Waldhausen subcategory of
all bounded above, homologically bounded chain complexes 0→ Cn → Cn−1 →
· · · . These are all saturated biWaldhausen categories (see

II.9.1.1
9.1.1 and

II.9.1.6
9.1.6). We

will prove that

K0Chhb(A) ∼= K0Chhb− (A) ∼= K0Chb(A) ∼= K0(A),

the final isomorphism being Theorem
II.9.2.2
9.2.2. From this and Proposition

II.6.6
6.6 it

follows that if C is homologically bounded then

[C] =
∑

(−1)i[Hi(A)] in K0A.

We first claim that the Approximation Theorem
II.9.7
9.7 applies to Chb ⊂ Chhb− ,

yielding K0Chb ∼= K0Chhb− . If C• is bounded above then each good truncation
τ≥nC = (· · ·Cn+1 → Zn → 0) of C is a bounded subcomplex of C such that
Hi(τ≥nC) is Hi(C) for i ≥ n, and 0 for i < n. (See

WHomo
[223, 1.2.7].) Therefore

τ≥nC
∼−→ C is a quasi-isomorphism for small n (n ≪ 0). If B is a bounded

complex, any map f : B → C factors through τ≥nC for small n; let A denote
the mapping cylinder of B → τ≥nC (see

WHomo
[223, 1.5.8]). Then A is bounded

and f factors as the cofibration B  A composed with the weak equivalence
A

∼−→ τ≥nC
∼−→ C. Thus we may apply the Approximation Theorem, as

claimed.
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The Approximation Theorem does not apply to Chhb− ⊂ Chhb, but rather to

Chhb+ ⊂ Chhb, where the “+” indicates bounded below chain complexes. The

argument for this is the same as for Chb ⊂ Chhb− . Since these are biWaldhausen

categories, we can apply
II.9.1.7
9.1.7 to Chhb− (A)op = Chhb+ (Aop) and Chhb(A)op =

Chhb(Aop) to get

K0Chhb− (A) = K0Chhb+ (Aop) ∼= K0Chhb(Aop) = K0Chhb(A).

This completes our calculation that K0(A) ∼= K0Chhb(A).
II.9.7.5 Example 9.7.5 (K0 and Perfect Complexes). Let R be a ring. A chain com-

plexM• of R-modules is called perfect if there is a quasi-isomorphism P•

∼−→M•,
where P• is a bounded complex of finitely generated projective R-modules, i.e.,
P• is a complex in Chb(P(R)). The perfect complexes form a Waldhausen sub-
categoryChperf(R) ofCh(mod-R). We claim that the Approximation Theorem

applies to Chb(P(R)) ⊂ Chperf(R), so that

K0Chperf(R) ∼= K0ChbP(R) ∼= K0(R).

To see this, consider the intermediate Waldhausen category Chbperf of bounded
perfect complexes. The argument of Example

II.9.7.4
9.7.4 applies to show that

K0Chbperf
∼= K0Chperf(R), so it suffices to show that the Approximation The-

orem applies to ChbP(R) ⊂ Chbperf . This is an elementary application of the
projective lifting property, which we relegate to Exercise

EII.9.2
9.2.

II.9.7.6 Example 9.7.6 (G0 and Pseudo-coherent Complexes). Let R be a ring. A
complex M• of R-modules is called pseudo-coherent if there exists a quasi-
isomorphism P•

∼−→ M•, where P• is a bounded below complex · · · → Pn+1 →
Pn → 0 of finitely generated projective R-modules, i.e., P• is a complex in
Ch+(P(R)). For example, if R is noetherian we can consider any finitely gen-
erated module M as a pseudo-coherent complex concentrated in degree zero.
Even if R is not noetherian, it follows from Example

II.7.1.4
7.1.4 that M is pseudo-

coherent as an R-module if and only if it is pseudo-coherent as a chain complex.
(See

SGA6
[SGA6, I.2.9].)

The pseudo-coherent complexes form a Waldhausen subcategory Chpcoh(R)

of Ch(mod-R), and the subcategory Chhbpcoh(R) of homologically bounded
pseudo-coherent complexes is also Waldhausen. Moreover, the above remarks
show that M(R) is a Waldhausen subcategory of both of them. We will see in
Ex.

EII.9.7
9.7 that the Approximation Theorem applies to the inclusions of ChbM(R)

and Chhb+ P(R) in Chhbpcoh(R), so that in particular we have

K0ChbM(R) ∼= K0Chhb+ P(R) ∼= K0Chhbpcoh(R)
∼= G0(R).

Chain complexes with support

Suppose that S is a multiplicatively closed set of central elements in a ring R.
Let ChbSP(R) denote the Waldhausen subcategory of C = ChbP(R) consisting
of complexes E such that S−1E is exact, and writeK0(R on S) forK0ChbSP(R).
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The category ChbSP(R) is the category Cw of the Localization Theorem
II.9.6
9.6,

where w is the family of all morphisms P → Q in C such that S−1P → S−1Q is
a quasi-isomorphism. By Theorem

II.9.2.2
9.2.2 we have K0(C) = K0(R). Hence there

is an exact sequence

K0(R on S)→ K0(R)→ K0(wC)→ 0.

II.9.8 Theorem 9.8. The localization wC → ChbP(S−1R) induces an injection on
K0, so there is an exact sequence

K0(R on S)→ K0(R)→ K0(S
−1R).

Proof. Let B denote the category of S−1R-modules of the form S−1P for P in
P(R). By Example

II.7.3.2
7.3.2 and Theorem

II.9.2.2
9.2.2, K0Chb(B) = K0(B) is a subgroup

of K0(S
−1R). Therefore the result follows from the following Proposition.

II.9.8.1 Proposition 9.8.1. The Approximation Theorem
II.9.7
9.7 applies to wC→Chb(B).

Proof. Let P be a complex in ChbP(R) and b : S−1P → B a map in B. Because
each Bn has the form S−1Qn and each Bn → Bn−1 is s−1n dn for some sn ∈ S
and dn : Qn → Qn−1 such that dndn−1 = 0, B is isomorphic to the localization
S−1Q of a bounded complex Q in P(R), and some sb is the localization of a
map f : P → Q in ChbP(R). Hence f factors as P  cyl(f)

∼−→ Q. Since b is
the localization of f , followed by an isomorphism S−1Q ∼= B in B, it factors as
desired.

EXERCISES

EII.9.1 9.1. Retracts of a space. Fix a CW complex X and let R(X) be the category of
CW complexes Y obtained from X by attaching cells, and having a retraction
Y → X. Let Rf (X) be the subcategory of those Y obtained by attaching only
finitely many cells. Let Rfd(X) be the subcategory of those Y which are finitely
dominated, i.e., are retracts up to homotopy of spaces in Rf (X). Show that
K0Rf (X) ∼= Z and K0Rfd(X) ∼= K0(Z[π1X]). Hint: The cellular chain complex

of the universal covering space Ỹ is a chain complex of free Z[π1X]-modules.

EII.9.2 9.2. Let R be a ring. Use the projective lifting property to show that the
Approximation Theorem applies to the inclusionChbP(R) ⊂ Chbperf of Example
II.9.7.5
9.7.5. Conclude that K0(R) = K0Chperf(R).

If S is a multiplicatively closed set of central elements of R, show that the Ap-
proximation Theorem also applies to the inclusion of ChbSP(R) in Chperf,S(R),
and conclude that K0(R on S) ∼= K0Chperf,S(R).

EII.9.3 9.3. Consider the category Chb = Chb(A) of Theorem II.9.2.2
9.2.2 as a Waldhausen

category in which the weak equivalences are the isomorphisms, isoChb, as in
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Example
II.9.1.3
9.1.3. Let Chbacyc denote the subcategory of complexes whose differ-

entials are all zero. Show that Chbacyc is equivalent to the category ⊕n∈ZA, and
that the inclusion in Chb induces an isomorphism

K0(isoChb) ∼=
⊕

n∈Z
K0(A).

EII.9.4 9.4. Higher Extension categories. Consider the category En constructed in Ex-
ample

II.9.3.2
9.3.2, whose objects are sequences of n cofibrations in C. Show that En is

a category with cofibrations, that En is a Waldhausen category when C is, and
in that case

K0(En) ∼=
⊕n

i=1
K0(C).

EII.9.5 9.5. (
SGA6
[SGA6, IV(1.6)]) Let B be a Serre subcategory of an abelian categoryA, or

more generally any exact subcategory of A closed under extensions and kernels
of surjections. Let ChbB(A) denote the Waldhausen subcategory of Chb(A) of
bounded complexes C with Hi(C) in B for all i. Show that

K0B ∼= K0Chb(B) ∼= K0ChbB(A).

EII.9.6 9.6. Perfect injective complexes. Let R be a ring and let Ch+
inj(R) denote the

Waldhausen subcategory of Ch(mod-R) consisting of perfect bounded below
cochain complexes of injective R-modules 0 → Im → Im+1 · · · . (Recall from
Example

II.9.7.5
9.7.5 that I• is called perfect if it is quasi-isomorphic to a bounded

complex P • of finitely generated projective modules.) Show that

K0Ch+
inj(R)

∼= K0(R).

EII.9.7 9.7. Pseudo-coherent complexes and G0(R). Let R be a ring. Recall from
Example

II.9.7.6
9.7.6 that Chhbpcoh(R) denotes the Waldhausen category of all homo-

logically bounded pseudo-coherent chain complexes of R-modules. Show that:

(a) The category M(R) is a Waldhausen subcategory of Chhbpcoh(R).

(b) K0Chpcoh(R) = K0Ch+P(R) = 0.

(c) The Approximation Theorem applies to the inclusions of both Chhb+ M(R)

and Chhb+ P(R) in Chhbpcoh(R), and to ChbM(R) ⊂ Chhb−M(R). Hint: See
II.9.7.4
9.7.4.

This shows that G0(R) ∼= K0Chhb+ P(R) ∼= K0Chhbpcoh(R).

EII.9.8 9.8. Pseudo-coherent complexes and Gder0 . Let X be a scheme. A cochain
complex E• of OX -modules is called strictly pseudo-coherent if it is a bounded
above complex of vector bundles, and pseudo-coherent if it is locally quasi-
isomorphic to a strictly pseudo-coherent complex, i.e., if every point x ∈ X has
a neighborhood U , a strictly pseudo-coherent complex P • on U and a quasi-
isomorphism P • → E•|U . Let Chhbpcoh(X) denote the Waldhausen category
of all pseudo-coherent complexes E• which are homologically bounded, and set
Gder0 (X) = K0Chhbpcoh(X); this is the definition used in

SGA6
[SGA6], Exposé IV(2.2).
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(a) If X is a noetherian scheme, show that every coherent OX -module is a
pseudo-coherent complex concentrated in degree zero, so that we may
consider M(X) as a Waldhausen subcategory of Chhbpcoh(X). Then show
that a complex E• is pseudo-coherent if and only if it is homologically
bounded above and all the homology sheaves of E• are coherent OX -
modules.

(b) If X is a noetherian scheme, show that G0(X) ∼= Gder0 (X).

(c) If X = Spec(R) for a ring R, show that Gder0 (X) is isomorphic to the
group K0Chhbpcoh(R) of the previous exercise.

EII.9.9 9.9. Let Z be a closed subscheme of X. Let Chhbpcoh,Z(X) denote the sub-

category of complexes in Chhbpcoh(X) which are acyclic on X − Z, and define

G0(X on Z) to be K0Chhbpcoh(X).

(a) If X is a noetherian scheme, show that G0(Z) ∼= G0(X on Z).

(b) Show that there is an exact sequence

G0(X on Z)→ Gder0 (X)→ Gder0 (X − Z).

EII.9.10 9.10. Perfect complexes and Kder
0 . Let X be a scheme. A complex E• of

OX -modules is called strictly perfect if it is a bounded complex of vector bun-
dles, i.e., a complex in ChbVB(X). A complex is called perfect if it is locally
quasi-isomorphic to a strictly perfect complex, i.e., if every point x ∈ X has
a neighborhood U , a strictly perfect complex P • on U and a quasi-isomorphic
P • → E•|U . Write Chperf(X) for the Waldhausen category of all perfect com-
plexes, and Kder

0 (X) for K0Chperf(X); this is the definition used in
SGA6
[SGA6],

Exposé IV(2.2).

(a) If X = Spec(R), show that K0(R) ∼= Kder
0 (X). Hint: show that the

Approximation Theorem
II.9.7
9.7 applies to Chperf(R) ⊂ Chperf(X).

(b) IfX is noetherian, show that the category C = Ch
qc
perf of perfect complexes

of quasi-coherent OX -modules also has K0(C) = Kder
0 (X).

(c) If X is a regular noetherian scheme, show that a homologically bounded
complex is perfect if and only if it is pseudo-coherent, and conclude that
Kder

0 (X) ∼= G0(X).

(d) Let X be the affine plane with a double origin over a field k, obtained by
glueing two copies of A2 = Spec(k[x, y]) together; X is a regular noetherian
scheme. Show that K0VB(X) = Z but Kder

0 (X) = Z⊕ Z. Hint. Use the
fact that A2 → X induces an isomorphism VB(X) ∼= VB(A2) and the
identification of Kder

0 (X) with G0(X) from part (c).

EII.9.11 9.11. Give an example of an exact subcategory B of an abelian category A in
which K0(B) 6= K0Chb(B). Here Chb(B) is the Waldhausen category defined
in

II.9.2
9.2. Note that B cannot be closed under kernels of surjections, by Theorem

II.9.2.2
9.2.2.
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EII.9.12 9.12. Finitely dominated complexes. Let C be a small exact category, closed
under extensions and kernels of surjections in an ambient abelian category A
(Definition

II.7.0.1
7.0.1). A bounded below complex C• of objects in C is called finitely

dominated if there is a bounded complex B• and two maps C• → B• → C•

whose composite C• → C• is chain homotopic to the identity. Let Chfd
+ (C)

denote the category of finitely dominated chain complexes of objects in C. (If C
is abelian, this is the category Chhb+ (C) of Example

II.9.7.4
9.7.4.)

(a) Let e be an idempotent endomorphism of an object C, and let tel(e)
denote the nonnegative complex

· · · e−→ C
1−e−→ C

e−→ C → 0.

Show that tel(e) is finitely dominated.
(b) Let Ĉ denote the idempotent completion

II.7.3
7.3 of C. Show that there is a

map from K0(Ĉ) to K0Chfd
+ (C) sending [(C, e)] to [tel(e)].

(c) Show that the map in (b) induces an isomorphism K0(Ĉ) ∼= K0Chfd
+ (C).

EII.9.13 9.13. Let S be a multiplicatively closed set of central nonzerodivisors in a ring
R. Show that K0HS(R) ∼= K0(R on S), and compare Cor.

II.7.7.4
7.7.4 to Theorem

II.9.8
9.8.

EII.9.14 9.14. (Grayson’s Trick) Let B be a Waldhausen subcategory of C closed under
extensions. Suppose that B is cofinal in C, so that K0(B) ⊆ K0(C) by the
Cofinality Theorem

II.9.4
9.4. Define an equivalence relation ∼ on objects of C by

C ∼ C ′ if there are B,B′ in B with C ∐B ∼= C ′ ∐B′.
(a) Given a cofibration sequence C ′  C ։ C ′′ in C, use the proof of the
Cofinality Theorem

II.7.2
7.2 to show that C ∼ C ′ ∐ C ′′.

(b) Conclude that C ∼ C ′ if and only if [C] − [C ′] is in K0(B) ⊆ K0(C). (See
Remark

II.9.4.1
9.4.1.)

(c) For each sequence C1, ..., Cn of objects in C such that [C1] = · · · = [Cn] in
K0(C)/K0(B), show that there is a C ′ in C so that each Ci ∐ C ′ is in B.
(d) If K0(B) = K0(C), show that B is strictly cofinal in C, meaning that for
every C in C there is a B in B so that C ∐B is in B.

EII.9.15 9.15. Triangulated Categories. If C is a triangulated category, the Grothendieck
group k(C) is the free abelian group on the objects, modulo the relation that
[A] − [B] + [C] = 0 for every triangle A → B → C → A[1]. (a) If B is an
additive category, regarded as a split exact category (

II.7.1.2
7.1.2), show that K0(B) is

isomorphic to k(KbB). (b) If B is an exact subcategory of an abelian category,
closed under kernels, show that K0(B) is isomorphic to k(KbB). Hint. See II.9.2.2

9.2.2.
(c) If C has a bounded t-structure with heart A BBD

[22], show that K0(A) ∼= k(C).

August 29, 2013 - Page 173 of
LastPage
568



Chapter II

Appendix. Localizing by calculus of fractions

If C is a category and S is a collection of morphisms in C, then the localization
of C with respect to S is a category CS , together with a functor loc : C → CS
such that

(1) For every s ∈ S, loc(s) is an isomorphism
(2) If F : C → D is any functor sending S to isomorphisms in D, then F

factors uniquely through loc : C → CS .

Example. We may consider any ring R as an additive category R with one
object. If S is a central multiplicative subset of R, there is a ring S−1R obtained
by localizing R at S, and the corresponding category is RS . The useful fact that
every element of the ring S−1R may be written in standard form s−1r = rs−1

generalizes to morphisms in a localization CS , provided that S is a “locally small
multiplicative system” in the following sense.

II.A.1 Definition A.1. A collection S of morphisms in C is called a multiplicative
system if it satisfies the following three self-dual axioms:

(FR1) S is closed under composition and contains the identity morphisms 1X of
all objects X of C. That is, S forms a subcategory of C with the same
objects.

(FR2) (Ore condition) (a) If t : Z → Y is in S, then for every g : X → Y in C
there is a commutative diagram in C with s ∈ S:

W
f

> Z

X

s
∨ g

> Y.

t
∨

(The slogan is “t−1g = fs−1 for some f and s.”) (b) The dual statement
(whose slogan is “fs−1 = t−1g for some t and g”) is also valid.

(FR3) (Cancellation) If f, g : X → Y are parallel morphisms in C, then the fol-
lowing two conditions are equivalent:

(a) sf = sg for some s : Y → Z in S

(b) ft = gt for some t : W → X in S.

We say that S is a right multiplicative system if it satisfies (FR1) and (FR2a),
and if (FR3a) implies (FR3b) Left multiplicative systems are defined dually.

II.A.1.1 Example A.1.1. If S is a multiplicatively closed subset of a ring R, then S
forms a multiplicative system if and only if S is a “2–sided denominator set.”
(One-sided denominator sets (left and right) correspond to left and right multi-
plicative systems.) The localization of rings at denominator sets was the original
application of Øystein Ore.
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II.A.1.2 Example A.1.2. (Gabriel) Let B be a Serre subcategory (see §6) of an abelian
category A, and let S be the collection of all B-isos, i.e., those maps f such
that ker(f) and coker(f) is in B. Then S is a multiplicative system in A; the
verification of axioms (FR2), (FR3) is a pleasant exercise in diagram chasing. In
this case, AS is the quotient abelian category A/B discussed in the Localization
Theorem

II.6.4
6.4.

We would like to say that every morphism X → Z in CS is of the form fs−1.
However, the issue of whether or this construction makes sense (in our universe)
involves delicate set-theoretic questions. The following notion is designed to
avoid these set-theoretic issues.

We say that S is locally small (on the left) if for each X in C there is a set

SX of morphisms X ′
s−→ X in S such that every map Y → X in S factors as

Y → X ′
s−→ X for some s ∈ SX .

II.A.2 Definition A.2 (Fractions). A (left) fraction between X and Y is a chain in C
of the form:

fs−1 : X
s←−X1

f−→ Y, s ∈ S.
Call fs−1 equivalent to X ← X2 → Y just in case there is a chain X ← X3 → Y
fitting into a commutative diagram in C:

X1

X <
<

X3

∧

> Y
>

X2

∨

><

It is easy to see that this is an equivalence relation. Write HomS(X,Y ) for the
equivalence classes of such fractions between X and Y . (HomS(X,Y ) is a set
when S is locally small.)

We cite the following theorem without proof from
WHomo
[223, 10.3.7], relegating

its routine proof to Exercises
EII.A.1
A.1 and

EII.A.2
A.2.

II.A.3 Gabriel-Zisman Theorem A.3. Let S be a locally small multiplicative sys-
tem of morphisms in a category C. Then the localization CS of C exists, and
may be constructed by the following “calculus” of left fractions.
CS has the same objects as C, but HomCS (X,Y ) is the set of equivalence

classes of chains X ← X ′ → Y with X ′ → X in S, and composition is given
by the Ore condition. The functor loc : C → CS sends X → Y to the chain
X

=←−X → Y , and if s : X → Y is in S its inverse is represented by Y ←
X

=−→ X.

II.A.3.1 Corollary A.3.1. Two parallel arrows f, g : X → Y become identified in CS if
and only if the conditions of (FR3) hold.
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II.A.3.2 Corollary A.3.2. Suppose that C has a zero object, and that S is a multiplica-
tive system in C. Assume that S is saturated in the sense that if s and st are
in S then so is t. Then for every X in C:

loc(X) ∼= 0⇔ The zero map X
0−→ X is in S.

Proof. Since loc(0) is a zero object in CS , loc(X) ∼= 0 if and only if the parallel
maps 0, 1: X → X become identified in CS .

Now let A be an abelian category, and C a full subcategory of the category
Ch(A) of chain complexes over A, closed under translation and the formation
of mapping cones. Let K be the quotient category of C, obtained by identifying
chain homotopic maps in C. Let Q denote the family of (chain homotopy
equivalence classes of) quasi-isomorphisms in C. The following result states
that Q forms a multiplicative system in K, so that we can form the localization
KQ of K with respect to Q by the calculus of fractions.

II.A.4 Lemma A.4. The family Q of quasi-isomorphisms in the chain homotopy cat-
egory K forms a multiplicative system.

Proof. (FR1) is trivial. To prove (FR2), consider a diagram X
u−→ Y

s←−Z
with s ∈ Q. Set C = cone(s), and observe that C is acyclic. If f : Y → C is the
natural map, set W = cone(fu), so that the natural map t : W → X[−1] is a
quasi-isomorphism. Now the natural projections from each Wn = Zn−1 ⊕ Yn ⊕
Xn−1 to Zn−1 form a morphism v : W → Z[−1] of chain complexes making the
following diagram commute:

X
fu

> C > W
t
> X[−1]

Z
s

> Y

u

∨ f
> C

=

∨
> Z[−1]

v

∨ s[−1]
> Y [−1].

∨

Applying X 7→ X[1] to the right square gives the first part of (FR2); the second
part is dual and is proven similarly.

To prove (FR3), we suppose given a quasi-isomorphism s : Y → Y ′ and set
C = cone(s); from the long exact sequence in homology we see that C is acyclic.
Moreover, if v denotes the map C[1]→ Y then there is an exact sequence:

HomK(X,C[1])
v−→ HomK(X,Y )

s−→ HomK(X,Y ′)

(see
WHomo
[223, 10.2.8]). Given f and g, set h = f − g. If sh = 0 in K, there is a

map w : X → C[1] such that h = vw. Setting X ′ = cone(w)[1], the natural

map X ′
t−→ X must be a quasi-isomorphism because C is acyclic. Moreover,

wt = 0, so we have ht = vwt = 0, i.e., ft = gt.
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II.A.5 Definition A.5. LetC ⊂ Ch(A) be a full subcategory closed under translation
and the formation of mapping cones. The derived category of C, D(C), is
defined to be the localization KQ of the chain homotopy category K at the
multiplicative system Q of quasi-isomorphisms. The derived category of A is
D(A) = D(Ch(A)).

Another application of calculus of fractions is Verdier’s formation of quotient
triangulated categories by thick subcategories. We will use Rickard’s definition
of thickness, which is equivalent to Verdier’s.

II.A.6 Definition A.6. Let K be any triangulated category (see
WHomo
[223, 10.2.1]). A full

additive subcategory E of K is called thick if:

(1) In any distinguished triangle A → B → C → A[1], if two out of A,B,C
are in E then so is the third.

(2) if A⊕B is in E then both A and B are in E .

If E is a thick subcategory ofK, we can form a quotient triangulated category
K/E , parallel to Gabriel’s construction of a quotient abelian category in

II.A.1.2
A.1.2.

That is, K/E is defined to be S−1K, where S is the family of maps whose cone
is in E . By Ex.

EII.A.6
A.6, S is a saturated multiplicative system of morphisms, so

S−1K can be constructed by the calculus of fractions (Theorem
II.A.3
A.3).

To justify this definition, note that because S is saturated it follows
from

II.A.3.2
A.3.2 and

II.A.6
A.6(2) that: (a) X ∼= 0 in K/E if and only if X is in E , and (b)

a morphism f : X → Y in K becomes an isomorphism in K/E if and only if f
is in S.

We conclude with a more recent application, due to M. Schlichting
Schl
[164].

A.7 Definition A.7. Let A ⊂ B be exact categories, with A closed under exten-
sions, admissible subobjects and admissible quotients in B. We say that A is
right filtering in B if every map from an object B of B to an object of A factors
through an admissible epi B ։ A with A in A.

A morphism of B is called a weak isomorphism if it is a finite composition
of admissible monics with cokernel in A and admissible epis with kernel in A.
We write B/A for the localization of B with respect to the weak isomorphisms.

II.A.7.1 Proposition A.7.1. If A is right filtering in B, then the class Σ of weak iso-
morphisms is a right multiplicative system. By the Gabriel-Zisman Theorem
II.A.3
A.3, B/A may be constructed using a calculus of right fractions.

Proof. By construction, weak isomorphisms are closed under composition, so
(FR1) holds. Given an admissible t : Z ։ Y in B with kernel in A and
g : X → Y , the base change s : Z ×Y X ։ X is an admissible epi in Σ and
the canonical map Z ×Y X → Z → Y equals gs. Given an admissible monic
t : Z  Y with kernel A′ in A, the map X → A′ factors throught an admissible
epi q : X ։ A with A in A because A ⊂ B is right filtering; the kernel W  X
of q is in Σ and W → X → Y factors through a universal map W → Z. An
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arbitrary t in Σ is a finite composition of these two types, so by induction on
the length of t, we see that Σ satisfies (FR2a).

Finally, suppose that sf = sg for some weak isomorphism s : Y → Z and
f, g : X → Y . If s is an admissible monic, then f = g already. If s is an
admissible epi, f − g factors through the kernel A Y of s. Because A is right

filtering in B, there is an admissible exact sequence W
t
 X ։ A with A in A,

such that f − g factors through A. Hence t is a weak equivalence and ft = gt.
As before, induction shows that (a) implies (b) in axiom (FR3).

EXERCISES

EII.A.1 A.1. Show that the construction of the Gabriel-Zisman Theorem
II.A.3
A.3 makes CS

into a category by showing that composition is well-defined and associative.

EII.A.2 A.2. If F : C → D is a functor sending S to isomorphisms, show that F factors
uniquely through the Gabriel-Zisman category CS of the previous exercise as
C → CS → D. This proves the Gabriel-Zisman Theorem

II.A.3
A.3, that CS is indeed

the localization of C with respect to S.

EII.A.3 A.3. Let B be a full subcategory of C, and let S be a multiplicative system in
C such that S ∩B is a multiplicative system in B. Assume furthermore that one
of the following two conditions holds:

(a) Whenever s : C → B is in S with B in B, there is a morphism f : B′ → C
with B′ in B such that sf ∈ S

(b) Condition (a) with the arrows reversed, for s : B → C.
Show that the natural functor BS → CS is fully faithful, so that BS can be
identified with a full subcategory of CS .

EII.A.4 A.4. Let F : A → A′ be an exact functor between two abelian categories, and let
S be the family of morphisms s inCh(A) such that F (s) is a quasi-isomorphism.
Show that S is a multiplicative system in ChA.

EII.A.5 A.5. Suppose that C is a subcategory of Ch(A) closed under translation and
the formation of mapping cones, and let Σ be the family of all chain homotopy
equivalences in C. Show that the localization CΣ is the quotient category K of
C described before Lemma

II.A.4
A.4. Conclude that the derived category D(C) is

the localization of C at the family of all quasi-isomorphisms. Hint: If two maps
f1, f2 : X → Y are chain homotopic then they factor through a common map
f : cyl(X)→ Y out of the mapping cylinder of X.

EII.A.6 A.6. Let E be a thick subcategory of a triangulated category K, and S the
morphisms whose cone is in E , as in II.A.6

A.6. Show that S is a multiplicative system
of morphisms. Then show that S is saturated in the sense of

II.A.3.2
A.3.2.
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K1 and K2 of a ring

Let R be an associative ring with unit. In this chapter, we introduce the classical
definitions of the groups K1(R) and K2(R). These definitions use only linear
algebra and elementary group theory, as applied to the groups GL(R) and E(R).
We also define relative groups for K1 and K2, as well as the negative K-groups
K−n(R) and the Milnor K-groups KM

n (R).
In the next chapter we will give another definition: Kn(R) = πnK(R) for

all n ≥ 0, where K(R) is a certain topological space built using the category
P(R) of finitely generated projective R-modules. We will then have to prove
that these topologically defined groups agree with the definition of K0(R) in
chapter II, as well as with the classical constructions of K1(R) and K2(R) in
this chapter.

1 The Whitehead Group K1 of a ring

Let R be an associative ring with unit. Identifying each n×n matrix g with the
larger matrix

(
g
0
0
1

)
gives an embedding of GLn(R) into GLn+1(R). The union

of the resulting sequence

GL1(R) ⊂ GL2(R) ⊂ · · · ⊂ GLn(R) ⊂ GLn+1(R) ⊂ · · ·

is called the infinite general linear group GL(R).
Recall that the commutator subgroup [G,G] of a group G is the subgroup

generated by its commutators [g, h] = ghg−1h−1. It is always a normal subgroup
of G, and has a universal property: the quotient G/[G,G] is an abelian group,
and every homomorphism from G to an abelian group factors through G/[G,G].

III.1.1 Definition 1.1. K1(R) is the abelian group GL(R)/[GL(R), GL(R)].

The universal property of K1(R) is this: every homomorphism from GL(R)
to an abelian group must factor through the natural quotient GL(R)→ K1(R).
Depending upon our situation, we will sometimes think of K1(R) as an additive
group, and sometimes as a multiplicative group.
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A ring map R→ S induces a natural map from GL(R) to GL(S), and hence
from K1(R) to K1(S). That is, K1 is a functor from rings to abelian groups.

III.1.1.1 Example 1.1.1 (SK1). If R happens to be commutative, the determinant of
a matrix provides a group homomorphism from GL(R) onto the group R× of
units of R. It is traditional to write SK1(R) for the kernel of the induced
surjection det : K1(R)→ R×. The special linear group SLn(R) is the subgroup
of GLn(R) consisting of matrices with determinant 1, and SL(R) is their union.
Since the natural inclusion of the units R× in GL(R) as GL1(R) is split by the
homomorphism det : GL(R)→ R×, we see that GL(R) is the semidirect product
SL(R)⋊R×, and there is a direct sum decomposition: K1(R) = R×⊕SK1(R).

III.1.1.2 Example 1.1.2. If F is a field, then K1(F ) = F×. We will see this below
(see Lemma

III.1.2.2
1.2.2 and Example

III.1.3.1
1.3.1 below), but it is more fun to deduce this

from an 1899 theorem of L. E. J. Dickson, that SLn(F ) is the commutator
subgroup of both GLn(F ) and SLn(F ), with only two exceptions: GL2(F2) =
SL2(F2) ∼= Σ3, which has order 6, and GL2(F3), which has center {±I} and
quotient PGL2(F3) = GL2(F3)/{±I} isomorphic to Σ4.

III.1.1.3 Example 1.1.3. If R is the product R′ × R′′ of two rings, then K1(R) =
K1(R

′) ⊕ K1(R
′′). Indeed, GL(R) is the product GL(R′) × GL(R′′), and the

commutator subgroup decomposes accordingly.

III.1.1.4 Example 1.1.4. For all n, the Morita equivalence between R and S =Mn(R)
(see II.

II.2.7.2
2.7.2) produces an isomorphism between Mmn(R) = EndR(R

m ⊗ Rn)
and Mm(Mn(R)) = EndS(S

m). It is easy to see that the resulting isomorphism
of units GLmn(R) ∼= GLm(Mn(R)) is compatible with stablization in m, giving
an isomorphism GL(R) ∼= GL(Mn(R)). Hence K1(R) ∼= K1(Mn(R)).

We will show that the commutator subgroup of GL(R) is the subgroup E(R)
generated by “elementary” matrices. These are defined as follows.

III.1.2 Definition 1.2. If i 6= j are distinct positive integers and r ∈ R then the
elementary matrix eij(r) is the matrix in GL(R) which has 1 in every diagonal
spot, has r in the (i, j)-spot, and is zero elsewhere.

En(R) denotes the subgroup ofGLn(R) generated by all elementary matrices
eij(r) with 1 ≤ i, j ≤ n, and the union E(R) of the En(R) is the subgroup of
GL(R) generated by all elementary matrices.

III.1.2.1 Example 1.2.1. A signed permutation matrix is one which permutes the stan-
dard basis {ei} up to sign, i.e., it permutes the set {±e1, . . . ,±en}. The follow-
ing signed permutation matrix belongs to E2(R):

w̄12 := e12(1)e21(−1)e12(1) =
(

0 1
−1 0

)
.

By changing the subscripts, we see that the signed permutation matrices w̄ij
belong to En(R) for n ≥ i, j. Since the products w̄jkw̄ij correspond to cyclic
permutations of 3 basis elements, every matrix corresponding to an even per-
mutation of basis elements belongs to En(R). Moreover, if g ∈ GLn(R) then

we see by Ex. I.
EI.1.11
1.11 that E2n(R) contains the matrix

(
g
0

0
g−1

)
.
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III.1.2.2 1.2.2. If we interpret matrices as linear operators on column vectors, then eij(r)
is the elementary row operation of adding r times row j to row i, and En(R) is
the subset of all matrices inGLn(R) which may be reduced to the identity matrix
using only these row operations. The quotient set GLn(R)/En(R) measures the
obstruction to such a reduction.

If F is a field this obstruction is F×, and is measured by the determinant.
That is, En(F ) = SLn(F ) for all n ≥ 1. Indeed, standard linear algebra shows
that every matrix of determinant 1 is a product of elementary matrices.

III.1.2.3 Remark 1.2.3 (Surjections). If I is an ideal of R, each homomorphism
En(R) → En(R/I) is onto, because the generators eij(r) of En(R) map onto
the generators eij(r̄) of En(R/I). In contrast, the maps GLn(R)→ GLn(R/I)
are usually not onto unless I is a radical ideal (Ex. I.

EI.1.12
1.12(iv)). Indeed, the

obstruction is measured by the group K0(I) = K0(R, I); see Proposition
III.2.3
2.3

below.

III.1.2.4 Division rings 1.2.4. The same linear algebra that we invoked for fields shows
that if D is a division ring (a “skew field”) then every invertible matrix may
be reduced to a diagonal matrix diag(r, 1, ..., 1), and that En(D) is a normal
subgroup of GLn(D). Thus each GLn(D)/En(D) is a quotient group of the
nonabelian groupD×. Dieudonné proved in 1943 that in fact GLn(D)/En(D) =
D×/[D×, D×] for all n > 1 (except for n = 2 when D = F2). In particular,
K1(D) = GLn(D)/En(D) for all n ≥ 3. A proof of this result is sketched in
Exercise

EIII.1.2
1.2 below.

If D is a d-dimensional division algebra over its center F (which must be a
field), then d = n2 for some integer n, and n is called the Schur index of D.
Indeed, there are (many) field extensions E of F such that D ⊗F E ∼= Mn(E);
such a field is called a splitting field for D. For example, any maximal subfield
E ⊂ D has [E : F ] = n and is a splitting field.

For any splitting field E, the inclusions D →֒Mn(E) andMr(D) →֒Mnr(E)

induce maps D× ⊂ GLn(E)
det−→ E× and GLr(D) → GLnr(E)

det−→ E× whose
image lies in the subgroup F× of E×. (Indeed, if E/F is Galois, the image is
fixed by the Galois group Gal(E/F ) and hence lies in F×.) The induced maps
D× → F× and GLr(D) → F× are called the reduced norms Nred for D, and
are independent of E. For example, if D = H is the quaternions then F = R,
and Nred(t+ ix+ jy+kz) = t2+x2+ y2+ z2. It is easy to check here that Nred

induces K1(H) ∼= R×+ ⊂ R×.
Now if A is any central simple F -algebra then A ∼=Mr(D) for some D, and

Mm(A) ∼= Mmr(D). The induced maps Nred : GLm(A) ∼= GLmr(D)→ F× are
sometimes called the reduced norm for A, and the kernel of this map is written
as SLm(A). We define SK1(A) to be the kernel of the induced map

Nred : K1(A) ∼= K1(D)→ K1(F ) = F×.

In 1950 S. Wang showed that SK1(D) = 1 if F is a number field. For every
real embedding σ : F →֒ R, D ⊗F R is a matrix algebra over R, C or H; it is
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called unramified in case H occurs. The Hasse-Schilling-Maass norm theorem
describes the image of the reduced norm, and hence K1(D):

K1(D)
≃

Nred
> {x ∈ F× : σ(x) > 0 in R for all ramified σ}.

Wang also showed that SK1(D) = 1 if the Schur index of D is squarefree. In
1976 V. Platanov produced the first examples of a D with SK1(D) 6= 1, by
constructing a map from SK1(D) to a subquotient of the Brauer group Br(F ).
We will see in

III.1.7.2
1.7.2 below that the group SK1(D) has exponent n.

III.1.2.5 Remark 1.2.5. There is no a priori reason to believe that the subgroups En(R)
are normal, except in special cases. For example, we shall show in Ex.

EIII.1.3
1.3 that

if R has stable range d + 1 then En(R) is a normal subgroup of GLn(R) for
all n ≥ d + 2. Vaserstein proved in

V69
[205] that K1(R) = GLn(R)/En(R) for all

n ≥ d+ 2.
If R is commutative, we can do better: En(R) is a normal subgroup of

GLn(R) for all n ≥ 3. This theorem was proven by A. Suslin in
Su77
[179]; we give

Suslin’s proof in Ex.
EIII.1.9
1.9. Suslin also gave examples of Dedekind domains for

which E2(R) is not normal in GL2(R) in
Su76
[178]. For noncommutative rings, the

En(R) are only known to be normal for large n, and only then when the ring R
has finite stable range in the sense of Ex. I.

EI.1.5
1.5; see Ex.

EIII.1.3
1.3 below.

III.1.3 Commutators 1.3. Here are some easy-to-check formulas for multiplying el-
ementary matrices. Fixing the indices, we have eij(r)eij(s) = eij(r + s), and
eij(−r) is the inverse of eij(r). The commutator of two elementary matrices is
easy to compute and simple to describe (unless j = k and i = ℓ):

[eij(r), ekℓ(s)] =





1 if j 6= k and i 6= ℓ

eiℓ(rs) if j = k and i 6= ℓ

ekj(−sr) if j 6= k and i = ℓ.

(1.3.1) III.1.3.1

Recall that a group is called perfect if G = [G,G]. If a subgroup H of G is
perfect, then H ⊆ [G,G]. The group E(R) is perfect, as are most of its finite
versions:

III.1.3.2 Lemma 1.3.2. If n ≥ 3 then En(R) is a perfect group.

Proof. If i, j, k are distinct then eij(r) = [eik(r), ekj(1)].

We know from Example
III.1.1.2
1.1.2 that E2(R) is not always perfect; in fact E2(F2)

and E2(F3) are solvable groups.

Rather than become enmeshed in technical issues, it is useful to “stabilize”
by increasing the size of the matrices we consider. One technical benefit of
stability is given in Ex.

EIII.1.4
1.4. The following stability result was proven by J.H.C.

Whitehead in the 1950 paper
Wh50
[227], and in some sense is the origin of K-theory.

III.1.3.3 Whitehead’s Lemma 1.3.5. E(R) is the commutator subgroup of GL(R).
Hence K1(R) = GL(R)/E(R).
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Proof. The commutator subgroup contains E(R) by Lemma
III.1.3.2
1.3.2. Conversely,

every commutator in GLn(R) can be expressed as a product in GL2n(R):

[g, h] =

(
g 0
0 g−1

)(
h 0
0 h−1

)(
(hg)−1 0

0 hg

)
. (1.3.4) III.1.3.4

But we saw in Example
III.1.2.1
1.2.1 that each of these terms is in E2n(R).

III.1.3.5 Example 1.3.5. If F is a field then K1(F ) = F×, because we have already
seen that E(F ) = SL(F ). Similarly, if R is a Euclidean domain such as Z or
F [t] then it is easy to show that SK1(R) = 1 and hence K1(R) = R×; see
Ex.

EIII.1.5
1.5. In particular, K1(Z) = Z× = {±1} and K1(F [t]) = F×.
To get a feeling for the non-commutative situation, suppose that D is a

division ring. Diedonné’s calculation of GLn(D)/En(D) (described in
III.1.2.4
1.2.4 and

Ex.
EIII.1.2
1.2) gives an isomorphism K1(D) ∼= D×/[D×, D×].

III.1.3.6 Example 1.3.6. If F is a finite field extension of Q (a number field) and R is
an integrally closed subring of F , then Bass, Milnor and Serre proved in

BMS
[19,

4.3] that SK1(R) = 0, so that K1(R) ∼= R×. We mention that if R is finitely
generated over Z then, by the Dirichlet Unit Theorem, K1(R) = R× is a finitely
generated abelian group isomorphic to µ(F ) ⊕ Zs−1, where µ(F ) denotes the
cyclic group of all roots of unity in F and s is the number of “places at infinity”
for R.

III.1.3.7 Example 1.3.7 (Vaserstein). If r, s ∈ R are such that 1 + rs is a unit, then
so is 1 + sr because (1 + sr)(1 − s(1 + rs)−1r) = 1. The subgroup W (R)
of R× generated by the (1 + rs)(1 + sr)−1 belongs to E2(R) by Ex.

EIII.1.1
1.1. For

R = M2(F2), W (R) = R× ∼= Σ3 and K1(R) = 1 but R× 6= [R×, R×]. If T is
the subring of upper triangular matrices in M2(F2), its group of units is abelian
(T× ∼= Z/2), but K1(T ) = 1 since

(
1
0

1
1

)
= (1+ rs)(1+ sr)−1 for r =

(
1
0

0
0

)
and

s =
(
0
0

1
0

)
.

Vaserstein has shown
V04
[207] that W (R) = [R×, R×] if Λ = R/rad(R) is a

product of matrix rings, none of which isM2(F2), and at most one of the factors
in Λ is F2. In particular,W (R) = [R×, R×] for every local ring R. (See Ex.

EIII.1.1
1.1.)

III.1.4 Lemma 1.4. If R is a semilocal ring then the natural inclusion of R× =
GL1(R) into GL(R) induces an isomorphism K1(R) ∼= R×/W (R),

If R is a commutative semilocal ring, then

SK1(R) = 1 and K1(R) = R×.

Proof. By Example
III.1.1.1
1.1.1 (or

III.1.3.7
1.3.7 and Ex.

EIII.1.2
1.2 in the noncommutative case) it

suffices to prove that R× maps onto K1(R). This will follow by induction on
n once we show that GLn(R) = En(R)GLn−1(R). Let J denote the Jacobson
radical of R, so that R/J is a finite product of matrix algebras over division
rings. By Examples

III.1.1.3
1.1.3,

III.1.1.4
1.1.4 and

III.1.2.4
1.2.4, (R/J)× maps onto K1(R/J); in fact

by Exercise
EIII.1.3
1.3 we know that every ḡ ∈ GLn(R/J) is a product ēḡ1, where

ē ∈ En(R/J) and ḡ1 ∈ GL1(R/J).
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Given g ∈ GLn(R), its reduction ḡ in GLn(R/J) may be decomposed as
above: ḡ = ēḡ1. By Remark

III.1.2.3
1.2.3, we can lift ē to an element e ∈ En(R).

The matrix e−1g is congruent to the diagonal matrix ḡ1 modulo J , so its di-
agonal entries are all units and its off-diagonal entries lie in J . Using elemen-
tary row operations eij(r) with r ∈ J , it is an easy matter to reduce e−1g
to a diagonal matrix, say to D = diag(r1, ..., rn). By Ex. I.

EI.1.11
1.11, the matrix

diag(1, ..., 1, rn, r
−1
n ) is in En(R). Multiplying D by this matrix yields a matrix

in GLn−1(R), finishing the induction and the proof.

Commutative Banach Algebras

Let R be a commutative Banach algebra over the real or complex numbers.
For example, R could be the ring RX of continuous real-valued functions of a
compact space X. As subspaces of the metric space of n × n matrices over R,
the groups SLn(R) and GLn(R) are topological groups.

III.1.5 Proposition 1.5. En(R) is the path component of the identity matrix in the
special linear group SLn(R), n ≥ 2. Hence we may identify the group SK1(R)
with the group π0SL(R) of path components of the topological space SL(R).

Proof. To see that En(R) is path-connected, fix an element g =
∏
eiαjα(rα).

The formula t 7→ ∏
eiαjα(rαt), 0 ≤ t ≤ 1 defines a path in En(R) from the

identity to g. To prove that En(R) is open subset of SLn(R) (and hence a path-
component), it suffices to prove that En(R) contains Un−1, the set of matrices
1+(rij) in SLn(R) with ||rij || < 1

n−1 for all i, j. We will actually show that each

matrix in Un−1 can be expressed naturally as a product of n2+5n−6 elementary
matrices, each of which depends continuously upon the entries rij ∈ R.

Set u = 1 + r11. Since n−2
n−1 < ||u||, u has an inverse v with ||v|| < n−1

n−2 .

Subtracting vr1j times the first column from the jth we obtain a matrix 1 + r′ij
whose first row is (u, 0, ..., 0) and

||r′ij || <
1

n− 1
+
n− 1

n− 2

(
1

n− 1

)2

=
1

n− 2
.

We can continue to clear out entries in this way so that after n(n−1) elementary
operations we have reduced the matrix to diagonal form.

By Ex. I.
EI.1.10
1.10, any diagonal matrix

(
u
0

0
u−1

)
is the product of 6 elementary

matrices. By induction, it follows that any diagonal n×n matrix of determinant
1 can be written naturally as a product of 6(n− 1) elementary matrices.

Let V denote the path component of 1 in the topological group R×, i.e., the
kernel of R× → π0R

×. By Ex.
EIII.1.12
1.12, V is a quotient of the additive group R.

III.1.5.1 Corollary 1.5.1. If R is a commutative Banach algebra, there is a natural
surjection from K1(R) onto π0GL(R) = π0(R

×)× π0SL(R). The kernel of this
map is the divisible subgroup V of R×.
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III.1.5.2 Example 1.5.2. If R = R then K1(R) = R× maps onto π0GL(R) = {±1}, and
the kernel is the uniquely divisible multiplicative group V = (0,∞). If R = C
then V = C×, because K1(C) = C× but π0GL(C) = 0.

III.1.5.3 Example 1.5.3. Let X be a compact space with a nondegenerate basepoint.
Then SK1(RX) is the group π0SL(RX) = [X,SL(R)] = [X,SO] of homo-
topy classes of maps from X to the infinite special orthogonal group SO. By
Ex. II.

EII.3.11
3.11 we have π0GL(RX) = [X,O] = KO−1(X), and there is a short exact

sequence

0→ RX
exp−→ K1(R

X)→ KO−1(X)→ 0.

Similarly, SK1(CX) is the group π0SL(CX) = [X,SL(C)] = [X,SU ] of
homotopy classes of maps from X to the infinite special unitary group SU .
Since π0GL(CX) = [X,U ] = KU−1(X) by II.

II.3.5.1
3.5.1 and Ex. II.

EII.3.11
3.11, there is

a natural surjection from K1(CX) onto KU−1(X), and the kernel V is the
divisible group of all contractible maps X → C×.

III.1.5.4 Example 1.5.4. When X is the circle S1 we have SK1(RS
1

) = [S1, SO] =

π1SO = Z/2. On the other hand, we have π0SL2(RS
1

) = π1SL2(R) = π1SO2 =
Z, generated by the matrix A =

(
cos θ
− sin θ

sin θ
cos θ

)
. Since π1SO2(R)→ π1SO is onto,

the matrix A represents the nonzero element of SK1(RS
1

).

The ring R = R[x, y]/(x2 + y2 − 1) may be embedded in the ring RS
1

by
x 7→ cos(θ), y 7→ sin(θ). Since the matrix

(
x
−y

y
x

)
maps to A, it represents a

nontrivial element of SK1(R). In fact it is not difficult to show that SK1(R) ∼=
Z/2 using Mennicke symbols (Ex.

EIII.1.10
1.10).

K1 and projective modules

Now let P be a finitely generated projective R-module. Choosing an isomor-
phism P ⊕ Q ∼= Rn gives a group homomorphism from Aut(P ) to GLn(R).
(Send α to α⊕ 1Q.)

III.1.6 Lemma 1.6. The homomorphism from Aut(P ) to GL(R) =
⋃
GLn(R) is well-

defined up to inner automorphism of GL(R). Hence there is a well-defined
homomorphism Aut(P )→ K1(R).

Proof. First suppose that Q and n are fixed. Two different isomorphisms be-
tween P ⊕Q and Rn must differ by an automorphism of Rn, i.e., by an element
g ∈ GLn(R). Thus if α ∈ Aut(P ) maps to the matrices A and B, respectively,
we must have A = gBg−1. Next we observe that there is no harm in stabilizing,
i.e., replacing Q by Q⊕Rm and P ⊕Q ∼= Rn by P ⊕ (Q⊕Rm) ∼= Rn+m. This is
because GLn(R)→ GL(R) factors through GLn+m(R). Finally, suppose given
a second isomorphism P ⊕Q′ ∼= Rm. Since Q⊕Rm ∼= Rn⊕Q′, we may stabilize
both Q and Q′ to make them isomorphic, and invoke the above argument.

III.1.6.1 Corollary 1.6.1. If R and S are rings, there is a natural external product
operation K0(R)⊗K1(S)→ K1(R⊗ S).
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If R is commutative and S is an R-algebra, there is a natural product op-
eration K0(R) ⊗ K1(S) → K1(S), making K1(S) into a module over the ring
K0(R).

Proof. For each finitely generated projective R-module P and each m,
Lemma

III.1.6
1.6 provides a homomorphism Aut(P ⊗ Sm) → K1(R ⊗ S). For each

β ∈ GLm(S), let [P ] · β denote the image of the automorphism 1P ⊗ β of
P ⊗ Sm under this map. Fixing β and m, the isomorphism (P ⊕ P ′) ⊗ Sm ∼=
(P⊗Sm)⊕(P ′⊗Sm) yields the identity [P⊕P ′]·β = [P ]·β+[P ′]·β inK1(R⊗S).
Hence P 7→ [P ] · β is an additive function of P ∈ P(R), so (by definition) it
factors through K0(R). Now fix P ; the map GLm(S) → K1(R ⊗ S) given by
β 7→ [P ] ·β is compatible with stabilization in m. Thus it factors through a map
GL(S) → K1(R ⊗ S), and through a map K1(S) → K1(R ⊗ S). This shows
that the product is well-defined and bilinear.

When R is commutative, K0(R) is a ring by II, §2. If S is an R-algebra,
there is a ring map R⊗ S → S. Composing the external product with K1(R⊗
S)→ K1(S) yields a natural product operation K0(R)⊗K1(S)→ K1(S). The
verification that [P ⊗R Q] · β = [P ] · ([Q] · β) is routine.

Here is a homological interpretation ofK1(R). Recall that the first homology
H1(G;Z) of any group G is naturally isomorphic to G/[G,G]. (See

WHomo
[223, 6.1.11]

for a proof.) For G = GL(R) this yields

K1(R) = H1(GL(R);Z) = lim
n→∞

H1(GLn(R);Z). (1.6.2) III.1.6.2

By Lemma
III.1.6
1.6, we also have well-defined compositions

H1(Aut(P );Z)→ H1(GLn(R);Z)→ K1(R),

which are independent of the choice of isomorphism P ⊕Q ∼= Rn.
Here is another description ofK1(R) in terms of the category P(R) of finitely

generated projective R-modules. Consider the translation category tP of P(R):
its objects are isomorphism classes of finitely generated projective modules, and
the morphisms between P and P ′ are the isomorphism classes of Q such that
P⊕Q ∼= P ′. This is a filtering category

WHomo
[223, 2.6.13], and P 7→ H1(Aut(P );Z) is

a well-defined functor from tP to abelian groups. Hence we can take the filtered
direct limit of this functor. Since the free modules are cofinal in tP, we see from
(
III.1.6.2
1.6.2) that we have

III.1.6.3 Corollary 1.6.3. (Bass) K1(R) ∼= lim−→P∈tP
H1(Aut(P );Z).

Recall from II.
II.2.7
2.7 that if two rings R and S are Morita equivalent then the cate-

gories P(R) and P(S) are equivalent. By Corollary
III.1.6.3
1.6.3 we have the following:

III.1.6.4 Proposition 1.6.4 (Morita invariance of K1). The group K1(R) depends only
upon the category P(R). That is, if R and S are Morita equivalent rings then
K1(R) ∼= K1(S). In particular, the isomorphism of

III.1.1.4
1.1.4 arises in this way:

K1(R) ∼= K1(Mn(R)).
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Transfer maps on K1

Let f : R→ S be a ring homomorphism. We will see later on that a transfer ho-
momorphism f∗ : K1(S)→ K1(R) is defined whenever S has a finite R-module
resolution by finitely generated projective R-modules. This construction re-
quires a definition of K1 for an exact category such as H(R), and is analogous
to the transfer map in II(

II.7.9.1
7.9.1) forK0. Without this machinery, we can still con-

struct the transfer map when S is finitely generated projective as an R-module,
using the forgetful functor P(S) → P(R); this is the analogue of the method
used for the K0 transfer map in Example II.

II.2.8.1
2.8.1.

III.1.7 Lemma 1.7. Any additive functor P(S)
T−→ P(R) induces a natural homomor-

phism K1(T ) : K1(S)→ K1(R), and T1⊕T2 induces the sum K1(T1)+K1(T2).

Proof. The functor T induces an evident functor tP(S) → tP(R). If P is
a finitely generated projective S-module, T also induces a homomorphism
AutS(P ) → AutR(TP ) and hence H1(AutS(P );Z) → H1(AutR(TP );Z).
As P varies, these assemble to give a natural transformation of functors
from the translation category tP(S) to abelian groups. Since K1(S) =
lim−→P∈P(S)

H1(AutS(P );Z) by Corollary
III.1.6.3
1.6.3, taking the direct limit over tP(S)

yields the desired map

K1(S)→ lim−→
P∈P(S)

H1(AutR(P );Z)→ lim−→
Q∈P(R)

H1(AutR(Q);Z) = K1(R).

III.1.7.1 Corollary 1.7.1. Suppose that S is finitely generated projective as an R-
module. Then the forgetful functor P(S) → P(R) induces a natural transfer
homomorphism f∗ : K1(S)→ K1(R). If R is commutative, the composite

K1(R)
f∗

−→ K1(S)
f∗−→ K1(R)

is multiplication by [S] ∈ K0(R).

Proof. When T is the forgetful map, so thatK1(S)→ K1(R) is the transfer map
f∗, we compute the composite f∗f

∗ by computing its effect upon an element
α ∈ GLn(R). The matrix f∗(α) = 1S ⊗R α lies in GLn(S). To apply f∗ we
consider 1S⊗Rα as an element of the group AutR(S

n) = AutR(S⊗RRn), which
we then map into GL(R). But this is just the product [S] · α of

III.1.6.1
1.6.1.

When j : F → E is a finite field extension, it is easy to see from
III.1.1.2
1.1.2 that

the transfer map j∗ : E
× → F× is the classical norm map. For this reason, the

transfer map is sometimes called the norm map.

III.1.7.2 Example 1.7.2. LetD be a division algebra of dimension d = n2 over its center
F , and recall from

III.1.2.4
1.2.4 that SK1(D) is the kernel of the reduced norm Nred.

We will show that SK1(D) has exponent n by showing that i∗Nred : K1(D)→
K1(D) is multiplication by n.
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To see this, choose a maximal subfield E with inclusions F
j−→ E

σ−→ D.
By the definition of Nred, composing it with j∗ : F× ⊂ E× yields the transfer
map σ∗ : K1(D) → K1(E). Therefore, i∗Nred = σ∗j∗Nred = σ∗σ∗. Hence it
suffices to show that σ∗σ∗ : K1(D) → K1(D) is multiplication by n. By

III.1.7
1.7,

σ∗σ∗ is induced by the additive self-map T : M 7→ M ⊗D (D ⊗E D) of P(D).
Since D ⊗E D ∼= Dn as a D-bimodule, T (M) ∼= Mn and the assertion follows
from

III.1.7
1.7.

The transfer map i∗ : K1(D) → K1(F ) associated to i : F ⊂ D is induced
from the classical norm map ND/F : D× ⊂ GLd(F ) → F×. In fact, the norm
map is n times the reduced norm Nred : D× → F× of

III.1.2.4
1.2.4; see Ex.

EIII.1.16
1.16 below.

Moreover, the composition i∗i∗ : K1(D) → K1(D) is multiplication by d since
it corresponds to the additive self-map M 7→ M ⊗D (D ⊗F D) of P(D), and
D ⊗F D ∼= Dd as a D-bimodule (see II.

II.2.8.1
2.8.1).

III.1.7.3 Corollary 1.7.3. K1(R) = 0 for every flasque ring R.

Proof. Recall from II.
II.2.1.3
2.1.3 that a ring R is flasque if there is an additive self-

functor T (P 7→ P ⊗R M) on P(R) together with a natural transformation
θP : P ⊕ T (P ) ∼= T (P ). By

III.1.7
1.7, the induced self-map on K1(R) satisfies x +

T (x) = T (x) (and hence x = 0) for all x ∈ K1(R).

Here is an application of
III.1.7
1.7 that anticipates the higher K-theory groups

with coefficients in chapter IV.

III.1.7.4 Definition 1.7.4. For each natural numberm, we define K1(R;Z/m) to be the
relative group K0(·m) of II.

II.2.10
2.10, where ·m is the endo-functor of P(R) sending

P to Pm = P ⊗R Rm. Since the Pm are cofinal, we see by Ex. II.
EII.2.15
2.15 and

Ex.
EIII.1.14
1.14, that it fits into a universal coefficient sequence:

K1(R)
m−→ K1(R)→ K1(R;Z/m)→ K0(R)

m−→ K0(R).

III.1.8 Example 1.8 (Whitehead group Wh1). If R is the group ring Z[G] of a group
G, the (first) Whitehead group Wh1(G) is the quotient of K1(Z[G]) by the
subgroup generated by ±1 and the elements of G, considered as elements of
GL1. If G is abelian, then Z[G] is a commutative ring and ±G is a subgroup
of K1(Z[G]), so by

III.1.3.4
1.3.4 we have Wh1(G) = (Z[G]×/ ± G) ⊕ SK1(Z[G]). If G

is finite then Wh1(G) is a finitely generated group whose rank is r − q, where
r and q are the number of simple factors in R[G] and Q[G], respectively. This
and other calculations related to Wh1(G) may be found in R. Oliver’s excellent
sourcebook

Oliver
[146].

The group Wh1(G) arose in Whitehead’s 1950 study
Wh50
[227] of simple ho-

motopy types. Two finite CW complexes have the same simple homotopy type
if they are connected by a finite sequence of “elementary expansions and col-
lapses.” Given a homotopy equivalence f : K → L of complexes with funda-
mental group G, the torsion of f is an element τ(f) ∈ Wh1(G). Whitehead
proved that τ(f) = 0 if and only if f is a simple homotopy equivalence, and
that every element of Wh1(G) is the torsion of some f . An excellent source for
the geometry behind this is

Cohen
[43].
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III.1.9 Example 1.9 (The s-Cobordism Theorem). Here is another area of geometric
topology in which Whitehead torsion has played a crucial role: piecewise-linear
(“PL”) topology. We say that a triple (W,M,M ′) of compact PL manifolds
is an h-cobordism if the boundary of W is the disjoint union of M and M ′,
and both inclusions M ⊂ W , M ′ ⊂ W are homotopy equivalences. In this
case we can define the torsion τ of M ⊂ W , as an element of Wh1(G), G =
π1M . The s-cobordism theorem states that if M is fixed with dim(M) ≥ 5 then
(W,M,M ′) ∼= (M × [0, 1],M × 0,M × 1) if and only if τ = 0. Moreover, every
element of Wh1(G) arises as the torsion of some h-cobordism (W,M,M ′).

Here is an application. Suppose given an h-cobordism (W,M,M ′), and let
N be the union of W , the cone on M and the cone on M ′. Then N is PL
homeomorphic to the suspension ΣM of M iff (W,M,M ′) ∼= (M × [0, 1],M ×
0,M × 1) if and only if τ = 0.

This gives a counterexample to the “Hauptvermutung” that two homeo-
morphic complexes would be PL homeomorphic. Indeed, if (W,M,M ′) is an
h-cobordism with nonzero torsion, then N and ΣM cannot be PL homeomor-
phic, yet the theory of “engulfing” implies that they must be homeomorphic
manifolds.

Another application, due to Smale, is the Generalized Poincaré Conjecture.
Let N be an n-dimensional PL manifold of the homotopy type of the sphere
Sn, n ≥ 5. Then N is PL homeomorphic to Sn. To see this, let W be obtained
by removing two small disjoint n-discs D1, D2 from N . The boundary of these
discs is the boundary of W , and (W,Sn−1, Sn−1) is an h-cobordism. Its torsion
must be zero since π1(S

n−1) = 0 and Wh1(0) = 0. Hence W is Sn−1 × [0, 1],
and this implies that N =W ∪D1 ∪D2 is Sn.

EXERCISES

EIII.1.1 1.1. If r, s, t ∈ R are such that (1 + rs)t = 1, show that (1 + rs)(1 + sr)−1 ∈
E2(R). Hint: Start by calculating e12(r + rsr)e21(st+ s)e12(−r)e21(−s).

If r is a unit of R, or if r, s ∈ rad(R), show that (1+rs)(1+sr)−1 ∈ [R×, R×].
Conclude that if R is a local ring thenW (R) = [R×, R×]. Hint: If r, s ∈ rad(R),
then t = 1 + s− sr is a unit; compute [t−1 + r, t] and (1 + rs)(1 + r).

EIII.1.2 1.2. Semilocal rings. Let R be a noncommutative semilocal ring (Ex. II.
EII.2.6
2.6).

Show that there exists a unique “determinant” map from GLn(R) onto the
abelian group R×/W (R) of Lemma

III.1.4
1.4 with the following properties: (i)

det(e) = 1 for every elementary matrix e, and (ii) If ρ = diag(r, 1, ..., 1) and
g ∈ GLn(R) then det(ρ · g) = r · det(g). Then show that det is a group homo-
morphism: det(gh) = det(g) det(h). Conclude that K1(R) ∼= R×/W (R).

EIII.1.3 1.3. Suppose that a ring R has stable range sr(R) = d+ 1 in the sense of Ex.
I.
EI.1.5
1.5. (For example, R could be a d-dimensional commutative noetherian ring.)

This condition describes the action of Ed+2(R) on unimodular rows in Rd+2.

(a) Show that GLn(R) = GLd+1(R)En(R) for all n > d+ 1, and deduce that
GLd+1(R) maps onto K1(R).
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(b) Show that En(R) is a normal subgroup of GLn(R) for all n ≥ d+2. Hint:
Conjugate enj(r) by g ∈ GLd+2(R).

EIII.1.4 1.4. Let R be the polynomial ring F [x, y] over a field F . P.M. Cohn proved

that the matrix g =

(
1 + xy x2

−y2 1− xy

)
is not in E2(R). Show that g is in

E3(R) ∩GL2(R).

EIII.1.5 1.5. Let R be a Euclidean domain, such as Z or the polynomial ring F [t] over
a field. Show that En(R) = SLn(R) for all n, and hence that SK1(R) = 0.

EIII.1.6 1.6. Here is another interpretation of the group law for K1. For each m,n,
let ⊕mn denote the group homomorphism GLm(R) × GLn(R) → GLm+n(R)

sending (α, β) to the block diagonal matrix
(
α 0
0 β

)
. Show that in K1(R) we have

[α⊕mn β] = [α][β].

EIII.1.7 1.7. Let E = EndR(R
∞) be the ring of infinite row-finite matrices over R of

Ex. I.
EI.1.7
1.7. Show that K1(E) = 0. Hint: If α ∈ GLn(E), form the block diagonal

matrix α∞ = diag(α, α, . . . ) in Aut(V ) ∼= GL(E), where V is an infinite sum of
copies of (R∞)n, and show that α⊕ α∞ is conjugate to α∞.

EIII.1.8 1.8. In this exercise we show that the center of E(R) is trivial. First show
that any matrix in GLn(R) commuting with En(R) must be a diagonal matrix
diag(r, ..., r) with r in the center of R. Conclude that no element in En−1(R) is
in the center of En(R), and pass to the limit as n→∞.

EIII.1.9 1.9. In this exercise we suppose that R is a commutative ring, and give Suslin’s
proof that En(R) is a normal subgroup of GLn(R) when n ≥ 3. Let v =∑n
i=1 viei be a column vector, and let u,w be row vectors such that u · v = 1

and w · v = 0.

(a) Show that w =
∑
i<j rij(vjei − viej), where rij = wiuj − wjui.

(b) Conclude that the matrix In + (v · w) is in En(R) if n ≥ 3.

(c) If g ∈ GLn(R) and i < j, let v be the ith column of g and w the jth row of
g−1, so that w · v = 0. Show that geij(r)g

−1 = In + (v · rw) for all r ∈ R.
By (b), this proves that En(R) is normal.

EIII.1.10 1.10. Mennicke symbols. Let (r, s) be a unimodular row over a commutative
ring R. We define the Mennicke symbol

[
s
r

]
to be the class in SK1(R) of the

matrix
(
r
t
s
u

)
, where t, u ∈ R satisfy ru − st = 1. Show that this Mennicke

symbol is independent of the choice of t and u, that
[
r
s

]
=
[
s
r

]
,
[
s
r

][
s′

r

]
=
[
ss′

r

]

and
[
s
r

]
=
[
s+xr
r

]
.

If R is noetherian of dimension 1, or more generally has sr(R) ≤ 2, then we
know by Ex.

EIII.1.3
1.3 that GL2(R) maps onto K1(R), and hence SK1(R) is generated

by Mennicke symbols.
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EIII.1.11 1.11. Transfer. Suppose that R is a Dedekind domain and p is a prime ideal
of R. Show that there is a map π∗ from K1(R/p) = (R/p)× to SK1(R) sending
s̄ ∈ (R/p)× to the Mennicke symbol

[
s
r

]
, where s ∈ R maps to s̄ and r ∈ R is

an element of p− p2 relatively prime to s. Another construction of the transfer
map π∗ will be given in chapter V.

EIII.1.12 1.12. If R is a commutative Banach algebra, let exp(R) denote the image of
the exponential map R → R×. Show that exp(R) is the path component of 1
in R×.

EIII.1.13 1.13. If H is a normal subgroup of a group G, then G acts upon H and hence
its homology H∗(H;Z) by conjugation. Since H always acts trivially upon its
homology

WHomo
[223, 6.7.8], the group G/H acts upon H∗(H;Z). Taking H = E(R)

and G = GL(R), use Example
III.1.2.1
1.2.1 to show that GL(R) and K1(R) act trivially

upon the homology of E(R).

EIII.1.14 1.14. (Swan) Let T : P(R) → P(S) be an additive functor, such as the base
change f∗ associated to a ring map f : R → S. In II.

II.2.10
2.10 we constructed a

relative group K0(T ). Since K0(T ) is abelian, we can concatenate the K1 map
of Lemma

III.1.7
1.7 to (II.

II.2.10.2
2.10.2) to get a sequence which is exact at K0(T ) and (if T

is cofinal) at K0(R):

K1(R)
T−→ K1(S)→ K0(T )→ K0(R)

T−→ K0(S).

In this exercise, we show that the sequence is also exact at K1(S).

(a) We say that (P, α,Q) ∼ (P ′, α′, Q′) if there are N,N ′ ∈ P(R) and a
commutator γ in AutS T (Q ⊕ N) so that (P ⊕ N, γ(α ⊕ 1), Q ⊕ N) is
isomorphic to (P ′ ⊕ N ′, α′ ⊕ 1, Q′ ⊕ N ′) in P(T ). Show that ∼ is an
equivalence relation.

(b) Show that the equivalence classes of ∼ form an abelian group under ⊕.

(c) If (P, α,Q) ∼ (P ′, α′, Q′), show that [(P, α,Q)] ∼= [(P ′, α′, Q′)] in K0(T ).

(d) If [(P, α,Q)] ∼= [(P ′, α′, Q′)] in K0(T ), show that (P, α,Q) ∼ (P ′, α′, Q′).
Hint: Show that the relations for K0(T ) hold in the group of (b). To do
so, write P ∼= P ′ ⊕ P ′′ and Q ∼= Q′ ⊕Q′′ in the exact sequence II(

II.2.10.1
2.10.1)

in P(T ).

(e) Use (d) to show that if α ∈ AutS T (R
n) and [(Rn, α,Rn)] = 0 in K0(T )

then (after increasing n) there is an isomorphism (p, q) : (Rn, α,Rn) ∼=
(Rn, γ, Rn) in P(T ). Conclude that [α] is the image of [q−1p] ∈ K1(R),
proving exactness of the sequence at K1(S).

EIII.1.15 1.15. Suspension rings. Let R be any ring. Recall from Ex. I.
EI.1.8
1.8 that the cone

ring C(R) is the ring of row-and-column-finite matrices over R. The finite ma-
trices in C(R) form a 2-sided idealM(R), and the quotient S(R) = C(R)/M(R)
is called the suspension ring of R. Use Exercise

EIII.1.14
1.14 and

III.1.7.3
1.7.3, together with

II.
II.2.1.3
2.1.3 and II.

II.2.7.2
2.7.2 to show that K1S(R) ∼= K0(R).
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EIII.1.16 1.16. Let D be a division algebra of dimension d = n2 over its center F . Show
that the norm (or transfer) map K1(D)→ K1(F ) is n times the reduced norm
Nred of

III.1.2.4
1.2.4. Hint: Choose a maximal subfield E and show that the map

K1(D) → K1(E) induced by the norm is induced by the additive map M 7→
M ⊗D (D⊗F E) from P(D) to P(E). Then show that D⊗F E ∼= Dn as a D-E
bimodule.

EIII.1.17 1.17. LetD be a division algebra, finite dimensional over its center F , and let E
be any finite extension of F which is a splitting field ofD, i.e., E⊗FD ∼=Mn(E).

(a) Show that the following three maps θE : K1(E)→ K1(D) agree.

(i) K1(E) ∼= K1(Mn(E)) = K1(E ⊗F D)
transfer

> K1(D);
(ii) K1(E)→ K1(Mr(D)) ∼= K1(D), where E ⊂Mr(D);
(iii) K1(T ), where T : P(E)→P(D) is T (M) = M ⊗E V for a simple
E ⊗F D-module V .

(b) If j : E → L is a finite field map over F , show that θE = θL j∗.

(c) If σ ∈ Aut(E/F ), then θE = θEσ.

EIII.1.18 1.18. If A is any finite-dimensional semisimple algebra over a field with center
C, construct a reduced norm A× → C× and define SLn(A) to be the kernel of
the reduced norm GLn(A)→ C×. Show that the kernel SK1(A) of the induced
map K1(A)→ C× is isomorphic to SLn(A)/En(A) for all n ≥ 3.
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2 Relative K1

Let I be an ideal in a ring R. We write GL(I) for the kernel of the natural map
GL(R) → GL(R/I); the notation reflects the fact that GL(I) is independent
of R (see Ex. I.

EI.1.10
1.10). In addition, we define E(R, I) to be the smallest normal

subgroup of E(R) containing the elementary matrices eij(x) with x ∈ I. More
generally, for each n we define En(R, I) to be the normal subgroup of En(R)
generated by the matrices eij(x) with x ∈ I and 1 ≤ i 6= j ≤ n. Clearly E(R, I)
is the union of the subgroups En(R, I).

III.2.1 Relative Whitehead Lemma 2.1. E(R, I) is a normal subgroup of GL(I),
and contains the commutator subgroup of GL(I).

Proof. For any matrix g = 1 + α ∈ GLn(I), the identity

(
g 0
0 g−1

)
=

(
1 1
0 1

)(
1 0
α 1

)(
1 −1
0 1

)(
1 g−1α
0 1

)(
1 0
−gα 1

)
.

shows that the matrix
(
g
0

0
g−1

)
is in E2n(R, I). (The product of the first 3

matrices is in E2n(R, I).) Hence if h ∈ En(R, I) then the conjugate

(
ghg−1 0

0 1

)
=

(
g 0
0 g−1

)(
h 0
0 1

)(
g−1 0
0 g

)

is in E(R, I). Finally, if g, h ∈ GLn(I) then [g, h] is in E2n(R, I) by equation
(
III.1.3.4
1.3.4).

III.2.2 Definition 2.2. The relative group K1(R, I) is defined to be the quotient
GL(I)/E(R, I). By the Relative Whitehead Lemma, it is an abelian group.

The inclusion of GL(I) in GL(R) induces a map K1(R, I) → K1(R). More
generally, if R → S is a ring map sending I into an ideal I ′ of S, the natural
maps GL(I)→ GL(I ′) and E(R)→ E(S) induce a map K1(R, I)→ K1(S, I

′).

III.2.2.1 Remark 2.2.1. Suppose that R → S is a ring map sending an ideal I of R
isomorphically onto an ideal of S. The induced map K1(R, I) → K1(S, I)
must be a surjection, as both groups are quotients of GL(I). However, Swan
discovered that they need not be isomorphic; a simple example is given in Ex.

EIII.2.3
2.3

below.
Vaserstein proved in

V76
[206, 14.2] that K1(R, I) is independent of R if

and only if I = I2. One direction is easy (Ex.
EIII.2.10
2.10): if I = I2 then

the commutator subgroup of GL(I) is perfect, and equal to E(R, I). Thus
K1(R, I) = GL(I)/[GL(I), GL(I)], a group which is independent of R (when
I = I2). (See Ex.

EIII.2.6
2.6 when R is commutative.)

III.2.3 Proposition 2.3. There is an exact sequence

K1(R, I)→ K1(R)→ K1(R/I)
∂−→ K0(I)→ K0(R)→ K0(R/I).
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Proof. By Ex. II.
EII.2.3
2.3 there is an exact sequence

1→ GL(I)→ GL(R)→ GL(R/I)
∂−→ K0(I)→ K0(R)→ K0(R/I).

Since the K1 groups are quotients of the GL groups, and E(R) maps onto
E(R/I), this gives exactness except at K1(R). Suppose g ∈ GL(R) maps to
zero under GL(R)→ K1(R)→ K1(R/I). Then the reduction ḡ of g mod I is in
E(R/I). Since E(R) maps onto E(R/I), there is a matrix e in E(R) mapping
to ḡ, i.e., ge−1 is in the kernel GL(I) of GL(R)→ GL(R/I). Hence the class of
ge−1 in K1(R, I) is defined, and maps to the class of g in K1(R). This proves
exactness at the remaining spot.

The relative group SK1(R, I)

If R happens to be commutative, the determinant map K1(R)→ R× of Ex-
ample

III.1.1.1
1.1.1 induces a relative determinant map det : K1(R, I)→ GL1(I), since

the determinant of a matrix in GL(I) is congruent to 1 modulo I. It is tradi-
tional to write SK1(R, I) for the kernel of det, so the canonical map GL1(I)→
K1(R, I) induces a direct sum decomposition K1(R, I) = GL1(I) ⊕ SK1(R, I)
compatible with the decomposition K1(R) = R× ⊕ SK1(R) of Example

III.1.1.1
1.1.1.

Here are two important cases in which SK1(R, I) vanishes:

III.2.4 Lemma 2.4. Let I be a radical ideal in R. Then:

1. K1(R, I) is a quotient of the multiplicative group 1 + I = GL1(I).

2. If R is a commutative ring, then SK1(R, I) = 0 and K1(R, I) = 1 + I.

Proof. As in the proof of Lemma
III.1.4
1.4, it suffices to show that GLn(I) =

En(R, I)GLn−1(I) for n ≥ 2. If (xij) is a matrix in GLn(I) then xnn is a unit
of R, and for i < n the entries xin, xni are in I. Multiplying by the diagonal
matrix diag(1, . . . , 1, xnn, x

−1
nn), we may assume that xnn = 1. Now multiplying

on the left by the matrices ein(−xin) and on the right by eni(−xni) reduces the
matrix to one in GLn−1(I).

The next theorem (and its variant) extends the calculation mentioned in
Example

III.1.3.6
1.3.6 above. We cite them from

BMS
[19, 4.3], mentioning only that the

proof involves calculations with Mennicke symbols (see Ex.
EIII.1.10
1.10 and

EIII.2.5
2.5) for

finitely generated R, i.e., Dedekind rings of arithmetic type.

III.2.5 Theorem 2.5 (Bass-Milnor-Serre). Let R be an integrally closed subring of a
number field F , and I an ideal of R. Then

(1) If F has any embedding into R then SK1(R, I) = 0.

(2) If F is “totally imaginary” (has no embedding into R), then SK1(R, I) ∼=
Cn is a finite cyclic group whose order n divides the order w1 of the group
of roots of unity in R. The exponent ordp n of p in the integer n is the
minimum over all prime ideals p of R containing I of the integer

inf

{
ordp w1, sup{0,

[
ordp(I)

ordp(p)
− 1

p− 1

]}
.
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III.2.5.1 Variant 2.5.1 (Bass-Milnor-Serre). Let R be the coordinate ring of a smooth
affine curve over a finite field. Then SK1(R) = 0.

The Mayer-Vietoris Exact Sequence

Suppose we are given a ring map f : R → S and an ideal I of R mapped
isomorphically into an ideal of S. Then we have a Milnor square, as in I.

I.2.6
2.6:

R
f

> S

R/I
∨ f̄

> S/I.
∨

III.2.6 Theorem 2.6 (Mayer-Vietoris). Given a Milnor square as above, there is an
exact sequence

K1(R)
∆→K1(S)⊕K1(R/I)

±→K1(S/I)
∂→K0(R)

∆→K0(S)⊕K0(R/I)
±→K0(S/I).

Proof. By Theorem II.
II.2.9
2.9 we have an exact sequence

GL(S/I)
∂−→ K0(R)

∆−→ K0(S)⊕K0(R/I)
±−→ K0(S/I).

Since K0(R) is abelian, we may replace GL(S/I) by K1(S/I) in this sequence.
This gives the sequence of the theorem, and exactness at all the K0 places. Also
by II.

II.2.9
2.9, the image of ∂ : K1(S/I)→ K0(R) is the double coset space

GL(S)\GL(S/I)/GL(R/I).

Note that E(S) → E(S/I) is onto. Therefore the kernel of ∂ is the sub-
group of K1(S/I) generated by the images of GL(S) and GL(R/I), and the
sequence is exact at K1(S/I). To prove exactness at the final spot, suppose
given ḡ ∈ GLn(R/I), h ∈ GLn(S) and an elementary matrix ē ∈ E(S/I)
such that f̄(ḡ)ē ≡ h (mod I). Lifting ē to an e ∈ En(S) (by Remark

III.1.2.3
1.2.3)

yields f̄(ḡ) ≡ he−1 (mod I). Since R is the pullback of S and R/I, there is a
g ∈ GLn(R), equivalent to ḡ modulo I, such that f(g) = he−1. This establishes
exactness at the final spot.

EXERCISES

EIII.2.1 2.1. Suppose we are given a Milnor square in which R and S are commutative
rings. Using the Units-Pic sequence (I.

I.3.10
3.10), conclude that there are exact

sequences

SK1(R, I)→ SK1(R)→ SK1(R/I)
∂−→ SK0(I)→ SK0(R)→ SK0(R/I),

SK1(R)→SK1(S)⊕SK1(R/I)
∂→SK0(R)→SK0(S)⊕SK0(R/I)→SK0(S/I).

August 29, 2013 - Page 195 of
LastPage
568



Chapter III

EIII.2.2 2.2. Rim Squares. Let Cp be a cyclic group of prime order p with generator
t, and let ζ = e2πi/p. The ring Z[ζ] is the integral closure of Z in the number
field Q(ζ). Let f : Z[Cp]→ Z[ζ] be the ring surjection sending t to ζ, and let I
denote the kernel of the augmentation Z[Cp]→ Z.

(a) Show that I is isomorphic to the ideal of Z[ζ] generated by ζ − 1, so that
we have a Milnor square with the rings Z[Cp], Z[ζ], Z and Fp.

(b) Show that for each k = 1, ..., p− 1 the element (ζk− 1)/(ζ− 1) = 1+ · · ·+
ζk−1 is a unit of Z[ζ], mapping onto k ∈ F×p .

These elements are often called cyclotomic units, and generate a subgroup
of finite index in Z[ζ]×. If p ≥ 3, the Dirichlet Unit Theorem says that
the units of Z[ζ] split as the direct sum of the finite group {±ζk} of order
2p (p 6= 2) and a free abelian group of rank (p− 3)/2.

(c) Conclude that if p > 3 then both K1(Z[Cp]) and Wh1(Cp) are nonzero.
In fact, SK1(Z[Cp]) = 0.

EIII.2.3 2.3. Failure of Excision for K1. Here is Swan’s simple example to show that
K1(R, I) depends upon R. Let F be a field and let R be the algebra of all upper

triangular matrices r =

(
x y
0 z

)
inM2(F ). Let I be the ideal of all such matrices

with x = z = 0, and let R0 be the commutative subalgebra F ⊕ I. Show that
K1(R0, I) ∼= F but that K1(R, I) = 0. Hint: Calculate e21(r)e12(y)e21(−r).

EIII.2.4 2.4. (Vaserstein) If I is an ideal of R, and x ∈ I and r ∈ R are such that
(1+ rx) is a unit, modify Ex.

EIII.1.1
1.1 to show that (1+ rx)(1+xr)−1 is in E2(R, I).

If I is a radical ideal and W = W (R, I) denotes the subgroup of units
generated by the (1+rx)(1+xr)−1, use Lemma

III.2.4
2.4 to conclude that (1+ I)/W

maps onto K1(R, I). Vaserstein proved in
V69
[205] that K1(R, I) ∼= (1 + I)/W for

every radical ideal.

EIII.2.5 2.5. Mennicke symbols. If I is an ideal of a commutative ring R, r ∈ (1 + I)
and s ∈ I, we define the Mennicke symbol

[
s
r

]
to be the class in SK1(R, I) of

the matrix
(
r
t
s
u

)
, where t ∈ I and u ∈ (1+I) satisfy ru−st = 1. Show that this

Mennicke symbol is independent of the choice of t and u, with
[
s
r

][
s
r′

]
=
[
s
rr′

]
,[

s
r

][
s′

r

]
=
[
ss′

r

]
. (Hint: Use Ex.

EIII.1.10
1.10.) Finally, show that if t ∈ I then

[
s

r

]
=

[
s+ rt

r

]
=

[
s

r + st

]
.

EIII.2.6 2.6. The obstruction to excision. Let R → S be a map of commutative rings,
sending an ideal I of R isomorphically onto an ideal of S. Given x ∈ I and
s ∈ S, let ψ(x, s) denote the Mennicke symbol

[
x

1−sx

]
in SK1(R, I).

(a) Verify that ψ(x, s) vanishes in SK1(S, I).

(b) Prove that ψ is bilinear, and that ψ(x, s) = 1 if either x ∈ I2 or s ∈ R.
Thus ψ induces a map from (I/I2)⊗ (S/R) to SK1(R, I).
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(c) Prove that the Leibniz rule holds: ψ(x, ss′) = ψ(sx, s′)ψ(s′x, s).

For every map R → S, the S-module Ω1
S/R of relative Kähler differentials is

presented with generators ds, s ∈ S, subject to the following relations: d(s +
s′) = ds+ ds′, d(ss′) = s ds′ + s′ ds, and if r ∈ R then dr = 0. (See

WHomo
[223].)

(d) (Vorst) Show that Ω1
S/R ⊗S I/I2 is the quotient of (S/R) ⊗ (I/I2) by

the subgroup generated by the elements s⊗ s′x+ s′ ⊗ sx− ss′ ⊗ x. Then
conclude that ψ induces a map Ω1

S/R ⊗S I/I2 → SK1(R, I).

Swan proved in
Swan71
[195] that the resulting sequence is exact:

Ω1
S/R ⊗S I/I2

ψ−→ SK1(R, I)→ SK1(S, I)→ 1.

EIII.2.7 2.7. Suppose that the ring map R → R/I is split by a map R/I → R. Show
that K1(R) ∼= K1(R/I)⊕K1(R, I). The corresponding decomposition of K0(R)
follows from the ideal sequence

III.2.3
2.3, or from the definition of K0(I), since R ∼=

R/I ⊕ I; see Ex. II.
EII.2.4
2.4.

EIII.2.8 2.8. Suppose that pr = 0 in R for some prime p. Show that K1(R, pR) is a
p-group. Conclude that the kernel of the surjection K1(R)→ K1(R/pR) is also
a p-group.

EIII.2.9 2.9. If I is a nilpotent ideal in a Q-algebra R, or even a complete radical ideal,
show that K1(R, I) ∼= I/[R, I], where [R, I] is the subgroup spanned by all
elements [r, x] = rx − xr, r ∈ R and x ∈ I. In particular, this proves that
K1(R, I) is uniquely divisible. Hint: If [R, I] = 0, ln : 1 + I → I is a bijection.
If not, use Ex.

EIII.2.4
2.4 and the Campbell-Hausdorff formula.

EIII.2.10 2.10. Suppose that I is an ideal satisfying I = I2. Show that [GL(I), GL(I)]
is a perfect group. Conclude that E(R, I) = [GL(I), GL(I)] and hence that
K1(R, I) is independent of R. Hint: Use the commutator formulas (

III.1.3.1
1.3.1).
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3 The Fundamental Theorems for K1 and K0

The Fundamental Theorem forK1 is a calculation ofK1(R[t, t
−1]), and describes

one of the many relationships between K1 and K0. The core of this calculation
depends upon the construction of an exact sequence (see

III.3.2
3.2 below and II.

II.7.8.1
7.8.1):

K1(R[t])→ K1(R[t, t
−1])

∂−→ K0H{tn}(R[t])→ 0

We will construct a localization sequence connecting K1 and K0 in some-
what greater generality first. Recall from chapter II, Theorem

II.9.8
9.8 that for any

multiplicatively closed set S of central elements in a ring R there is an exact
sequence K0(R on S) → K0(R) → K0(S

−1R), where K0(R on S) denotes
K0 of the Waldhausen category ChbSP(R). If S consists of nonzerodivisors,
K0(R on S) also equals K0HS(R) by Ex. II.

EII.9.13
9.13; see Corollary II.

II.7.7.4
7.7.4.

Our first goal is to extend this sequence to the left using K1, and we begin
by constructing the boundary map ∂.

Let α be an endomorphism of Rn. We say that α is an S-isomorphism
if S−1 ker(α) = S−1coker(α) = 0, or equivalently, α/1 ∈ GLn(S

−1R). Write

cone(α) for the mapping cone of α, which is the chain complex Rn
−α−→ Rn

concentrated in degrees 0 and 1; see
WHomo
[223, 1.5.1]. It is clear that α is an S-

isomorphism if and only if cone(α) ∈ ChbSP(R).

III.3.1 Lemma 3.1. Let S be a multiplicatively closed set of central elements in a ring
R. Then there is a group homomorphism

K1(S
−1R)

∂−→ K0(R on S)

sending each S-isomorphism α to the class [cone(α)] of the mapping cone of α.
In particular, each s ∈ S is an endomorphism of R so ∂(s) is the class of the

chain complex cone(s) : R
−s−→ R.

Before proving this lemma, we give one important special case. When S
consists of nonzerodivisors, every S-isomorphism α must be an injection, and
coker(α) is a module of projective dimension one, i.e., an object of HS(R).
Moreover, under the isomorphism K0ChbSP(R) ∼= K0HS(R) of Ex. II.

EII.9.13
9.13,

the class of cone(α) in K0ChbSP(R) corresponds to the element [coker(α)] of
K0HS(R). Thus we immediately have:

III.3.1.1 Corollary 3.1.1. If S consists of nonzerodivisors then there is a homomor-

phism K1(S
−1R)

∂−→ K0HS(R) sending each S-isomorphism α to [coker(α)],
and sending s ∈ S to [R/sR].
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Proof of
III.3.1
3.1. If β ∈ End(Rm) is also an S-isomorphism, then the diagram

0 > > Rn
=

>> Rn

Rn
∨

>
(1 0)

> Rn ⊕Rn
(1, β)
∨ (0 1)

>> Rn

β
∨

Rn

αβ
∨

>
=

> Rn

(
αβ
−α

)

∨
>> 0
∨

is a short exact sequence in ChbSP(R), where we regard the columns as chain
complexes. Since the middle column of the diagram is quasi-isomorphic to its

subcomplex 0→ 0⊕Rn −α−→ Rn, we get the relation
[
cone(α)

]
−
[
cone(αβ)

]
=
[
cone(β)[−1]

]
= −

[
cone(β)

]
,

or [
cone(αβ)

]
=
[
cone(α)

]
+
[
cone(β)

]
(3.1.2) III.3.1.2

in K0ChbSP(R). In particular, if β is the diagonal matrix diag(t, ..., t) then
cone(β) is the direct sum of n copies of cone(t), so we have

[
cone(αt)

]
=
[
cone(α)

]
+ n

[
cone(t)

]
. (3.1.3) III.3.1.3

Every g ∈ GLn(S−1R) can be represented as α/s for some S-isomorphism
α and some s ∈ S, and we define ∂(g) = ∂(α/s) to be the element

[
cone(α)

]
−

n
[
cone(s)

]
of K0ChbSP(R). By (

III.3.1.3
3.1.3) we have ∂(α/s) = ∂(αt/st), which im-

plies that ∂(g) is independent of the choice of α and s. By (
III.3.1.2
3.1.2) this implies

that ∂ is a well-defined homomorphism from each GLn(S
−1R) to K0ChbSP(R).

Finally, the maps ∂ are compatible with the inclusions GLn ⊂ GLn+1, because

∂

(
α/s

0

0

1

)
= ∂

((
α

0

0

1

)
/s

)
=

[
cone

(
α

0

0

s

)]
− (n+ 1)

[
cone(s)

]

=
[
cone(α)

]
+
[
cone(s)

]
− (n+ 1)

[
cone(s)

]
= ∂(α/s).

Hence ∂ extends to GL(S−1R), and hence must factor through the universal
map to K1(S

−1R).

III.3.1.4 Example 3.1.4 (Key Example). For the Fundamental Theorem, we shall need
the following special case of this construction. Let T be the multiplicative set
{tn} in the polynomial ring R[t]. Then the map ∂ goes from K1(R[t, t

−1])
to K0HT (R[t]). If ν is a nilpotent endomorphism of Rn then t − ν is a T -
isomorphism, because its inverse is the polynomial t−1(1 + νt−1 + ν2t−2 + . . . ).
If (Rn, ν) denotes the R[t]-module Rn on which t acts as ν,

∂(t− ν) =
[
R[t]n/(t− ν)

]
=
[
(Rn, ν)

]
,

∂(1− νt−1) = ∂(t− ν)− ∂(t · idn) =
[
(Rn, ν)

]
− n

[
(R, 0)

]
.
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We can also compose ∂ with the productK0(R)⊗K1(Z[t,
1
t ])

·→K1(R[t,
1
t ]) of

Corollary
III.1.6.1
1.6.1. Given a finitely generated projective R-module P , the product

[P ] · t is the image of t · idP [t,t−1] under the map Aut(P [t, t−1])→ K1(R[t, t
−1])

of Lemma
III.1.6
1.6. To compute ∂([P ] · t), choose Q such that P ⊕ Q ∼= Rn. Since

the cokernel of t · idP [t] : P [t]→ P [t] is the R[t]-module (P, 0), we have an exact
sequence of R[t]-modules:

0→ R[t]n
t·idP [t]⊕1·idQ[t]

> R[t]n → (P, 0)→ 0.

Therefore we have the formula ∂([P ] · t) =
[
(P, 0)

]
.

III.3.1.5 Lemma 3.1.5. K0ChbSP(R) is generated by the classes [Q•] of chain complexes
concentrated in degrees 0 and 1, i.e., by complexes Q• of the form Q1 → Q0.

The kernel of K0ChbSP(R) → K0(R) is generated by the complexes

Rn
α−→ Rn associated to S-isomorphisms, i.e., by the classes ∂(α) =

[
cone(α)

]
.

Proof. By the Shifting Lemma II.
II.9.2.1
9.2.1, K0 is generated by bounded complexes

of the form 0→ Pn → · · · → P0 → 0. If n ≥ 2, choose a free R-module F = RN

mapping onto H0(P•). By assumption, we have sH0(P•) = 0 for some s ∈ S.
By the projective lifting property, there are maps f0, f1 making the diagram

F
s

> F > F/sF −→ 0

P1

f1
∨

> P0

f0
∨

> H0(P )

∨∨
−→ 0

commute. Thus if Q• denotes the complex F
s−→ F we have a chain map

Q•

f−→ P• inducing a surjection on H0. The mapping cone of f fits into a
cofibration sequence P•  cone(f) ։ Q•[−1] in ChbSP(R), so we have [P•] =
[Q•] + [cone(f)] in K0(R on S). Moreover, H0(cone(f)) = 0, so there is a
decomposition P1 ⊕ F ∼= P0 ⊕ P ′1 so that the mapping cone is the direct sum of

an exact complex P0

∼=−→ P0 and a complex P ′
•
of the form

0→ Pn → · · · → P3 → P2 ⊕ F → P ′1 → 0.

Since P ′
•
has length n− 1, induction on n implies that [cone(f)] = [P ′

•
] is a sum

of terms of the form [Q1 → Q0].

Hence every element of K0 has the form x = [P1
α−→ P0] − [Q1

β−→ Q0].

Choose s ∈ S so that sβ−1 is represented by an S-isomorphism Q0
γ−→ Q1;

adding γ to both terms of x, as well as the appropriate zero term Q′
=−→ Q′,

we may assume that Q1 = Q0 = Rn, i.e., that the second term of x is the
mapping cone of some S-isomorphism β ∈ End(Rn). With this reduction, the
map to K0(R) sends x to [P1]− [P0]. If this vanishes, then P1 and P0 are stably
isomorphic. Adding the appropriate P ′

=−→ P ′ makes P1 = P0 = Rm for some
m, and writes x in the form

x = cone(α)− cone(β) = ∂(α)− ∂(β).
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III.3.2 Theorem 3.2. Let S be a multiplicatively closed set of central elements in a
ring R. Then the map ∂ of Lemma

III.3.1
3.1 fits into an exact sequence

K1(R)→ K1(S
−1R)

∂−→ K0(R on S)→ K0(R)→ K0(S
−1R).

Proof. We have proven exactness at K0(R) in Theorem II.
II.9.8
9.8, and the com-

position of any two consecutive maps is zero by inspection. Exactness at
K0(R on S) was proven in Lemma

III.3.1.5
3.1.5. Hence it suffices to establish exactness

at K1(S
−1R).

For reasons of exposition, we shall give the proof when S consists of nonze-
rodivisors, relegating the general proof (which is similar but more technical)
to Exercise

EIII.3.5
3.5. The point of this simplification is that we can work with the

exact category HS(R). In particular, for every S-isomorphism α the class of the
module coker(α) is simpler to manipulate than the class of the mapping cone.

Recall from the proof of Lemma
III.3.1
3.1 that every element of GLn(S

−1R) can
be represented as α/s for some S-isomorphism α ∈ End(Rn) and some s ∈ S,
and that ∂(α/s) is defined to be

[
coker(α)

]
− [Rn/sRn]. If ∂(α/s) = 0, then

from Ex. II.
EII.7.2
7.2 there are short exact sequences in HS(R)

0→ C ′ → C1 → C ′′ → 0, 0→ C ′ → C2 → C ′′ → 0

such that coker(α) ⊕ C1
∼= (Rn/sRn) ⊕ C2. By Ex.

EIII.3.4
3.4 we may add terms to

C ′, C ′′ to assume that C ′ = coker(α′) and C ′′ = coker(α′′) for appropriate
S-isomorphisms of some Rm. By the Horseshoe Lemma (

WHomo
[223, 2.2.8]) we can

construct two exact sequences of projective resolutions (for i = 1, 2):

0 0 0

0 −→Rm
∨

> R2m
∨

> Rm
∨
−→ 0

0 −→Rm
α′∨

> R2m

αi∨
> Rm

α′′∨
−→ 0

0 −→ C ′
∨

> Ci
∨

> C ′′
∨
−→ 0.

0
∨

0
∨

0
∨

Inverting S makes each αi an isomorphism conjugate to
(
α′

0
0
α′′

)
. Thus in

K1(S
−1R) we have [α1] = [α′] + [α′′] = [α2]. On the other hand, the two

endomorphisms α⊕ α1 and s · idn ⊕ α2 of R2m+n have isomorphic cokernels by
construction. Lemma

III.3.2.1
3.2.1 below implies that in K1(S

−1R) we have

[α/s] = [α⊕ α1]− [s · idn ⊕ α2] = g for some g ∈ GL(R).

This completes the proof of Theorem
III.3.2
3.2.
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III.3.2.1 Lemma 3.2.1. Suppose that S consists of nonzerodivisors. If α, β ∈ EndR(R
n)

are S-isomorphisms with Rn/αRn isomorphic to Rn/βRn, then there is a g ∈
GL4n(R) such that [α] = [g][β] in K1(S

−1R).

Proof. Put M = coker(α) ⊕ coker(β), and let γ : Rn/αRn ∼= Rn/βRn be an
automorphism. By Ex.

EIII.3.3
3.3(b) with Q = R2n we can lift the automorphism(

0
γ
γ−1

0

)
ofM to an automorphism γ0 of R

4n. If π1 and π2 denote the projections

R4n (pr,0,0,0)
> coker(α), and R4n (0,pr,0,0)

> coker(β), respectively, then we have
γπ1 = π2γ0. This yields a commutative diagram

]0 −→ R4n (α, 1, 1, 1)
> R4n π1

> Rn/αRn−→ 0

0 −→ R4n

γ1
∨

(1, β, 1, 1)
> R4n

∼= γ0
∨

π2
> Rn/βRn

∼= γ
∨

−→ 0

in which γ1 is the induced map. Since γ and γ0 are isomorphisms, so is γ1.
Because γ0(α, 1, 1, 1) = (1, β, 1, 1)γ1 in GL4n(S

−1R), we have [γ0] + [α] = [β] +
[γ1], or [α] = [γ1γ

−1
0 ][β] in K1(S

−1R).

NK1 and the group Nil0

III.3.3 Definition 3.3 (NF ). If F is any functor from rings to abelian groups, we
write NF (R) for the cokernel of the natural map F (R) → F (R[t]); NF is

also a functor on rings. Moreover, the ring map R[t]
t=1−→ R provides a split-

ting F (R[t]) → F (R) of the natural map, so we have a natural decomposition
F (R[t]) ∼= F (R)⊕NF (R).

In particular, when F is Kn (n = 0, 1) we have functors NKn and a decom-

position Kn(R[t]) ∼= Kn(R) ⊕ NKn(R). Since the ring maps R[t]
t=r−→ R are

split surjections for every r ∈ R, we see by Proposition
III.2.3
2.3 and Ex.

EIII.2.7
2.7 that for

every r we also have

NK0(R) ∼= K0(R[t], (t− r)) and NK1(R) ∼= K1(R[t], (t− r)).

We will sometimes speak about NF for functors F defined on any category of
rings closed under polynomial extensions and containing the map “t = 1,” such
as k-algebras or commutative rings. For example, the functors NU and N Pic
were discussed briefly for commutative rings in chapter I, Ex.

EI.3.17
3.17 and

EI.3.19
3.19.

III.3.3.1 Example 3.3.1. (Chase) Suppose that A is an algebra over Z/p. Then the
group NK1(A) is a p-group. To see this, first observe that it is true for the
algebras An = Z/p[x]/(xn) by

III.2.4
2.4, since (1 + tf(x, t))p = 1 + tpf(xp, tp). Then

observe that by Higman’s trick (
III.3.5.1
3.5.1 below) every element of NK1(A) is the

image of 1− xt ∈ NK1(An) (for some n) under a map An →Mn(A), x 7→ ν.
By Ex.

EIII.2.8
2.8, NK1(A) is also a p-group for every Z/pr-algebra A.
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III.3.3.2 Example 3.3.2. If A is an algebra over a field k of characteristic zero, then
NK1(A) is a uniquely divisible abelian group. In fact, NK1(A) has the structure
of a k-vector space; see Ex.

EIII.3.7
3.7.

III.3.4 Definition 3.4 (F -regular rings). We say that a ring R is F -regular if F (R) =
F (R[t1, . . . , tn]) for all n. Since NF (R[t]) = NF (R) ⊕ N2F (R), we see by
induction on p that R is F -regular if and only if NpF (R) = 0 for all p ≥ 1.

For example, Traverso’s theorem (I.
I.3.11
3.11) states that a commutative ring R

is Pic-regular if and only if Rred is seminormal. We also saw in I.
I.3.12
3.12 that

commutative rings are U -regular (U=units) if and only if R is reduced.
We saw in II.

II.6.5
6.5 that any regular ring is K0-regular. We will see in Theo-

rem
III.3.8
3.8 below that regular rings are alsoK1-regular, and we will see in chapter V

that they are Km-regular for every m. Rosenberg has also shown that commu-
tative C∗-algebras are Km-regular for all m; see

Ro96
[162].

III.3.4.1 Lemma 3.4.1. Let R = R0 ⊕ R1 ⊕ · · · be a graded ring. Then the kernel of
F (R)→ F (R0) embeds in NF (R) and even in the kernel of NF (R)→ NF (R0).

In particular, if NF (R) = 0 then F (R) ∼= F (R0).

Proof. Let f denote the ring map R → R[t] defined by f(rn) = rnt
n for every

rn ∈ Rn. Since the composition of f and “t = 1” is the identity on R, F (f) is an
injection. LetQ denote the kernel of F (R)→ F (R0), so that F (R) = F (R0)⊕Q.
Since the composition of f and “t = 0” is the projection R→ R0 → R, Q embeds
into the kernel NF (R) of the evaluation F (R[t]) → F (R) at t = 0. Similarly,
since the composition of f and R[t] → R0[t] is projection R → R0 → R0[t], Q
embeds into the kernel of NF (R)→ NF (R0).

A typical application of this result is that if R is a graded seminormal algebra
with R0 a field then Pic(R) = 0.

III.3.4.2 Application 3.4.2. It follows thatNF (R) is a summand ofN2F (R) and hence
NpF (R) for all p > 0. Indeed, the first part is the application of

III.3.4.1
3.4.1 to R[s],

and the second part is obtained by induction, replacing F by Np−2F .

If s ∈ S is central, the algebra map S[x] → S[x], x → sx, induces an
operation [s] : NK0(S) → NK0(S). (It is the multiplication by 1− st ∈ W (S)
in Ex.

EIII.3.7
3.7.) Write Ss for S[1/s].

III.3.4.3 Theorem 3.4.3. (Vorst) NK0(Ss) is the “localization” of NK0(S) along [s]:

NK0(Ss) ∼= lim−→(NK0(S)
[s]−→ NK0(S)

[s]−→ · · · ).

In particular, if S is K0-regular, so is Ss.

Proof. Write I for the ideal (x) of Ss[x] and set R = S + I. Then NK0(Ss) =
K0(I) by Ex. II.

EII.2.3
2.3. But R = lim−→(S[x] → S[x]→ · · · ) and I is the direct limit

of xS[x]→ xS[x]→ · · · , so K0(I) = lim−→(K0(xS[x])→ · · · ) as claimed.

III.3.4.4 Corollary 3.4.4. If A is K0-regular then so is A[s, s−1].
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III.3.5 3.5. We are going to describe the group NK1(R) in terms of nilpotent matrices.
For this, we need the following trick, which was published by Graham Higman
in 1940. For clarity, if I = fA is an ideal in A we write GL(A, f) for GL(I).

III.3.5.1 Higman’s Trick 3.5.1. For every g ∈ GL(R[t], t) there is a nilpotent matrix
ν over R such that [g] = [1− νt] in K1(R[t]).

Similarly, for every g ∈ GL(R[t, t−1], t−1) there is a nilpotent matrix ν over
R such that [g] = [1− ν(t− 1)] in K1(R[t, t

−1], t− 1).

Proof. Every invertible p × p matrix over R[t] can be written as a polynomial
g = γ0 + γ1t+ γ2t

2 + · · ·+ γnt
n with the γi in Mp(R). If g is congruent to the

identity modulo t, then γ0 = 1. If n ≥ 2 and we write g = 1 − ht + γnt
n, then

modulo E2p(R[t], t) we have

(
g 0
0 1

)
∼
(
g γnt

n−1

0 1

)
∼
(
1− ht γnt

n−1

−t 1

)
= 1−

(
h −γntn−2
1 0

)
t.

By induction on n, [g] is represented by a matrix of the form 1−νt. The matrix
ν is nilpotent by Ex.

EIII.3.1
3.1.

Over R[t, t−1] we can use a similar argument. After multiplying by a power
of t, we may write g as a polynomial in t. Such a polynomial may be rewritten
as a polynomial

∑
γix

i in x = (t− 1). If g is congruent to the identity modulo
(t − 1) then again we have γ0 = 1. By Higman’s trick (applied to x), we may
reduce g to a matrix of the form 1 − νx, and again ν must be nilpotent by
Ex.

EIII.3.1
3.1.

We will also need the category Nil(R) of II.
II.7.4.4
7.4.4. Recall that the objects

of this category are pairs (P, ν), where P is a finitely generated projective R-
module and ν is a nilpotent endomorphism of P . Let T denote the multiplicative
set {tn} in R[t]. From II.

II.7.8.4
7.8.4 we have

K0(R[t] on T ) ∼= K0Nil(R) ∼= K0(R)⊕Nil0(R),

where Nil0(R) is the subgroup generated by elements of the form
[
(Rn, ν)

]
−

n
[
(R, 0)

]
for some n and some nilpotent matrix ν.

III.3.5.2 Lemma 3.5.2. For every ring R, the product with t ∈ K1(Z[t, t−1]) induces a

split injection K0(R)
·t−→ K1(R[t, t

−1]).

Proof. Since the forgetful map K0Nil(R) → K0(R) sends
[
(P, ν)

]
to [P ], the

calculation in Example
III.3.1.4
3.1.4 shows that the composition

K0(R)
·t−→ K1(R[t, t

−1])
∂−→ K0Nil(R)→ K0(R)

is the identity map. Hence the first map is a split injection.
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Momentarily changing variables from t to s, we now define an additive func-
tion τ from Nil(R) to K1(R[s]). Given an object (P, ν), let τ(P, ν) be the image
of the automorphism 1−νs of P [s] under the natural map Aut(P [s])→ K1(R[s])
of Lemma

III.1.6
1.6. Given a short exact sequence

0→ (P ′, ν′)→ (P, ν)→ (P ′′, ν′′)→ 0

in Nil(R), a choice of a splitting P ∼= P ′ ⊕ P ′′ allows us to write

(1− νs) =
(
1− ν′s γs

0 1− ν′′s

)
=

(
1− ν′s 0

0 1− ν′′s

)(
1 γ′s
0 1

)

in Aut(P [s]). Hence inK1(R[s]) we have [1−νs] = [1−ν′s][1−ν′′s]. Therefore τ
is an additive function, and induces a homomorphism τ : K0Nil(R)→ K1(R[s]).
Since τ(P, 0) = 1 for all P and 1 − νs is congruent to 1 modulo s, we see that
τ is actually a map from Nil0(R) to K1(R[s], s).

III.3.5.3 Proposition 3.5.3. Nil0(R) ∼= NK1(R), and K0Nil(R) ∼= K0(R)⊕NK1(R).

Proof. For convenience, we identify s with t−1, so that R[s, s−1] = R[t, t−1].
Applying Lemma

III.3.1
3.1 to R[t] and T = {1, t, t2, . . . }, form the composition

K1(R[s], s)→ K1(R[s])→K1(R[s, s
−1])

=K1(R[t, t
−1])

∂−→ K0(R on T )→ Nil0(R).
(3.5.4) III.3.5.4

Let us call this composition δ. We claim that τ is the inverse of δ. By Higman’s
Trick, every element of K1(R[s], s) is represented by a matrix 1 − νs with ν
nilpotent. In Example

III.3.1.4
3.1.4 we saw that δ(1− νs) =

[
(Rn, ν)

]
− n

[
(R, 0)

]
. By

the construction of τ we have the desired equations: τδ(1− νs) = τ
[
(Rn, ν)

]
=

(1− νs) and

δτ

([
(Rn, ν)

]
− n

[
(R, 0)

])
= δ(1− νs) =

[
(Rn, ν)

]
− n

[
(R, 0)

]
.

III.3.5.5 Corollary 3.5.5. K1(R[s])→ K1(R[s, s
−1]) is an injection for every ring R.

Proof. By Ex.
EIII.2.7
2.7, we have K1(R[s]) ∼= K1(R)⊕K1(R[s], s). Since K1(R) is a

summand of K1(R[s, s
−1]), the isomorphism δ : K1(R[s], s) ∼= Nil0(R) of (

III.3.5.4
3.5.4)

factors through K1(R[s], s) → K1(R[s, s
−1])/K1(R). This quotient map must

then be an injection. The result follows.

The Fundamental Theorems for K1 and K0

III.3.6 Fundamental Theorem for K1 3.6. For every ring R, there is a split sur-

jection K1(R[t, t
−1])

∂−→ K0(R), with inverse [P ] 7→ [P ] · t. This map fits into
a naturally split exact sequence:

0→ K1(R)
∆−→ K1(R[t])⊕K1(R[t

−1])
±−→ K1(R[t, t

−1])
∂−→ K0(R)→ 0.

Consequently, we have a natural direct sum decomposition:

K1(R[t, t
−1]) ∼= K1(R)⊕K0(R)⊕NK1(R)⊕NK1(R).
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Proof. We merely assemble the pieces of the proof from
III.3.5
3.5. The first assertion

is just Lemma
III.3.5.2
3.5.2. The natural maps from K1(R) into K1(R[t]), K1(R[t

−1])
and K1(R[t, t

−1]) are injections, split by “t = 1” (as in
III.3.5
3.5), so the obviously

exact sequence

0→ K1(R)
∆−→ K1(R)⊕K1(R)

±−→ K1(R)→ 0 (3.6.1) III.3.6.1

is a summand of the sequence we want to prove exact. From Proposition II.
II.7.8.1
7.8.1,

Theorem
III.3.2
3.2 and Corollary

III.3.5.5
3.5.5, we have an exact sequence

0→ K1(R[t])→ K1(R[t, t
−1])

∂−→ K0Nil(R)→ 0. (3.6.2) III.3.6.2

Since K0Nil(R) ∼= K0(R) ⊕ Nil0(R), the map ∂ in (
III.3.6.2
3.6.2) is split by the maps

of
III.3.5.2
3.5.2 and

III.3.5.3
3.5.3. The sequence in the Fundamental Theorem forK1 is obtained

by rearranging the terms in sequences (
III.3.6.1
3.6.1) and (

III.3.6.2
3.6.2).

In order to formulate the corresponding Fundamental Theorem for K0,
we define K−1(R) to be the cokernel of the map K0(R[t]) ⊕ K0(R[t

−1]) →
K0(R[t, t

−1]). We will reprove the following result more formally in the next
section.

III.3.7 Fundamental Theorem for K0 3.7. For every ring R, there is a naturally
split exact sequence:

0→ K0(R)
∆−→ K0(R[t])⊕K0(R[t

−1])
±−→ K0(R[t, t

−1])
∂−→ K−1(R)→ 0.

Consequently, we have a natural direct sum decomposition:

K0(R[t, t
−1]) ∼= K0(R)⊕K−1(R)⊕NK0(R)⊕NK0(R).

Proof. Let s be a second indeterminate. The Fundamental Theorem for K1,
applied to the variable t, gives a natural decomposition

K1(R[s, t, t
−1]) ∼= K1(R[s])⊕NK1(R[s])⊕NK1(R[s])⊕K0(R[s]),

and similar decompositions for the other terms in the map

K1(R[s, t, t
−1])⊕K1(R[s

−1, t, t−1])→ K1(R[s, s
−1, t, t−1]).

Therefore the cokernel of this map also has a natural splitting. But the cokernel
is K0(R[t, t

−1]), as we see by applying the Fundamental Theorem for K1 to the
variable s.

III.3.8 Theorem 3.8. If R is a regular ring, K1(R[t]) ∼= K1(R) and there is a natural
isomorphism K1(R[t, t

−1]) ∼= K1(R)⊕K0(R).
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Proof. Consider the category Mt(R[t]) of finitely generated t-torsion R[t]-
modules; by devissage II.

II.6.3.3
6.3.3, K0Mt(R[t]) ∼= K0(R). Since R is regular, ev-

ery such module has a finite resolution by finitely generated projective R[t]-
modules, i.e., Mt(R[t]) is the same as the category Ht(R[t]) of II.

II.7.7
7.7. By

II.
II.7.8.4
7.8.4,

K0Nil(R) ∼= K0Ht(R[t]) ∼= K0(R).

Hence Nil0(R) = 0. By
III.3.5.3
3.5.3, NK1(R) = 0 and K1(R[t]) ∼= K1(R). The

description of K1(R[t, t
−1]) now comes from the Fundamental Theorem

III.3.6
3.6.

III.3.8.1 Example 3.8.1. If R is a commutative regular ring, and A = R[x]/(xN ), it
follows from

III.2.4
2.4 and

III.3.8
3.8 that SK1(A[t]) = SK1(A) and hence (by

III.3.5.3
3.5.3 and

I.
I.3.12
3.12) Nil0(A) ∼= NK1(A) ∼= (1 + tA[t])× = (1 + xtA[t])×. This isomorphism

sends [(P, ν)] ∈ Nil0(A) to det(1 − νt) ∈ (1 + tA[t])×. By inspection, this is
the restriction of the canonical End0(A)-module map Nil0(A) → End0(A) of
II.

II.7.4.4
7.4.4, followed by the inclusion End0(A) ⊂ W (A) of II.

II.7.4.3
7.4.3. It follows that

Nil0(A) is an ideal of the ring End0(A).

EXERCISES

EIII.3.1 3.1. Let A be a ring and a ∈ A, show that the following are equivalent:
(i) a is nilpotent;
(ii) 1− at is a unit of A[t];
(iii) 1− a(t− 1) is a unit of A[t, t−1].

EIII.3.2 3.2. Let α, β : P → Q be two maps between finitely generated projective R-
modules. If S is a central multiplicatively closed set in R and S−1α, S−1β
are isomorphisms, then g = β−1α is an automorphism of S−1P . Show that
∂(g) = [cone(α)] − [cone(β)]. In particular, if S consists of nonzerodivisors,
show that ∂(g) = [coker(α)]− [coker(β)].

EIII.3.3 3.3. (Bass) Prove that every module M in H(R) has a projective resolution
P· →M such that every automorphism α of M lifts to an automorphism of the
chain complex P·. To do so, proceed as follows.

(a) Fix a surjection π : Q → M , and use Ex. I.
EI.1.11
1.11 to lift the automorphism

α⊕ α−1 of M ⊕M to an automorphism β of Q⊕Q.

(b) Defining e : Q ⊕ Q → M to be e(x, y) = π(x), show that every automor-
phism of M can be lifted to an automorphism of Q⊕Q.

(c) Set P0 = Q⊕Q, and repeat the construction on Z0 = ker(e) to get a finite
resolution P· of M with the desired property.

EIII.3.4 3.4. Suppose that S consists of nonzerodivisors, and that M is a module in
HS(R).
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(a) Prove that there is a module M ′ and an S-isomorphism α ∈ End(Rm) so
that coker(α) =M ⊕M ′. Hint: Modify the proof of Lemma

III.3.1.5
3.1.5, where

M is the cokernel of a map P1
β−→ P0.

(b) Given S-isomorphisms α′, α′′ ∈ End(Rm) and a short exact sequence of
S-torsion modules 0→ coker(α′)→M → coker(α′′)→ 0, show that there
is an S-isomorphism α ∈ R2m with M ∼= coker(α).

EIII.3.5 3.5. Modify the proofs of the previous two exercises to prove Theorem
III.3.2
3.2 when

S contains zerodivisors.

EIII.3.6 3.6. Noncommutative localization. By definition, a multiplicatively closed set
S in a ring R is called a right denominator set if it satisfies the following two
conditions: (i) For any s ∈ S and r ∈ R there exists an s′ ∈ S and r′ ∈ R such
that sr′ = rs′; (ii) if sr = 0 for any r ∈ R, s ∈ S then rs′ = 0 for some s′ ∈ S.
This is the most general condition under which a (right) ring of fractions S−1R
exists, in which every element of S−1R has the form r/s = rs−1, and if r/1 = 0
then some rs = 0 in R.

Prove Theorem
III.3.2
3.2 when S is a right denominator set consisting of nonze-

rodivisors. To do this, proceed as follows.

(a) Show that for any finite set of elements xi in S
−1R there is an s ∈ S and

ri ∈ R so that xi = ri/s for all i.

(b) Reprove II.
II.7.7.3
7.7.3 and II.

II.9.8
9.8 for denominator sets, using (a); this yields

exactness at K0(R).

(c) Modify the proof of Lemma
III.3.1
3.1 and

III.3.1.5
3.1.5 to construct the map ∂ and

prove exactness at K0HS(R).

(d) Modify the proof of Theorem
III.3.2
3.2 to prove exactness at K1(S

−1R).

EIII.3.7 3.7. Let A be an algebra over a commutative ring R. Recall from Ex. II.
EII.7.18
7.18

that NK1(A) = Nil0(A) is a module over the ring W (R) = 1 + tR[[t]] of Witt
vectors II.

II.4.3
4.3. In this exercise we develop a little of the structure ofW (R), which

yields information about the structure of NK1(A) and hence (by Theorem
III.3.7
3.7)

the structure of NK0(R).
(a) If 1/p ∈ R for some prime integer p, show that W (R) is an algebra over

Z[1/p]. Conclude that NK1(A) and NK0(A) are uniquely p-divisible abelian
groups. Hint: use the fact that the coefficients in the power series expansion for
r(t) = (1 + t)1/p only involve powers of p.

(b) If Q ⊆ R, consider the exponential map
∏∞
i=1R → W (R), sending

(r1, ...) to
∏∞
i=1 exp(−riti/i). This is an isomorphism of abelian groups, whose

inverse (the “ghost map”) is given by the coefficients of f 7→ −t d/dt(ln f).
Show that this is a ring isomorphism. Conclude that NK1(A) and NK0(A)
have the structure of R-modules.

(c) If n ∈ Z is nonzero, Stienstra showed that NK1(A)[1/n] ∼= NK1(A[1/n]).
Use this to show that if G is a finite group of order n then NK1(Z[G]) is
annihilated by some power of n.
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EIII.3.8 3.8. If I is a nilpotent ideal in a Q-algebra A, show that NK1(A, I)→ K1(A, I)
is onto. Thus Ex.

EIII.3.7
3.7 gives another proof that K1(A, I) is divisible (Ex.

EIII.2.9
2.9).

EIII.3.9 3.9. If s ∈ S is central, show that NK1(Ss) is a localization of NK1(S) in the
sense of

III.3.4.3
3.4.3. Conclude that if S is K1-regular then S is K0-regular. Hint: Use

the sequence of Ex.
EIII.2.6
2.6.

EIII.3.10 3.10. (Karoubi) Let S be a multiplicatively closed set of central nonzerodivisors
in a ring A. We say that a ring homomorphism f : A → B is an analytic
isomorphism along S if f(S) consists of central nonzerodivisors in B, and if
A/sA ∼= B/sB for every s ∈ S. (This implies that the s-adic completions of A
and B are isomorphic, whence the name.)

If f is an analytic isomorphism along S, show that M 7→M ⊗AB defines an
equivalence of categories HS(A) ∼= HS(B). (One proof is given in V.

V.7.5
7.5 below.)

Using Theorem
III.3.2
3.2 and Ex. II.

EII.9.13
9.13, this shows that we have an exact sequence

K1(S
−1A)⊕K1(B)→ K1(S

−1B)→K0(A)→ K0(S
−1A)⊕K0(B)→K0(S

−1B).

Hint: For M in H1
S(A), show that TorA1 (M,B) = 0, so that the functor

H1
S(A) → H1

S(B) is exact. Then use Lemma II.
II.7.7.1
7.7.1 to show that HS(A)

is the category of modules having a finite resolution by modules in H1
S(A), and

similarly for HS(B).
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4 Negative K-theory

In the last section, we defined K−1(R) to be the cokernel of the map K0(R[t])⊕
K0(R[t

−1]) → K0(R[t, t
−1]). Of course we can keep going, and define all the

negative K-groups by induction on n:

III.4.1 Definition 4.1. For n > 0, we inductively define K−n(R) to be the cokernel
of the map

K−n+1(R[t])⊕K−n+1(R[t
−1])→ K−n+1(R[t, t

−1]).

Clearly, each K−n is a functor from rings to abelian groups. It follows from
Theorem II.

II.7.8
7.8 that if R is regular noetherian then Kn(R) = 0 for all n < 0.

To describe the properties of these negative K-groups, it is convenient to
cast the Fundamental Theorems above in terms of Bass’ notion of contracted
functors. With this in mind, we make the following definitions.

III.4.1.1 Definition 4.1.1 (Contracted functors). Let F be a functor from rings to
abelian groups. For each R, we define LF (R) to be the cokernel of the map
F (R[t]) ⊕ F (R[t−1]) → F (R[t, t−1]). We write Seq(F,R) for the following se-
quence, where ∆(a) = (a, a) and ±(b, c) = b− c:

0→ F (R)
∆−→ F (R[t])⊕ F (R[t−1]) ±−→ F (R[t, t−1])→ LF (R)→ 0.

We say that F is acyclic if Seq(F,R) is exact for all R. We say that F is a
contracted functor if F is acyclic and in addition there is a splitting h = ht,R of
the defining map F (R[t, t−1]) → LF (R), a splitting which is natural in both t
and R. The notation F−1 is sometimes used for LF .

By iterating this definition, we can speak about the functors NLF , L2F ,
etc. For example, Definition

III.4.1
4.1 states that K−n = Ln(K0).

As with the definition of NF (
III.3.3
3.3), it will occasionally be useful to define LF

etc. on a more restricted class of rings, such as commutative algebras. Suppose
that R is a category of rings such that if R is in R then so are R[t], R[t, t−1] and
the maps R→ R[t] ⇉ R[t, t−1]. Then the definitions of LF , LnF and Seq(F,R)
in

III.4.1.1
4.1.1 make sense for any functor F from R to any abelian category.

III.4.1.2 Example 4.1.2 (Fundamental Theorem for K−n). We can restate the Funda-
mental Theorems for K1 and K0 as the assertions that these are contracted
functors. It follows from Proposition

III.4.2
4.2 below that each K−n is a contracted

functor; by Definition
III.4.1
4.1, this means that there is a naturally split exact se-

quence:

0→ K−n(R)
∆→K−n(R[t])⊕K−n(R[t−1]) ±→K−n(R[t, t

−1])
∂→K−n−1(R)→ 0.

III.4.1.3 Example 4.1.3 (Units). Let U(R) = R× denote the group of units in a com-
mutative ring R. By Ex. I.

EI.3.17
3.17, U is a contracted functor with contraction

LU(R) = [Spec(R),Z]; the splitting map LU(R)→ U(R[t, t−1]) sends a contin-
uous function f : Spec(R) → Z to the unit tf of R[t, t−1]. From Ex.

EIII.4.2
4.2 below

August 29, 2013 - Page 210 of
LastPage
568



Chapter III

we see that the functors L2U and NLU are zero. Thus we can write a simple
formula for the units of any extension R[t1, t

−1
1 , . . . , tn, t

−1
n ]. If R is reduced, so

that NU(R) vanishes (Ex. I.
EI.3.17
3.17), then we just have

U(R[t1, t
−1
1 , . . . , tn, t

−1
n ]) = U(R)×

n∐

i=1

[Spec(R),Z] · ti.

III.4.1.4 Example 4.1.4 (Pic). Recall from chapter I, §3 that the Picard group Pic(R)
of a commutative ring is a functor, and that N Pic(R) = 0 exactly when Rred

is seminormal. By Ex. I.
EI.3.18
3.18 the sequence Seq(Pic, R) is exact. In fact Pic is a

contracted functor with NLPic = L2 Pic = 0; see
We91
[221]. The group LPic(R) is

the étale cohomology group H1
et(Spec(R),Z).

A morphism of contracted functors is a natural transformation η : F ⇒ F ′

between two contracted functors such that the following square commutes for
all R.

LF (R)
h
> F (R[t, t−1])

LF ′(R)

(Lη)R

∨ h′
> F ′(R[t, t−1])

ηR[t,t−1]

∨

III.4.2 Proposition 4.2. Let η : F ⇒ F ′ be a morphism of contracted functors. Then
both ker(η) and coker(η) are also contracted functors.

In particular, if F is contracted, then NF and LF are also contracted
functors. Moreover, there is a natural isomorphism of contracted functors
NLF ∼= LNF .

Proof. If C
φ−→ D is a morphism between split exact sequences, which have

compatible spittings, then the sequences ker(φ) and coker(φ) are always split
exact, with splittings induced from the splittings of C and D. Applying this re-
mark to Seq(F,R)→ Seq(F ′, R) shows that ker(η) and coker(η) are contracted
functors: both Seq(ker(η), R) and Seq(coker(η), R) are split exact. It also shows
that

0→ ker(η)(R)→ F (R)
ηR−→ F ′(R)→ coker(η)(R)→ 0

is an exact sequence of contracted functors.
Since NF (R) is the cokernel of the morphism F (R) → F ′(R) = F (R[t])

and LF (R) is the cokernel of the morphism ± in Seq(F,R), both NF and LF
are contracted functors. Finally, the natural isomorphism NLF (R) ∼= LNF (R)
arises from inspecting one corner of the large commutative diagram represented
by

0→ Seq(F,R[s], s)→ Seq(F,R[s])→ Seq(F,R)→ 0.

III.4.2.1 Example 4.2.1 (SK1). If R is a commutative ring, it follows from Exam-
ples

III.1.1.1
1.1.1 and

III.4.1.3
4.1.3 that det : K1(R)→ U(R) is a morphism of contracted func-

tors. Hence SK1 is a contracted functor. The contracted map Ldet is the map
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rank: K0(R) → H0(R) = [Spec(R),Z] of II.
II.2.3
2.3; it follows that L(SK1)(R) =

K̃0(R). From Ex.
EIII.4.2
4.2 we also have L2(SK1)(R) = LK̃0(R) = K−1(R).

We can give an elegant formula for F (R[t1, t
−1
1 , . . . , tn, t

−1
n ]), using the fol-

lowing notation. If p(N,L) =
∑
mijN

iLj is any formal polynomial in N and
L with integer coefficients mij > 0, and F is a functor from rings to abelian
groups, we set p(N,L)F equal to the direct sum (over i and j) of mij copies of
each group N iLjF (R).

III.4.2.2 Corollary 4.2.2. F (R[t1, . . . , tn]) ∼= (1 + N)nF (R) for every F . If F is a
contracted functor, then F (R[t1, t

−1
1 , . . . , tn, t

−1
n ]) ∼= (1 + 2N + L)nF (R).

Proof. The case n = 1 follows from the definitions; the general case follows by
induction.

For example, if L2F = 0 and R is F -regular, then (1+2N+L)nF (R) stands
for F (R) ⊕ nLF (R). In particular, the formula for units in Example

III.4.1.3
4.1.3 is

just the case F = U of
III.4.2.2
4.2.2.

III.4.2.3 Example 4.2.3. Since LjK0 = K−j , K0(R[t1, t
−1
1 , . . . , tn, t

−1
n ]) is the direct

sum of many pieces N iK−j(R), including K−n(R) and
(
n
j

)
copies of K−j(R).

From
III.3.4.4
3.4.4 we see that if R is Kn-regular for some n ≤ 0 then R is also

Kn−1-regular. In particular, if R is K0-regular then R is also Kn-regular for all
n < 0.

III.4.2.4 Conjecture 4.2.4. Let R be a commutative noetherian ring of Krull dimen-
sion d. It is conjectured that K−j(R) vanishes for all j > d, and that R is
K−d-regular; see

We80
[217]. This is so for d = 0, 1 by Exercises

EIII.4.3
4.3 and

EIII.4.4
4.4, and

Example
III.4.3.1
4.3.1 below shows that the bound is best possible. It was recently shown

to be true for Q-algebras in
CHSW
[46].

The Mayer-Vietoris sequence

Suppose that f : R → S is a ring map, and I is an ideal of R mapped isomor-
phically into an ideal of S. By Theorem

III.2.6
2.6 there is an exact “Mayer-Vietoris”

sequence:

K1(R)
∆→K1(S)⊕K1(R/I)

±→K1(S/I)
∂→K0(R)

∆→K0(S)⊕K0(R/I)
±→K0(S/I).

Applying the contraction operation L to this sequence gives a sequence relating
K0 to K−1, whose first three terms are identical to the last three terms of the
displayed sequence. Splicing these together yields a longer sequence. Repeatedly
applying L and splicing sequences leads to the following result.

III.4.3 Theorem 4.3 (Mayer-Vietoris). Suppose we are given a ring map f : R → S
and an ideal I of R mapped isomorphically into an ideal of S. Then the Mayer-
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Vietoris sequence of Theorem
III.2.6
2.6 continues as a long exact Mayer-Vietoris se-

quence of negative K-groups.

∆→
[
K0(S)⊕
K0(R/I)

]
±→K0(S/I)

∂→K−1(R)
∆→
[
K−1(S)⊕
K−1(R/I)

]
±→K−1(S/I)

∂→ · · ·

· · · → K−n+1(S/I)
∂→K−n(R)

∆→
[
K−n(S)⊕
K−n(R/I)

]
±→K−n(S/I)

∂→ · · ·

III.4.3.1 Example 4.3.1. (B. Dayton) Fix a regular ring R, and let ∆n(R) denote the
coordinate ring R[t0, . . . , tn]/(f), f = t0 · · · tn(1 −

∑
ti) of the n-dimensional

tetrahedron over R. Using I = (1 −∑ ti)∆
n(R) and ∆n(R)/I ∼= R[t1, . . . , tn]

via t0 7→ 1− (t1 + · · ·+ tn), we have a Milnor square

∆n(R) > An

R[t1, . . . , tn]
∨

> ∆n−1(R)

∨

where An = R[t0, . . . , tn]/(t0 · · · tn). By Ex.
EIII.4.8
4.8, the negative K-groups of

An vanish and Ki(An) = Ki(R) for i = 0, 1. Thus K0(∆
n(R)) ∼= K0(R) ⊕

K1(∆
n−1(R))/K1(R) for n > 0, and K−j(∆

n(R)) ∼= K1−j(∆
n−1(R)) for j > 0.

These groups vanish for j > n, withK−n(∆
n(R)) ∼= K0(R). In particular, if F is

a field then ∆n(F ) is an n-dimensional noetherian ring with K−n(∆
n(F )) ∼= Z;

see Conjecture
III.4.2.4
4.2.4.

When we have introduced higher K-theory, we will see that in fact
K0(∆

n(R)) ∼= Kn(R) and K1(∆
n(R)) ∼= Kn+1(R). (See IV, Ex.

EIV.12.1
12.1.) This is

just one way in which higher K-theory appears in classical K-theory.

Theories of Negative K-theory

Here is an alternative approach to defining negative K-theory, due to Karoubi
and Villamayor

KV71
[100].

III.4.4 Definition 4.4. A theory of negative K-theory for (nonunital) rings consists
of a sequence of functions Kn (n ≤ 0) from nonunital rings to abelian groups,
together with natural boundary maps ∂ : Kn(R/I)→ Kn−1(I) for every 2-sided
ideal I ⊂ R, satisfying the following axioms.

(1) K0(R) is the Grothendieck group of chapter II;

(2) Kn(I)→ Kn(R)→ Kn(R/I)
∂−→ Kn−1(I)→ Kn−1(R) is exact for every

ideal I ⊂ R;

(3) If Λ is a flasque ring (II.
II.2.1.3
2.1.3), then Kn(Λ) = 0 for all n ≤ 0;

(4) The inclusion R ⊂ M(R) = ∪Mm(R) induces an isomorphism Kn(R) ∼=
Kn(M(R)) for each n ≤ 0.
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III.4.4.1 Example 4.4.1. Bass’ negative K-groups (
III.4.1
4.1) form a theory of negative K-

theory for rings. This follows from the contraction of
III.2.3
2.3 (see Ex.

EIII.4.5
4.5), Ex.

EIII.4.9
4.9

and the contraction of Morita Invariance
III.1.6.4
1.6.4.

III.4.4.2 Example 4.4.2. Embedding M(R) as an ideal in a flasque ring Λ, axiom (2)
shows that K−1R ∼= K0(Λ/M(R)). This was the approach used by Karoubi
and Villamayor in

KV71
[100] to inductively define a theory of negative K-theory;

see Ex.
EIII.4.10
4.10.

III.4.4.3 Example 4.4.3. If A is a hensel local ring then K−1(A) = 0. This was proven
by Drinfeld in

Drin
[49], using a Calkin category model for negative K-theory.

III.4.5 Theorem 4.5. Every theory of negative K-theory for rings is canonically iso-
morphic to the negative K-theory of this section.

Proof. Suppose that {K ′n} is another theory of negative K-theory for rings.
We will show that there are natural isomorphisms hn(A) : Kn(A) → K ′n(A)
commuting with the boundary operators. By induction, we may assume that hn
is given. Since C(R) is flasque (II.

II.2.1.3
2.1.3), and S(R) = C(R)/M(R), the axioms

yield isomorphisms ∂ : KnS(R) ∼= Kn−1(R) and ∂
′ : K ′nS(R)

∼= K ′n−1(R). We
define hn−1(R) : Kn−1(R)→ K ′n−1(R) to be ∂′ ◦ hn(SR) ◦ ∂−1.

It remains to check that the hn commute with the boundary maps associated
to an ideal I ⊂ R. Since M(I) is an ideal in C(I), C(R) and M(R), the axioms
yield KnS(I) ∼= KnC(R)/M(I) and similarly for K ′n. The naturality of ∂ and
∂′ relative to M(R/I) =M(R)/M(I)→ C(R)/M(I) yield the diagram

Kn(R/I)
∼=
> KnM(R/I) > KnC(R)/M(I) <

∼=
KnS(I)

∂
> Kn−1(I)

K ′n(R/I)

∼= hn(R/I)

∨ ∼=
> K ′nM(R/I)

∼=
∨

> K ′nC(R)/M(I)

∼=
∨

<
∼=

K ′nS(I)

∼=
∨ ∂′

> K ′n−1(I).

hn−1(I)

∨

Since the horizontal composites are the given maps ∂ : Kn(R/I) → Kn−1(I)
and ∂′ : K ′n(R/I) → K ′n−1(I), we have the desired relation: ∂′hn(R/I) ∼=
hn−1(I) ∂.

EXERCISES

EIII.4.1 4.1. Suppose that 0 → F ′ → F → F ′′ → 0 is an exact sequence of functors,
with F ′ and F ′′ contracted. Show that F is acyclic, but need not be contracted.

EIII.4.2 4.2. For a commutative ring R, let H0(R) denote the group [Spec(R),Z] of all
continuous functions from Spec(R) to Z. Show that NH0 = LH0 = 0, i.e., that
H0(R) = H0(R[t]) = H0(R[t, t

−1]).

EIII.4.3 4.3. Let R be an Artinian ring. Show that R is K0-regular, and that K−n(R) =
0 for all n > 0.
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EIII.4.4 4.4. (Bass-Murthy) Let R be a 1-dimensional commutative noetherian ring with

finite normalization R̃ and conductor ideal I. Show that R is K−1-regular,
and that K−n(R) = 0 for all n ≥ 2. If h0(R) denotes the rank of the free
abelian group H0(R) = [Spec(R),Z], show that K−1(R) ∼= LPic(R) ∼= Zr,
where r = h0(R)− h0(R̃) + h0(R̃/I)− h0(R/I).

Now suppose that R is any 1-dimensional commutative noetherian ring.
Even if its normalization is not finitely generated over R, show that R is K−1-
regular, and that K−n(R) = 0 for all n ≥ 2.

EIII.4.5 4.5. (Carter) Let f : R→ R′ be a ring homomorphism. In II.
II.2.10
2.10 we defined a

group K0(f) and showed in Ex.
EIII.1.14
1.14 that it fits into an exact sequence

K1(R)
f∗

−→ K1(R
′)→ K0(f)→ K0(R)

f∗

−→ K0(R
′).

Show that A 7→ K0(f⊗A) defines a functor on commutative rings A, and define
K−n(f) to be LnK0(f ⊗−). Show that each K−n(f) is an acyclic functor, and
that the above sequence continues into negative K-theory as:

· · · → K0(R)→ K0(R
′)

∂−→ K−1(f)→ K−1(R)→
K−1(R

′)
∂−→ K−2(f)→ K−2(R)→ · · ·

With the help of higher K-theory to define K1(f) and to construct the product
“·t”, it will follow that K0(f) and hence every K−n(f) is a contracted functor.

EIII.4.6 4.6. Let T : P(R) → P(R′) be any cofinal additive functor. Show that the
functor K0(T ) of II.

II.2.10
2.10 and its contractions K−n(T ) are acyclic, and that they

extend the sequence of Ex.
EIII.1.14
1.14 into a long exact sequence, as in the previous

exercise.
When T is the endofunctor ·m of

III.1.7.4
1.7.4, we write K0(R;Z/m) for LK0(·m)

and K−n(R;Z/m) for Ln+1K0(·m). Show that the sequence of
III.1.7.4
1.7.4 extends to

a long exact sequence

K0(R)
m−→ K0(R)→ K0(R;Z/m)→ K−1(R)

m→K−1(R)→ K−1(R;Z/m) · · · .

EIII.4.7 4.7. Let G be a finite group of order n, and let R̃ be a “maximal order” in Q[G].

It is well known that R̃ is a regular ring containing Z[G], and that I = nR̃ is
an ideal of Z[G]; see

Bass
[15, p. 560]. Show that K−nZ[G] = 0 for n ≥ 2, and that

K−1 has the following resolution by free abelian groups:

0→ Z→ H0(R̃)⊕H0(Z/n[G])→ H0(R̃/nR̃)→ K−1(Z[G])→ 0.

D. Carter has shown in
Carter
[39] that K−1Z[G] ∼= Zr ⊕ (Z/2Z)s, where s equals

the number of simple components Mni
(Di) of the semisimple ring Q[G] such

that the Schur index of D is even (see
III.1.2.4
1.2.4), but the Schur index of Dp is

odd at each prime p dividing n. In particular, if G is abelian then K−1Z[G] is
torsionfree (see

Bass
[15, p. 695]).
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EIII.4.8 4.8. Coordinate hyperplanes. Let R be a regular ring. By induction on n
and Ex.

EIII.2.6
2.6, show that the graded rings An = R[t0, . . . , tn]/(t0 · · · tn) are Ki-

regular for all i ≤ 1. Conclude that K1(An) = K1(R), K0(An) = K0(R) and
Ki(An) = 0 for all i < 0.

Show that the rings ∆n(R) of Example
III.4.3.1
4.3.1 are also K1-regular.

EIII.4.9 4.9. Let Λ be a flasque ring. Show that Λ[t, t−1] is also flasque, and conclude
that Kn(Λ) = 0 for all n ≤ 0.

EIII.4.10 4.10. (Karoubi) Recall from Ex.
EIII.1.15
1.15 that the suspension ring S(R) satisfies

∂ : K1(S(R)) ∼= K0(R). For each n ≥ 0, set K0S
n(R) = K0(S

n(R)). Show that
the functors {K ′n = K0S

−n} form a theory of negative K-theory for rings, and
conclude that Kn(R) ∼= K0(S

n(R)).

EIII.4.11 4.11. (Karoubi) Let f : A → B be an analytic isomorphism along S in the
sense of Ex.

EIII.3.10
3.10. Using Ex.

EIII.4.5
4.5, show that there is an exact sequence for all

n ≤ 0, continuing the sequence of Ex.
EIII.3.10
3.10:

· · · → Kn+1(S
−1A)⊕Kn+1(B)→ Kn+1(S

−1B)→
Kn(A)→ Kn(S

−1A)⊕Kn(B)→ Kn(S
−1B)→ · · · .

EIII.4.12 4.12. (Reid) Let f = y2 − x3 + x2 in k[x, y] and set B = k[x, y]/(f). Using
Theorem

III.4.3
4.3, show thatK−1(B) ∼= K−1(B(x,y)) ∼= Z. Let A be the subring k+m

of k[x, y], where m = fk[x, y]; show that K−2(A) ∼= K−2(Am) ∼= Z. Writing
the integrally closed ring A as the union of finitely generated normal subrings
k[f, xf, yf, ...], conclude that there is a 2-dimensional normal ring A0, finitely
generated over k, with K−2(A0) 6= 0.

EIII.4.13 4.13. (Reid) We saw in Example
III.4.4.3
4.4.3 that K−1(A) = 0 for every hensel local

ring. In this exercise we construct a complete local 2-dimensional ring with
K−2(Â) 6= 0. Let A be the ring of Exercise

EIII.4.12
4.12, and Â its completion at

the maximal ideal m. Let Âf denote the completion of A at the ideal Af .

Using Ex.
EIII.4.10
4.10, show that K−2(A) ∼= K−2(Âf ) ∼= K−2(Â), and hence that

K−2(Â) 6= 0.
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5 K2 of a ring

The group K2 of a ring was defined by J. Milnor in 1967, following a 1962 paper
by R. Steinberg on Universal Central Extensions of Chevalley groups. Milnor’s
1971 book

Milnor
[131] is still the best source for the fundamental theorems about it.

In this section we will give an introduction to the subject, but we will not prove
the harder theorems.

Following Steinberg, we define a group in terms of generators and rela-
tions designed to imitate the behavior of the elementary matrices, as described
in (

III.1.3.1
1.3.1). To avoid technical complications, we shall avoid any definition of

St2(R).

III.5.1 Definition 5.1. For n ≥ 3 the Steinberg group Stn(R) of a ring R is the group
defined by generators xij(r), with i, j a pair of distinct integers between 1 and
n and r ∈ R, subject to the following “Steinberg relations”

xij(r)xij(s) = xij(r + s) (5.1.2) III.5.1.1

[xij(r), xkℓ(s)] =





1 if j 6= k and i 6= ℓ

xiℓ(rs) if j = k and i 6= ℓ

xkj(−sr) if j 6= k and i = ℓ.

(5.1.3) III.5.1.2

As observed in (
III.1.3.1
1.3.1), the Steinberg relations are also satisfied by the ele-

mentary matrices eij(r) which generate the subgroup En(R) of GLn(R). Hence
there is a canonical group surjection φn : Stn(R) → En(R) sending xij(r) to
eij(r).

The Steinberg relations for n + 1 include the Steinberg relations for n, so
there is an obvious map Stn(R) → Stn+1(R). We write St(R) for lim−→Stn(R),
and observe that by stabilizing the φn induce a surjection φ : St(R)→ E(R).

III.5.2 Definition 5.2. The group K2(R) is the kernel of φ : St(R) → E(R). Thus
there is an exact sequence of groups

1→ K2(R)→ St(R)
φ−→ GL(R)→ K1(R)→ 1.

It will follow from Theorem
III.5.2.1
5.2.1 below that K2(R) is an abelian group. More-

over, it is clear that St and K2 are both covariant functors from rings to groups,
just as GL and K1 are.

III.5.2.1 Theorem 5.2.1. (Steinberg) K2(R) is an abelian group. In fact it is precisely
the center of St(R).

Proof. If x ∈ St(R) commutes with every element of St(R), then φ(x) must
commute with all of E(R). But the center of E(R) is trivial (by Ex.

EIII.1.8
1.8) so

φ(x) = 1, i.e., x ∈ K2(R). Thus the center of St(R) is contained in K2(R).
Conversely, suppose that y ∈ St(R) satisfies φ(y) = 1. Then in E(R) we

have
φ([y, p]) = φ(y)φ(p)φ(y)−1φ(p)−1 = φ(p)φ(p)−1 = 1
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for every p ∈ St(R). Choose an integer n large enough that y can be expressed
as a word in the symbols xij(r) with i, j < n. For each element p = xkn(s) with
k < n and s ∈ R, the Steinberg relations imply that the commutator [y, p] is
an element of the subgroup Pn of St(R) generated by the symbols xin(r) with
i < n. On the other hand, we know by Ex.

EIII.5.2
5.2 that φ maps Pn injectively into

E(R). Since φ([y, p]) = 1 this implies that [y, p] = 1. Hence y commutes with
every generator xkn(s) with k < n.

By symmetry, this proves that y also commutes with every generator xnk(s)
with k < n. Hence y commutes with all of Stn(R), since it commutes with
every xkl(s) = [xkn(s), xnl(1)] with k, l < n. Since n can be arbitrarily large,
this proves that y is in the center of St(R).

III.5.2.2 Example 5.2.2. The groupK2(Z) is cyclic of order 2. This calculation uses the
Euclidean algorithm to rewrite elements of St(Z), and is given in §10 of Milnor[131]. In

fact, Milnor proves that the symbol {−1,−1} =
{
x12(1)x21(−1)x12(1)

}4
is the

only nontrivial element of ker(φn) for all n ≥ 3. It is easy to see that {−1,−1} is
in the kernel of each φn, because the 2× 2 matrix e12(1)e21(−1)e12(1) =

(
0
−1

1
0

)

has order 4 in GLn(Z). We will see in Example
III.6.2.1
6.2.1 below that {−1,−1} is

still nonzero in K2(R).
Tate has used the same Euclidean algorithm type techniques to show that

K2(Z[
√
−7]) and K2(Z[

√
−15]) are also cyclic of order 2, generated by the sym-

bol {−1,−1}, while K2(R) = 1 for the imaginary quadratic rings R = Z[i],
Z[
√
−3], Z[

√
−2] and Z[

√
−11]. See the appendix to

BT
[21] for details.

III.5.2.3 Example 5.2.3. For every field F we have K2(F [t]) = K2(F ). This was orig-
inally proven by R.K. Dennis and J. Sylvester using the same Euclidean algo-
rithm type techniques as in the previous example. We shall not describe the
details, because we shall see in chapter V that K2(R[t]) = K2(R) for every
regular ring.

Universal Central Extensions

5.3. The Steinberg group St(R) can be described in terms of universal central
extensions, and the best exposition of this is in Milnor’s book

Milnor
[131, §5]. Properly

speaking, this is a subject in pure group theory; see
Suz
[192, 2.9]. However, since

extensions of a group G are classified by the cohomology group H2(G;Z), the
theory of universal central extensions is also a part of homological algebra; see
WHomo
[223, §6.9]. Here are the relevant definitions.

Let G be a group and A an abelian group. A central extension of G by A
is a short exact sequence of groups 1 → A → X

π−→ G → 1 such that A is in
the center of X. We say that a central extension is split if it is isomorphic to

an extension of the form 1→ A→ A×G pr−→ G→ 1, where pr(a, g) = g.
If A or π is clear from the context, we may omit it from the notation. For

example, 1→ K2(R)→ St(R)→ E(R)→ 1 is a central extension by Steinberg’s
Theorem

III.5.2.1
5.2.1, but we usually just say that St(R) is a central extension of E(R).

August 29, 2013 - Page 218 of
LastPage
568



Chapter III

Two extensions X and Y of G by A are said to be equivalent if there is
an isomorphism f : X → Y which is the identity on A and which induces the
identity map on G. It is well-known that the equivalence classes of central
extensions of G by a fixed group A are in 1–1 correspondence with the elements
of the cohomology group H2(G;A); see

WHomo
[223, §6.6].

More generally, by a homomorphism over G fromX
π−→ G to another central

extension 1 → B → Y
τ−→ G → 1 we mean a group map f : X → Y such that

π = τf .

III.5.3.1 Definition 5.3.1. A universal central extension of G is a central extension
X

π−→ G such that for every other central extension Y
τ−→ G there is a unique

homomorphism f over G from X to Y . Clearly a universal central extension is
unique up to isomorphism over G, provided it exists.

III.5.3.2 Lemma 5.3.2. If G has a universal central extension X
π−→ G, then both G

and X must be perfect groups.

Proof. Otherwise B = X/[X,X] is nontrivial, and there would be two homo-
morphisms over G from X to the central extension 1→ B → B ×G→ G→ 1,
namely the maps (0, π) and (pr, π), where pr : X → B is the natural projec-
tion.

III.5.3.3 Lemma 5.3.3. If X and Y are central extensions of G, and X is a perfect
group, there is at most one homomorphism over G from X to Y .

Proof. If f and f1 are two such homomorphisms, then for any x and x′ in X
we can write f1(x) = f(x)c, f1(x

′) = f(x′)c′ for elements c and c′ in the center
of Y . Therefore f1(xx

′x−1(x′)−1) = f(xx′x−1(x′)−1). Since the commutators
[x, x′] = xx′x−1(x′)−1 generate X we must have f1 = f .

III.5.3.4 Example 5.3.4. Every presentation of G gives rise to two natural central ex-
tensions as follows. A presentation corresponds to the choice of a free group
F mapping onto G, and a description of the kernel R ⊂ F . Since [R,F ] is a
normal subgroup of F , we may form the following central extensions:

1→ R/[R,F ]→ F/[R,F ]→ G→ 1,

1→ (R ∩ [F, F ])/[R,F ]→ [F, F ]/[R,F ]→ [G,G]→ 1. (5.3.5) III.5.3.5

The group (R ∩ [F, F ])/[R,F ] in (
III.5.3.5
5.3.5) is the homology group H2(G;Z); this

identity was discovered in 1941 by Hopf
WHomo
[223, 6.8.8]. If G = [G,G], then both are

extensions of G, and (
III.5.3.5
5.3.5) is the universal central extension by the following

theorem.

III.5.4 Recognition Theorem 5.4. Every perfect group G has a universal central ex-
tension, namely the extension (

III.5.3.5
5.3.5):

1→ H2(G;Z)→ [F, F ]/[R,F ]→ G→ 1.
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Let X be any central extension of G, the following are equivalent: (1) X is a
universal central extension; (2) X is perfect, and every central extension of X
splits; (3) H1(X;Z) = H2(X;Z) = 0.

Proof. Given any central extension X of G, the map F → G lifts to a map
h : F → X because F is free. Since h(R) is in the center of X, h([R,F ]) = 1.
Thus h induces a map from [F, F ]/[R,F ] to X over G. This map is unique
by Lemma

III.5.3.3
5.3.3. This proves that (

III.5.3.5
5.3.5) is a universal central extension, and

proves the equivalence of (1) and (3). The implication (1)⇒(2) is Lemma
III.5.3.2
5.3.2

and Ex.
EIII.5.7
5.7, and (2)⇒ (1) is immediate.

III.5.5 Theorem 5.5. (Kervaire, Steinberg) The Steinberg group St(R) is the univer-
sal central extension of E(R). Hence

K2(R) ∼= H2(E(R);Z).

This theorem follows immediately from the Recognition Theorem
III.5.4
5.4, and

the following splitting result:

III.5.5.1 Proposition 5.5.1. If n ≥ 5, every central extension Y
π−→ Stn(R) is split.

Hence Stn(R) is the universal central extension of En(R).

Proof. We first show that if j 6= k and l 6= i then every two elements y, z ∈ Y
with π(y) = xij(r) and π(z) = xkl(s) must commute in Y . Pick t distinct from
i, j, k, l and choose y′, y′′ ∈ Y with π(y′) = xit(1) and π(y′′) = xtj(r). The
Steinberg relations imply that both [y′, z] and [y′′, z] are in the center of Y , and
since π(y) = π([y′, y′′]) this implies that z commutes with [y′, y′′] and y.

We now choose distinct indices i, j, k, l and elements u, v, w ∈ Y with

π(u) = xij(1), π(v) = xjk(s) and π(w) = xkl(r).

If G denotes the subgroup of Y generated by u, v, w then its commutator sub-
group [G,G] is generated by elements mapping under π to xik(s), xjl(sr) or
xil(sr). From the first paragraph of this proof it follows that [u,w] = 1 and
that [G,G] is abelian. By Ex.

EIII.5.3
5.3 we have [[u, v], w] = [u, [v, w]]. Therefore if

π(y) = xik(s) and π(z) = xjl(sr) we have [y, w] = [u, z]. Taking s = 1, this
identity proves that the element

yil(r) = [u, z], where π(u) = xij(1), π(z) = xjl(r)

doesn’t depend upon the choice of j, nor upon the lifts u and z of xij(1) and
xjl(r).

We claim that the elements yij(r) satisfy the Steinberg relations, so that
there is a group homomorphism Stn(R) → Y sending xij(r) to yij(r). Such a
homomorphism will provide the desired splitting of the extension π. The first
paragraph of this proof implies that if j 6= k and l 6= i then yij(r) and ykl(s)
commute. The identity [y, w] = [u, z] above may be rewritten as

[yik(r), ykl(s)] = yil(rs) for i, k, l distinct.

The final relation yij(r)yij(s) = yij(r+ s) is a routine calculation with commu-
tators left to the reader.
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III.5.5.2 Remark 5.5.2 (Stability for K2). The kernel of Stn(R) → En(R) is written
as K2(n,R), and there are natural maps K2(n,R)→ K2(R). If R is noetherian
of dimension d, or more generally has sr(R) = d+1, then the following stability
result holds: K2(n,R) ∼= K2(R) for all n ≥ d + 3. This result evolved in the
mid-1970’s as a sequence of results by Dennis, Vaserstein, van der Kallen and
Suslin-Tulenbaev. We refer the reader to section 19C20 of Math Reviews for
more details.

Transfer maps on K2

Here is a description of K2(R) in terms of the translation category tP(R) of
finitely generated projective R-modules, analogous to the description given for
K1 in Corollary

III.1.6.3
1.6.3.

III.5.6 Proposition 5.6. (Bass) K2(R) ∼= lim−→P∈tP
H2([Aut(P ),Aut(P )];Z).

Proof. If G is a group, then G acts by conjugation upon [G,G] and hence upon
the homology H = H2([G,G];Z). Taking coinvariants, we obtain the functor H ′2
from groups to abelian groups defined by H ′2(G) = H0(G;H). By construction,
G acts trivially upon H ′2(G) and commutes with direct limits of groups.

Note that if G acts trivially upon H = H2([G,G];Z) then H ′2(G) = H. For
example, GL(R) acts trivially upon the homology of E(R) = [GL(R), GL(R)]
by Ex.

EIII.1.13
1.13. By Theorem

III.5.5
5.5 this implies that H ′2(GL(R)) = H2(E(R);Z) =

K2(R).
Since morphisms in the translation category tP(R) are well-defined up to

isomorphism, it follows that P 7→ H ′2(Aut(P )) is a well-defined functor from
tP(R) to abelian groups. Hence we can take the filtered colimit of this functor,
as we did in

III.1.6.3
1.6.3. Since the free modules are cofinal in tP(R), the result follows

from the identification of the colimit as

lim
n→∞

H ′2(GLn(R))
∼= H ′2(GL(R)) = K2(R).

III.5.6.1 Corollary 5.6.1 (Morita Invariance of K2). The group K2(R) is determined
by the category P(R). Thus, if R and S are Morita equivalent rings (see II.

II.2.7
2.7)

then K2(R) ∼= K2(S). In particular, there are isomorphisms on K2:

K2(R) ∼= K2(Mn(R)).

III.5.6.2 Corollary 5.6.2. Any additive functor T : P(S) → P(R) induces a natural
homomorphism K2(T ) : K2(S)→ K2(R), and T1⊕T2 induces the sum K2(T1)+
K2(T2).

Proof. The proof of
III.1.7
1.7 goes through, replacing H1(AutP ) by H

′
2(AutP ).

III.5.6.3 Corollary 5.6.3 (Transfer maps). Let f : R → S be a ring homomorphism
such that S is finitely generated projective as an R-module. Then the forgetful
functor P(S) → P(R) induces a natural transfer homomorphism f∗ : K2(S) →
K2(R).

August 29, 2013 - Page 221 of
LastPage
568



Chapter III

If R is commutative, so that K2(R) is a K0(R)-module by Ex.
EIII.5.4
5.4, the com-

position f∗f
∗ : K2(R) → K2(S) → K2(R) is multiplication by [S] ∈ K0(R). In

particular, if S is free of rank n, then f∗f
∗ is multiplication by n.

Proof. The composite f∗f
∗ is obtained from the self-map T (P ) = P ⊗R S of

P(S). It induces the self-map ⊗RS on tP(R) giving rise to multiplication by
[S] on K2(R) in Ex.

EIII.5.5
5.5.

We will see in chapter V that we can also define a transfer map K2(S) →
K2(R) when S is a finite R-algebra of finite projective dimension over R.

III.5.6.4 Example 5.6.4. Let D be a division algebra of dimension d = n2 over its
center F . As in Example

III.1.7.2
1.7.2, the transfer i∗ : K2(D)→ K2(F ) has a kernel of

exponent n2, since i∗i∗ is induced by the functor T (M) =M⊗D (D⊗FD) ∼=Md

and hence is multiplication by n2.
If E is a splitting field for D, the construction of Ex.

EIII.1.17
1.17 yields a natural

map θE : K2(E)→ K2(D). If n is squarefree, Merkurjev and Suslin constructed
a reduced norm Nred : K2(D)→ K2(F ) such that NredθE = NE/F ; see

MS
[125]. If

K2(F ) → K2(E) is injective, it is induced by the norm map K2(D) → K2(E),
as in

III.1.2.4
1.2.4.

Relative K2 and relative Steinberg groups

Given an ideal I in a ring R, we may construct the augmented ring R⊕ I, with
multiplication (r, x)(s, y) = (rs, ry + xs + xy). This ring is equipped with two
natural maps pr, add : R⊕ I → R, defined by pr(r, x) = r and add(r, x) = r+x.
This “double” ring was used to define the relative group K0(I) in Ex. II.

EII.2.3
2.3.

Let St′(R, I) denote the normal subgroup of St(R ⊕ I) generated by all
xij(0, v) with v ∈ I. Clearly there is a map from St′(R, I) to the subgroup
E(R⊕ I, 0⊕ I) of GL(R⊕ I) (see Lemma

III.2.1
2.1), and an exact sequence

1→ St′(R, I)→ St(R⊕ I) pr−→ St(R)→ 1.

The following definition is taken from
Keu78
[103] and

Lo78
[115], and modifies

Milnor
[131].

III.5.7 Definition 5.7. The relative Steinberg group St(R, I) is defined to be the quo-
tient of St′(R, I) by the normal subgroup generated by all “cross-commutators”
[xij(0, u), xkl(v,−v)] with u, v ∈ I.

The homomorphism St(R⊕ I) add−→ St(R) sends these cross-commutators to

1, so it induces a homomorphism St(R, I)
add−→ St(R) whose image is the normal

subgroup generated by the xij(v), v ∈ I. By the definition of E(R, I), the
surjection St(R) → E(R) maps St(R, I) onto E(R, I). We define K2(R, I) to
be the kernel of the map St(R, I)→ E(R, I).
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III.5.7.1 Theorem 5.7.1. If I is an ideal of a ring R, then the exact sequence of Propo-
sition

III.2.3
2.3 extends to an exact sequence

K2(R, I)→ K2(R)→ K2(R/I)→ K1(R, I)→ K1(R)→ K1(R/I)→ K0(I) · · ·

Proof. We have a commutative diagram with exact rows:

K2(R, I) > St(R, I) > GL(I) > K1(R, I)

K2(R)
∨

> St(R)

add
∨

> GL(R)

into
∨

> K1(R)
∨

K2(R/I)
∨

> St(R/I)

onto
∨

> GL(R/I)
∨

> K1(R/I)
∨

The exact sequence now follows from the Snake Lemma and Ex.
EIII.5.1
5.1.

If I and J are ideals in a ring R with I ∩ J = 0, we may also consider I as
an ideal of R/J . As in §1, these rings form a Milnor square:

R > R/J

R/I
∨

> R/(I + J).
∨

III.5.8 Theorem 5.8 (Mayer-Vietoris). If I and J are ideals of R with I∩J = 0, then
the Mayer-Vietoris sequence of Theorem

III.2.6
2.6 can be extended to K2:

K2(R)
∆−→ K2(R/I)⊕K2(R/J)

±−→ K2(R/I + J)
∂−→

K1(R)
∆−→ K1(R/I)⊕K1(R/J)

±−→ K1(R/I + J)
∂−→ K0(R) −→ · · ·

Proof. Set S = R/J . By Ex.
EIII.5.10
5.10, we have the following commutative diagram:

K2(R, I) > K2(R) > K2(R/I) > K1(R, I) > K1(R) > K1(R/I)

K2(S, I)

onto∨∨
> K2(S)

∨
> K2(S/I)

∨
> K1(S, I)

wwwwww
> K1(S)

∨
> K1(S/I)

∨

By chasing this diagram, we obtain the exact Mayer-Vietoris sequence.
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Commutative Banach Algebras

Let R be a commutative Banach algebra over the real or complex numbers. Just
as SK1(R) = π0SL(R) and K1(R) surjects onto π0GL(R) (by

III.1.5
1.5 and

III.1.5.1
1.5.1),

there is a relation between K2(R) and π1GL(R).

III.5.9 Proposition 5.9. Let R be a commutative Banach algebra. Then there is a
surjection from K2(R) onto π1SL(R) = π1E(R).

Proof. (
Milnor
[131, p. 59]) By Proposition

III.1.5
1.5, we know that En(R) is the path com-

ponent of the identity in the topological group SLn(R), so π1SL(R) = π1E(R).
Using the exponential mapMn(R)→ GLn(R), we see that En(R) is locally con-

tractible, so it has a universal covering space Ẽn. The group map Ẽn → En(R)
is a central extension with kernel π1En(R). Taking the direct limit as n→∞,

we get a central extension 1 → π1E(R) → Ẽ → E(R) → 1. By universality,

there is a unique homomorphism φ̃ : St(R)→ Ẽ over E(R), and hence a unique
map K2(R)→ π1E(R). Thus it suffices to show that φ̃ is onto.

The map φ̃ may be constructed explicitly as follows. Let ẽij(r) ∈ Ẽ be the
endpoint of the path which starts at 1 and lifts the path t 7→ eij(tr) in E(R).

We claim that the map φ̃ sends xij(r) to ẽij(r). To see this, it suffices to show
that the Steinberg relations (

III.5.1
5.1) are satisfied. But the paths ẽij(tr)ẽij(ts) and

[ẽij(tr), ẽkl(s)] cover the two paths eij(tr)eij(s) and [eij(tr), ekl(s)] in E(R).
Evaluating at t = 1 yields the Steinberg relations.

By Proposition
III.1.5
1.5 there is a neighborhood Un of 1 in SLn(R) in which we

may express every matrix g as a product of elementary matrices eij(r), where
r depends continuously upon g. Replacing each eij(r) with ẽij(r) defines a

continuous lifting of Un to Ẽn. Therefore the image of each map φ̃ : Stn(R)→
Ẽn contains a neighborhood Ũn of 1. Since any open subset of a connected group
(such as Ẽn) generates the entire group, this proves that each φ̃n is surjective.

Passing to the limit as n→∞, we see that φ̃ : St(R)→ Ẽ is also surjective.

III.5.9.1 Example 5.9.1. If R = R then π1SL(R) ∼= π1SO is cyclic of order 2. It follows
that K2(R) has at least one nontrivial element. In fact, the symbol {−1,−1}
of Example

III.5.2.2
5.2.2 maps to the nonzero element of π1SO. We will see in

III.6.8.3
6.8.3

below that the kernel of K2(R) → π1SO is a uniquely divisible abelian group
with uncountably many elements.

III.5.9.2 Example 5.9.2. Let X be a compact space with a nondegenerate basepoint.
By Ex. II.

EII.3.11
3.11, we have KO−2(X) ∼= [X,ΩSO] = π1SL(RX), so K2(RX) maps

onto the group KO−2(X).
Similarly, since ΩU ≃ Z × ΩSU , we see by Ex. II.

EII.3.11
3.11 that KU−2(X) ∼=

[X,ΩU ] = [X,Z] × [X,ΩSU ]. Since π1SL(CX) = π1(SU
X) = [X,ΩSU ] and

[X,Z] is a subgroup of CX , we can combine Proposition
III.5.9
5.9 with Example

III.1.5.3
1.5.3

to obtain the exact sequence

K2(C
X)→ KU−2(X)→ CX

exp−→ K1(C
X)→ KU−1(X)→ 0.
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Steinberg symbols

If two matrices A,B ∈ E(R) commute, we can construct an element in K2(R)
by lifting their commutator to St(R). To do this, choose a, b ∈ St(R) with
φ(a) = A, φ(b) = B and define

A⋆B = [a, b] ∈ K2(R).

This definition is independent of the choice of a and b because any other lift will
equal ac, bc′ for central elements c, c′, and [ac, bc′] = [a, b].

If P ∈ GL(R) then (PAP−1)⋆(PBP−1) = A⋆B. To see this, suppose that
A,B, P ∈ GLn(R) and let g ∈ St2n(R) be a lift of the block diagonal matrix
D = diag(P, P−1). Since gag−1 and gbg−1 lift PAP−1 and PBP−1 and [a, b] is
central we have the desired relation: [gag−1, gbg−1] = g[a, b]g−1 = [a, b].

The ⋆ symbol is also skew-symmetric and bilinear: (A⋆B)(B⋆A) = 1
and (A1A2)⋆B = (A1⋆B)(A2⋆B). These relations are immediate from the
commutator identies [a, b][b, a] = 1 and [a1a2, b] = [a1, [a2, b]][a2, b][a1, b].

III.5.10 Definition 5.10. If r, s are commuting units in a ring R, we define the Stein-
berg symbol {r, s} ∈ K2(R) to be

{r, s} =



r

r−1

1


⋆



s

1
s−1


 =



r

1
r−1


⋆



s

s−1

1


 .

Because the⋆ symbols are skew-symmetric and bilinear, so are the Steinberg
symbols: {r, s}{s, r} = 1 and {r1r2, s} = {r1, s}{r2, s}.

III.5.10.1 Example 5.10.1. For any unit r of R we set wij(r) = xij(r)xji(−r−1)xij(r)
and hij(r) = wij(r)wij(−1). In GL(R), φwij(r) is the monomial matrix with
r and −r−1 in the (i, j) and (j, i) places, while φhij(r) is the diagonal matrix
with r and r−1 in the ith and jth diagonal spots. By definition we then have:

{r, s} = [h12(r), h13(s)] = [hij(r), hik(s)].

III.5.10.2 Lemma 5.10.2. If both r and 1− r are units of R, then in K2(R) we have:

{r, 1− r} = 1 and {r,−r} = 1.

Proof. By Ex.
EIII.5.8
5.8, w12(−1) = w21(1) = x21(1)x12(−1)x21(1), w12(r)x21(1) =

x12(−r2)w12(r) and x21(1)w12(s) = w12(s)x12(−s2). If s = 1 − r we can suc-
cessively use the identities r − r2 = rs, r + s = 1, s − s2 = rs and 1

r +
1
s = 1

rs
to obtain:

w12(r)w12(−1)w12(s) = x12(−r2)w12(r)x12(−1) w12(s)x12(−s2)
= x12(rs)x21(−r−1)x12(0)x21(−s−1)x12(rs)

= x12(rs)x21
(−1
rs

)
x12(rs)

= w12(rs).
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Multiplying by w12(−1) yields h12(r)h12(s) = h12(rs) when r + s = 1. By
Ex.

EIII.5.9
5.9, this yields the first equation {r, s} = 1. Since −r = (1− r)/(1− r−1),

the first equation implies

{r,−r} = {r, 1− r}{r, 1− r−1}−1 = {r−1, 1− r−1} = 1, (5.10.3) III.5.10.3

which is the second equation.

III.5.10.4 Remark 5.10.4. The equation {r,−r} = 1 holds more generally for every unit
r, even if 1− r is not a unit. This follows from the fact that K2(Z[r,

1
r ]) injects

into K2(Z[r,
1
r ,

1
1−r ]), a fact we shall establish in chapter V,

V.6.1.3
6.1.3. For a direct

proof, see
Milnor
[131, 9.8].

The following useful result was proven for fields and division rings in §9 of
Milnor
[131]. It was extended to commutative semilocal rings by Dennis and Stein

DS
[48],

and we cite it here for completeness.

III.5.10.5 Theorem 5.10.5. If R is a field, division ring, local ring, or even a semilocal
ring, then K2(R) is generated by the Steinberg symbols {r, s}.

III.5.11 Definition 5.11 (Dennis-Stein symbols). If r, s ∈ R commute and 1 − rs is a
unit then the element

〈r, s〉 = xji
(
−s(1− rs)−1

)
xij(−r)xji(s)xij

(
(1− rs)−1r

)
hij(1− rs)−1

of St(R) belongs to K2(R), because φ〈r, s〉 = 1. By Ex.
EIII.5.11
5.11, it is independent

of the choice of i 6= j, and if r is a unit of R then 〈r, s〉 = {r, 1− rs}. If I is an
ideal of R and s ∈ I then we can even consider 〈r, s〉 as an element of K2(R, I);
see

III.5.7
5.7. These elements are called Dennis-Stein symbols because they were first

studied in
DS
[48], where the following identities were established.

(D1) 〈r, s〉〈s, r〉 = 1

(D2) 〈r, s〉〈r, t〉 = 〈r, s+ t− rst〉

(D3) 〈r, st〉 = 〈rs, t〉〈tr, s〉 (this holds in K2(R, I) if any of r, s, or t are in I.)

We warn the reader that the meaning of the symbol 〈r, s〉 changed circa
1980. We use the modern definition of this symbol, which equals 〈−r, s〉−1 in
the old literature, including that of loc. cit. By (D3) of our definition, 〈r, 1〉=0
for all r.

The following result is essentially due to Maazen, Stienstra and van der
Kallen. However, their work preceded the correct definition of K2(R, I) so the
correct historical reference is

Keu78
[103].

III.5.11.1 Theorem 5.11.1. (a) Let R be a commutative local ring, or a field. Then
K2(R) may be presented as the abelian group generated by the symbols 〈r, s〉
with r, s ∈ R such that 1− rs is a unit, subject only to the relations (D1), (D2)
and (D3).
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(b) Let I be a radical ideal, contained in a commutative ring R. Then
K2(R, I) may be presented as the abelian group generated by the symbols 〈r, s〉
with either r ∈ R and s ∈ I, or else r ∈ I and s ∈ R. These generators are
subject only to the relations (D1), (D2), and the relation (D3) whenever r, s,
or t is in I.

The product K1(R)⊗K1(R)→ K2(R)

Let R be a commutative ring, and suppose given two invertible matrices g ∈
GLm(R), h ∈ GLn(R). Identifying the tensor product Rm ⊗ Rn with Rm+n,
then g⊗ 1n and 1m⊗ h are commuting automorphisms of Rm⊗Rn. Hence there
is a ring homomorphism from A = Z[x, x−1, y, y−1] to E = EndR(R

m ⊗ Rn) ∼=
Mm+n(R) sending x and y to g ⊗ 1n and 1m ⊗ h. Recall that by Morita
Invariance

III.5.6
5.6.1 the natural map K2(R)→ K2(E) is an isomorphism.

III.5.12 Definition 5.12. The element {g, h} of K2(R) is defined to be the image of the
Steinberg symbol {x, y} under the homomorphism K2(A)→ K2(E) ∼= K2(R).

Note that if m = n = 1 this agrees with the definition of the usual Steinberg
symbol in

III.5.10
5.10, because R = E.

III.5.12.1 Lemma 5.12.1. The symbol {g, h} is independent of the choice of m and n,
and is skew-symmetric. Moreover, for each α ∈ GLm(R) we have {g, h} =
{αgα−1, h}.

Proof. If we embed GLm(R) and GLn(R) in GLm′(R) and GLn′(R), respec-
tively, then we embed E into the larger ring E′ = EndR(R

m′ ⊗ Rn′

), which is
also Morita equivalent to R. Since the natural mapsK2(R)→ K2(E)→ K2(E

′)
are isomorphisms, and K2(A)→ K2(E)→ K2(E

′) ∼= K2(R) defines the symbol
with respect to the larger embedding, the symbol is independent of m and n.

Any linear automorphism of Rm+n induces an inner automorphism of E.
Since the composition of R → E with such an automorphism is still R → E,
the symbol {g, h} is unchanged by such an operation. Applying this to α⊗ 1n,
the map A→ E → E sends x and y to αgα−1⊗ 1n and 1m⊗ h, so {g, h} must
equal {αgα−1, h}.

As another application, note that if m = n the inner automorphism of E
induced by Rm ⊗ Rn ∼= Rn ⊗ Rm sends {h, g} to the image of {y, x} under
K2(A)→ K2(E). This proves skew-symmetry, since {y, x} = {x, y}−1.

III.5.12.2 Theorem 5.12.2. For every commutative ring R, there is a skew-symmetric
bilinear pairing K1(R)⊗K1(R)→ K2(R) induced by the symbol {g, h}.

Proof. We first show that the symbol is bimultiplicative when g and g′ commute
in GLm(R). Mapping A[z, z−1] into E by z 7→ g′ ⊗ 1n allows us to deduce
{gg′, h} = {g, h}{g′, h} from the corresponding property of Steinberg symbols.
If g and g′ do not commute, the following trick establishes bimultiplicativity:

{gg′, h} =
{(

g

0

0

1

)(
1

0

0

g′

)
, h

}
=

{(
g

0

0

1

)
, h

}{(
1

0

0

g′

)
, h

}
= {g, h}{g′, h}.
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If either g or h is a commutator, this implies that the symbol {g, h} vanishes in
the abelian group K2(R). Since the symbol {g, h} is compatible with stabiliza-
tion, it describes a function K1(R) × K1(R) → K2(R) which is multiplicative
in each entry: {gg′, h} = {g, h}{g′, h}. If we write K1 and K2 additively the
function is additive in each entry, i.e., bilinear.

EXERCISES

EIII.5.1 5.1. Relative Steinberg groups. Let I be an ideal in a ring R. Show that there

is an exact sequence St(R, I)
add−→ St(R)→ St(R/I)→ 1.

EIII.5.2 5.2. Consider the function ρn : R
n−1 → Stn(R) sending (r1, ..., rn−1) to the

product x1n(r1)x2n(r2) · · ·xn−1,n(rn−1). The Steinberg relations show that this
is a group homomorphism.

Show that ρ is an injection by showing that the composite φρ : Rn−1 →
Stn(R) → GLn(R) is an injection. Then show that the elements xij(r)
with i, j < n normalize the subgroup Pn = ρ(Rn) of Stn(R), i.e., that
xij(r)Pnxij(−r) = Pn.

Use this and induction to show that the subgroup Tn of Stn(R) generated by
the xij(r) with i < j maps isomorphically onto the subgroup of lower triangular
matrices in GLn(R).

EIII.5.3 5.3. Let G be a group whose commutator group [G,G] is abelian. Prove that
the Jacobi identity holds for every u, v, w ∈ G:

[u, [v, w]][v, [w, u]][w, [u, v]] = 1.

If in addition [u,w] = 1 this implies that [[u, v], w] = [u, [v, w]].

EIII.5.4 5.4. Product with K0. Construct a product operationK0(R)⊗K2(A)→ K2(A),
assuming that R is commutative and A is an associative R-algebra. To do this,
fix a finitely generated projective R-module P . Each isomorphism P ⊕Q = Rn

gives rise to a homomorphism hP : GLm(A)→ GLmn(A) ⊂ GL(A) sending α to
α⊗1 and Em(A) to E(A). Show that hP is well-defined up to conjugation by an
element of E(A). Since conjugation acts trivially on homology, this implies that
the induced map hP ∗ : H2(Em(A);Z) → H2(E(A);Z) = K2(A) is well-defined.
Then show that hP⊕Q∗ = hP ∗⊕hQ∗ and pass to the limit as m→∞ to obtain
the required endomorphism [P ]· of K2(A).

EIII.5.5 5.5. If R is commutative and P ∈ P(R), show that Q 7→ Q ⊗R P defines a
functor from the translation category tP(A) to itself for every R-algebra A, and
that the resulting endomorphism of K2(A) = lim−→H2([Aut(Q),Aut(Q)]) is the

map hP∗ of the previous exercise. Use this description to show that the product
makes K2(A) into a module over the ring K0(R).
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EIII.5.6 5.6. Projection Formula. Suppose that f : R → S is a finite map of commu-
tative rings, with S ∈ P(R). Show that for all r ∈ Ki(R) and s ∈ Kj(S) with
i+ j = 2 we have f∗(f

∗(r) · s) = r · f∗(s) in K2(R). The case i = 0 states that
the transfer f∗ : K2(S) → K2(R) is K0(R)-linear, while the case i = 1 yields
the useful formula f∗{r, s} = {r,Ns} for Steinberg symbols in K2(R), where
r ∈ R×, s ∈ S× and Ns = f∗(s) ∈ R× is the norm of s.

EIII.5.7 5.7. If Y
ρ−→ X and X

π−→ G are central extensions, show that the “composi-

tion” Y
πρ−→ G is also a central extension. If X is a universal central extension

of G, conclude that every central extension Y
ρ−→ X splits.

EIII.5.8 5.8. Show that the following identities hold in St(R) (for i, j and k distinct).
(a) wij(r)wij(−r) = 1;
(b) wik(r)xij(s)wik(−r) = xkj(−r−1s);
(c) wij(r)xij(s)wij(−r) = xji(−r−1sr−1);
(d) wij(r)xji(s)wij(−r) = xij(−rsr);
(e) wij(r)wji(r

−1) = 1;

EIII.5.9 5.9. Use the previous exercise to show that {r, s} = hij(rs)hij(s)
−1hij(r)

−1.
Hint: Conjugate hij(s) by wik(r)wik(−1).

EIII.5.10 5.10. Excision. If I and J are ideals in a ring R with I ∩ J = 0, we may also
consider I as an ideal of R/J . Show that St(R, I) surjects onto St(R/J, I), while
the subgroups E(R, I) and E(R/J, I) of GL(I) are equal. Use the 5-lemma to
conclude that K1(R, I) ∼= K1(R/J, I) and that K2(R, I)→ K2(R/J, I) is onto.

In fact, the sequence I/I2 ⊗R⊗R J/J2 → K2(R, I) → K2(R/J, I) → 0 is
exact, where the first map sends x⊗ y to 〈x, y〉; see Swan71

[195].

EIII.5.11 5.11. Dennis-Stein symbols. Let 〈r, s〉ij denote the element of St(R) given in
Definition

III.5.11
5.11. Show that this element is in K2(R). Then use Ex.

EIII.5.8
5.8 to show

that if w = wik(1)wjℓ(1)w
2
kℓ(1) (so that φ(w) is the permutation matrix sending

i, j to k, ℓ) then w 〈r, s〉ij w−1 = 〈r, s〉kℓ. This shows that the Dennis-Stein
symbol is independent of the choice of indices i, j.

EIII.5.12 5.12. Let A be an abelian group and F a field. Show that, for all n ≥ 5,
homomorphismsK2(F )

c−→ A are in 1–1 correspondence with central extensions
of SLn(F ) having kernel A.

EIII.5.13 5.13. If p is an odd prime, use Theorem
III.5.11.1
5.11.1 to show that K2(Z/pn) = 1. If

n ≥ 2, show that K2(Z/2n)∼= K2(Z/4) ∼={±1} on {−1,−1} =〈−1,−2〉 =〈2, 2〉.
Using the Mayer-Vietoris sequence

III.5.8
5.8, conclude that K1(R) = R× = {±1}

for the ring R = Z[x]/(x2 − p2n). Note that R/(x± pn)R = Z.

EIII.5.14 5.14. Let R be a commutative ring, and let Ω1
R denote the module of Kähler

differentials of R over Z, as in Ex.
EIII.2.6
2.6.

(a) If I is a radical ideal of R, show that there is a surjection from K2(R, I)
onto I ⊗R Ω1

R/I , sending 〈x, r〉 to x⊗ dr (r ∈ R, x ∈ I).
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(b) If I2 = 0, show that the kernel of the map in (a) is generated by the
Dennis-Stein symbols 〈x, y〉 with x, y ∈ I.

(c) (Van der Kallen) The dual numbers over R is the ring R[ε] with ε2 = 0. If
1
2 ∈ R, show that the mapK2(R[ε], ε)→ Ω1

R of part (a) is an isomorphism.

(d) Let k be a field. Show that the group K2(k[[t]], t) is ℓ-divisible for every ℓ
invertible in k. If char(K) = p > 0, show that this group is not p-divisible.

EIII.5.15 5.15. Assume the fact that Z/2 is K2-regular (see
III.3.4
3.4 and chapter V). Show

that:

(a) K2(Z/4[x]) is an elementary abelian 2-group with basis 〈2, 2〉, 〈2xn, x〉,
and 〈2x2n+1, 2〉, n ≥ 0. Hint: Split the map K2(A, 2) → Ω1

A/2
∼= Z/2[x]

of Ex.
EIII.5.14
5.14 and use 0 = 〈2f, 1〉 = 〈2(f + f2), 2〉.

(b) The groupK2(Z/4[x, y]) is an elementary abelian 2-group with basis 〈2, 2〉,
〈2xmyn, x〉, 〈2xmyn, y〉 (m,n ≥ 0) and 〈2xmyn, x〉 (one of m,n odd).

(c) Consider the maps ∂1 : NK2(Z/4) → K2(Z/4) and ∂2 : N2K2(Z/4) →
NK2(Z/4) induced by the map Z/4[x] → Z/4 sending x to 1, and the
map Z/4[x, y] → Z/4[x] sending y to 1 − x, respectively. Show that the
following sequence is exact:

N2K2(Z/4)
∂2−→ NK2(Z/4)

∂1−→ K2(Z/4)→ 0.
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6 K2 of fields

The following theorem was proven by Hideya Matsumoto in 1969. We refer
the reader to Milnor

Milnor
[131, §12] for a self-contained proof.

III.6.1 Matsumoto’s Theorem 6.1. If F is a field then K2(F ) is the abelian group
generated by the set of Steinberg symbols {x, y} with x, y ∈ F×, subject only to
the relations:

(Bilinearity) {xx′, y} = {x, y}{x′, y} and {x, yy′} = {x, y}{x, y′};
(Steinberg Identity) {x, 1− x} = 1 for all x 6= 0, 1.

In other words, K2(F ) is the quotient of F
×⊗F× by the subgroup generated

by the elements x ⊗ (1 − x). Note that the calculation (
III.5.10.3
5.10.3) implies that

{x,−x} = 1 for all x, and this implies that the Steinberg symbols are skew-
symmetric: {x, y}{y, x} = {x,−xy}{y,−xy} = {xy,−xy} = 1.

III.6.1.1 Corollary 6.1.1. K2(Fq) = 1 for every finite field Fq.

Proof. If x generates the cyclic group F×q , we must show that the generator x⊗x
of the cyclic group F×q ⊗F×q vanishes in K2. If q is even, then {x, x} = {x,−x} =
1, so we may suppose that q is odd. Since {x, x}2 = 1 by skew-symmetry, we
have {x, x} = {x, x}mn = {xm, xn} for every odd m and n. Since odd powers of
x are the same as non-squares, it suffices to find a non-square u such that 1− u
is also a non-square. But such a u exists because u 7→ (1 − u) is an involution
on the set Fq − {0, 1}, and this set consists of (q − 1)/2 non-squares but only
(q − 3)/2 squares.

III.6.1.2 Example 6.1.2. Let F (t) be a rational function field in one variable t over F .
Then K2(F ) is a direct summand of K2F (t).

To see this, we construct a map λ : K2F (t)→ K2(F ) inverse to the natural
map K2(F )→ K2F (t). To this end, we define the leading coefficient of the ra-
tional function f(t) = (a0t

n+ · · ·+ an)/(b0t
m+ · · ·+ bm) to be lead(f) = a0/b0

and set λ({f, g}) = {lead(f), lead(g)}. To see that this defines a homomorphism
K2F (t) → K2(F ), we check the presentation in Matsumoto’s Theorem. Bilin-
earity is clear from lead(f1f2) = lead(f1) lead(f2), and {lead(f), lead(1−f)} = 1
holds inK2(F ) because lead(1−f) is either 1, 1−lead(f) or − lead(f), according
to whether m > n, m = n or m < n.

Because K2 commutes with filtered colimits, it follows that K2(F ) injects
into K2F (T ) for every purely transcendental extension F (T ) of F .

III.6.1.3 Lemma 6.1.3. For every field extension F ⊂ E, the kernel of K2(F )→ K2(E)
is a torsion subgroup.

Proof. E is an algebraic extension of some purely transcendental extension
F (X) of F , and K2(F ) injects into K2F (X) by Example

III.6.1.2
6.1.2. Thus we may

assume that E is algebraic over F . Since E is the filtered union of finite exten-
sions, we may even assume that E/F is a finite field extension. But in this case
the result holds because (by

III.5.6.3
5.6.3) the composite K2(F )→ K2(E)→ K2(F ) is

multiplication by the integer [E : F ].
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The next result is useful for manipulations with symbols.

III.6.1.4 Lemma 6.1.4. (Bass-Tate) If E = F (u) is a field extension of F , then every
symbol of the form {b1u − a1, b2u − a2} (ai, bi ∈ F ) is a product of symbols
{ci, di} and {ci, u− di} with ci, di ∈ F .

Proof. Bilinearity allows us to assume that b1 = b2 = 1. Set x = u − a1,
y = u − a2 and a = a2 − a1, so x = a + y. Then 1 = a

x + y
x yields the relation

1 = {ax ,
y
x}. Using {x, x} = {−1, x}, this expands to the desired expression:

{x, y} = {a, y}{−1, x}{a−1, x}.

Together with the Projection Formula (Ex.
EIII.5.6
5.6), this yields:

III.6.1.5 Corollary 6.1.5. If E = F (u) is a quadratic field extension of F , then K2(E)
is generated by elements coming from K2(F ), together with elements of the
form {c, u − d}. Thus the transfer map NE/F : K2(E) → K2(F ) is completely
determined by the formulas

NE/F {c, d} = {c, d}2, NE/F {c, u− d} = {c,N(u− d)} (c, d ∈ F ).

III.6.1.6 Example 6.1.6. Since C is a quadratic extension of R, every element of K2(C)
is a product of symbols {r, s} and {r, eiθ} with r, s, θ ∈ R. Moreover, N{r, eiθ} =
1 inK2(R). Under the automorphism ofK2(C) induced by complex conjugation,
the symbols of the first kind are fixed and the symbols of the second kind are
sent to their inverses. We will see in Theorem

III.6.4
6.4 below that K2(C) is uniquely

divisible, i.e., a vector space over Q, and the decomposition of K2(C) into
eigenspaces for ±1 corresponds to symbols of the first and second kind.

III.6.1.7 Example 6.1.7. Let F be an algebraically closed field. By Lemma
III.6.1.4
6.1.4,

K2F (t) is generated by linear symbols of the form {a, b} and {t − a, b}. It
will follow from

III.6.5.2
6.5.2 below that every element u of K2F (t) uniquely deter-

mines finitely many elements ai ∈ F , bi ∈ F× so that u = λ(u)
∏{t − ai, bi},

where λ(u) ∈ K2(F ) was described in Example
III.6.1.2
6.1.2.

Steinberg symbols

III.6.2 Definition 6.2. A Steinberg symbol on a field F with values in a multiplicative
abelian group A is a bilinear map c : F×⊗F× → A satisfying c(r, 1−r) = 1. By
Matsumoto’s Theorem, these are in 1–1 correspondence with homomorphisms
K2(F )

c−→ A.

III.6.2.1 Example 6.2.1. There is a Steinberg symbol (x, y)∞ on the field R with values
in the group {±1}. Define (x, y)∞ to be: −1 if both x and y are negative, and
+1 otherwise. The Steinberg identity (x, 1 − x)∞ = +1 holds because x and
1− x cannot be negative at the same time. The resulting map K2(R)→ {±1}
is onto because (−1,−1)∞ = −1. This shows that the symbol {−1,−1} in
K2(Z) is nontrivial, as promised in

III.5.2.2
5.2.2, and even shows that K2(Z) is a direct

summand in K2(R).
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For our next two examples, recall that a local field is a field F which is
complete under a discrete valuation v, and whose residue field kv is finite.
Classically, every local field is either a finite extension of the p-adic rationals Q̂p
or of Fp((t)).

III.6.2.2 Example 6.2.2 (Hilbert symbols). Let F be a local field containing 1
2 . The

Hilbert (quadratic residue) symbol on F is defined by setting cF (r, s) ∈ {±1}
equal to +1 or −1, depending on whether or not the equation rx2 + sy2 = 1
has a solution in F . Bilinearity is classical when F is local; see

OMeara
[147, p. 164].

The Steinberg identity is trivial, because x = y = 1 is always a solution when
r + s = 1.

Of course, the definition of cF (r, s) makes sense for any field of characteristic
6= 2, but it will not always be a Steinberg symbol because it can fail to be bilinear
in r. It is a Steinberg symbol when F = R, because the Hilbert symbol cR(r, s)
is the same as the symbol (r, s)∞ of the previous example.

III.6.2.3 Example 6.2.3 (norm residue symbols). The roots of unity in a local field F
form a finite cyclic group µ, equal to the group µm of all mth roots of unity for
some integer m with 1

m ∈ F . The classical mth power norm residue symbol is a
map K2(F )→ µm defined as follows (see

S-LF
[167] for more details).

Because F×m has finite index in F×, there is a finite “Kummer” extension
K containing the mth roots of every element of F . The Galois group GF =
Gal(K/F ) is canonically isomorphic to Hom(F×, µm), with the automorphism
g of K corresponding to the homomorphism ζ : F× → µm sending a ∈ F×

to ζ(a) = g(x)/x, where xm = a. In addition, the cokernel of the norm map

K×
N−→ F× is isomorphic to GF by the “norm residue” isomorphism of local

class field theory. The composite F× −→ F×/NK× ∼= GF ∼= Hom(F×, µm),
written as x 7→ (x,−)F , is adjoint to a nondegenerate bilinear map ( , )F : F×⊗
F× → µm.

The Steinberg identity (a, 1 − a)F = 1 is proven by noting that (1 − a)
is a norm from the intermediate field E = F (x), xm = a. Since GE ⊂ GF
corresponds to the norm map E×/NK/EK

× →֒ F×/NK/FK
×, the element g

of GF = Gal(K/F ) corresponding to the map ζ(a) = (a, 1 − a)F from F× to
µm must belong to GE , i.e., ζ must extend to a map E× → µm. But then
(a, 1− a)F = ζ(a) = ζ(x)m = 1.

The name “norm residue” comes from the fact that for each x, the map
y 7→ {x, y} is trivial if and only if x ∈ NK×. Since a primitive mth root
of unity ζ is not a norm from K, it follows that there is an x ∈ F such that
(ζ, x)F 6= 1. Therefore the norm residue symbol is a split surjection with inverse
ζi 7→ {ζi, x}.

The role of the norm residue symbol is explained by the following structural
result, whose proof we cite from the literature.

III.6.2.4 Moore’s Theorem 6.2.4. If F is a local field, then K2(F ) is the direct sum of
a uniquely divisible abelian group U and a finite cyclic group, isomorphic under
the norm residue symbol to the group µ = µm of roots of unity in F .
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Proof. We have seen that the norm residue symbol is a split surjection. A proof
that its kernel U is divisible, due to C. Moore, is given in the Appendix to

Milnor
[131].

The fact that U is torsionfree (hence uniquely divisible) was proven by Tate
Tate
[198] when char(F ) = p, and by Merkurjev

Merk
[124] when char(F ) = 0.

III.6.2.5 Example 6.2.5 (2-adic rationals). The group K2(Q̂2) is the direct sum of the
cyclic group of order 2 generated by {−1,−1} and a uniquely divisible group.

Since x2 + y2 = −1 has no solution in F = Q̂2 we see from definition (
III.6.2.2
6.2.2)

that the Hilbert symbol cF (−1,−1) = −1.

Tame symbols

Every discrete valuation v on a field F provides a Steinberg symbol. Recall
that v is a homomorphism F× → Z such that v(r + s) ≥ min{v(r), v(s)}. By
convention, v(0) = ∞, so that the ring R of all r with v(r) ≥ 0 is a discrete
valuation ring (DVR). The units R× form the set v−1(0), and the maximal ideal
of R is generated by any π ∈ R with v(π) = 1. The residue field kv is defined
to be R/(π). If u ∈ R, we write ū for the image of u under R→ kv.

III.6.3 Lemma 6.3. For every discrete valuation v on F there is a Steinberg symbol

K2(F )
∂v−→ k×v , defined by

∂v({r, s}) = (−1)v(r)v(s)
(
sv(r)

rv(s)

)
.

This symbol is called the tame symbol of the valuation v. The tame symbol is
onto, because if u ∈ R× then v(u) = 0 and ∂v(π, u) = ū.

Proof. Writing r = u1π
v1 and s = u2π

v2 with u1, u2 ∈ R×, we must show

that ∂v(r, s) = (−1)v1v2 ū
v1
2

ū
v2
1

is a Steinberg symbol. By inspection, ∂v(r, s) is an

element of k×v , and ∂v is bilinear. To see that ∂v(r, s) = 1 when r + s = 1 we
consider several cases. If v1 > 0 then r is in the maximal ideal, so s = 1− r is
a unit and ∂v(r, s) = s̄v1 = 1. The proof when v2 > 0 is the same, and the case
v1 = v2 = 0 is trivial. If v1 < 0 then v( 1r ) > 0 and 1−r

r = −1 + 1
r is congruent

to −1 (mod π). Since v(r) = v(1− r), we have

∂v(r, 1− r) = (−1)v1
(
1− r
r

)v1
= (−1)v1(−1)v1 = 1.

III.6.3.1 Remark 6.3.1 (Ramification). Suppose that E is a finite extension of F , and
that w is a valuation on E over the valuation v on F . Then there is an integer
e, called the ramification index, such that w(r) = e · v(r) for every r ∈ F . The
natural map K2(F )→ K2(E) is compatible with the tame symbols in the sense
that for every r1, r2 ∈ F× we have ∂w(r1, r2) = ∂v(r1, r2)

e
in k×w .

K2(F )
∂v

> k×v

K2(E)
∨ ∂w

> k×w

e x 7→ xe

∨
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Let S denote the integral closure of R in E. Then S has finitely many prime
ideals p1, ..., pn lying over p, with corresponding valuations w1, ..., wn on E. We
say that S is unramified over R if the ramification indices e1, ..., en are all 1; in
this case the diagonal inclusion ∆: k×v →֒

∏
i k
×
wi

is compatible with the tame
symbols in the sense that ∆∂v(r1, r2) is the product of the ∂wi

(r1, r2).

III.6.3.2 Corollary 6.3.2. If F contains the rational function field Q(t) or Fp(t1, t2),
then K2(F ) has the same cardinality as F . In particular, if F is uncountable
then so is K2(F ).

Proof. By hypothesis, F contains a transcendental element t. Choose a subset
X = {xα} of F so that X ∪ {t} is a transcendence basis for F over its ground
field F0, and set k = F0(X). Then the subfield k(t) of F has a t-adic valuation
with residue class field k. Hence K2(k(t)) contains a subgroup {t, k×} mapped
isomorphically under the tame symbol to k×. By Lemma

III.6.1.3
6.1.3, the kernel of

k× → K2(k(t)) → K2(F ) is contained in the torsion subgroup µ(k) of roots of
unity in k. Thus the cardinality of K2(F ) is bounded below by the cardinality
of k×/µ(k). Since F is an algebraic extension of k(t), and k contains either Q
or Fp(t2), we have the inequality |F | = |k| = |k×/µ(k)| ≤ |K2(F )|. The other
inequality |K2(F )| ≤ |F | is immediate from Matsumoto’s Theorem, since F is
infinite.

III.6.4 Theorem 6.4. (Bass-Tate) When F is an algebraically closed field, K2(F ) is
a uniquely divisible abelian group.

Theorem
III.6.4
6.4 is an immediate consequence of proposition

III.6.4.1
6.4.1 below. To

see this, recall that an abelian group is uniquely divisible when it is uniquely
p-divisible for each prime p; a group is said to be uniquely p-divisible if it is
p-divisible and has no p-torsion.

III.6.4.1 Proposition 6.4.1. (Bass-Tate) Let p be a prime number such that each poly-
nomial tp− a (a ∈ F ) splits in F [t] into linear factors. Then K2(F ) is uniquely
p-divisible.

Proof. The hypothesis implies that F× is p-divisible. Since the tensor product
of p-divisible abelian groups is always uniquely p-divisible, F×⊗F× is uniquely
p-divisible. Let R denote the kernel of the natural surjection F×⊗F× → K2(F ).
By inspection (or by the Snake Lemma), K2(F ) is p-divisible and the p-torsion
subgroup of K2(F ) is isomorphic to R/pR.

Therefore it suffices to prove that R is p-divisible. Now R is generated by
the elements ψ(a) = (a) ⊗ (1 − a) of F× ⊗ F× (a ∈ F − {0, 1}), so it suffices
to show that each ψ(a) is in pR. By hypothesis, there are bi ∈ F such that
tp − a =

∏
(t− bi) in F [t], so 1− a =

∏
(1− bi) and bpi = a for each i. But then

we compute in F× ⊗ F×:

ψ(a) = (a)⊗ (1− a) =
∑

(a)⊗ (1− bi) =
∑

(bi)
p ⊗ (1− bi) = p

∑
ψ(bi).

III.6.4.2 Corollary 6.4.2. If F is a perfect field of characteristic p, then K2(F ) is
uniquely p-divisible.
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The Localization Sequence for K2

The following result will be proven in chapter V,
V.6.6.1
6.6.1, but we find it useful to

quote this result now. If p is a nonzero prime ideal of a Dedekind domain R, the
local ring Rp is a discrete valuation ring, and hence determines a tame symbol.

III.6.5 Localization Theorem 6.5. Let R be a Dedekind domain, with field of frac-

tions F . Then the tame symbols K2(F )
∂p−→ (R/p)× associated to the prime

ideals of R fit into a long exact sequence
∐

p

K2(R/p)→ K2(R)→ K2(F )
∂=

∐

∂p
>
∐

p

(R/p)× → SK1(R)→ 1

where the coproducts are over all nonzero prime ideals p of R, and the maps
from (R/p)× = K1(R/p) to SK1(R) are the transfer maps of Ex.

EIII.1.11
1.11. The

transfer maps K2(R/p)→ K2(R) will be defined in chapter V.

III.6.5.1 Application 6.5.1 (K2Q). If R = Z then, since K2(Z/p) =1 and SK1(Z) =1,

we have an exact sequence 1 → K2(Z) → K2(Q)
∂−→ ∐

F×p → 1. As noted in
Example

III.6.2.1
6.2.1, this sequence is split by the symbol (r, s)∞, so we have K2(Q) ∼=

K2(Z)⊕
∐

F×p .

III.6.5.2 Application 6.5.2 (Function fields). If R is the polynomial ring F [t] for some
field F , we know that K2(F [t]) = K2(F ) (see

III.5.2.3
5.2.3). Moreover, the natural map

K2(F )→ K2F (t) is split by the leading coefficient symbol λ of Example
III.6.1.2
6.1.2.

Therefore we have a split exact sequence

1→ K2(F )→ K2F (t)
∂−→
∐

p

(F [t]/p)× → 1.

III.6.5.3 Weil Reciprocity Formula 6.5.3. Just as in the case R = Z, there is a valua-
tion on F (t) not arising from a prime ideal of F [t]. In this case, it is the valuation
v∞(f) = −deg(f) associated with the point at infinity, i.e., with parameter t−1.
Since the symbol (f, g)∞ vanishes on K2(F ), it must be expressable in terms of
the tame symbols ∂p(f, g) = (f, g)p. The appropriate reciprocity formula first
appeared in Weil’s 1940 paper on the Riemann Hypothesis for curves:

(f, g)∞ ·
∏

p

Np(f, g)p = 1 in F×.

In Weil’s formula, ‘Np’ denotes the usual norm map (F [t]/p)× → F×. To
establish this reciprocity formula, we observe that K2F (t)/K2F =

∐
(F [t]/p)×

injects into K2F̄ (t)/K2F̄ , where F̄ is the algebraic closure of F . Thus we may
assume that F is algebraically closed. By Example

III.6.1.7
6.1.7, K2F (t) is generated by

linear symbols of the form {a, t−b}. But (a, t−b)∞ = a and ∂t−b(a, t−b) = a−1,
so the formula is clear.

Our next structural result was discovered by Merkurjev and Suslin in 1981,
and published in their landmark paper

MS
[125]; see

GSz
[66, 8.4]. Recall that an auto-

morphism σ of a field E induces an automorphism of K2(E) sending {x, y} to
{σx, σy}.
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III.6.6 Theorem 6.6 (Hilbert’s Theorem 90 for K2). Let E/F be a cyclic Galois field
extension of prime degree p, and let σ be a generator of Gal(E/F ). Then the
following sequence is exact, where N denotes the transfer map on K2:

K2(E)
1−σ−→ K2(E)

N−→ K2(F ).

Merkurjev and Suslin gave this result the suggestive name “Hilbert’s The-
orem 90 for K2,” because of its formal similarity to the following result, which
is universally called “Hilbert’s Theorem 90 (for units)” because it was the 90th

theorem in Hibert’s classical 1897 survey of algebraic number theory, Theorie
der Algebraische Zahlkörper.

III.6.6.1 Theorem 6.6.1 (Hilbert’s Theorem 90 for units). Let E/F be a cyclic Galois
field extension, and let σ be a generator of Gal(E/F ). If 1−σ denotes the map
a 7→ a/σ(a), then the following sequence is exact:

1→ F× → E×
1−σ−→ E×

N−→ F×.

We omit the proof of Hilbert’s Theorem 90 for K2 (and for KM
n ; see

III.7.8.4
7.8.4

below), since the proof does not involve K-theory, contenting ourselves with two
special cases: when p = char(F ) (

III.7.8.3
7.8.3) and the following special case.

III.6.6.2 Proposition 6.6.2. Let F be a field containing a primitive nth root of unity ζ,
and let E be a cyclic field extension of degree n, with σ a generator of Gal(E/F ).

Suppose in addition that the norm map E×
N−→ F× is onto, and that F has

no extension fields of degree < n. Then the following sequence is exact:

K2(E)
1−σ−→ K2(E)

N−→ K2(F )→ 1.

Proof. Since Nζ = 1, Hilbert’s Theorem 90 gives an r ∈ E with σ(r) = ζr.
Setting c = N(r) ∈ F , it is well-known and easy to see that E = F (r), rn = c.

Again by Hilbert’s Theorem 90 for units and our assumption about norms,

E×
1−σ
> E×

N
> F× → 1 is an exact sequence of abelian groups. Applying the

right exact functor ⊗F× retains exactness. Therefore we have a commutative
diagram with exact rows

E× ⊗ F× (1− σ)⊗ 1
> E× ⊗ F× N ⊗ 1

> F× ⊗ F× > 1

K2(E)
∨ 1− σ

> K2(E)
∨

> C

γ
∨

> 1

in which C denotes the cokernel of 1− σ.
Now every element of E is a polynomial f(r) in r of degree < n, and f(t) is

a product of linear terms bit − ai by our assumption. By Lemma
III.6.1.4
6.1.4, every

element of K2(E) is a product of symbols of the form {a, b} and {a, r − b}.
Therefore the vertical maps F×⊗E× → K2(E) are onto in the above diagram.
Hence γ is onto.
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If a ∈ F× and x ∈ E× then the projection formula (Ex.
EIII.5.6
5.6) yields

N(1− σ){a, x} = N{a, x/(σx)} = {a,Nx/N(σx)} = 1.

Hence the transfer map K2(E) → K2(F ) factors through C. A diagram chase
shows that it suffices to show that γ is a Steinberg symbol, so that it factors
through K2(F ). For this we must show that for all y ∈ E we have γ(Ny⊗ (1−
Ny)) = 1, i.e., that {y, 1−Ny} ∈ (1− σ)K2(E).

Fix y ∈ E and set z = NE/F (y) ∈ F . Factor tn − z =
∏
fi in F [t], with the

fi irreducible, and let Fi denote the field F (xi), where fi(xi) = 0 and xni = z.
Setting t = 1, 1−z =∏ fi(1) =

∏
NFi/F (1−xi). Setting Ei = E⊗F Fi, so that

NFi/F (1−xi) = NEi/E(1−xi) and σ(xi) = xi, the projection formula (Ex.
EIII.5.6
5.6)

gives

{y, 1− z} =
∏

NEi/E{y, 1− xi} =
∏

NEi/E{y/xi, 1− xi}.

Thus it suffices to show that each NEi/E{y/xi, 1 − xi} is in (1 − σ)K2(E).
Now Ei/Fi is a cyclic extension whose norm N = NEi/Fi

satisfies N(y/xi) =
N(y)/xni = 1. By Hilbert’s Theorem 90 for units, y/xi = vi/σvi for some
vi ∈ Ei. We now compute:

NEi/E{y/xi, 1− xi} = NEi/E{vi/σvi, 1− xi} = (1− σ)NEi/E{vi, 1− xi}.

Here are three pretty applications of Hilbert’s Theorem 90 for K2. When F
is a perfect field, the first of these has already been proven in Proposition

III.6.4.1
6.4.1.

III.6.7 Theorem 6.7. If char(F ) = p 6= 0, then the group K2(F ) has no p-torsion.

Proof. Let x be an indeterminate and y = xp−x; the field extension F (x)/F (y)
is an Artin-Schrier extension, and its Galois group is generated by an au-
tomorphism σ satisfying σ(x) = x + 1. By

III.6.5.2
6.5.2, K2(F ) is a subgroup of

both K2F (x) and K2F (y), and the projection formula shows that the norm
N : K2F (x)→ K2F (y) sends u ∈ K2(F ) to u

p.
Now fix u ∈ K2(F ) satisfying u

p = 1; we shall prove that u = 1. By Hilbert’s
Theorem 90 for K2, u = (1− σ)v = v(σv)−1 for some v ∈ K2F (x).

Every prime ideal p of F [x] is unramified over py = p∩F [y], because F [x]/p
is either equal to, or an Artin-Schrier extension of, F [y]/py. By

III.6.3.1
6.3.1 and

III.6.5.2
6.5.2,

we have a commutative diagram in which the vertical maps ∂ are surjective:

K2F (y)
i∗

> K2F (x)
1− σ

> K2F (x)

∐

py

(F [y]/py)
×

∂
∨

∆
>
∐

p

(F [x]/p)×

∂
∨

1− σ
>
∐

p

(F [x]/p)×

∂
∨

We claim that the bottom row is exact. By decomposing the row into subse-
quences invariant under σ, we see that there are two cases to consider. If a prime
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p is not fixed by σ, then the fields F [x]/σip are all isomorphic to E = F [y]/py,
and for ai ∈ E× we have

(1− σ)(a0, a1, . . . , ap−1) = (a0a
−1
p−1, a1a

−1
0 , . . . , ap−1a

−1
p−2)

in
∏p−1
i=0 (F [x]/σ

ip)×. This vanishes if and only if the ai agree, in which case
(a0, . . . , ap−1) is the image of a ∈ E×. On the other hand, if σ fixes p then
F [x]/p is a cyclic Galois extension of E = F [y]/py. Therefore if a ∈ F [x]/p and
(1 − σ)a = a/(σa) equals 1, then a = σ(a), i.e., a ∈ E. This establishes the
claim.

A diagram chase shows that since 1 = ∂u = ∂(1−σ)v, there is a v0 inK2F (y)
with ∂(v) = ∂(i∗v0). Since i∗ = σi∗, we have (1 − σ)i∗v0 = 1. Replacing v by
v(i∗v0)

−1, we may assume that ∂(v) = 1, i.e., that v is in the subgroup K2(F )
of K2F (x). Therefore we have u = v(σv)−1 = 1. As u was any element of
K2(F ) satisfying u

p = 1, K2(F ) has no p-torsion.

III.6.7.1 Example 6.7.1. If F = Fq(t), q = pr, we have K2(F ) =
∐
(Fq[t]/p)×. Since

the units of each finite field Fq[t]/p form a cyclic group, and its order can be
arbitrarily large (yet prime to p), K2Fq(t) is a very large torsion group.

III.6.8 Theorem 6.8. If F contains a primitive nth root of unity ζ, then every element
of K2(F ) of exponent n has the form {ζ, x} for some x ∈ F×.
Proof. We first suppose that n is a prime number p. Let x be an indeterminate
and y = xp; the Galois group of the field extension F (x)/F (y) is generated by
an automorphism σ satisfying σ(x) = ζx. By Application

III.6.5.2
6.5.2, K2(F ) is a

subgroup of K2F (x), and by the projection formula the norm N : K2F (x) →
K2F (y) sends u ∈ K2(F ) to u

p.
Fix u ∈ K2(F ) satisfying u

p = 1. By Hilbert’s Theorem 90 for K2, if u
p = 1

then u = (1− σ)v = v(σv)−1 for some v ∈ K2F (x).
Now the extension F [y] ⊂ F [x] is unramified at every prime ideal except

p = (x). As in the proof of Theorem
III.6.7
6.7, we have a commutative diagram

whose bottom row is exact:

K2F (y)
i∗

> K2F (x)
1− σ

> K2F (x)

∐

py 6=(y)

(F [y]/py)
×

∂′

∨
∆
>
∐

p6=(x)

(F [x]/p)×

∂′

∨
1− σ

>
∐

p6=(x)

(F [x]/p)×

∂′

∨

As before, we may modify v by an element from K2F (y) to arrange that ∂p(v) =
1 for all p 6= (x). For p = (x), let a ∈ F = F [x]/(x) be such that ∂(x)(v) = a
and set v′ = v{a, x}. Then ∂(x)(v

′) = 1 and ∂p(v
′) = ∂p(v) = 1 for every other

p. It follows from
III.6.5.2
6.5.2 that v′ is in K2(F ). Therefore (1 − σ)v′ = 1; since

v = v′{a, x}−1 this implies that u has the asserted form:

u = (1− σ){a, x}−1 = {a, x}−1{a, ζx} = {a, ζ}.
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Now we proceed inductively, supposing that n = mp and that the theorem
has been proven for m (and p). If u ∈ K2(F ) has exponent n then up has
exponent m, so there is an x ∈ F× so that up = {ζp, x}. The element u{ζ, x}−1
has exponent p, so it equals {ζm, y} = {ζ, ym} for some y ∈ F×. Hence u =
{ζ, xym}, as required.

III.6.8.1 Remark 6.8.1. Suslin also proved the following result in
Su87
[186]. Let F be a

field containing a primitive pth root of unity ζ, and let F0 ⊂ F be the subfield
of constants. If x ∈ F×0 and {ζ, x} = 1 in K2(F ) then {ζ, x} = 1 in K2(F0).
If {ζ, y} = 1 in K2(F ) for some y ∈ F× then y = xzp for some x ∈ F×0 and
z ∈ F×.

III.6.8.2 Application 6.8.2. We can use Theorem
III.6.8
6.8 to give another proof of The-

orem
III.6.4
6.4, that when F is an algebraically closed field, the group K2(F ) is

uniquely divisible. Fix a prime p. For each a ∈ F× there is an α with αp = a.
Hence {a, b} = {α, b}p, so K2(F ) is p-divisible. If p 6= char(F ) then there is
no p-torsion because {ζ, a} = {ζ, α}p = 1. Finally, if char(F ) = p, there is no
p-torsion either by Theorem

III.6.7
6.7.

III.6.8.3 Application 6.8.3 (K2R). Theorem
III.6.8
6.8 states that {−1,−1} is the only ele-

ment of order 2 in K2R. Indeed, if r is a positive real number then:

{−1, r} = {−1,√r}2 = 1, and {−1,−r} = {−1,−1}{−1, r} = {−1,−1}.

Note that {−1,−1} is in the image of K2(Z), which is a summand by either
Example

III.6.2.1
6.2.1 or Example

III.5.9.1
5.9.1. Recall from Example

III.6.1.6
6.1.6 that the image of

K2R in the uniquely divisible group K2C is the eigenspace (K2C)+, and that

the composition K2R → K2C
N−→ K2R is multiplication by 2, so its kernel is

K2(Z). It follows that
K2R ∼= K2(Z)⊕ (K2C)

+.

K2 and the Brauer group

Let F be a field. Recall from II.
II.5.4.3
5.4.3 that the Brauer group Br(F ) is generated

by the classes of central simple algebras with two relations: [A⊗F B] = [A] · [B]
and [Mn(F )] = 0. Here is one classical construction of elements in the Brauer
group; it is a special case of the construction of crossed product algebras.

III.6.9 Example 6.9 (Cyclic algebras). Let ζ be a primitive nth root of unity in F ,
and α, β ∈ F×. The cyclic algebra A = Aζ(α, β) is defined to be the asso-
ciative algebra with unit, which is generated by two elements x, y subject to
the relations xn = α · 1, yn = β · 1 and yx = ζxy. Thus A has dimension
n2 over F , a basis being the monomials xiyj with 0 ≤ i, j < n. The identity
(x+ y)n = (α+ β) · 1 is also easy to check.

When n = 2 (so ζ = −1), cyclic algebras are called quaternion algebras. The
name comes from the fact that the usual quaternions H are the cyclic algebra
A(−1,−1) over R. Quaternion algebras arise in the Hasse invariant of quadratic
forms.
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It is classical, and not hard to prove, that A is a central simple algebra over
F ; see

BA
[10, §8.5]. Moreover, the n-fold tensor product A ⊗F A ⊗F · · · ⊗F A is

a matrix algebra; see
BA
[10, Theorem 8.12]. Thus we can consider [A] ∈ Br(F )

as an element of exponent n. We shall write nBr(F ) for the subgroup of Br(F )
consisting of all elements x with xn = 1, so that [A] ∈ nBr(F )

For example, the following lemma shows that Aζ(1, β) must be a matrix ring
because xn = 1. Thus [Aζ(1, β)] = 1 in Br(F ).

III.6.9.1 Lemma 6.9.1. Let A be a central simple algebra of dimension n2 over a field
F containing a primitive nth root of unity ζ. If A contains an element u 6∈ F
such that un = 1, then A ∼=Mn(F ).

Proof. The subalgebra F [u] of A spanned by u is isomorphic to the commutative
algebra F [t]/(tn−1). Since tn−1 =

∏
(t−ζi), the Chinese Remainder Theorem

yields F [u] ∼= F×F×· · ·×F . Hence F [u] contains n idempotents ei with eiej = 0
for i 6= j. Therefore A splits as the direct sum e1A⊕· · ·⊕enA of right ideals. By
the Artin-Wedderburn theorem, if A =Md(D) then A can be the direct sum of
at most d right ideals. Hence d = n, and A must be isomorphic to Mn(F ).

III.6.9.2 Proposition 6.9.2 (nth power norm residue symbol). If F contains ζ, a pri-
mitive nth root of unity, there is a homomorphism K2(F ) → Br(F ) sending
{α, β} to the class of the cyclic algebra Aζ(α, β).

Since the image is a subgroup of exponent n, we shall think of the power
norm residue symbol as a map K2(F )/nK2(F )→ nBr(F ).

This homomorphism is sometimes also called the Galois symbol.

Proof. From Ex.
EIII.6.12
6.12 we see that in Br(F ) we have [Aζ(α, β)] · [Aζ(α, γ)] =

[Aζ(α, βγ)]. Thus the map F× × F× → Br(F ) sending (α, β) to [Aζ(α, β)] is
bilinear. To see that it is a Steinberg symbol we must check thatA = Aζ(α, 1−α)
is isomorphic to the matrix algebraMn(F ). Since the element x+y of A satisfies
(x+ y)n = 1, Lemma

III.6.9.1
6.9.1 implies that A must be isomorphic to Mn(F ).

III.6.9.3 Remark 6.9.3. Merkurjev and Suslin proved in
MS
[125] that K2(F )/mK2(F ) is

isomorphic to the subgroup mBr(F ) of elements of orderm in Br(F ) when µm ⊂
F . By Matsumoto’s Theorem, this implies that the m-torsion in the Brauer
group is generated by cyclic algebras. The general description of K2(F )/m, due
to Merkurjev-Suslin, is given in

III.6.10.4
6.10.4; see VI.

VI.3.1.1
3.1.1.

The Galois symbol

We can generalize the power norm residue symbol to fields not containing enough
roots of unity by introducing Galois cohomology. Here are the essential facts
we shall need; see

WHomo
[223] or

Milne
[127].

III.6.10 Sketch of Galois Cohomology 6.10. Let Fsep denote the separable closure
of a field F , and let G = GF denote the Galois group Gal(Fsep/F ). The family
of subgroups GE = Gal(Fsep/E), as E runs over all finite extensions of F , forms
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a basis for a topology of G. A G-moduleM is called discrete if the multiplication
G×M →M is continuous.

For example, the abelian group Gm = F×sep of units of Fsep is a discrete

module, as is the subgroup µm of all mth roots of unity. We can also make the
tensor product of two discrete modules into a discrete module, with G acting
diagonally. For example, the tensor product µ⊗2m = µm⊗µm is also a G-discrete
module. Note that the three G-modules Z/m, µm and µ⊗2m have the same
underlying abelian group, but are isomorphic GF -modules only when µm ⊂ F .

The G-invariant subgroup MG of a discrete G-module M is a left exact
functor on the category of discrete GF -modules. The Galois cohomology groups
Hi

et(F ;M) are defined to be its right derived functors. In particular, H0
et(F ;M)

is just MG.
If E is a finite separable field extension of F then GE ⊂ GF . Thus

there is a forgetful functor from GF -modules to GE-modules, inducing maps
Hi

et(F ;M) → Hi
et(E;M). In the other direction, the induced module func-

tor from GE-modules to GF -modules gives rise to cohomological transfer maps
trE/F : Hi

et(E;M)→ Hi
et(F ;M); see

WHomo
[223, 6.3.9 and 6.11.11].

III.6.10.1 Example 6.10.1 (Kummer Theory). The cohomology of the module Gm is of
fundamental importance. Of course H0

et(F,Gm) = F×. By Hilbert’s Theo-
rem 90 for units, and a little homological algebra

WHomo
[223, 6.11.16], we also have

H1
et(F ;Gm) = 0 and H2

et(F ;Gm) ∼= Br(F ).
If m is prime to char(F ), the exact sequence of discrete modules

1→ µm → Gm
m−→ Gm → 1

is refered to as the Kummer sequence. Writing µm(F ) for the group µGm of all
mth roots of unity in F , the corresponding cohomology sequence is also called
the Kummer sequence.

1→ µm(F )→ F×
m−→ F× → H1

et(F ;µm)→ 1

1→ H2
et(F ;µm)→ Br(F )

m−→ Br(F )

This yields isomorphisms H1
et(F ;µm) ∼= F×/F×m and H2

et(F ;µm) ∼= mBr(F ).
If µm ⊂ F×, this yields a natural isomorphism H2

et(F ;µ
⊗2
m ) ∼= mBr(F )⊗µm(F ).

There are also natural cup products in cohomology, such as the product

F× ⊗ F× → H1
et(F ;µm)⊗H1

et(F ;µm)
∪−→ H2

et(F ;µ
⊗2
m ) (6.10.2) III.6.10.2

which satisfies the following projection formula: if E/F is a finite separable
extension, a ∈ F× and b ∈ E×, then trE/F (a ∪ b) = a ∪NE/F (b).

III.6.10.3 Proposition 6.10.3 (Galois symbol). The bilinear pairing (
III.6.10.2
6.10.2) induces a

Steinberg symbol K2(F )/mK2(F )→ H2
et(F ;µ

⊗2
m ) for every m prime to char(F ).

Proof. It suffices to show that a ∪ (1 − a) vanishes for every a ∈ F − {0, 1}.
Fixing a, factor the separable polynomial tm − a =

∏
fi in F [t] with the fi
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irreducible, and let Fi denote the field F (xi) with fi(xi) = 0. Setting t = 1,
1− a =

∏
iNFi/F (1− xi). Writing H2

et additively, we have

a ∪ (1− a) =
∑

i

a ∪NFi/F (1− xi) =
∑

i

trFi/F

(
a ∪ (1− xi)

)

= m
∑

i

trFi/F

(
xi ∪ (1− xi)

)
.

Since the group H2
et(F ;µ

⊗2
m ) has exponent m, all these elements vanish, as

desired.

III.6.10.4 Remark 6.10.4. Suppose that F contains a primitive mth root of unity ζ. If
we identify Z/m with µm via 1 7→ ζ, we have a natural isomorphism

mBr(F ) ∼= mBr(F )⊗ Z/m ∼= mBr(F )⊗ µm ∼= H2
et(F ;µ

⊗2
m ).

Tate showed in
Tate
[198] that this isomorphism identifies the Galois symbol of

Proposition
III.6.10.3
6.10.3 with themth power norm residue symbol of Proposition

III.6.9.2
6.9.2.

The Merkurjev-Suslin isomorphism of
MS
[125] cited above in Remark

III.6.9.3
6.9.3 is a

special case of the more general assertion that this symbol induces an isomor-
phism: K2(F )/mK2(F ) ∼= H2

et(F ;µ
⊗2
m ) for all fields F of characteristic prime

to m. See Chapter VI,
VI.4.1.1
4.1.1.

EXERCISES

EIII.6.1 6.1. Given a discrete valuation on a field F , with residue field k and parameter
π, show that there is a surjection λ : K2(F ) → K2(k) given by the formula
λ{uπi, vπj} = {ū, v̄}. Example

III.6.1.2
6.1.2 is a special case of this, in which π = t−1.

EIII.6.2 6.2. (Bass-Tate) If E = F (u) is a field extension of F , and e1, e2 ∈ E are monic
polynomials in u of some fixed degree d > 0, show that {e1, e2} is a product
of symbols {e1, e′2} and {e, e′′2} with e, e′2, e

′′
2 polynomials of degree < d. This

generalizes Lemma
III.6.1.4
6.1.4.

EIII.6.3 6.3. (Bass-Tate) Let k be a field and set F = k((t)).

(a) Show that K2(F ) ∼= K2(k)× k× ×K2(k[[t]], t).

(b) Show that the group K2(k[[t]], t) is torsionfree; by Ex.
EIII.5.14
5.14, it is uniquely

divisible if char(k) = 0. Hint: Use Theorem
III.6.7
6.7 and the proof of

III.6.4.1
6.4.1.

EIII.6.4 6.4. If F is a number field with r1 distinct embeddings F →֒ R, show that the
r1 symbols ( , )∞ on F define a surjection K2(F )→ {±1}r1 .

EIII.6.5 6.5. If F̄ denotes the algebraic closure of a field F , show that K2(Q̄) =
K2(F̄p) = 1.

August 29, 2013 - Page 243 of
LastPage
568



Chapter III

EIII.6.6 6.6. 2-adic symbol on Q. Any nonzero rational number r can be written
uniquely as r = (−1)i2j5ku, where i, k ∈ {0, 1} and u is a quotient of inte-
gers congruent to 1 (mod 8). If s = (−1)i′2j′5k′u′, set (r, s)2 = (−1)ii′+jj′+kk′ .
Show that this is a Steinberg symbol on Q, with values in {±1}.

EIII.6.7 6.7. Let ((r, s))p denote the Hilbert symbol on Q̂p (
III.6.2.2
6.2.2), and (r, s)p the tame

symbolK2(Q̂p)→ F×p . Assume that p is odd, so that there is a unique surjection

ε : F×p → {±1}. Show that ((r, s))p = ε ((r, s)p) for all r, s ∈ Q̂×p .

EIII.6.8 6.8. Quadratic Reciprocity. If r, s ∈ Q×, and (r, s)2 is the 2-adic symbol of
Ex.

EIII.6.6
6.6, show that

(r, s)∞ (r, s)2
∏

p 6=2
((r, s))p = +1.

Hint: From
III.6.5.1
6.5.1 and Ex.

EIII.6.7
6.7, the 2-adic symbol of Ex.

EIII.6.6
6.6 must satisfy some

relation of the form

(r, s)2 = (r, s)∞
ε∞
∏

p 6=2
((r, s))p

εp ,

where the exponents εp are either 0 or 1. Since (−1,−1)2 = (−1,−1)∞ we have
ε∞ = 1. If p is a prime not congruent to 1 (mod 8), consider {2, p} and {−1, p}.
If p is a prime congruent to 1 (mod 8), Gauss proved that there is a prime
q <
√
p such that p is not a quadratic residue modulo q. Then ((p, q))q = −1,

even though (p, q)∞ = (p, q)2 = 1. Since we may suppose inductively that εq
equals 1, this implies that εp 6= 0.

EIII.6.9 6.9. (Suslin) Suppose that a field F is algebraically closed in a larger field E.
Use Lemma

III.6.1.3
6.1.3 and Remark

III.6.8.1
6.8.1 to show that K2(F ) injects into K2(E).

EIII.6.10 6.10. Let F be a field, and let Ω1
F = Ω1

F/Z denote the vector space of absolute

Kähler differentials (see Ex.
EIII.2.6
2.6). The nth exterior power of Ω1

F is written
as ΩnF . Show that there is a homomorphism K2(F ) → Ω2

F sending {x, y} to
dx
x ∧

dy
y . This map is not onto, because the image is in the kernel of the deRham

differential d : Ω2
F → Ω3

F .

EIII.6.11 6.11. If F is a field of transcendence degree κ over the ground field, Ω1
F is a

vector space of dimension κ. Now suppose that κ is an infinite cardinal number,
so that ΩnF is also a vector space of dimension κ for all n > 1. Show that the
image of the map K2(F ) → Ω2

F in the previous exercise is an abelian group of
rank κ.

In particular, if F is a local field then the uniquely divisible summand U of
K2(F ) in Moore’s Theorem (

III.6.2.4
6.2.4) is uncountable.

EIII.6.12 6.12. Show that Aζ(α, β) ⊗ Aζ(α, γ) ∼= Mn(A), where A = Aζ(α, βγ). This
isomorphism is used to construct the Galois symbol in

III.6.10.3
6.10.3.

Hint: Let x′, y′ generate Aζ(α, β) and x′′, y′′ generate Aζ(α, γ), and show
that x′, y = y′y′′ generate A. Then show that u = (x′)−1x′′ + y′′ has un = 1.
(For another proof, see

BA
[10, Ex. 8.5.2].)

August 29, 2013 - Page 244 of
LastPage
568



Chapter III

7 Milnor K-theory of fields

Fix a field F , and consider the tensor algebra of the group F×,

T (F×) = Z⊕ F× ⊕ (F× ⊗ F×)⊕ (F× ⊗ F× ⊗ F×)⊕ · · · .

To keep notation straight, we write l(x) for the element of degree one in T (F×)
corresponding to x ∈ F×.

III.7.1 Definition 7.1. The graded ringKM
∗ (F ) is defined to be the quotient of T (F×)

by the ideal generated by the homogeneous elements l(x)⊗l(1−x) with x 6= 0, 1.
The Milnor K-group KM

n (F ) is defined to be the subgroup of elements of degree
n. We shall write {x1, . . . , xn} for the image of l(x1)⊗ · · · ⊗ l(xn) in KM

n (F ).
That is, KM

n (F ) is presented as the group generated by symbols {x1, . . . , xn}
subject to two defining relations: {x1, . . . , xn} is multiplicative in each xi, and
equals zero if xi + xi+1 = 1 for some i.

The name comes from the fact that the ideas in this section first arose in
Milnor’s 1970 paper

M-QF
[130]. Clearly we have KM

0 (F ) = Z, and KM
1 = F× (with

the group operation written additively). By Matsumoto’s Theorem
III.6.1
6.1 we also

have KM
2 (F ) = K2(F ), the elements {x, y} being the usual Steinberg symbols,

except that the group operation in KM
2 (F ) is written additively.

Since {xi, xi+1} + {xi+1, xi} = 0 in KM
2 (F ), we see that interchanging two

entries in {x1, . . . , xn} yields the inverse. It follows that these symbols are
alternating: for any permutation π with sign (−1)π we have

{xπ(1), . . . , xπ(n)} = (−1)π{x1, . . . , xn}.

III.7.2 Examples 7.2. (a) If Fq is a finite field, then KM
n (Fq) = 0 for all n ≥ 2,

because KM
2 (Fq) = 0 by Cor.

III.6.1.1
6.1.1. If F has transcendence degree 1 over a

finite field (a global field of finite characteristic), Bass and Tate proved in
BT
[21]

that KM
n (F ) = 0 for all n ≥ 3.

(b) If F is algebraically closed then KM
n (F ) is uniquely divisible. Divisibility

is clear because F× is divisible. The proof that there is no p-torsion is the same
as the proof for n = 2 given in Theorem

III.6.4
6.4, and is relegated to Ex.

EIII.7.3
7.3.

(c) When F = R we can define a symbol KM
n (R) → {±1} by the following

formula: (x1, . . . , xn)∞ equals −1 if all the xi are negative, and equals +1
otherwise. When n = 2 this is the symbol defined in Example

III.6.2.1
6.2.1.

To construct it, extend Z→ Z/2 to a ring homomorphism T (R×)→ (Z/2)[t]
by sending l(x) to t if x < 0 and to 0 if x > 0. This sends the elements
l(x)⊗ l(1− x) to zero (as in

III.6.2.1
6.2.1), so it induces a graded ring homomorphism

KM
∗ (R)→ (Z/2)[t]. The symbol above is just the degree n part of this map.
By induction on n, it follows that KM

n (R) is the direct sum of a cyclic group
of order 2 generated by {−1, . . . ,−1}, and a divisible subgroup. In particular,
this shows that KM

∗ (R)/2KM
∗ (R) is the polynomial ring (Z/2)[ǫ] on ǫ = l(−1).

Using the norm map we shall see later that the divisible subgroup of KM
n (R) is

in fact uniquely divisible. This gives a complete description of each KM
n (R) as

an abelian group.
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(d) When F is a number field, let r1 be the number of embeddings of F
into R. Then we have a map from KM

n (F ) to the torsion subgroup (Z/2)r1 of
KM
n (R)r1 . Bass and Tate proved in

BT
[21] that this map is an isomorphism for all

n ≥ 3: KM
n (F ) ∼= (Z/2)r1 .

Tame symbols

Recall from Lemma
III.6.3
6.3 and Ex.

EIII.6.1
6.1 that every discrete valuation v on F induces

a Steinberg symbolK2(F )
∂v−→ k×v and a mapK2(F )

λ−→K2(kv). These symbols
extend to all of Milnor K-theory; the ∂v are called higher tame symbols, and
the λ are called specialization maps.

III.7.3 Theorem 7.3 (Specialization maps and higher tame symbols). For every dis-
crete valuation v on F , there are two surjections

KM
n (F )

∂v−→ KM
n−1(kv) and KM

n (F )
λ−→ KM

n (kv)

satisfying the following conditions. Let R = {r ∈ F : v(r) ≥ 0} be the valuation
ring, and π a parameter for v. If ui ∈ R×, and ūi denotes the image of ui in
kv = R/(π) then

λ{u1πi1 , . . . , unπin} = {ū1, . . . , ūn}, ∂v{π, u2, . . . , un} = {ū2, . . . , ūn}.

In particular, ∂v : K
M
2 (F ) → k×v is the tame symbol of Lemma

III.6.3
6.3, and

λ : K2(F )→ K2(k) is the specialization map of Example
III.6.1.2
6.1.2 and Ex.

EIII.6.1
6.1.

Proof. (Serre) Let L denote the graded KM
∗ (kv)-algebra generated by an in-

determinate Π in L1, with the relation {Π,Π} = {−1,Π}. We claim that the
group homomorphism

d : F× → L1 = l(k×v )⊕ Z ·Π, d(uπi) = l(ū) + iΠ

satisfies the relation: for r 6= 0, 1, d(r)d(1− r) = 0 in L2. If so, the presentation
of KM

∗ (F ) shows that d extends to a graded ring homomorphism d : KM
∗ (F )→

L. Since Ln is the direct sum of KM
n (kv) and KM

n−1(kv), we get two maps:
λ : KM

n (F ) → KM
n (kv) and ∂v : K

M
n (F ) → KM

n−1(kv). The verification of the
relations is routine, and left to the reader.

If 1 6= r ∈ R×, then either 1 − r ∈ R× and d(r)d(1 − r) = {r̄, 1 − r̄} = 0,
or else v(1 − r) = i > 0 and d(r) = l(1) + 0 · Π = 0 so d(r)d(1 − r) = 0 · d(1 −
r) = 0. If v(r) > 0 then 1 − r ∈ R× and the previous argument implies that
d(1 − r)d(r) = 0. If r 6∈ R then 1/r ∈ R, and we see from (

III.5.10.3
5.10.3) and the

above that d(r)d(1 − r) = d(1/r)d(−1/r). Therefore it suffices to show that
d(r)d(−r) = 0 for every r ∈ R. If r = π this is the given relation upon L, and
if r ∈ R× then d(r)d(−r) = {r,−r} = 0 by (

III.5.10.3
5.10.3). Since the product in L is

anticommutative, the general case r = uπi follows from this.

III.7.3.1 Corollary 7.3.1 (Rigidity). Suppose that F is complete with respect to the val-
uation v, with residue field k = kv. For every integer q prime to char(k), the
maps λ⊕ ∂v : KM

n (F )/q → KM
n (k)/q ⊕KM

n−1(k)/q are isomorphisms for all n.
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Proof. Since the valuation ring R is complete, Hensel’s Lemma implies that
the group 1 + πR is q-divisible. It follows that l(1 + πR) · KM

n−1(F ) is also
q-divisible. But by Ex.

EIII.7.2
7.2 this is the kernel of the map d : KM

n (F ) → Ln ∼=
KM
n (kv)⊕KM

n−1(kv).

III.7.3.2 Example 7.3.2 (Leading Coefficients). As in Example
III.6.1.2
6.1.2, KM

n (F ) is a di-
rect summand of KM

n F (t). To see this, we consider the valuation v∞(f) =
−deg(f) on F (t) of Example

III.6.5.3
6.5.3. Since t−1 is a parameter, each polyno-

mial f = ut−i has lead(f) = ū. The map λ : KM
n F (t) → KM

n (F ), given by
λ{f1, . . . , fn} = {lead(f1), . . . , lead(fn)}, is clearly inverse to the natural map
KM
n (F )→ KM

n F (t).

Except for v∞, every discrete valuation v on F (t) which is trivial on F is
the p-adic valuation vp associated to a prime ideal p of F [t]. In this case kv is
the field F [t]/p, and we write ∂p for ∂v.

III.7.4 Theorem 7.4. (Milnor) There is a split exact sequence for each n, natural in
the field F , and split by the map λ:

0→ KM
n (F )→ KM

n F (t)
∂=

∐

∂p
>
∐

p

KM
n−1(F [t]/p)→ 0.

Proof. Let Ld denote the subgroup of KM
n F (t) generated by those symbols

{f1, . . . , fr} such that all the polynomials fi have degree ≤ d. By Example
III.7.3.2
7.3.2,

L0 is a summand isomorphic to KM
n (F ). Since KM

n F (t) is the union of the
subgroups Ld, the theorem will follow from Lemma

III.7.4.2
7.4.2 below, using induction

on d.

Let π be an irreducible polynomial of degree d and set k = kπ = F [t]/(π).
Then each element ā of k is represented by a unique polynomial a ∈ F [t] of
degree < d.

III.7.4.1 Lemma 7.4.1. There is a unique homomorphism h = hπ : K
M
n−1(k) →

Ld/Ld−1 carrying {ā2, . . . , ān} to the class of {π, a2, . . . , an} modulo Ld−1.

Proof. The formula gives a well-defined set map h from k××· · ·×k× to Ld/Ld−1.
To see that it is linear in ā2, suppose that ā2 = ā′2ā

′′
2 . If a2 6= a′2a

′′
2 then there

is a nonzero polynomial f of degree < d with a2 = a′2a
′′
2 + fπ. Since fπ/a2 =

1− a′2a′′2/a2 we have {fπ/a2, a′2a′′2/a2} = 0. Multiplying by {a3, . . . , an} gives

{π, a′2a′′2/a2, a3, . . . , an} ≡ 0 modulo Ld−1.

Similarly, h is linear in a3, . . . , an. To see that the multilinear map h factors
through KM

n−1(k), we observe that if āi + āi+1 = 1 in k then ai + ai+1 = 1 in
F .

III.7.4.2 Lemma 7.4.2. The homomorphisms ∂(π) and hπ induce an isomorphism be-
tween Ld/Ld−1 and the direct sum ⊕πKM

n−1(kπ) as π ranges over all monic
irreducible polynomials of degree d in F [t].
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Proof. Since π cannot divide any polynomial of degree < d, the maps ∂(π) vanish
on Ld−1 and induce maps ∂̄(π) : Ld/Ld−1 → KM

n−1(kπ). By inspection, the com-
position of ⊕hπ with the direct sum of the ∂̄(π) is the identity on ⊕πKM

n−1(kπ).
Thus it suffices to show that ⊕hπ maps onto Ld/Ld−1. By Ex.

EIII.6.2
6.2, Ld is gener-

ated by Ld−1 and symbols {π, a2, . . . , an} where π has degree d and the ai have
degree < d. But each such symbol is hπ of an element of KM

n−1(kπ), so ⊕hπ is
onto.

The Transfer Map

Let v∞ be the valuation on F (t) with parameter t−1. The formulas in Theo-
rem

III.7.3
7.3 defining ∂∞ show that it vanishes onKM

∗ (F ). By Theorem
III.7.4
7.4, there are

unique homomorphisms Np : K
M
n (F [t]/p)→ KM

n (F ) so that −∂∞ =
∑

pNp∂p.

III.7.5 Definition 7.5. Let E be a finite field extension of F generated by an element
a. Then the transfer map, or norm map N = Na/F : KM

∗ (E)→ KM
∗ (F ), is the

unique map Np defined above, associated to the kernel p of the map F [t] → E
sending t to a.

We can calculate the norm of an element x ∈ KM
n (E) as Np(x) = −∂v∞(y),

where y ∈ KM
n+1F (t) is such that ∂p(y) = x and ∂p′(y) = 0 for all p′ 6= p.

If n = 0, the transfer map N : Z→ Z is multiplication by the degree [E : F ]
of the field extension, while if n = 1 the map N : E× → F× is the usual norm
map; see Ex.

EIII.7.5
7.5. We will show in

III.7.6
7.6 below that N is independent of the choice

of a ∈ E for all n. First we make two elementary observations.
If we let N∞ denote the identity map on KM

n (F ), and sum over the set of
all discrete valuations on F (t) which are trivial on F , the definition of the Nv
yields the:

III.7.5.1 Weil Reciprocity Formula 7.5.1.
∑
v Nv∂v(x) = 0 for all x ∈ KM

n F (t).

III.7.5.2 Projection Formula 7.5.2. Let E = F (a). Then for x ∈ KM
∗ (F ) and y ∈

KM
∗ (E) the map N = Na/F satisfies N{x, y} = {x,N(y)}.

Proof. The inclusions of F in F (t) and F [t]/p allow us to view KM
∗ F (t) and

KM
∗ (F [t]/p) as graded modules over the ring KM

∗ (F ). It follows from Theo-
rem

III.7.4
7.4 that each ∂p is a graded module homomorphism of degree −1. This

remark also applies to v∞ and ∂∞, because F (t) = F (t−1). Therefore each Np

is a graded module homomorphism of degree 0.

Taking y = 1 in KM
0 (E) = Z, so N(y) = [E : F ] by Ex.

EIII.7.5
7.5, this yields

III.7.5.3 Corollary 7.5.3. If the extension E/F has degree d, then the composition

KM
∗ (F )→ KM

∗ (E)
N−→ KM

∗ (F ) is multiplication by d. In particular, the kernel
of KM

∗ (F )→ KM
∗ (E) is annihilated by d.
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III.7.6 Definition 7.6. Let E = F (a1, . . . , ar) be a finite field extension of F . The
transfer map NE/F : KM

∗ (E)→ KM
∗ (F ) is defined to be the composition of the

transfer maps defined in
III.7.5
7.5:

KM
n (E)

Nar> KM
n (F (a1, . . . , ar−1))

Nar−1
> · · · KM

n (F (a1))
Na1> KM

n (F ).

The transfer map is well-defined by the following result of K. Kato.

III.7.6.1 Theorem 7.6.1. (Kato) The transfer map NE/F is independent of the choice
of elements a1, . . . , ar such that E = F (a1, . . . , ar). In particular, if F ⊂ F ′ ⊂ E
then NE/F = NF ′/FNE/F ′ .

The key trick used in the proof of this theorem is to fix a prime p and pass
from F to a union F ′ of finite extensions of F of degree prime to p such that
the degree of every finite extension of F ′ is a power of p. By Corollary

III.7.5.3
7.5.3 the

kernel of KM
n (F )→ KM

n (F ′) has no p-torsion.

III.7.6.2 Lemma 7.6.2. (Kato) If E is a normal extension of F , and [E : F ] is a prime
number p, then the map NE/F = Na/F : KM

∗ (E) → KM
∗ (F ) does not depend

upon the choice of a such that E = F (a).

Proof. If also E = F (b), then from Corollary
III.7.5.3
7.5.3 and Ex.

EIII.7.7
7.7 with F ′ = E we

see that δ(x) = Na/F (x) − Nb/F (x) is annihilated by p. If δ(x) 6= 0 for some
x ∈ KM

n (E) then, again by Corollary
III.7.5.3
7.5.3, δ(x) must be nonzero in KM

n (F ′),
where F ′ is a maximl prime-to-p extension, a union of finite extensions of F of
degree prime to p. Again by Ex.

EIII.7.7
7.7, we see that we may replace F by F ′ and

x by its image in KM
n (EF ′). Since the degree of every finite extension of F ′

is a power of p, the assertion for F ′ follows from Ex.
EIII.7.6
7.6, since the Projection

Formula
III.7.5.2
7.5.2 yields Na/F ′{y, x2, . . . , xn} = {N(y), x2, . . . , xn}.

III.7.6.3 Corollary 7.6.3. If in addition F is a complete discrete valuation field with
residue field kv, and the residue field of E is kw, the following diagram com-
mutes.

KM
n (E)

∂w
> KM

n−1(kw)

KM
n (F )

N
∨

∂v
> KM

n−1(kv)

N
∨

Proof. Ex.
EIII.7.6
7.6 implies that for each u ∈ KM

n (E) there is a finite field extension
F ′ of F such that [F ′ : F ] is prime to p and the image of u in Kn(EF

′) is
generated by elements of the form u′ = {y, x2, . . . , xn} (y ∈ EF ′, xi ∈ F ′). By
Ex.

EIII.7.7
7.7 and Ex.

EIII.7.8
7.8 it suffices to prove that Nkw/kv∂w(u) = ∂v(NEF ′/F ′u) for

every element u of this form. But this is an easy computation.
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III.7.6.4 Proposition 7.6.4. (Kato) Let E and F ′ = F (a) be extensions of F with E/F
normal of prime degree p. If E′ = E(a) denotes the composite field, the following
diagram commutes.

KM
∗ (E′)

Na/E
> KM

∗ (E)

KM
∗ (F ′)

N
∨ Na/F

> KM
∗ (F ).

N
∨

Proof. The vertical norm maps are well-defined by Lemma
III.7.6.2
7.6.2. Let π ∈ F [t]

and π′ ∈ E[t] be the minimal polynomials of a over F and E, respectively.
Given x ∈ KM

n (E′), we have Na/E(x) = −∂∞(y), where y ∈ KM
n+1E(t) satisfies

∂π′(y) = x and ∂w(y) = 0 if w 6= wπ′ . If v is a valuation on F (t), Ex.
EIII.7.9
7.9 gives:

∂v(NE(t)/F (t)y) =
∑

w|v

NE(w)/F (v)(∂wy) =





NE′/F ′(x) if v = vπ

NE/F (∂∞y) if v = v∞

0 else

in KM
∗ (F ′). Two applications of Definition

III.7.5
7.5 give the desired calculation:

Na/F (NE′/F ′x) = −∂∞(NE(t)/F (t)y) = −NE/F (∂∞y) = NE/F (Na/Fx).

Proof of Theorem
III.7.6.1
7.6.1. As in the proof of Lemma

III.7.6.2
7.6.2, we see from Corol-

lary
III.7.5.3
7.5.3 and Ex.

EIII.7.7
7.7 with F ′ = E that the indeterminacy is annihilated by

[E : F ]. Using the key trick of passing to a larger field, we may assume that the
degree of every finite extension of F is a power of a fixed prime p.

Let us call a tower of intermediate fields F = F0 ⊂ F1 ⊂ · · · ⊂ Fr =
E maximal if [Fi : Fi−1] = p for all i. By Lemma

III.7.6.2
7.6.2, the transfer maps

N : KM
∗ (Fi) → KM

∗ (Fi−1) are independent of the choice of a such that Fi =
Fi−1(a). If F ⊂ F1 ⊂ E and F ⊂ F ′ ⊂ E are maximal towers, Proposition

III.7.6.4
7.6.4

states that NF ′/FNE/F ′ = NF1/FNE/F1
, because if F ′ 6= F1 then E = F ′F1.

It follows by induction on [E : F ] that if F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E is a
maximal tower then the composition of the norm maps

KM
n (E)

N−→ KM
n (Fr−1)

N−→ · · ·KM
n (F1)

N−→ KM
n (F )

is independent of the choice of maximal tower.
Comparing any tower to a maximal tower, we see that it suffices to prove that

if F ⊂ F1 ⊂ F ′ is a maximal tower and F ′ = F (a) then Na/F = NF1/FNF ′/F1
.

But this is just Proposition
III.7.6.4
7.6.4 with E = F1 and E′ = F ′.

The dlog symbol and ν(n)F

For any field F , we write ΩnF for the nth exterior power of the vector space
Ω1
F = Ω1

F/Z of Kähler differentials (Ex.
EIII.2.6
2.6,

EIII.6.10
6.10). The direct sum over n forms

a graded-commutative ring Ω∗F , and the map dlog : F× → Ω1
F sending a to

da
a extends to a graded ring map from the tensor algebra T (F×) to Ω∗F . By
Ex.

EIII.6.10
6.10, l(a) ⊗ l(1 − a) maps to zero, so it factors through the quotient ring

KM
∗ (F ) of T (F×). We record this observation for later reference.
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III.7.7 Lemma 7.7. If F is any field, there is a graded ring homomorphism

dlog : KM
∗ (F )→ Ω∗F , dlog{a1, . . . , an} =

da1
a1
∧ · · · ∧ dan

an
.

Now let F be a field of characteristic p 6= 0, so that d(ap) = p da = 0. In
fact, if {xi} is a p-basis of F over F p then the symbols dxi form a basis of the
F -vector space Ω1

F . Note that the set dΩ
n−1
F of all symbols da1∧· · ·∧dan forms

an F p-vector subspace of ΩnF .

III.7.7.1 Definition 7.7.1. If char(F ) = p 6= 0, let ν(n)F denote the kernel of the Artin-
Schrier operator ℘ : ΩnF → ΩnF /dΩ

n−1
F , which is defined by

℘

(
x
da1
a1
∧ · · · ∧ dan

an

)
= (xp − x) da1

a1
∧ · · · ∧ dan

an
.

(In the literature, ℘+ 1 is the inverse of the “Cartier” operator.)

Clearly ℘(dlog{a1, . . . , an}) = 0, so the image of the dlog map lies in ν(n)F .
The following theorem, which implies that these symbols span ν(n)F , was proven
by Kato

Ka82
[101] for p = 2; for general p it was proven by Bloch, Kato and Gabber

BK
[26, 2.1].

III.7.7.2 Theorem 7.7.2. (Bloch-Kato-Gabber) Let F be a field of characteristic p 6= 0.
Then the dlog map induces an isomorphism for every n ≥ 0:

KM
n (F )/pKM

n (F ) ∼= ν(n)F .

Using this result, Bloch and Kato also proved that the p-torsion subgroup of
KM
n (F ) is divisible

BK
[26, 2.8]. Using this divisibility, Izhboldin found the following

generalization of Theorem
III.6.7
6.7; see

Izh
[95].

III.7.8 Izhboldin’s Theorem 7.8. If char(F ) = p, the groups KM
n (F ) have no p-

torsion.

Proof. We proceed by induction on n, the case n = 2 being Theorem
III.6.7
6.7. As

in the proof of Theorem
III.6.7
6.7, let x be an indeterminate and y = xp − x; the

field extension F (x)/F (y) is an Artin-Schrier extension, and its Galois group is
generated by an automorphism σ satisfying σ(x) = x+ 1. By Theorem

III.7.4
7.4, we

can regard KM
n (F ) as a subgroup of both KM

n F (x) and KM
n F (y).

For all field extensions E of F (y) linearly disjoint from F (x), i.e., with no
root of tp − t − y, write E(x) for the field E ⊗F (y) F (x). Let I(E) denote the
set of all p-torsion elements in KM

n E(x) of the form v − σ(v), v ∈ KM
n E(x),

and let P (E) denote the p-torsion subgroup of the kernel of the norm map
Nx/E : KM

n E(x) → KM
n (E). Since Nσ(v) = N(v), I(E) ⊆ P (E). Both I(E)

and P (E) vary naturally with E, and are equal by Proposition
III.7.8.2
7.8.2 below.

Fix u ∈ KM
n (F ) with pu = 0. The projection formula

III.7.5.2
7.5.2 shows that

the norm map KM
n F (x) → KM

n F (y) sends u to pu = 0. Hence u ∈ P (F (y)).
By Proposition

III.7.8.2
7.8.2, u ∈ I(F (y)), i.e., there is a v ∈ KM

n F (x) so that u =
v−σ(v) in KM

n F (x). Now apply the leading coefficient symbol λ of
III.7.3.2
7.3.2; since

λ(σv) = λ(v) we have: u = λ(u) = λ(v) − λ(σv) = 0. This proves Izhboldin’s
theorem.
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Before proceeding to Proposition
III.7.8.2
7.8.2, we need some facts about the group

I(E) defined in the proof of
III.7.8
7.8. We first claim that the transcendental extension

E ⊂ E(t) induces an isomorphism I(E) ∼= I(E(t)). Indeed, since E(x, t) is
purely transcendental over E(x), Theorem

III.7.4
7.4 and induction on n imply that

KM
n E(x) → KM

n E(x, t) is an isomorphism on p-torsion subgroups, and the
claim follows because the leading coefficient symbol

III.7.3.2
7.3.2 commutes with σ.

III.7.8.1 Lemma 7.8.1. The group I(E) is p-divisible.

Proof. Pick v ∈ KM
n E(x) so that u = v − σ(v) is in I(E). Now we invoke the

Bloch-Kato result, mentioned above, that the p-torsion subgroup of KM
n (L) is

divisible for every field L of characteristic p. By Theorem
III.7.7.2
7.7.2, this implies

that u vanishes in KM
n E(x)/p ∼= ν(n)E(x). By Ex.

EIII.7.12
7.12 and Theorem

III.7.7.2
7.7.2, the

class of v mod p comes from an element w ∈ KM
n (E), i.e., v−w = pv′ for some

v′ ∈ KM
n E(x). Then u = v− σ(v) = pv′− pσ(v′), it follows that u′ = v′− σ(v′)

is an element of I(E) with u = pu′.

We next claim that if E/E′ is a purely inseparable field extension then
I(E′) → I(E) is onto. For this we may assume that Ep ⊆ E′ ⊂ E. The
composition of the Frobenius map E → Ep with this inclusion induces the en-
domorphism of KM

n (E) sending {a1, . . . , an} to {ap1, . . . , apn} = pn{a1, . . . , an}.
Hence this claim follows from Lemma

III.7.8.1
7.8.1.

III.7.8.2 Proposition 7.8.2. For all E containing F (y), linearly disjoint from F (x),
P (E) = I(E).

Proof. We shall show that the obstruction V (E) = P (E)/I(E) vanishes. This
group has exponent p, because if u ∈ P (E) then

pu = pu−NEL/Eu = (p− 1− σ − · · · − σp−1)u
=
(
(1− σ) + (1− σ2) + · · ·+ (1− σp−1)

)
u

is in (1−σ)KM
n E(x) and hence in I(E). It follows that V (E) injects into I(E′)

whenever E′/E is an extension of degree prime to p.
Now we use the “Severi-Brauer” trick; this trick will be used again in chap-

ter V,
V.1.6
1.6, in connection with Severi-Brauer varieties. For each b ∈ E we let Eb

denote the field E(t1, . . . , tp−1, β) with t1, . . . , tp−1 purely transcendental over
E and βp − β − y +∑ bitpi = 0. It is known that b is in the image of the norm
map Eb(x)

× → E×b ; see
J37
[96]. Since E · (Eb)p is purely transcendental over E

(on β, tp2, ..., t
p
p−1), it follows that I(E) → I(Eb) is onto. Since Eb(x) is purely

transcendental over E(x) (why?), I(E(x)) = I(Eb(x)) and K
M
n E(x) embeds in

KM
n Eb(x) by Theorem

III.7.4
7.4. HenceKM

n (E(x))/I(E) embeds inKM
n Eb(x)/I(Eb).

Since V (E) ⊂ KM
n E(x)/I(E) by definition, we see that V (E) also embeds into

V (Eb).
Now if we take the composite of all the fields Eb, b ∈ E, and then form

its maximal algebraic extension E′ of degree prime to p, it follows that V (E)
embeds into V (E′). Repeating this construction a countable number of times
yields an extension field E′′ of E such that V (E) embeds into V (E′′) and every
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element of E′′ is a norm from E′′(x). Hence it suffices to prove that V (E′′) = 0.
The proof in this special case is completely parallel to the proof of Proposi-
tion III.6.6.2, and we leave the details to Ex.

EIII.7.13
7.13.

This completes the proof of Izhboldin’s Theorem
III.7.8
7.8.

III.7.8.3 Corollary 7.8.3 (Hilbert’s Theorem 90 for KM
∗ ). Let j : F ⊂ L be a degree p

field extension, with char(F ) = p, and let σ be a generator of G = Gal(L/F ).
Then KM

n (F ) ∼= KM
n (L)G, and the following sequence is exact for all n > 0:

0→ KM
n (F )

j∗−→ KM
n (L)

1−σ−→ KM
n (L)

N−→ KM
n (F ).

Proof. Since KM
n (F ) has no p-torsion, Corollary

III.7.5.3
7.5.3 implies that j∗ is an

injection. To prove exactness at the next spot, suppose that v ∈ KM
n (L) has

σ(v) = v. By Ex.
EIII.7.12
7.12 and Theorem

III.7.7.2
7.7.2, the class of v mod p comes from

an element w ∈ KM
n (F ), i.e., v − j∗(w) = pv′ for some v′ ∈ KM

n (L). Hence
pσ(v′) = σ(pv′) = pv′. Since KM

n (L) has no p-torsion, σ(v′) = v′. But then pv′

equals j∗N(v′) =
∑
σi(v′), and hence v = j∗(w) + j∗(Nv′). In particular, this

proves that KM
n (F ) ∼= KM

n (L)G.
To prove exactness at the final spot, note that G acts on KM

n (L), and that
ker(N)/im(1 − σ) is isomorphic to the cohomology group H1(G,KM

n (L)); see
WHomo
[223, 6.2.2]. Now consider the exact sequence of Gal(L/F )-modules

0→ KM
n (L)

p−→ KM
n (L)

(
III.7.7.2
7.7.2)

> ν(n)L → 0.

Using Ex.
EIII.7.12
7.12, the long exact sequence for group cohomology begins

0→ KM
n (F )

p−→ KM
n (F )→ ν(n)F → H1(G,KM

n (L))
p−→ H1(G,KM

n (L)).

But KM
n (F ) maps onto ν(n)F by Theorem

III.7.7.2
7.7.2, and the group H1(G,A) has

exponent p for all G-modules A
WHomo
[223, 6.5.8]. It follows that H1(G,KM

n (L)) = 0,
so ker(N) = im(1− σ), as desired.

III.7.8.4 Remark 7.8.4. Hilbert’s Theorem 90 for KM
n , which extends Theorem

III.6.6
6.6,

states that for any Galois extension F ⊂ E of degree p, with σ generating
Gal(E/F ), the following sequence is exact:

KM
n (E)

1−σ
> KM

n (E)
NE/F

> KM
n (F ).

This is a consequence of the Norm Residue Theorem (Chapter VI,
VI.4.1
4.1) and is

due to Voevodsky; we refer the reader to
HW
[82, 3.2] for a proof.

Relation to the Witt ring

Let F be a field of characteristic 6= 2. Recall from
II.5.6
5.6 of chapter II that the Witt

ring W (F ) is the quotient of the Grothendieck group K0SBil(F ) of symmetric
inner product spaces over F by the subgroup {nH} generated by the hyperbolic
form 〈1〉 ⊕ 〈−1〉. The dimension of the underlying vector space induces an
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augmentation K0SBil(F ) → Z, sending {nH} isomorphically onto 2Z, so it
induces an augmentation ε : W (F )→ Z/2.

We shall be interested in the augmentation ideals I = ker(ε) of W (F ) and
Î of K0SBil(F ). Since H ∩ Î = 0, we have Î ∼= I. Now I is generated by the
classes 〈a〉 − 1, a ∈ F − {0, 1}. The powers In of I form a decreasing chain of
ideals W (F ) ⊃ I ⊃ I2 ⊃ · · · .

For convenience, we shall write KM
n (F )/2 for KM

n (F )/2KM
n (F ).

III.7.9 Theorem 7.9. (Milnor) There is a unique surjective homomorphism

sn : K
M
n (F )/2→ In/In+1

sending each product {a1, . . . , an} in KM
n (F ) to the product

∏n
i=1

(
〈ai〉 − 1

)

modulo In+1. The homomorphisms s1 and s2 are isomorphisms.

Proof. Because
(
〈a〉 − 1

)
+
(
〈b〉 − 1

)
≡ 〈ab〉 − 1 modulo I2 (II.

II.5.6.5
5.6.5), the

map l(a1) × · · · × l(an) 7→
∏(〈ai〉 − 1

)
is a multilinear map from F× to

In/In+1. Moreover, if ai + ai+1 = 1 for any i, we know from Ex. II.
EII.5.12
5.12 that(

〈ai〉 − 1
)(
〈ai+1〉 − 1

)
= 0. By the presentation of KM

∗ (F ), this gives rise to a
group homomorphism fromKM

n (F ) to In/In+1. It annihilates 2KM
∗ (F ) because

〈a2〉 = 1:

2sn{a1, . . . , an} = sn{a21, a2 . . . } =
(
〈a21〉 − 1

) n∏

i=2

(
〈ai〉 − 1

)
= 0.

It is surjective because I is generated by the
(
〈a〉 − 1

)
. When n = 1 the map

is Pfister’s isomorphism F×/F×2 ∼= I/I2 of II.
II.5.6.4
5.6.4. We will see that s2 is an

isomorphism in Corollary
III.7.10.3
7.10.3 below, using the Hasse invariant w2.

III.7.9.1 Example 7.9.1. For the real numbers R, we have W (R) = Z and I = 2Z on
s1(−1) = 〈−1〉 − 1 = 2〈−1〉. On the other hand, we saw in Example

III.7.2
7.2(c)

that KM
n (R)/2 ∼= Z/2 on {−1, . . . ,−1}. In this case each sn is the isomorphism

Z/2 ∼= 2nZ/2n+1Z.
At the other extreme, if F is algebraically closed then W (F ) = Z/2. Since

KM
n (F ) is divisible, KM

n (F )/2 = 0 for all n ≥ 1. Here sn is the isomorphism
0 = 0.

III.7.9.2 Remark 7.9.2. In 1970, Milnor asked if the surjection sn : K
M
n (F )/2 →

In/In+1 is an isomorphism for all n and F , char(F ) 6= 2 (on p. 332 of
M-QF
[130]).

Milnor proved this was so for local and global fields. This result was proven for
all fields and all n by Orlov, Vishik and Voevodsky in

OVV
[148].

III.7.10 Stiefel-Whitney invariant 7.10. The total Stiefel–Whitney invariant w(M)
of the symmetric inner product space M = 〈a1〉 ⊕ · · · ⊕ 〈an〉 is the element of∏∞
i=0K

M
i (F )/2 defined by the formula

w(M) =
n∏

i=1

(
1 + l(ai)

)
= 1 + l(a1 · · · an) + · · ·+ {a1, . . . , an}
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The lemma below shows that w(M) is independent of the representation of M
as a direct sum of 1-dimensional forms. We write w(M) = 1+w1(M)+w2(M)+
· · · , where the ith Stiefel–Whitney invariant wi(M) ∈ KM

i (F )/2 equals the ith

elementary symmetric function of l(a1), . . . , l(an).
For example, w1(M) = a1 · · · an ∈ F×/F×2 is just the classical “discrimi-

nant” of M defined in II.
II.5.6.3
5.6.3, while the second elementary symmetric function

w2(M)=
∑
i<j{ai, aj} lies in K2(F )/2 and is called the Hasse invariant of M ;

see
M-SBF
[133].
ForM = 〈a〉⊕〈b〉 we have w1(M) = ab and w2(M) = {a, b}, with wi(M) = 0

for i ≥ 3. In particular, the hyperbolic plane H has wi(H) = 0 for all i ≥ 2.

III.7.10.1 Lemma 7.10.1. w(M) is a well-defined unit in the ring
∏∞
i=1K

M
i (F )/2. It

satisfies the Whitney sum formula

w(M ⊕N) = w(M)w(N),

so w extends to a function on K0SBil(F ). Hence each Stiefel–Whitney invariant

wi extends to a function K0SBil(F )
wi−→ KM

i (F )/2.

Proof. To show that w(M) is well defined, it suffices to consider the rank two
case. Suppose that 〈a〉 ⊕ 〈b〉 ∼= 〈α〉 ⊕ 〈β〉. Then the equation ax2 + by2 = α
must have a solution x, y in F . The case y = 0 (or x = 0) is straightforward,
since 〈α〉 = 〈ax2〉 = 〈a〉, so we may assume that x and y are nonzero. Since the
discriminant w1 is an invariant, we have ab = αβu2 for some u ∈ F , and all we
must show is that {a, b} = {α, β} in K2(F )/2. The equation 1 = ax2/α+by2/α
yields the equation

0 = {ax2/α, by2/α} ≡ {a, b}+ {α, α} − {a, α} − {b, α} ≡ {a, b} − {α, ab/α}
in K2(F )/2K2(F ). Substituting ab = αβu2, this implies that {a, b} ≡ {α, β}
modulo 2K2(F ), as desired.

III.7.10.2 Example 7.10.2. Since I ∼= Î, we may consider the wi as functions on I ⊆
W (F ). However, care must be taken as w2(M) need not equal w2(M ⊕ H).
For example, w2(M ⊕ H) = w2(M) + {w1(M),−1}. In particular, w2(H ⊕
H) = {−1,−1} can be nontrivial. The Hasse–Witt invariant of an element
x ∈ I ⊂ W (F ) is defined to be h(x) = w2(V,B), where (V,B) is an inner
product space representing x so that dim(V ) ≡ 0 mod 8.

III.7.10.3 Corollary 7.10.3. The Hasse invariant w2 : Î → K2(F )/2 induces an isomor-
phism from Î2/Î3 ∼= I2/I3 to KM

2 (F )/2, inverse to the map s2 of Theorem
III.7.9
7.9.

Proof. By Ex.
EIII.7.11
7.11, w2 vanishes on the ideal Î3 ∼= I3, and hence defines a

function from Î2/Î3 to K2(F )/2. Since the total Stiefel–Whitney invariant of
s2{a, b} =

(
〈a〉 − 1

)(
〈b〉 − 1

)
is 1 + {a, b}, this function provides an inverse to

the function s2 of Theorem
III.7.9
7.9.

If char(F ) = 2, there is an elegant formula for the filtration quotients of
the Witt ring W (F ) and the W (F )-module WQ(F ) (see §II.5) due to K. Kato
Ka82
[101]. Recall from

III.7.7.2
7.7.2 that KM

n (F )/2 ∼= ν(n)F , where ν(n)F is the kernel of
the operator ℘. The case n = 0 of Kato’s result was described in Ex. II.

EII.5.13
5.13(d).
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III.7.10.4 Theorem 7.10.4. (Kato
Ka82
[101]) Let F be a field of characteristic 2. Then the

map sn of Theorem
III.7.9
7.9 induces an isomorphism KM

n (F )/2 ∼= ν(n)F ∼= In/In+1,
and there is a short exact sequence

0→ In/In+1 → ΩnF
℘−→ ΩnF /dΩ

n−1
F → In WQ(F )/In+1 WQ(F )→ 0.

The Norm Residue symbol

For the next result, we need some facts about Galois cohomology, ex-
panding slightly upon the facts mentioned in

III.6.10
6.10. Assuming that n is

prime to char(F ), there are natural cohomology cup products Hi
et(F ;M) ⊗

Hj
et(F ;N)

∪−→ Hi+j
et (F ;M ⊗N) which are associative in M and N . This makes

the direct sum H∗et(F ;M
⊗∗) = ⊕∞i=0H

i
et(F ;M

⊗i) into a graded-commutative
ring for every Z/n-module M over the Galois group Gal(Fsep/F ). (By conven-
tion, M⊗0 is Z/n.) In particular, both H∗et(F ;Z/n) and H

∗
et(F ;µ

⊗∗
n ) are rings,

and are isomorphic only when F contains a primitive nth root of unity.

III.7.11 Theorem 7.11 (Norm Residue Symbols). (Bass-Tate) Fix a field F and an in-
teger n prime to char(F ).

(1) If F contains a primitive nth root of unity, the Kummer isomorphism from
F×/F×n to H1

et(F ;Z/n) extends uniquely to a graded ring homomorphism

hF : KM
∗ (F )/n→ H∗(F ;Z/n).

(2) More generally, the Kummer isomorphism from F×/F×n to H1(F ;µn)
extends uniquely to a graded ring homomorphism

hF : KM
∗ (F )/n→ H∗et(F ;µ

⊗∗
n ) = ⊕∞i=0H

i
et(F ;µ

⊗i
n ).

The individual maps KM
i (F ) → Hi

et(F ;µ
⊗i
n ) are called the norm residue sym-

bols, and also higher Galois symbols.

Proof. The first assertion is just a special case of the second assertion. As
in (

III.6.10.2
6.10.2), the Kummer isomorphism induces a map from the tensor algebra

T (F×) to H∗et(F ;µ
⊗∗
n ), which in degree i is the iterated cup product

F× ⊗ · · ·F× = (F×)⊗n ∼=
(
H1

et(F ;µn)
)⊗i ∪−→ Hi

et(F ;µ
⊗i
n ).

By Proposition
III.6.10.3
6.10.3, the Steinberg identity is satisfied in H2

et(F, µ
⊗2
n ). Hence

the presentation of KM
∗ (F ) yields a ring homomorphism from KM

∗ (F ) to
H∗et(F ;µ

⊗∗
n ).

III.7.11.1 Remark 7.11.1. In his seminal paper
M-QF
[130], Milnor studied the norm residue

symbol for KM
n (F )/2 and stated (on p.340) that, “I do not know any examples

for which the homomorphism hF fails to be bijective.” Voevodsky proved that
hF is an isomorphism for n = 2ν in his 2003 paper

V-MC
[211]. The proof that the

hF is an isomorphism for all n prime to char(F ) was proven a few years later;
see VI.

VI.4.1.1
4.1.1.
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EXERCISES

EIII.7.1 7.1. Let v be a discrete valuation on a field F . Show that the maps
λ : KM

n (F ) → KM
n (kv) and ∂v : K

M
n (F ) → KM

n−1(kv) of Theorem
III.7.3
7.3 are in-

dependent of the choice of parameter π, and that they vanish on l(u) ·KM
n−1(F )

whenever u ∈ (1 + πR). Show that the map λ also vanishes on l(π) ·KM
n−1(F ).

EIII.7.2 7.2. Continuing Exercise
EIII.7.1
7.1, show that the kernel of the map d : KM

n (F )→ Ln
of Theorem

III.7.3
7.3 is exactly l(1 + πR) ·KM

n−1(F ). Conclude that the kernel of the
map λ is exactly l(1 + πR) ·KM

n−1(F ) + l(π) ·KM
n−1(F ).

EIII.7.3 7.3. (Bass-Tate) Generalize Theorem
III.6.4
6.4 to show that for all n ≥ 2:

(a) If F is an algebraically closed field, then KM
n (F ) is uniquely divisible.

(b) If F is a perfect field of characteristic p thenKM
n (F ) is uniquely p-divisible.

EIII.7.4 7.4. Let F be a local field with valuation v and finite residue field k. Show that
KM
n (F ) is divisible for all n ≥ 3. Hint: By Moore’s Theorem

III.6.2.4
6.2.4, KM

n (F ) is
ℓ-divisible unless F has a ℓth root of unity. Moreover, for every x /∈ F×ℓ there is
a y /∈ F×ℓ so that {x, y} generates K2(F )/ℓ. Given a, b, c with {b, c} 6∈ ℓK2(F ),
find a′, b′ 6∈ F×ℓ so that {b′, c} ≡ 0 and {a′, b′} ≡ {a, b} modulo ℓK2(F ), and
observe that {a, b, c} ≡ {a′, b′, c} ≡ 0.

In fact, I. Sivitskii has shown that KM
n (F ) is uniquely divisible for n ≥ 3

when F is a local field. See
Siv
[169]. We will give a proof of this in VI.

VI.7.1
7.1.

EIII.7.5 7.5. Let E = F (a) be a finite extension of F , and consider the transfer map
N = Na/F : KM

n (E)→ KM
n (F ) in Definition

III.7.5
7.5. Use Weil’s Formula (

III.7.5.1
7.5.1) to

show that when n = 0 the transfer map N : Z→ Z is multiplication by [E : F ],
and that when n = 1 the transfer map N : E× → F× is the usual norm map.

EIII.7.6 7.6. Suppose that the degree of every finite extension of a field F is a power of
some fixed prime p. If E is an extension of degree p and n > 0, use Ex.

EIII.6.2
6.2 to

show that KM
n (E) is generated by elements of the form {y, x2, . . . , xn}, where

y ∈ E× and the xi are in F×.

EIII.7.7 7.7. Ramification and the transfer. Let F ′ and E = F (a) be finite field ex-
tensions of F , and suppose that the irreducible polynomial π ∈ F [t] of a has
a decomposition π =

∏
πeii in F ′[t]. Let Ei denote F

′(ai), where each ai has
minimal polynomial πi. Show that the following diagram commutes.

KM
n (E)

e1, . . . , er
> ⊕KM

n (Ei)

KM
n (F )

Na/F
∨

> KM
n (F ′)

∑
Nai/F ′

∨

EIII.7.8 7.8. Ramification and ∂v. Suppose that E is a finite extension of F , and that
w is a valuation on E over the valuation v on F , with ramification index e. (See
III.6.3.1
6.3.1.) Use the formulas for ∂v and ∂w in Theorem

III.7.3
7.3 to show that for every

x ∈ KM
n (F ) we have ∂w(x) = e · ∂v(x) in KM

n−1(kw).
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EIII.7.9 7.9. If E/F is a normal extension of prime degree p, and v is a valuation on
F (t) trivial on F , show that ∂vNE(t)/F (t) =

∑
wNE(w)/F (v)∂w, where the sum

is over all the valuations w of E(t) over v. Hint: If F (t)v and E(t)w denote
the completions of F (t) and E(t) at v and w, respectively, use Ex.

EIII.7.7
7.7 and

Lemma
III.7.6.3
7.6.3 to show that the following diagram commutes.

KM
n+1E(t) >

⊕

w

KM
n+1E(t)w

∂
>
⊕

w

KM
n E(w)

KM
n+1F (t)

NE(t)/F (t)

∨
> KM

n+1F (t)v

∑
wNE(t)w/F (t)v

∨
∂

> KM
n F (v)

∑
wNe(w)/F (v)

∨

EIII.7.10 7.10. If v is a valuation on F , and x ∈ KM
i (F ), y ∈ KM

j (F ), show that

∂v(xy) = λ(x)∂v(y) + (−1)j∂v(x)ρ(y)

where ρ : KM
∗ (F ) → KM

∗ (kv) is a ring homomorphism characterized by the
formula ρ(l(uπi)) = l((−1)iū).

EIII.7.11 7.11. Let t = 2n−1 and set z =
∏n
i=1

(
〈ai〉 − 1

)
; this is a generator of the ideal

În in K0SBil(F ). Writing s for {a1, . . . , an,−1,−1, . . . ,−1} ∈ KM
t (F )/2, show

that the Stiefel–Whitney invariant w(z) is equal to: 1 + s if n is odd, and to
(1 + s)−1 if n is even. This shows that the invariants wi vanish on the ideal În

if i < t = 2n−1, and that wt induces a homomorphism from In/In+1 ∼= În/În+1

to KM
t (F )/2. For example, this implies that w1 vanishes on Î2, while w2 and

w3 vanish on Î3.

EIII.7.12 7.12. (Izhboldin) Let L/F be a field extension of degree p = char(F ), with
Galois group G. Show that ΩnF is isomorphic to (ΩnL)

G, and that ΩnF /dΩ
n−1
F is

isomorphic to (ΩnL/dΩ
n−1
L )G. Conclude that ν(n)F ∼= ν(n)GL .

EIII.7.13 7.13. In this exercise we complete the proof of Proposition
III.7.8.2
7.8.2, and establish

a special case of
III.7.8.3
7.8.3. Suppose that E(x) is a degree p field extension of E,

char(E) = p, and that σ is a generator of Gal(E(x)/E). Suppose in addition
that the norm map E(x)× → E× is onto, and that E has no extensions of degree
< p. Modify the proof of proposition

III.6.6.2
6.6.2 to show that the following sequence

is exact:
KM
n E(x)

1−σ−→ KM
n E(x)

N−→ KM
n E → 0.

EIII.7.14 7.14. Suppose that F is a field of infinite transcendence degree κ over its
ground field. Show that the image of the dlog symbol of

III.7.7
7.7 lies in the ker-

nel of ΩnF
d−→ Ωn+1

F . Using Ex.
EIII.6.11
6.11, show that KM

n (F ) has cardinality κ for all
n > 0.

If F is a local field, this and Ex.
EIII.7.4
7.4 implies that KM

n (F ) is an uncountable,
uniquely divisible abelian group.
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Definitions of higher

K-theory

The higher algebraicK-groups of a ring R are defined to be the homotopy groups
Kn(R) = πnK(R) of a certain topological space K(R), which we shall construct
in this chapter. Of course, the space K(R) is rigged so that if n = 0, 1, 2 then
πnK(R) agrees with the groups Kn(R) constructed in chapters II and III.

We shall also define the higher K-theory of a category A in each of the
three settings where K0(A) was defined in chapter II: when A is a symmetric
monoidal category (§4), an exact category (§6) and a Waldhausen category (§8).
In each case we build a “K-theory space” KA and define the group KnA to
be its homotopy groups: KnA = πnKA. Of course the group π0KA will agree
with the corresponding group K0A defined in chapter II.

We will show these definitions of KnA coincide whenever they coincide for
K0. For example, the group K0(R) of a ring R was defined in §II.2 as K0 of the
category P(R) of finitely generated projective R-modules, but to define K0P(R)
we could also regard the category P(R) as being either a symmetric monoidal
category (II.

II.5.2
5.2), an exact category (II.

II.7.1
7.1) or a Waldhausen category (II.

II.9.1.3
9.1.3).

We will show that the various constructions give homotopy equivalent spaces
KP(R), and hence the same homotopy groups. Thus the groups Kn(R) =
πnKP(R) will be independent of the construction used.

Many readers will not be interested in the topological details, so we have
designed this chapter to allow “surfing.” Since the most non-technical way to
construct K(R) is to use the “+”–construction, we will do this in §1 below. The
second (short) section defines K-theory with finite coefficients, as the homotopy
groups of K(R) with finite coefficients. These have proved to be remarkably
useful in describing the structure of the groups Kn(R), especially as related to
étale cohomology. This is illustrated by the results in chapter VI.

In §3, we summarize the basic facts about the geometric realization BC of
a category C, and the basic connection between category theory and homotopy
theory needed for the rest of the constructions. Indeed, the K-theory space
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KA is constructed in each setting using the geometric realization BC of some
category C, concocted out of A. For this, we assume only that the reader has
a slight familiarity with cell complexes, or CW complexes, which are spaces
obtained by successive attachment of cells, with the weak topology.

Sections 4–9 give the construction of the K-theory spaces. Thus in §4 we
have group completion constructions for a symmetric monoidal category S, such
as the S−1S construction, and the connection with the +–construction. It is
used in §5 to construct λ-operations on K(R). Quillen’s Q–construction for
abelian and exact categories is given in §6; in §7 we prove the “+ = Q” theorem,
that theQ–construction and group completion constructions agree for split exact
categories (II.

II.7.1.2
7.1.2). The wS• construction for Waldhausen categories is in §8,

along with its connection to the Q–construction. In §9 we give an alternative
construction for exact categories, due to Gillet and Grayson.

Section 10 gives a construction of the non-connective spectrum for algebraic
K-theory of a ring, whose negative homotopy groups are the negative K-groups
of Bass developed in Section III.4. Sections 11 and 12 are devoted to Karoubi-
Villamayor K-theory and the homotopy-invariant version KH of K-theory. We
will return to this topic in chapter V.

1 The BGL+ definition for rings

Let R be an associative ring with unit. Recall from chapter III that the infi-
nite general linear group GL(R) is the union of the groups GLn(R), and that
its commutator subgroup is the perfect group E(R) generated by the elemen-
tary matrices eij(r). Moreover the group K1(R) is defined to be the quotient
GL(R)/E(R).

In 1969, Quillen proposed defining the higher K-theory of a ring R to be
the homotopy groups of a certain topological space, which he called BGL(R)+.
Before describing the elementary properties of Quillen’s construction, and the
related subject of acyclic maps, we present Quillen’s description of BGL(R)+

and define the groups Kn(R) for n ≥ 1.
For any group G, we can naturally construct a connected topological space

BG whose fundamental group is G, but whose higher homotopy groups are zero.
Details of this construction are in §3 below (see

IV.3.1.3
3.1.3). Moreover, the homology

of the topological space BG (with coefficients in a G-module M) coincides with
the algebraic homology of the group G (with coefficients in M); the homology
of a space X with coefficients in a π1(X)-module is defined in

Wh
[228, VI.1–4].

For G = GL(R) we obtain the space BGL(R), which is central to the following
definition.

IV.1.1 Definition 1.1. The notation BGL(R)+ will denote any CW complexX which
has a distinguished map BGL(R)→ BGL(R)+ such that

(1) π1BGL(R)
+ ∼= K1(R), and the natural map from GL(R) = π1BGL(R)

to π1BGL(R)
+ is onto with kernel E(R);
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(2) H∗(BGL(R);M)
∼=−→ H∗(BGL(R)

+;M) for every K1(R)-module M .

We will sometimes say that X is a model for BGL(R)+.
For n ≥ 1, Kn(R) is defined to be the homotopy group πnBGL(R)

+.

By Theorem
IV.1.5
1.5 below, any two models are homotopy equivalent, i.e., the

space BGL(R)+ is uniquely defined up to homotopy. Hence the homotopy
groups Kn(R) of BGL(R)

+ are well-defined up to a canonical isomorphism.
By construction, K1(R) agrees with the group K1(R) = GL(R)/E(R) de-

fined in Chapter III. We will see in
IV.1.7.1
1.7.1 below that K2(R) = π2BGL

+(R)
agrees with the group K2(R) defined in Chapter III.

Several distinct models for BGL(R)+ are described in
IV.1.9
1.9 below. We will

construct even more models for BGL(R)+ in the rest of this chapter: the space
P−1P(R) of §3, the space ΩBQP(R) of §5 and the space Ω(isoS•S) arising
from the Waldhausen construction in §8.

IV.1.1.1 Definition 1.1.1. Write K(R) for the product K0(R) × BGL(R)+. That is,
K(R) is the disjoint union of copies of the connected space BGL(R)+, one for
each element of K0(R). By construction, K0(R) = π0K(R). Moreover, it is
clear that πnK(R) = πnBGL(R)

+ = Kn(R) for n ≥ 1.

IV.1.1.2 Functoriality 1.1.2. Each Kn is a functor from rings to abelian groups, while
the topological spaces BGL(R)+ and K(R) are functors from rings to the ho-
motopy category of topological spaces. However, without more information
about the models used, the topological maps BGL(R)+ → BGL(R′)+ are only
well-defined up to homotopy.

To see this, note that any ring map R → R′ induces a natural group map
GL(R) → GL(R′), and hence a natural map BGL(R) → BGL(R′). This
induces a map BGL(R)+ → BGL(R′)+, unique up to homotopy, by The-
orem

IV.1.5
1.5 below. Thus the group maps Kn(R) → Kn(R

′) are well defined.
Since the identity of R induces the identity on BGL(R)+, only composition
remains to be considered. Given a second map R′ → R′′, the composition
BGL(R) → BGL(R′) → BGL(R′′) is induced by R → R′′ because BGL
is natural. By uniqueness in Theorem

IV.1.5
1.5, the composition BGL(R)+ →

BGL(R′)+ → BGL(R′′)+ must be homotopy equivalent to any a priori map
BGL(R)+ → BGL(R′′)+.

It is possible to modify the components of K(R) = K0(R) × BGL(R)+ up
to homotopy equivalence in order to form a homotopy-commutative H-space
in a functorial way, using other constructions (see

IV.4.11.1
4.11.1). Because the map

K1(R/I)→ K0(R, I) is nontrivial (see III.
III.2.3
2.3), K(R) is not the product of the

H-space BGL(R)+ and the discrete group K0(R) in a natural way.

IV.1.1.3 Transfer maps 1.1.3. If R → S is a ring map such that S ∼= Rd as an R-
module, the isomorphisms Sm ∼= Rmd induce a group map GL(S) → GL(R)
and hence a map BGL(S)+ → BGL(R)+, again unique up to homotopy. On
homotopy groups, the maps Kn(S)→ Kn(R) are called transfer maps. We will
see another construction of these maps in

IV.6.3.2
6.3.2 below.
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We shall be interested in the homotopy fiber of the map BGL(R) →
BGL(R)+.

IV.1.2 Homotopy Fiber 1.2. The maps π∗E → π∗B induced by a continuous map

E
f−→ B can always be made to fit into a long exact sequence, in a natural way.

The homotopy fiber F (f) of a f , relative to a basepoint ∗B of B, is the space
of pairs (e, γ), where e ∈ E and γ : [0, 1] → B is a path in B starting at the
basepoint γ(0) = ∗B , and ending at γ(1) = f(e). A sequence of based spaces

F → E
f−→ B with F → B constant is called a homotopy fibration sequence if

the evident map F → F (f) (using γ(t) = ∗B) is a homotopy equivalence.
The key property of the homotopy fiber is that (given a basepoint ∗E with

f(∗E) = ∗B) there is a long exact sequence of homotopy groups/pointed sets

· · ·πn+1B
∂−→ πnF (f)→ πnE → πnB

∂−→ πn−1F (f)→ · · ·
· · · ∂−→ π1F (f)→ π1E → π1B

∂−→ π0F (f)→ π0E → π0B.

When E → B is an H-map of H-spaces, F (f) is also an H-space, and the maps
ending the sequence are product-preserving.

Acyclic Spaces and Acyclic Maps

The definition of BGL(R)+ fits into the general framework of acyclic maps,
which we now discuss. Our discussion of acyclicity is taken from

HH
[87] and

Berrick
[23].

IV.1.3 Definition 1.3. (Acyclic spaces) We call a topological space E acyclic if it has

the homology of a point, that is, if H̃∗(E;Z) = 0.

IV.1.3.1 Lemma 1.3.1. Let E be an acyclic space. Then E is connected, its fundamen-
tal group G = π1(E) is a perfect group, and H2(G;Z) = 0.

Proof. The acyclic space E must be connected, as H0(E) = Z. Because
G/[G,G] = H1(E;Z) = 0, we have G = [G,G], i.e., G is a perfect group. To
calculate H2(G), observe that the universal covering space Ẽ has H1(Ẽ;Z) = 0.
Moreover, the homotopy fiber (

IV.1.2
1.2) of the canonical map E → BG is homo-

topy equivalent to Ẽ; to see this, consider the long exact sequence of homo-
topy groups

IV.1.2
1.2. The Serre Spectral Sequence for this homotopy fibration is

E2
pq = Hp(G;Hq(Ẽ;Z)) ⇒ Hp+q(E;Z) and the conclusion that H2(G;Z) = 0

follows from the associated exact sequence of low degree terms:

H2(E;Z)→ H2(G;Z)
d2−→ H1(Ẽ;Z)G → H1(E;Z)→ H1(G;Z).

IV.1.3.2 Example 1.3.2. (Volodin Spaces) The Volodin space X(R) is an acyclic sub-
space of BGL(R), constructed as follows. For each n, let Tn(R) denote the
subgroup of GLn(R) consisting of upper triangular matrices with 1’s on the
diagonal. As n varies, the union of these groups forms a subgroup T (R) of
GL(R). Similarly we may regard the permutation groups Σn as subgroups of
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GLn(R) by their representation as permutation matrices, and their union (the
infinite permutation group Σ∞) is a subgroup of GL(R). For each σ ∈ Σn, let
T σn (R) denote the subgroup of GLn(R) obtained by conjugating Tn(R) by σ.
For example, if σ = (n . . . 1) then T σn (R) is the subgroup of lower triangular
matrices.

Since the classifying spaces BTn(R) and their conjugates BTn(R)
σ are sub-

spaces of BGLn(R), and hence of BGL(R), we may form their union over all
n and σ: X(R) =

⋃
n,σ BTn(R)

σ. The space X(R) is acyclic (see
Su81
[180]). Since

X(R) was first described by Volodin in 1971, it is usually called the Volodin
space of R.

The image of the map π1X(R) → GL(R) = π1BGL(R) is the group E(R).
To see this, note that π1(X) is generated by the images of the π1BTn(R)

σ, the
image of the composition π1BT

σ
n (R) → π1(X) → π1BGL(R) = GL(R) is the

subgroup T σn (R) of E(R), and every generator eij(r) of E(R) is contained in
some T σn (R).

IV.1.4 Definition 1.4. (Acyclic maps) Let X and Y be based connected CW com-
plexes. A map f : X → Y is called acyclic if the homotopy fiber F (f) of f is
acyclic (has the homology of a point). This implies that F (f) is connected and
π1F (f) is a perfect group.

From the exact sequence π1F (f)→ π1(X)→ π1(Y )→ π0F (f) of homotopy
groups/pointed sets, we see that if X → Y is acyclic then the map π1(X) →
π1(Y ) is onto, and its kernel P is a perfect normal subgroup of π1(X).

IV.1.4.1 Definition 1.4.1. Let P be a perfect normal subgroup of π1(X), where X is
a based connected CW complex. An acyclic map f : X → Y is called a +–
construction on X (relative to P ) if P is the kernel of π1(X)→ π1(Y ).

IV.1.4.2 Example 1.4.2. If X is acyclic, the map X → point is acyclic. By Ex.
EIV.1.2
1.2, it

is a +–construction.

When Quillen introduced the notion of acyclic maps in 1969, he observed
that both Y and the map f are determined up to homotopy by the subgroup
P . This is the content of the following theorem; its proof uses topological
obstruction theory. Part (1) is proven in Ex.

EIV.1.4
1.4; an explicit proof may be

found in §5 of
Berrick
[23].

IV.1.5 Theorem 1.5. (Quillen) Let P be a perfect normal subgroup of π1(X). Then

(1) There is a +–construction f : X → Y relative to P

(2) Let f : X → Y be a +–construction relative to P , and g : X → Z a map
such that P vanishes in π1(Z). Then there is a map h : Y → Z, unique
up to homotopy, such that g = hf .

(3) In particular, if g is another +–construction relative to P , then the map
h in (2) is a homotopy equivalence: h : Y

∼−→ Z.
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IV.1.5.1 Remark 1.5.1. Every group G has a unique largest perfect subgroup P , called
the perfect radical of G, and it is a normal subgroup of G; see Ex.

EIV.1.5
1.5. If no

mention is made to the contrary, the notation X+ will always denote the +–
construction relative to the perfect radical of π1(X).

The first construction along these lines was announced by Quillen in 1969,
so we have adopted Quillen’s term “+–construction” as well as his notation. A
good description of his approach may be found in

HH
[87] or

Berrick
[23].

IV.1.6 Lemma 1.6. Let X and Y be connected CW complexes. A map f : X → Y is
acyclic if and only if H∗(X,M) ∼= H∗(Y,M) for every π1(Y )-module M .

Proof. Suppose first that f is acyclic, with homotopy fiber F (f). Since the
map π1F (f)→ π1Y is trivial, π1F (f) acts trivially upon M . By the Universal
Coefficient Theorem, Hq(F (f);M) = 0 for q 6= 0 and H0(F (f);M) = M .
Therefore E2

pq = 0 for q 6= 0 in the Serre Spectral Sequence for f :

E2
pq = Hp(Y ;Hq(F (f);M))⇒ Hp+q(X;M).

The spectral sequence collapses to yield Hp(X;M)
∼=→Hp(Y ;M) for all p.

Conversely, we suppose first that π1Y = 0 and H∗(X;Z) ∼= H∗(Y ;Z). By

the Comparison Theorem for the Serre Spectral Sequences for F (f)→ X
f−→ Y

and ∗ → Y
=−→ Y , we have H̃∗(F (f);Z) = 0. Hence F (f) and f are acyclic.

The general case reduces to this by the following trick. Let Ỹ denote the
universal covering space of Y , and X̃ = X ×Y Ỹ the corresponding cover-
ing space of X. Then there are natural isomorphisms H∗(Ỹ ;Z) ∼= H∗(Y ;M)
and H∗(X̃;Z) ∼= H∗(X;M), where M = Z[π1(Y )]. The assumption that
H∗(X;M) ∼= H∗(Y ;M) implies that the map f̃ : X̃ → Ỹ induces isomor-
phisms on integral homology. But π1(Ỹ ) = 0 so, by the special case above,
the homotopy fiber F (f̃) of f̃ is an acyclic space. But by path lifting we have
F (f̃) ∼= F (f), so F (f) is acyclic. Thus f is an acyclic map.

Recall from III.
III.5.4
5.4 that every perfect group P has a universal central exten-

sion E → P , and that the kernel of this extension is the abelian group H2(P ;Z).

IV.1.7 Proposition 1.7. Let P be a perfect normal subgroup of a group G, with cor-
responding +–construction f : BG → BG+. If F (f) is the homotopy fiber of f
then π1F (f) is the universal central extension of P , and π2(BG

+) ∼= H2(P ;Z).

Proof. We have an exact sequence

π2(BG)→ π2(BG
+)→ π1F (f)→ G→ G/P → 1.

But π2(BG) = 0, and π2(BG
+) is in the center of π1F (f) by

Wh
[228, IV.3.5]. Thus

π1F (f) is a central extension of P with kernel π2(BG
+). But F (f) is acyclic,

so π1F (f) is perfect and H2(F ;Z) = 0 by
IV.1.3.1
1.3.1. By the Recognition Theorem

III.
III.5.4
5.4, π1F (f) is the universal central extension of P .
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Recall from Theorem III.
III.5.5
5.5 that the Steinberg group St(R) is the universal

central extension of the perfect group E(R). Thus we have:

IV.1.7.1 Corollary 1.7.1. The group K2(R) = π2BGL(R)
+ is isomorphic to the group

K2(R) ∼= H2(E(R);Z) of Chapter III.

In fact, we will see in Ex.
EIV.1.8
1.8 and

EIV.1.9
1.9 that Kn(R) ∼= πn(BE(R)+) for all

n ≥ 2, and Kn(R) ∼= πn(BSt(R)
+) for all n ≥ 3, with K3(R) ∼= H3(St(R);Z).

IV.1.7.2 Corollary 1.7.2. The fundamental group π1X(R) of the Volodin space (
IV.1.3.2
1.3.2)

is the Steinberg group St(R).

Construction Techniques

One problem with the +construction approach is the fact that BGL(R)+ is not
a uniquely defined space. It is not hard to see that BGL(R)+ is an H-space (see
Ex.

EIV.1.11
1.11). Quillen proved that that it is also an infinite loop space, and extends

to an Ω-spectrum K(R). We omit the proof here, because it will follow from
the + = Q theorem in Section 7.

Here is one of the most useful recognition criteria, due to Quillen. The proof
is is an application of obstruction theory, which we omit (but see

Ger72
[64, 1.5].)

IV.1.8 Theorem 1.8. The map i : BGL(R) → BGL(R)+ is universal for maps into
H-spaces. That is, for each map f : BGL(R) → H, where H is an H-space,
there is a map g : BGL(R)+ → H so that f = g i, and such that the induced
map πi(BGL(R)

+)→ πi(H) is independent of g.

IV.1.8.1 Remark 1.8.1. If f∗ : H∗(BGL(R),Z)
∼=−→ H∗(H,Z) is an isomorphism, then

f is acyclic and g is a homotopy equivalence: BGL(R)+ ≃ H. This gives
another characterization of BGL(R)+. The proof is indicated in Exercise

EIV.1.3
1.3.

IV.1.9 Constructions 1.9. Here are some ways that BGL(R)+ may be constructed:
(i) Using point-set topology, e.g., by attaching 2-cells and 3-cells to BGL(R).

If we perform this construction over Z and let BGL(R)+ be the pushout of
BGL(Z)+ and BGL(R) along BGL(Z), this gives a construction which is func-
torial in R. This method is described Ex.

EIV.1.4
1.4, and in the books

Berrick
[23] and

Rosenberg
[163].

(ii) Using the Bousfield-Kan integral completion functor Z∞ : we set
BGL(R)+ = Z∞BGL(R). This approach, which is also functorial in R, is
used in

Dror
[50] and

Ger72
[64].

(iii) “Group completing” the H-space
∐∞
n=0BGLn(R) yields an infinite loop

space whose basepoint component is BGL(R)+. This method will be discussed
more in Section 3, and is due to G. Segal

Segal
[165].

(iv) By taking BGL of a free simplicial ring F• with an augmentation F0 → R
such that F• → R is a homotopy equivalence, as in

Swan
[193]. Swan showed that

the simplicial group GL(F•) and the simplicial space BGL(F•) are indepen-
dent (up to simplicial homotopy) of the choice of resolution F• → R, and
that π1BGL(F•) = π0GL(F•) = E(R). The Swan K-theory space ΩKSw(R)
is defined to be the homotopy fiber of BGL(F•) → BGL(R), and we set
KSw
i (R) = πi−1ΩK

Sw(R) for i ≥ 1 so that KSw
1 (R) = K1(R) by construc-

tion. The space ΩKSw(R) is a model for the loop space ΩBGL(R)+.
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As an application, if F is a free ring (without unit), we may take F• to be the
constant simplicial ring, so ΩKSw(F ) is contractible, and KSw

i (F ) = 0 for all i.
Gersten proved in

Ger74
[65] (see V.

V.6.5
6.5) that BGL(F )+ is contractible; this was used

by Don Anderson
And72
[2] to prove that the canonical map from GL(R) = ΩBGL(R)

to ΩKSw(R) induces a homotopy equivalence ΩBGL(R)+ → ΩKSw(R).
(v) Volodin’s construction. Let X(R) denote the acyclic Volodin space of

Example
IV.1.3.2
1.3.2. By Ex.

EIV.1.6
1.6, the quotient group BGL(R)/X(R) is a model for

BGL(R)+.
An excellent survey of these constructions may be found in

Ger72
[64], except for

details on Volodin’s construction, which are in
Su81
[180].

Products

If A and B are rings, any natural isomorphism ϕpq : Ap ⊗ Bq ∼= (A ⊗ B)pq

of A ⊗ B-modules allows us to define a “tensor product” homomorphism
GLp(A) × GLq(B) → GLpq(A ⊗ B). This in turn induces continuous maps
ϕp,q : BGLp(A)

+ × BGLq(B)+ → BGLpq(A ⊗ B)+ → BGL(A ⊗ B)+. A
different choice of ϕ yields a tensor product homomorphism conjugate to the
original, and a new map ϕp,q freely homotopic to the original. It follows that
ϕp,q is compatible up to homotopy with stabilization in p and q.

Since the target is anH-space (Ex.
EIV.1.11
1.11), we can define new maps γp,q(a, b) =

ϕp,q(a, b) − ϕp,q(a, ∗) − ϕp,q(∗, b), where ∗ denotes the basepoint. Since
γp,q(a, ∗) = γp,q(∗, b) = ∗, and γp,q is compatible with stabilization in p, q,
it induces a map, well defined up to weak homotopy equivalence

γ : BGL(A)+ ∧BGL(B)+ → BGL(A⊗B)+.

Combining γ with the reduced join πp(X)⊗πq(Y )→ πp+q(X ∧Y )
Wh
[228, p. 480]

allows us to define a product map :

Kp(A)⊗Kq(B)→ Kp+q(A⊗B).

Loday proved the following result in
Lo76
[114].

IV.1.10 Theorem 1.10. (Loday) The product map is natural in A and B, bilinear and
associative. If A is commutative, the induced product

Kp(A)⊗Kq(A)→ Kp+q(A⊗A)→ Kp+q(A)

is graded-commutative. Moreover, the special case K1(A)⊗K1(B)→ K2(A⊗B)
coincides with the product defined in III.

III.5.12
5.12.

IV.1.10.1 Example 1.10.1. (Steinberg symbols) If r1, ..., rn are units of a commutative
ring R, the product of the ri ∈ K1(R) is an element {r1, ..., rn} of Kn(R). These
elements are called Steinberg symbols, since the products {r1, r2} ∈ K2(R)
agree with the Steinberg symbols of III.

III.5.10
5.10. If F is a field, the universal

property (III.
III.7.1
7.1) of MilnorK-theory implies that there is a ring homomorphism

KM
∗ (F )→ K∗(F ). We will see in Ex.

EIV.1.12
1.12 that it need not be an injection.
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IV.1.10.2 Example 1.10.2. Associated to the unit x of Λ = Z[x, x−1] we choose a map
S1 → BGL(Λ)+, representing [x] ∈ π1BGL(Λ)

+. The pairing γ induces a
map BGL(R)+ ∧ S1 to BGL(R[x, x−1])+. By adjunction, this yields a map
BGL(R)+ → ΩBGL(R[x, x−1])+. A spectrum version of this map is given in
Ex.

EIV.4.14
4.14.

IV.1.10.3 Example 1.10.3. (The K-theory Assembly Map) If G is any group, the in-
clusion G ⊂ Z[G]× = GL(Z[G]) induces a map BG → BGL(Z[G])+. If R
is any ring, the product map BGL(R)+ ∧ BGL(Z[G])+ → BGL(R[G])+ in-
duces a map from BGL(R)+∧(BG+) to BGL(R[G])

+, where BG+ denotes the
disjoint union of BG and a basepoint. By Ex.

EIV.1.14
1.14, there is also a map from

K(R) ∧ (BG+) to K(R[G]).
Now for any infinite loop space (or spectrum) E, and any pointed space

X, the homotopy groups of the space E ∧X give the generalized homology of
X with coefficients in E, Hn(BG;E). For E = K(R), Hn(BG;K(R)) is the
generalized homology of BG with coefficients in K(R).

The map Hn(BG;K(R)) = πn
(
BGL(R)+ ∧ BG+

)
→ Kn(R[G]) which we

have just constructed is called theK-theory assembly map, and it plays a critical
role in the K-theory of group rings. It is due to Quinn and Loday

Lo76
[114], who

observed that for n = 0 it is just the map K0(R)→ K0(R[G]), while for n = 1
it is the map K1(R)⊕G/[G,G]→ K1(R[G]).

The higher Whitehead GroupWhn(G) is defined to be πn−1 of the homotopy
fiber of the map K(Z) ∧ (BG+)→ K(Z[G]). The above calculations show that
Wh0(G) is Wall’s finiteness obstruction (II.

II.2.4
2.4), and the classical Whitehead

group Wh1(G) = K1(Z[G])/{±G} of III.
III.1.9
1.9.

If G is a torsionfree group, the Isomorphism Conjecture for G states that
the assembly map Hn(BG;K(R)) → Kn(R[G]) should be an isomorphism for
any regular ring R. There is a more general Isomorphism Conjecture for infinite
groups with torsion, due to Farrell-Jones

FJ
[54]; it replaces Hn(BG;K(R)) by the

equivariant homology of EvcG, an equivariant version of the universal covering
space EG of BG relative to the class of virtually cyclic subgroups of G.

Relative K-groups

IV.1.11 Relative K-groups 1.11. Given a ring homomorphism f : R→ R′, let K(f)
be the homotopy fiber of K(R)→ K(R′), and set Kn(f) = πnK(f). This con-
struction is designed so that these relative groups fit into a long exact sequence:

· · ·Kn+1(R
′)

∂−→ Kn(f)→ Kn(R)→ Kn(R
′)

∂−→ · · ·
K1(f)→ K1(R)→ K1(R

′)
∂−→ K0(f)→ K0(R)→ K0(R

′).

Using the functorial homotopy-commutative H-space structure on K(R) (see
IV.1.1.2
1.1.2), it follows that each Kn(f), including K0(f), is an abelian group.

When R′ = R/I for some ideal I, we write K(R, I) for K(R → R/I). It is
easy to see (Ex.

EIV.1.15
1.15) that K0(R, I) and K1(R, I) agree with the relative groups
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defined in Ex. II.
EII.2.3
2.3 and III.

III.2.2
2.2, and that the ending of this sequence is the exact

sequence of III.
III.2.3
2.3 and III.

III.5.7.1
5.7.1. Keune and Loday have shown that K2(R, I)

agrees with the relative group defined in III.
III.5.7
5.7.

IV.1.11.1 Absolute Excision 1.11.1. A non-unital ring I is said to satisfy absolute ex-

cision for Kn if Kn(Z⊕ I, I)
∼=
> Kn(R, I) is an isomorphism for every unital

ring R containing I as an ideal; Z ⊕ I is the canonical augmented ring (see
Ex. I.

EI.1.10
1.10). By II, Ex.

EII.2.3
2.3, every I satisfies absolute excision for K0. By III,

Remark
III.2.2.1
2.2.1, I satisfies absolute excision for K1 if and only if I = I2.

Suslin proved in
Su95
[188] that I satisfies absolute excision for Kn if and only

if the groups TorZ⊕Ii (Z,Z) vanish for i = 1, . . . , n. (Since Tor1(Z,Z) = I/I2,
this recovers the result for K1.) In homological algebra, a non-unital ring I is
called H-unital if every Tori(Z,Z) vanishes; Suslin’s result says that I satisfies
absolute excision for all Kn if and only if I is H-unital.

Together with a result of Suslin and Wodzicki
SuW
[191], this implies that I

satisfies absolute excision for Kn ⊗ Q if and only if I ⊗ Q satisfies absolute
excision for Kn.

Suppose now that I = I2. In this case the commutator subgroup of GL(I)
is perfect (III, Ex.

EIII.2.10
2.10). By Theorem

IV.1.5
1.5 there is a +–construction BGL(I)+

and a map from BGL(I)+ to the basepoint component of K(R, I). When I is
H-unital, this is a homotopy equivalence; πnBGL(I)

+ ∼= Kn(R, I) for all n ≥ 1.
This concrete version of absolute excision was proven by Suslin and Wodzicki
in

SuW
[191, 1.7].

IV.1.11.2 Suspension Rings 1.11.2. Let C(R) be the cone ring of row-and-column fi-
nite matrices over a fixed ring R (Ex. I.

EI.1.8
1.8); by II.

II.2.1.3
2.1.3, C(R) is flasque, so

K(C(R)) is contractible by Ex.
EIV.1.17
1.17. The suspension ring S(R) of III, Ex.

EIII.1.15
1.15 is C(R)/M(R), where M(R) is the ideal of finite matrices over R. Since
M(R) ∼= M(M(R)) and GL(R) = GL1(M(R)), we have GL(R) ∼= GL(M(R))
and hence BGL(R)+ ∼= BGL(M(R))+. Since M(R) is H-unital (see

IV.1.11.1
1.11.1 and

Ex.
EIV.1.20
1.20), it satisfies absolute excision and we have a fibration sequence

K0(R)×BGL(R)+ → BGL(C(R))+ → BGL(S(R))+.

Since the middle term is contractible, this proves that K0(R) × BGL(R)+ ≃
ΩBGL(S(R))+ so that Kn+1S(R) ∼= Kn(R) for all n ≥ 1. (K0S(R) ∼= K−1(R)
by III, Ex.

EIII.4.10
4.10.) This result was first proven by Gersten and Wagoner.

K-theory of finite fields

Next, we describe Quillen’s construction for the K-theory of finite fields, arising
from his work on the Adams Conjecture

Q70
[152]. Adams had shown that the

Adams operations ψk on topological K-theory (II.
II.4.4
4.4) are represented by maps

ψk : BU → BU in the sense that for each X the Adams operations on K̃U(X)
are the maps:

K̃U(X) = [X,BU ]
[X,ψk]

> = K̃U(X).
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Fix a finite field Fq with q = pν elements. For each n, the Brauer
lifting of the trivial and standard n-dimensional representations of GLn(Fq)
are n-dimensional complex representations, given by homomorphisms 1n, idn :
GLn(Fq) → U . Since BU is an H-space, we can form the difference ρn =
B(idn)−B(1n) as a map BGLn(Fq)→ BU . Quillen observed that ρn and ρn+1

are compatible up to homotopy with the inclusion of BGLn(Fq) in BGLn+1(Fq).
(See

IV.5.3.1
5.3.1 below.) Hence there is a map ρ : BGL(Fq) → BU , well defined up

to homotopy. By Theorem
IV.1.8
1.8, ρ induces a map from BGL(Fq)+ to BU , and

hence maps ρ∗ : Kn(Fq)→ πn(BU) = K̃U(Sn).
We will define operations λk and ψk on K∗(Fq) in

IV.5.3.1
5.3.1 and Ex.

IV.5.2
5.2 below,

and show (
IV.5.5.2
5.5.2) that ψp is induced by the Frobenius on Fq, so that ψq is

the identity map on Kn(Fq). We will also see in
IV.5.7.1
5.7.1 and

IV.5.8
5.8 below that ρ∗

commutes with the operations λk and ψk on Kn(Fq) and K̃U(Sn).

IV.1.12 Theorem 1.12. (Quillen) The map BGL(Fq)+ → BU identifies BGL(Fq)+

with the homotopy fiber of ψq−1. That is, the following is a homotopy fibration.

BGL(Fq)
+ ρ−→ BU

ψq−1
> BU

On homotopy groups, II.
II.4.4.1
4.4.1 shows that ψq is multiplication by qi on

π2iBU = K̃U(S2i). Using the homotopy sequence
IV.1.2
1.2 and Theorem

IV.1.12
1.12, we

immediately deduce:

IV.1.13 Corollary 1.13. For every finite field Fq, and n ≥ 1, we have

Kn(Fq) = πnBGL(Fq)
+ ∼=

{
Z/(qi − 1) n = 2i− 1,

0 n even.

Moreover, if Fq ⊂ Fq′ then Kn(Fq) → Kn(Fq′) is an injection, identifying
Kn(Fq) with Kn(Fq′)G, where G = Gal(Fq′/Fq); the transfer map Kn(Fq′) →
Kn(Fq) is onto (see

IV.1.1.3
1.1.3).

IV.1.13.1 Remark 1.13.1. Clearly all products in the ring K∗(Fq) are trivial. We will
see in section 2 that it is also possible to put a ring structure on the homotopy
groups with mod-ℓ coefficients, Kn(Fq;Z/ℓ) = πn(BGL(Fq);Z/ℓ).

If ℓ | (q − 1), the long exact sequence for homotopy with mod-ℓ coef-
ficients (

IV.2.1.1
2.1.1) shows that Kn(Fq;Z/ℓ) ∼= Z/ℓ for all n ≥ 0. The choice

of a primitive unit ζ ∈ F×q and a primitive ℓth root of unity ω gives gen-
erators ζ for K1(Fq;Z/ℓ) and the Bott element β for K2(Fq;Z/ℓ), respec-
tively. (The Bockstein sends β to ω ∈ K1(Fq).) Browder has shown

Br
[34] that

K∗(Fq;Z/ℓ) ∼= Z/ℓ[β, ζ]/(ζ2) as a graded ring, and that the natural isomor-
phism from the even part ⊕nK2n(Fq;Z/ℓ) ∼= Z/ℓ[β] to ⊕π2n(BU ;Z/ℓ) is a ring
isomorphism.

If p 6= ℓ, the algebraic closure F̄p is the union of the Fq where q = pν and
ℓ | (q−1). Hence the ring K∗(F̄p;Z/ℓ) is the direct limit of the K∗(Fq;Z/ℓ). As
each ζ vanishes and the Bott elements map to each other, we have:

K∗(F̄p;Z/ℓ) ∼= Z/ℓ[β] ∼= π∗(BU ;Z/ℓ).
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IV.1.13.2 Remark 1.13.2. Browder has also shown in
Br
[34, 2.4] that the Bott element β

in K2(C;Z/m) maps to a generator of π2(BU ;Z/m) = Z/m under the change-
of-topology map. Hence the map K∗(C;Z/m)→ π∗(BU ;Z/m) is also onto. We
will see in VI.

VI.1.4.1
1.4.1 that it is an isomorphism.

Homological Stability

Homological stability, the study of how the homology of a group like GLn(R)
depends upon n, plays an important role in algebraic K-theory. The following
theorem was proven by Suslin in

Su82
[181], using Volodin’s construction of K(R).

Recall from Ex. I.
EI.1.5
1.5 that the stable range of R, sr(R), is defined in terms of

unimodular rows; if R is commutative and noetherian it is at most dim(R)+1.

IV.1.14 Theorem 1.14. Let R be a ring with stable range sr(R). For r ≥ max{2n +
1, n+ sr(R)} the maps πnBGLr(R)

+ → πnBGLr+1(R)
+ are isomorphisms.

Now assume that r > sr(R) + 1, so that Er(R) is a perfect normal sub-
group of GLr(R) by Ex. III.

EIII.1.3
1.3. The universal covering space of BGLr(R)

+ is
then homotopy equivalent to BEr(R)

+ for (by Ex.
EIV.1.8
1.8). Applying the Hurewicz

theorem (and the Comparison Theorem) to these spaces implies:

IV.1.14.1 Corollary 1.14.1. In the range r ≥ max{2n+1, n+sr(R)}, the following maps
are isomorphisms:

Hn(BGLr(R))→ Hn(BGLr+1(R))→ Hn(BGL(R)
+);

Hn(BEr(R))→ Hn(BEr+1(R))→ Hn(BE(R)+).

For example, suppose that R is an Artinian ring, so that sr(R) = 1 by
Ex. I.

EI.1.5
1.5. Then πnBGLr(R)

+ ∼= Kn(R) and Hn(BGLr(R)) ∼= Hn(BGL(R)
+)

for all r > 2n. The following result, due to Suslin
Su-KM
[183], improves this bound

for fields.

IV.1.15 Proposition 1.15. (Suslin) If F is an infinite field, then Hn(GLr(F )) →
Hn(GL(F )) is an isomorphism for all r ≥ n. In addition, there is a canon-
ical isomorphism Hn(GLn(F ))/imHn(GLn−1(F )) ∼= KM

n (F ).

IV.1.16 Proposition 1.16. (Kuku) If R is a finite ring, then Kn(R) is a finite abelian
group for all n > 0.

Proof. The case n = 1 follows from III.
III.1.4
1.4 (or Ex. III.

EIII.1.2
1.2): K1(R) is a quotient

of R×. Since Kn(R) = πnBE(R)+ for n > 1 by Ex.
EIV.1.8
1.8, it suffices to show that

the homology groups Hn(E(R);Z) are finite for n > 0. But each Er(R) is a
finite group, so the groups Hn(BEr(R);Z) are indeed finite for n > 0.
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Rank of Kn over number fields

It is a well known theorem of Cartan and Serre that the “rational” homotopy
groups πn(X) ⊗ Q of an H-space X inject into the rational homology groups
Hn(X;Q), and that π∗(X) ⊗ Q forms the primitive elements in the coalgebra
structure on H∗(X;Q). (See

MM
[134, p. 263].) For X = BGL(R)+, which is an H-

space by Ex.
EIV.1.11
1.11, this means that the groups Kn(R)⊗Q = πn(BGL(R)

+)⊗Q
inject into the groups H∗(GL(R);Q) = H∗(BGL(R);Q) = H∗(BGL(R)

+;Q)
as the primitive elements. For X = BSL(R)+, this means that the groups
Kn(R)⊗Q inject into H∗(SL(R);Q) as the primitive elements for n ≥ 2.

Now suppose that A is a finite dimensional semisimple algebra over Q, such
as a number field, and that R is a subring of A which is finitely generated over
Z and has R ⊗ Q = A (R is an order). In this case, Borel determined the ring
H∗(SLm(R);Q) and hence the dual coalgebra H∗(SLm(R);Q) and hence its
primitive part, K∗(R)⊗Q. (See the review MR0387496 of Borel’s paper

Bor1
[29] by

Garland.) The answer only depends upon the semisimple R-algebra A⊗Q R.
More concretely, let g and k be the Lie algebras (over Q) of SLm(A ⊗ R)

and one of its maximal compact subgroups K. Borel first proved in
Bor
[28, Thm. 1]

that

Hq(SLm(R);R) ∼= Hq(SLm(A);R) ∼= Hq(g, k;R) for m≫ q.

By the above remarks, this proves:

IV.1.17 Theorem 1.17. (Borel) Let A be a finite dimensional semisimple Q-algebra.
Then for every order R in A we have Kn(R)⊗Q ∼= Kn(A)⊗Q for all n ≥ 2.

Borel also calculated the ranks of these groups. Since A is a finite product
of simple algebras Ai, and Kn(A) is the product of the Kn(Ai) by Ex.

EIV.1.7
1.7, we

may assume that A is simple, i.e., a matrix algebra over a division algebra.
The center of A is then a number field F . It is traditional to write r1 and
r2 for the number of factors of R and C in the R-algebra F ⊗Q R, so that
F ⊗Q R ∼= Rr1 ×Cr2. Borel proved in

Bor
[28, Thm. 2]

Bor1
[29, 12.2] that H∗(SL(A),R)

is a tensor product of r1 exterior algebras having generators xi in degrees 4i+1
(i ≥ 1) and r2 exterior algebras having generators xj in degrees 2j + 1 (j ≥ 1).
Taking primitive parts, this proves the following result:

IV.1.18 Theorem 1.18. (Borel) Let F be a number field, and A a central simple F -
algebra. Then for n ≥ 2 we have Kn(A)⊗Q ∼= Kn(F )⊗Q and

rankKn(A)⊗Q =





r2, n ≡ 3 (mod 4)

r1 + r2, n ≡ 1 (mod 4)

0, else.

By Theorem
IV.1.17
1.17, this also gives the rank of Kn(R) for every order R.

In particular, these groups are torsion for every even n ≥ 2.
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IV.1.18.1 Regulator Maps 1.18.1. Borel’s construction provides a specific map from
Kn(R) to the real vector space Pn of primitives in Hn(SL(R),R); Borel ob-
served that the image is a lattice Λ. There is another canonical lattice Λ′ in Pn:
the image of πn(X) for the symmetric space X contained in K\GLm(C). The
higher regulator of R is defined to be the positive real number Rn such that the
volume of Pn/Λ is Rn times the volume of Pn/Λ

′. Borel also proved that R2i+1

was a positive rational number times
√
D π−m(i+1)ζF (i + 1), where D is the

discriminant of F/Q and ζF is the zeta function of F .

IV,1.18.2 Example 1.18.2 (Group Rings). The group ring Z[G] of a finite group G is an
order in the semisimple algebra Q[G]. Therefore Theorem

IV.1.18
1.18 gives the rank

of the groups Kn(Z[G]) for n ≥ 2. The rank of K1(Z[G]) was given in III.
III.1.8
1.8,

and does not follow this pattern. For example, if Cp is a cyclic group of prime
order p ≥ 3 then r1 + r2 = (p+ 1)/2 yet K1(Z[Cp]) has rank (p− 3)/2.

K3(R) and H3(E(R),Z)

The following material is due to Suslin
Su91
[187]. Given an element α of πn(X) and

an element β of πm(Sn), the composition product α◦β is the element of πm(X)

represented by Sm
β−→ Sn

α−→ X. We will apply this to the Hopf element
η ∈ π3(S2), using the following observation.

If Yn is the wedge of n copies of S2, the Hilton-Milnor Theorem
Wh
[228, XI(8.1)]

says that

ΩΣYn ≃
∏n

i=1
ΩS3 ×

∏
i6=j

ΩS5 × Y ′n,

where Y ′n is 5-connected and Σ is suspension. Note that π3(ΩΣS
2) = π4(S

3) =
Z/2, on the image of η ∈ π3(S2). Hence π3(ΩΣYn) ∼= (Z/2)n. If YI is a wedge
of copies of S2 indexed by an infinite set I then (taking the filtered colimit over
finite subsets of I) it follows that π3(ΩΣYI) ∼= ⊕I Z/2, generated by the factors
S2 → ΩS2 → YI .

IV.1.19 Lemma 1.19. If X is a simply connected loop space, the composition product
with η and the Hurewicz map h : π3(X)→ H3(X,Z) fit into an exact sequence

π2(X)
◦η−→ π3(X)

h−→ H3(X,Z)→ 0.

Proof. Let I be a set of generators of π2(X); the maps f(i) : S2 → X induce a

map f : Y → X, where Y = ∨I S2. The map f factors as Y → ΩΣY
Ωf∗

−→ X,
where X = ΩX ′ and f∗ : ΣY → X ′ is the adjoint of f . Since π2(Y )→ π2(X) is
onto, the sequence π3(ΩΣY )→ π3(X)→ H3(X)→ 0 is exact by Exercise

EIV.1.25
1.25.

As above, π3(ΩΣY ) ∼= ⊕I π3(ΩΣS2), and the ith factor is the image of
π3(S

2), generated by η. The map π3(ΩΣY ) → π3(X) sends the generator of

the ith factor to the composition product f(i) ◦ η : S3 η−→ S2 → ΩΣS2 −→ X.
Since π2(X) is generated by the f(i), the result follows.
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IV.1.19.1 Remark 1.19.1. (Suslin) Lemma
IV.1.19
1.19 holds for any simply connected H-space

X. To see this, note that the Hilton-Milnor Theorem for Yn = ∨S2 states that
the space ΩYn is homotopy equivalent to

∏
i ΩS

2 ×∏i6=j ΩS
3 × Y ′′ where Y ′′

is 3-connected. Thus π3(Yn) = π2(ΩYn) is the sum of Zn = ⊕π3(S2) and
⊕i6=jπ3(S3), where the second summand is generated by the Whitehead prod-
ucts [ιi, ιj ] of the generators of π2(Y ). These Whitehead products map to
[f(i), f(j)], which vanish in π3(X) when X is any H-space by

Wh
[228, X(7.8)].

With this modification, the proof of Lemma
IV.1.19
1.19 goes through.

IV.1.20 Corollary 1.20. For any ring R the product with [−1] ∈ K1(Z) fits into an
exact sequence

K2(R)
[−1]
> K3(R)

h
> H3(E(R),Z)→ 0.

Proof. By Ex.
EIV.1.12
1.12(a), the map π3(S

2) → K1(Z) sends η to [−1]. Since

X = BGL(R+) is an H-space, the composition product π2(X)
η−→ π3(X) is

multiplication by the image of η in π1(X) = K1(R), namely [−1]; see Ex. EIV.1.121.12(e).
The result follows from Lemma

IV.1.19
1.19 and the observation in Exercise

EIV.1.8
1.8 that

πnBE(R)+ → Kn(R) is an isomorphism for n ≥ 2.

EXERCISES

EIV.1.1 1.1. (Kervaire) Let X be a homology n-sphere, i.e., a space with H∗(X) =
H∗(S

n). Show that there is a homotopy equivalence Sn → X+. Hint: Show
that π1(X) is perfect if n 6= 1, so X+ is simply connected, and use the Hurewicz
theorem.

The binary icosohedral group Γ = SL2(F5) embeds in O3(R) as the sym-
metry group of both the dodecahedron and icosahedron. Show that the quo-
tient X = S3/Γ is a homology 3-sphere, and conclude that the canonical map
S3→X+ is a homotopy equivalence. (The fact that it is a homology sphere
was discovered by Poincaré in 1904, and X is sometimes called the Poincaré
sphere.)

EIV.1.2 1.2. (a) If F is an acyclic space, show that F+ is contractible. (b) If X
f−→ Y

is acyclic and f∗ : π1(X) ∼= π1(Y ), show that f is a homotopy equivalence.

EIV.1.3 1.3. Prove the assertions in Remark
IV.1.8.1
1.8.1 using the following standard result:

Let X and Y be H-spaces having the homotopy type of a CW complex. If
f : X → Y is a map which induces an isomorphism H∗(X,Z) ∼= H∗(Y,Z),
show that f is a homotopy equivalence. Hint: Since π1(Y ) acts trivially on the
homotopy fiber F by

Wh
[228, IV.3.6], the relative Hurewicz theorem

Wh
[228, IV.7.2]

shows that π∗(F ) = 0.

EIV.1.4 1.4. Here is a point-set construction ofX+ relative to a perfect normal subgroup
P . Form Y by attaching one 2-cell ep for each element of P , so that π1(Y ) =
π1(X)/P . Show thatH2(Y ;Z) is the direct sum ofH2(X;Z) and the free abelian
group on the set {[ep] : p ∈ P}. Next, prove that each homology class [ep] is
represented by a map hp : S2 → Y , and form Z by attaching 3-cells to Y (one
for each p ∈ P ) using the hp. Finally, prove that Z is a model for X+.
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EIV.1.5 1.5. Perfect Radicals. Show that the subgroup generated by the union of perfect
subgroups of any group G is itself a perfect subgroup. Conclude that G has a
largest perfect subgroup P, called the perfect radical of G, and that it is a normal
subgroup of G.

EIV.1.6 1.6. Let cone(i) denote the mapping cone of a map F
i−→ X. If F is an acyclic

space, show that the map X → cone(i) is acyclic. If F is a subcomplex of X
then cone(i) is homotopy equivalent to the quotient space X/F , so X → X/F is
also acyclic. Conclude that if X(R) is the Volodin space of Example

IV.1.3.2
1.3.2 then

BGL(R)/X(R) is a model for BGL(R)+. Hint: Consider long exact sequences
in homology.

EIV.1.7 1.7. Show that BGL(R1×R2)
+ ≃ BGL(R1)

+×BGL(R2)
+ and henceKn(R1×

R2) ∼= Kn(R1)×Kn(R2) for every pair of rings R1, R2 and every n. Hint: Use
IV.3.1
3.1(6) below to see that BGL(R1 ×R2) ∼= BGL(R1)×BGL(R2).

EIV.1.8 1.8. Let P be a perfect normal subgroup of G, and let BG → BG+ be a
+–construction relative to P . Show that BP+ is homotopy equivalent to the
universal covering space of BG+. Hence πn(BP

+) ∼= πn(BG
+) for all n ≥ 2.

Hint: BP is homotopy equivalent to a covering space of BG.
For G = GL(R) and P = E(R), this shows that BE(R)+ is homotopy equiv-

alent to the universal covering space of BGL(R)+. Thus Kn(R) ∼= πnBE(R)+

for n ≥ 2.
(a) If R is a commutative ring, show that SL(R) →֒ GL(R) induces isomor-

phisms πnBSL(R)
+ ∼= Kn(R) for n ≥ 2, and π1BSL(R)

+ ∼= SK1(R). Conclude
that the map BSL(R)+ ×B(R×)→ BGL(R)+ is a homotopy equivalence.

(b) If A is a finite semisimple algebra over a field, the subgroups SLn(A) of
GLn(A) were defined in III.

III.1.2.4
1.2.4. Show that SL(A) →֒ GL(A) induces isomor-

phisms πnBSL(A)
+ ∼= Kn(A) for n ≥ 2, and π1BSL(A)

+ ∼= SK1(A).

EIV.1.9 1.9. Suppose that A → S → P is a universal central extension (III.
III.5.3.1
5.3.1).

In particular, S and P are perfect groups. Show that there is a homotopy
fibration BA → BS+ → BP+. Conclude that πn(BS

+) = 0 for n ≤ 2, and
that πn(BS

+) ∼= πn(BP
+) ∼= πn(BG

+) for all n ≥ 3. In particular, π3(BP
+) ∼=

H3(S;Z).
Since the Steinberg group St(R) is the universal central extension of E(R),

this shows that Kn(R) ∼= πnSt(R)
+ for all n ≥ 3, and that K3(R) ∼=

H3(St(R);Z).

EIV.1.10 1.10. For n ≥ 3, let Pn denote the normal closure of the perfect group En(R) in
GLn(R), and let BGLn(R)

+ denote the +–construction on BGLn(R) relative
to Pn. Corresponding to the inclusions GLn ⊂ GLn+1 we can choose a sequence
of maps BGLn(R)

+ → BGLn+1(R)
+. Show that lim−→BGLn(R)

+ is BGL(R)+.

EIV.1.11 1.11. For eachm and n, the group map� : GLm(R)×GLn(R)→ GLm+n(R) ⊂
GL(R) induces a map BGLm(R)×BGLn(R)→ BGL(R)→ BGL(R)+. Show
that these maps induce an H-space structure on BGL(R)+.
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EIV.1.12 1.12. In this exercise, we develop some properties of BΣ+
∞, where Σ∞ denotes

the union of the symmetric groups Σn. We will see in
IV.4.9.3
4.9.3 that πn(BΣ+

∞) is
the stable homotopy group πsn. The permutation representations Σn → GLn(Z)
(
IV.1.3.2
1.3.2) induce a map BΣ+

∞ → BGL(Z)+ and hence homomorphisms πsn →
Kn(Z).

(a) Show that η ∈ πs1 ∼= Z/2 maps to [−1] ∈ K1(Z).

(b) Show that the subgroups Σm ×Σn of Σm+n induce an H-space structure
on BΣ+

∞ such that BΣ+
∞ → BGL(Z)+ is an H-map. (See Ex.

EIV.1.11
1.11.)

(c) Modify the construction of Loday’s product (
IV.1.10
1.10) to show that product

permutations Σm×Σn → Σmn induce a map BΣ+
∞ ∧BΣ+

∞ → BΣ+
∞ com-

patible with the corresponding map for BGL(Z)+. The resulting prod-
uct πsm ⊗ πsn → πsm+n makes the stable homotopy groups into a graded-
commutative ring, and makes πs∗ → K∗(Z) into a ring homomorphism.

(d) Show that the Steinberg symbol {−1,−1,−1,−1} of
IV.1.10.1
1.10.1 vanishes in

K4(Z) and K4(Q). Since this symbol is nonzero in KM
4 (Q) by III.

III.7.2
7.2(c,d),

this shows that the Milnor K-groups of a field need not inject into its
Quillen K-groups. Hint: η3 6= 0 in πs3 but η4 = 0 in πs4.

(e) If β ∈ πn+t(Sn) and α ∈ Kn(R), show that the composition product α ◦β
in Kn+t(R) agrees with the product of α with [β] ∈ πst .

EIV.1.13 1.13. Let A∞ denote the union of the alternating groups An; it is a subgroup
of Σ∞ of index 2. A∞ is a perfect group, since the An are perfect for n ≥ 5.

(a) Show that BΣ+
∞ ≃ BA+

∞ ×B(Z/2), so πnBA+
∞
∼= πsn for all n ≥ 2.

(b) Use Lemma
IV.1.19
1.19 and πs3

∼= Z/24 to conclude that H3(A∞,Z) ∼= Z/12.

(c) Use the Künneth formula and (a) to show that H3(Σ∞,Z) ∼= H3(A∞,Z)⊕
(Z/2)2. This calculation was first done by Nakaoka

Nak
[141].

EIV.1.14 1.14. Extend the product map γ of Theorem
IV.1.10
1.10 to a map K(A) ∧K(B) →

K(A⊗B), so that the induced maps K0(A)×Kn(B)→ Kn(A⊗B) agree with
the products defined in III.

III.1.6.1
1.6.1 and Ex. III.

EIII.5.4
5.4.

EIV.1.15 1.15. Let I be an ideal in R. Show that the group π0K(R, I) of
IV.1.11
1.11 is isomor-

phic to the group K0(I) of Ex. II.
EII.2.3
2.3, and that the maps K1(R/I)→ K0(I)→

K0(R) in loc. cit. agree with the maps of
IV.1.11
1.11. Hint: π0K(R⊕ I, 0⊕ I) must be

K0(I).
Use Ex. III.

EIII.2.7
2.7 to show that π1K(R → R/I) is isomorphic to the group

K1(R, I) of III.
III.2.2
2.2, and that the maps K2(R/I) → K1(R, I) → K1(R) in

III.
III.5.7.1
5.7.1 agree with those of

IV.1.11
1.11.

EIV.1.16 1.16. If f : R→ S is a ring homomorphism, show that the relative group K0(f)
of

IV.1.11
1.11 agrees with the relative group K0(f) of II.

II.2.10
2.10.
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EIV.1.17 1.17. (Wagoner) We say GL(R) is flabby if there is a homomorphism τ :
GL(R) → GL(R) so that for each n the restriction τn : GLn(R) → GL(R)
of τ is conjugate to the map (1, τn) : g 7→

(
g
0

0
τn(g)

)
. In particular, τn and

(1, τn) induce the same map H∗(BGLn(R))→ H∗(BGL(R)) by
WHomo
[223, 6.7.8].

(a) Assuming that GL(R) is flabby, show that BGL(R) is acyclic. By Ex.
EIV.1.2
1.2,

this implies that BGL(R)+ is contractible, i.e., that Kn(R) = 0 for n > 0.
Hint: The H-space structure (Ex.

EIV.1.11
1.11) makes H∗(BGL(R)) into a ring.

(b) Show that GL(R) is flabby for every flasque ring R (see II.
II.2.1.3
2.1.3). This

shows that flasque rings have Kn(R) = 0 for all n. Hint: Modify
Ex. II.

EII.2.15
2.15(a).

EIV.1.18 1.18. Suppose that I is a nilpotent ideal and that pνI = 0 for some ν. Show
that H∗(GL(R);M) ∼= H∗(GL(R/I);M) for every uniquely p-divisible module
M . Conclude that the relative groups K∗(R, I) are p-groups.

EIV.1.19 1.19. Suppose that I is a nilpotent ideal in a ring R, and that I is uniquely
divisible as an abelian group. Show that H∗(GL(R);M) ∼= H∗(GL(R/I);M)
for every torsion module M . Conclude that the relative groups K∗(R, I) are
uniquely divisible abelian groups.

EIV.1.20 1.20. Show that every ring with unit is H-unital (see
IV.1.11.1
1.11.1). Then show that

a non-unital ring I is H-unital if every finite subset of I is contained in a unital
subring. (This shows that the ring M(R) of finite matrices over R is H-unital.)

Finally, show that I is H-unital if for every finite subset {aj} of I there is
an e ∈ I such that eaj = aj . (An example of such an I is the non-unital ring of
functions with compact support on Cn.)

EIV.1.21 1.21. Morita invariance. For each n > 0, we saw in III.
III.1.1.4
1.1.4 that GL(R) ∼=

GL(Mn(R)) via isomorphisms Mm(R) ∼= Mm(Mn(R)). Deduce that there is
a homotopy equivalence BGL(R)+ ≃ BGL(Mn(R))

+ and hence isomorphisms
K∗(R) ∼= K∗(Mn(R)). (The cases ∗ = 0, 1, 2 were given in II.

II.2.7
2.7, III.

III.1.6.4
1.6.4 and

III.
III.5.6.1
5.6.1.) We will give a more general proof in

IV.6.3.5
6.3.5 below.

Compare this to the approach of
IV.1.11.2
1.11.2, using M(R).

EIV.1.22 1.22. Loday symbols. Let r1, ..., rn be elements of R so that rnr1 = 0 and
each riri+1 = 0. Show that the elementary matrices en,1(rn) and ei,i+1(ri)
commute and define a ring homomorphism B = Z[x1, 1/x1, . . . , xn, 1/xn] →
Mn(R). Using Ex.

EIV.1.21
1.21, we define the Loday symbol 〈〈r1, ..., rn〉〉 in Kn(R) to

be the image of {x1, ..., xn} under Kn(B)→ Kn(Mn(R)) ∼= Kn(R).

EIV.1.23 1.23. Let F → E
p−→ B and F ′ → E′

p′−→ B′ be homotopy fibrations (
IV.1.2
1.2), and

suppose given pairings e : E ∧X → E′, b : B ∧X → B′ so that p′e = b(p ∧ 1).

ΩB ∧X ∂ ∧ 1
> F ∧X > E ∧X p ∧ 1

> B ∧X

ΩB′

Ωb
∨ ∂′

> F ′

f
∨

> E′

e
∨ p′

> B′.

b
∨
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Show there is a pairing F ∧X f−→ F ′ compatible with e, such that for β ∈ π∗(B)
and γ ∈ π∗(X) the reduced join

Wh
[228, p. 480] satisfies ∂(β ∧b γ) = ∂(β) ∧f γ.

EIV.1.24 1.24. Let f : A → B be a ring homomorphism and let K(f) (resp., K(fC)
be the relative groups (

IV.1.11
1.11), i.e., the homotopy fiber of K(A)→ K(B) (resp.,

K(A⊗C)→ K(B⊗C)). Use Ex.
EIV.1.23
1.23 to show that there is an induced pairing

K∗(f) ⊗ K∗(C) → K∗(fC) such that for β ∈ K∗(B) and γ ∈ K∗(C) we have
∂(β ∧ γ) = ∂(β) ∧ γ in K∗(fC).

When f is an R-algebra homomorphism, show that K∗(f) is a right K∗(R)-
module and that the maps in the relative sequence Kn+1(B) → Kn(f) →
Kn(A)→ Kn(B) of

IV.1.11
1.11 are K∗(R)-module homomorphisms.

EIV.1.25 1.25. Suppose given a homotopy fibration sequence F → Y → X with X, Y
and F simply connected. Compare the long exact homotopy sequence (see

IV.1.2
1.2)

with the exact sequence of low degree terms in the Leray-Serre Spectral sequence
(see

WHomo
[223, 5.3.3]) to show that there is an exact sequence π3(Y ) → π3(X) →

H3(X)→ 0.

EIV.1.26 1.26. The Galois group G = Gal(Fqi/Fq) acts on the group µ of units of Fqi ,
and also on the i-fold tensor product µ⊗i = µ⊗ · · · ⊗ µ. By functoriality

IV.1.1.2
1.1.2,

G acts on K∗(Fq). Show that K2i−1(Fq) is isomorphic to µ⊗i as a G-module.

EIV.1.27 1.27. Monomial matrices. Let F be a field and consider the subgroup M of
GL(F ) consisting of matrices with only one nonzero entry in each row and
column.

(a) Show that M is the wreath product F× ≀Σ∞, and contains F× ≀A∞ as a
subgroup of index 2.

(b) Show that [M,M ] is the kernel of det : F× ≀ A∞ → F×, so H1(M) ∼=
F× × Σ2.

(c) Show that [M,M ] is perfect, and BM+ ≃ B[M,M ]+ ×B(F×)×BΣ2.
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2 K-theory with finite coefficients

In addition to the usual K-groups Ki(R), or the K-groups Ki(C) of a category
C, it is often useful to study K-groups with coefficients “mod ℓ” Ki(R;Z/ℓ) (or
Ki(C;Z/ℓ),) where ℓ is a positive integer. In this section we quickly recount
the basic construction from mod ℓ homotopy theory. Basic properties of mod ℓ
homotopy theory may be found in Neisendorfer

N
[142].

Recall
N
[142] that if m ≥ 2 the mod ℓ Moore space Pm(Z/ℓ) is the space

formed from the sphere Sm−1 by attaching an m-cell via a degree ℓ map. It
is characterized as having only one nonzero reduced integral homology group,
namely H̃m(P ) = Z/ℓ. The suspension of Pm(Z/ℓ) is the Moore space
Pm+1(Z/ℓ), and as m varies these fit together to form a suspension spectrum
P∞(Z/ℓ), called the Moore spectrum.

IV.2.1 Definition 2.1. If m ≥ 2, the mod ℓ homotopy “group” πm(X;Z/ℓ) of a based
topological space X is defined to be the pointed set [Pm(Z/ℓ), X] of based
homotopy classes of maps from the Moore space Pm(Z/ℓ) to X.

For a general space X, π2(X;Z/ℓ) isn’t even a group, but the πm(X;Z/ℓ)
are always groups for m ≥ 3 and abelian groups for m ≥ 4

N
[142]. If X is an

H-space, such as a loop space, then these bounds improve by one. If X = ΩY
then we can define π1(X;Z/ℓ) as π2(Y ;Z/ℓ); this is independent of the choice
of Y by Ex.

EIV.2.1
2.1. More generally, if X = ΩkYk for k ≫ 0 and Pm = Pm(Z/ℓ)

then the formula

πm(X;Z/ℓ) = [Pm, X] = [Pm,ΩkYk] ∼= [Pm+k, Yk] = πm+k(Yk;Z/ℓ)

shows that we can ignore these restrictions on m, and that πm(X;Z/ℓ) is an
abelian group for all m ≥ 0 (or even negative m, as long as k > 2 + |m|).

In particular, if X is an infinite loop space then abelian groups πm(X;Z/ℓ)
are defined for allm ∈ Z, using the explicit sequence of deloopings ofX provided
by the given structure on X.

IV.2.1.1 Remark 2.1.1. If F → E → B is a Serre fibration there is a long exact se-
quence of groups/pointed sets (which is natural in the fibration):

· · · → πm+1(B;Z/ℓ)→πm(F ;Z/ℓ)→ πm(E;Z/ℓ)→
πm(B;Z/ℓ)→πm−1(F ;Z/ℓ)→ · · · → π2(B;Z/ℓ).

This is just a special case of the fact that · · · → [P, F ] → [P,E] → [P,B] is
exact for any CW complex P ; see

Wh
[228, III.6.18*].

If m ≥ 2, the cofibration sequence Sm−1
ℓ−→ Sm−1 −→ Pm(Z/ℓ) defining

Pm(Z/ℓ) induces an exact sequence of homotopy groups/pointed sets

πm(X)
ℓ−→ πm(X)→ πm(X;Z/ℓ)

∂−→ πm−1(X)
ℓ−→ πm−1(X).

If ℓ is odd, or divisible by 4, F. Peterson showed that there is even a non-
canonical splitting πm(X;Z/ℓ)→ πm(X)/ℓ (see

Br
[34, 1.8]).
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It is convenient to adopt the notation that if A is an abelian group then ℓA
denotes the subgroup of all elements a of A such that ℓ · a = 0. This allows us
to restate the above exact sequence in a concise fashion.

IV.2.2 Universal Coefficient Sequence 2.2. For all m ≥ 3 there is a natural short
exact sequence

0→ (πmX)⊗ Z/ℓ→ πm(X;Z/ℓ)
∂−→ ℓ(πm−1X)→ 0.

This sequence is split exact (but not naturally) when ℓ 6≡ 2 mod 4.

For π2, the sequence (
IV.2.2
2.2) of pointed sets is also exact in a suitable sense;

see
N
[142, p. 3]. However this point is irrelevant for loop spaces, so we ignore it.

IV.2.2.1 Example 2.2.1. When ℓ = 2, the sequence need not split. For example, it
is known that πm+2(S

m;Z/2) = Z/4 for m ≥ 3, and that π2(BO;Z/2) =
π3(O;Z/2) = Z/4; see

AT65
[3].

Here is another way to define mod ℓ homotopy groups, and henceK∗(R;Z/ℓ).

IV.2.3 Proposition 2.3. Suppose that X is a loop space, and let F denote the homo-
topy fiber of the map X → X which is multiplication by ℓ. Then πm(X;Z/ℓ) ∼=
πm−1(F ) for all m ≥ 2.

Proof. (Neisendorfer) Let Maps(A,X) be the space of pointed maps. If S = Sk

is the k-sphere then the homotopy groups of Maps(Sk, X) are the homotopy
groups of X (reindexed by k), while if P = P k(Z/ℓ) is a mod ℓ Moore space,
the homotopy groups of Maps(P,X) are the mod ℓ homotopy groups of X
(reindexed by k).

Applying Maps(−, X) to a cofibration sequence yields a fibration sequence,
and applying Maps(A,−) to a fibration sequence yields a fibration sequence;
this may be formally deduced from the axioms (SM0) and (SM7) for any model
structure, which hold for spaces (see

Hovey
[90]). Applying Maps(−, X) to Sk → Sk →

P k+1(Z/ℓ) shows that Maps(P,X) is the homotopy fiber of Maps(Sk, X) →
Maps(Sk, X). Applying Maps(Sk,−) to F → X → X shows that Maps(Sk, F )
is also the homotopy fiber, and is therefore homotopy equivalent to Maps(P,X).
Taking the homotopy groups yields the result.

IV. 2.3.1 Example 2.3.1 (Spectra). For fixed ℓ, the Moore spectrum P∞(Z/ℓ) is equiv-
alent to the (spectrum) cofiber of multiplication by ℓ on the sphere spectrum.
If E is a spectrum, then (by S-duality) the homotopy groups π∗(E;Z/ℓ) =
lim−→π∗+r(Er;Z/ℓ) are the same as the homotopy groups of the spectrum
E ∧ P∞(Z/ℓ).
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Now suppose that C is either a symmetric monoidal category, or an exact
category, or a Waldhausen category. We will construct a K-theory space K(C)
below (in

IV.4.3
4.3,

IV.6.3
6.3 and

IV.8.5
8.5); in each case K(C) is an infinite loop space.

IV.2.4 Definition 2.4. The mod ℓ K-groups of R are defined to be the abelian group:

Km(R;Z/ℓ) = πm(K(R);Z/ℓ), m ∈ Z.

Similarly, if the K-theory space K(C) of a category C is defined then the mod ℓ
K-groups of C are defined to be Km(C;Z/ℓ) = πm(K(C);Z/ℓ).

By
IV.2.1.1
2.1.1, if C1 → C2 → C3 is a sequence such that K(C1)→ K(C2)→ K(C3)

is a fibration, then there is a long exact sequence of abelian groups

· · · → Kn+1(C3;Z/ℓ)→ Kn(C1;Z/ℓ)→ Kn(C2;Z/ℓ)→ Kn(C3;Z/ℓ) · · ·

Ifm ≥ 2 this definition states thatKm(R;Z/ℓ) = [Pm(Z/ℓ),K(R)]. Because
K(R) ≃ ΩY , we can defineK1(R;Z/ℓ) in a way that is independent of the choice
of Y (Ex.

EIV.2.1
2.1); it agrees with the definition in III.

III.1.7.4
1.7.4 (see Ex.

EIV.2.2
2.2). However,

the groups K0(R;Z/ℓ) and Km(R;Z/ℓ) for m < 0 depend not only upon the
loop space K(R), but also upon the choice of the deloopings of K(R) in the
underlying K-theory spectrum K(R). In fact, the literature is not consistent
about Km(R;Z/ℓ) when m < 2, even for K1(R;Z/ℓ). Similar remarks apply to
the definition of Km(C;Z/ℓ).

By Universal Coefficients
IV.2.2
2.2, the mod ℓ K-groups are related to the usual

K-groups:

IV.2.5 Universal Coefficient Theorem 2.5. There is a short exact sequence

0→ Km(R)⊗ Z/ℓ→ Km(R;Z/ℓ)→ ℓKm−1(R)→ 0

for every m ∈ Z, C, and ℓ. It is split exact unless ℓ ≡ 2 mod 4. Ex.
EIV.2.3
2.3 shows

that the splitting is not natural in R.

Similarly, if the K-theory of a category C is defined then we have an exact
sequence

0→ Km(C)⊗ Z/ℓ→ Km(C;Z/ℓ)→ ℓKm−1(C)→ 0

IV.2.5.1 Example 2.5.1 (ℓ = 2). Since the isomorphism Ω∞Σ∞ → Z × BO factors
through K(Z) and K(R), the universal coefficient theorem and

IV.2.2.1
2.2.1 show that

K2(Z;Z/2) ∼= K2(R;Z/2) ∼= π2(BO;Z/2) = Z/4.

It turns out
AT65
[3] that for ℓ = 2 the sequence for Km(R;Z/2) is split whenever

multiplication by [−1] ∈ K1(Z) is the zero map from Km−1(R) to Km(R). For
example, this is the case for the finite fields Fq, an observation made in

Br
[34].

IV.2.5.2 Example 2.5.2. (Bott elements) Suppose that R contains a primitive ℓth root
of unity ζ. The Universal Coefficient Theorem

IV.2.5
2.5 provides an element β ∈

K2(R;Z/ℓ), mapping to ζ ∈ ℓK1(R). This element is called the Bott element,
and it plays an important role in the product structure of the ring K∗(R;Z/ℓ).
For finite fields, this role was mentioned briefly in Remark

IV.1.13.1
1.13.1.
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IV.2.5.3 Remark 2.5.3. A priori, β depends not only upon ζ but also upon the choice
of the splitting in

IV.2.5
2.5. One way to choose β is to observe that the inclusion

of µℓ in GL1(R) induces a map Bµℓ → BGL(R) → BGL(R)+ and therefore a
set function µℓ → K2(R;Z/ℓ). A posteriori, it turns out that this is a group
homomorphism unless ℓ ≡ 2 (mod 4).

IV.2.6 Example 2.6. Let k be the algebraic closure of the field Fp. Quillen’s compu-
tation of K∗(Fq) in

IV.1.13
1.13 shows that Kn(k) = 0 for m even (m ≥ 2), and that

Km(k) = Q/Z[ 1p ] for m odd (m ≥ 1). It follows that if ℓ is prime to p then:

Km(k;Z/ℓ) =

{
Z/ℓ if m is even, m ≥ 0

0 otherwise.

In fact, K∗(k;Z/ℓ) is the polynomial ring Z/ℓ[β] on the Bott element β ∈
K2(k;Z/ℓ), under the K-theory product of

IV.2.8
2.8 below. See

IV.1.13.1
1.13.1 (and Chapter

VI,
VI.1.3.1
1.3.1) for more details.

The next result shows that we may always assume that ℓ is a power of a prime.

IV.2.7 Proposition 2.7. If ℓ = q1q2 with q1 and q2 relatively prime, then πm(X;Z/ℓ)
is naturally isomorphic to πm(X;Z/q1)× πm(X;Z/q1).

Proof. Set P1 = Pm(Z/q1) and P2 = Pm(Z/q2) and P = P1 ∨ P2. Since
P has only one nonzero reduced integral homology group, namely H̃m(P ) =
Z/q1 × Z/q2 ∼= Z/ℓ, the natural map P → Pm(Z/ℓ) must be a homotopy
equivalence. But then πm(X;Z/ℓ) is naturally isomorphic to

[Pm(Z/q1) ∨ Pm(Z/q2), X] ∼= [Pm(Z/q1), X]× [Pm(Z/q2), X],

which is the required group πm(X;Z/q1)× πm(X;Z/q1).

Products

If ℓ ≥ 3 is prime, there is a homotopy equivalence

Pm(Z/ℓν) ∧ Pn(Z/ℓν) ≃ Pm+n(Z/ℓν) ∨ Pm+n−1(Z/ℓν).

The projections onto the first factor give a spectrum “product” map P∞(Z/ℓν)∧
P∞(Z/ℓν)→ P∞(Z/ℓν) which is homotopy associative and commutative unless
ℓν = 3. (The same thing is true when ℓ = 2, except the product map does not
exist if 2ν = 2, it is not homotopy associative if 2ν = 4 and it is not homotopy
commutative when 2ν = 4, 8.) These facts are due to Araki and Toda, and
follow by S-duality from

N
[142, 8.5–6]. So from now on, we shall exclude the

pathological cases ℓν = 2, 3, 4, 8.
If E is a homotopy associative and commutative ring spectrum, then so is

the spectrum E ∧ P∞(Z/ℓν), unless ℓν = 2, 3, 4, 8. Applying this to E = K(R)
yields the following result.
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IV.2.8 Theorem 2.8. Let R be a commutative ring, and suppose ℓν 6= 2, 3, 4, 8. Then
K(R) ∧ P∞(Z/ℓν) is a homotopy associative and commutative ring spectrum.
In particular, K∗(R;Z/ℓν) is a graded-commutative ring.

IV.2.8.1 Scholium 2.8.1. Browder
Br
[34] has observed that if πm(E) = 0 for all even m >

0 (and m < 0) then E ∧ P∞(Z/ℓν) is a homotopy associative and commutative
ring spectrum even for ℓν = 2, 3, 4, 8. This applies in particular to E = K(Fq),
as remarked in

IV.1.13.1
1.13.1 and

IV.2.6
2.6 above.

IV.2.8.2 Corollary 2.8.2. If ℓ ≥ 3 and R contains a primitive ℓth root of unity ζ, and
β ∈ K2(R;Z/ℓ) is the Bott element (

IV.2.5.2
2.5.2), there is a graded ring homomor-

phism Z/ℓ[ζ, β]→ K∗(R;Z/ℓ).
If ζ 6∈ R, there are elements β′ ∈ K2ℓ−2(R;Z/ℓ) and ζ ′ ∈ K2ℓ−3(R;Z/ℓ)

whose images in K2ℓ−2(R[ζ];Z/ℓ) and K2ℓ−3(R[ζ];Z/ℓ) are βℓ−1 and βℓ−2ζ,
respectively.

Proof. The first assertion is immediate from
IV.2.8
2.8 and

IV.2.5.2
2.5.2. For the second

assertion we may assume that R = Z. Then the Galois group G of Z[ζ] over Z is
cyclic of order ℓ−1, and we define β′ to be the image of−βℓ−1 ∈ K2ℓ−2(Z[ζ];Z/ℓ)
under the transfer map i∗ (

IV.1.1.3
1.1.3). Since i∗i∗ is

∑
g∈G g

∗ by Ex.
EIV.6.13
6.13,

i∗β′ = −
∑

g∗βℓ−1 = −(ℓ− 1)βℓ−1 = βℓ−1.

Similarly, ζ ′ = i∗(−ζβℓ−2) has i∗ζ ′ = ζβℓ−2.

IV.2.9 The ℓ-adic completion 2.9. Fix a prime ℓ. The ℓ-adic completion of a spec-
trum E, Êℓ, is the homotopy limit (over ν) of the spectra E ∧ P∞(Z/ℓν). We
let πn(E;Zℓ) denote the homotopy groups of this spectrum; if E = K(R) we
write Kn(R;Zℓ) for the homotopy groups πn(K(R);Zℓ) of the ℓ-adic completion

K̂(R)ℓ. There is an extension

0→ lim←−
1πn+1(E;Z/ℓν)→ πn(E;Zℓ)→ lim←−πn(E;Z/ℓν)→ 0.

If the homotopy groups πn+1(E;Z/ℓν) are finite, the lim←−
1 term vanishes and,

by Universal Coefficients (
IV.2.5
2.5), πn(E;Zℓ) is an extension of the Tate module of

πn−1(E) by the ℓ-adic completion of πn(E). (The (ℓ-primary) Tate module of an
abelian group A is the inverse limit of the groups Hom(Z/ℓν , A).) For example,
the Tate module of K1(C) = C× is Zℓ, so K2(C;Zℓ) = π2(K(C);Zℓ) is Zℓ.

If E is a homotopy associative and commutative ring spectrum then so is
the homotopy limit Êp. Thus π∗(E;Zℓ), and in particular K∗(R;Zℓ), is also a
graded-commutative ring.

We conclude with Gabber’s Rigidity Theorem
Gabber
[60]. If I is an ideal in a

commutative ring R, we say that (R, I) is a Hensel pair if for every finite com-
mutative R-algebra C the map C → C/IC induces a bijection on idempotents.
A Hensel local ring is a commutative local ring R such that (R,m) is a Hensel
pair. These conditions imply that I is a radical ideal (Ex. I.

EI.2.1
2.1), and (R, I) is a

Hensel pair whenever I is complete by Ex. I.
EI.2.2
2.2(i).
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IV.2.10 Theorem 2.10 (Rigidity Theorem). Let (R, I) be a Hensel pair with 1/ℓ ∈ R.
Then for all n ≥ 1, Kn(R;Z/ℓ)

∼=−→ Kn(R/I;Z/ℓ) and H̃∗(GL(I),Z/ℓ) = 0

Gabber proves that H̃∗(GL(I),Z/ℓ) = 0, and observes that this is equivalent
to Kn(R;Z/ℓ)→ Kn(R/I;Z/ℓ) being onto.

IV.2.10.1 Example 2.10.1. If 1/ℓ ∈ R then Kn(R[[x]];Z/ℓ) ∼= Kn(R;Z/ℓ) for all n ≥ 0.

IV.2.10.2 Example 2.10.2. A restriction like n ≥ 0 is necessary. Les Reid
Reid
[157] has

given an example of a 2-dimensional hensel local Q-algebra with K−2(R) = Z,
and Drinfeld

Drin
[49] has shown that K−1(I) = 0.

EXERCISES

EIV.2.1 2.1. Suppose that X is a loop space. Show that π1(X;Z/ℓ) is independent
of the choice of Y such that X ≃ ΩY . This shows that K1(R;Z/ℓ) and even
K1(C;Z/ℓ) are well defined.

EIV.2.2 2.2. Show that the group K1(R;Z/ℓ) defined in
IV.2.4
2.4 is isomorphic to the group

defined in III.
III.1.7.4
1.7.4. Using the Fundamental Theorem III.

III.3.7
3.7 (and III.

III.4.1.2
4.1.2),

show that K0(R;Z/ℓ) and even the groups Kn(R;Z/ℓ) for n < 0 which are
defined in

IV.2.4
2.4 are isomorphic to the corresponding groups defined in Ex. III.

EIII.4.6
4.6.

EIV.2.3 2.3. Let R be a Dedekind domain with fraction field F . Show that the kernel
of the map K1(R;Z/ℓ)→ K1(F ;Z/ℓ) is SK1(R)/ℓ. Hence it induces a natural
map

ℓ Pic(R)
ρ−→ F×/F×ℓR×.

Note that F×/R× is a free abelian group by I.
I.3.6
3.6, so the target is a free Z/ℓ-

module for every integer ℓ. Finally, use I.
I.3.6
3.6 and I.

I.3.8.1
3.8.1 to give an elementary

description of ρ.
In particular, If R is the ring of integers in a number field F , the Bass-

Milnor-Serre Theorem III.
III.2.5
2.5 shows that the extension K1(R;Z/ℓ) of ℓPic(R)

by R×/R×ℓ injects into F×/F×ℓ, and that ℓK0(R) is not a natural summand of
K1(R;Z/ℓ). (If 1/ℓ ∈ R, the étale Chern class K1(R;Z/ℓ) → H1

et(Spec(R), µℓ)
of V.

V.11.10
11.10 is an isomorphism.)

EIV.2.4 2.4. If n ≥ 2, there is a Hurewicz map πn(X;Z/ℓ) → Hn(X;Z/ℓ) sending the
class of a map f : Pn → X to f∗[e], where [e] ∈ Hn(P

n;Z/ℓ) ∼= Hn(S
n;Z/ℓ) is

the canonical generator. Its restriction to πn(X)/ℓ is the reduction modulo ℓ of
the usual Hurewicz homomorphism πn(X)→ Hn(X;Z).

(a) If n ≥ 3, show that the Hurewicz map is a homomorphism. (If n = 2
and ℓ is odd, it is also a homomorphism.) Hint: Since Pn is a suspension,
there is a comultiplication map Pn → Pn ∨ Pn.

If n = 2 and ℓ is even, the Hurewicz map h may not be a homomorphism, even
if X is an infinite loop space. The precise formula is: h(a+ b) = h(a) + h(b) +
(ℓ/2){∂a, ∂b}. (See We93

[222].)
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(b) In Example
IV.2.5.1
2.5.1, show that the Hurewicz map from K2(R;Z/2) ∼= Z/4

to H2(SL(R);Z/2) ∼= Z/2 is nonzero on β and 2β = {−1,−1}, but zero
on 3β.

(c) If n = 2, show that the Hurewicz map is compatible with the action of
π2(X) on π2(X;Z/ℓ) and on H2(X;Z/ℓ).

EIV.2.5 2.5. Show that K∗(R;Z/ℓν) is a graded module over K∗(R), associated to the
evident pairing K(R) ∧K(R) ∧ P∞(Z/ℓν)→ K(R) ∧ P∞(Z/ℓν).

EIV.2.6 2.6. Fix a prime ℓ and let Z/ℓ∞ denote the union of the groups Z/ℓν , which is a
divisible torsion group. Show that there is a space Pm(Z/ℓ∞) = lim−→Pm(Z/ℓν)
such that πm(X;Z/ℓ∞) = [Pm(Z/ℓ∞), X] is the direct limit of the πm(X;Z/ℓν).
Then show that there is a universal coefficient sequence for m ≥ 3:

0→ (πmX)⊗ Z/ℓ∞ → πm(X;Z/ℓ∞)
∂−→ (πm−1X)ℓ-tors → 0.
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3 Geometric realization of a small category

Recall (II.
II.6.1.3
6.1.3) that a small category is a category whose objects form a set. If

C is a small category, its geometric realization BC is a CW complex constructed
naturally out of C. By definition, BC is the geometric realization |NC| of the
nerve NC of C; see

IV.3.1.4
3.1.4 below. However, it is characterized in a simple way.

IV.3.1 Characterization 3.1. The realization BC of a small category C is the CW
complex uniquely characterized up to homeomorphism by the following proper-
ties. Let n denote the category with n objects {0, 1, · · · , n − 1}, with exactly
one morphism i→ j for each i ≤ j; n is an ordered set, regarded as a category.

(1) Naturality. A functor F : C → D induces a cellular map BF : BC → BD,
BF ◦BG = B(FG) and B(idC) is the identity map on BC.

(2) Bn is the standard (n− 1)–simplex ∆n−1. The functor φ : i→ n induces
the simplicial map ∆i−1 → ∆n−1 sending vertex j to vertex φ(j).

(3) BC is the colimit colimΦBi, where Φ is the category whose objects are
functors n → C, and whose morphisms are factorizations i → n → C.
The corresponding map Bi→ Bn is given by (2).

The following useful properties are consequences of this characterization:

(4) If C is a subcategory of D, BC is a subcomplex of BD;

(5) If C is the coproduct of categories Cα, BC =
∐
BCα;

(6) B(C ×D) is homeomorphic to (BC)× (BD), where the product is given
the compactly generated topology;

Here are some useful special cases of (2) for small n:
B0 = ∅ is the empty set, because 0 is the empty category.
B1 = {0} is a one-point space, since 1 is the one object-one morphism

category.
B2 = [0, 1] is the unit interval, whose picture is: 0 • −→ • 1.
B3 is the 2-simplex; the picture of this identification is:

1

•

0 •

f1 ◦ f0
>

f0
>

• 2

f1

>

The small categories form the objects of a category CAT , whose morphisms
are functors. By (1), we see that geometric realization is a functor from CAT
to the category of CW complexes and cellular maps.
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IV.3.1.1 Recipe 3.1.1. The above characterization of the CW complex BC gives it the
following explicit cellular decomposition. The 0-cells (vertices) are the objects of
C. The 1-cells (edges) are the morphisms in C, excluding all identity morphisms,
and they are attached to their source and target. For each pair (f, g) of compos-
able maps in C, attach a 2-simplex, using the above picture of B3 as the model.
(Ignore pairs (f, g) where either f or g is an identity.) Inductively, given an
n-tuple of composable maps in C (none an identity map), c0 → c1 → · · · → cn,
attach an n-simplex, using B(n+ 1) as the model. By (3), BC is the union of
these spaces, equipped with the weak topology.

Notice that this recipe implies a canonical cellular homeomorphism between
BC and the realization BCop of the opposite category Cop. In effect, the recipe
doesn’t notice which way the arrows run.

IV.3.1.2 Example 3.1.2. Let C2 be the category with one object and two morphisms,
1 and σ, with σ2 = 1. The recipe tells us that BC2 has exactly one n-cell for
each n, attached to the (n−1)-cell by a map of degree 2 (corresponding to the
first and last faces of the n-simplex). Therefore the n-skeleton of BC2 is the
projective n-space RPn, and their union BC2 is the infinite projective space
RP∞.

IV.3.1.3 Example 3.1.3. Any group G (or monoid) may be regarded as a category with
one object. The realization BG of this category is the space studied in Section 1.
The recipe 3.1.1 shows that BG has only one vertex, and one 1-cell for every
nontrivial element of G.

Although the above recipe gives an explicit description of the cell decompo-
sition of BC, it is a bit vague about the attaching maps. To be more precise,
we shall assume that the reader has a slight familiarity with the basic notions in
the theory of simplicial sets, as found for example in

WHomo
[223] or

May
[118]. A simplicial

set X is a contravariant functor ∆→ Sets, where ∆ denotes the subcategory of
ordered sets on the objects {0,1, ...,n, ...}. Alternatively, it is a sequence of sets
X0, X1, . . . , together with “face” maps ∂i : Xn → Xn−1 and “degeneracy maps”
σi : Xn → Xn+1 (0 ≤ i ≤ n), subject to certain identities for the compositions
of these maps.

We may break down the recipe for BC into two steps: we first construct a
simplicial set NC, called the nerve of the category C, and then set BC = |NC|.

IV.3.1.4 Definition 3.1.4 (The nerve of C). The nerve NC of a small category C is
the simplicial set defined by the following data. Its n-simplices are functors
c : n+ 1→ C, i.e., diagrams in C of the form

c0 → c1 → · · · → cn.

The ith face ∂i(c) of this simplex is obtained by deleting ci in the evident way;
to get the ith degeneracy σi(c), one replaces ci by ci

=−→ ci.
The geometric realization |X•| of a simplicial set X• is defined to be the CW

complex obtained by following the recipe
IV.3.1.1
3.1.1 above, attaching an n-cell for
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each nondegenerate n-simplex x, identifying the boundary faces of the simplex
with the (n− 1)-simplices indexed by the ∂ix. See

WHomo
[223, 8.1.6] or

May
[118, §14] for

more details.
BC is defined as the geometric realization |NC| of the nerve of C. From

this prescription, it is clear that BC is given by recipe
IV.3.1.1
3.1.1 above.

By abuse of notation, we will say that a category is contractible, or con-
nected, or has any other topological property if its geometric realization has
that property. Similarly, we will say that a functor F : C → D is a homotopy
equivalence if BF is a homotopy equivalence BC ≃ BD.

IV.3.2 Homotopy-theoretic properties 3.2. A natural transformation η : F0 ⇒ F1

between two functors Fi : C → D gives a homotopy BC × [0, 1]→ BD between
the maps BF0 and BF1. This follows from (4) and (6) of

IV.3.1
3.1, because η may

be viewed as a functor from C × 2 to D whose restriction to C × {i} is Fi.
As a consequence, any adjoint pair of functors L : C → D, R : D → C

induces a homotopy equivalence between BC and BD, because there are natural
transformations LR⇒ idD and idC ⇒ RL.

IV.3.2.1 Example 3.2.1 (Smallness). Any equivalence C0
f−→ C between small cate-

gories induces a homotopy equivalence BC0
∼−→ BC, because F has an adjoint.

In practice, we will often work with a category C, such as P(R) or M(R),
which is not actually a small category, but which is skeletally small (II.

II.6.1.3
6.1.3).

This means that C is equivalent to a small category, say to C0. In this case, we
can use BC0 instead of the mythical BC, because any other choice for C0 will
have a homotopy equivalent geometric realization. We shall usually overlook this
fine set-theoretic point in practice, just as we did in defining K0 in Chapter II.

IV.3.2.2 Example 3.2.2 (Initial objects). Any category with an initial object is con-
tractible, because then the natural functor C → 1 has a left adjoint. Similarly,
any category with a terminal object is contractible.

For example, suppose given an object d of a category C. The comma category
C/d of objects over d has as its objects the morphisms f : c→ d in C with target
d. A morphism in the comma category from f to f ′ : c′ → d is a morphism
h : c→ c′ so that f = f ′h. The comma category C/d is contractible because it
has a terminal object, namely the identity map idd : d

=−→ d. The dual comma
category d\C with objects d→ c is similar, and left to the reader.

IV.3.2.3 Definition 3.2.3 (Comma categories). Suppose given a functor F : C → D
and an object d of D. The comma category F/d has as its objects all pairs
(c, f) with c an object in C and f a morphism in D from F (c) to d. By abuse of

notation, we shall write such objects as F (c)
f−→ d. A morphism in F/d from

this object to F (c′)
f ′

−→ d is a morphism h : c → c′ in C so that the following
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diagram commutes in D.

F (c)
F (h)

> F (c′)

d

f ′
<

f >

There is a canonical forgetful functor j : F/d → C, j(c, f) = c, and there is
a natural transformation η(c,f) = f from the composite F ◦ j : F/d→ D to the
constant functor with image d. So B(F ◦ j) is a contractible map. It follows
that there is a natural continuous map from B(F/d) to the homotopy fiber of
BC → BD.

There is a dual comma category d\F , whose objects are written as d→ F (c),
and morphisms are morphisms h : c → c′ in C. It also has a forgetful functor
to C, and a map from B(d\F ) to the homotopy fiber of BC → BD. In fact,
d\F = (d/F op)op.

In the same spirit, we can define comma categories F/D (resp., D\F ); an
object is just an object of F/d (resp., of d\F ) for some d in D. A morphism in
F/D from (c, F (c)→ d) to (c′, F (c′)→ d′) is a pair of morphisms c→ c′, d→ d′

so that the two maps F (c) → d′ agree; there is an evident forgetful functor
F/D → C ×D. A morphism in D\F from (c, d→ F (c)) to (c′, d′ → F (c′)) is a
pair of morphisms c→ c′, d′ → d so that the two maps d′ → F (c′) agree; there
is an evident forgetful functor D\F → Dop × C.

The set π0 of components of a category

The set π0(X) of connected components of any CW complex X can be described
as the set of vertices modulo the incidence relation of edges. For BC this takes
the following form. Let obj(C) denote the set of objects of C, and write π0(C)
for π0(BC).

IV.3.3 Lemma 3.3. Let ∼ be the equivalence relation on obj(C) which is generated by
the relation that c ∼ c′ if there is a morphism in C between c and c′. Then

π0(C) = obj(C)/ ∼ .

IV.3.3.1 Translation categories 3.3.1. Suppose that G is a group, or even a monoid,
acting on a set X. The translation category G

∫
X is defined as the category

whose objects are the elements of X, with Hom(x, x′) = {g ∈ G|g · x = x′}. By
Lemma

IV.3.3
3.3, π0(G

∫
X) is the orbit space X/G. The components of G

∫
X are

described in Ex.
EIV.3.2
3.2.

Thinking of a G-set X as a functor G → CAT , the translation category
becomes a special case of the following construction, due to Grothendieck.

IV.3.3.2 Example 3.3.2. Let I be a small category. Given a functor X : I → Sets, let
I
∫
X denote the category of pairs (i, x) with i an object of I and x ∈ X(i), in
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which a morphism (i, x)→ (i′, x′) is a morphism f : i→ i′ in I with X(f)(x) =
x′. By Lemma

IV.3.3
3.3 we have π0(I

∫
X) = colimi∈I X(i).

More generally, given a functor X : I → CAT , let I
∫
X denote the category

of pairs (i, x) with i an object of I and x an object of X(i), in which a morphism
(f, φ) : (i, x) → (i′, x′) is given by a morphism f : i → i′ in I and a morphism
φ : X(f)(x) → x′ in X(i′). Using Lemma

IV.3.3
3.3, it is not hard to show that

π0(I
∫
X) = colimi∈I π0X(i).

For example, if F : C → D is a functor then d 7→ F/d is a functor on D, and
D
∫
(F/−) is F/D, while d 7→ d\F is a functor on Dop, and D

∫
(−\F ) is Dop\F .

The fundamental group π1 of a category

Suppose that T is a set of morphisms in a category C. The graph of T is the
1-dimensional subcomplex of BC consisting of the edges corresponding to T and
their incident vertices. We say that T is a tree in C if its graph is contractible
(i.e., a tree in the sense of graph theory). If C is connected then a tree T is
maximal (a maximal tree) just in case every object of C is either the source or
target of a morphism in T . By Zorn’s Lemma, maximal trees exist when C 6= ∅.

Classically, the fundamental group π1(Γ) of the 1-skeleton Γ of BC is a free
group on symbols [f ], one for every non-identity morphism f in C not in T .
(The loop is the composite of f with the unique paths in the tree between the
basepoint and the source and target of f .) The following well known formula for
the fundamental group of BC is a straight-forward application of Van Kampen’s
theorem.

IV.3.4 Lemma 3.4. Suppose that T is a maximal tree in a small connected category
C. Then the group π1(BC) has the following presentation: it is generated by
symbols [f ], one for every morphism in C, modulo the relations that

(1) [t] = 1 for every t ∈ T , and [idc] = 1 for the identity morphism idc of each
object c.

(2) [f ] · [g] = [f ◦ g] for every pair (f, g) of composable morphisms in C.

This presentation does not depend upon the choice of the object c0 of C
chosen as the basepoint. Geometrically, the class of f : c1 → c2 is represented
by the unique path in T from c0 to c1, followed by the edge f , followed by the
unique path in T from c2 back to c0.

IV.3.4.1 Application 3.4.1 (Groups). Let G be a group, considered as a category with
one object. Since BG has only one vertex, BG is connected. By Lemma

IV.3.4
3.4

(with T empty) we see that π1(BG) = G. In fact, πi(BG) = 0 for all i ≥ 2. (See
Ex.

EIV.3.2
3.2.) BG is often called the classifying space of the group G, for reasons

discussed in Examples
IV.3.9.2
3.9.2 and

IV.3.9.3
3.9.3 below.

IV.3.4.2 Application 3.4.2 (Monoids). If M is a monoid then BM has only one ver-
tex. This time, Lemma

IV.3.4
3.4 shows that the group π = π1(BM) is the group

completion (Ex. II.
EII.1.1
1.1) of the monoid M .
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For our purposes, one important thing about BG is that its homology is the
same as the ordinary Eilenberg-MacLane homology of the group G (see

WHomo
[223,

6.10.5 or 8.2.3]). In fact, if M is any G-module then we may consider M as a
local coefficient system on BG (see

IV.3.5.1
3.5.1). The cellular chain complex used to

form the homology of BG with coefficients in M is the same as the canonical
chain complex used to compute the homology of G, so we have H∗(BG;M) =
H∗(G;M). As a special case, we have H1(BG;Z) = H1(G;Z) = G/[G,G],
where [G,G] denotes the commutator subgroup of G, i.e., the subgroup of G
generated by all commutators [g, h] = ghg−1h−1 (g, h ∈ G).

IV.3.5 The homology of C and BC 3.5. The ith homology of a CW complex X
such as BC is given by the homology of the cellular chain complex C∗(X). By
definition, Cn(X) is the free abelian group on the n-cells of X. If e is an n+ 1-
cell and f is an n-cell, then the coefficient of [f ] in the boundary of [e] is the

degree of the map Sn
ε−→ X(n) f−→ Sn, where ε is the attaching map of e and

the second map is the projection from X(n) (the n-skeleton of X) onto Sn given
by the n-cell f .

For example, H∗(BC;Z) is the homology of the unreduced cellular chain
complex C∗(BC), which in degree n is the free abelian group on the set of
all n-tuples (f1, ..., fn) of composable morphisms in C, composable in the order

c0
f1−→ c1 → · · · fn−→ cn. The boundary map in this complex sends the generator

(f1, ..., fn) to the alternating sum obtained by succesively deleting the ci in the
evident way:

(f2, ..., fn)−(f2f1, f3, ..., fn)+· · ·±(..., fi+1fi, ...)∓· · ·±(..., fnfn−1)∓(..., fn−1).

More generally, for each functor M : C → Ab we let Hi(C;M) denote the ith

homology of the chain complex

· · · →
∐

c0→···→cn

M(c0)→ · · · →
∐

c0→c1

M(c0)→
∐

c0

M(c0).

The final boundary map sends the copy ofM(c0) indexed by c0
f−→ c1 toM(c0)⊕

M(c1) by x 7→ (−x, fx). The cokernel of this map is the usual description for
the colimit of the functor M , so H0(C;M) = colimc∈CM(c).

IV.3.5.1 Definition 3.5.1 (Local coefficients). A functor C → Sets is said to be
morphism-inverting if it carries all morphisms of C into isomorphisms. By
Ex.

EIV.3.1
3.1, morphism-inverting functors are in 1–1 correspondence with covering

spaces of BC. Therefore the morphism-inverting functors M : C → Ab are in
1–1 correspondence with local coefficient systems on the topological space BC.
In this case, the groups Hi(C;M) are canonically isomorphic to Hi(BC;M), the
topologist’s homology groups of BC with local coefficientsM . The isomorphism
is given in

Wh
[228, VI.4.8].
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Bisimplicial Sets

A bisimplicial set X is a contravariant functor ∆×∆→ Sets, where ∆ is the
subcategory of ordered sets on the objects {0,1, ...,n, ...}. Alternatively, it is a
doubly indexed family Xp,q of sets, together with “horizontal” face and degen-
eracy maps (∂hi : Xp,q → Xp−1,q and σhi : Xp,q → Xp+1,q) and “vertical” face
and degeneracy maps (∂vi : Xp,q → Xp,q−1 and σvi : Xp,q → Xp,q+1), satisfying
the horizontal and vertical simplicial identities and such that horizontal maps
commute with vertical maps. In particular, each Xp,• and X•,q is a simplicial
set.

IV.3.6 Definition 3.6. The geometric realization BX of a bisimplicial set X is ob-
tained by taking one copy of the product ∆p × ∆q for each element of Xp,q,
inductively identifying its horizontal and vertical faces with the appropriate
∆p−1 ×∆q or ∆p ×∆q−1, and collapsing horizontal and vertical degeneracies.
This construction is sometimes described as a coend: BX =

∫
p,q
Xp,q×∆p×∆q.

There is a diagonalization functor diag from bisimplicial sets to simplicial
sets (diag(X)p = Xp,p), and it is well known (see

BF
[33, B.1]) that BX is home-

omorphic to B diag(X). The following theorem is also well known; see
Wa78
[214,

p. 164–5] or
Q341
[153, p. 98] for example.

IV.3.6.1 Theorem 3.6.1. Let f : X → Y be a map of bisimplicial sets.
(i) If each simplicial map Xp,•→Yp,• is a homotopy equivalence, so is BX→BY .
(ii) If Y is the nerve of a category I (constant in the second simplicial coordi-
nate), and f−1(i, •)→ f−1(j, •) is a homotopy equivalence for every i→ j in I,
then each B(f−1(i, •))→ BX → B(I) is a homotopy fibration sequence.

IV.3.6.2 Example 3.6.2. (Quillen) If F : C → D is a functor, the canonical functor
D\F → C is a homotopy equivalence, where D\F is the comma category of
Example

IV.3.2.3
3.2.3. To see this, let X denote the bisimplicial set such that Xp.q is

the set of all pairs of sequences

(dq → · · · → d0 → F (c0), c0 → · · · → cp);

the horizontal and vertical faces come from the nerves of C and D. Consider
the projection of X onto the nerve of C. Since NCp is the discrete set of all
sequences c0 → · · · → cp, the inverse image of this sequence is isomorphic to the
nerve of D\F (c0), and D\F (c0) is contractible since it has a terminal object.
Theorem

IV.3.6.1
3.6.1 applies to yield BX

∼−→ BC. The simplicial set diag(X) is the
nerve of D\F , and the composition B(D\F ) ∼−→ BX

∼−→ BC is the canonical
map, whence the result.

Homotopy Fibers of Functors

If F : C → D is a functor, it is useful to study the realization map BF : BC →
BD in terms of homotopy groups, and for this we want a category-theoretic
interpretation of the homotopy fiber (

IV.1.2
1.2). The näıve approximations to the

homotopy fiber are the realization of the comma categories F/d and its dual
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d\F . Indeed, we saw in
IV.3.2.3
3.2.3 that there are continuous maps from both B(F/d)

and B(d\F ) to the homotopy fiber.
Here is the fundamental theorem used to prove that two categories are ho-

motopy equivalent. It was proven by Quillen in
Q341
[153]. Note that it has a dual

formulation, replacing d\F by F/d, because BD ≃ BDop.

IV.3.7 Theorem 3.7 (Quillen’s Theorem A). Let F : C → D be a functor such that

d\F is contractible for every d in D. Then BF : BC
≃−→ BD is a homotopy

equivalence.

Proof. Consider the comma category D\F of
IV.3.2.3
3.2.3, which is equipped with

functors C < D\F > Dop such that BC < B(D\F ) is a homotopy
equivalence (by

IV.3.6.2
3.6.2). The functor D\F → D\D, sending (d → F (c), c) to

(d→ F (c), F (c)), fits into a commutative diagram of categories

C <
≃

D\F > Dop

D

F
∨
<
≃

D\D
∨

> Dop

wwwww

Therefore it suffices to show that B(D\F )→ BDop is a homotopy equivalence.

This map factors as B(D\F ) ≃ BX π−→ BDop, where X is the bisimplicial set
of Example

IV.3.6.2
3.6.2 and π is the projection. Consider the simplicial map π•,q from

X•,q to the qth component of the nerve of Dop, which is the discrete set of all
sequences dq → · · · → d0 in D. For each such sequence, the inverse image in
X∗,q is the nerve of d0\F , which is assumed to be contractible. By Theorem
IV.3.6.1
3.6.1, B(D\F ) ≃ BX → BD is a homotopy equivalence, as required.

IV.3.7.1 Example 3.7.1. If F : C → D has a left adjoint L, then d\F is isomorphic to
the comma category L(d)\C, which is contractible by Example

IV.3.2.2
3.2.2. In this

case, Quillen’s Theorem A recovers the observation in
IV.3.2
3.2 that C and D are

homotopy equivalent.

IV.3.7.2 Example 3.7.2. Consider the inclusion of monoids i : N →֒ Z as a functor
between categories with one object ∗. Then ∗\i is isomorphic to the translation
category N

∫
Z, which is contractible (why?). Quillen’s Theorem A shows that

BN ≃ BZ ≃ S1.

The inverse image F−1(d) of an object d is the subcategory of C consisting
of all objects c with F (c) = d, and all morphisms h in C mapping to the
identity of d. It is isomorphic to the full subcategory of F/d consisting of pairs
(c, F (c)

=−→ d), and also to the full subcategory of pairs (d
=−→ F (c), c) of d\F .

It will usually not be homotopy equivalent to either F/d or d\F .
One way to ensure that F−1(d) is homotopic to a comma category is to

assume that F is either pre-fibered or pre-cofibered in the following sense.
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IV.3.7.3 Fibered and Cofibered functors 3.7.3. (Cf.
SGA1
[SGA1, Exp. VI]) We say that

a functor F : C → D is pre-fibered if for every d inD the inclusion F−1(d) →֒ d\F
has a right adjoint. This implies that BF−1(d) ≃ B(d\F ), and the base change
functor f∗ : F−1(d′) → F−1(d) associated to a morphism f : d → d′ in D is
defined as the composite F−1(d′) →֒ (d\F ) → F−1(d). F is called fibered if it
is pre-fibered and g∗f∗ = (fg)∗ for every pair of composable maps f, g, so that
F−1 gives a contravariant functor from D to CAT .

Dually, we say that F is pre-cofibered if for every d the inclusion F−1(d) →֒
F/d has a left adjoint. In this case we have BF−1(d) ≃ B(F/d). The cobase
change functor f∗ : F

−1(d)→ F−1(d′) associated to a morphism f : d→ d′ in D
is defined as the composite F−1(d) →֒ (F/d′) → F−1(d′). F is called cofibered
if it is pre-cofibered and (fg)∗ = f∗g∗ for every pair of composable maps f, g,
so that F−1 gives a covariant functor from D to CAT .

These notions allow us to state a variation on Quillen’s Theorem A.

IV.3.7.4 Corollary 3.7.4. Suppose that F : C → D is either pre-fibered or pre-cofibered,
and that F−1(d) is contractible for each d in D. Then BF is a homotopy
equivalence BC ≃ BD.

IV.3.7.5 Example 3.7.5. Cofibered functors over D are in 1–1 correspondence with
functors D → CAT . We have already mentioned one direction: if F : C → D
is cofibered, F−1 is a functor from D to CAT . Conversely, for each functor
X : D → CAT , the category D

∫
X of Example

IV.3.3.2
3.3.2 is cofibered over D by the

forgetful functor (d, x) 7→ d. It is easy to check that these are inverses: C is
equivalent to D

∫
F−1.

Here is the fundamental theorem used to construct homotopy fibration
sequences of categories. It was originally proven in

Q341
[153]. Note that it has a dual

formulation, in which d\F is replaced by F/d; see Ex.
EIV.3.6
3.6.

IV.3.8 Theorem 3.8 (Quillen’s Theorem B). Let F : C → D be a functor such that
for every morphism d→ d′ in D the induced functor d′\F → d\F is a homotopy
equivalence. Then for each d in D the geometric realization of the sequence

d\F j−→ C
F−→ D

is a homotopy fibration sequence. Thus there is a long exact sequence

· · · → πi+1(BD)
∂−→ πiB(d\F ) j−→ πi(BC)

F−→ πi(BD)
∂−→ · · · .

Proof. We consider the projection functor X
p→N(Dop) of

IV.3.6.2
3.6.2. Since p−1(d)

is the nerve of d\F , we may apply Theorem
IV.3.6.1
3.6.1 to conclude that B(d\F ) →

BX → BDop is a homotopy fibration sequence. Since B(d\F )→ B diag(X) =

B(D\F ) ≃→BC is induced from j : d\F → C, the theorem follows from the
diagram

d\F > D\F > Dop

∗ ≃ d\D
∨

> D\D

F
∨ ≃

> Dop.

wwwww
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IV.3.8.1 Corollary 3.8.1. Suppose that F is pre-fibered, and for every f : d → d′ in
D the base change f∗ is a homotopy equivalence. Then for each d in D the
geometric realization of the sequence

F−1(d)
j−→ C

f−→ D

is a homotopy fibration sequence. Thus there is a long exact sequence

· · · → πi+1(BD)
∂−→ πiBF

−1(d)
j−→ πi(BC)

f−→ πi(BD)
∂−→ · · · .

IV.3.9 Topological categories 3.9. If C = Ctop is a topological category (i.e., the
object and morphism sets form topological spaces), then the nerve of Ctop is
a simplicial topological space. Using the appropriate geometric realization
of simplicial spaces, we can form the topological space BCtop = |NCtop|. It
has the same underlying set as our previous realization BCδ (the δ standing
for “discrete,” i.e., no topology), but the topology of BCtop is more intricate.
Since the identity may be viewed as a continuous functor Cδ → Ctop between
topological categories, it induces a continuous map BCδ → BCtop.

For example, any topological group G = Gtop is a topological category, so
we need to distinguish between the two connected spaces BGδ and BGtop. It
is traditional to write BG for BGtop, reserving the notation BGδ for the less
structured space. As noted above, BGδ has only one nonzero homotopy group:
π1(BG

δ) = Gδ. In contrast, the loop space Ω(BGtop) is Gtop, so πiBG
top =

πi−1G
top for i > 0.

IV.3.9.1 Example 3.9.1. Let G = R be the topological group of real numbers under ad-
dition. Then BRtop is contractible because Rtop is, but BRδ is not contractible
because π1(BRδ) = R.

IV.3.9.2 Example 3.9.2 (BU). The unitary groups Un are topological groups, and we
see from I.

I.4.10.1
4.10.1 that BUn is homotopy equivalent to the infinite complex Grass-

mannian manifold Gn, which classifies n-dimensional complex vector bundles by
Theorem I.

I.4.10
4.10. The unitary group Un is a deformation retract of the complex

general linear group GLn(C)top. Thus BUn and BGLn(C)top are homotopy
equivalent spaces. Taking the limit as n→∞, we have a homotopy equivalence
BU ≃ BGL(C)top.

By Theorem II.
II.3.2
3.2, KU(X) ∼= [X,Z×BU ] and K̃U(X) ∼= [X,BU ] for every

compact space X. By Ex. II.
EII.3.11
3.11 we also have KU−n(X) ∼= [X,Ωn(Z × BU)]

for all n ≥ 0. In particular, for the one-point space ∗ the groups KU−n(∗) =
πn(Z × BU) are periodic of order 2: Z if n is even, 0 if not. This follows from
the observation in II.

II.3.2
3.2 that the homotopy groups of BU are periodic — except

for π0(BU), which is zero as BU is connected.
A refinement of Bott periodicity states that ΩU ≃ Z×BU . Since Ω(BU) ≃

U , we have Ω2(Z × BU) ≃ Ω2BU ≃ Z × BU and Ω2U ≃ U . This yields the
periodicity formula: KU−n(X) = KU−n−2(X).
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IV.3.9.3 Example 3.9.3. (BO) The orthogonal group On is a deformation retract of the
real general linear group GLn(R)top. Thus the spaces BOn and BGLn(R)top

are homotopy equivalent, and we see from I.
I.4.10.1
4.10.1 that they are also homotopy

equivalent to the infinite real Grassmannian manifold Gn. In particular, they
classify n-dimensional real vector bundles by Theorem I.

I.4.10
4.10. Taking the limit

as n→∞, we have a homotopy equivalence BO ≃ BGL(R)top.
Bott periodicity states that the homotopy groups of BO are periodic of

order 8 — except for π0(BO) = 0, and that the homotopy groups of Z×BO are
actually periodic of order 8. These homotopy groups are tabulated in II.

II.3.1.1
3.1.1.

A refinement of Bott periodicity states that Ω7O ≃ Z×BO. Since Ω(BO) ≃ O,
we have Ω8(Z×BO) ≃ Ω8(BO) ≃ Z×BO and Ω8O ≃ O.

By Definition II.
II.3.5
3.5 and Ex. II.

EII.3.11
3.11, the (real) topological K-theory of a

compact spaceX is given by the formulaKO−n(X) = [X,Ωn(Z×BO)], n ≥ 0.
This yields the periodicity formula: KO−n(X) = KO−n−8(X).

Bicategories

One construction that has proven useful in constructing spectra is the geometric
realization of a bicategory. Just as we could have regarded a small category A as
a special type of simplicial set, via its nerve

IV.3.1.4
3.1.4 (A0 and A1 are the objects and

morphisms, all the other sets An are pullbacks and ∂1 : A2 = A1 ×A0
A1 → A1

defines composition), we can do the same with small bicategories.

IV.3.10 Definition 3.10. A small bicategory C is a bisimplicial set such that every
row C•,q and column Cp,• is the nerve of a category. We refer to elements of
C0,0, C1,0, C0,1 and C1,1 as the objects, horizontal and vertical morphisms, and
bimorphisms. A bifunctor between bicategories is a morphism of the underlying
bisimplicial sets.

IV.3.10.1 Example 3.10.1. If A and B are categories, we can form the product bicate-
gory A⊗B. Its objects (resp., bimorphisms) are ordered pairs of objects (resp.,
morphisms) fromA and B. Its (p, q)-morphisms are pairs of functors p+ 1→ A,
q+ 1→ B.

It is easy to see that diag(A ⊗ B) is the product category A × B, and that
B(A⊗ B) is BA×BB. In particular B((p+ 1)× (q+ 1)) = ∆p ×∆q.

Bicategory terminology arose (in the 1960’s) from the following paradigm.

IV.3.10.2 Example 3.10.2. For any category B, biB is the bicategory whose degree (p, q)
part consists of commutative diagrams arising from functors p+ 1 × q+ 1 →
B. In particular, bimorphisms are commutative squares in B; the horizontal
and vertical edges of such a square are its associated horizontal and vertical
morphisms. If A is a subcategory, AB is the sub-bicategory of biB whose vertical
maps are in A.
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We may also regard the small category B as a bicategory which is constant
in the vertical direction (Bp,q = NBp); this does not affect the homotopy type
BB since diagB recovers the category B. The natural inclusion into biB is a
homotopy equivalence by Ex.

EIV.3.13
3.13. It follows that any bifunctor A ⊗ B → biC

induces a continuous map

BA×BB → B biC ≃ BC.

EXERCISES

EIV.3.1 3.1. Covering spaces. If X : I → Sets is a morphism-inverting functor (
IV.3.5.1
3.5.1),

use the recipe
IV.3.1.1
3.1.1 to show that the forgetful functor I

∫
X → I of Example

IV.3.3.2
3.3.2 makes B(I

∫
X) into a covering space of BI with fiberX(i) over each vertex

i of BI.
Conversely, if E

π−→ BI is a covering space, show that X(i) = π−1(i) defines
a morphism-inverting functor on I, where i is considered as a 0-cell of BI.
Conclude that these constructions give a 1–1 correspondence between covering
spaces of BI and morphism-inverting functors. (See

Q341
[153, p. 90].)

EIV.3.2 3.2. Translation categories. Suppose that a group G acts on a set X, and form
the translation category G

∫
X. Show that B(G

∫
X) is homotopy equivalent to

the disjoint union of the classifying spaces BGx of the stabilizer subgroups Gx,
one space for each orbit in X. For example, if X is the coset space G/H then
B(G

∫
X) ≃ BH.

In particular, if X = G is given the G-set structure g · g′ = gg′, this shows
that B(G

∫
G) is contractible, i.e., the universal covering space of BG. Use this

to calculate the homotopy groups of BG, as described in Example
IV.3.4.1
3.4.1.

EIV.3.3 3.3. Let H be a subgroup of G, and ι : H →֒ G the inclusion as a subcategory.

(a) Show that ι/∗ is the category H
∫
G of Ex.

EIV.3.1
3.1. Conclude that the ho-

motopy fiber of BH → BG is the discrete set G/H, while Bι−1(∗) is a
point.

(b) Use Ex.
EIV.3.2
3.2 to give another proof of (a).

EIV.3.4 3.4. If C is a filtering category
WHomo
[223, 2.6.13], show that BC is contractible. Hint:

It suffices to show that all homotopy groups are trivial (see
Wh
[228, V.3.5]). Any

map from a sphere into a CW complex lands in a finite subcomplex, and every
finite subcomplex of BC lands in the realization BD of a finite subcategory D
of C; D lies in another subcategory D′ of C which has a terminal object.

EIV.3.5 3.5. Mapping telescopes. If ∪n denotes the union of the categories n of (
IV.3.1
3.1),

then a functor ∪n C−→ CAT is just a sequence C0 → C1 → C2 → · · · of
categories. Show that the geometric realization of the category L = (∪n)

∫
C of

Example
IV.3.3.2
3.3.2 is homotopy equivalent to BC, where C is the colimit of the Cn.

In particular, this shows that BL ≃ limn→∞BCn. Hint: Cn ≃ n
∫
C.
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EIV.3.6 3.6. Suppose that F : C → D is pre-cofibered (Definition
IV.3.7.3
3.7.3).

(a) Show that F op : Cop → Dop is pre-fibered. If F is cofibered, F op is fibered.

(b) Derive the dual formulation of Quillen’s Theorem B, using F/d and F op.

(c) If each cobase change functor f∗ is a homotopy equivalence, show that

the geometric realization of F−1(d) −→ C
F−→ D is a homotopy fibration

sequence for each d in D, and there is a long exact sequence:

· · · → πi+1(BD)
∂−→ πiBF

−1(d) −→ πi(BC)
F−→ πi(BD)

∂−→ · · · .

EIV.3.7 3.7. Let F : C → D be a cofibered functor (
IV.3.7.3
3.7.3). Construct a first quadrant

double complex E0 in which E0
pq is the free abelian group on the pairs (dp →

· · · → d0 → F (c0), c0 → · · · → cq) of sequences of composable maps in C and D.
By filtering the double complex by columns, show that the homology of the total
complex Tot E0 is Hq(Tot E

0) ∼= Hq(C;Z). Then show that the row filtration
yields a spectral sequence converging to H∗(C;Z) with E2

pq = Hp(D;HqF
−1),

the homology of D with coefficients in the functor d 7→ Hq(F
−1(d);Z) described

in
IV.3.5
3.5.

EIV.3.8 3.8. A lax functor M : I → CAT consists of functions assigning: (1) a category

M(i) to each object i; (2) a functor f∗ : M(i) → M(j) to every map i
f−→ j

in I; (3) a natural transformation (idi)∗ ⇒ idM(i) for each i; (4) a natural
transformation (fg)∗ ⇒ f∗g∗ for every pair of composable maps in I. This
data is required to be “coherent” in the sense that the two transformations
(fgh)∗ ⇒ f∗g∗h∗ agree, and so do the various transformations f∗ ⇒ f∗. For
example, a functor is a lax functor in which (3) and (4) are identities.

Show that the definitions of objects and morphisms in Example
IV.3.3.2
3.3.2 define

a category I
∫
M, where the map φ′′ in the composition (f ′f, φ′′) of (f, φ) and

(f ′, φ′) is (f ′f)∗(x)→ f ′∗f∗(x)→ f ′∗(x
′)→ x′′. Show that the projection functor

π : I
∫
M → I is pre-cofibered.

EIV.3.9 3.9. Subdivision. If C is a category, its Segal subdivision Sub(C) is the category
whose objects are the morphisms in C; a morphism from i : A→ B to i′ : A′ →
B′ is a pair of maps (A′ −→ A,B −→ B′) so that i′ is A′ −→ A

i−→ B −→ B′.

(a) Draw the Segal subdivisions of the interval 2 and the 2-simplex 3.

(b) Show that the source and target functors Cop←−Sub(C) −→ C are homo-
topy equivalences. Hint: Use Quillen’s Theorem A and

IV.3.2.2
3.2.2.

EIV.3.10 3.10. Given a simplicial set X, its Segal subdivision Sub(X) is the sequence
of sets X1, X3, X5, . . . , made into a simplicial set by declaring the face maps
∂′i : X2n+1 → X2n−1 to be ∂i∂2n+1−i and σ

′
i : X2n+1 → X2n+3 to be σiσ2n+1−i

(0 ≤ i ≤ n).
If X is the nerve of a category C, show that Sub(X) is the nerve of the Segal

subdivision category Sub(C) of Ex. EIV.3.93.9.
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EIV.3.11 3.11. (Waldhausen) Let f : X → Y be a map of simplicial sets. For y ∈ Yn,
define the simplicial set f/(n, y) to be the pullback of X and the n-simplex ∆n

along f : X → Y and the map y : ∆n → Y . Thus an m-simplex consists of a
map α : m→ n in ∆ and an x ∈ Xm such that f(x) = α∗(y). Prove that:
(a) If each f/(n, y) is contractible, then f is a homotopy equivalence;

(b) If for every m
α−→ n in ∆ and every y ∈ Yn the map f/(m,α∗y)→ f/(n, y)

is a homotopy equivalence, then each |f/(n, y)| → X → Y is homotopy fibration
sequence.
Hint: Any simplicial set X determines a category ∆op

∫
X cofibered over ∆op,

by
IV.3.3.2
3.3.2 and

IV.3.7.5
3.7.5. Now apply Theorems A and B.

EIV.3.12 3.12. If C is a category, its arrow category C/C has the morphisms of C as its
objects, and a map (a, b) : f → f ′ in C/C is a commutative diagram in C:

A
f

> B

A′

a
∨ f ′

> B′

b
∨

If f : A → B, the source s(f) = A and target t(f) = B of f define functors
C/C → C. Show that s is a fibered functor, and that t is a cofibered functor.
Then show that both s and t are homotopy equivalences.

EIV.3.13 3.13. Swallowing Lemma. If A is a subcategory of B, show that the bicategory
inclusion B ⊂ AB of Example

IV.3.10.2
3.10.2 induces a homotopy equivalence BB ≃

B(AB). When A = B this proves that BB ≃ B(biB). Hint: Show that B ≃
Np(A)B for all p.

EIV.3.14 3.14. Diagonal Category. (Waldhausen
Wa78
[214]) Show that the functor from small

categories to small bicategories sending B to biB (
IV.3.10.2
3.10.2) has a left adjoint, send-

ing C to its diagonal category, and that the diagonal category of the bicategory
A ⊗ B is the product category A × B. Hint: both the horizontal and vertical
morphisms of a bicategory C yield morphisms, and every bimorphism yields an
equivalence relation for the composition of horizontal and vertical morphisms.
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4 Symmetric Monoidal Categories

The geometric realization BS of a symmetric monoidal category is an H-space
with a homotopy-commutative, homotopy-associative product. To see this, re-
call from Definition II.

II.5.1
5.1 that a symmetric monoidal category is a category S

with a functor � : S × S → S which has a unit object “e” and is associative
and is commutative, all up to coherent natural isomorphism. By

IV.3.1
3.1(6) the ge-

ometric realization of � is the “product” map (BS)× (BS) ∼= B(S×S)→ BS.
The natural isomorphisms s�e ∼= s ∼= e�s imply that the vertex e is an identity
up to homotopy, i.e., that BS is an H-space. The other axioms imply that the
product on BS is homotopy commutative and homotopy associative.

In many cases e is an initial object of S, and therefore the H-space BS
is contractible by Example

IV.3.2.2
3.2.2. For example, any additive category A is a

symmetric monoidal category (with � = ⊕), and e = 0 is an initial object, so
BA is contractible. Similarly, the category Setsfin of finite sets is symmetric
monoidal (� being disjoint union) by I.

I.5.2
5.2, and e = ∅ is initial, so BSetsfin is

contractible.
Here is an easy way to modify S in order to get an interesting H-space.

IV.4.1 Definition 4.1. Let isoS denote the subcategory of isomorphisms in S. It has
the same objects as S, but its morphisms are the isomorphisms in S. Because
isoS is also symmetric monoidal, B(isoS) is an H-space.

By Lemma
IV.3.3
3.3, the abelian monoid π0(isoS) is just the set of isomorphism

classes of objects in S — the monoid Siso considered in §II.5. In fact, isoS is
equivalent to the disjoint union

∐
AutS(s) of the 1–object categories AutS(s),

and B(isoS) is homotopy equivalent to the disjoint union of the classifying
spaces BAut(s), s ∈ Siso.

IV.4.1.1 Example 4.1.1. B(isoS) is often an interesting H-space.
(a) In the category Setsfin of finite (pointed) sets, the group of automor-

phisms of any n-element set is isomorphic to the permutation group Σn. Thus
the subcategory isoSetsfin is equivalent to

∐
Σn, the disjoint union of the one-

object categories Σn. Thus the classifying space B(isoSetsfin) is homotopy
equivalent to the disjoint union of the classifying spaces BΣn, n ≥ 0.

(b) The additive category P(R) of finitely generated projective R-modules
has 0 as an initial object, so BP(R) is a contractible space. However, its sub-
category P = isoP(R) of isomorphisms is more interesting. The topological
space BP is equivalent to the disjoint union of the classifying spaces BAut(P )
as P runs over the set of isomorphism classes of finitely generated projective
R-modules.

(c) Fix a ring R, and let F(R) be the category
∐
GLn(R) whose objects

are the based free R-modules {0, R,R2, · · · , Rn, · · · } (these objects are distinct
because the bases have different orders; see Section I.1). There are no maps
in F(R) between Rm and Rn if m 6= n, and the self-maps of Rn form the
group GLn(R). This is a symmetric monoidal category: Rm�Rn = Rm+n by
concatenation of bases; if a and b are morphisms, a�b is the matrix

(
A
0

0
B

)
.
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The space BF(R) is equivalent to the disjoint union of the classifying spaces
BGLn(R).

If R satisfies the Invariant Basis Property (I.
I.1.1
1.1), then F(R) is equivalent

to a full subcategory of isoP(R). In this case, we saw in II.
II.5.4.1
5.4.1 that F(R) is

cofinal in isoP(R).
(d) Fix a commutative ring R, and let S = Pic(R) be the category of invert-

ible R-modules and their isomorphisms. This is a symmetric monoidal category
in which � is tensor product and e is R; see II.

II.5.2
5.2(5). In this case, S = isoS

and Siso is the Picard group Pic(R) discussed in Section §I.3. By Lemma I.
I.3.3
3.3,

Aut(L) = R× for every L. ThusPic(R) is equivalent to a disjoint union of copies
of R×, and B(Pic) is homotopy equivalent to the product Pic(R)×B(R×).

(e) If F is a field, we saw in II.
II.5.7
5.7 that the categories SBil(F ) and

Quad(F ) = Quad+(F ) of symmetric inner product spaces and quadratic
spaces are symmetric monoidal categories. More generally, let A be any ring
with involution, and ǫ = ±1. Then the category Quadǫ(A) of nonsingular ǫ-
quadratic A-modules is a symmetric monoidal category with � = ⊕ and e = 0.
See

B72, Bak
[17, 11] for more details.
(f) If G is a group, consider the category G-Setsfin of free G-sets X having

a finite number of orbits. This is symmetric monoidal under disjoint union (cf.
II.

II.5.2.2
5.2.2). If X has n orbits, then Aut(X) is the wreath product G ≀ Σn. As

in (a), B(G-Setsfin) is equivalent to the disjoint union of the classifying spaces
B(G ≀ Σn).

There is a monoidal functor G-Setsfin → P(Z[G]) which sends X to the free
abelian group on the set X.

The S−1S Construction

In
GQ
[74], Quillen gave a construction of a category S−1S such that K(S) =

B(S−1S) is a “group completion” of BS (see
IV.4.4
4.4 below), provided that every

map in S is an isomorphism and every translation s� : AutS(t)→ AutS(s�t) is
an injection. The motivation for this construction comes from the construction
of the universal abelian group completion of an abelian monoid given in Chapter
II, §1.

IV.4.2 Definition 4.2. (S−1S) The objects of S−1S are pairs (m,n) of objects of S.
A morphism in S−1S is an equivalence class of composites

(m1,m2)
s�
> (s�m1, s�m2)

(f,g)
> (n1, n2).

This composite is equivalent to

(m1,m2)
t�
> (t�m1, t�m2)

(f ′,g′)
> (n1, n2)

exactly when there is an isomorphism α : s
≃−→ t in S so that composition with

α�mi sends f
′ and g′ to f and g.

A (strict) monoidal functor S → T induces a functor S−1S → T−1T .
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IV.4.2.1 Explanation 4.2.1. There are two basic types of morphisms in S−1S. The
first type is a pair of maps (f1, f2) : (m1,m2)→ (n1, n2) with fi : mi → ni in S,
arising from the inclusion of S × S in S−1S. The second type is a formal map
s� : (m,n)→ (s�m, s�n).

We shall say that translations are faithful in S if every translation Aut(s)→
Aut(s�t) in S is an injection. In this case every map in S−1S determines s, f
and g up to unique isomorphism.

IV.4.2.2 Remark 4.2.2. S−1S is a symmetric monoidal category, with the product
(m,n)�(m′, n′) = (m�m′, n�n′), and the functor S → S−1S sending m to
(m, e) is monoidal. Hence the natural map BS → B(S−1S) is an H-space map,
and π0(S)→ π0(S

−1S) is a map of abelian monoids.
In fact π0(S

−1S) is an abelian group, the inverse of (m,n) being (n,m),
because of the existence of a morphism η in S−1S from (e, e) to (m,n)�(n,m) =
(m�n, n�m). Warning: η is not a natural transformation! See Ex.

EIV.4.3
4.3.

IV.4.3 Definition 4.3. Let S be a symmetric monoidal category in which every mor-
phism is an isomorphism. Its K-groups are the homotopy groups of B(S−1S):

K�
n (S) = πn(BS

−1S).

It is sometimes convenient to write K�(S) for the geometric realization
B(S−1S), and call it the K-theory space of S, so that K�

n (S) = πnK
�(S).

By
IV.4.2
4.2, a (strict) monoidal functor S → T induces a map K�(S)→ K�(T ) and

hence homomorphisms K�
n (S)→ K�

n (T ).

In order to connect this definition up with the definition of K�
0 (S) given in

Section II.5, we recall from
IV.4.2.2
4.2.2 that the functor S → S−1S induces a map of

abelian monoids from π0(S) = Siso to π0(S
−1S).

IV.4.3.1 Lemma 4.3.1. The abelian group K�
0 (S) = π0(S

−1S) is the group comple-
tion of the abelian monoid π0(S) = Siso. Thus Definition

IV.4.3
4.3 agrees with the

definition of K�
0 (S) given in II.

II.5.1.2
5.1.2.

Proof. Let A denote the group completion of π0(S), and consider the function
α(m,n) = [m]− [n] from the objects of S−1S to A. If s ∈ S and fi : mi → ni are
morphisms in S then in A we have α(m,n) = α(s�m, s�n) and α(m1,m2) =
[m1] − [m2] = [n1] − [n2] = α(n1, n2). By Lemma

IV.3.3
3.3, α induces a set map

π0(S
−1S)→ A. By construction, α is an inverse to the universal homomorphism

A→ π0(S
−1S).

Group Completions

Group completion constructions for K-theory were developed in the early 1970’s
by topologists studying infinite loop spaces. These constructions all apply to
symmetric monoidal categories.

Any discussion of group completions depends upon the following well-known
facts (see

Wh
[228, III.7]). LetX be a homotopy commutative, homotopy associative
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H-space. Its set of components π0X is an abelian monoid, and H0(X;Z) is
the monoid ring Z[π0(X)]. Moreover, the integral homology H∗(X;Z) is an
associative graded-commutative ring with unit.

We say that a homotopy associative H-space X is group-like if it has a
homotopy inverse; see

Wh
[228, III.4]. Of course this implies that π0(X) is a group.

When X is a CW complex, the converse holds: if the monoid π0(X) is a group,
then X is group-like. (If π0(X) = 0 this is

Wh
[228, X.2.2]; if π0(X) is a group,

the proof in loc. cit. still goes through as the shear map π0(X)2 → π0(X)2 is an
isomorphism.)

For example, if S = isoS then π0(BS) is the abelian monoid Siso of isomor-
phism classes, and H0(BS;Z) is the monoid ring Z[Siso]. In this case, the above
remarks show that BS is grouplike if and only Siso is an abelian group under
the operation �.

IV.4.4 Definition 4.4 (Group Completion). Let X be a homotopy commutative, ho-
motopy associative H-space. A group completion of X is an H-space Y , together
with an H-space map X → Y , such that π0(Y ) is the group completion of the
abelian monoid π0(X) (in the sense of Section I.1), and the homology ring
H∗(Y ; k) is isomorphic to the localization π0(X)−1H∗(X; k) of H∗(X; k) by the
natural map, for all commutative rings k.

If X is a CW complex (such as X = BS), we shall assume that Y is also a
CW complex. This hypothesis implies that the group completion Y is group-
like.

IV.4.4.1 Lemma 4.4.1. If X is a group-like H-space then X its own group completion,
and any other group completion f : X → Y is a homotopy equivalence.

Proof. Since f is a homology isomorphism, it is an isomorphism on π0 and π1.
Therefore the map of basepoint components is a +–construction relative to the
subgroup 1 of π1(X), and Theorem

IV.1.5
1.5 implies that X ≃ Y .

IV.4.4.2 Example 4.4.2 (Picard groups). Let R be a commutative ring, and consider
the symmetric monoidal category S = Pic(R) of Example II.

II.5.2
5.2(5). Because

π0(S) is already a group, S and S−1S are homotopy equivalent (by Lemma
IV.4.4.1
4.4.1). Therefore we get

K0Pic(R) = Pic(R), K1Pic(R) = U(R) and KnPic(R) = 0 for n ≥ 2.

The determinant functor fromP = isoP(R) toPic(R) constructed in Section I.3
gives a map from K(R) = K(P) to KPic(R). Upon taking homotopy groups,
this yields the familiar maps det : K0(R)→ Pic(R) of II.

II.2.6
2.6 and det : K1(R)→

R× of III.
III.1.1.1
1.1.1.

A phantom map φ : X → Y is a map such that, for every finite CW complex
A, every composite A→ X → Y is null homotopic, i.e., φ∗ : [A,X]→ [A, Y ] is
the zero map. If f : X → Y is a group completion then so is f + φ : X → Y for
every phantom map φ. Thus the group completion is not unique up to homotopy
equivalence whenever phantom maps exist.
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The following result, taken from
CCMT
[40, 1.2], shows that phantom maps are

essentially the only obstruction to uniqueness of group completions. We say
that two maps X → Y are weakly homotopic if they induce the same map on
homotopy classes [A,X] → [A, Y ]; if Y is an H-space, this means that their
difference is a phantom map.

IV.4.4.3 Theorem 4.4.3. Let X be an H-space such that π0(X) is either countable or
contains a countable cofinal submonoid. If f ′ : X → X ′ and f ′′ : X → X ′′

are two group completions, then there is a homotopy equivalence g : X ′ →
X ′′, unique up to weak homotopy, such that gf ′ and f ′′ are weak homotopy
equivalent. (The map g is also a weak H-map.)

The fact that gf ′ and f ′′ are weak homotopy equivalent implies that g is a
homology isomorphism, and hence is a homotopy equivalence by

IV.4.4.1
4.4.1.

IV.4.5 4.5. One can show directly that Z × BGL(R)+ is a group completion of BS
when S =

∐
GLn(R); see Ex.

EIV.4.9
4.9. We will see in Theorem

IV.4.8
4.8 below that the

K-theory space B(S−1S) is another group completion of BS, and then give
an explicit homotopy equivalence between B(S−1S) and Z× BGL(R)+ in

IV.4.9
4.9.

Here are some other methods of group completion:

IV.4.5.1 Example 4.5.1 (Segal’s ΩB Method). If X is a topological monoid, such as∐
BGLn(R) or

∐
BΣn, then we can form BX, the geometric realization of the

(one-object) topological category X (see
IV.3.9
3.9). In this case, ΩBX is an infinite

loop space and the natural map X → ΩBX is a group completion. For example,
if X is the one-object monoid N then BN ≃ S1, and ΩBN ≃ ΩS1 ≃ Z. That is,
π0(ΩBN) is Z, and every component of ΩBN is contractible. See

Adams
[1] for more

details.

IV.4.5.2 Example 4.5.2 (Machine Methods). (See
Adams
[1].) If X isn’t quite a monoid, but

the homotopy associativity of its product is nice enough, then there are con-
structions called “infinite loop space machines” which can construct a group
completion Y of X, and give Y the structure of an infinite loop space. All
machines produce the same infinite loop space Y (up to homotopy); see

MTh
[121].

Some typical machines are described in
Segal
[165], and

May74
[119].

The realization X = BS of a symmetric monoidal category S is nice enough
to be used by infinite loop space machines. These machines produce an infinite
loop space K(S) and a map BS → K(S) which is a group completion. Most
infinite loop machines will also produce explicit deloopings of K(S) in the form
of an Ω-spectrum K(S), the K-theory spectrum of S, which is connective in the
sense that πnK(S) = 0 for n < 0. The production of K(S) is natural enough
that monoidal functors between symmetric monoidal categories induce maps of
the corresponding spectra.

Pairings and Products

A pairing of symmetric monoidal categories is a functor ⊗ : S1 × S2 → S such
that s⊗ 0 = 0⊗ s = 0, and there is a coherent natural bi-distributivity law

(a+ a′)⊗ (b+ b′) ∼= (a⊗ b)�(a⊗ b′)�(a′ ⊗ b)�(a′ ⊗ b′).
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If S1 = S2 = S, we will just call this a pairing on S. Instead of making
this technical notion precise, we refer the reader to May

May80
[120, §2] and content

ourselves with two examples from
IV.4.1.1
4.1.1: the product of finite sets is a pairing on

Setsfin, and the tensor product of based free modules is a pairing F(A)×F(B)→
F(A⊗B). The free module functor from Setsfin to F(A) preserves these pairings.
The following theorem was proven by Peter May in

May80
[120, 1.6 and 2.1].

IV.4.6 Theorem 4.6. A pairing S1×S2 → S of symmetric monoidal categories deter-
mines a natural pairing K(S1)∧K(S2)→ K(S) of infinite loop spaces in

IV.4.5.2
4.5.2,

as well as a pairing of Ω-spectra K(S1) ∧K(S2)→ K(S). This in turn induces
bilinear products Kp(S1) ⊗ Kq(S2) → Kp+q(S). There is also a commutative
diagram

BS1 ×BS2 > BS1 ∧BS2
B ⊗

> BS

K(S1)×K(S2)
∨

> K(S1) ∧K(S2)
∨ B ⊗

> K(S).
∨

From Theorem
IV.4.6
4.6 and the constructions in

IV.1.10
1.10 and

IV.4.9
4.9, repectively Ex.

EIV.1.12
1.12

and
IV.4.9.3
4.9.3, we immediately deduce:

IV.4.6.1 Corollary 4.6.1. When S is Setsfin or F(R), the product defined by Loday (in
IV.1.10
1.10) agrees with the product in Theorem

IV.4.6
4.6.

IV.4.6.2 Remark 4.6.2. If there is a pairing S × S → S which is associative up to
natural isomorphism, then K(S) can be given the structure of a ring spectrum.
This is the case when S is Setsfin as well as (for commutative R) F(R) and
isoP(R).

Actions on other categories

To show that B(S−1S) is a group completion of BS, we need to fit the definition
of S−1S into a more general framework.

IV.4.7 Definition 4.7. A monoidal category S is said to act upon a category X by a
functor � : S ×X → X if there are natural isomorphisms s�(t�x) ∼= (s�t)�x
and e�x ∼= x for s, t ∈ S and x ∈ X, satisfying coherence conditions for the
products s�t�u�x and s�e�x analogous to the coherence conditions defining
S.

For example, S acts on itself by �. If X is a discrete category, S acts on X
exactly when the monoid π0(S) acts on the underlying set of objects in X.

Here is the analogue of the translation category construction (
IV.3.3.1
3.3.1) associ-

ated to a monoid acting on a set.

IV.4.7.1 Definition 4.7.1. If S acts upon X, the category 〈S,X〉 has the same ob-
jects as X. A morphism from x to y in 〈S,X〉 is an equivalence class of pairs

(s, s�x
φ−→ y), where s ∈ S and φ is a morphism in X. Two pairs (s, φ) and

(s′, φ′) are equivalent in case there is an isomorphism s ∼= s′ identifying φ′ with

s′�x ∼= s�x
φ−→ y.
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We shall write S−1X for 〈S, S×X〉, where S acts on both factors of S×X.
Note that when X = S this definition recovers the definition of S−1S given in
IV.4.2
4.2 above. If S is symmetric monoidal, then the formula s�(t�x) = (s�t, x)
defines an action of S on S−1X.

For example, if every arrow in S is an isomorphism, then e is an initial object
of 〈S, S〉 and therefore the space S−11 ≃ B〈S, S〉 is contractible.

We say that S acts invertibly upon X if each translation functor s� : X → X
is a homotopy equivalence. For example, S acts invertibly on S−1X (if S is
symmetric) by the formula s�(t, x) = (s�t, x), the homotopy inverse of the
translation (t, x) 7→ (s�t, x) being the translation (t, x) 7→ (t, s�x), because of
the natural transformation (t, x) 7→ (s�t, s�x).

Now π0S is a multiplicatively closed subset of the ring H0(S) = Z[π0S],
so it acts on H∗(X) and acts invertibly upon H∗(S

−1X). Thus the functor
X → S−1X sending x to (0, x) induces a map

(π0S)
−1Hq(X)→ Hq(S

−1X). (4.7.2) IV.4.7.2

IV.4.8 Theorem 4.8. (Quillen) If every map in S is an isomorphism and translations
are faithful in S, then (

IV.4.7.2
4.7.2) is an isomorphism for all X and q.

In particular, B(S−1S) is a group completion of the H-space BS.

Proof. (See
GQ
[74, p. 221].) By Ex.

EIV.4.5
4.5, the projection functor ρ : S−1X → 〈S, S〉

is cofibered with fiber X. By Ex.
EIV.3.7
3.7 there is an associated spectral sequence

E2
pq = Hp(〈S, S〉;Hq(X)) ⇒ Hp+q(S

−1X). Localizing this at the multi-
plicatively closed subset π0S of H0(S) is exact, and π0S already acts invert-
ibly on H∗(S

−1X) by Ex.
EIV.3.7
3.7, so there is also a spectral sequence E2

pq =
Hp(〈S, S〉;Mq)⇒ Hp+q(S

−1X), where Mq = (π0S)
−1Hq(X). But the functors

Mq are morphism-inverting on 〈S, S〉 (IV.3.5.13.5.1), so by Ex.
EIV.3.1
3.1 and the contractibil-

ity of 〈S, S〉, the group Hp(〈S, S〉;Mq) is zero for p 6= 0, and equalsMq for p = 0.
Thus the spectral sequence degenerates to the claimed isomorphism (

IV.4.7.2
4.7.2).

The final assertion is immediate from this and Definition
IV.4.4
4.4, given Re-

mark
IV.4.2.2
4.2.2 and Lemma

IV.4.3.1
4.3.1.

Bass gave a classical definition of K1(S) and K2(S) in
B72
[17, p. 197]; we gave

them implicitly in III.
III.1.6.3
1.6.3 and III.

III.5.6
5.6. We can now state these classical defini-

tions, and show that they coincide with the K-groups defined in this section.

IV.4.8.1 Corollary 4.8.1. If S = isoS and translations are faithful in S, then:

K1(S) = lim−→
s∈S

H1(Aut(s);Z),

K2(S) = lim−→
s∈S

H2([Aut(s),Aut(s)];Z).

Proof. (
We-Az
[219]) The localization of Hq(BS) = ⊕s∈SHq(Aut(s)) at π0(X) = Siso

is the direct limit of the groups Hq(Aut(s)), taken over the translation category
of all s ∈ S. Since π1(X) = H1(X;Z) for every H-space X, this gives the
formula for K1(S) = π1B(S−1S).
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For K2 we observe that any monoidal category S is the filtered colimit of
its monoidal subcategories having countably many objects. Since K2(S) and
Bass’ H2 definition commute with filtered colimits, we may assume that S has
countably many objects. In this case the proof is relegated to Exercise

EIV.4.10
4.10.

Relation to the +–construction

Let S = F(R) =
∐
GLn(R) be the monoidal category of based free R-modules,

as in Example
IV.4.1.1
4.1.1(c). In this section, we shall establish the following result,

identifying the +–construction on BGL(R) with the basepoint component of
K(S) = B(S−1S).

IV.4.9 Theorem 4.9. When S is
∐
GLn(R), K(S) = B(S−1S) is the group comple-

tion of BS =
∐
BGLn(R), and

B(S−1S) ≃ Z×BGL(R)+.
As Theorems

IV.4.8
4.8 and

IV.1.8
1.8 suggest, we first need to find an acyclic map from

BGL(R) to the connected basepoint component of B(S−1S). This is done by
the following “mapping telescope” construction (illustrated in Figure

IV.4.9.1
4.9.1).
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......................................................
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..............................................................

BGL1

BGL2

BGL3

etc.

−−−→ BS−1S

Figure 4.9.1: The mapping telescope of BGL(R) and B(S−1S). IV.4.9.1

Any group map η from GLn(R) to AutS−1S(R
n, Rn) gives a map from

BGLn(R) to B(S−1S). For the specific maps η = ηn defined by ηn(g) = (g, 1),
the diagram

GLn(R)
η
> Aut(Rn, Rn)

GLn+1(R)

�R
∨ η

> Aut(Rn+1, Rn+1)

�(R,R)
∨

commutes, i.e., there is a natural transformation from η to η(�R). The resulting
homotopy of maps η ≃ η(�R) : BGLn(R)→ B(S−1S) gives the map from the
“mapping telescope” construction of BGL(R) to B(S−1S); see Ex.

EIV.3.5
3.5. In fact,

this map lands in the connected component YS of the identity in B(S−1S).
Since B(S−1S) is an H-space, so is the connected component YS of the identity.
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Proof of Theorem
IV.4.9
4.9. (Quillen) We shall show that the map BGL(R) → YS

is an isomorphism on homology with coefficients Z. By the remark following
Theorem

IV.1.8
1.8, this will induce a homotopy equivalence BGL(R)+ → YS .

Let e ∈ π0BS be the class of R. By Theorem
IV.4.8
4.8, H∗B(S−1S) is the localiza-

tion of the ring H∗(BS) at π0(S) = {en}. But this localization is the colimit of
the maps H∗(BS)→ H∗(BS) coming from the translation ⊕R : S → S. Hence
H∗B(S−1S) ∼= H∗(YS)⊗ Z[e, e−1], where YS denotes the basepoint component
of B(S−1S), and H∗(YS) ∼= colimH∗(BGLn(R)) = H∗(BGL(R)). This means
that the map BGL(R)→ YS is a homology isomorphism, as required.

IV.4.9.2 Example 4.9.2. (Segal) Consider the symmetric monoidal category S =
∐

Σn,
equivalent to the category Setsfin of Example

IV.4.1.1
4.1.1(a). The infinite symmetric

group Σ∞ is the union of the symmetric groups Σn along the inclusions �1 from
Σn to Σn+1, and these inclusions assemble to give a map from the mapping
telescope construction of BΣ∞ to B(S−1S), just as they did for GL(R) (see
Figure

IV.4.9.1
4.9.1). Moreover the proof of Theorem

IV.4.9
4.9 formally goes through to

prove that B(S−1S) ≃ K(Setsfin) is homotopy equivalent to Z×BΣ+
∞. This is

the equivalence of parts (a) and (b) in the following result. We refer the reader
to

BP71
[14] and

Adams
[1, §4.2] for the equivalence of parts (b) and (c).

IV.4.9.3 TheBarratt-Priddy-Quillen-Segal Theorem 4.9.3. The three infinite loop
spaces below are the same:

(a) The group completion K(Setsfin) of BSetsfin;

(b) Z×BΣ+
∞, where Σ∞ is the union of the symmetric groups Σn; and

(c) The infinite loop space Ω∞S∞ = limn→∞ ΩnSn.

Hence the groups Kn(Setsfin) are the stable homotopy groups of spheres, πsn.

More generally, suppose that S has a countable sequence of objects s1, . . .
such that sn+1 = sn�an for some an ∈ S, and satisfying the cofinality condition
that for every s ∈ S there is an s′ and an n so that s�s′ ∼= sn. In this case we
can form the group Aut(S) = colimn→∞AutS(sn).

IV.4.10 Theorem 4.10. Let S = isoS be a symmetric monoidal category whose trans-
lations are faithful, and suppose the above condition is satisfied, so that the
group Aut(S) exists. Then the commutator subgroup E of Aut(S) is a perfect
normal subgroup, K1(S) = Aut(S)/E, and the +–construction on BAut(S) is
the connected component of the identity in the group completion K(S). Thus

K(S) ≃ K0(S)×BAut(S)+.

Proof. (
We-Az
[219]) The assertions about E are essentially on p. 355 of Bass

Bass
[15]. On

the other hand, the mapping telescope construction mentioned above gives an
acyclic map from BAut(S) to the basepoint component of B(S−1S), and such
a map is by definition a +–construction.
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IV.4.10.1 Example 4.10.1. Consider the subcategory
∐
G ≀Σn of the category G-Setsfin

of free G sets introduced in
IV.4.1.1
4.1.1(f). The group Aut(S) is the (small) infinite

wreath product G ≀Σ∞ = ∪G ≀Σn, so we have K(G-Setsfin) ≃ Z×B(G ≀Σ∞)+.
On the other hand, the Barratt-Priddy theorem

BP71
[14] identifies this with the

infinite loop space Ω∞S∞(BG+) associated to the disjoint union BG+ of BG
and a point.

The monoidal functor G-Setsfin → P(Z[G]) of
IV.4.1.1
4.1.1(f) induces a group ho-

momorphism G ≀Σ∞ → GL(Z[G]) and hence maps B(G ≀Σ∞)+ → BGL(Z[G])+

and Ω∞S∞(BG+) ≃ K(G-Setsfin)→ K(Z[G]).
This map is a version of the “assembly map” (

IV.1.10.3
1.10.3) in the following sense.

If R is any ring, there is a product map K(R) ∧K(Z[G])→ K(R[G]); see
IV.1.10
1.10

and
IV.4.6
4.6. This yields a map from K(R) ∧ Ω∞S∞(BG+) to K(R[G]). Now the

space K(R) ∧BG is included as a direct factor in K(R) ∧ Ω∞S∞(BG+) (split
by the “Snaith splitting”). Since the homotopy groups of the first space give
the generalized homology of BG with coefficients in K(R), Hn(BG;K(R)), we
get homomorphisms Hn(BG;K(R))→ K(R[G]). It is not known if K(R)∧BG
has a complementary factor which maps trivially.

Cofinality

A monoidal functor f : S → T is called cofinal if for every t in T there is a t′ and
an s in S so that t�t′ ∼= f(s); cf. II.

II.5.3
5.3. For example, the functor F(R)→ P(R)

of Example
IV.4.1.1
4.1.1(c) is cofinal, because every projective module is a summand

of a free one. For Pic(R), the one-object subcategory R× is cofinal.

IV.4.11 Cofinality Theorem 4.11. Suppose that f : S → T is cofinal. Then

(a) If T acts on X then S acts on X via f , and S−1X ≃ T−1X.

(b) If AutS(s) ∼= AutT (fs) for all s ∈ S then the basepoint components of
K(S) and K(T ) are homotopy equivalent. Thus Kn(S) ∼= Kn(T ) for all
n ≥ 1.

Proof. By cofinality, S acts invertibly on X if and only if T acts invertibly on
X. Hence Ex.

EIV.4.6
4.6 yields

S−1X
≃−→ T−1(S−1X) ∼= S−1(T−1X) <

≃
T−1X.

An alternate proof of part (a) is sketched in Ex.
EIV.4.8
4.8.

For part (b), let YS and YT denote the connected components of B(S−1S)
and B(T−1T ). Writing the subscript s ∈ S to indicate a colimit over the trans-
lation category

IV.3.3.1
3.3.1 of π0(S), and similarly for the subscript t ∈ T , Theorem IV.4.8

4.8
yields:

H∗(YS) = colims∈S H∗(BAut(s)) = colims∈S H∗(BAut(fs))
∼= colimt∈T H∗(BAut(t)) = H∗(YT ).

Hence the connected H-spaces YS and YT have the same homology, and this
implies that they are homotopy equivalent.
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Note that K0(F(R)) = Z is not the same as K0(P(R)) = K0(R) in general,
although Kn(F) ∼= Kn(P) for n ≥ 1 by the Cofinality Theorem

IV.4.11
4.11(b). By

Theorem
IV.4.9
4.9 this establishes the following important result.

IV.4.11.1 Corollary 4.11.1. Let S = isoP(R) be the category of finitely generated pro-
jective R-modules and their isomorphisms. Then

B(S−1S) ≃ K0(R)×BGL(R)+.
IV.4.11.2 Remark 4.11.2. Consider the 0-connected cover K(R)〈0〉 of K(R), the spec-

trum constructed by an infinite loop space machine from isoP(R), as in
IV.4.5.2
4.5.2.

By
IV.4.8
4.8 and

IV.4.11.1
4.11.1, BGL(R)+ is the 0th space of the spectrum K(R)〈0〉. In

particular, it provides a canonical way to view BGL(R)+ as an infinite loop
space.

IV.4.12 4.12. Let’s conclude with a look back at the other motivating examples in
IV.4.1.1
4.1.1.

In each of these examples, every morphism is an isomorphism and the transla-
tions are faithful, so the classifying space of S−1S is a group completion of BS.

IV.4.12.1 Example 4.12.1 (Stable homotopy groups). The “free R-module” on a finite
set determines a functor from Setsfin to P(R), or from the subcategory

∐
Σn

of Setsfin to
∐
GLn(R). This functor identifies the symmetric group Σn with

the permutation matrices in GLn(R). Applying group completions, Theorem
IV.4.9
4.9 and

IV.4.9.3
4.9.3 show that this gives a map from Ω∞S∞ to K(R), hence maps

πsn → Kn(R).

IV.4.12.2 Example 4.12.2 (L-theory). Let S = Quadǫ(A) denote the category of non-
singular ǫ-quadratic A-modules, where ǫ = ±1 and A is any ring with involution
B72, Bak
[17, 11]. The K-groups of this category are the L-groups ǫLn(A) of Karoubi
and others. For this category, the sequence of hyperbolic spaces Hn is cofinal
(by Ex. II.

EII.5.11
5.11), and the automorphism group of Hn is the orthogonal group

ǫOn. The infinite orthogonal group ǫO = ǫO(A), which is the direct limit of the
groups ǫOn, is the group Aut(S) in this case. By Theorem

IV.4.10
4.10, we have

K(Quadǫ(A)) ≃ ǫL0(A)×BǫO+.

When A = R, the classical orthogonal group O is +1O. When A = C and the
involution is complex conjugation, the classical unitary group U is +1O(C). For
more bells and whistles, and classical details, we refer the reader to

Bak
[11].

IV.4.12.3 Example 4.12.3 (Topological K-theory). When R is a topological ring (such
as R or C), we can think of P(R) as a topological symmetric monoidal category.
Infinite loop space machines (

IV.4.5.2
4.5.2) also accept topological symmetric monoidal

categories, and we writeK(Rtop) forK(P(R)top). The change-of-topology func-
tor P(R) → P(R)top induces natural infinite loop space maps from K(R) to
K(Rtop). The naturality of these maps allows us to utilize infinite loop space
machinery. As an example of the usefulness, we remark that

K(Rtop) ≃ Z×BO and K(Ctop) ≃ Z×BU.
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EXERCISES

EIV.4.1 4.1. Let N be the additive monoid {0, 1, ...}, considered as a symmetric
monoidal category with one object. Show that 〈N,N〉 is the union ∪n of the or-
dered categories n, and that N−1N is a poset, each component being isomorphic
to ∪n.

EIV.4.2 4.2. Show that a sequence X0 → X1 → · · · of categories determines an action
of N on the disjoint union X =

∐
Xn, and that 〈N, X〉 is the mapping telescope

category ∪n
∫
X of Ex.

EIV.3.5
3.5.

EIV.4.3 4.3. (Thomason) Let S be symmetric monoidal, and let ι : S−1S → S−1S be
the functor sending (m,n) to (n,m) and (f1, f2) to (f2, f1). Show that there
is no natural transformation 0 ⇒ id�ι. Hint: The obvious candidate is given
in

IV.4.2.2
4.2.2.
Thomason has shown that Bι is the homotopy inverse for the H-space struc-

ture on B(S−1S), but for subtle reasons.

EIV.4.4 4.4. If S is a symmetrical monoidal category, so is its opposite category Sop.
Show that the group completions K(S) and K(Sop) are homotopy equivalent.

EIV.4.5 4.5. (Quillen) Suppose that S = isoS, and that translations in S are faithful

(
IV.4.2.1
4.2.1). Show that the projection S−1X

ρ→〈S, S〉 is cofibered, where ρ(s, x) =s.

EIV.4.6 4.6. Let S = isoS be a monoidal category whose translations are faithful
(
IV.4.2.1
4.2.1). Suppose that S acts invertibly upon a category X. Show that the
functors X → S−1X (x 7→ (s, x)) are homotopy equivalences for every s in
S. If S acts upon a category Y , then S always acts invertibly upon S−1Y , so
this shows that S−1Y ≃ S−1(S−1Y ). Hint: Use Exercises

IV.3.6
3.6 and

IV.4.5
4.5, and the

contractibility of 〈S, S〉.
EIV.4.7 4.7. Suppose that every map in X is monic, and that each translation

AutS(s)
�x−→ AutX(s�x) is an injection. Show that the sequence

S−1S
�x−→ S−1X

π−→ 〈S,X〉

is a homotopy fibration for each x in X, where π is projection onto the second

factor. In particular, if 〈S,X〉 is contractible, this proves that S−1S �x−→ S−1X
is a homotopy equivalence. Hint: Show that π and S−1π : S−1(S−1X)→ 〈S,X〉
are cofibered, and use the previous exercise.

EIV.4.8 4.8. Use Exercises
IV.4.5
4.5 and

IV.4.6
4.6 to give another proof of the Cofinality theorem

IV.4.11
4.11(a).

EIV.4.9 4.9. Fix a ring R and set S =
∐
GLn(R). The maps BGLn(R)→ BGL(R)→

{n} × BGL(R)+ assemble to give a map from BS to Z × BGL(R)+. Use
Ex.

EIV.1.11
1.11 to show that it is an H-space map. Then show directly that this makes

Z×BGL(R)+ into a group completion of BS.
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EIV.4.10 4.10. Let S be a symmetric monoidal category with countably many objects,
so that the group Aut(S) exists and its commutator subgroup E is perfect, as
in

IV.4.10
4.10. Let F denote the homotopy fiber of the H-space map BAut(S)+ →

B(K1S).

(a) Show that π1(F ) = 0 and H2(F ;Z) ∼= π2(F ) ∼= K2(S).

(b) Show that the natural map BE → F induces H∗(BE) ∼= H∗(F ), so that
F = BE+. Hint: (

We-Az
[219]) Show that K1S acts trivially upon the homology

of BE and F , and apply the comparison theorem for spectral sequences.

(c) Conclude that K2(S) ∼= H2(E) ∼= lim−→s∈S
H2([Aut(s),Aut(s)];Z).

EIV.4.11 4.11. If f : X → Y is a functor, we say that an action of S on X is fiberwise if

S ×X �−→ X
f−→ Y equals the projection S ×X → X followed by f .

(a) Show that a fiberwise action on X restricts to an action of S on each fiber
category Xy = f−1(y), and that f induces a functor S−1X → Y whose
fibers are the categories S−1(Xy).

(b) If f is a fibered functor (
IV.3.7.3
3.7.3), we say that a fiberwise action is cartesian

if the base change maps commute with the action of S on the fibers. Show
that in this case S−1X → Y is a fibered functor.

EIV.4.12 4.12. Let G be a group, and G-Setsfin as in
IV.4.1.1
4.1.1(f).

(a) Using
IV.4.10.1
4.10.1, show that K1(G-Setsfin) ∼= G/[G,G]× {±1}.

(b) Using Exercise II.
EII.5.9
5.9, show that the groups Kn(Z[G]) are modules over

the Burnside ring A(G) = K0G-Setsfin.

(c) If G is abelian, show that the product of G-sets defines a pairing in the
sense of Theorem

IV.4.6
4.6. Conclude that K∗G-Setsfin is a ring. Using the

free module functor, show that K∗G-Setsfin → K∗(Z[G]) is a ring homo-
morphism.

EIV.4.13 4.13. (a) Show that the idempotent completion Ŝ (II.
II.7.3
7.3) of a symmetric

monoidal category S is also symmetric monoidal, and that S → Ŝ is a cofi-
nal monoidal functor. Conclude that the basepoint components of K(S) and
K(Ŝ) are homotopy equivalent.
(b) Show that a pairing S1 × S2 → S induces a pairing Ŝ1 × Ŝ2 → Ŝ and hence
(by

IV.4.6
4.6) a pairing of spectra K(Ŝ1) ∧K(Ŝ2)→ K(Ŝ).

(c) By (b), there is a pairing K(A) ∧K(B)→ K(A⊗B) for every pair of rings
A,B. Using

IV.4.6.1
4.6.1, deduce that the induced product agrees with the extension

of Loday’s product
IV.1.10
1.10 described in Ex.

EIV.1.14
1.14.

EIV.4.14 4.14. Construct a morphism of spectra S1 → K(Z[x, x−1]) which, as in
IV.1.10.2
1.10.2,

represents [x] ∈ K1(Z[x, x−1]). Using the previous exercise, show that it induces
a product map ∪x : K(R)→ ΩK(R[x, x−1]), natural in the ring R.
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5 λ-operations in higher K-theory
IV.5

Let A be a commutative ring. In Section §II.4 we introduced the operations
λk : K0(A)→ K0(A) and showed that they endow K0(A) with the structure of
a special λ-ring (II.

II.4.3.1
4.3.1). The purpose of this section is to extend this structure

to operations λk : Kn(A) → Kn(A) for all n. Although many constructions of
λ-operations have been proposed in more exotic settings, we shall restrict our
attention in this section to operations defined using the +–construction.

We shall begin with a general construction, which produces the operations
∧k as a special case. Fix an arbitrary group G. If ρ : G→ Aut(P ) is any repre-
sentation of G in a finitely generated projective A-module P , any isomorphism
P⊕Q ∼= AN gives a map q(ρ) : BG→ BAut(P )→ BGLN (A)→ BGL(A)+. A
different embedding of P in AN will give a map which is homotopic to the first,
because the two maps only differ by conjugation and BGL(A)+ is an H-space.
(The action of π1(H) on [X,H] is trivial for any H-space H and any space X;
see

Wh
[228, III.4.18]). Hence the map q(ρ) is well-defined up to homotopy.

IV.5.1 Example 5.1. Recall from I.3 that the kth exterior power ∧k(P ) of a finitely
generated projective A-module P is also a projective module, of rank

(
rankP
k

)
.

Because ∧k is a functor, it determines a group map ∧kP : Aut(P )→ Aut(∧kP ),
i.e., a representation, for each P . We write ΛkP for q(∧k). Note that Λ0

P = ∗.

Now any connected H-space, such as BGL(A)+, has a multiplicative inverse
(up to homotopy). Given a map f : X → H, this allows us to construct maps
−f , and to take formal Z-linear combinations of maps.

IV.5.2 Definition 5.2. If P has rank n, we define λkP : BAut(P )→ BGL(A)+ to be
the map

λkP =
k−1∑

i=0

(−1)i
(
n+ i− 1

i

)
Λk−iP .

One can show directly that the maps λkP are compatible with the inclusions
of P in P ⊕ Q, up to homotopy of course, giving the desired operations λk :
BGL(A)+ → BGL(A)+ (see Ex.

EIV.5.1
5.1). However, it is more useful to encode this

bookkeeping in the Representation Ring RA(G), an approach which is due to
Quillen.

Recall from II, Ex.
EII.4.2
4.2, that the representation ring RA(G) is the Grothen-

dieck group of the representations of G in finitely generated projective A-
modules. We saw in loc. cit. that RA(G) is a special λ-ring.

IV.5.3 Proposition 5.3. If 0 → (P ′, ρ′) → (P, ρ) → (P ′′, ρ′′) → 0 is a short exact
sequence of representations of G, then q(ρ) = q(ρ′) + q(ρ′′) in [BG,BGL(A)+].

Hence there is a natural map q : RA(G)→ [BG,BGL(A)+].
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Proof. It is clear from the H-space structure on BGL(A)+ that q(ρ ⊕ ρ′) =
q(ρ) + q(ρ′). By the above remarks, we may suppose that P ′ and P ′′ are free
modules, of ranks m and n respectively. By universality, it suffices to consider
the case in which G = Gm,n is the automorphism group of the sequence, i.e., the

upper triangular group

(
Aut(P ′) Hom(P ′′, P ′)

0 Aut(P ′′)

)
. Quillen proved in

Q76
[156] that

in the limit, the inclusions i : Aut(P ′) × Aut(P ′′) →֒ Gm,n induce a homology
isomorphism

lim−→H∗(Gm,n) ∼= H∗(GL(A)×GL(A)).
It follows that for any connected H-space H we have [lim−→BGm,n, H] ∼=
[BGL(A)×BGL(A), H]. Taking H = BGL(A)+ yields the result.

IV.5.3.1 Example 5.3.1. If ρ is a representation on a rank n module P , the elements
[ρ] − n and λk([ρ] − n) of RA(G) determine maps BG → BGL(A)+. When
G = Aut(P ) and ρ = idP is the tautological representation, it follows from the
formula of Ex. II.

EII.4.2
4.2 that λk([idP ]− n) is the map ΛkP of

IV.5.1
5.1.

We can now define the operations λk on [BGL(A)+, BGL(A)+]. As n varies,
the representations idn of GLn(A) are related by the relation i∗nidn+1 = idn⊕1,
where in : GLn(A) →֒ GLn+1(A) is the inclusion. Hence the virtual characters
ρn = idn − n · 1 satisfy ρn = i∗nρn+1. Since i∗ : RA(GLnA) → RA(GLn+1A) is
a homomorphism of λ-rings, we also have λkρn = i∗(λkρn+1). Hence we get a
compatible family of homotopy classes λkn ∈ [BGLn(A), BGL(A)

+].
Because each BGLn(A)→ BGLn+1(A) is a closed cofibration, it is possible

to inductively construct maps λkn : BGLn(A) → BGL(A)+ which are strictly
compatible, so that by passing to the limit they determine a continuous map
λk∞ : BGL(A)→ BGL(A)+ and even

λk : BGL(A)+ → BGL(A)+.

The construction in Example
IV.5.3.1
5.3.1 clearly applies to any compatible family

of elements in the rings RA(GLn(A)). Indeed, we have a map

lim←−RA(GLn(A))→ lim←−[BGLn(A), BGL(A)
+] = [BGL(A)+, BGL(A)+].

(5.3.2) IV.5.3.2

For example, the operations ψk and γk may be defined in this way; see Ex.
EIV.5.2
5.2.

IV.5.4 Definition 5.4. If X is any based space, and f : X → BGL(A)+ any map, we
define λkf : X → BGL(A)+ to be the composition of f and λk. This defines
operations on [X,BGL(A)+] which we also refer to as λk. When X = Sn, we
get operations λk : Kn(A)→ Kn(A).

IV.5.4.1 Example 5.4.1. When n = 1 and a ∈ A× is regarded as an element of K1(A),
the formulas λk(a) = a and ψk(a) = ak are immediate from the formula

IV.5.2
5.2 for

λkA.
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The abelian group [X,BGL(A)+] inherits an associative multiplication from

the product on BGL(A)+ described in
IV.1.10
1.10: one uses the compositionX

∆−→X∧
X → BGL(A)+ ∧ BGL(A)+. If X = Sn for n > 0 (or if X is any suspension),
this is the zero product because then the map X → X ∧X is homotopic to 0.

Now recall from §II.4 that a λ-ring must satisfy λ0(x) = 1, which requires
an identity. In contrast, our λ0 is zero. To fix this, we extend the operations to
K0(A)× [X,BGL(A)+] by

λk(a, x) = (λk(a), λk(x) + a · λk−1(x) + · · ·+ λi(a)λk−i(x) + · · ·+ λk−1(a)x.

Thus λ0(a, x) = (λ0(a), λ0(x)) = (1, 0), as required.

IV.5.5 Theorem 5.5. For any based space X, the λk make K0(A) × [X,BGL(A)+]
into a special λ-ring

Proof. It suffices to consider the universal case X = BGL(A)+. Since π1(X) =
K1(A), we have a map RA(K1A) → [X,X]. Via the transformation q of

IV.5.3
5.3,

we are reduced to checking identities in the rings RA(GLn(A)) by (
IV.5.3.2
5.3.2). For

example, the formula λk(x+ y) =
∑
λi(x)λk−i(y) comes from the identity

λk ◦ ⊕ =
∑

λi ⊗ λk−i

in RA(GLm(A) × GLn(A)). Similarly, the formal identities for λk(xy) and
λn(λkx), listed in II.

II.4.3.1
4.3.1 and which need to hold in special λ-rings, already

hold in RA(G) and so hold in our setting via the map q.

IV.5.5.1 Corollary 5.5.1. If n > 0 then λk : Kn(A)→ Kn(A) is additive, and we have
ψk(x) = (−1)k−1kλk.

Proof. Since the products are zero, this is immediate from the formulas in II.
II.4.1
4.1

and II.
II.4.4
4.4 for λk(x+ y) and ψk(x).

If A is an algebra over a field of characteristic p, the Frobenius endomorphism
Φ of A is defined by Φ(a) = ap. We say that A is perfect if Φ is an automorphism,
i.e., if A is reduced and for every a ∈ A there is a b ∈ A with a = bp.

IV.5.5.2 Corollary 5.5.2. If A is an algebra over a field of characteristic p, ψp is the
Frobenius Φ∗ on Kn(A), n>0, and more generally on [X,BGL(A)+] for all X.

Proof. This follows from the fact (Ex. II.
EII.4.2
4.2) that ψp = Φ∗ on the representation

ring RA(G), together with the observation that q(Φ∗) : Kn(A) → Kn(A) is
induced by Φ : A→ A by naturality in A.

IV.5.6 Proposition 5.6. If A is a perfect algebra over a field of characteristic p, then
Kn(A) is uniquely p-divisible for all n > 0.

Proof. Since n > 0, we see from
IV.5.5.1
5.5.1 that ψp(x) = (−1)p−1pλp(x) for x ∈

Kn(A). Since ψ
p = Φ∗ is an automorphism, so is multiplication by p.
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For any based space X there is a space FX homotopy equivalent to B(π1X)

and a natural map X → FX with π1(X)
∼=
> π1(FX); if X is a simplicial

space, FX is just the 2-coskeleton of X. Composing this map with the q of
IV.5.3
5.3 gives a natural transformation RA(π1X)→ [X,BGL(A)+] of functors from
based spaces to groups.

IV.5.7 Proposition 5.7. The natural transformation RA(π1X)
q−→ [X,BGL(A)+] is

universal for maps to representable functors. That is, for any connected H-
space H and any natural transformation ηX : RA(π1X) → [X,H] there is a
map f : BGL(A)+ → H, unique up to homotopy, such that ηX is the composite

RA(π1X)
q
> [X,BGL(A)+]

f
> [X,H].

Like Theorem
IV.1.8
1.8, this is proven by obstruction theory. Essentially, one

considers the system of spaces X = BGLn(A) and the maps BGLn(A) → H
defined by ηX(idn). See

Hiller
[89, 2.4] for details.

IV.5.7.1 Example 5.7.1. The above construction of operations works in the topological
setting, allowing us to construct λ-operations on [X,BU ] extending the opera-
tions in II.

II.4.1.3
4.1.3. It follows that [X,BGL(C)+] → [X,BU ] commutes with the

operations λk and ψk for every X.

IV.5.8 Example 5.8 (Finite fields). Let Fq be a finite field, and F×q → C× a homo-
morphism. It induces a homomorphism RFq

(G) → RC(G) called the Brauer
lifting. The composition of Brauer lifting with RC(π1X) → [X,BGL(C)+] in-
duces the map BGL(Fq)+ → BGL(C)+ → BU discussed in

IV.1.12
1.12 above. Now an

elementary calculation with characters (which we omit) shows that the Brauer
lifting is actually a homomorphism of λ-rings. It follows from

IV.5.7
5.7 and

IV.5.7.1
5.7.1 that

[X,BGL(Fq)+] → [X,BGL(C)+] → [X,BU ] are homomorphisms of λ-rings.
This was used in Theorem

IV.1.12
1.12 to calculate Kn(Fq).

Compatibility with products

IV.5.9 Theorem 5.9. The Adams operations ψk are compatible with the product on
K-theory, in the sense that ψk(x · y) = ψk(x) · ψk(y) for x ∈ Km(A) and
y ∈ Kn(A).

Proof. It suffices to show that the following diagram commutes up to weak
homotopy:

BGL(A)+ ∧BGL(A)+ > BGL(A)+

BGL(A)+ ∧BGL(A)+
ψk ∧ ψk

∨
> BGL(A)+.

ψk

∨

Via Proposition
IV.5.7
5.7, this follows from the fact that the RA(GLm(A)×GLn(A))

are λ-rings for all m and n.
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IV.5.9.1 Example 5.9.1. If F is a field then ψk = k2 on K2(F ). This is because K2(F )
is generated by Steinberg symbols {a, b} (III.

III.6.1
6.1), and Example

IV.5.4.1
5.4.1 implies

that ψk{a, b} = {ak, bk} = k2{a, b}. The same argument shows that ψk = kn

on the image of KM
n (F )→ Kn(F ); see §III.7.

IV.5.9.2 Example 5.9.2. For finite fields, we have ψk(x) = ki x for x ∈ K2i−1(Fq).
This follows from Example

IV.5.8
5.8 and the fact (II.

II.4.4.1
4.4.1) that ψk = ki on π2iBU =

K̃U(S2i).

The γ-filtration

Consider the γ-filtration (II.
II.4.7
4.7) on K0(A)×Kn(A); If n > 0 then F kγKn(A) is

generated by all γk
′

(x) and a·γj(x) with k′ ≥ k, a ∈ F iγK0(A), x ∈ Kn(A), i > 0
and i+ j ≥ k. (There are other possible definitions, using the ring structure on
K∗(A), but they coincide up to torsion

Sou85
[174].) For this reason, we shall ignore

torsion and deal with the γ-filtration on Kn(A)⊗Q.
Because x = γ1(x) we have Kn(A) = F 1

γKn(A) for n > 0. The next layer
F 1
γ /F

2
γ of the filtration is also small.

IV.5.10 Proposition 5.10. (Kratzer) For all commutative A, SK1(A) = F 2
γK1(A),

and F 1
γK1(A)/F

2
γK1(A) = A×, and for n ≥ 2: Kn(A) = F 2

γKn(A).

Proof. It suffices to compute in πnBSL(A)
+, which equals SK1(A) for n = 1

and Kn(A) for n > 1 (see Ex.
EIV.1.8
1.8(a)). For G = SLN (A) the identity det(idN ) =

1 in R(G) may be written in terms of ρ = idN − N as γ1(ρ) + γ2(ρ) + · · · +
γN (ρ). Because γi(ρ) = 0 for i > N (Exercise

EIV.5.4
5.4), this yields the identity∑∞

1 γi(x) = 0 for x ∈ πnBSLN (A)
+. Since x = γ1(x), this shows that x ∈

F 2
γπnBSLN (A).

IV.5.10.1 Remark 5.10.1. Soulé has proven
Sou85
[174, Thm. 1] that if A has stable range

sr(A) < ∞ (I, Ex.
EI.1.5
1.5) then γk vanishes on Kn(A) for all k ≥ n+ sr(A). This

is a useful bound because sr(R) ≤ dim(A) + 1 for noetherian A. If F is a field,
ψk = kn and γn = (−1)n−1(n − 1)! on the image of KM

n (F ) → Kn(F ), byIV.5.9.1
5.9.1, so the bound is best possible. The proof uses Volodin’s construction of
K-theory.

IV.5.11 Theorem 5.11. For n > 0, the eigenvalues of ψk on Kn(A) ⊗ Q are a subset

of {1, k, k2, . . . }, and the subspace K
(i)
n (A) of eigenvectors for ψk = ki is inde-

pendent of k. Finally, the ring K∗(A) ⊗ Q is isomorphic to the bigraded ring

⊕n,iK(i)
n (A).

Proof. Since every element of Kn(A) comes from the K-theory of a finitely
generated subring, we may assume that sr(A) <∞. As in the proof of II.

II.4.10
4.10,

the linear operator
∏N

1 (ψk − ki) is trivial on each F iγ/F
i+1
γ for large N , and

this implies that Kn(A) ⊗ Q is the direct sum of the eigenspaces for ψk = ki,
1 ≤ i ≤ N . Since ψk and ψℓ commute, it follows by downward induction on i

that they have the same eigenspaces, i.e., K
(i)
n (A) is independent of k. Finally,

the bigraded ring structure follows from
IV.5.9
5.9.
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IV.5.11.1 Example 5.11.1. (Geller-Weibel) Let A = C[x1, . . . , xn]/(xixj = 0, i 6= j)
be the coordinate ring of the coordinate axes in Cn. Then the Loday symbol

〈〈x1, ..., xn〉〉 of Ex.
EIV.1.22
1.22 projects nontrivially into K

(i)
n (A) for all i in the range

2 ≤ i ≤ n. In particular, K
(i)
n (A) 6= 0 for each of these i. As sr(A) = 2, these

are the only values of i allowed by Soulé’s bound in
IV.5.10.1
5.10.1.

The ring of Example
IV.5.11.1
5.11.1 is not regular. In contrast, it is widely believed

that the following conjecture is true for all regular rings; it may be considered
to be the outstanding problem in algebraic K-theory. It is due to Beilinson and
Soulé

Sou85
[174]. (See Exercise VI.

EVI.4.6
4.6 for the connection to motivic cohomology.)

IV.5.12 Vanishing Conjecture 5.12. (Beilinson-Soulé) If i < n/2 and A is regular
then Kn(A) = F iγKn(A).

EXERCISES

EIV.5.1 5.1. Show that the composition of the cofibration BAut(P ) → BAut(P ⊕Q)
with λkP⊕Q is homotopic to the map λkP . By modifying λkP⊕Q, we can make the

composition equal to λkP . Using the free modules An and induction, conclude
that we have maps λk : BGL(A) → BGL(A)+ and hence operations λk on
BGL(A)+, well defined up to homotopy.

One could use
IV.4.1.1
4.1.1(c),

IV.4.10
4.10 and

IV.4.11.1
4.11.1 to consider the limit over Aut(P ) for

all projective modules P ; the same construction will work except that there will
be more bookkeeping.

EIV.5.2 5.2. Modify the construction of
IV.5.3.2
5.3.2 to construct operations ψk and γk on the

ring K0(A)× [X,BGL(A)+] for all X. (See II.
II.4.4
4.4 and II.

II.4.5
4.5.)

EIV.5.3 5.3. Show that the λ-operations are compatible with K1(A[t, 1/t])
∂−→ K0(A),

the map in the Fundamental Theorem III.
III.3.6
3.6, in the sense that for every x ∈

K0(A), t · x ∈ K1(A[t, 1/t]) satisfies ∂λ
k(t · x) = (−1)k−1ψk(x).

EIV.5.4 5.4. (γ-dimension) Consider the γ-filtration (II.
II.4.7
4.7) on K0(A) × Kn(A), and

show that every element ofKn(A) has finite γ-dimension (II.
II.4.5
4.5). Hint: Because

Sn is a finite complex, each x ∈ Kn(A) comes from some πnBGLn(A)
+. If i > n,

show that γi kills the representation [idn]− n and apply the map q.

EIV.5.5 5.5. For any commutative ring A, show that the ring structure on RA(G) in-
duces a ring structure on [X,K0(A)×BGL(A)+].

EIV.5.6 5.6. Suppose that a commutative A-algebra B is finitely generated and pro-
jective as an A-module. Use

IV.5.3
5.3 to show that the restriction of scalars map

RB(G) → RA(G) induces a “transfer” map BGL(B)+ → BGL(A)+. Show
that it agrees on homotopy groups with the transfer maps for K1 and K2 in
III.

III.1.7.1
1.7.1 and III.

III.5.6.3
5.6.3, respectively. We will encounter other constructions of the

transfer in
IV.6.3.2
6.3.2.

EIV.5.7 5.7. Use Ex.
EIV.5.3
5.3 to give an example of a regular ring A such that K

(2)
3 (A) and

K
(3)
3 (A) are both nonzero.
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6 Quillen’s Q–construction for exact categories

The higher K-theory groups of a small exact category A are defined to be the
homotopy groups Kn(A) = πn+1(BQA) of the geometric realization of a certain
auxiliary category QA, which we now define. This category has the same objects
as A, but morphisms are harder to describe. Here is the formal definition; we
refer the reader to Exercise

IV.6.1
6.1 for a more intuitive interpretation of morphisms

in terms of subquotients.

IV.6.1 Definition 6.1. Let A be an exact category. A morphism from A to B in QA
is an equivalence class of diagrams

A <<
j

B2 >
i

> B, (6.1.1) IV.6.1.1

where j is an admissible epimorphism and i is an admissible monomorphism in
A. Two such diagrams are equivalent if there is an isomorphism between them
which is the identity on A and B. The composition of the above morphism with
a morphism B և C2  C is Aև C1  C, where C1 = B2 ×B C2.

C1 > > C2 > > C

A << B2

∨∨
> > B

∨∨

Two distinguished types of morphisms play a special role in QA: the ad-
missible monics A  B (take B2 = A) and the oppositely oriented admissible
epis A և B (take B2 = B). Both types are closed under composition, and the
composition of A և B2 with B2  B is the morphism (

IV.6.1.1
6.1.1). In fact, every

morphism in QA factors as such a composition in a way that is unique up to
isomorphism.

IV.6.1.2 Subobjects 6.1.2. Recall from
Mac
[116] that (in any category) a subobject of an

object B is an equivalence class of monics B2  B, two monics being equivalent
if they factor through each other. In an exact category A, we call a subobject
admissible if any (hence every) representative B2  B is an admissible monic.

By definition, every morphism from A to B in QA determines a unique
admissible subobject of B in A. If we fix a representative B2  B for each
subobject in A, then a morphism in QA from A to B is a pair consisting of an
admissible subobject B2 of B and an admissible epi B2 ։ A.

In particular, this shows that morphisms from 0 to B in QA are in 1–1
correspondence with admissible subobjects of B.

Isomorphisms in QA are in 1–1 correspondence with isomorphisms in A. To
see this, note that every isomorphism i : A ∼= B inA gives rise to an isomorphism

in QA, represented either by A >
i
> B or by A <<

i−1

B. Conversely, since the
subobject determined by an isomorphism in QA must be the maximal subobject

B >
=
> B, every isomorphism in QA arises in this way.
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IV.6.1.3 Remark 6.1.3. Some set-theoretic restriction is necessary for QA to be a cat-
egory in our universe. It suffices for A to be well-powered, i.e., for each object
of A to have a set of subobjects. We shall tacitly assume this, since we will soon
need the stronger assumption that A is a small category.

We now consider the geometric realization BQA as a based topological space,
the basepoint being the vertex corresponding to the object 0. In fact, BQA is
a connected CW complex, because the morphisms 0  A in QA give paths in
BQA from the basepoint 0 to every vertex A. (See Lemma

IV.3.3
3.3.) The morphisms

0 և A also give paths from 0 to A in QA.

IV.6.2 Proposition 6.2. The geometric realization BQA is a connected CW complex
with π1(BQA) ∼= K0(A). The element of π1(BQA) corresponding to [A] ∈
K0(A) is represented by the based loop composed of the two edges from 0 to A:

0 > > A >> 0.

Proof. Let T denote the family of all morphisms 0  A in QA. Since each
nonzero vertex occurs exactly once, T is a maximal tree. By Lemma

IV.3.4
3.4,

π1(BQA) has the following presentation: it is generated by the morphisms in
QA, modulo the relations that [0  A] = 1 and [f ] · [g] = [f ◦g] for every pair of
composable arrows in QA. Moreover, the element of π1(BQA) corresponding to
a morphism from A to B is the based loop following the edges 0  A→ B  0.

Since the composition 0  B2  B is in T , this shows that [B2  B] = 1
in π1(BQA). Therefore [Aև B2  B] = [Aև B2]. Similarly, the composition
0 և A և B yields the relation [A և B][0 և A] = [0 և B]. Since every mor-
phism (

IV.6.1.1
6.1.1) factors, this shows that π1(BQA) is generated by the morphisms

[0 և A].
If A B ։ C is an exact sequence in A, then the composition 0  C և B

in QA is 0 և A B. This yields the additivity relation

[0 << B] = [C << B] [0 << C] = [0 << A] [0 << C] (6.2.1) IV.6.2.1

in π1(BQA), represented by the following picture in BQA:

0 > > A > > B

0

∨∨
> >

>

C

∨∨
>> 0.

>>

Since every relation [f ] · [g] = [f ◦ g] may be rewritten in terms of the
additivity relation, π1(BQA) is generated by the [0 և A] with (

IV.6.2.1
6.2.1) as the

only relation. Therefore K0(A) ∼= π1(BQA).

IV.6.2.2 Example 6.2.2. The presentation for π1(BQA) in the above proof yields a
function from morphisms in QA to K0(A). It sends [A և B2  B] to [B1],
where B1 is the kernel of B2 ։ A.
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IV.6.3 Definition 6.3. Let A be a small exact category. Then KA denotes the space
ΩBQA, and we set

Kn(A) = πnKA = πn+1(BQA) for n ≥ 0.

Proposition
IV.6.2
6.2 shows that this definition of K0(A) agrees with the one

given in Chapter II. Note that any exact functor F : A → B induces a functor
QA → QB, hence maps BQA → BQB and Kn(A) → Kn(B). Thus the space
KA = Ω BQA and all the groups Kn(A) are functors from exact categories and
exact functors to spaces and abelian groups, respectively. Moreover, isomorphic
functors induce the same map on K-groups, because they induce isomorphic
functors QA → QA′.

IV.6.3.1 Remark 6.3.1. If an exact categoryA is not small but has a set of isomorphism
classes of objects then we define Kn(A) to be Kn(A′), where A′ is a small
subcategory equivalent to A. By Ex.

EIV.6.2
6.2 this is independent of the choice of A′.

From now on, whenever we talk about the K-theory of a large exact category
A we will use this device, assuming tacitly that we have replaced it by a small
A′. For example, this is the case in the following definitions.

IV.6.3.2 Definition 6.3.2. Let R be a ring with unit, and set K(R) = KP(R), where
P(R) denotes the exact category of finitely generated projective R-modules.
We define the K-groups of R by Kn(R) = KnP(R). For n = 0, Lemma

IV.6.2
6.2

shows that this agrees with the definition of K0(R) in Chapter II. For n ≥ 1,
agreement with the (nonfunctorial) +–construction definition

IV.1.1.1
1.1.1 of K(R) will

have to wait until Section 7.
Let f : R → S be a ring homomorphism such that S is finitely generated

and projective as an R-module. Then there is a forgetful functor P(S)→ P(R)
and hence a “transfer” functor f∗ : K∗(S)→ K∗(R).

IV.6.3.3 Definition 6.3.3. If R is noetherian, let M(R) denote the category of fin.
gen. R-modules. Otherwise, M(R) is the category of pseudo-coherent modules
defined in II.

II.7.1.4
7.1.4. We set G(R) = KM(R) and define the G-groups of R by

Gn(R) = KnM(R). For n = 0, this also agrees with the definition in Chapter II.
Let f : R→ S be a ring map. When S is finitely generated as an R-module

(and S is in M(R)), there is a contravariant “transfer” map f∗ : G(S)→ G(R),
induced by the forgetful functor f∗ : M(S)→M(R), as in II.

II.6.2
6.2.

On the other hand, if S is flat as an R-module, the exact base change functor
⊗RS : M(R) → M(S) induces a covariant map f∗ : G(R) → G(S) hence
maps f∗ : Gn(R) → Gn(S) for all n. This generalizes the base change map
G0(R)→ G0(S) of II.

II.6.2
6.2. We will see in V.

V.3.5
3.5 that the base change map is also

defined when S has finite flat dimension over R.

IV.6.3.4 Definition 6.3.4. Similarly, if X is a scheme which is quasi-projective (over
a commutative ring), we define K(X) = KVB(X) and Kn(X) = KnVB(X).
If X is noetherian, we define G(X) = KM(X) and Gn(X) = KnM(X). For
n = 0, this agrees with the definition of K0(X) and G0(X) in Chapter II.
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IV.6.3.5 Morita Invariance 6.3.5. Recall from II.
II.2.7
2.7 that if two rings R and S are

Morita equivalent then there are equivalences P(R) ∼= P(S) andM(R) ∼= M(S).
It follows that Kn(R) ∼= Kn(S) and Gn(R) ∼= Gn(S) for all n.

IV.6.4 Elementary properties 6.4. Here are some elementary properties of the
above definition.

If Aop denotes the opposite category of A, then Q(Aop) is isomorphic to QA
by Ex.

EIV.6.3
6.3, so we have Kn(Aop) = Kn(A). For example, if R is a ring then

P(Rop) ∼= P(R)op by P 7→ HomR(P,R), so we have Kn(R) ∼= Kn(R
op).

The product or direct sum A ⊕ A′ of two exact categories is exact by Ex-
ample II.

II.7.1.6
7.1.6, and Q(A ⊕ A′) = QA × QA′. Since the geometric realization

preserves products by
IV.3.1
3.1(4), we have BQ(A⊕A′) = BQA×BQA′ and hence

Kn(A ⊕ A′) ∼= Kn(A) ⊕ Kn(A′). For example, if R1 and R2 are rings then
P(R1 ×R2) ∼= P(R1)⊕P(R2) and we have Kn(R1 ×R2) ∼= Kn(R1)⊕Kn(R2).
(Cf. Ex.

EIV.1.7
1.7.) Similarly, if a quasi-projective scheme X is the disjoint union

of two components Xi, then VB(X) is the sum of the VB(Xi) and we have
Kn(X) ∼= Kn(X1)⊕Kn(X2).

The direct sum ⊕ : A × A → A is an exact functor, and its restriction to
either factor is an isomorphism. It follows that B⊕ : BQA × BQA → BQA
endows BQA with the structure of a homotopy-commutative H-space. (It is
actually an infinite loop space; see

IV.6.5.1
6.5.1).

Finally, suppose that i 7→ Ai is a functor from some small filtering category
I to exact categories and exact functors. Then the filtered colimit A = lim−→Ai is
an exact category (Ex. II.

EII.7.9
7.9), and QA = lim−→QAi. Since geometric realization

preserves filtered colimits by
IV.3.1
3.1(3), we have BQA = lim−→BQAi and hence

Kn(A) = lim−→Kn(Ai). The K0 version of this result was given in chapter II,
as

II.6.2.7
6.2.7 and

II.7.1.7
7.1.7.

For example, if a ring R is the filtered union of subrings Ri we have Kn(R) ∼=
lim−→Kn(Ri). However, i 7→ P(Ri) is not a functor. One way to fix this is to
replace the category P(Ri) by the equivalent category P′(Ri) whose objects are
idempotent matrices over Ri; P(R) is equivalent to the category P′(R) = lim−→Pi.
Alternatively one could use the Kleisli rectification, which is described in Ex.

EIV.6.5
6.5.

IV.6.4.1 Example 6.4.1 (Cofinality). Let B be an exact subcategory of A which is
closed under extensions in A, and which is cofinal in the sense that for ev-
ery A in A there is an A′ in A so that A⊕A′ is in B. Then BQB is homotopy
equivalent to the covering space of BQA corresponding to the subgroup K0(B)
of K0(A) = π1(BQA). In particular, Kn(B) ∼= Kn(A) for all n > 0.

A special case of this is sketched in Exercise
EIV.6.6
6.6; the general case follows

from this case using the version
IV.8.9.1
8.9.1 of Waldhausen Cofinality

IV.8.9
8.9 below. Note

that K0(B) is a subgroup of K0(A) by II.
II.7.2
7.2.

Waldhausen constructed a delooping of BQA in
Wa78
[214, p. 194], using the “QQ”

construction. This in turn provides a context for products.
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IV.6.5 Definition 6.5. When A is a small exact category, QQA is the bicategory
whose bimorphisms are equivalence classes of commutative diagrams in A of
the form

• << • > > •

•

∧∧

<< •

∧∧

> > •

∧∧

•

∨

∨

<< •

∨

∨

> > •

∨

∨

in which the four little squares can be embedded in a 3×3 diagram with short ex-
act rows and columns. Two such diagrams are equivalent if they are isomorphic
by an isomorphism which restricts to the identity on each corner object.

Waldhausen proved that the loop space ΩQQA is homotopy equivalent to
BQA (see

Wa78
[214, p. 196] and Ex.

EIV.6.8
6.8). Thus we have

Kn(A) = πn+1BQA ∼= πn+2BQQA.

IV.6.5.1 Remark 6.5.1. There are also n-fold categories QnA, defined exactly as in
IV.6.5
6.5,

with ΩBQn+1A ≃ BQnA. The sequence of the BQnA (using ΩBQA if n = 0)
forms an Ω-spectrum K(A), making K(A) into an infinite loop space.

Products

IV.6.6 Definition 6.6. If A, B and C are exact categories, a functor ⊗ : A × B → C
is called biexact if (i) each partial functor A⊗ – : B → C and –⊗ B : A → C is
exact, and (ii)A⊗0 =0⊗B = 0 for the distinguished zero objects of A, B and
C.

This is the same as the definition of biexact functor in II.
II.7.4
7.4. Note that

condition (ii) can always be arranged by replacing A, B and C by equivalent
exact categories.

Given such a biexact functor, the bicategory map QA ⊗ QB → bi(QC)
of

IV.3.10.2
3.10.2 factors through the forgetful functor QQC → bi(QC). The functor

QA⊗QB → QQC sends a pair of morphisms A0 և A1  A2, B0 և B1  B2

to the bimorphism

A0 ⊗B0 << A1 ⊗B0 >> A2 ⊗B0

A0 ⊗B1

∧∧

<< A1 ⊗B1

∧∧

>> A2 ⊗B1

∧∧

A0 ⊗B2

∨
∨

<< A1 ⊗B2

∨
∨

>> A2 ⊗B2

∨
∨

(6.6.1) IV.6.6.1
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Now the geometric realization
IV.3.6
3.6 of the bifunctor ⊗ : QA⊗QB → QQC is

a map BQA × BQB → BQQC by
IV.3.10.1
3.10.1. Since ⊗ sends QA ⊗ 0 and 0 ⊗ QB

to 0, by the technical condition (ii), B⊗ sends BQA × 0 and 0 × BQB to the
basepoint, and hence factors through a map

BQA ∧BQB → BQQC, (6.6.2) IV.6.6.2

and in fact a pairing K(A) ∧ K(B) → K(C) of spectra; see
Gillet
[67, 7.12]. The

reduced join operation
Wh
[228, p. 480] yields bilinear maps

Ki(A)⊗Kj(B) = πi+1(BQA)⊗ πj+1(BQB)→
πi+j+2(BQA ∧BQB)→ πi+j+2(BQC) ∼= Ki+j(C). (6.6.3) IV.6.6.3

IV.6.6.4 Remark 6.6.4. We say that A acts upon B if there is a biexact A × B → B.
If there is an object A0 of A so that A0 ⊗ – is the identity on B, the map
S1 = B(0 ⇉ 1) → BQA given by the diagram 0  A0 ։ 0 of

IV.6.2
6.2 induces a

map S1 ∧ BQA → B
(
QA ⊗ QB

)
→ BQQB. Its adjoint BQA → ΩBQQA is

the natural map of
IV.6.5
6.5 (see Ex.

EIV.6.8
6.8).

When there is an associative pairing A×A → A, K∗(A) becomes a graded
ring; it has a unit [A0] ∈ K0(A) if A0 ⊗ – = – ⊗ A0 = idA, by the preceeding
paragraph, andK(A) is a ring spectrum. When A acts on B and the two evident
functors A × A × B → B agree up to natural isomorphism, the pairing makes
K∗(B) into a left K∗(A)-module.

IV.6.6.5 Example 6.6.5. These remarks apply in particular to the category A = P(R)
over a commutative ring R, and VB(X) over a scheme X. Tensor product
makes K∗(R) = K∗P(R) and K∗(X) = K∗VB(X) into graded-commutative
rings with unit. For every R-algebra A, K∗(A) and G∗(A) are 2-sided graded
K∗(R)-modules, and G∗(X) is a graded K∗(X)-module.

If f : A→ B is an R-algebra map, and B is finite over A, the finite transfer
f∗ : G(B)→ G(A) is a K∗(R)-module homomorphism: f∗(x · y) = f∗(x) · y for
x ∈ G∗(B) and y ∈ K∗(R). This fact is sometimes referred to as the projection
formula, and holds because f∗(x · y) and x · f∗(y) arise from the isomorphic
functors M ⊗B (B⊗RP ) ∼=M ⊗A (A⊗RP ) of functors M(B)×P(R)→M(A).

The W (R)-module NK∗(A)

IV.6.7 6.7. Let k be a commutative ring. We saw in II.
II.7.4.3
7.4.3 that the exact endo-

morphism category End(k) of pairs (P, α) has an associative, symmetric biex-
act pairing with itself, given by ⊗k. This makes K∗End(k) into a graded-
commutative ring. As in loc. cit. , the functors P(k) → End(k) → P(k) de-
compose this ring as a product of K∗(k) and another graded-commutative ring
which we call End∗(k).

If R is an k-algebra, End(k) acts associatively by ⊗k on the exact cate-
gory Nil(R) of nilpotent endomorphisms (II.

II.7.4.4
7.4.4), and on its subcategories

FmNil(R) (Ex. II.
EII.7.17
7.17). As Nil(R) is their union, we see that K∗Nil(R) =

colimK∗FmNil(R) is a filtered K∗End(k)-module.
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Let Nil(R) denote the fiber of the forgetful functor KNil(R)→ K(R); since
this is split, we have KNil(R) ≃ K(R) × Nil(R) and K∗Nil(R) ∼= K∗(R) ×
Nil∗(R), where Nil∗(R) = π∗Nil(R) is a graded End∗(k)-module.

By Almkvist’s Theorem II.
II.7.4.3
7.4.3, End0(k) is isomorphic to the subgroup of

W (k) = (1 + tk[[t]])× consisting of all quotients f(t)/g(t) of polynomials in
1+ tR[t]. Stienstra observed in

St85
[177] (cf.

St82
[176]) that the End0(k)-module struc-

ture extended to a W (k)-module structure by the following device. There are
exact functors Fm, Vm : Nil(R) → Nil(R) defined by Fm(P, ν) = (P, νm) and
Vm(P, ν) = (P [t]/(tm − ν), t) (see Ex. II.

EII.7.16
7.16). Stienstra proved in

St82
[176] that

(Vmα) · ν = Vm(α · Fm(ν)) for α ∈ End0(k) and ν ∈ Nil∗(R). Since Fm is
zero on FmNil(R), the elements Vm(α) act as zero on the image FmNil∗(R) of
K∗FmNil(R)→ K∗Nil(R)→ Nil∗(R).

For example, the class of α = [(k, a)]− [(k, 0)]) in End0(k) ⊂W (R) is 1−at,
so Vm(α) = (1− atm) acts as zero. Stienstra also proves in

St85
[177] that if g(t) =

1+ ... has degree < m and f(t) is any polynomial then the element 1+ tm(f/g)
of End0(k) acts as zero on FmNil∗(R). Hence the ideal End0(R)∩ (1+ tmR[[t]])
is zero on FmNil∗(R). Writing an element of W (k) as a formal factorization
f(t) =

∏∞
i=1(1− amtm), the formula f · ν =

∑
(1− amtm) · ν makes sense as a

finite sum.

IV.6.7.1 Proposition 6.7.1. If k = Z/pZ, Nil∗(R) is a graded p-group.
If k = S−1Z, or if k is a Q-algebra, Nil∗(R) is a graded k-module.

Proof. If k = S−1Z, or if k is a Q-algebra, the map m 7→ (1 − t)m defines a
ring homomorphism from k into W (k), so any W (k)-module is a k-module. If

p = 0 (or even pν = 0) in k then for each n the formal factorization of (1− t)pN
involves only (1− amtm) for m ≥ n. It follows that pN annihilates the image of
K∗FnNil(R) in Nil∗(R). Since Nil∗(R) is the union of these images, the result
follows.

We will see in V.
V.8.1
8.1 that there is an isomorphism NKn+1(R) ∼= Niln(R), so

what we have really seen is that NK∗(R) is a graded End∗(k)-module, with the
properties given by

IV.6.7.1
6.7.1:

IV.6.7.2 Corollary 6.7.2. If k = Z/pZ, each NKn(R) is a p-group.
If k = S−1Z, or if k is a Q-algebra, each NKn(R) is a k-module.

IV.6.7.3 Example 6.7.3. If R is an algebra over the complex numbers C, then each
NKn(R) has the structure of a C-vector space. As an abelian group, it is either
zero or else uniquely divisible and uncountable.

The endofunctor Vm(P, α) = (P [t]/tm − α, t) of End(R) (Ex. II.
EII.7.16
7.16) sends

Nil(R) to itself, and FmVm(P, ν) = ⊕m1 (P, ν). Hence Vm induces an endomor-
phism Vm on each Niln(R), such that FmVm is multiplication by m.

IV.6.7.4 Proposition 6.7.4. (Farrell) If any NKn(R) is nonzero, it cannot be finitely
generated as an abelian group.
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Proof. Since NKn(R) = colimKn−1FnNil(R), every element is killed by all
sufficiently large Fm. If NKn(R) were finitely generated, there would be an
integer M so that the entire group is killed by Fm for all m > M . Pick β 6= 0 in
NKn(R) and choose m > M so that mβ 6= 0. But Fm(Vmβ) = mβ is nonzero,
a contradiction.

Finite generation

The following conjecture is due to Bass.

IV.6.8 Bass’ Finiteness Conjecture 6.8. Let R be a commutative regular ring,
finitely generated as a Z-algebra. Then the groups Kn(R) are finitely gener-
ated for all n.

Quillen used a filtration of the Q–construction to prove in
Q73
[154] that the

groups Kn(R) are finitely generated for any Dedekind domain R such that
(1) Pic(R) is finite and (2) the homology groups Hn(Aut(P ), st(P ⊗R F )) are
finitely generated. He then verified (2) in

Q73
[154] (number field case) and

GQ82
[75]

(affine curves). In other words:

IV.6.9 Theorem 6.9. (Quillen) Let R be either an integrally closed subring of a num-
ber field F , finite over Z, or else the coordinate ring of a smooth affine curve
over a finite field. Then Kn(R) is a finitely generated group for all n.

EXERCISES

EIV.6.1 6.1. Admissible subquotients. Let B be an object in an exact category A. An
admissible layer in B is a pair of subobjects represented by a sequence B1 

B2  B of admissible monics, and we call the quotient B2/B1 an admissible
subquotient of B. Show that a morphism A→ B in QA may be identified with
an isomorphism j : B2/B1

∼= A of A with an admissible subquotient of B, and
that composition in QA arises from the fact that a subquotient of a subquotient
is a subquotient.

EIV.6.2 6.2. If two exact categories A and A′ are equivalent (and the equivalence re-
spects exactness), show that QA and QA′ are equivalent. If both are small
categories, conclude that Kn(A) ∼= Kn(A′) for all n.

EIV.6.3 6.3. If A is an exact category, so is its opposite category Aop (see Example
II.

II.7.1.5
7.1.5). Show that Q(Aop) is isomorphic to QA.

EIV.6.4 6.4. Let B be an object in an exact category A. Show that the comma category
(QA)/B is equivalent to the poset of admissible layers of B in the sense of
Ex.

EIV.6.1
6.1. If P is an exact subcategory of A and i denotes the inclusion QP ⊂

QA, show that i/B is equivalent to the poset of admissible layers of B with
B2/B1 ∈ P.
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EIV.6.5 6.5. Kleisli rectification. Let I be a filtering category, and let I → CAT be
a lax functor in the sense of Ex.

EIV.3.8
3.8. Although the family of exact categories

QA(i) is not filtering, the family of homotopy groups KnA(i) is filtering. The
following trick allows us make K-theoretic sense out of the phantom category
A = lim−→A(i).

Let Ai be the category whose objects are pairs (Aj , j
f−→ i) with Aj in A(j)

and f a morphism in I. A morphism from (Aj , j
f−→ i) to (Ak, k

g−→ i) is a

pair (j
h−→ k, θj) where f = gh in I and θj is an isomorphism h∗(Aj) ∼= Ak

in A(k). Clearly Ai is equivalent to A(i), and i 7→ Ai is a functor. Thus if A
denotes lim−→Ai we have KnA = lim−→KnA(i).

EIV.6.6 6.6. (Gersten) Suppose given a surjective homomorphism φ : K0(A)→ G, and
let B denote the full subcategory of all B in A with φ[B] = 0 in G. In this
exercise we show that if B is cofinal in A then Kn(B) ∼= Kn(A) for n > 0, and
K0(B) ⊂ K0(A).

(a) Show that there is a functor ψ : QA → G sending the morphism (
IV.6.1.1
6.1.1)

of QA to φ[B1], B1 = ker(j), where G is regarded as a category with one object
∗. Using IV.6.2

6.2, show that the map π1(QA)→ π1(G) is just φ.
(b) Show that the hypotheses of Quillen’s Theorem B are satisfied by ψ, so

that B(ψ/∗) is the homotopy fiber of BQA → BG.
(c) Use Quillen’s Theorem A to show that QB → ψ−1(∗) is a homotopy

equivalence.
(d) Suppose in addition that B is cofinal in A (II.

II.5.3
5.3), so that K0(B) is the

subgroup ker(φ) ofK0(A) by II.
II.7.2
7.2. Use Theorem A to show that ψ−1(∗) ≃ ψ/∗.

This proves that BQB → BQA → BG is a homotopy fibration. Conclude that
Kn(B) ∼= Kn(A) for all n ≥ 1.

EIV.6.7 6.7. (Waldhausen) If A is an exact category, let qA denote the bicategory (
IV.3.10
3.10)

with the same objects as A, admissible monomorphisms and epimorphisms as
the horizontal and vertical morphisms, respectively; the bimorphisms in qA are
those bicartesian squares in A whose horizontal edges are admissible monomor-
phisms, and whose vertical edges are admissible epimorphisms.

A11 > > A10

A01

∨∨
> > A00

∨∨

Show that the diagonal category (Ex.
EIV.3.14
3.14) of qA is the category QA.

EIV.6.8 6.8. (Waldhausen) Since the realization of the two-object category 0 ⇉ 1 is S1,
the realization of the bicategory (0 ⇉ 1) ⊗ A is S1 × BA. Given a morphism
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A0 և A1  A2 show that the pair of bimorphisms in QQA
A0 << A1 > > A2

0

∨∨
<< 0

∨∨
> > 0,

∨∨

A0 << A1 > > A2

0
∧

∧

<< 0
∧

∧

> > 0
∧

∧

describe a map S1 ∧ BQA → BQQA. Waldhausen observed in
Wa78
[214, p. 197]

that this map is adjoint to the homotopy equivalence BQA ≃ ΩBQQA.
EIV.6.9 6.9. For every biexact A × B → C, show that the pairing K0(A) ⊗ K0(B) →

K0(C) of (
IV.6.6.3
6.6.3) agrees with the product of II.

II.7.4
7.4.

EIV.6.10 6.10. Show that the functor QA ⊗ QB → QQC of
IV.6.6
6.6 is a map of symmetric

monoidal categories (the operation on QQC is slotwise direct sum). Conclude
that BQA×BQB → BQQC is an H-space map. (In fact, it is an infinite loop
space map.)

EIV.6.11 6.11. Let A be the direct sum ⊕i∈IAi of exact categories. Show that Kn(A) ∼=
⊕i∈IKn(Ai).

EIV.6.12 6.12. If f : R → S is such that S is in P(R), show that the transfer map
f∗ : K0(S) → K0(R) of

IV.6.3.2
6.3.2 agrees with the transfer functor for K0 given in

II.
II.2.8.1
2.8.1.

EIV.6.13 6.13. If f : R → S and S is in P(R), show that f∗f
∗ is multiplication by

[S] ∈ K0(R), and that f∗f∗ is multiplication by [S ⊗R S] ∈ K0(S).
If f : k → ℓ is a purely inseparable field extension, show that both f∗f∗ and

f∗f
∗ are multiplication by [ℓ : k] = pr.
If f : R→ S is a Galois extension with group G, show that f∗f∗ =

∑
g∈G g.

EIV.6.14 6.14. Quasi-exact categories. Let C be a category with a distinguished zero
object ‘0’ and a coproduct ∨. We say that a family E of sequences of the form

0→ B
i−→ C

j−→ D → 0 (†)

is admissible if the following conditions hold (cf. Ex. II.
EII.7.8
7.8): (i) Any sequence in

C isomorphic to a sequence in E is in E ; (ii) If (†) is a sequence in E then i is a
kernel for j (resp. j is a cokernel for i) in C; (iii) the class E contains all of the
sequences 0→ B → B ∨D → D → 0; (iv) the class of admissible epimorphisms
is closed under composition and pullback along admissible monics; (v) the class
of admissible monics is closed under composition and pullback along admissible
epimorphisms.

A quasi-exact category is a pair (C, E), where E is admissible in the above
sense. If C is small, show that there is a category QC, defined exactly as in

IV.6.1
6.1,

and that π1(BQC) is the group K0(C) defined exactly as in II.
II.7.1
7.1: the group

generated by the objects of C subject to the relations [C] = [B] + [D] arising
from the admissible exact sequences. (This formulation is due to Deitmar.)
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EIV.6.15 6.15. (Waldhausen) Show that the category Setsfin of finite pointed sets is
quasi-exact, where E is the collection of split sequences 0 → B → B ∨ D →
D → 0, and that K0(Setsfin) = Z, exacty as in II.

II.5.2.1
5.2.1. The opposite category

Sets
op
fin is not quasi-exact, because 0→ B → B ∧D → D → 0 is not in Eop.

EIV.6.16 6.16. A monoid M with identity 1 is pointed if it has an element 0 with 0 ·m =
m · 0 = 0 for all m ∈M . A pointed M -set is a pointed set X on which M acts
and 0 ·x = ∗ for all x ∈ X. Show that the category of finitely generated pointed
M -sets, and its subcategory of free pointed M -sets, are quasi-exact. Here the
sequence (†) in Ex.

EIV.6.14
6.14 is admissible if i is an injection and j identifies D with

C/B.

7 The “+ = Q” Theorem

Suppose that A is an additive category. One way to define the K-theory of A is
to consider the symmetric monoidal category S = isoA (where � = ⊕) and use
the S−1S construction: K⊕n A = πnB(S−1S) and K⊕A = K(S) = B(S−1S).

Another way is to suppose that A has the structure of an exact category and
form the Q–construction on A. Comparing the definitions of K⊕0 A and K0A
in II.

II.5.1.2
5.1.2 and II.

II.7.1
7.1, we see that the K0 groups are not isomorphic in general,

unless perhaps every exact sequence splits in A, i.e., unless A is a split exact
category in the sense of II.

II.7.1.2
7.1.2.

Here is the main theorem of this section.

IV.7.1 Theorem 7.1. (Quillen) If A is a split exact category and S = isoA, then
ΩBQA ≃ B(S−1S). Hence Kn(A) ∼= Kn(S) for all n ≥ 0.

In fact, B(S−1S) is the group completion of BS by Theorem
IV.4.8
4.8 and Exer-

cise
IV.7.1
7.1. In some circumstances (see

IV.4.9
4.9,

IV.4.10
4.10 and

IV.4.11.1
4.11.1), the S−1S construction

is a +–construction. In these cases, Theorem
IV.7.1
7.1 shows that the Q–construction

is also a +–construction. For A = P(R), this yields the “+ = Q” theorem:

IV.7.2 Corollary 7.2 (+ = Q Theorem). For every ring R,

ΩBQP(R) ≃ K0(R)×BGL(R)+.
Hence Kn(R) ∼= KnP(R) for all n ≥ 0.

IV.7.3 Definition 7.3. Given an exact category A, we define the category EA as fol-
lows. The objects of EA are admissible exact sequences in A. A morphism from
E′ : (A′  B′ ։ C ′) to E : (A  B ։ C) is an equivalence class of diagrams
of the following form, where the rows are exact sequences in A:

E′ : A′ > > B′ >> C ′

A

α∧
∧

> > B′

wwww
>> C ′′

∧∧

E :
∨

A

wwww
> > B

β∨
∨

>> C.
∨
∨

(7.3.1) IV.7.3.1
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Two such diagrams are equivalent if there is an isomorphism between them
which is the identity at all vertices except for the C ′′ vertex.

Notice that the right column in (
IV.7.3.1
7.3.1) is just a morphism ϕ in QA from C ′

to C, so the target C is a functor t : EA → QA: t(A B ։ C) = C. In order
to improve legibility, it is useful to write EC for the fiber category t−1(C).

IV.7.4 Example 7.4 (Fiber categories). If we fix ϕ as the identity map of C = C ′, we
see that the fiber category EC = t−1(C) of exact sequences with target C has
for its morphisms all pairs (α, β) of isomorphisms fitting into a commutative
diagram:

A′ > > B′ >> C

A

α ∼=
∧

> > B

∼= β
∨

>> C.

wwwwwww

In particular, every morphism in EC is an isomorphism.

IV.7.4.1 Example 7.4.1. The fiber category E0 = t−1(0) is homotopy equivalent to
S = isoA. To see this, consider the functor from isoA to E0 sending A to the

trivial sequence A >
id
> A >> 0. This functor is a full embedding. Moreover,

every object of E0 is naturally isomorphic to such a trivial sequence, whence the
claim.

IV.7.5 Lemma 7.5. For any C in A, EC is a symmetric monoidal category, and there
is a faithful monoidal functor ηC : S → EC sending A to the sequence A 

A⊕ C ։ C.

Proof. Given Ei = (Ai  Bi ։ C) in EC , set E1 ∗ E2 equal to

A1 ⊕A2 > > (B1 ×C B2) >> C. (7.5.1) IV.7.5.1

This defines a symmetric product on EC with identity e : 0  C ։ C. It is now
routine to check that S → EC is a monoidal functor, and that it is faithful.

IV.7.5.2 Remark 7.5.2. If A is split exact then every object of EC is isomorphic to one
coming from S. In particular, the category 〈S, EC〉 of

IV.4.7.1
4.7.1 is connected. This

fails if A has a non-split exact sequence.

IV.7.6 Proposition 7.6. If A is split exact, each S−1S → S−1EC is a homotopy equiv-
alence.

Proof. By Ex.
EIV.4.7
4.7 and Ex.

EIV.7.1
7.1, S−1S → S−1EC → 〈S, EC〉 is a fibration, so

it suffices to prove that L = 〈S, EC〉 is contractible. First, observe that the
monoidal product on EC induces a monoidal product on L, so BL is an H-space
(as in

IV.4.1
4.1). We remarked in

IV.7.5.2
7.5.2 that L is connected. By

Wh
[228, X.2.2], BL is

group-like, i.e., has a homotopy inverse.
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For every exact sequence E, there is a natural transformation δE : E → E∗E
in L, where ∗ is defined by (

IV.7.5.1
7.5.1), given by the diagonal.

E : A > > B >> C

E ∗ E :
∨

A⊕A
∨

> > B ×C B
∨

>> C

wwwwwww

Now δ induces a homotopy between the identity on BL and multiplication by 2.
Using the homotopy inverse to subtract the identity, this gives a homotopy
between zero and the identity of BL. Hence BL is contractible.

We also need a description of how EC varies with C.

IV.7.7 Lemma 7.7. For each morphism ϕ : C ′ → C in QA, there is a canonical
functor ϕ∗ : EC → EC′ and a natural transformation ηE : ϕ∗(E) → E from ϕ∗

to the inclusion of EC in EA.
In fact, t : EA → QA is a fibered functor with base change ϕ∗ (Ex.

EIV.7.2
7.2). It

follows (from
IV.3.7.5
3.7.5 that C 7→ EC is a contravariant functor from QA to CAT .

Proof. Choose a representative C ′ և C ′′  C for ϕ and choose a pullback B′

of B and C ′′ along C. This yields an exact sequence A  B′ ։ C ′′ in A.
(Why?) The composite B′ ։ C ′′ ։ C ′ is admissible; if A′ is its kernel then set

ϕ∗(A B ։ C) = (A′  B′ ։ C ′).

Since every morphism in EC is an isomorphism, it is easy to see that ϕ∗ is a
functor, independent (up to isomorphism) of the choices made. Moreover, the
construction yields a diagram (

IV.7.3.1
7.3.1), natural in E; the map β in the diagram

is an admissible monic because A  B′
β−→ B′ is. Hence (

IV.7.3.1
7.3.1) constitutes

the natural map ηE : E → ϕ∗(E).

Now the direct sum of sequences defines an operation ⊕ on EA, and S acts
on EA via the inclusion of S in EA given by

IV.7.4.1
7.4.1. That is, A′�(A B ։ C)

is the sequence A′ ⊕ A  A′ ⊕ B ։ C. Since t(A′�E) = t(E) we have an
induced map T = S−1t : S−1EA → QA. This is also a fibered functor (Ex.

EIV.7.2
7.2).

IV.7.8 Theorem 7.8. If A is a split exact category and S = isoA, then the sequence

S−1S → S−1EA T−→ QA is a homotopy fibration.

Proof. We have to show that Quillen’s Theorem B applies, i.e., that the base
changes ϕ∗ of

IV.7.7
7.7 are homotopy equivalences. It suffices to consider ϕ of the

form 0  C and 0 և C. If ϕ is 0  C, the composition of the equivalence
S−1S → S−1EC of

IV.7.6
7.6 with ϕ∗ is the identity by Ex.

EIV.7.5
7.5, so ϕ∗ is a homotopy

equivalence.
Now suppose that ϕ is 0 և C. The composition of the equivalence S−1S →

S−1EC of
IV.7.6
7.6 with ϕ∗ sends A to A ⊕ C by Ex.

EIV.7.5
7.5. Since there is a natural

transformation A→ A⊕C in S−1S, this composition is a homotopy equivalence.
Hence ϕ∗ is a homotopy equivalence.
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Proof of Theorem
IV.7.1
7.1. This will follow from Theorem

IV.7.8
7.8, once we show that

S−1EA is contractible. By Ex.
EIV.7.3
7.3, EA is contractible. Any action of S on a

contractible category must be invertible (
IV.4.7.1
4.7.1). By Ex.

EIV.4.6
4.6 and Ex.

EIV.7.1
7.1, EA →

S−1EA is a homotopy equivalence, and therefore S−1EA is contractible.

Agreement of Product Structures

Any biexact pairing A1 × A2
⊗−→ A3 of split exact categories (

IV.6.6
6.6) induces a

pairing S1 × S2
�−→ S of symmetric monoidal categories, where Si = isoAi.

We now compare the resulting pairings K(A1) ∧ K(A2) → K(A3) of
IV.6.6
6.6 and

K(S1) ∧K(S2) → K(S3) of
IV.4.6
4.6. Waldhausen’s Lemma

Wa78
[214, 9.2.6] implies the

following result; the details of the implication are given in
We81
[218, 4.3]:

IV.7.9 Theorem 7.9. The homotopy equivalences B(S−1i Si) → ΩBQAi of Theo-
rem

IV.7.1
7.1 fit into a diagram which commutes up to basepoint-preserving homo-

topy:

B(S−11 S1) ∧B(S−12 S2)
�

> B(S−13 S3)

(ΩBQA1) ∧ (ΩBQA2)

≃
∨ γ

> (ΩBQA3)

≃
∨

Ω2(BQA1 ∧BQA2)

≃
∨

Ω2 ⊗
> Ω2(BQQA3).

≃
∨

Hence there are commutative diagrams:

Kp(S1)⊗Kq(S2)
�
> Kp+q(S3)

Kp(A1)⊗Kq(A2)

∼=
∨ ⊗

> Kp+q(A3).

∼=
∨

The middle map γ is induced from the H-space map ⊗ : ΩBQA1 ×ΩBQA2 →
Ω2BQA3 of Ex.

EIV.6.10
6.10, since it sends x⊗ 0 and 0⊗ y to 0.

EXERCISES

EIV.7.1 7.1. If A is an additive category, S = isoA is equivalent to the disjoint union
of one-object categories Aut(A), one for every isomorphism class in A. Show
that the translations Aut(A) → Aut(A ⊕ B) are injections. Then conclude
using Theorem

IV.4.8
4.8 that B(S−1S) is the group completion of the H-space BS =∐

Aut(A).

EIV.7.2 7.2. Show that the target functor t : EA → QA is a fibered functor in the sense
of Definition

IV.3.7.3
3.7.3, with base change ϕ∗ given by

IV.7.7
7.7. Then show that the action

of S on EA is cartesian (Ex.
EIV.4.11
4.11), so that the induced functor S−1EA → QA

is also fibered, with fiber S−1S over 0.
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EIV.7.3 7.3. Let iQA denote the subcategory of QA whose objects are those of A but
whose morphisms are admissible monomorphisms. Show that the category EA
of

IV.7.3
7.3 is equivalent to the subdivision category Sub(iQA) of Ex. EIV.3.93.9. Conclude

that the category EA is contractible.

EIV.7.4 7.4. Show that Quillen’s Theorem B can not apply to EA → QA unless A ∼= 0.
Hint: Compare π0S to K0A.

EIV.7.5 7.5. If ϕ is the map 0  C (resp. 0 և C), show that ϕ∗ : EC → E0 ∼= S sends
A B ։ C to A (resp. to B).

EIV.7.6 7.6. Describe E ′A = (EA)op, which is cofibered over (QA)op by Ex.
EIV.3.6
3.6 and

EIV.7.2
7.2.

Use E ′A to prove the + = Q Theorem
IV.7.1
7.1 and

IV.7.2
7.2. Hint: There is a new

action of S. Use pushout instead of pullback in (
IV.7.5.1
7.5.1) to prove the analogue of

Proposition
IV.7.6
7.6.

EIV.7.7 7.7. Finite Sets. Let Setsfin denote the category of finite pointed sets, and
form the category QSetsfin by copying the Q–construction

IV.6.1
6.1 as in Ex.

EIV.6.14
6.14

and Ex.
EIV.6.15
6.15.

(a) Show that there is an extension category E ′Setsfin, defined as in Ex.
EIV.7.6
7.6,

which is cofibered over (QSetsfin)
op with S = isoSetsfin as the fiber over the

basepoint.
(b) Modify the proof of the + = Q theorem to prove that ΩBQSetsfin ≃ S−1S.
(c) If G is a group, let F be the category of finitely generated free pointed
G-sets, and QF as in Ex.

EIV.6.16
6.16. Using

IV.4.10.1
4.10.1, show that ΩBQF ≃ S−1S ≃

Z× Ω∞S∞(BG+).

EIV.7.8 7.8. (π1BQA) Given an object A in A, lift the morphisms 0 > > A >> 0
in QA to morphisms in EA, 0 → ηA(0) ← η0(A). Conclude that the isomor-
phism between K0(A) = π1BQA and K0(S) = π0(S

−1S) of Theorem
IV.7.1
7.1 is the

canonical isomorphism of II.
II.7.1.2
7.1.2, identifying [A] with [A].

EIV.7.9 7.9. (π2BQA) Given an automorphism α of an object A in A, consider the
continuous map [0, 1]2 → BQA given by the commutative diagram:

0 > > A >> 0

0

wwwwwww
> > A

α
∨

>> 0.

wwwwwww

Identifying the top and bottom edges to each other, the fact that the left and
right edges map to the basepoint (0) means that we have a continuous function
S2 → BQA, i.e., an element [α] of K1(A) = π2(BQA).
(a) Show that [α] + [α′] = [αα′] for every pair of composable automorphisms.

Conclude that α 7→ [α] is a homomorphism Aut(A)→ K1(A).

(b) If β ∈ Aut(B), show that the automorphism α ⊕ β of A ⊕ B maps to
[α] + [β]. Using

IV.4.8.1
4.8.1, this given a map from K1(isoA) to K1(A).
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(c) Finally, lift this diagram to EA using Ex.
EIV.7.8
7.8, representing a map I2 →

BEA, and conclude that the isomorphism between K1(A) = π2BQA and
K1(S) = π1(S

−1S) of Theorem
IV.7.1
7.1 identifies [α] with the class of α given

by III.
III.1.6.3
1.6.3 and

IV.4.8.1
4.8.1.

EIV.7.10 7.10. (Canonical involution) Let R be a commutative ring. The isomorphism
P(R) → P(R)op sending P to HomR(P,R) induces an involution on QP(R)
and hence K∗(R) by

IV.6.4
6.4; it is called the canonical involution. Show that the

involution is a ring automorphism.
On the other hand, the “transpose inverse” involution of GL(R) (g 7→ tg−1)

induces a homotopy involution on BGL(R)+ and an involution on Kn(R) for
n > 0. Show that these two involutions agree via the ‘+ = Q’ Theorem

IV.7.2
7.2.
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8 Waldhausen’s wS• construction

Our last construction of K-theory applies to Waldhausen categories, i.e., “cat-
egories with cofibrations and weak equivalences.” Unfortunately, this will occur
only after a lengthy list of definitions, and we ask the reader to be forgiving.

Recall from Chapter II, Section 9 that a category with cofibrations is a cate-
gory C with a distinguished zero object ‘0’ and a subcategory co(C) of morphisms
in C called “cofibrations” (indicated with feathered arrows ). Every isomor-
phism in C is to be a cofibration, and so are the unique arrows 0  A for every
object A in C. In addition, the pushout C  B ∪AC of any cofibration A B
is a cofibration. (See Definition II.

II.9.1
9.1 for more precise statements.) These ax-

ioms imply that two constructions make sense: the coproduct B ∐C = B ∪0 C
of any two objects, and every cofibration A B fits into a cofibration sequence
A  B ։ B/A, where B/A is the cokernel of A  B. The following is a
restatement of Definition II.

II.9.1.1
9.1.1:

IV.8.1 Definition 8.1. A Waldhausen category C is a category with cofibrations, to-
gether with a family w(C) of morphisms in C called “weak equivalences” (indi-
cated with decorated arrows

∼−→ ). Every isomorphism in C is to be a weak
equivalence, and weak equivalences are to be closed under composition (so we
may regard w(C) as a subcategory of C). In addition, the “Glueing axiom” (W3)
must be satisfied, which says that the pushout of weak equivalences is a weak
equivalence (see II.

II.9.1.1
9.1.1).

A functor f : A → C between two Waldhausen categories is called an ex-
act functor if it preserves all the relevant structure: zero, cofibrations, weak
equivalences and the pushouts along a cofibration.

A Waldhausen subcategory A of a Waldhausen category C is a subcategory
which is also a Waldhausen category in such a way that: (i) the inclusion A ⊆ C
is an exact functor, (ii) the cofibrations in A are the maps in A which are
cofibrations in C and whose cokernel lies in A, and (iii) the weak equivalences
in A are the weak equivalences of C which lie in A.

In order to describe Waldhausen’s wS• construction for K-theory, we need
a sequence of Waldhausen categories SnC. S0C is the zero category, and S1C is
the category C, but whose objects A are thought of as the cofibrations 0  A.
The category S2C is the extension category E of II.

II.9.3
9.3. For convenience, we

repeat its definition here.

IV.8.2 Extension Categories 8.2. The objects of the extension category S2C are the
cofibration sequences A1  A2 ։ A12 in C. A morphism E → E′ in S2C is a
commutative diagram:

E : A1 > > A2 >> A12

E′ :
∨

A′1

u1
∨
> > A′2

u2
∨

>> A′12.

u3
∨
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We make S2C into a Waldhausen category as follows. A morphism E → E′

in S2C is a cofibration if A1 → A′1, A12 → A′12 and A′1 ∪A1
A2 → A′2 are

cofibrations in C. A morphism in S2C is a weak equivalence if its component
maps ui : Ai → A′i (i = 1, 2, 12) are weak equivalences in C.

A Waldhausen category C is called extensional if it satisfies this following
technically convenient axiom: weak equivalences are “closed under extensions.”

IV.8.2.1 Remark 8.2.1 (Extension axiom). Suppose that f : E → E′ is a map between
cofibration sequences, as in

IV.8.2
8.2. If the source and quotient maps of f (A→ A′

and C → C ′) are weak equivalences, so is the total map of f (B → B′).

IV.8.3 Definition 8.3. (S•C) If C is a category with cofibrations, let SnC be the cat-
egory whose objects A• are sequences of n cofibrations in C:

A• : 0 = A0  A1  A2  · · · An

together with a choice of every subquotient Aij = Aj/Ai (0 < i < j ≤ n).
These choices are to be compatible in the sense that there is a commutative
diagram:

An−1,n

· · ·

∧∧

A23 >> · · · > > A2n

A12 >> A13

∧∧

>> · · · > > A1n

∧∧

A1 >> A2

∧∧

> > A3

∧∧

>> · · · > > An

∧∧

(8.3.0) IV.8.3.0

The conventions A0j = Aj and Ajj = 0 will be convenient at times. A morphism
A• → B• in SnC is a natural transformation of sequences.

If we forget the choices of the subquotients Aij we obtain the higher extension
category En(C) constructed in II.

II.9.3.2
9.3.2. Since we can always make such choices,

it follows that the categories SnC and En(C) are equivalent. By Ex. II.
EII.9.4
9.4, when

C is a Waldhausen category, so is En(C) and hence SnC. Here are the relevant
definitions for Sn, translated from the definitions II.

II.9.3.2
9.3.2 for En.

A weak equivalence in SnC is a map A• → B• such that each Ai → Bi
(hence, each Aij → Bij) is a weak equivalence in C. A map A• → B• is a
cofibration when for every 0 ≤ i < j < k ≤ n the map of cofibration sequences

Aij > > Aik >> Ajk

Bij
∨

> > Bik
∨

>> Bjk
∨
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is a cofibration in S2C.
The reason for including choices in the definition of the categories SnC is that

we can form a simplicial Waldhausen category. The maps ∂0, ∂1 from C = S1C
to 0 = S0C are trivial; the maps ∂0, ∂1, ∂2 from S2C to C are q∗, t∗ and s∗,
respectively.

IV.8.3.1 Definition 8.3.1. For each n ≥ 0, the exact functor ∂0 : SnC → Sn−1C is
defined by deletion of the bottom row of (

IV.8.3.0
8.3.0). That is, ∂0 is defined by the

formula

∂0(A.) : 0 = A11 > > A12 > > A13 > > · · · > > A1n

together with the choices ∂0(A.)ij = Ai+1,j+1. By Ex.
EIV.8.1
8.1, ∂0(A.) is in Sn−1C.

For 0 < i ≤ n we define the exact functors ∂i : SnC → Sn−1C by omitting
the row Ai∗ and the column containing Ai in (

IV.8.3.0
8.3.0), and reindexing the Ajk as

needed. Similarly, we define the exact functors si : SnC → Sn+1C by duplicating
Ai, and reindexing with the normalization Ai,i+1 = 0. (Exactness is checked in
Ex.

EIV.8.2
8.2.)

By Ex.
EIV.8.2
8.2, the SnC fit together to form a simplicial Waldhausen category

S•(C), and the subcategories wSnC of weak equivalences fit together to form
a simplicial category wS•C. Hence their geometric realizations B(wSnC) fit
together to form a simplicial topological space BwS•C, and we write |wS•C| for
the realization of BwS•C. Since S0C is trivial, |wS•C| is a connected space.

IV.8.3.2 Remark 8.3.2. In the realization of BwS•C, the spaces B(wSnC) × ∆n are
glued together along the face maps. In particular, the suspension ΣB(wC) is a
subspace of |wS•C|; the adjoint map is B(wC) → Ω|wS•C|. In this way, each
object of C yields an element of π1|wS•C|, and each weak equivalence A ≃ A in
C yields an element of π2|wS•C|.

Recall from chapter II,
II.9.1.2
9.1.2, that K0(C) is defined as the group generated

by the set of weak equivalence classes [A] of objects of C with the relations that
[B] = [A] + [B/A] for every cofibration sequence

A > > B >> B/A.

IV.8.4 Proposition 8.4. If C is a Waldhausen category then π1|wS•C| ∼= K0(C).
Proof. If X• is any simplicial space with X0 a point, then |X•| is connected and
π1|X•| is the free group on π0(X1) modulo the relations ∂1(x) = ∂2(x)∂0(x) for
every x ∈ π0(X2). For X• = BwS•C, π0(BwS1C) is the set of weak equivalence
classes of objects in C, π0(BwS2C) is the set of equivalence classes of cofibration
sequences, and the maps ∂i : S2C → S1C of

IV.8.3.1
8.3.1 send A B ։ B/A to B/A,

B and A, respectively.

IV.8.5 Definition 8.5. If C is a small Waldhausen category, its algebraic K-theory
space K(C) = K(C, w) is the loop space

K(C) = Ω|wS•C|.
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The K-groups of C are defined to be its homotopy groups:

Kn(C) = πnK(C) = πn+1|wS•C| if n ≥ 0.

As we saw in Remark
IV.8.3.2
8.3.2, there is a canonical map B(wC)→ K(C).

IV.8.5.1 Remark 8.5.1. Since the subcategory wC is closed under coproducts in C by
axiom (W3), the coproduct gives an H-space structure to |wS•C| via the map

|wS•C| × |wS•C| ∼= |wS•C × wS•C| ∐−→ |wS•C|.

IV.8.5.2 Example 8.5.2 (Simplicial Model). Suppose that C is a small Waldhausen cat-
egory in which the isomorphisms iC are the weak equivalences. Let snC denote
the set of objects of SnC; as n varies, we have a simplicial set s•C. Waldhausen
proved in

W1126
[215, 1.4] that the inclusion |s•C| → |iS•C| is a homotopy equivalence.

Therefore Ω|s•C| is a simplicial model for the space K(C).

IV.8.5.3 Example 8.5.3 (Relative K-theory spaces). If f : B → C is an exact functor,
let Snf denote the category SnB ×SnC Sn+1C whose objects are pairs

(B∗, C∗) = (B1  · · · Bn, C0  · · · Cn)

such that f(B∗) is ∂0C∗ : C1/C0  · · ·  Cn/C0. Each Snf is a Wald-
hausen category in a natural way, containing C as the (Waldhausen) sub-
category of all (0, C = · · · = C), and the projection Snf → SnB is ex-
act. We can apply the S• (and wS•) construction degreewise to the sequence
C → S•f → S•B of simplicial Waldhausen categories, obtaining a sequence of
bisimplicial Waldhausen categories S•C → S•(S•f)→ S•(S•B), and a sequence
wS•C → wS•(S•f)→ wS•(S•B) of bisimplicial categories. We will see in V.

V.1.7
1.7

(using
IV.8.5.4
8.5.4) that the realization of the bisimplicial category sequence

wS•B → wS•C → wS•(S•f)→ wS•(S•B),

is a homotopy fibration sequence. Thus we may regard K(f) = Ω2|wS•(S•f)|
as a relative K-theory space; the groups Kn(f) = πnK(f) fit into a long exact
sequence involving f∗ : Kn(B)→ Kn(C), ending K0(B)→ K0(C)→ K−1(f)→
0 (Ex.

EIV.8.11
8.11).

IV.8.5.4 Lemma 8.5.4. If f : C → C is the identity, wS•f is contractible.

Proof. In this case the simplicial category S•f is just the simplicial path space
construction of S•C, and wS•S•f is the simplicial path space construction of
wS•S•C (see

WHomo
[223, 8.3.14]). These are contractible since S0f = 0 and wS•S0f

are.

IV.8.5.5 Remark 8.5.5 (Infinite Loop Structure). Lemma
IV.8.5.4
8.5.4 implies that there are

natural homotopy equivalences |wS•C| ≃ Ω|wS•S•C|, and of course K(C) ≃
Ω2|wS•S•C|. In fact K(C) is an infinite loop space.
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To see this we just iterate the construction, forming the multisimplicial Wald-
hausen categories Sn

•
C = S•S• · · ·S•C and the multisimplicial categories wSn

•
C

of their weak equivalences. By
IV.8.5.4
8.5.4, we see that |wSn

•
C| is the loop space of

|wSn+1
•
C|, and that the sequence of spaces

Ω|wS•C|, |wS•C|, |wS•S•C|, . . . , Ω|wSn• C|, . . .

forms a connective Ω-spectrum KC, called the K-theory spectrum of C. Many
authors think of the K-theory of C in terms of this spectrum. This does not
affect the K-groups, because:

πi(KC) = πiK(C) = Ki(C), i ≥ 0.

An exact functor f induces a map f∗ : K(B)→ K(C) of spaces, and spectra,
and of their homotopy groups Ki(B)→ Ki(C).

IV.8.6 Exact Categories 8.6. We saw in II.
II.9.1.3
9.1.3 that any exact category A becomes

a Waldhausen category in which the cofibration sequences are just the admissible
exact sequences, and the weak equivalences are just the isomorphisms. We write
i(A) for the family of isomorphisms, so that we can form the K-theory space
K(A) = Ω|iS•A|. Waldhausen proved in

W1126
[215, 1.9] that there is a homotopy

equivalence between |iS•A| and BQA, so that this definition is consistent with
the definition of K(A) in Definition

IV.6.3
6.3. His proof is given in Exercises

IV.8.5
8.5

and
IV.8.6
8.6 below.

Another important example of a Waldhausen category is Rf (X), introduced
in II.

II.9.1.4
9.1.4 and Ex. II.

EII.9.1
9.1. The so-called K-theory of spaces refers to the corre-

spondingK-theory spaces A(X), and their homotopy groups An(X) = πnA(X).

IV.8.7 Example 8.7 (A(∗)). Recall from II.
II.9.1.4
9.1.4 that the category Rf = Rf (∗) of

finite based CW complexes is a Waldhausen category in which the family hRf
of weak equivalences is the family of weak homotopy equivalences. This cate-
gory is saturated (II.

II.9.1.1
9.1.1) and satisfies the extension axiom

IV.8.2.1
8.2.1. Following

Waldhausen
W1126
[215], we write A(∗) for the space K(Rf ) = Ω|hS•Rf |. We have

A0(∗) = K0Rf = Z by II.
II.9.1.5
9.1.5.

IV.8.7.1 Example 8.7.1 (A(X)). More generally, let X be a CW complex. The cate-
gory R(X) of CW complexes Y obtained from X by attaching cells, and having
X as a retract, is a Waldhausen category in which cofibrations are cellular
inclusions (fixing X) and weak equivalences are homotopy equivalences (see
Ex. II.

EII.9.1
9.1). Consider the Waldhausen subcategory Rf (X) of those Y obtained

by attaching only finitely many cells. Following Waldhausen
W1126
[215], we write

A(X) for the space K(Rf (X)) = Ω|hS•Rf (X)|. Thus A0(X) = K0Rf (X) is Z
by Ex. II.

EII.9.1
9.1.

Similarly, we can form the Waldhausen subcategory Rfd(X) of those
Y which are finitely dominated. We write Afd(X) for K(Rfd(X)) =

Ω|hS•Rfd(X)|. Note that Afd0 (X) = K0Rfd(X) is Z[π1(X)] by Ex. II.
EII.9.1
9.1.
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Cylinder Functors

When working with Waldhausen categories, it is often technically convenient to
have mapping cylinders. Recall from Ex.

EIV.3.12
3.12 that the category C/C of arrows

in C has the morphisms of C as its objects, and a map (a, b) : f → f ′ in C/C is
a commutative diagram in C:

A
f

> B

A′

a
∨ f ′

> B′

b
∨

(8.8.0) IV.8.8.0

The source s(f) = A and target t(f) = B of f define functors s, t : C/C → C.
IV.8.8 Definition 8.8 (Cylinders). Let C be a Waldhausen category. A (mapping)

cylinder functor on C is a functor T from the category C/C of arrows in C to the
category C, together with natural transformations j1 : s ⇒ T , j2 : t ⇒ T and
p : T ⇒ t so that for every f : A→ B the diagram

A
j1

> T (f) <
j2

B

B

p
∨

=

<

f

>

commutes in C. The following conditions must also hold:

(i) T (0  A) = A, with p and j2 the identity map, for all A ∈ C.
(ii) j1 ∐ j2 : A∐B  T (f) is a cofibration for all f : A→ B.

(iii) Given a map (a, b) : f → f ′ in C/C, i.e., a commutative square (
IV.8.8.0
8.8.0), if

a and b are weak equivalences in C then so is T (f)→ T (f ′).

(iv) Given a map (a, b) : f → f ′ in C/C, if a and b are cofibrations in C, then
so is T (f) → T (f ′), and the following map, induced by condition (ii), is
also a cofibration in C.

A′ ∐A T (f)∐B B′ → T (f ′)

We often impose the following extra axiom on the weak equivalences of C.
IV.8.8.1 Cylinder Axiom 8.8.1. All maps p : T (f)→ B are weak equivalences in C.

Suppose C has a cylinder functor T . The cone of an object A is cone(A) =
T (A ։ 0), and the suspension of A is ΣA = cone(A)/A. The cylinder axiom
implies that cone(A)

∼−→ 0 is a weak equivalence. Since A cone(A) ։ ΣA is
a cofibration sequence it follows from the description of K0(C) in II.

II.9.1.2
9.1.2 that

[ΣA] = −[A] in K0(C). (Cf. Lemma II.
II.9.2.1
9.2.1.) In fact, the Additivity Theorem

(see V.
V.1.2
1.2 below) implies that the map Σ : K(C)→ K(C) is a homotopy inverse

with respect to the H-space structure on K(C), because Σ∗ + 1 = cone∗ = 0.

The name ‘cylinder functor’ comes from the following two paradigms.
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IV.8.8.2 Example 8.8.2. The Waldhausen categories Rf (∗) and Rf (X) of Examples
IV.8.7
8.7 and

IV.8.7.1
8.7.1 have a cylinder functor: T (f) is the usual (based) mapping cylinder

of f . By construction, the mapping cylinder satisfies the cylinder axiom
IV.8.8.1
8.8.1.

Because of this paradigm, j1 and j2 are sometimes called the front and back
inclusions.

IV.8.8.3 Example 8.8.3. Let Ch be the Waldhausen category of chain complexes and
quasi-isomorphisms constructed from an abelian (or exact) category C; see II.II.9.29.2.
The mapping cylinder of f : A• → B• is the usual mapping cylinder chain
complex

WHomo
[223, 1.5.5], in which

T (f)n = An ⊕An−1 ⊕Bn.

The suspension functor Σ(A•) is the shift operator A• 7→ A•[−1]: Σ(A•)n =
An−1.

IV.8.8.4 Example 8.8.4. Exact categories usually do not have cylinder functors. This
is reflected by the fact that for some A in A there may be no B such that
[A⊕B] = 0 in K0(A). However, the Waldhausen category Chb(A) of bounded
chain complexes does have a cylinder functor, and we used it to prove that
K0(A) ∼= K0Chb(A) in II.

II.9.2.2
9.2.2. In fact, K(A) ≃ K(Chb(A)) by the Gillet-

Waldhausen theorem presented in V.
V.2.2
2.2. Thus many results requiring mapping

cylinders in Waldhausen K-theory can be translated into results for Quillen
K-theory.

Cofinality

A Waldhausen subcategory B of C is said to be cofinal if for all C in C there is
a C ′ in C so that C ∐ C ′ is in B. The K0 version of the following theorem was
proven in II.

II.9.4
9.4. We will prove a stronger cofinality result in V.

V.2.3
2.3 below.

IV.8.9 Waldhausen Cofinality 8.9. If B is a cofinal Waldhausen subcategory of C,
closed under extensions, and such that K0(B) = K0(C). Then wS•B → wS•C
and K(B) → K(C) are homotopy equivalences. In particular, Kn(B) ∼= Kn(C)
for all n.

IV.8.9.1 Remark 8.9.1. By Grayson’s Trick (see Ex. II.
EII.9.14
9.14), the assumption that

K0(B) = K0(C) is equivalent to saying that B is strictly cofinal in C, mean-
ing that for every C in C there is a B in B so that B

∐
C is in B.

Proof. By
IV.8.5.3
8.5.3, it suffices to show that the “relative” bisimplicial category

wS•(S•f) is contractible, where f : B → C is the inclusion. For this it suffices to
show that each wSn(S•f) is contractible. Switching simplicial directions, we can
rewrite wSn(Smf) as wSm(Snfn), where fn : SnB → SnC and Snfn is defined
in

IV.8.5.3
8.5.3. Since SnB is equivalent to En(C) (see

IV.8.3
8.3), we see from Ex. II.

EII.9.4
9.4 that

K0(SnB) ∼= K0(SnC). Hence the hypothesis also applies to fn. Replacing f by
fn, we have a second reduction: it suffices to show that the simplicial category
wS•f is contractible.
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Let B(m,w) denote the category of diagrams B0
≃−→ · · · ≃−→ Bm in B whose

maps are weak equivalences, and f(m,w) the inclusion of B(m,w) in C(m,w).
Then the bidegree (m,n) part wmSnf of wS•f is the set snf(m,w) of objects
of Snf(m,w). Working with the nerve degreewise, it suffices to show that each
wmS•f = s•f(m,w) is contractible. Since B is strictly cofinal in C (by Grayson’s
trick), this implies that f(m,w) is also strictly cofinal by Ex.

EIV.8.12
8.12(b). The theo-

rem now follows from Lemma
IV.8.9.2
8.9.2 below.

IV.8.9.2 Lemma 8.9.2. If f : B → C is strictly cofinal then s•f is contractible, where
the elements of snf are the objects of Snf .

Proof. Strict cofinality implies that for each finite set X of objects (Bi∗, C
i
∗) of

Sni
f , there is an object B′ of B such that each (B′ ∐Bi∗, B′ ∐Ci∗) is in Sni

idB,
because each B′ ∐ Cij is in B.

We saw in
IV.8.5.4
8.5.4 that s•idB is the simplicial path space construction of s•B,

and is contractible because s0B is a point. We will show that s•f is contractible
by showing that it is homotopy equivalent to s•idB. For this we need to show
that for any finite subcomplex L of s•f there is a simplicial homotopy h (in the
sense of

WHomo
[223, 8.3.11]) from the inclusion L ⊂ s•f to a map L → s•idB ⊂ s•f ,

such that each component of h sends L ∩ s•idB into s•idB.
If X is the set of nondegenerate elements of L, we saw above that there is

a B′ so that B′ ∐ X (and hence B′ ∐ L) is in s•idB. The desired simplicial
homotopy is given by the restriction of the maps hi : snf → sn+1f , sending
(B∗, C∗) to

(· · · Bj  B′ ∐Bj  · · · B′ ∐Bn,
· · · Cj  B′ ∐ Cj  · · · B′ ∐ Cn).

IV.8.9.3 Question 8.9.3. If B is a cofinal Waldhausen subcategory of C, but is not
closed under extensions, is K(B) ≃ K(C)? Using Ex.

EIV.8.12
8.12(a), the above proof

shows that this is true if B is strictly cofinal in C.

At the other extreme of cofinality, we have the following theorem of Thoma-
son, which shows that by changing the weak equivalences in A we can force all
the higher K-groups to vanish. Let (A, co) be any category with cofibrations;
recall from II.

II.9.1.3
9.1.3 that the group K0(A) = K0(isoA) is defined in this context.

Suppose we are given a surjective homomorphism π : K0(A)→ G. Let w(A)
denote the family of morphisms A → A′ in A such that π[A] = π[A′] in G. As
observed in II.

II.9.6.2
9.6.2, (A, w) is a Waldhausen category with K0(A, w) = G.

IV.8.10 Theorem 8.10. There is a homotopy equivalence wS•(A, w) → BG. Hence
K(A) is homotopic to the discrete set G, and Kn(A, w) = 0 for all n 6= 0.

Proof. (Thomason) By construction of w, the category wA is the disjoint
union of the full subcategories π−1(g) on the objects A with π[A] = g. For
each g, fix an object Ag with π[Ag] = g. For n > 1, consider the function
π : wsnA → Gn sending the object A1  A2  · · ·  An of wSnA to
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(π[A1], π[A12], π[A23], . . . , π[An−1,n]). By the construction of w, it induces a
decomposition of wSnA into the disjoint union (indexed by Gn) of the full sub-
categories π−1(g1, ..., gn) of objects mapping to (g1, ..., gn). We will show that
each of these components is contractible.

Given g = (g1, ..., gn), π
−1(g) is not empty because it contains the object

Ag : Ag1  (Ag1 ∐Ag2)  (Ag1 ∐Ag2 ∐Ag3)  · · · (∐ni=1Agi)

of wSnA. The subcategory π−1(0) is contractible because it has initial object 0.
For other g, there is a natural transformation from the identity of π−1(g) to the
functor F (B) = Ag∐A−g∐B, given by the coproduct with the weak equivalence
0 → Ag ∐ A−g. But F is null-homotopic because it factors as the composite
of F ′ : π−1(g) → π−1(0), F ′(B) = A−g ∐ B, and F ′′ : π−1(0) → π−1g,
F ′′(C) = Ag ∐ C. It follows that π−1(g) is contractible, as desired.

Products

IV.8.11 8.11. Our discussion in
IV.6.6
6.6 about products in exact categories carries over to

the Waldhausen setting. The following construction is taken from
W1126
[215, just

after 1.5.3]. Let A, B and C be Waldhausen categories; recall from II.
II.9.5.2
9.5.2 that

a functor F : A × B → C is biexact if each F (A,−) and F (−, B) is exact, and
the following condition is satisfied:

For every pair of cofibrations (A  A′ in A, B  B′ in B) the
following map is a cofibration in C:

F (A′, B) ∪F (A,B) F (A,B
′)  F (A′, B′).

We saw in II.
II.9.5.1
9.5.1 that a biexact functor induces a bilinear map K0(A) ⊗

K0(B)→ K0(C). It also induces a morphism of bisimplicial bicategories

wS•A× wS•B → wwS•S•C

which resembles (
IV.6.6.1
6.6.1). Upon passage to geometric realization, this factors

K(A) ∧K(B)→ K(C).

As observed in
TT
[200, 3.15], this pairing induces a pairing K(A)∧K(B)→ K(C)

of spectra. If A × A → A is not only biexact but associative up to natural
isomorphism, the pairing makes K(A) into a ring spectrum; it is a commutative
ring spectrum if the pairing is commutative up to natural isomorphism. If in
addition, A×B → B is biexact and A×A×B → B is associative up to natural
isomorphism, then K(B) is a module spectrum over K(A).

In particular, if R is a commutative ring then K(R) = K(P(R)) is a com-
mutative ring spectrum, and G(R) is a module spectrum over it. Similarly, if
X is a quasi-projective scheme then K(X) = K(VB(X)) is also a commutative
ring spectrum, and G(X) is a module spectrum over it.
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EXERCISES

EIV.8.1 8.1. Show that for every 0 ≤ i < j < k ≤ n the diagram Aij  Aik ։ Ajk is a
cofibration sequence, and this gives an exact functor from SnC to S2C.

EIV.8.2 8.2. Show that each functor ∂i : SnC → Sn−1C is exact in
IV.8.3.1
8.3.1. Then show

that S•C is a simplicial category.

EIV.8.3 8.3. Let f, f ′ : A → B be exact functors. A natural transformation η : f → f ′

is called a weak equivalence if each f(A)
∼−→ f ′(A) is a weak equivalence in

B. Show that a weak equivalence induces a homotopy between the two maps
K(A)→ K(B). Hint: Show that the maps wSnA → wSnB are homotopic in a
compatible way.

EIV.8.4 8.4. We saw in
IV.8.3.2
8.3.2 that there is a canonical map from Bw(C) to K(C), and

hence maps πiB(wC)→ Ki(C). The map π0B(wC)→ K0(C) is described in
IV.8.4
8.4.

(a) Every weak self-equivalence α : A
∼−→ A determines an element [α] of K1(C),

by
IV.3.4
3.4. If β is a weak self-equivalence of B, show that [α] + [β] = [α ∨ β]. If

A = B, show that [α] + [β] = [βα]
(b) If A is an exact category, considered as a Waldhausen category, show that
the map B(isoA) → K(A) induces a map from the group K⊕1 A of

IV.4.8.1
4.8.1 to

K1(A).
(c) In the notation of 8.2, show that a weak equivalence in S2C with Ai = A′i
determines a relation [u1]− [u2] + [u12] = 0 in K1(C).
(d) Show that every pair of cofibration sequences A  B ։ C (with the same
objects) determines an element of K1(C). (See

IV.9.5
9.5 below.)

EIV.8.5 8.5. (Waldhausen) Let A be a small exact category. In this exercise we produce
a map from |iS•A| ≃ |s•A| to BQA, where s•A is defined in

IV.8.5.2
8.5.2.

(a) Show that an object A• of iS3A determines a morphism A12 → A3 in QA.
(b) Show that an object A• of iS5A determines a sequence A23 → A14 → A5 of
row morphisms in QA.
(c) Recall from Ex.

EIV.3.10
3.10 that the Segal subdivision Sub(s•A) is homotopy equiv-

alent to s•A. Show that (a) and (b) determine a simplicial map Sub(s•A) →
QA. Composing with |iS•A| ≃ Sub(s•A), this yields a map |iS•A| → BQA.

EIV.8.6 8.6. We now show that the map |iS•A| → BQA constructed in the previous
exercise is a homotopy equivalence. Let iQnA denote the category whose objects
are the degree n elements of the nerve of QA, i.e., sequences A0 → · · · → An
in QA, and whose morphisms are isomorphisms.
(a) Show that iQ•A is a simplicial category, and that the nerve of QA is the
simplicial set of objects. Waldhausen proved in

W1126
[215, 1.6.5] that BQA → |iQ•A|

is a homotopy equivalence.

(b) Show that there is an equivalence of categories Sub(iSnA) ∼−→ iQnA for each
n, where Sub(iSnA) is the Segal subdivision category of Ex.

EIV.3.9
3.9. Then show that

the equivalences form a map of simplicial categories Sub(iS•A) → iQ•A. This
map must be a homotopy equivalence, because it is a homotopy equivalence in
each degree. The typical case Sub(iS3A)→ iQ3A is illustrated in

W1126
[215, 1.9].
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(c) Show that the map of the previous exercise fits into a diagram

|s•A|
≃
> |Sub(s•A)| > BQA

|iS•A|

≃
∨ ≃

> |Sub(iS•A)|

≃
∨ ≃

> |iQ•A|.

≃
∨

Conclude that the map |iS•A| → BQA of Ex.
EIV.8.5
8.5 is a homotopy equivalence.

EIV.8.7 8.7. Recall from
IV.8.5.2
8.5.2 that K1(A) ∼= π2|s•A| for any exact category A. Given

an automorphism α of an object A in A, show that the two 2-cells in |s•A|
corresponding to the extensions 0 > > A

α
>> A and A >

α
> A >> 0 fit

together to define an element of π2|s•A|. Then show that the map of Ex.
EIV.8.5
8.5

identifies it with the element [α] of π2BQA described in Ex.
EIV.7.9
7.9.

EIV.8.8 8.8. Finite Sets. Show that the category Setsfin of finite pointed sets is a Wald-
hausen category, where the cofibrations are the injections and the weak equiv-
alences are the isomorphisms. Then mimick Exercises

EIV.8.5
8.5 and

EIV.8.6
8.6 to show that

the space BQSetsfin of Ex.
EIV.6.15
6.15 is homotopy equivalent to the Waldhausen space

iS•Setsfin. Using Theorem
IV.4.9.3
4.9.3 and Ex.

EIV.7.7
7.7, conclude that the Waldhausen K-

theory space K(Setsfin) is Z×(BΣ∞)+ ≃ Ω∞S∞. Thus Kn(Setsfin) ∼= πsn for
all n.

EIV.8.9 8.9. G-Sets. If G is a group, show that the category G−Sets+ of finitely
generated pointed G-sets, and its subcategory F of free pointed G-sets, are
Waldhausen categories. Then mimick Exercises

EIV.8.5
8.5 and

EIV.8.6
8.6 to show that the

spaces BQ(G−Sets+) and BQF of Ex.
EIV.6.16
6.16 are homotopy equivalent to the

Waldhausen spaces iS•(G−Sets+) and iS•F . Using Ex.
EIV.7.7
7.7, conclude that the

Waldhausen K-theory space K(F) is homotopy equivalent to Ω∞S∞(BG+).

EIV.8.10 8.10. Given a category with cofibrations C, let E = E(C) denote the category of
extensions in C (see II.II.9.39.3), and s•C the simplicial set of

IV.8.5.2
8.5.2. In this exercise we

show that the source and quotient functors s, q : E → C induce s•E ≃ s•C × s•C.
(a) Recall from Ex.

EIV.3.11
3.11 that for A in snC the simplicial set s/(n,A) is the

pullback of s•E and ∆n along s and A : ∆n → s•C. Show that s/(0, 0) is
equivalent to s•C.
(b) For every vertex α of ∆n and every A in snC that the map s/(0, 0)→ s/(n,A)
of Ex.

EIV.3.11
3.11 is a homotopy equivalence.

(c) Use (b) to show that s : s•E → s•C satisfies the hypothesis of Ex.
EIV.3.11
3.11(b).

(d) Use Ex.
EIV.3.11
3.11(b) to show that there is a homotopy fibration s•C → s•E → s•C

Conclude that s× q : s•E → s•C × s•C is a homotopy equivalence.

EIV.8.11 8.11. Given an exact functor f : B → C, mimick the proof of
IV.8.4
8.4 to show that

the group K−1(f) = π1(wS•S•f) of
IV.8.5.3
8.5.3 is the cokernel of K0(B)→ K0(C).

EIV.8.12 8.12. Suppose that B is a strictly cofinal Waldhausen subcategory of C.
(a) Show that SnB is strictly cofinal in Sn(C).
(b) Show that, in the proof of

IV.8.9
8.9, B(w,m) is strictly cofinal in C(w,m).
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EIV.8.13 8.13. Any exact category A is cofinal in its idempotent completion Â, by defi-
nition (see II.

II.7.3
7.3). Let A′ be the subcategory of Â consisting of all B in Â such

that [B] lies in the subgroup K0(A) of K0(Â). Show that A′ is an exact cate-
gory, closed under admissible epimorphisms in Â, and that A is strictly cofinal
in A′. Hence K(A) ≃ K(A′).

EIV.8.14 8.14. Let Ch(C) be the Waldhausen category of chain complexes in an exact
category C, as in IV.8.8.3

8.8.3. Show that Ch(C) and Chb(C) are saturated and satisfy
the Extension axiom

IV.8.2.1
8.2.1, and the Cylinder Axiom

IV.8.8.1
8.8.1.

EIV.8.15 8.15. If (C, co, w) is a saturated Waldhausen category with a cylinder functor,
satisfying the cylinder axiom, show that the category cowC of “trivial cofi-
brations” (cofibrations which are weak equivalences) is homotopy equivalent to
wC. Hint: Use the cylinder to show that each i/C is contractible, and apply
Theorem A.

9 The Gillet-Grayson construction

Let A be an exact category. Following Grayson and Gillet
GG
[68], we define a

simplicial set G• = G•A as follows.

IV.9.1 Definition 9.1. If A is a small exact category, G• is the simplicial set defined
as follows. The set G0 of vertices consists of all pairs of objects (A,B) in A.
The set G1 of edges consists of all pairs of short exact sequences with the same
cokernel:

A0  A1 ։ A01, B0  B1 ։ A01. (9.1.0) IV.9.1.0

The degeneracy maps G1 → G0 send (
IV.9.1.0
9.1.0) to (A1, B1) and (A0, B0), respec-

tively.
The set Gn consists of all pairs of triangular commutative diagrams in A of

the form

An−1,n

· · ·

∧∧

A12 · · ·A1n

A01 >> A02

∧∧

 · · ·A0n

∧∧

A0 A1

∧∧

> > A2

∧∧

 · · · An

∧∧

An−1,n

· · ·

∧∧

A12 · · ·A1n

A01 >> A02

∧∧

 · · ·A0n

∧∧

B0 B1

∧∧

> > B2

∧∧

 · · · Bn

∧∧

(9.1.1) IV.9.1.1
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so that each sequence Ai > > Aj >> Aij and Bi > > Bj >> Aij is
exact. As in the definition of S•A (

IV.8.3.1
8.3.1), the face maps ∂i : Gn → Gn−1 are

obtained by deleting the row Ai • and the columns containing Ai and Bi, while
the degeneracy maps σi : Gn → Gn+1 are obtained by duplicating Ai and Bi,
and reindexing.

Suppressing the choices Aij for the cokernels, we can abbreviate (
IV.9.1.1
9.1.1) as:

A0  A1  A2  · · · An
B0  B1  B2  · · · Bn . (9.1.2) IV.9.1.2

IV.9.1.3 Remark 9.1.3. |G•| is a homotopy commutative and associative H-space. Its
product |G•| × |G•| → |G•| arises from the simplicial map G•×G• → G• whose
components Gn ×Gn → Gn are termwise ⊕.

Note that for each isomorphism A ∼= A′ in A there is an edge in G1 from
(0, 0) to (A,A′), represented by (0  A ։ A, 0  A′ ։ A). Hence (A,A′)
represents zero in the group π0|G•|.

IV.9.2 Lemma 9.2. There is a group isomorphism π0|G•| ∼= K0(A).

Proof. As in
IV.3.3
3.3, π0|G•| is presented as the set of elements (A,B) of G0, modulo

the equivalence relation that for each edge (
IV.9.1.0
9.1.0) we have

(A1, B1) = (A0, B0).

It is an abelian group by
IV.9.1.3
9.1.3, with operation (A,B)⊕ (A′, B′) = (A⊕A′, B⊕

B′). Since (A ⊕ B,B ⊕ A) represents zero in π0|G•|, it follows that (B,A)
is the inverse of (A,B). From this presentation, we see that there is a map
K0(A) → π0|G•| sending [A] to (A, 0), and a map π0|G•| → K0(A), sending
(A,B) to [A]− [B]. These maps are inverses to each other.

IV.9.3 9.3. We now compare G• with the loop space of the simplicial set s•A of
IV.8.5.2
8.5.2.

If we forget the bottom row of either of the two triangular diagrams in (
IV.9.1.1
9.1.1),

we get a triangular commutative diagram of the form (
IV.8.3.0
8.3.0), i.e., an element

of snA. The resulting set maps Gn → snA fit together to form a simplicial map
∂0 : G• → s•A.

IV.9.3.1 Path Spaces 9.3.1. Recall from
WHomo
[223, 8.3.14] that the path space PX• of a

simplicial set X• has PXn = Xn+1, its ith face operator is the ∂i+1 of X•,
and its ith degeneracy operator is the σi+1 of X•. The forgotten face maps
∂0 : Xn+1 → Xn form a simplicial map PX• → X•, and π0(PX•) ∼= X0. In
fact, σ0 induces a canonical simplicial homotopy equivalence from PX• to the
constant simplicial set X0; see

WHomo
[223, Ex. 9.3.7]. Thus PX• is contractible exactly

when X0 is a point.

Now there are two maps Gn → sn+1A, obtained by forgetting one of the two
triangular diagrams (

IV.9.1.1
9.1.1) giving an element of Gn. The face and degeneracy

maps of G• are defined so that these yield two simplicial maps from G• to
the path space P• = P (s•A). Clearly, either composition with the canonical
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map P• → s•A yields the map ∂0 : G• → s•A. Thus we have a commutative
diagram

G• > P•

P•

∨
> s•A.
∨

(9.3.2) IV.9.3.2

Since s0A is a point, the path space |P•| is canonically contractible. Therefore
this diagram yields a canonical map |G•| → Ω|s•A|. On the other hand, we saw
in

IV.8.5.2
8.5.2 and

IV.8.6
8.6 that |s•A| ≃ BQA, so Ω|s•A| ≃ ΩBQA = K(A).

We cite the following result from
GG
[68, 3.1]. Its proof uses simplicial analogues

of Quillen’s Theorems A and B.

IV.9.4 Theorem 9.4. (Gillet-Grayson) Let A be a small exact category. Then the
map of (

IV.9.3
9.3) is a homotopy equivalence:

|G•| ≃ Ω|s•A| ≃ K(A).
Hence πi|G•| = Ki(A) for all i ≥ 0.

IV.9.5 Example 9.5. A double s.e.s. in A is a pair ℓ of short exact sequences in A
on the same objects:

ℓ : A >
f
> B

g
>> C, A >

f ′

> B
g′

>> C.

Thus ℓ is an edge (in G1) from (A,A) to (B,B). To ℓ we attach the element [ℓ]
of K1(A) = π1|G•| given by the following 3-edged loop.

(A,A)
ℓ

> (B,B)

(0, 0)

eB

>

eA

<

where eA denotes the canonical double s.e.s. (0 > > A >> A, 0 >> A >> A).

The following theorem was proven by A. Nenashev in
Nen
[143].

IV.9.6 Nenashev’s Theorem 9.6. K1(A) may be described as follows.

(a) Every element of K1(A) is represented by the loop [ℓ] of a double s.e.s.;

(b) K1(A) is presented as the abelian group with generators the double s.e.s.
in A, subject to two relations:

(i) If E is a short exact sequence, the loop of the double s.e.s. (E,E) is
zero;

(ii) for any diagram of six double s.e.s. (
IV.9.6.1
9.6.1) such that the “first” dia-

gram commutes, and the “second” diagram commutes, then

[r0]− [r1] + [r2] = [c0]− [c1] + [c2],

where ri is the ith row and ci is the ith column of (
IV.9.6.1
9.6.1).
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A′ >
> A >

> A′′

B′
∨ ∨

>
> B
∨ ∨

>
> B′′
∨ ∨

C ′
∨ ∨

>
> C
∨ ∨

>
> C ′′.
∨ ∨

(9.6.1) IV.9.6.1

IV.9.6.2 Example 9.6.2. If α is an automorphism of A, the class [α] ∈ K1(A) is the

class of the double s.e.s. (0 > > A
α
> A, 0 > > A

=
> A). If β is another

automorphism of A, the relation [αβ] = [α] + [β] comes from relation (ii) for

0 >
> 0 >

> 0

0
∨ ∨

>
> A
∨ ∨ α

>

1
> A
∨ ∨

0
∨ ∨

>
> A

1
∨

1
∨ αβ

>

1
> A.

β
∨

1
∨

EXERCISES

EIV.9.1 9.1. Verify that condition
IV.9.6
9.6(i) holds in π1|G•|.

EIV.9.2 9.2. Show that omitting the choice of quotients Aij from the definition of G•A
yields a homotopy equivalent simplicial set G′

•
A. An element of G′nA is a

diagram (
IV.9.1.2
9.1.2) together with a compatible family of isomorphisms Aj/Ai ∼=

Bj/Bi.

EIV.9.3 9.3. Consider the involution on G• which interchanges the two diagrams in
(
IV.9.1.1
9.1.1). We saw in

IV.9.2
9.2 that it induces multiplication by −1 on K0(A). Show

that this involution is an additive inverse map for the H-space structure
IV.9.1.3
9.1.3

on |G•|.

EIV.9.4 9.4. If α : A ∼= A is an isomorphism, use relation (ii) in Nenashev’s presenta-
tion

IV.9.6
9.6 to show that [α−1] ∈ K1(A) is represented by the loop of the double

s.e.s.:

A
α
> A > 0

A
=
> A > 0

EIV.9.5 9.5. If A is a split exact category, use Nenashev’s presentation
IV.9.6
9.6 to show that

K1(A) is generated by automorphisms (
IV.9.6.2
9.6.2).
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10 Non-connective spectra in K-theory

In §III.4 we introduced the negativeK-groups of a ring using Bass’ Fundamental
Theorem III.

III.3.7
3.7 for K0(R[t, t

−1]). For many applications, it is useful to have a
spectrum-level version of this construction, viz., a non-connective “Bass K-
theory spectrum” KB(R) with πnK

B(R) = Kn(R) for all n < 0. In this
section we constuct such a non-connective spectrum starting from any one of
the functorial models of a connective K-theory spectrum K(R). (See

IV.1.9
1.9(iii),

IV.4.5.2
4.5.2 and

IV.8.5.5
8.5.5.)

Let E be a functor from rings to spectra. Since the inclusions of E(R) in
E(R[x]) and E(R[x−1]) split, the homotopy pushout E(R[x]) ∨E(R) E(R[x−1])
is the wedge of E(R) and these two complementary factors.

IV.10.1 Definition 10.1. Write LE(R) for the spectrum homotopy cofiber of the map
f0 from this homotopy pushout to E(R[x, x−1]), and ΛE(R) for the desuspension
ΩLE(R).

Since the mapping cone is natural, LE and ΛE are functors and there is a
cofibration sequence, natural in E and R:

ΛE(R)→ E(R[x]) ∨E(R) E(R[x−1])
f0−→ E(R[x, x−1])→ LE(R).

The algebraic version of the Fundamental Theorem of higher K-theory, es-
tablished in V.

V.6.2
6.2 and V.

V.8.2
8.2, states that there is a split exact sequence

0→ Kn(R)→ Kn(R[x])⊕Kn(R[x
−1])→ Kn(R[x, x

−1])
←
> Kn−1(R)→ 0,

in which the splitting is multiplication by x ∈ K1(Z[x, x−1]). Applying πn to
the case E = K of Definition

IV.10.1
10.1 shows that πnLK(R) ∼= Kn−1(R) for all

n > 0. The Fundamental Theorems for K1 and K0 (III,
III.3.6
3.6 and

III.3.7
3.7) imply that

π0ΛK(R) = K0(R), π−1ΛK(R) = K−1(R) and that πnΛK(R) = 0 for n < −1.
We will need the following topological version of the Fundamental Theorem,

also established in the next chapter (in V.
V.8.4
8.4). Fix a map S1 → K(Z[x, x−1]),

represented by the element x ∈ K1(Z[x, x−1]). Recall from
IV.1.10.2
1.10.2 and Ex.

EIV.4.14
4.14

that this map induces a product map K(R)
∪x−→ ΩK(R[x, x−1]), natural in the

ring R. Composing with ΩK(R[x, x−1]) → ΩLK(R)
≃←−ΛK(R) yields a map

of spectra K(R)→ ΛK(R).

IV.10.2 Fundamental Theorem 10.2. For any ring R, the map K(R)→ ΛK(R) in-
duces a homotopy equivalence between K(R) and the (−1)-connective cover of
the spectrum ΛK(R). In particular, Kn(R) ∼= πnΛK(R) for all n ≥ 0.

By induction on k, we have natural maps

Λk−1K(R)
∪x−→ Λk−1ΩK(R[x, x−1])→ ΛkΩLK(R)

≃←−ΛkK(R).

IV.10.3 Corollary 10.3. For k>0 the map Λk−1K(R)→ΛkK(R) induces a homotopy
equivalence between Λk−1K(R) and the (−k)-connective cover of ΛkK(R), with
Kn(R)∼=πnΛk−1K(R)∼=πnΛkK(R) for n>−k, and K−k(R)∼=π−kΛkK(R).
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Proof. We proceed by induction on k, the case k = 1 being Theorem
IV.10.2
10.2. Set

E = Λk−1K; we have a natural isomorphism Kn(R) ∼= πnE(R) for n > −k, such
that ∪x : Kn(R) → Kn+1(R[x, x

−1]) agrees with πn of E(R) → ΩE(R[x, x−1])
up to isomorphism. The map πnE(R[x]) ∨E(R) E(R[x−1]) → πnE(R[x, x−1])
in

IV.10.1
10.1 is an injection for all n, being either the injection from Kn(R[x]) ⊕

Kn(R[x
−1])/Kn(R) toKn(R[x, x

−1]) of III.
III.4.1.2
4.1.2 and

IV.10.2
10.2 (for n > −k) or 0→ 0

(for n ≤ −k). It follows from III.
III.4.1.2
4.1.2 that for n > −k the maps Kn(R) ∼=

πnΛ
k−1K(R)→ πnΛ

kK(R) are isomorphisms, and that the composite

K−k(R)
∪x−→ K1−k(R[x, x

−1]) ∼= π1−kΛ
k−1K(R[x, x−1])→ π−kΛ

kK(R)

is an isomorphism. Since Λk−1K(R) is (−k)-connected, it is the (−k)-connected
cover of ΛkK(R). It is also clear from

IV.10.1
10.1 that πnΛ

kK(R) = 0 for n < −k.

IV.10.4 Definition 10.4. We define KB(R) to be the homotopy colimit of the diagram

K(R)→ΩLK(R)
≃←ΛK(R)→ · · ·Λk−1K(R)→ΛkΩLK(R)

≃←ΛkK(R)→· · ·

(The homotopy colimit may be obtained by inductively replacing each portion

•

≃←− • → • by a pushout and then taking the direct limit of the resulting se-
quence of spectra.)

By
IV.10.3
10.3, the canonical map K(R)→ KB(R) induces isomorphisms Kn(R) ∼=

πnK
B(R) for n ≥ 0, and Kn(R) ∼= πnK

B(R) for all n ≤ 0 as well.

IV.10.4.1 Variant 10.4.1. The “suspension ring” S(R) of R provides an alternative
way of constructing a non-connective spectrum for K-theory. Recall from III,
Ex.

EIII.1.15
1.15, that S(R) is defined to be C(R)/M(R). In III, Ex.

EIII.4.10
4.10, we saw

that there are isomorphisms Kn(R) ∼= K0S
|n|(R) for n ≤ 0. In fact, Ger-

sten and Wagoner proved that K0(R) × BGL(R)+ ≃ ΩBGL(S(R))+ so that
Kn(R) ∼= Kn+1S(R) for all n ≥ 0. It follows that the sequence of spaces
KGW (R)i = K0(S

i(R)) × BGL(Si(R))+ form a nonconnective spectrum with
πnK

GW (R) ∼= Kn(R) for all n. We leave it as an exercise to show that a homo-
topy equivalence between the 0th space of K(R) and K0(R)×BGL(R)+ induces
a homotopy equivalence of spectra KB(R) ≃ KGW (R).

We now introduce a delooping of Quillen’s space K(A) = ΩBQA (or spec-
trum) associated to an exact category A, as K(SA) for a different exact cate-
gory SA. Iterating this yields a non-connective spectrum with connective cover
K(A), which agrees with the construction of Definition

IV.10.1
10.1 when A = P(R).

IV.10.5 Big vector bundles 10.5. Many constructions require that K(X) be strictly
functorial in X. For this we introduce the notion of big vector bundles, which
I learned from Thomason; see Ex.

IV.10.3
10.3. Let V be a small category of schemes

over a fixed scheme X. By a big vector bundle over X we will mean the choice
of a vector bundle EY on Y for each morphism Y → X in V, equipped with
an isomorphism f∗EY → EZ for every f : Z → Y over X such that: (i) to the
identity on Y we associate the identity on EY , and (ii) for each composition

W
g
> Z

f
> Y , the map (fg)∗ is the composition g∗f∗EY → g∗EZ → EW .
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Let VBV(X) denote the category of big vector bundles over X. The obvious
forgetful functor VBV(X)→ VB(X) is an equivalence of categories, and X 7→
VBV(X) is clearly a contravariant functor from V to exact categories. Since
K-theory is a functor on exact categories, X 7→ KVBV(X) is a presheaf of
spectra on V.

If V is a small category of noetherian schemes and flat maps, a big coherent
module over X for V is the choice of a coherent OY -module F on Y for each
Y → X, equipped with a natural isomorphism f∗FY → FZ for every (flat)
f : Z → Y over X, subject to the usual conditions on identity maps and
compositions. Let MV(X) denote the category of big coherent modules over X.
The obvious forgetful functor MV(X)→M(X) is an equivalence of categories,
and X 7→MV(X) is clearly a contravariant functor from V to exact categories.
Since K-theory is a functor on exact categories, X 7→ KMV(X) is a presheaf of
spectra on V.

IV.10.6 Non-connective K-theory of schemes 10.6. Let V be a small category of
quasi-projective schemes such that, whenever X is in V, then so are X × A1

and X × Spec(Z[x, x−1]). Using big vector bundles on V, we may arrange that
X 7→ K(X) is a functor from V to spectra. In this way, Construction

IV.10.1
10.1 may

be made functorial in X.
There is also a Fundamental Theorem like

IV.10.2
10.2 for the algebraic K-theory

of a quasi-projective scheme X (and even for quasi-compact, quasi-separated
schemes), due to Thomason and Trobaugh

TT
[200, 6.1]. Using this and func-

toriality of ΛkK(X), the proof of
IV.10.3
10.3 goes through, and we define KB(X)

to be the homotopy colimit of the ΛkK(X). If X = Spec(R) then K(X) is
homotopy equivalent to K(R) and hence KB(X) is homotopy equivalent to
KB(R). As for rings, the canonical map K(X) → KB(X) induces isomor-
phisms Kn(X) ∼= πnK

B(X) for n ≥ 0, and Kn(X) ∼= πnK
B(X) for all n ≤ 0 as

well.

EXERCISES

EIV.10.1 10.1. Let I be an ideal in a ring R, and write KB(R, I) for the homotopy fiber
of KB(R) → KB(R/I). Let K≤0(R, I) denote the homotopy cofiber of the 0-
connected cover KB(R, I)〈0〉 → KB(R, I), as in

IV.4.11.2
4.11.2. Thus πnK

≤0(R, I) = 0
for n > 0, and π0K

≤0(R, I) ∼= K0(I) by Ex.
EIV.1.15
1.15. Use III.

III.2.3
2.3 to show that

πnK
≤0(R, I) ∼= Kn(I) for all n < 0.

EIV.10.2 10.2. Let A be the category VB(X). Use the method of
IV.10.4.1
10.4.1 to produce a

non-connective spectrum with connective cover K(X).

EIV.10.3 10.3. Let V be a small category of schemes, so that X 7→ VB(X) is a con-
travariant lax functor on V. Recall the Kleisli rectification of VBX in Exercise
EIV.6.5
6.5, whose objects are pairs (Y → X, EY ), and whose morphisms are pairs

(Z
h−→ Y, h∗(EY ) ∼= EZ). Given a morphism f : T → X in V, use the natural

isomorphism h∗f∗ ∼= f∗h∗ to construct an exact functor f : VBX → VBT .
Compare this with the construction of big vector bundles in

IV.10.5
10.5.
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11 Karoubi-Villamayor K-theory

Following Gersten, we say that a functor F from rings (or rings without unit)
to sets is homotopy invariant if F (R) ∼= F (R[t]) for every R. Similarly, a func-
tor F from rings to CW complexes (spaces) is called homotopy invariant if
for every ring R the natural map R → R[t] induces a homotopy equivalence
F (R) ≃ F (R[t]). Note that each homotopy group πnF (R) also forms a homo-
topy invariant functor.

Of course, this notion may be restricted to functors defined on any subcat-
egory of rings which is closed under polynomial extensions and contains the
evaluations as well as the inclusion R ⊂ R[t]. For example, we saw in II,

II.6.5
6.5

and
II.7.9.3
7.9.3 that G0(R) is a homotopy invariant functor defined on noetherian

rings (and schemes) and maps of finite flat dimension.
Conversely, recall from III.

III.3.4
3.4 that R is called F -regular if F (R) ∼=

F (R[t1, ..., tn]) for all n. Clearly, any functor F from rings to sets becomes
homotopy invariant when restricted to the subcategory of F -regular rings. For
example, we see from II.

II.7.8
7.8 thatK0 becomes homotopy invariant when restricted

to regular rings. The Fundamental Theorem in Chapter V,
V.6.3
6.3 implies that the

functors Kn are also homotopy invariant when restricted to regular rings.
There is a canonical way to make F into a homotopy invariant functor.

IV.11.1 Definition 11.1 (Strict homotopization). Let F be a functor from rings to
sets. Its strict homotopization [F ] is defined as the coequalizer of the evalu-
ations at t = 0, 1: F (R[t]) ⇉ F (R). In fact, [F ] is a homotopy invariant functor
and there is a universal transformation F (R)→ [F ](R); see Ex.

EIV.11.1
11.1. Moreover,

if F takes values in groups then so does [F ]; see Ex.
EIV.11.3
11.3.

IV.11.1.1 Example 11.1.1. Recall that a matrix is called unipotent if it has the form
1+ ν for some nilpotent matrix ν. Let Unip(R) denote the subgroup of GL(R)
generated by the unipotent matrices. This is a normal subgroup of GL(R),
because the unipotent matrices are closed under conjugation. Since every el-
ementary matrix eij(r) is unipotent, this contains the commutator subgroup
E(R) of GL(R).

We claim that [E]R = [Unip]R = 1 for every R. Indeed, if 1+ν is unipotent,
(1 + tν) is a matrix in Unip(R[t]) with ∂0(1 + tν) = 1 and ∂1(1 + tν) = (1+ ν).
Since Unip(R) is generated by these elements, [Unip]R must be trivial. The
same argument applies to the elementary group E(R).

We now consider GL(R) and its quotient K1(R). A priori, [GL]R→ [K1]R
is a surjection. In fact, it is an isomorphism.

IV.11.2 Lemma 11.2. Both [GL]R and [K1]R are isomorphic to GL(R)/Unip(R).

IV.11.2.1 Definition 11.2.1. For each ring R, we define KV1(R) to be GL(R)/Unip(R).
Thus KV1(R) is the strict homotopization of K1(R) = GL(R)/E(R).

Proof. The composite Unip(R) → GL(R) → [GL]R is trivial, because it
factors through [Unip]R = 1. Hence [GL]R (and [K1]R) are quotients of
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GL(R)/Unip(R). By Higman’s trick III.
III.3.5.1
3.5.1, if g ∈ GL(R[t]) is in the kernel

of ∂0 then g ∈ Unip(R[t]) and hence ∂1(g) ∈ Unip(R). Hence ∂1(NGL(R)) =
Unip(R). Hence GL(R)/Unip(R) is a strictly homotopy invariant functor; uni-
versality implies that the induced maps [GL]R → [K1]R → GL(R)/Unip(R)
must be isomorphisms.

To define the higher Karoubi-Villamayor groups, we introduce the simplicial
ring R[∆•], and use it to define the notion of homotopization. The simplicial
ring R[∆•] also plays a critical role in the construction of higher Chow groups
and motivic cohomology, which is used in Chapter VI.

IV.11.3 Definition 11.3. For each ring R the coordinate rings of the standard simplices
form a simplicial ring R[∆•]. It may described by the diagram

R⇇ R[t1]
←←← R[t1, t2]

⇇
⇇ · · ·R[t1, . . . , tn] · · ·

with R[∆n] = R[t0, t1, · · · , tn]/ (
∑
ti = 1) ∼= R[t1, · · · , tn]. The face maps ∂i are

given by: ∂i(ti) = 0; ∂i(tj) is tj for j < i and tj−1 for j > i. Degeneracies σi
are given by: σi(ti) = ti + ti+1; σi(tj) is tj for j < i and tj+1 for j > i.

IV.11.4 Definition 11.4. Applying the functor GL to R[∆•] gives us a simplicial group
GL• = GL(R[∆•]). For n ≥ 1, we define the Karoubi-Villamayor groups to be
KVn(R) = πn−1(GL•) = πn(BGL•).

Since π0(GL•) is the coequalizer of GL(R[t]) ⇉ GL(R), we see from
Lemma

IV.11.2
11.2 that Definitions

IV.11.2.1
11.2.1 and

IV.11.4
11.4 of KV1(R) agree: KV1(R) =

GL(R)/Unip(R) ∼= π0(GL•).
The proof in Ex.

EIV.1.11
1.11 that BGL(R)+ is an H-space also applies to

BGL(R[∆•]) (Exercise
EIV.11.9
11.9). From the universal property in Theorem

IV.1.8
1.8 we

deduce the following elementary result.

IV.11.4.1 Lemma 11.4.1. The map BGL(R)→ BGL(R[∆•]) factors through an H-map
BGL(R)+ → BGL(R[∆•]). Thus there are canonical maps Kn(R)→ KVn(R),
n ≥ 1.

IV.11.4.2 Remark 11.4.2. In fact, BGL(R[∆•])+ is an infinite loop space; it is the
0th space of the geometric realization KV(R) of the simplicial spectrum
K(R[∆•])〈0〉 of IV.4.11.2

4.11.2. (For any (−1)-connected simplicial spectrum E·, the
0th space of |E·| is the realization of the 0th simplicial space.) Since R[∆0] = R,
there is a canonical morphism of spectra K(R)→ KV(R). This shows that the
map BGL(R)+ → BGL(R[∆•]) of

IV.11.4.1
11.4.1 is in fact an infinite loop space map.

It is useful to put the definition of KV∗ into a more general context:

IV.11.5 Definition 11.5 (Homotopization). Let F be a functor from rings to CW com-
plexes. Its homotopization Fh(R) is the geometric realization of the simplicial
space F (R[∆•]). Thus Fh is also a functor from rings to CW complexes, and
there is a canonical map F (R)→ Fh(R).
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IV.11.5.1 Lemma 11.5.1. Let F be a functor from rings to CW complexes. Then:

(1) Fh is a homotopy invariant functor;

(2) π0(F
h) is the strict homotopization [F0] of the functor F0(R) = π0F (R);

(3) If F is homotopy invariant then F (R) ≃ Fh(R) for all R.

IV.11.5.2 Corollary 11.5.2. The abelian groups KVn(R) are homotopy invariant:

KVn(R) ∼= KVn(R[x]) for every n ≥ 1.

Proof of
IV.11.5.1
11.5.1. We claim that the inclusion R[∆•] ⊂ R[x][∆•] is a simplicial

homotopy equivalence, split by evaluation at x = 0. For this, we define ring
maps hi : R[x][∆

n] → R[x][∆n+1] by: hi(f) = σi(f) if f ∈ R[∆n] and hi(x) =
x(ti+1+· · ·+tn+1). These maps define a simplicial homotopy (see

WHomo
[223]) between

the identity map of R[x][∆•] and the composite

R[x][∆•]
x=0
> R[∆•] ⊂ R[x][∆•].

Applying F gives a simplicial homotopy equivalence between Fh(R[∆•]) and
Fh(R[x][∆•]). Geometric realization converts this into a topological homotopy
equivalence between Fh(R) and Fh(R[x]).

Part (2) follows from the fact that, for any simplicial space X•, the group
π0(|X•|) is the coequalizer of ∂0, ∂1 : π0(X1) ⇉ π0(X0). In this case π0(X0) =
π0F (R) and π0(X1) = π0F (R[t]).

Finally, if F is homotopy invariant then the map from the constant simplicial
space F (R) to F (R[∆•]) is a homotopy equivalence in each degree. It follows
(see

Wa78
[214]) that their realizations F (R) and Fh(R) are homotopy equivalent.

It is easy to see that F → Fh is universal (up to homotopy equivalence) for
natural transformations from F to homotopy invariant functors. A proof of this
fact is left to Ex.

EIV.11.2
11.2.

IV.11.6 Example 11.6. Suppose that G(R) is a group-valued functor. Then Gh(R) is
the realization of the simplicial group G(R[∆•]). This shows that Gh may have
higher homotopy groups even if G does not.

In fact, the groups πn(G•) of any simplicial group G• may be calculated
using the formula πp(G•) = Hn(N

∗G•), where N
∗G• is the Moore complex; see

WHomo
[223, 11.3.6]

May
[118, 17.3]. By definition, the Moore complex of a simplicial group

G• is the chain complex of groups with N0G• = G0, N
1G• = ker(∂0 : G1 → G0)

and NnG• = ∩n−1i=0 ker(∂i) for n ≥ 1, with differential (−1)n∂n. See Ex.
EIV.11.4
11.4.

In the case that G•(R) = G(R[∆•]), N1G•(R) is the group NG(R) of III.
III.3.3
3.3,

and NnG•(R) ⊂ G(R[t1, ..., tn]) is the nth iterate of this functor.
A related situation arises when F (R) = BG(R). Then |G(R[∆•])| is

the loop space of Fh(R), which is a connected space with πn+1F
h(R) =

Hn(N
∗G(R[∆•])).
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IV.11.6.1 Example 11.6.1. Suppose that F (R) = |G•(R)| for some functor G• from
rings to simplicial groups. Then Fh(R) is the geometric realization of a bisim-
plicial group Gpq = Gq(R[∆

p]). We can calculate the homotopy groups of any
bisimplicial space G•• using the standard spectral sequence

Q66
[151]

E1
pq = πq(Gp•)⇒ πp+q|G••|.

As a special case, if F (R) ≃ F (R[t1, ..., tn]) for all n then Gp• ≃ G•(R) for all
p, so the spectral sequence degenerates to yield F (R) ≃ Fh(R).

IV.11.7 Theorem 11.7. If F (R) is any functorial model of BGL(R)+ then we also
have KVn(R) = πnF

h(R) for all n ≥ 1. Moreover, there is a first quadrant
spectral sequence (for p ≥ 0, q ≥ 1):

E1
pq = Kq(R[∆

p])⇒ KVp+q(R). (11.7.1) IV.11.7.1

Proof. (Anderson) We may assume (by Ex.
EIV.11.2
11.2) that F (R) = |G•(R)| for a

functor G• from rings to simplicial groups which is equipped with a natural
transformation BGL → G• such that BGL(R) → |G•(R)| identifies |G•(R)|
with BGL(R)+. Such functors exist; see

IV.1.9
1.9. The spectral sequence of

IV.11.6.1
11.6.1

becomes (
IV.11.7.1
11.7.1) once we show that KVn(R) = πnG•(R[∆

•]). Thus it suffices
to prove that BGLh(R) ≃ |G•(R)|h. Since BGLh(R) is an H-space (Ex.

EIV.11.9
11.9),

the proof is standard, and relegated to Exercise
EIV.11.10
11.10.

IV.11.8 Theorem 11.8. If R is regular, then Kp(R) ∼= KVp(R) for all p ≥ 1.

Proof. If R is regular, then each simplicial group Kp(R[∆
•]) is constant (by the

Fundamental Theorem in Chapter V,
V.6.3
6.3). Thus the spectral sequence (

IV.11.7.1
11.7.1)

degenerates at E2 to yield the result.

We now quickly develop the key points in KV -theory.

IV.11.9 Definition 11.9. We say that a ring map f : R→ S is a GL-fibration if

GL(R[t1, ..., tn])×GL(S)→ GL(S[t1, ..., tn])

is onto for every n. Note that we do not require R and S to have a unit.

IV.11.9.1 Example 11.9.1. If I is a nilpotent ideal inR, thenR→ R/I is aGL-fibration.
This follows from Ex. I.

EI.1.12
1.12(iv), because each I[t1, ..., tn] is also nilpotent.

IV.11.9.2 Remark 11.9.2. Any GL-fibration must be onto. That is, S ∼= R/I for some
ideal I of R. To see this, consider the (1, 2) entry α12 of a preimage of the
elementary matrix e12(st). Since f(α12) = st, evaluation at t = 1 gives an
element of R mapping to s ∈ S. However, not every surjection is a GL-fibration;
see Ex.

EIV.11.6
11.6(d).

IV.11.9.3 Example 11.9.3. Any ring map R → S is homotopic to a GL-fibration. In-
deed, the inclusion of R into the graded ring R′ = R ⊕ xS[x] = R ×S S[x]
induces a homotopy equivalence GL(R[∆•]) ≃ GL(R′[∆•]) by Ex.

EIV.11.5
11.5, so that

KV∗(R) ∼= KV∗(R
′). Moreover, the map R′ → S sending x to 1 is aGL-fibration

by Ex.
EIV.11.6
11.6(a,c).
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The definition of KVn(I) makes sense if I is a ring without unit using
the group GL(I) of §III.2: KVn(I) = πnBGL(I[∆

•]). Since GL(R ⊕ I) is
the semidirect product of GL(R) and GL(I), we clearly have KVn(R ⊕ I) ∼=
KVn(R)⊕KVn(I). This generalizes as follows.

IV.11.10 Theorem 11.10 (Excision). If R → R/I is a GL-fibration, there is a long
exact sequence

KVn+1(R/I)→ KVn(I)→ KVn(R)→ KVn(R/I)→· · ·
→ KV1(I)→ KV1(R)→ KV1(R/I)→ K0(I)→ K0(R)→ K0(R/I).

Theorem
IV.11.10
11.10 is called an “Excision Theorem” because it says that (when-

ever R→ R/I is a GL-fibration) KVn(R, I) ∼= KVn(I) for all n ≥ 1.

Proof. Let Gn ⊂ GL(R/I[∆n]) denote the image of GL(R[∆n]). Then there is
an exact sequence of simplicial groups

1→ GL(I[∆•])→ GL(R[∆•])→ G• → 1. (11.10.1) IV.11.10.1

Now any short exact sequence of simplicial groups is a fibration sequence, mean-
ing there is a long exact sequence of homotopy groups. Moreover, the quotient
GL(R/I[∆•])/G• is a constant simplicial group, by Ex.

EIV.11.7
11.7. It is now a simple

matter to splice the long exact sequences together to get the result. The splicing
details are left to Ex.

EIV.11.7
11.7.

IV.11.10.2 Corollary 11.10.2. For any ring map φ : R → S, set I ′ = R ×S xS[x] =
{(r, x f(x)) ∈ R× xS[x] : φ(r) = f(1)}. Then there is a long exact sequence

· · · → KVn+1(S)→ KVn(I
′)→ KVn(R)→ KVn(S)→ · · ·

ending in KV1(I
′)→ KV1(R)→ KV1(S)→ K0(I

′).

Proof. Set R′ = R⊕ xS[x] and note that R′ → S is a GL-fibration with kernel
I ′ by

IV.11.9.3
11.9.3. Since R′ is graded, KVn(R) ∼= KVn(R

′) for all n ≥ 1. The desired
long exact sequence comes from Theorem

IV.11.10
11.10.

IV.11.10.3 Remark 11.10.3. When R→ R/I is a GL-fibration, then KV∗(I) ∼= KV∗(I
′),

and the long exact sequences of
IV.11.10
11.10 and

IV.11.10.2
11.10.2 coincide (with S = R/I). This

follows from the 5-lemma, since the map φ factors through R′ → R/I yielding
a morphism of long exact sequences.

Theorem
IV.11.10
11.10 fails if R → R/I is not a GL-fibration. Not only does the

extension of Theorem
IV.11.10
11.10 to K0 fail (as the examples Z→ Z/8 and Z→ Z/25

show), but we need not even have KV∗(I) ∼= KV∗(I
′), as Exercise

IV.11.14
11.14 shows.

IV.11.11 Corollary 11.11. If I is a nilpotent ideal in a ring R, then KVn(I) = 0 and
KVn(R) ∼= KVn(R/I) for all n ≥ 1.
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Proof. By
IV.11.9.1
11.9.1,

IV.11.10
11.10 and Lemma II.

II.2.2
2.2, it suffices to show that KVn(I) =

πnGL(I[∆
•]) = 0. (A stronger result, that GL(I[∆•]) is simplicially con-

tractible, is relegated to Ex.
IV.11.11
11.11.) By Exercise I.

EI.1.12
1.12(iii), GLm(I[∆n]) con-

sists of the matrices 1 + x in Mm(I[∆n]), so if T = (t0t1 · · · tn−1) then the
degree n+ 1 part of the Moore complex (

IV.11.6
11.6) consists of matrices 1 + xT , and

∂n(1 + xT ) = 1 exactly when x = tny for some matrix y. Regarding y as a
matrix over I[t0, ..., tn−1], the element 1 + yT tn in GL(I[∆n+1]) belongs to the
Moore complex and ∂n+1 maps 1 + yT tn to 1 + xT .

IV.11.12 Theorem 11.12. [Mayer-Vietoris] Let ϕ : R → S be a map of rings, sending
an ideal I of R isomorphically onto an ideal of S. If S → S/I is a GL-fibration,
then R→ R/I is also a GL-fibration, and there is a long exact Mayer-Vietoris
sequence

· · · → KVn+1(S/I)→KVn(R)→ KVn(R/I)⊕KVn(S)→ KVn(S/I)→ · · ·
→ KV1(R/I)⊕KV1(S)→ KV1(S/I)→ K0(R)→ K0(R/I)⊕K0(S).

It is compatible with the Mayer-Vietoris sequence for K1 and K0 in III.
III.2.6
2.6.

Proof. To see that R → R/I is a GL-fibration, fix ḡ ∈ GL(R/I[t1, ..., tn]) with
ḡ(0) = I. Since S → S/I is a GL-fibration, there is a g′ ∈ GL(S[t1, ..., tn])
which is ϕ(ḡ) modulo I. Since R is the pullback of S and R/I, there is a g in
GL(R[t1, ..., tn]) mapping to g′ and ḡ. Hence R→ R/I is a GL-fibration.

As in the proof of Theorem III.
III.5.8
5.8, there is a morphism from the (exact)

chain complex of
IV.11.10
11.10 for (R, I) to the corresponding chain complex for (S, I).

Since every third term of this morphism is an isomorphism, the required Mayer-
Vietoris sequence follows from a diagram chase.

Here is an application of this result. Since R[x] → R has a section, it is a
GL-fibration. By homotopy invariance, it follows that KVn(xR[x]) = 0 for all
n ≥ 1. (Another proof is given in Ex.

EIV.11.5
11.5.)

IV.11.13 Definition 11.13. For any ring R (with or without unit), define ΩR to be the
ideal (x2 − x)R[x] of R[x]. Iterating yields Ω2R = (x21 − x1)(x22 − x2)R[x1, x2],
etc.

The following corollary of
IV.11.10
11.10 shows that, for n ≥ 2, we can also defineKVn(R)

as KV1(Ω
n−1R), and hence in terms of K0 of the rings ΩnR and ΩnR[x].

IV.11.13.1 Corollary 11.13.1. For all R, KV1(R) is isomorphic to the kernel of the map
K0(ΩR)→ K0(xR[x]), and KVn(R) ∼= KVn−1(ΩR) for all n ≥ 2.

Proof. The map xR[x]
x=1−→ R is a GL-fibration by Ex.

EIV.11.6
11.6(c), with kernel ΩR.

The result now follows from Theorem
IV.11.10
11.10.

We conclude with an axiomatic treatment, due to Karoubi and Villamayor.
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IV.11.14 Definition 11.14. A positive homotopy K-theory (for rings) consists of a se-
quence of functors Kh

n , n ≥ 1, on the category of rings without unit, together
with natural connecting maps δn : Kh

n+1(R/I) → Kh
n(I) and δ0 : Kh

1 (R/I) →
K0(I), defined for every GL-fibration R→ R/I, satisfying the following axioms:

(1) The functors Kh
n are homotopy invariant;

(2) For every GL-fibration R→ R/I the resulting sequence is exact:

→ Kh
n+1(R/I)

δ−→ Kh
n(I)→ Kh

n(R)→ Kh
n(R/I)

δ−→ Kh
n−1(I)→ · · ·

→ Kh
1 (R)→ Kh

1 (R/I)
δ−→ K0(I)→ K0(R)→ K0(R/I).

IV.11.14.1 Theorem 11.14.1. Up to isomorphism, there is a unique positive homotopy
K-theory, namely Kh

n = KVn.

Proof. The fact that KVn form a positive homotopy K-theory is given by
IV.11.4
11.4,

IV.11.5.2
11.5.2 and

IV.11.10
11.10. The axioms imply that any other positive homotopy K-

theory must satisfy the conclusion of
IV.11.13.1
11.13.1, and so must be isomorphic to

KV -theory.

EXERCISES

EIV.11.1 11.1. Let F be a functor from rings to sets. Show that [F ] is a homotopy
invariant functor, and that every natural transformation F (R) → H(R) to a
homotopy invariant functor H factors uniquely through F (R)→ [F ](R).

EIV.11.2 11.2. Let F and H be functors from rings to CW complexes, and assume that
H is homotopy invariant. Show that any natural transformation F (R)→ H(R)
factors through maps Fh(R) → H(R) such that for each ring map R → S the
map Fh(R)→Fh(S)→H(S) is homotopy equivalent to Fh(R)→H(R)→H(S).

EIV.11.3 11.3. If G is a functor from rings to groups, let NG(R) denote the kernel
of the map t = 0 : G(R[t]) → G(R). Show that the image G0(R) of the
induced map t = 1 : NG(R) → G(R) is a normal subgroup of G(R), and that
[G]R = G(R)/G0(R). Thus [G]R is a group.

EIV.11.4 11.4. (Moore) If G• is a simplicial group and NnG• = ∩n−1i=0 ker(∂i) as in
IV.11.6
11.6,

show that ∂n+1(N
n+1G•) is a normal subgroup of Gn. Conclude that πn(G•)

is also a group. Hint: conjugate elements of Nn+1G by elements of snGn.

EIV.11.5 11.5. Let R = R0 ⊕R1 ⊕ · · · be a graded ring. Show that for every homotopy
invariant functor F on rings we have F (R0) ≃ F (R). In particular, if F is
defined on rings without unit then F (xR[x]) ≃ F (0) for every R. Hint: Copy
the proof of III.

III.3.4.1
3.4.1.

EIV.11.6 11.6. GL-fibrations. Let f : R → S be a GL-fibration with kernel I. Show
that:

(a) If f factors as R→ R′ → S, then R′ → S is a GL-fibration.
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(b) Both xR[x]→ xS[x] and ΩR→ ΩS are GL-fibrations.

(c) The map xR[x]→ R, f(x) 7→ f(1), is a GL-fibration with kernel ΩR.

(d) Z→ Z/4 is not a GL-fibration, but GL(Z)→ GL(Z/4) is onto.

(e) If S is a regular ring (with unit), then every surjection R → S is a GL-
fibration. Hint: K1(S) ∼= K1(S[x]) by III.

III.3.8
3.8.

EIV.11.7 11.7. Let f : R → S be a GL-fibration with kernel I, and define G• as in
the proof of Theorem

IV.11.10
11.10. Show that GL(S[∆•])/G• is a constant simplicial

group. Use this to show that πi(G•) = KVi+1(S) for all i > 0, but that the
cokernel of π0(G•) → π0GL(S[∆

•]) is the image of K1(S) in K0(I) under the
map of III.

III.2.3
2.3. Combining this with the long exact sequence of homotopy groups

for (
IV.11.10.1
11.10.1), finish the proof of

IV.11.10
11.10.

EIV.11.8 11.8. Consider the unit functor U on rings. The identity U(Mm(R)) = GLm(R)
implies that Uh(M(R)) = KV (R). If R is commutative, use I.

I.3.12
3.12 to show that

Uh(R) ≃ U(Rred).

EIV.11.9 11.9. Show that BGL(R[∆•]) is an H-space. This fact is used to prove
Lemma

IV.11.4.1
11.4.1. Hint: See Ex.

EIV.1.11
1.11; the permutation matrices lie in E(R), and

E(R[∆•]) is path connected.

EIV.11.10 11.10. (Anderson) Use Exercise IV.11.9 to complete the proof of Theorem
IV.11.7
11.7.

EIV.11.11 11.11. If I is nilpotent, show that the simplicial sets GLm(I[∆•]) and
GL(I[∆•]) have a simplicial contraction

WHomo
[223, 8.4.6]. Hint: multiply by tn.

EIV.11.12 11.12. If R is Ki-regular for all i ≤ n, show that Ki(R) ∼= KVi(R) for all i ≤ n,
and that KVn+1(R) ∼= [Kn]R.

EIV.11.13 11.13. (Strooker) Consider the ring R = Z[x]/(x2 − 4). In this exercise, we
use two different methods to show that the map K2(R)→ KV2(R) is not onto,
and that its cokernel is Z/2. Note that KV1(R) = K1(R) = R× = {±1} by
Ex. III.

EIII.5.13
5.13.

(a) Compare the Mayer-Vietoris sequences III.
III.5.8
5.8 and

IV.11.12
11.12 to show that the

natural map K2(R)→ K2(Z)2 has cokernel Z/2, yet KV2(R) ∼= K2(Z)2 =
(Z/2)2.

(b) Use III.
III.5.8
5.8 and Ex. III.

EIII.5.15
5.15 to compute K1(R[t]) and K1(R[t1, t2]). Then

show that the sequence N2K1(R)→ NK1(R)→ K1(R) is not exact. Use
the spectral sequence (

IV.11.7.1
11.7.1) to conclude that the map K2(R)→ KV2(R)

is not onto, and that its cokernel is Z/2.
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EIV.11.14 11.14. Let k be a field of characteristic 0, and set S = k[x, (x+ 1)−1]

(a) Show that K1(Z ⊕ I, I) ∼= K1(S, I), where I = x2S. Hint: Use the
obstruction described in III, Ex.

III.2.6
2.6, showing that 3ψ(a dx⊗ x2) = 0.

(b) Use III, Ex.
EIII.5.14
5.14(c) to show that K1(S, I) is the cokernel of k×

dlog−→ Ωk,
dlog(a) = da/a.

(c) Show that KV1(I) = 0, and conclude that the sequence KV1(I) →
KV1(S)→ KV1(S/I) is not exact.

12 Homotopy K-theory

In order to define a truly homotopy invariant version of algebraic K-theory, we
need to include K0 and even the negative K-groups. This is most elegantly
done at the level of spectra, and that approach begins by constructing the non-
connective “Bass K-theory spectrum” KB(R) out of any one of the functorial
models of a connective K-theory spectrum K(R). (See

IV.1.9
1.9(iii),

IV.4.5.2
4.5.2,

IV.6.5.1
6.5.1 and

IV.8.5.5
8.5.5.)

Let R be an associative ring with unit. By
IV.11.3
11.3 there is a simplicial ring

R[∆•] and hence a simplicial spectrum KB(R[∆•]).

IV.12.1 Definition 12.1. Let KH(R) denote the (fibrant) geometric realization of the
simplicial spectrum KB(R[∆•]). For n ∈ Z, we write KHn(R) for πnKH(R).

It is clear from the definition that KH(R) commutes with filtered colimits
of rings, and that there are natural transformations Kn(R) → KHn(R) which
factor through KVn(R) when n ≥ 1. Indeed, the spectrum map K(R)〈0〉 →
KB(R) → KH(R) factors through the spectrum KV(R) = K(R[∆•])〈0〉
of

IV.11.4.2
11.4.2.

IV.12.2 Theorem 12.2. Let R be a ring. Then:

(1) KH(R) ≃ KH(R[x]), i.e., KHn(R) ∼= KHn(R[x]) for all n.

(2) KH(R[x, x−1]) ≃ KH(R)× Ω−1KH(R), i.e.,

KHn(R[x, x
−1]) ∼= KHn(R)⊕KHn−1(R) for all n.

(3) If R = R0 ⊕R1 ⊕ · · · is a graded ring then KH(R) ≃ KH(R0).

Proof. Part (1) is a special case of
IV.11.5.1
11.5.1. Part (2) follows from the Fundamental

Theorem
IV.10.2
10.2 and (1). Part (3) follows from (1) and Ex.

EIV.11.5
11.5.

The homotopy groups of a simplicial spectrum are often calculated by means
of a standard right half-plane spectral sequence. In the case at hand, i.e., for
KH(R), the edge maps are the canonical maps Kq(R)→ KHq(R), induced by
KB(R)→ KH(R), and the spectral sequence specializes to yield:
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IV.12.3 Theorem 12.3. For each ring R there is an exhaustive convergent right half-
plane spectral sequence:

E1
p,q = NpKq(R)⇒ KHp+q(R).

The edge map from E1
0,q = Kq(R) to KHq(R) identifies E2

p,0 with the strict
homotopization [Kp](R) of Kp(R), defined in

IV.11.1
11.1.

The phrase “exhaustive convergent” in
IV.12.3
12.3 means that for each n there is a

filtration 0 ⊆ F0KHn(R) ⊆ · · · ⊆ Fp−1KHn(R) ⊆ FpKHn(R) ⊆ · · · with union
KHn(R), zero for p < 0, and isomorphisms E∞p,q

∼= FpKHn(R)/Fp−1KHn(R)
for q = n− p. (A discussion of convergence may be found in

WHomo
[223, 5.2.11].)

As pointed out in
IV.11.8
11.8, we will see in chapter V,

V.6.3
6.3 that regular rings are

Kq-regular for all q, i.e., that NpKq(R) = 0 for every q and every p > 0. For
such rings, the spectral sequence

IV.12.3
12.3 degenerates at E1, showing that the edge

maps are isomorphisms. We record this as follows:

IV.12.3.1 Corollary 12.3.1. If R is regular noetherian, then K(R) ≃ KH(R). In par-
ticular, Kn(R) ≃ KHn(R) for all n.

For the next application, we use the fact that if R is Ki-regular for some i,
then it is Kq-regular for all q ≤ i. If i ≤ 0, this was proven in III,

III.4.2.3
4.2.3. For

i = 1 it was shown in III, Ex.
EIII.3.9
3.9. In the remaining case i > 1, the result will

be proven in Chapter V, Theorem
V.8.6
8.6.

IV.12.3.2 Corollary 12.3.2. Suppose that the ring R is Ki-regular for some fixed i. Then
KHn(R) ∼= Kn(R) for all n ≤ i, and KHi+1(R) = [Ki+1]R.

If R is K0-regular then KVn(R) ∼= KHn(R) for all n ≥ 1, and KHn(R) ∼=
Kn(R) for all n ≤ 0. In this case the spectral sequences of (

IV.11.7.1
11.7.1) and

IV.12.3
12.3

coincide.

Proof. In this case, the spectral sequence degenerates below the line q = i,
yielding the first assertion. If R is K0-regular, the morphism KV(R)→ KH(R)
induces a morphism of spectral sequences, from (

IV.11.7.1
11.7.1) to

IV.2.3
2.3, which is an

isomorphism on E1
p,q (except when p = 0 and q ≤ 0). The comparison theorem

yields the desired isomorphism KV(R)→ KH(R)〈0〉.

IV.12.3.3 Theorem 12.3.3. If 1/ℓ ∈ R then KHn(R;Z/ℓ) ∼= Kn(R;Z/ℓ) for all n.

Proof. The proof of
IV.12.3
12.3 goes through with finite coefficients to yield a spectral

sequence with E1
p,q = NpKq(R;Z/ℓ) ⇒ KHp+q(R;Z/ℓ). When 1/ℓ ∈ R and

p > 0, the groups NpKq(R) are Z[1/ℓ]-modules (uniquely ℓ-divisible groups) by
IV.6.7.2
6.7.2. By the Universal Coefficient Theorem (

IV.2.5
2.5) we have NpKq(R;Z/ℓ) = 0,

so the spectral sequence degenerates to yield the result.

If I is a non-unital ring, we define KH(I) to be KH(Z⊕ I)/KH(Z) and set
KHn(I) = πnKH(I). If I is an ideal in a ring R, recall (from

IV.1.11
1.11 or Ex.

EIV.10.1
10.1)

that KB(R, I) denotes the homotopy fiber of KB(R) → KB(R/I); it depends
upon R. The following result, which shows that the KH-analogue does not
depend upon R, is one of the most important properties of KH-theory.
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IV.12.4 Theorem 12.4 (Excision). Let I be an ideal in a ring R. Then the sequence
KH(I) → KH(R) → KH(R/I) is a homotopy fibration. Thus there is a long
exact sequence

· · · → KHn+1(R/I)→ KHn(I)→ KHn(R)→ KHn(R/I)→ · · ·

Proof. Let KH(R, I) denote the homotopy fiber of KH(R) → KH(R/I).
By standard simplicial homotopy theory, KH(R, I) is homotopy equivalent to
|KB(R[∆•], I[∆•])|. It suffices to prove that KH(I)→ KH(R, I) is a homotopy
equivalence.

We first claim that KHn(I) → KHn(R, I) is an isomorphism for n ≤
0. For each p ≥ 0, let KB(R[∆p], I[∆p])〈0〉 be the 0-connected cover of
KB(R[∆p], I[∆p]), and define K≤0(R[∆p], I[∆p]) by the termwise “Postnikov”
homotopy fibration:

KB(R[∆p], I[∆p])〈0〉 → KB(R[∆p], I[∆p])→ K≤0(R[∆p], I[∆p]).

Let CR denote the geometric realization of K≤0(R[∆•], I[∆•]). Comparing the
standard spectral sequence for CR and the spectral sequence of Theorem

IV.12.3
12.3,

we see that KHn(R, I) ∼= πn(CR) for all n ≤ 0. By Exercise
EIV.10.1
10.1, the ring map

A = Z⊕ I → R induces πnK
≤0(A[∆p], I[∆p]) ∼= πnK

≤0(R[∆p], I[∆p]) for all n
and p. Hence we have homotopy equivalences for each p and hence a homotopy
equivalence on realizations, CA ≃ CR. The claim follows.

For n > 0, we consider the homotopy fiber sequence

KV(R, I)→ KH(R, I)→ CR,

where KV(R, I) is the geometric realization of KB(R[∆•], I[∆•])〈0〉. Compar-
ing with the spectrum KV(R) defined in

IV.11.4.2
11.4.2, we see that KV(R, I) is the

0-connected cover of the homotopy fiber of KV(R)→ KV(R/I).
The theorem now follows when R → R/I is a GL-fibration, since in this

case KVn(I) ∼= KVn(R, I) for all n ≥ 1 by
IV.11.10
11.10. Combining this with the

above paragraph, the 5-lemma shows that in this case KH(I) ≃ KH(R, I), as
required.

An important GL-fibration is given by the non-unital map xR[x] → R (or
the unital Z⊕xR[x]→ Z⊕R) with kernel ΩR; see Ex.

EIV.11.6
11.6(c). In the following

diagram, the bottom two rows are homotopy fibration sequences by the previous
paragraph, and the terms in the top row are defined so that the columns are
homotopy fibrations:

KH(Z⊕ ΩR,ΩI) > KH(Z⊕ xR[x], xI[x]) > KH(R, I)

KH(ΩR)
∨

> KH(xR[x])
∨

> KH(R)
∨

KH(ΩR/I)
∨

> KH(xR/I[x])
∨

> KH(R/I).
∨
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Since KH(xR[x]) is contractible (by
IV.12.2
12.2), the top middle term is contractible,

and we have a natural homotopy equivalence ΩKH(R) ≃ KH(ΩR). Since the
top row must also be a homotopy fibration, we also obtain a natural homotopy
equivalence ΩKH(R, I)→ KH(Z⊕ΩR,ΩI). Applying πn yields isomorphisms
KHn+1(R, I) ∼= KHn(Z⊕ ΩR,ΩI) for all n.

Now suppose by induction on n ≥ 0 that, for all rings R′ and ideals I ′, the
canonical map I ′ → R′ induces an isomorphism KHn(I

′) ∼= KHn(R
′, I ′). In

particular, ΩI → ΩR induces KHn(ΩI) ∼= KHn(Z ⊕ ΩR,ΩI). It follows that
the map from A = Z⊕ I to R induces a commutative diagram of isomorphisms:

KHn+1(I) == KHn+1(A, I)
≃
> KHn(Z⊕ ΩA,ΩI)

KHn+1(R, I)
∨ ≃

> KHn(Z⊕ ΩR,ΩI).

≃
∨

This establishes the inductive step. We have proven that for all R and I,
KHn(I) ∼= KHn(R, I) for all n, and henceKH(I) ≃ KH(R, I), as required.

IV.12.5 Corollary 12.5. If I is a nilpotent ideal in a ring R, then the spectrum KH(I)
is contractible and KH(R) ≃ KH(R/I). In particular, KHn(I) = 0 and
KHn(R) ∼= KHn(R/I) for all integers n.

Proof. By Ex. II.
EII.2.5
2.5, I is K0-regular, and Kn(I) = 0 for n ≤ 0 (see III, Ex.

EIII.4.3
4.3).

By
IV.12.3.2
12.3.2 and

IV.11.11
11.11, we haveKHn(I) ∼= KVn(I) = 0 for n > 0, andKHn(I) = 0

for n ≤ 0. Since KHn(I) = 0 for all n, KH(I) is contractible. The remaining
assertions now follow from Excision

IV.12.4
12.4.

IV.12.5.1 Example 12.5.1. Let R be a commutative Artinian ring, with associated
reduced ring Rred = R/nilradical(R). As Rred is regular, we see from

IV.12.5
12.5 and

IV.12.3.1
12.3.1 that KHn(R) ∼= Kn(Rred) for all n. In particular, KH0(R) = K0(R) =
H0(R) and KHn(R) = 0 for n < 0.

IV.12.5.2 Example 12.5.2. Let R be a 1-dimensional commutative noetherian ring.
Then KH0(R) ∼= H0(R) ⊕ [Pic]R, KH−1(R) is torsionfree, and KHn(R) = 0
for all n ≤ −2. This follows from

IV.12.3.2
12.3.2 and Exercise III.

EIII.4.4
4.4, which states

that R is K−1-regular and computes Kn(R) for n ≤ 0. An example in which
KV1(R)→ KH1(R) is not onto is given in Ex.

EIV.12.2
12.2.

If in addition R is seminormal, then R is Pic-regular by Traverso’s Theorem
I.
I.3.12
3.12. In this case we also have KH0(R) = K0(R) = H0(R) ⊕ Pic(R) and
KV1(R) ∼= KH1(R).

IV.12.6 Corollary 12.6 (Closed Mayer-Vietoris). Let R→ S be a map of commutative
rings, sending an ideal I of R isomorphically onto an ideal of S. Then there is
a long exact Mayer-Vietoris sequence (for all integers n):

· · · → KHn+1(S/I)→ KHn(R)→ KHn(R/I)⊕KHn(S)→ KHn(S/I)→ · · ·
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Recall (
IV.10.4
10.4) that KB(R) is the homotopy colimit of a diagram of spectra

LqK(R). Since geometric realization commutes with homotopy colimits, at least
up to weak equivalence, we have KH(R) = colimq |LqK(R[∆•])|.

IV.12.7 Definition 12.7. Let X be a scheme. Using the functorial nonconnective spec-
trum KB of

IV.10.6
10.6, let KH(X) denote the (fibrant) geometric realization of the

simplicial spectrum KB(X × ∆•), where ∆• = Spec(R[∆•]) as in
IV.11.3
11.3. For

n ∈ Z, we write KHn(X) for πnKH(X).

IV.12.8 Lemma 12.8. For any quasi-projective scheme X we have:

(1) KH(X) ≃ KH(X × A1).

(2) KH(X × Spec(Z[x, x−1]) ≃ KH(X)× Ω−1KH(R), i.e.,

KHn(X[x, x−1]) ∼= KHn(X)⊕KHn−1(X) for all n.

(3) If X is regular noetherian, then K(X) ≃ KH(X). In particular, Kn(X) ≃
KHn(X) for all n.

Proof. The proof of
IV.11.5.1
11.5.1 goes through to show (1). From the Fundamental

Theorem (see
IV.10.6
10.6), we get (2). We will see in V.

V.6.13.2
6.13.2 that if X is a regular

noetherian scheme then K(X) ≃ K(X×A1) and hence KB(X) ≃ KB(X×A1).
It follows that KH(X) = KB(X ×∆•) is homotopy equivalent to the constant
simplicial spectrum KB(X).

EXERCISES

EIV.12.1 12.1. Dimension shifting. Fix a ring R, and let ∆d(R) denote the coordi-
nate ring R[t0, . . . , td]/(f), f = t0 · · · td(1 −

∑
ti) of the d-dimensional tetra-

hehron over R. Show that for all n, KHn(∆
d(R)) ∼= KHn(R) ⊕ KHd+n(R).

If R is regular, conclude that KHn(∆
d(R)) ∼= Kn(R) ⊕ Kd+n(R), and that

K0(∆
d(R)) ∼= K0(R)⊕Kd(R). Hint: Use the Mayer-Vietoris squares of III.

III.4.3.1
4.3.1,

where we saw that Kj(∆
n(R)) ∼= Kj+1(∆

n−1(R)) for j < 0. In III, Ex.
EIII.4.8
4.8 we

saw that each ∆n(R) is K0-regular if R is.

EIV.12.2 12.2. (KV1 need not map onto KH1.) Let k be a field of characteristic 0,
I the ideal of S = k[x, (x + 1)−1] generated by x2, and R = k ⊕ I. Show
that KHn(R) ∼= KHn(S) for all n, but that there is an exact sequence 0 →
KV1(R) → KH1(R) → Z → 0. Hint: Use the Mayer-Vietoris sequence for
R → S and apply I.

I.3.12
3.12 to show that K0(R) = Z ⊕ k/Z, NK0(R) ∼= tk[t] and

N2K0(R) ∼= t1t2k[t1, t2]. Alternatively, note that KV1(I) = 0 by Ex.
EIV.11.14
11.14.

EIV.12.3 12.3. The seminormalization R+ of a reduced commutative ring R was defined
in I, Ex.

EI.3.15
3.15. Show that KHn(R) ∼= KHn(R

+) for all n. Hint: show that KH
is invariant under subintegral extensions.
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The Fundamental Theorems

of higher K-theory

We now restrict our attention to exact categories and Waldhausen categories,
where the extra structure enables us to use the following types of comparison
theorems: Additivity (

V.1.2
1.2), Cofinality (

V.2.3
2.3), Approximation (

V.2.4
2.4), Resolution

(
V.3.1
3.1), Devissage (

V.4.1
4.1), and Localization (

V.2.1
2.1,

V.2.5
2.5,

V.5.1
5.1 and

V.7.1
7.1). These are the

extensions to higher K-theory of the corresponding theorems of chapter II. The
highlight of this chapter is the so-called “Fundamental Theorem” of K-theory
(
V.6.3
6.3 and

V.8.2
8.2), comparing K(R) to K(R[t]) and K(R[t, t−1]), and its analogue

(
V.6.13.2
6.13.2 and

V.8.3
8.3) for schemes.

1 The Additivity theorem

If F ′ → F → F ′′ is a sequence of exact functors F ′, F, F ′′ : B → C between
two exact categories (or Waldhausen categories), the Additivity Theorem tells
us when the induced maps K(B)→ K(C) satisfy F∗ = F ′∗ +F ′′∗ . To state it, we
need to introduce the notion of a short exact sequence of functors, which was
mentioned briefly in II(

II.9.1.8
9.1.8).

V.1.1 Definition 1.1. (a) If B and C are exact categories, we say that a sequence
F ′ → F → F ′′ of exact functors and natural transformations from B to C is a
short exact sequence of exact functors, and write F ′  F ։ F ′′, if

0→ F ′(B)→ F (B)→ F ′′(B)→ 0

is an exact sequence in C for every B ∈ B.
(b) If B and C are Waldhausen categories, we say that F ′  F ։ F ′′ is a short
exact sequence, or a cofibration sequence of exact functors if each F ′(B) 

F (B) ։ F ′′(B) is a cofibration sequence and if for every cofibration A B in
B, the evident map F (A) ∪F ′(A) F

′(B)  F (B) is a cofibration in C.
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When exact categories are regarded as Waldhausen categories, these two
notions of “short exact sequence” of exact functors between exact categories are
easily seen to be the same.

V.1.1.1 Universal Example 1.1.1. Recall from chapter II,
II.9.3
9.3, that the extension cat-

egory E = E(C) is the category of all exact sequences E : A B ։ B/A in C. If
C is an exact category, or a Waldhausen category, so is E . The source s(E) = A,
target t(E) = B, and quotient q(E) = C of such a sequence are exact functors
from E to C, and s t։ q is a short exact sequence of functors. This example
is universal in the sense that giving an exact sequence of exact functors from B
to C is the same thing as giving an exact functor B → E(C).

V.1.2 Additivity Theorem 1.2. Let F ′  F ։ F ′′ be a short exact sequence of ex-
act functors from B to C, either between exact categories or between Waldhausen
categories. Then F∗ ≃ F ′∗ + F ′′∗ as H-space maps K(B)→ K(C). Therefore on
the homotopy groups we have F∗ = F ′∗ + F ′′∗ : Ki(B)→ Ki(C).

Proof. By universality of E , we may assume that B is E and prove that t∗ =
s∗ + q∗. The map s∗ + q∗ is induced by the exact functor s

∐
q : E → C

which sends A  B ։ C to A ∐ C, because the H-space structure on K(C) is
induced from ∐ (see IV,

IV.6.4
6.4 and

IV.8.5.1
8.5.1). The compositions of t and s

∐
q with

the coproduct functor ∐ : C × C → E agree:

C × C
∐

> E
t
>

s∨q
> C

and hence give the same map on K-theory. The Extension Theorem
V.1.3
1.3 below

proves that K(∐) is a homotopy equivalence, from which we conclude that
t ≃ s∐ q, as desired.

Given an exact category (or a Waldhausen category) A, we say that a se-
quence 0→ An → · · · → A0 → 0 is admissibly exact if each map decomposes as
Ai+1 ։ Bi  Ai, and each Bi  Ai ։ Bi−1 is an exact sequence.

V.1.2.1 Corollary 1.2.1. (Additivity for characteristic exact sequences). If

0→ F 0 → F 1 → · · · → Fn → 0

is an admissibly exact sequence of exact functors B → C, then ∑(−1)pF p∗ = 0
as maps from Ki(B) to Ki(C).

Proof. This follows from the Additivity Theorem
V.1.2
1.2 by induction on n.

V.1.2.2 Remark 1.2.2. Suppose that F ′ and F are the same functor in the Additivity
Theorem

V.1.2
1.2. Using the H-space structure we have F ′′∗ ≃ F∗ − F∗ ≃ 0. It

follows that the homotopy fiber of F ′′ : K(B) −→ K(C) is homotopy equivalent
to K(B) ∨ ΩK(C).
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V.1.2.3 Example 1.2.3. Let C be a Waldhausen category with a cylinder functor
(IV.

IV.8.8
8.8). Then the definition of cone and suspension imply that 1  cone ։ Σ

is an exact sequence of functors: each A  cone(A) ։ ΣA is exact. If C sat-
isfies the Cylinder Axiom IV.

IV.8.8.1
8.8.1, the cone is null-homotopic. The Additivity

Theorem implies that Σ∗ + 1 = cone∗ = 0. It follows that Σ : K(C)→ K(C) is
a homotopy inverse with respect to the H-space structure on K(C).

The following calculation of K(E), used in the proof of the Additivity The-
orem

V.1.2
1.2, is due to Quillen

Q341
[153] for exact categories and to Waldhausen

W1126
[215]

for Waldhausen categories. (The K0 version of this Theorem was presented
in II.

II.9.3.1
9.3.1.)

V.1.3 Extension Theorem 1.3. The exact functor (s, q) : E = E(C)→ C×C induces
homotopy equivalences wS.E ≃ (wS.C)2 and K(E) ∼−→ K(C) × K(C). The
coproduct functor ∐, sending (A,B) to the sequence A  A ∐ B ։ B, is a
homotopy inverse.

Proof for Waldhausen categories. Let Cwm denote the category of sequences

A
≃−→ B

≃−→ · · · of m weak equivalences; this is a category with cofibrations
(defined termwise). The set snCwm of sequences of n cofibrations in Cwm (IV.

IV.8.5.2
8.5.2)

A0 > > A1 > > · · · > > An

B0

∼∨
> > B1

∼∨
> > · · · > > Bn

∼∨

· · ·
∼
∨

· · ·
∼
∨

· · ·
∼
∨

is naturally isomorphic to the m-simplices in the nerve of the category wSnC.
That is, the bisimplicial sets wS.C and s.Cw. are isomorphic. By Ex. IV.

EIV.8.10
8.10 ap-

plied to Cwm, each of the maps s.E(Cwm)→ s.Cwm×s.Cwm is a homotopy equivalence.
As m varies, we get a bisimplicial map s.E(Cw. )→ s.Cw. ×s.Cw. , which must then
be a homotopy equivalence. But we have just seen that this is isomorphic to
the bisimplicial map wS.E(C)→ wS.C × wS.C of the Extension Theorem.

We include a proof of the Extension Theorem
V.1.3
1.3 for exact categories, be-

cause it is short and uses a different technique.

Proof of
V.1.3
1.3 for Exact Categories. By Quillen’s Theorem A (IV.

IV.3.7
3.7), it suffices

to show that, for every pair (A,C) of objects in C, the comma category T =
(s, q)/(A,C) is contractible. A typical object in this category is a triple T =
(u,E, v), where E is an extension A0 > > B0 ։ C0 and both u : A0 → A
and v : C0 → C are morphisms in QC. We will compare T to its subcategories
TA and TC , consisting of those triples T such that: u is an admissible epi,
respectively, v is an admissible monic. The contraction of BT is illustrated in
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the following diagram.

T : A <
u

A0 > > B0 >> C0
v

> C

p(T ) :

ηT∨
A

wwwww
j
>> A1

i
∨
∨

> > B
∨
∨

>> C0

wwwww
v

> C

wwwww

qp(T ) :

πp(T )

∧

A

wwwww
>> A1

wwwww
> > B1

∧∧

>> C1

∧∧

> > C

wwwww

0

∧

A

wwwww
>> 0

∨∨
> > 0

∧

>> 0
∧
∧

> > C

wwwww

Given a triple T , choose a factorization of u as A0 >
i
> A1 <<

j
A, and let B

be the pushout of A1 and B0 along A0; B is in C and p(E) : A1  B ։ C0 is an
exact sequence by II, Ex.

EII.7.8
7.8(2). Thus p(T ) = (j, p(E), v) is in the subcategory

TA. The construction shows that p is a functor from T to TA, and that there is
a natural transformation ηT : T → p(T ). This provides a homotopy Bη between
the identity of BT and the map Bp : BT → BTA ⊂ BT .

By duality, if we choose a factorization of v as C0 և C1  C and let B1

be the pullback of B0 and C1 along C0, then we obtain a functor q : T → TC ,
and a natural transformation πT : q(T ) → T . This provides a homotopy Bπ
between Bq : BT → BTC ⊂ BT and the identity of BT .

The composition of Bη and the inverse of Bπ is a homotopy BT × I → BT
between the identity and Bqp : BT → B(TA ∩TC) ⊂ BT . Finally, the category
(TA ∩ TC) is contractible because it has an initial object: (A ։ 0, 0, 0  C).
Thus Bqp (and hence the identity of BT ) is a contractible map, providing the
contraction BT ≃ 0 of the comma category.

It is useful to have a variant of the Extension Theorem involving two Wald-
hausen subcategories A, C of a Waldhausen category B. Recall from II.

II.9.3
9.3 that

the extension category E = E(A,B, C) of C by A is the Waldhausen subcategory
of E(B) consisting of cofibration sequences A  B ։ C with A in A and C in
C.

V.1.3.1 Corollary 1.3.1. Let A and C be Waldhausen subcategories of a Waldhausen
category B, and E = E(A,B, C) the extension category. Then (s, q) : E → A× C
induces a homotopy equivalence K(E)→ K(A)×K(C).

Proof. Since (s, q) is a left inverse to ∐ : A × C → E , it suffices to show that
the identity of K(E) is homotopic to ∐(s, q)∗ = ∐(s, 0)∗+∐(0, t)∗. This follows
from Additivity applied to the short exact sequence ∐(s, 0)  idE ։ ∐(0, t) of
functors displayed in the proof of the corresponding Extension Theorem (Propo-
sition II.

II.9.3.1
9.3.1) for K0.
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The rest of this section is devoted to applications of the Additivity Theorem.

V.1.4 Exact Sequences 1.4. Let A[0,n]
exact denote the category of admissibly exact se-

quences of length n. If equivalent to the category A; for n = 2 it is the

category E of cofibration sequences of
V.1.1.1
1.1.1. In fact, A[0,n]

exact is a Waldhausen
category in a way which extends the structure in

V.1.1.1
1.1.1: A∗ → A′∗ is a weak

equivalence if each Ai → A′i is, and is a cofibration if the Bi  B′i and

B′i ∪Bi
Ai  Ai1 are all cofibrations. Since A[0,n]

exact is the extension category

E of A ∼= A[0,0]
exact by A[1,n]

exact (
V.1.3.1
1.3.1), the Extension Theorem

V.1.3
1.3 implies that

the functors A∗ 7→ Bi (i = 0, ..., n − 1) from A[0,n]
exact to A induce a homotopy

equivalence KA[0,n]
exact

∼=
∏n
i=1K(A).

Projective bundles

Let E be a vector bundle of rank r+1 over a quasi-projective schemeX, and con-
sider the projective space bundle P = P(E) π−→ X. We saw in II.

II.8.5
8.5 that K0(P)

is a free K0(X)-module with basis {[O(−i)] : i = 0 . . . , r}. The summands of
this decomposition arise from the exact functors

ui : VB(X)→ VB(P), ui(N ) = π∗(N )(−i).

V.1.5 Projective Bundle Theorem 1.5. Let P(E) be a projective bundle over a
quasi-projective scheme X. Then the ui induce an equivalence K(X)r+1 ≃
K(P(E)). Thus K∗(X)⊗K0(X) K0(P(E)) −→ K∗(P(E)) is a ring isomorphism.

When E is a trivial bundle, so P(E) = PnX , we have the following special case.

V.1.5.1 Corollary 1.5.1. As a ring, K∗(P
n
X) ∼= K∗(X)⊗ZK0(P

n
Z)
∼= K∗(X)[z]/(zr+1).

To prove Theorem
V.1.5
1.5, recall from II.

II.8.7.1
8.7.1 that we call a vector bundle F

Mumford-regular if Rqπ∗F(−q) = 0 for all q > 0. We write MR for the exact
category of all Mumford-regular vector bundles. The direct image π∗ : MR →
VB(X) is an exact functor, so the following lemma allows us to define the
transfer map π∗ : K(P)→ K(X).

V.1.5.2 Lemma 1.5.2. MR ⊂ VB(P) induces an equivalence KMR ≃ K(P).

Proof. Write MR(n) for the category of all F for which F(−n) is Mumford-
regular. Then MR = MR(0) ⊆ MR(−1) ⊆ · · · , and VB(P(E)) is the union
of the MR(n) as n → −∞. Thus K(P) = lim−→KMR(n). Hence it suffices
to show that each inclusion ιn : MR(n) ⊂ MR(n − 1) induces a homotopy
equivalence onK-theory. We saw in the proof of II.

II.8.7.10
8.7.10 that the exact functors

λi : MR(n−1)→MR(n), λi(F) = F(i)⊗π∗(∧iE), fit into a Koszul resolution
of F :

0→ F → F(1)⊗ π∗E → · · · → F(r + 1)⊗ π∗ ∧r+1 E → 0.

By Additivity (
V.1.2.1
1.2.1), ιn has

∑r
i=1(−1)iλi as a homotopy inverse.
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Proof of Theorem
V.1.5
1.5. By II.

II.8.7.9
8.7.9 we have exact functors Ti : MR → VB(X),

with T0 = π∗, which assemble to form a map t : MR→∐
VB(X). By Quillen’s

canonical resolution of a Mumford-regular bundle (II.
II.8.7.8
8.7.8) is an exact sequence

of exact functors:

0→ π∗(Tr)(−r)
ε(−r)

> · · · → π∗(Ti)(−i)
ε(−i)

> · · · ε(−1)
> π∗(T0)

ε
> F → 0.

Again by Additivity (
V.1.2.1
1.2.1),

∑
(−1)iuiTi is homotopic to the identity on KMR,

so u∗ is split up to homotopy.
Define vi : MR→ VB(X) by vi(F) = π∗(F(i)). Then by II.

II.8.7.2
8.7.2:

viuj(N ) =





0, i < j;

N , i = j;

Symi−jE ⊗ π∗(N ), i > j.

It follows that v∗ ◦ u∗ : K(X)r+1 → K(X)r+1 is given by a triangular matrix
whose diagonal entries are homotopic to the identity. Thus v∗◦u∗ is a homotopy
equivalence, as desired.

V.1.5.3 Variant 1.5.3. Theorem
V.1.5
1.5 remains valid if X is noetherian instead of

quasiprojective, but the proof is more intricate because in this case K(X) is de-
fined to be KChperf(X) (see

V.2.7.3
2.7.3). This generalization was proven by Thoma-

son in
TT
[200, 4.1] by (a) replacing VB(X) by the category of perfect complexes

of coherent sheaves; (b) replacing MR by the category of all Mumford-regular
coherent sheaves (II.

II.8.7.1
8.7.1) and passing to the Waldhausen category of bounded

perfect complexes of Mumford-regular sheaves (Lemma
V.1.5.2
1.5.2 remains valid);

and (c) observing that Quillen’s canonical resolution (II.
II.8.7.8
8.7.8) makes sense for

Mumford-regular sheaves. With these modifications, the proof we have given
for Theorem

V.1.5
1.5 goes through. By Ex.

EV.1.10
1.10, Theorem

V.1.5
1.5 even remains valid for

all quasi-compact and quasi-separated schemes X.

The projective line over a ring

Let R be any associative ring. We define mod-P1
R to be the abelian category

of triples F = (M+,M−, α), where M± is in mod-R[t±1] and α is is an isomor-

phism M+ ⊗R[t] R[t, 1/t]
≃−→ M− ⊗R[1/t] R[t, 1/t]. It has a full (exact) subcat-

egory VB(P1
R) consisting of triples where M± are finitely generated projective

modules, and we write K(P1
R) for KVB(P1

R).
If R is commutative, it is well known that mod-P1

R is equivalent to the
category of quasi-coherent sheaves on P1

R, and VB(P1
R) is equivalent to the

usual category of vector bundles on the line P1
R; thus K(P1

R) agrees with the
definition in IV.

IV.6.3.4
6.3.4, and both π∗ and R

1π∗ have their usual meanings.
We define the functors π∗, R

1π∗ : mod-P1
R →mod-R via the exact sequence

0→ π∗(F)→M+ ×M− d−→ M− ⊗R[1/t] R[t, 1/t]→ R1π∗(F)→ 0.

where d(x, y) = α(x)− y. If R is commutative, these are the usual functors π∗
and R1π∗.
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There are exact functors ui : P(R) → VB(P1
R), sending P to the triple

(P [t], P [1/t], ti); for commutative R the ui are the functors ui(P ) = π∗(P ) ⊗
O(−i) of Theorem V.1.5

1.5.

V.1.5.4 Theorem 1.5.4. The functors u0, u1 induce an equivalence K(R) ⊕K(R) ≃
K(P1

R). In addition, (ui+1)∗ + (ui+1)∗ ≃ (ui)∗ + (ui+2)∗ for all i.

Proof. If F = (M+,M−, α), we define F(n) to be (M+,M−, t
−nα), and let

X0, X1 : F(n − 1) → F(n) be the maps (1, 1/t) and (t, 1), respectively. Then
we have an exact sequence (the Koszul resolution of F).

0→ F(−2) (X1,−X0)
> F(−1)2 (X0,X1)

> F → 0.

Applying this to ui(P ) and using ui(P )(n) = ui−n(P ) yields the exact sequence
ui+2  u2i+1 ։ ui of functors, and the relations follow from Additivity

V.1.2
1.2. The

proof of Theorem
V.1.5
1.5 now goes through to prove Theorem

V.1.5.4
1.5.4 (see Ex.

EV.1.3
1.3).

Severi-Brauer schemes

V.1.6 1.6. Let A be a central simple algebra over a field k, and ℓ a maximal subfield
of A. Then A ⊗k ℓ ∼= Mr(ℓ) for some r, and the set of minimal left ideals of
Mr(ℓ) correspond to the ℓ-points of the projective space Pr−1ℓ ; if I is a minimal
left ideal corresponding to a line L of ℓr then the rows of matrices in I all lie on
L. The Galois group Gal(ℓ/k) acts on this set, and it is well known that there
is a variety X, defined over k, such that Xℓ = X ×k ℓ is Pr−1ℓ with this Galois
action. The variety X is called the Severi-Brauer variety of A. For example,
the Severi-Brauer variety associated to A =Mr(k) is just P

r−1
k .

Historically, these varieties arose in the 1890’s (over R) as forms of a complex
variety, together with a real structure given by an involution with no fixed points.

V.1.6.1 Example 1.6.1. Let X be a non-singular projective curve over k defined by an
irreducible quadratic aX2+ bY 2 = Z2 (a, b ∈ k). Then X ∼= P1

k if and only if X
has a k-point, which holds if and only if the quadratic form q(x, y) = ax2 + by2

has a solution to q(x, y) = 1 in k. The associated algebra is the quaternion
algebra A(a, b) of III.

III.6.9
6.9. For example, if X is the plane curve X2+Y 2+Z2 = 0

over R then A is the usual quaternions H.

Here are some standard facts about Severi-Brauer varieties. By faithfully
flat descent, the vector bundle Or(−1) on Pr−1ℓ descends to a vector bundle
J on X of rank r, and A ∼= H0(X,EndX(J)) because End

P
r−1
ℓ

(Or(−1)) is

a sheaf of matrix algebras having Mr(ℓ) as its global sections. Moreover, if
π : X → S = Spec(k) is the structure map then π∗(A) ∼= EndX(J), as can be
checked by pulling back to ℓ.

There is a canonical surjection OrP(−1) → OP (Ex. II.
EII.6.14
6.14); by descent it

defines a surjection J ։ OX . Hence there is a Koszul resolution:

0→ ∧rJ → · · · → ∧2J → J → OX → 0.
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The n-fold tensor product A⊗n of A over k is also a central simple algebra,
isomorphic to EndX(J⊗n). Moreover, since J⊗n is a right module over A⊗n =
EndX(J⊗n) there is an exact functor J⊗n⊗ :P(A⊗n) → VB(X) sending P to
J⊗n ⊗A⊗n P .

V.1.6.2 Theorem 1.6.2. (Quillen) If X is the Severi-Brauer variety of A, the functors

J⊗n⊗ define an equivalence
∏r−1
n=0K(A⊗n)

∼−→ K(X), and an isomorphism

⊕r−1

n=0
K∗(A

⊗n)
≃−→ K∗(X).

V.1.6.3 Example 1.6.3. If X is the nonsingular curve aX2 + bY 2 + Z2 associated to
the quaternion algebra A = A(a, b), then K∗(X) ∼= K∗(k)⊕K∗(A).

The proof of Theorem
V.1.6.2
1.6.2 is a simple modification of the proof of Theorem

V.1.5
1.5. First, we define a vector bundle F to be regular if F⊗k ℓ is Mumford-regular
on Xℓ = Pr−1ℓ . The regular bundles form an exact subcategory of OX -mod, and
F 7→ π∗F = H0(X,F) is an exact functor from regular bundles to k-modules,
as one checks by passing to ℓ and applying II.

II.8.7.4
8.7.4. To get the analogue of the

Quillen Resolution Theorem II.
II.8.7.8
8.7.8, we modify Definition II.

II.8.7.6
8.7.6 using J .

V.1.6.4 Definition 1.6.4 (Tn). Given a regular OX -module F , we define a natural
sequence of k-modules Tn = Tn(F) and OX -modules Zn = Zn(F), starting
with T0(F) = π∗F and Z−1 = F . Let Z0 be the kernel of the natural map
J ⊗A π∗F → F . Inductively, we define Tn(F) = π∗HomX(J⊗n, Zn−1) and
define Zn to be the kernel of J⊗n ⊗A⊗n Tn(F)→ Zn−1(F).

These fit together to give a natural sequence of OX -modules

0→ J⊗r−1 ⊗A⊗r−1 Tr−1(F)→ · · · → OX ⊗k T0(F)→ F → 0. (1.6.5) V.1.6.5

When lifted to Xℓ, it is easy to see that these are exactly the functors Tn and Zn
of II.

II.8.7.6
8.7.6 for F⊗k ℓ. By faithfully flat descent, (

V.1.6.5
1.6.5) is exact, i.e., a resolution

of the regular bundle F .
Thus all the tools used in the Projective Bundle Theorem

V.1.5
1.5 are available

for Severi-Brauer varieties. The rest of the proof is routine (Exercise
EV.1.4
1.4).

Theorem
V.1.6.2
1.6.2 may be generalized over any base scheme S. Here are the

key points. An Azumaya algebra over S is a sheaf of rings A which is locally
isomorphic to Mr(OS) for the étale topology. That is, there is a faithfully flat
map T → S so that A⊗S OT is the sheaf of rings Mr(OT ). Let VB(A) denote
the exact category of vector bundles on S which are left modules for A, and
define

K(A) = KVB(A); Kn(A) = KnVB(A).
By a Severi-Brauer scheme over S we mean a scheme X which is locally

isomorphic to projective space for the étale topology, i.e., such that X ×S T ∼=
Pr−1T for some faithful étale map T → S. In this situation, we may define a
vector bundle J on X by faithfully flat descent so that J ⊗S T = OrT (−1), as
above, and then A = π∗ EndX(J) will be an Azumaya algebra over S. Again,
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each J⊗n is a right module over A⊗n and we have exact functors J⊗n⊗A⊗n :
VB(A⊗n) → VB(X). Replacing H0(X,−) with π∗, Definition

V.1.6.4
1.6.4 makes

sense and (
V.1.6.5
1.6.5) is admissibly exact. Therefore the proof still works in this

generality, and we have:

V.1.6.6 Theorem 1.6.6. (Quillen) If X is a Severi-Brauer variety over S, with asso-
ciated Azumaya algebra A, the functors J⊗n⊗A⊗n define an isomorphism

r−1∐

n=0

K∗(A⊗n) ≃−→ K∗(X).

Our next application of Additivity was used in IV,
IV.8.5.3
8.5.3–

IV.8.5.5
8.5.5 to show that

K(C) is an infinite loop space. To do this, we defined the relative K-theory
space to be K(f) = Ω2|wS.(S.f)|, and invoked the following result.

V.1.7 Proposition 1.7. If f : B → C is an exact functor, the following sequence is a
homotopy fibration:

Ω|wS.(S.B)| → |wS.C| → |wS.(S.f)| → |wS.(S.B)|.
Proof. Each category Snf of IV.

IV.8.5.3
8.5.3 is equivalent to the extension category

E(B, Snf, SnC) of B by SnC (see II.
II.9.3
9.3). By

V.1.3.1
1.3.1, the map

(s, q) : wS.(Snf.)
≃−→ wS.B × wS.(SnC)

is a homotopy equivalence. That is, |wS.B| → |wS.(Snf.)| → |wS.(SnC)| is a
(split) fibration of connected spaces for each n. But if X. → Y. → Z. is any
sequence of simplicial spaces, and each Xn → Yn → Zn is a fibration with Zn
connected, then Ω|Z.| → |X.| → |Y.| → |Z.| is a homotopy fibration sequence;
see

Wa78
[214, 5.2]. This applies to our situation by realizing in the wS. direction first

(so that Xn = |wS.B| for all n), and the result follows.

V.1.7.1 Remark 1.7.1. As observed in IV.
IV.8.5.4
8.5.4, wS.S.f is contractible when f is the

identity of B. It follows that |wS.B| ≃ Ω|wS.(S.B)|, yielding the formulation of
V.1.7
1.7 given in IV.

IV.8.5.3
8.5.3.

Let F : A → B be an exact functor between exact categories. An admissible
filtration of F is a sequence 0  F1  F2  · · ·  Fn = F of functors and
admissible monomorphisms, sending an object A in A to the sequence

0 = F0(A)  F1(A)  · · · Fn(A) = F (A).

It follows that the quotient functors Fp/Fp−1 exist, but they may not be exact.

V.1.8 Proposition 1.8. (Admissible Filtrations) If 0  F1  F2  · · · Fn = F
is an admissible filtration of F , and the quotient functors Fi/Fi−1 are exact,
then F : KA → KB is homotopic to

∑
Fi/Fi−1. In particular,

F∗ =
∑

(Fi/Fi−1)∗ : K∗(A)→ K∗(B).

Proof. Apply the Additivity Theorem
V.1.2
1.2 to Fi−1  Fi ։ Fi/Fi−1, and use

induction on n.
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Here is a simple application of Proposition
V.1.8
1.8. Let S = R ⊕ S1 ⊕ S2 ⊕ · · ·

be a graded ring, and consider the category Pgr(S) of finitely generated graded
projective S-modules. Its K-groups are naturally modules over Z[σ, σ−1], where
σ acts by the shift automorphism σ(P ) = P [−1] of graded modules. If S = R,
K∗(R)[σ, σ

−1] ∼= K∗(Pgr(R)) by Ex. IV.
EIV.6.11
6.11. Thus the base change map ⊗RS :

Pgr(R)→ Pgr(S) induces a morphism K∗(R)[σ, σ
−1]→ K∗(Pgr(S)).

V.1.8.1 Corollary 1.8.1. If S = R⊕S1⊕S2⊕ · · · is graded then the base change map
induces an isomorphism K∗(R)[σ, σ

−1] ∼= K∗(Pgr(S)).

Proof. For each a ≤ b, let P[a,b](S) denote the (exact) subcategory of Pgr(S)
consisting of graded modules P generated by the Pi with i ≤ b, and with
Pi = 0 for i < a. By Ex.

EV.1.9
1.9, the identity functor on this category has an

admissible filtration: 0 = Fa  Fa+1  · · · Fb = id, where FnP denotes the
submodule of P generated by the Pi with i ≤ n. Moreover, there is a natural
isomorphism between Fn/Fn−1 and the degree n part of the exact functor ⊗SR :
Pgr(S)→ Pgr(R). By Proposition

V.1.8
1.8, the homomorphism ⊕bn=aK∗(R)⊗σn ∼=

K∗P[a,b](R)→ K∗P[a,b](S) is an isomorphism with inverse ⊗SR. Since Pgr(S)
is the filtered colimit of the P[a,b](S), the result follows from IV.

IV.6.4
6.4.

V.1.9 Flasque Categories 1.9. Call an exact (or Waldhausen) category A flasque
if there is an exact functor ∞ : A → A and a natural isomorphism ∞(A) ∼=
A∐∞(A), i.e., ∞ ∼= 1∐∞, 1 being the identity functor. By additivity, ∞∗ =
1∗ +∞∗, and hence the identity map 1∗ : K(A) → K(A) is null-homotopic.
Therefore K(A) is contractible, and Ki(A) = 0 for all i.

V.1.9.1 The Eilenberg Swindle 1.9.1. For example, the category of countably gen-
erated R-modules is flasque, so its K-theory is trivial. To see this, let
∞(M) = M∞ be the direct sum M ⊕ M ⊕ · · · of infinitely many copies of
M . The isomorphism M∞ ∼=M ⊕M∞ is the shift

(M ⊕M ⊕ · · · ) ∼=M ⊕ (M ⊕M ⊕ · · · ).
This infinite shifting trick is often called the “Eilenberg swindle” (see I.

I.2.8
2.8,

II.
II.6.1.4
6.1.4 and II.

II.9.1.4
9.1.4); it is why we restrict to finitely generated modules in defin-

ing K(R).

V.1.9.2 Flasque rings 1.9.2. Here is another example of a flasque category, due to
Karoubi. Recall from II.

II.2.1.3
2.1.3 that a ring R is called flasque if there is an R-

bimodule M∞, finitely generated projective as a right module, and a bimodule
isomorphism θ : R⊕M∞ ∼=M∞. IfR is flasque, thenP(R) andM(R) are flasque
categories in the sense of

V.1.9
1.9, with ∞(M) = M ⊗RM∞. The contractibility of

K(R) = K0(R) × BGL(R)+ for flasque rings, established in Ex. IV.
EIV.1.17
1.17, may

be viewed as an alternative proof that KP(R) = ΩBQP(R) is contractible, via
the ‘+ = Q’ Theorem IV.

IV.7.2
7.2.

As mentioned in IV.
IV.10.4.1
10.4.1, this contractibility was used by Karoubi, Gersten

and Wagoner to define deloopings of K(R) in terms of the suspension ring S(R)
of IV.

IV.1.11.2
1.11.2, forming a non-connective spectrum KGW (R) homotopy equivalent

to the spectrum KB(R) of IV.
IV.10.4
10.4.
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EXERCISES

EV.1.1 1.1. In the proof of the Extension Theorem
V.1.3
1.3, show that the functors p and

q are left and right adjoint, respectively, to the inclusions of TA and TC in T .
This proves that Bp and Bq are homotopy equivalences.

EV.1.2 1.2. Let 0→ E ′ → E → E ′′ → 0 be a short exact sequence of vector bundles on
a scheme (or a ringed space). Show that the map (− ⊗ E)∗ : K(X) → K(X)
given by the exact functor F → F⊗E satisfies (−⊗E)∗ = (−⊗E ′)∗+(−⊗E ′′)∗.

EV.1.3 1.3. Complete the proof of Theorem
V.1.5.4
1.5.4, modifying the proof of

V.1.5
1.5 for P1

R.
(See Quillen

Q341
[153, 8.4.1].)

EV.1.4 1.4. Complete the proof of Theorems
V.1.6.2
1.6.2 and

V.1.6.6
1.6.6, by modifying the proof

of
V.1.5
1.5. (See

Q341
[153, 8.4.1].) For extra credit, describe the ring structure on K∗(X)

using the pairings mod-A⊗i ×mod-A⊗j → mod-A⊗i+j (tensor product over
k) and the Morita equivalence of A⊗i and A⊗i+n.

EV.1.5 1.5. Given an exact category A and integers a ≤ b, let isoCh[a,b](A) denote
the category of chain complexes Cb → · · · → Ca in A. We may consider it as a
Waldhausen category whose cofibrations are degreewise admissible monics, with
isomorphisms as the weak equivalences (II.

II.9.1.3
9.1.3). Use the Additivity Theorem

V.1.2
1.2 to show that the “forget differentials” functor isoCh[a,b](A) → ∏b

i=aA
induces a homotopy equivalence on K-theory.

EV.1.6 1.6. If A is an exact category, the category A[0,n]
exact of admissibly exact sequences

(Example
V.1.4
1.4) may be viewed as a subcategory of the category isoCh[0,n](A)

of the previous exercise. Use the Additivity Theorem to show that the “for-

get differentials” functor A[0,n]
exact →

∏n
i=0A and the functor A∗ 7→ (B1, B1 ⊕

B2, ..., Bn−1 ⊕Bn, Bn) induce homotopy equivalent maps on K-theory.

EV.1.7 1.7. If f :B→C is exact, show that the composite wS.B → Ω|wS.S.B| → |wS.C|
in Proposition

V.1.7
1.7 is the map induced by f . Hint: Use wS.S.idB → wS.S.f .

EV.1.8 1.8. Recall from IV.
IV.8.7
8.7 that A(∗) is the K-theory of the category Rf (∗) of

finite based CW complexes. Let R(2)
f (∗) be the subcategory of simply connected

complexes. Show thatKR(2)
f (∗) ∼−→KRf (∗) = A(∗) is a homotopy equivalence,

with Y 7→ Σ2Y as inverse. Then formulate a version for A(X).

EV.1.9 1.9. (Swan) If S = R⊕ S1 ⊕ · · · is a graded ring and P is a graded projective
S-module, show that the map (P ⊗S R)⊗R S → P is an isomorphism. If FnP
is the submodule of P generated by the Pi with i ≤ n, show that FnP and
P/FnP are graded projective modules, and that Fn and P 7→ P/FnP are exact
functors from Pgr(S) to itself. Conclude that · · · FnP  Fn+1P  · · · is an
admissible filtration of P. Is there a natural isomorphism P ∼= FnP ⊕ P/FnP ?

EV.1.10 1.10. LetX be a quasi-compact, quasi-separated scheme. Show that the variant
V.1.5.3
1.5.3 of the Projective Bundle Theorem

V.1.5
1.5 holds for X. Hint: X is the inverse
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limit of an inverse system of noetherian schemes Xα with affine bonding maps
by

TT
[200, C.9]. Show that any vector bundle E on X is the pullback of a vector

bundle Eα over some Xα.

2 Waldhausen Localization and Approximation

Here are two fundamental results about Waldhausen K-theory that, although
technical in nature, have played a major role in the development of K-theory.

Waldhausen Localization

The first fundamental result involves a change in the category of weak equiv-
alences, with the same underlying category of cofibrations. The K0 version of
this result, which needed fewer hypotheses, was presented in II.

II.9.6
9.6.

V.2.1 Waldhausen Localization Theorem 2.1. Let A be a category with cofibra-
tions, equipped with two categories of weak equivalences, v(A) ⊂ w(A), such
that (A, v) and (A,w) are both Waldhausen categories. In addition, we suppose
that (A, w) has a cylinder functor satisfying the Cylinder Axiom (IV.

IV.8.8.1
8.8.1), and

that w(A) satisfies the Saturation and Extension Axioms (II.
II.9.1.1
9.1.1 and IV.

IV.8.2.1
8.2.1).

Then
K(Aw)→ K(A, v)→ K(A, w)

is a homotopy fibration, where Aw denotes the Waldhausen subcategory of (A, v)
consisting of all A in A for which 0 → A is in w(A). In particular, there is a
long exact sequence:

· · · → Ki+1(A, w)→ Ki(Aw)→ Ki(A, v)→ Ki(A, w)→ · · · ,

ending in the exact sequence K0(Aw)→ K0(A, v)→ K0(A, w)→ 0 of II.
II.9.6
9.6.

Proof. Consider the bicategory v.w.C (IV.IV.3.103.10) whose bimorphisms are commu-
tative squares in C

· w′
> ·

·

v

∨ w
> ·

v′

∨

in which the vertical maps are in vC and the horizontal maps are in wC. Consid-
ering wC as a bicategory which is vertically constant, we saw in IV,

IV.3.10.2
3.10.2 and

Ex.
EIV.3.13
3.13 that wC → v.w.C is a homotopy equivalence. Applying this construc-

tion to SnC, we get equivalences wSnC ≃ v.wSnC and hence wS.C ≃ v.wS.C.
Let v. cow.C denote the sub-bicategory of those squares in v.w.C whose hori-

zontal maps are also cofibrations. We claim that the inclusions v. cow.C ⊂ v.w.C
are homotopy equivalences. To see this, we fix m and consider the column cat-
egory vmw.C to be the category of weak equivalences in the category C(m, v) of
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diagrams C0
∼−→ · · · ∼−→ Cm in C whose maps are in vC. Because (C(m, v), w)

inherits the saturation and cylinder axioms from (C, w), it follows from IV, Ex.
EIV.8.15
8.15 that the inclusion vm cow.C ⊂ vmw.C is a homotopy equivalence. Since
this is true for each m, the claim follows.

Now each SnC inherits a cylinder functor from C. Replacing C by the SnC
shows that the simplicial bicategory v.w.S.C contains a simplicial bicategory
v. cow.S.C, and that the inclusion v. cow.S.C ⊂ v.w.S.C is a homotopy equiva-
lence. This means that the right vertical map is a homotopy equivalence in the
following diagram; the bottom horizontal map is a homotopy equivalence by the
first paragraph of this proof.

vS.Cw > vS.C > v. cow.S.C

wS.C
∨ ≃

> v.w.S.C

≃
∨

Thus it suffices to show that the top row is a homotopy fibration. We will
identify it with the homotopy fibration vS.Cw → vS.C → vS.(S.f) arising from
the relative K-theory space construction (IV.

IV.8.5.3
8.5.3), applied to the inclusion

f : (Cw, v)→ (C, v).
By the extension axiom, a trivial cofibration in (C, w) is just a cofibration

whose quotient lies in Cw. In particular, there is an equivalence S1f → cowC.
Forgetting the choices of the Ci/Cj yields an equivalence Snf → cownC, where
cownC is the category of all trivial cofibration sequences C0

∼
C1

∼
 · · · ∼Cn,

and an equivalence between vSnf and the vertical category v. cownC of the
bicategory v. cow.C. Similarly, forgetting choices yields an equivalence between
the categories vSm(Snf) and v. cown(SmC), and thus a homotopy equivalence
vS.S.f → v. cow.S.C.

Now vSmC → v. cown(SmC) factors through vSm(Snf), so vS.C →
v. cow.S.C factors through the homotopy equivalence vS.S.f → v. cow.S.C, as
required.

For us, the most important application of Waldhausen Localization is the
following theorem, which allows us to replace theK-theory of any exact category
A by the K-theory of the category Chb(A) of bounded chain complexes, which
is a Waldhausen category with a cylinder functor. This result was first worked
out by Waldhausen in special cases, and generalized by Gillet. Our presentation
is taken from

TT
[200, 1.11.7].

Let A be an exact category, and consider the category Chb(A) of bounded
chain complexes in A. We saw in II.

II.9.2
9.2 that Chb(A) is a Waldhausen category;

the cofibrations are degreewise admissible monomorphisms, and the weak equiv-
alences are quasi-isomorphisms (as computed in a specified ambient abelian cat-
egory). The isomorphism K0(A) ∼= K0Chb(A) of Theorem II.

II.9.2.2
9.2.2 generalizes

as follows.

V.2.2 Theorem 2.2. (Gillet-Waldhausen) Let A be an exact category, closed un-
der kernels of surjections in an abelian category (in the sense of II.

II.7.0.1
7.0.1.)
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Then the exact inclusion A ⊂ Chb(A) induces a homotopy equivalence
K(A) ∼−→ KChb(A).

In particular, Kn(A) ∼= KnChb(A) for all n.

Proof. We will apply Waldhausen’s Localization Theorem
V.2.1
2.1 to the following

situation. For a ≤ b, let Ch[a,b] denote the full subcategory of all complexes A∗
in Ch(A) for which the Ai are zero unless a ≤ i ≤ b. This is a Waldhausen

subcategory of Chb(A) with w the quasi-isomorphisms. We write isoCh[a,b] for
the Waldhausen category with the same underlying category with cofibrations,
but with isomorphisms as weak equivalences. Because A is closed under kernels
of surjections, the subcategory of quasi-isomorphisms in isoCh[a,b] is just the

Waldhausen category A[a,b]
exact of Example

V.1.4
1.4 (see Ex.

EV.2.4
2.4). We claim that there

is a homotopy fibration

KA[a,b]
exact → KisoCh[a,b] χ−→ K(A).

By Example
V.1.4
1.4 and Ex.

EV.1.5
1.5, the first two spaces are products of n = b− a and

n+1 copies of K(A), respectively. By Ex.
EV.1.6
1.6, the induced map

∏b
a+1K(A)→∏b

aK(A) is equivalent to that induced by the exact functor

(Ba+1, ..., Bb) 7→ (Ba+1, Ba+1 ⊕Ba+2, ..., Bb−1 ⊕Bb, Bb).

The homotopy cofiber of this map is K(A), with the map
∏b
aK(A) → K(A)

being the alternating sum of the factors, i.e., the Euler characteristic χ. This
shows that KCh[a,b] ≃ K(A) for each a and b.

Taking the direct limit as a→ −∞ and b→ +∞ yields a homotopy fibration

KA[−∞,∞]
exact → KisoCh[−∞,∞] χ−→ K(A),

where χ is the Euler characteristic. But by Waldhausen Localization
V.2.1
2.1, the

cofiber is KChb(A).

V.2.2.1 Remark 2.2.1. When A is not closed under kernels in its ambient abelian cat-
egory, K0(A) may not equal K0Chb(A); see Ex. II.EII.9.119.11. However, the following
trick shows that the extra assumption is harmless in Theorem

V.2.2
2.2, provided that

we allow ourselves to change the ambient notion of quasi-isomorphism slightly
in Chb(A). Consider the Yoneda embedding of A in the abelian category L
of contravariant left exact functors (Ex. II.

EII.7.8
7.8). As pointed out in loc. cit. , the

idempotent completion Â of A (II.
II.7.3
7.3) is closed under surjections in L.

Let A′ be the full subcategory of Â consisting of all B with [B] in the sub-

group K0(A) of K0(Â). We saw in Ex. IV.
EIV.8.13
8.13 that A′ is exact and closed under

admissible epis in Â (and hence in L), so that Theorem
V.2.2
2.2 applies toA′. ByK0-

cofinality (II,
II.7.2
7.2 and

II.9.4
9.4), K0(A) = K0(A′) = K0Chb(A) = K0Chb(A′). By

Waldhausen Cofinality (IV.
IV.8.9
8.9), K(A) ≃ K(A′) and KChb(A) ≃ KChb(A′).

Hence K(A) ≃ KChb(A).
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V.2.3 Cofinality Theorem 2.3. Let (A, v) be a Waldhausen category with a cylinder
functor satisfying the cylinder axiom (IV.

IV.8.8.1
8.8.1). Suppose that we are given a

surjective homomorphism π : K0(A)→ G, and let B denote the full Waldhausen
subcategory of all B in A with π[B] = 0 in G.

Then vs.B → vs.A → BG and its delooping K(B) → K(A) → G are
homotopy fibrations. In particular, Kn(B) ∼= Kn(A) for all n > 0 and (as in
II.

II.9.6.2
9.6.2) there is a short exact sequence:

0→ K0(B)→ K0(A) π−→ G→ 0.

Proof. (Thomason) As in II.
II.9.6.2
9.6.2, we can form the Waldhausen category (A, w),

where w(A) is the set of maps A → A′ in A with π[A] = π[A′]. It is easy to
check that w(A) is saturated (II.

II.9.1.1
9.1.1), B = Aw, and that (A, w) satisfies the

Extension Axiom IV.
IV.8.2.1
8.2.1. By the Waldhausen Localization Theorem

V.2.1
2.1, there

is a homotopy fibration

K(B)→ K(A)→ K(A, w).

By IV.
IV.8.10
8.10, ws.(A, w) ≃ BG and hence K(A, w) ≃ Ω(BG) = G, as required.

Combining this with the Waldhausen Cofinality Theorem IV.
IV.8.9.1
8.9.1, we ob-

tain the following variation. Recall from Theorem II.
II.9.4
9.4 that a Waldhausen

subcategory B is said to be cofinal in A if for each A in A there is an A′ so that
A∐A′ is in B, and that this implies that K0(B)→ K0(A) is an injection.

V.2.3.1 Corollary 2.3.1. Let B be a cofinal Waldhausen subcategory of A closed under
extensions. Suppose that A has a cylinder functor satisfying the cylinder axiom
(IV.

IV.8.8.1
8.8.1), and restricting to a cylinder functor on B.
Then for G = K0(A)/K0(B) there is a homotopy fibration sequence

K(B)→ K(A)→ G.

Proof. Clearly B is contained in the Waldhausen subcategory Aw associated to
K0(A)→ G. By the Waldhausen Cofinality Theorem IV.

IV.8.9.1
8.9.1, K(B) ≃ K(Aw).

The result now follows from Theorem
V.2.3
2.3.

Waldhausen Approximation

The second fundamental result is the Approximation Theorem, whose K0 ver-
sion was presented in II.

II.9.7
9.7. Consider the following “approximate lifting prop-

erty,” which is to be satisfied by an exact functor F : A → B:
(App) Given any map b : F (A)→ B in B, there is a map a : A→ A′ in A and a

weak equivalence b′ : F (A′) ≃ B in B so that b = b′ ◦ F (a).
Roughly speaking, this axiom says that every object and map in B lifts up to
weak equivalence to A. Note that if we replace A′ by the mapping cylinder T (a)
of IV.

IV.8.8
8.8, a by A T (a) and b′ by F (T (a)) ≃ F (A′) ≃ B, then we may assume

that a is a cofibration. The following result is taken from
W1126
[215, 1.6.7].
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V.2.4 Theorem 2.4 (Waldhausen Approximation Theorem). Suppose that F : A →
B is an exact functor between saturated Waldhausen categories, satisfying the
conditions:

(a) A morphism f in A is a weak equivalence if and only if F (f) is a weak
equivalence in B.

(b) A has a cylinder functor satisfying the cylinder axiom.

(c) The approximate lifting property (App) is satisfied.

Then wS.A ∼−→ wS.B and K(A) ∼−→ K(B) are homotopy equivalences. In
particular, the groups K∗A and K∗B are isomorphic.

Proof. (Waldhausen) Each of the exact functors SnA → SnB also satisfies
(App); see Ex.

EV.2.1
2.1. Applying Proposition

V.2.4.1
2.4.1 below to these functors, we see

that each wSnA → wSnB is also a homotopy equivalence. It follows that the
bisimplicial map wS.A → wS.B is also a homotopy equivalence, as required.

V.2.4.1 Proposition 2.4.1. (Waldhausen) Suppose that F : A → B is an exact functor
between Waldhausen categories, satisfying the three hypotheses of Theorem

V.2.4
2.4.

Then wF : wA ∼−→ wB is a homotopy equivalence.

Proof. By Quillen’s Theorem A (IV.
IV.3.7
3.7), it suffices to show that the comma

categories wF/B are contractible. The condition (App) states that, given any
object (A, b) of F/B there is a map a in F/B to an object (A′, b′) of wF/B.
Applying it to (0, 0) shows that wF/B is nonempty. For any finite set of objects
(Ai, bi) in wF/B, the maps Ai → ⊕Ai yield maps in F/B to (⊕Ai, b), where
b : F (⊕Ai) ∼= ⊕F (Ai)→ B, and hence maps ai from each (Ai, bi) to an object
(A′, b′) in wF/B; the F (ai) are in wB by saturation, so the ai are in wA and
represent maps in wF/B. The same argument shows that if we are given any
finite diagram D on these objects in wF/B, an object (A, b) in F/B and maps
(Ai, bi) → (A, b) forming a (larger) commutative diagram D+ in F/B, then by
composing with (A, b)→ (A′, b′), we embed D into a diagram D′+ in wF/B with
a terminal object. This implies that |D| is contractible in |wF/B|.

The rest of the proof consists of finding such a diagram D+ for every “non-
singular” finite subcomplex of |wF/B|, using simplicial methods. We omit this
part of the proof, which is lengthy (5 pages), and does not seem relevant to this
book, and refer the reader to

W1126
[215, 1.6.7].

V.2.4.2 Remark 2.4.2. The Approximation Theorem can fail in the absence of a cylin-
der functor. For example, if A is an exact category then A⊕ ⊂ A satisfies (App),
yet K0(A⊕) and K0(A) are often different; see II.

II.7.1
7.1.

Combining Waldhausen Localization
V.2.1
2.1 and Approximation

V.2.4
2.4 yields the

following useful result, applicable to exact functors F : A → B which are onto
up to weak equivalence. Let Aw denote the Waldhausen subcategory of A
consisting of all A such that F (A) is weak equivalent to 0 in B.
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V.2.5 Theorem 2.5. Let F : A → B be an exact functor between two saturated Wald-
hausen categories having cylinder functors, with B extensional (IV.

IV.8.2.1
8.2.1). If

every object B and every map F (A)→ B in B lifts to A up to weak equivalence,
then K(Aw)→ K(A, v)→ K(B) is a homotopy fibration sequence, and there is
a long exact sequence:

· · · F−→ Kn+1(B)→ Kn(Aw)→ Kn(A) F−→ Kn(B)→ · · · ,
ending in the exact sequence K0(Aw)→ K0(A)→ K0(B)→ 0.

Proof. (Thomason) Let v(A) and w(B) denote the respective categories of weak
equivalences in A and B, and set w(A) = F−1(w(B)). Replacing v(A) with
w(A) yields a new Waldhausen category, which we write as (A, w) for clarity.
The Approximation Theorem

V.2.4
2.4 states that K(A, w) ≃ K(B). Since (A, w)

inherits the extension axiom from B, Waldhausen Localization
V.2.1
2.1 applies to

give the fibration K(Aw) → K(A, v) → K(B) and hence the displayed long
exact sequence.

V.2.5.1 Changing cofibrations 2.5.1. (Hinich-Shektman). Let A = (A, coA, wA)
be a saturated Waldhausen category with a cylinder functor, satisfying the cylin-
der axiom. Suppose that coA ⊂ co1A ⊂ A is such that A1 = (A, co1A, wA) is
also a Waldhausen category. Then K(A) ≃ K(A1), by Waldhausen Approxi-
mation.

V.2.6 2.6. Combining Theorem
V.2.5
2.5 with the Gillet-Waldhausen Theorem

V.2.2
2.2 yields

several useful localization sequences.

V.2.6.1 G-theory Localization for rings 2.6.1. Localization at a central multiplica-
tively closed set S in a ring R induces an exact functor M(R) → M(S−1R)
satisfying (App). Passing to ChbM(R) → ChbM(S−1R) does not change the
K-theory (by

V.2.2
2.2) but does add a cylinder functor, so (App) still holds (see II,

Ex.
EII.9.2
9.2). Hence Theorem

V.2.5
2.5 applies, with Aw being the category ChbSM(R) of

complexes E such that S−1E is exact.
We define G(R on S) to be KChbSM(R), and Gn(R on S) = KnChbSM(R),

so that we get a homotopy fibration G(R on S) → G(R) → G(S−1R), and a
long exact sequence

· · · → Gn+1(S
−1R)→ Gn(R on S)→ Gn(R)→ Gn(S

−1R)→ · · ·
ending in the surjection G0(R)→ G0(S

−1R) of II.
II.6.4.1
6.4.1. When R is noetherian,

we will identify G(R on S) = KChbSM(R) with KMS(R) in
V.6.1
6.1 below.

V.2.6.2 G-theory Localization for schemes 2.6.2. If Z is a closed subscheme of
a noetherian scheme X, we define G(X on Z) to be KChbZM(X), where
ChbZM(X) is the (Waldhausen) category of bounded complexes which are
acyclic on X − Z.

Now G(X) = KM(X) by IV.
IV.6.3.4
6.3.4, and the localization M(X)→M(X−Z)

satisfies (App). Since Aw = ChbZM(X), Theorems
V.2.5
2.5 and

V.2.2
2.2 yield a homotopy

fibration G(X on Z)→ G(X)→ G(X − Z) and a long exact sequence

· · · → Gn+1(X − Z)→ Gn(X on Z)→ Gn(X)→ Gn(X − Z)→ · · ·
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ending in the surjection G0(X) → G0(X − Z) of II.
II.6.4.2
6.4.2. Later on (in

V.3.10.2
3.10.2,

V.6.11
6.11 and Ex.

EV.4.3
4.3), we will identify G(X on Z) with KMZ(X) and G(Z).

Let S be a central multiplicatively closed set of central elements in a noe-
therian ring R. If S consists of nonzerodivisors, we will see in Theorem

V.7.1
7.1

that the analogue of KMS(R) for projective modules is the K-theory of the
category HS(R) of S-torsion perfect modules (generalizing II.

II.7.7.4
7.7.4). Otherwise,

this is not correct; see Exercises
EV.2.9
2.9 and

EV.7.3
7.3 below. Instead, as in II.

II.9.8
9.8, we

define K(R on S) to be the K-theory of ChbSP(R), the Waldhausen category of
bounded complexes P of finitely generated projective modules such that S−1P
is exact.

V.2.6.3 Theorem 2.6.3. If S is a central multiplicatively closed set in a ring R, there
is a homotopy fibration K(R on S) → K(R) → K(S−1R), and hence a long
exact sequence

· · ·Kn+1(S
−1R)→ Kn(R on S)→ Kn(R)→ Kn(S

−1R) · · ·

ending in the exact sequence K0(R on S)→ K0(R)→ K0(S
−1R) of II.

II.9.8
9.8.

Proof. As in the proof of II.
II.9.8
9.8, we consider the category P of S−1R-modules of

the form S−1P for P in P(R). We saw in II.
II.9.8.1
9.8.1 that (by clearing denominators

in the maps), the localization from A = Chb(P(R)) to B = Chb(P) satisfies
(App), so Theorem

V.2.5
2.5 applies with Aw = ChbSP(R). Thus we have a homotopy

fibration KChbSP(R) → K(R) → K(P). By Cofinality (IV.
IV.6.4.1
6.4.1), K(P) →

K(S−1R)→ G is a homotopy fibration, and the result follows.

We conclude with a few useful models forK-theory, arising from the Waldhausen
Approximation Theorem

V.2.4
2.4.

V.2.7.1 Homologically bounded complexes 2.7.1. If A is an abelian category, let
Chhb(A) denote the Waldhausen category of homologically bounded chain com-
plexes of objects in A, and Chhb± (A) the subcategory of bounded below (resp.,

bounded above) complexes. We saw in II.
II.9.7.4
9.7.4 that Chb(A) ⊂ Chhb− (A) and

Chhb+ (A) ⊂ Chhb(A) satisfy (App), by good truncation; dually, Chb(A) ⊂
Chhb+ (A) and Chhb+ (A) ⊂ Chhb(A) satisfy the dual of (App). By Waldhausen
Approximation (and

V.2.2
2.2), this yields

K(A) ≃ KChb(A) ≃ KChhb− (A) ≃ KChhb+ (A) ≃ KChhb(A).

We gave the K0 version of the resulting isomorphism Kn(A) ∼= KnChb(A) ∼=
KnChhb(A) in II.

II.9.7.4
9.7.4. We will see another argument for this in

V.3.8.1
3.8.1 below.
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V.2.7.2 Perfect complexes 2.7.2. A perfect complex of R-modules is a complex M
which is quasi-isomorphic to a bounded complex of finitely generated projec-
tive R-modules, i.e., to a complex in Chb(P(R)). We saw in II.

II.9.7.5
9.7.5 that

the perfect complexes of R-modules form a Waldhausen subcategory Chperf(R)

of Ch(mod-R), and that (App) holds for the inclusions Chb(P(R)) ⊂
Ch−perf(R) ⊂ Chperf(R). Thus (invoking Theorems

V.2.2
2.2 and

V.2.4
2.4) we have that

K(R) ≃ KChb(P(R)) ≃ KCh−perf(R) ≃ KChperf(R).

If S is a central multiplicatively closed set in R, then K(R on S) = KChbSP(R)
is also the K-theory of the category Chperf,S(R) of perfect complexes P with
S−1P exact. This follows from Waldhausen Approximation; the Approxima-
tion Property for the inclusion ChbSP(R) ⊂ Chperf,S(R) was established in II,
Ex.

EII.9.2
9.2.

V.2.7.3 K-theory of schemes 2.7.3. If X is any scheme, we define K(X) to be
KChperf(X). Thus our K0(X) is the group Kder

0 (X) of II, Ex.
EII.9.10
9.10.

When X is a quasi-projective scheme over a commutative ring, we defined
K(X) = KVB(X) in IV.

IV.6.3.4
6.3.4. These definitions agree; in fact they also agree

when X is a separated regular noetherian scheme (II.
II.8.2
8.2), or more generally

a (quasi-compact, quasi-separated) scheme such that every coherent sheaf is a
quotient of a vector bundle. Indeed, KVB(X) ≃ KChperf(X), by Waldhausen

Approximation applied to Chb(VB(X)) ⊂ Chperf(X). The condition (App) is
given in

SGA6
[SGA6, II] or

TT
[200, 2.3.1]: given a map P → C from a bounded complex

of vector bundles to a perfect complex, there is a factorization P → Q
∼−→ C

in these settings.

V.2.7.4 G(R) and Pseudo-coherent complexes 2.7.4. If R is a noetherian ring, the
discussion of

V.2.7.1
2.7.1 applies to the abelian category M(R) of finitely generated

R-modules. Thus we have:

G(R) = KM(R) ≃ KChbM(R) ≃ KChhb+ M(R) ≃ KChhbM(R).

Instead of Chhb+ M(R), we could consider the (Waldhausen) category Chhb+ P(R)
of bounded below, homologically bounded chain complexes of finitely generated
projective modules, or even the category Chhbpcoh(R) of homologically bounded
pseudo-coherent complexes (R-module complexes which are quasi-isomorphic to
a bounded complex of finitely generated modules; see II.

II.9.7.6
9.7.6). By II, Ex.

EII.9.7
9.7,

Waldhausen Approximation applies to the inclusions of M(R) and Chhb+ P(R)

in Chhbpcoh(R). Hence we also have G(R) ≃ KChhb+ P(R) ≃ KChhbpcoh(R).
If R is not noetherian, we can consider the exact category M(R) of pseudo-

coherent modules (II.
II.7.1.4
7.1.4), which we saw is closed under kernels of surjections,

and the Waldhausen category Chhbpcoh(R) of homologically bounded pseudo-
coherent complexes (II.

II.9.7.6
9.7.6). Since (App) holds by Ex. II.

EII.9.7
9.7, the same proof

gives:

G(R) = KM(R) ≃ KChbM(R) ≃ KChhb+ P(R) ≃ KChhbpcoh(R).
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Now suppose that S is a multiplicatively closed set of central elements in R.
Anticipating Theorem

V.5.1
5.1 below, we consider the category MS(R) of S-torsion

modules in M(R). If R is noetherian, this is an abelian category by II.
II.6.2.8
6.2.8;

if not, it is the exact category of pseudo-coherent S-torsion modules (II.
II.7.1.4
7.1.4).

By Theorem
V.2.2
2.2, KMS(R) ≃ KChbMS(R).

EXERCISES

EV.2.1 2.1. If an exact functor F : A → B satisfies the approximate lifting property
(App), show (by induction on n) that each SnF : SnA → SnB also satisfies
(App).

EV.2.2 2.2. If A is a strictly cofinal exact subcategory of A′, show that Chb(A) ⊂
Chb(A′) satisfies (App), and that KChb(A) ≃ KChb(A′).

EV.2.3 2.3. Let splitChb(A) denote the category Chb(A), made into a Waldhausen
category by restricting the cofibrations to be the degreewise split monomor-
phisms whose quotients lie in A (a priori they lie in Â ; see II.

II.7.3
7.3). Generalize

II.
II.9.2.4
9.2.4 by showing that splitChb(A) → Chb(A) induces a homotopy equiva-

lence on K-theory, so that Kn(splitChb(A)) ∼= Kn(A) for all n.
EV.2.4 2.4. If A is an exact subcategory of an abelian category M, the Waldhausen

category A[0,n]
exact of admissibly exact complexes of length n (Example

V.1.4
1.4) is

contained in the category Ch[0,n](A)qiso of complexes in A which are acyclic as
complexes in M. If A is closed under kernels of surjections in M, show that
these categories are the same.

EV.2.5 2.5. Consider the exact category F(R) of finite free R-modules (II.
II.5.4.1
5.4.1). An-

alyze Remark
V.2.2.1
2.2.1 to show that KF(R) ≃ KChb(F(R)). If S is a central

multiplicative set in R, compare KChbS(F(R)) to K(R on S). Is ChbS(F(R))
cofinal in ChbS(P(R))?

EV.2.6 2.6. Let S be a central multiplicative set in a ring R. Mimick the proof of
V.2.7.4
2.7.4

to show that KChbSM(R) is equivalent to KCh+
pcoh,S(R) and KChhbpcoh,S(R).

A fancier proof of this equivalence will be given in
V.3.10.1
3.10.1 below.

EV.2.7 2.7. Let X be a noetherian scheme. Show that G(X) ≃ KChhbpcoh(X), gener-
alizing II, Ex.

EII.9.8
9.8. Hint: Mimick the proof of II, Ex.

EII.9.7
9.7. A fancier proof of this

equivalence will be given in
V.3.10.2
3.10.2 below.

EV.2.8 2.8. LetX be a noetherian scheme, and F the Waldhausen category of bounded
above perfect cochain complexes of flat OX -modules. Show that VB(X) ⊂ F
induces an equivalence K(X) ≃ K(F).

EV.2.9 2.9. Let R = k[s, t]/(st) and S = {sn}, where k is a field, so that S−1R =
k[s, 1/s]. Show that every R-module M with snM = 0 for some n has infinite
projective dimension, so that the category HS(R) consists only of 0. Then use
the Mayer-Vietoris sequence III.

III.2.6
2.6 to show that K0(R on S) = Z. Conclude

that KHS(R) is not the homotopy fiber of K(R)→ K(S−1R).
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3 The Resolution Theorems and transfer maps

In this section we establish the Resolution Theorems for exact categories (
V.3.1
3.1)

andWaldhausen categories of chain complexes (
V.3.9
3.9). We first give the version for

exact categories, and some of its important applications. The second Resolution
Theorem

V.3.9
3.9 requires the properties of derived categories which are listed in

V.3.8
3.8.

The Fundamental Theorem
V.3.3
3.3–

V.3.4
3.4 that K∗ ∼= G∗ for regular rings and

schemes (proven for K0 in II,
II.7.8
7.8 and

II.8.2
8.2), and the existence of transfer maps f∗

(
V.3.3.2
3.3.2,

V.3.5
3.5 and

V.3.7
3.7), are immediate consequences of the first Resolution Theorem,

as applied to P(R) ⊆ H(R) and VB(X) ⊆ H(X).
Recall from II.

II.7.0.1
7.0.1 that P is said to be closed under kernels of admissible

surjections in an exact category H if whenever A  B ։ C in H is an exact
sequence with B, C in P then A is also in P. (A prototype is P = Hn(R),
H ⊆mod-R.)

V.3.1 Resolution Theorem 3.1. Let P be a full exact subcategory of an exact cate-
gory H, such that P is closed under extensions and under kernels of admissible
surjections in H. Suppose in addition that every object M of H has a finite
P-resolution:

0→ Pn → · · · → P1 → P0 →M → 0.

Then K(P) ≃ K(H), and thus Ki(P) ∼= Ki(H) for all i.

The proof will reduce the theorem to the special case in which objects of H
have a P-resolution of length one, which will be handled in Proposition

V.3.1.1
3.1.1.

Proof. The category H is the union of the subcategories Hn of objects with
resolutions of length at most n, and H0 = P. Since the kernel of any admissible
P ։ P ′ is also in P, Hn−1 ⊆ Hn is closed under admissible subobjects and
extensions (see Ex.

EV.3.1
3.1). Applying

V.3.1.1
3.1.1, we see that each K(P)→ K(Hn−1)→

K(Hn) is a homotopy equivalence. Taking the colimit over n yields the result.

V.3.1.1 Proposition 3.1.1. Let P ⊂ H be as in Theorem
V.3.1
3.1, and suppose that every

M in H fits into an exact sequence 0 → P1 → P0 → M → 0 with the Pi in P.
Then K(P)→ K(H) is a homotopy equivalence, and K∗(P) ∼= K∗(H).

Proof. (Quillen) The inclusion QP ⊂ QH is not full, so we consider the full
subcategory Q on the objects of QP, and write i for the inclusion QP ⊂ Q. For
each P in QP, the objects of the comma category i/P are pairs (P2, u) with
u of the form P2 և P1  P and P/P1 in H. Set z(P2, u) = (P1, P1  P )
and note that P2 և P1 and 0  P1 are morphisms of QP. They define natural
transformations (P2, u)→ z(P2, u)← (0, 0  P ) in i/P . This shows that i/P is
contractible, and hence by Theorem A (IV.

IV.3.7
3.7) that i : QP → Q is a homotopy

equivalence.
It now suffices to show that the inclusion j : Q → QH is a homotopy

equivalence. We shall resort to the dual of Theorem A, so we need to show
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that for each M in H, the comma category M\j is contractible. The objects
of M\j are pairs (P, u : M և P1  P ) with P in P; it is nonempty by the
assumption that some P0 ։M exists. Let C denote the full subcategory on the
pairs (P,M և P ). The inclusion C ⊂ (M\j) is a homotopy equivalence because
it has a right adjoint, namely r(P, u) = (P1,M և P1). And the category
C is contractible because if we fix any (P0, u0 : M և P0), then p(P, u) =
(P ×M P0,M և P ×M P0) is in C (because P is subobject-closed) and there are
natural transformations (P, u)← p(P, u)→ (P0, u0).

V.3.1.2 Remark 3.1.2. It is not known how to generalize the Resolution Theorem
to Waldhausen categories. Other proofs of the Resolution Theorem for exact
categories, using Waldhausen K-theory, have been given in

Gra87
[76] and

Staf
[175].

Here is the main application of the Resolution Theorem. It is just the special
case in which P = P(R) and H = H(R).

V.3.2 Theorem 3.2. For every ring R, the inclusion of P(R) in H(R) induces an
equivalence K(R) = KP(R) ≃ KH(R), so K∗(R) = K∗P(R) ∼= K∗H(R).

If S is a multiplicatively closed set of central nonzero-divisors of R, we in-
troduced the categories HS(R) and H1,S(R) in II.

II.7.7.3
7.7.3. The proof there using

Resolution applies verbatim to yield:

V.3.2.1 Corollary 3.2.1. KH1,S(R) ≃ KHS(R), and K∗H1,S(R) ∼= K∗HS(R).

By definition, a ring R is regular if every R-module has a finite projective
resolution, i.e., finite projective dimension (see I.

I.3.7.1
3.7.1.). We say R is coherent

if the category M(R) of pseudo-coherent R-modules (II.
II.7.1.4
7.1.4) is abelian

V.3.3 Theorem 3.3. [Fundamental Theorem] If R is a noetherian (or coherent) reg-
ular ring, K(R) ≃ G(R). Thus for every n we have Kn(R) ∼= Gn(R).

Proof. In either case, H(R) is the category M(R). The Resolution Theorem
V.3.2
3.2

gives the identification.

V.3.3.1 Corollary 3.3.1. If f : R → S is a homomorphism, R is regular noetherian
and S is finite as an R-module, then there is a transfer map f∗ : K∗(S) →
K∗(R), defined by the G-theory transfer map (IV.

IV.6.3.3
6.3.3):

K(S)→ G(S) = KM(S)
f∗−→ KM(R) = G(R) ≃ K(R).

V.3.3.2 Transfer Maps for K∗(R) 3.3.2. Let f : R → S be a ring homomorphism
such that S has a finite R-module resolution by finitely generated projective
R-modules. Then the restriction of scalars defines a functor P(S)→ H(R). By
V.3.2
3.2, we obtain a transfer map f∗ : K(S) → KH(R) ≃ K(R), and hence maps
f∗ : Kn(S)→ Kn(R). If S is projective as an R-module, f∗ is the transfer map
of IV.

IV.6.3.2
6.3.2.

The projection formula states that f∗ is a K∗(R)-module homomorphism
when R is commutative. That is, if x ∈ K∗(S) and y ∈ K∗(R) then f∗(x ·
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f∗(y)) = f∗(x) · y in K∗(R). To see this, we note that the biexact functor
H(S) × P(R) → H(R), (M,P ) 7→ M ⊗R P , produces a pairing KH(S) ∧
K(R)→ KH(R) representing the right side via Theorem

V.3.2
3.2. Since M ⊗R P ∼=

M ⊗S (S ⊗R P ), it is naturally homotopic to the pairing representing the left
side.

We have already seen special cases of the transfer map f∗. It was defined
for K0 in II.

II.7.9
7.9, and for K1 in a special case in III.

III.1.7
1.7 and III, Ex.

EIII.1.11
1.11. If S is

projective as an R-module then f∗ was also constructed for K2 in III.
III.5.6.3
5.6.3, and

for all Kn in IV.
IV.1.1.3
1.1.3.

Recall from II.
II.8.2
8.2 that a separated noetherian scheme X is regular if every

coherent OX -module F has a finite resolution by vector bundles; see
SGA6
[SGA6, II,

2.2.3 and 2.2.7.1] or II.
II.8.2
8.2–

II.8.3
8.3. The Resolution Theorem applies to VB(X) ⊂

M(X), and we have:

V.3.4 Theorem 3.4. If X is a separated regular noetherian scheme, then K(X) =
KVB(X) satisfies:

K(X) ≃ G(X) and K∗(X) ∼= G∗(X).

V.3.4.1 Variant 3.4.1. If X is quasi-projective (over a commutative ring), we defined
K(X) to be KVB(X) in IV.

IV.6.3.4
6.3.4. We saw in II.

II.8.3.1
8.3.1 that the Resolution

Theorem applies to VB(X) ⊂ H(X) so we have K(X) ≃ KH(X).

V.3.4.2 Remark 3.4.2. Theorem
V.3.4
3.4 does not hold for non-separated regular noether-

ian schemes. This is illustrated when X is the affine line with a double ori-
gin over a field, since (as we saw in II,

II.8.2.4
8.2.4 and Ex.

EII.9.10
9.10) G0(X) = Z ⊕ Z

but K0VB(X) = Z. The analogue of Theorem
V.3.4
3.4 for quasi-compact regular

schemes is given in Exercise
EV.3.9
3.9.

V.3.5 Base change maps for G∗(R) 3.5. Let f : R → S be a homomorphism of
noetherian rings such that S has finite flat dimension fdR S as a right R-module.
Let F ⊂ M(R) be the full subcategory of all R-modules M which are Tor-
independent of S in the sense that

TorRn (S,M) = 0 for n 6= 0.

As observed in II.
II.7.9
7.9, the usual properties of Tor show that every finitely gen-

erated R-module M has a finite resolution by objects of F , that F is an exact
subcategory closed under kernels, and that M 7→ M ⊗R S is an exact functor
from F to M(S). By the Resolution Theorem

V.3.1
3.1, there is a natural map

G(R)
≃←−K(F)→ G(S),

giving maps f∗ : G∗(R)→ G∗(S). If g : S → T is another map, and T has finite
flat dimension over S, then the natural isomorphism (M ⊗R S)⊗S T ∼=M ⊗R T
shows that g∗f∗ ≃ (gf)∗.
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Note that if the ring S is finite over R then the forgetful functor M(S) →
M(R) is exact and induces a contravariant “finite transfer” map f∗ : G(S) →
G(R) (see II.

II.6.2
6.2 and IV.

IV.6.3.3
6.3.3). The seemingly strange notation (f∗ and f∗) is

chosen with an eye towards schemes: if Y = Spec(R) and X = Spec(S) then f
maps X to Y , so f∗ is contravariant and f∗ is covariant as functors on schemes.

V.3.5.1 Example 3.5.1. Let i : R → R[s] be the inclusion and f : R[s] → R the map
f(s) = 0. Since i is flat, we have the flat base change i∗ : G(R) → G(R[s]).

Now f has finite flat dimension, since TorR[s]
n (R,−) = 0 for n ≥ 2, so we also

have a base change map f∗ : G(R[s])→ G(R) by
V.3.5
3.5. Since fi is the identity on

R, the composite f∗i∗ : G(R) → G(R[s]) → G(R) is homotopic to the identity
map. The Fundamental Theorem for G(R) (

V.6.2
6.2 below) will show that these are

inverse homotopy equivalences.

In contrast, the transfer maps K(R)
f∗−→ K(R[s]) and G(R)

f∗−→ G(R[s])
are zero. This follows from the Additivity Theorem applied to the sequence of
functors i∗  i∗ ։ f∗ sending an R-module M to

0→M [s]
s−→ M [s]→M → 0.

V.3.5.2 Example 3.5.2. Suppose that S = R⊕S1⊕S2⊕· · · is a graded noetherian ring,
and let Mgr(S) be the abelian category of finitely generated graded S-modules.
Its K-groups are naturally modules over Z[σ, σ−1], where σ acts by the shift
automorphism σ(M) = M(−1) of graded modules. (See Exercises II.

EII.6.12
6.12 and

II.
EII.7.14
7.14.)
Now assume that S is flat over R, so that tensoring with S gives a functor

from M(R) to Mgr(S), and hence a Z[σ, σ−1]-module map

β : Gi(R)⊗ Z[σ, σ−1]→ KiMgr(S).

In the special case S = R, Mgr(R) is just a coproduct of copies of M(R), and
the map β is an isomorphism: G∗(R)[σ, σ

−1] ∼= K∗Mgr(R). If R has finite flat
dimension over S (via S → R) then the Resolution Theorem

V.3.1
3.1, applied to the

category Pgr of graded S-modules Tor-independent of R, induces a map

KiMgr(S)→ KiMgr(R) ∼= Gi(R)⊗ Z[σ, σ−1]

which is a left inverse to β, because ⊗R sends Mgr(R) to Pgr and there is a
natural isomorphism (M ⊗R S) ⊗S R ∼= M . In fact, β is an isomorphism (see
Ex.

EV.3.3
3.3).
Similarly, if Mgr,≥0(S) is the subcategory of positively graded S-modules,

there is a natural map β : Gi(R) ⊗ Z[σ] → KiMgr,≥0(S). If R has finite flat
dimension over S, it is an isomorphism (see Ex.

EV.3.3
3.3).

V.3.5.3 Example 3.5.3 (Projection Formula). Let f : R → S be a homomorphism of
commutative noetherian rings such that S is a finitely generated right R-module
of finite projective dimension. Then G∗(S) and G∗(R) are K∗(R)-modules by
IV.

IV.6.6.5
6.6.5. The projection formula states that f∗(x · f∗y) = f∗(x) · y in G∗(R),
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provided that either (i) x ∈ G∗(S) and y ∈ K∗(R) or (ii) x ∈ K∗(S) and
y ∈ G∗(R).

For (i), observe that the functor ⊗R : M(S) × P(R) → M(S) → M(R) is
biexact, so it induces a pairing G(S) ∧K(R)→ G(S)→ G(R) representing the
right side f∗(x) · y. Since M ⊗R P ∼=M ⊗S (S ⊗R P ), it also represents the left
side.

For (ii), let F ⊂M(R) be as in
V.3.5
3.5 and observe that the functor P(S)×F →

M(S) → M(R), (P,M) 7→ P ⊗R M is biexact. Hence it produces a pairing
K(S) ∧ K(F) → G(S) → G(R), representing the left side f∗(x · f∗y) of the
projection formula. But this pairing also factors through P(S) → H(R)
followed by the tensor product pairing H(R) × F → M(R) representing the
right side.

V.3.6 Base change maps for G∗(X) 3.6. If f : X → Y is a morphism of noether-
ian schemes such that OX has finite flat dimension over f−1OY , there is also a
contravariant map f∗ from G(Y ) to G(X). This is because every coherent OY -
module has a finite resolution by coherent modules which are Tor-independent
of f∗OX , locally on X, and f∗ is an exact functor on the category L(f) of
these modules. If g : W → X is another map of finite flat dimension, then
g∗f∗ ≃ (fg)∗ by the natural isomorphism g∗(f∗F) ∼= (fg)∗F .

V.3.6.1 Example 3.6.1. If X is a noetherian scheme we can consider the flat structure
map p : X[s] → X and the zero-section f : X → X[s], where X[s] = X ×
Spec(Z[s]) as in II.

II.6.5.1
6.5.1. As in

V.3.5.1
3.5.1, f has finite flat dimension and pf is the

identity on X, so f∗ : G(X[s])→ G(X) is defined and the composition f∗p∗ is
homotopic to the identity on G(X). The Fundamental Theorem

V.6.13
6.13 will show

that p∗ : G(X) ≃ G(X[s]) is a homotopy equivalence.
In contrast the finite transfer map f∗ : G(X)→ G(X[s]) is zero. This follows

from the Additivity Theorem applied to the sequence of functors p∗  p∗ ։ f∗
from M(X) to M(X[s]), analogous to the one in

V.3.5.1
3.5.1.

V.3.7 Proposition 3.7. If f : X → Y is a proper morphism of noetherian schemes,
there is a “proper transfer” map f∗ : G(X) → G(Y ). This induces homomor-
phisms f∗ : Gn(X) → Gn(Y ) for each n. The transfer map makes Gn(X)
functorial for proper maps.

The G0 version of Proposition
V.3.7
3.7, f∗([F ]) =

∑
(−1)i[Rif∗(F)], is given in

II.
II.6.2.6
6.2.6.

Proof. By Serre’s “Theorem B” (see II.
II.6.2.6
6.2.6), the higher direct images Rif∗(F)

of a coherent module are coherent, and vanish for i large. They are obtained by
replacing F by a flasque resolution, applying f∗ and taking cohomology. The
map f∗ : KM(X)→ KM(Y ) exists by Ex.

EV.3.2
3.2.

V.3.7.1 Proposition 3.7.1. If f : X → Y is a proper morphism of finite flat dimen-
sion. Then there is a “transfer” map f∗ : K(X)→ K(Y ). This induces homo-
morphisms f∗ : Kn(X) → Kn(Y ) for each n. The transfer map makes Kn(X)
functorial for projective maps.
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Proof. As in II.
II.8.4
8.4, let P(f) be the category of vector bundles E on X such

that Rif∗(E) = 0 for i > 0. We saw in loc. cit. that f∗ : P(f) → H(Y ) is
an exact functor, i.e., that the OY -module f∗(E) is perfect (II, Ex.

EII.9.10
9.10). By

Ex.
EV.3.6
3.6(c) and left exactness of f∗, the hypotheses of the Resolution Theorem

V.3.1
3.1 are satisfied, so we have K(X) ≃ KP(f). Thus we can define the transfer
map to be the composite

K(X) ≃ KP(f)
f∗−→ KH(Y ) ≃ KVB(Y ) = K(Y ).

Given a second map g : Y → Z of finite flat dimension, we can replace P(f) by
P = P(f × gf), so that E in P satisfy Rig∗(f∗(E)) = Ri(gf)∗(E) = 0 for i > 0.
Thus f∗(P) lies in the subcategory H(g) of perfect g∗-acyclic modules, on which
g∗ is exact, and g∗f∗ ≃ (gf)∗ because of the natural isomorphism (gf)∗(E) ∼=
g∗f∗(E) for E in P. Functoriality is now straightforward (Ex.

EV.3.5
3.5).

V.3.7.2 Base change Theorem 3.7.2. Let f : X → Y be a proper morphism of quasi-
projective schemes and g : Y ′ → Y a morphism of finite flat dimension, Tor-
independent of X, and set X ′ = X ×Y Y ′ so there is a cartesian square

X ′
g′

> X

Y ′

f ′

∨ g
> Y.

f
∨

Then g∗f∗ ≃ f ′∗g′∗ as maps G(X)→ G(Y ′).
If in addition f has finite flat dimension, so that f∗ : K(X) → K(Y ) is

defined then g∗f∗ ≃ f ′∗g′∗ as maps K(X)→ K(Y ′).

The idea of the proof is to use the following base change formula of
SGA6
[SGA6,

IV.3.1.0]: if E is homologically bounded with quasi-coherent cohomology, then

Lg∗(Rf∗E)
∼−→ Rf ′∗L(g

′)∗E.

Proof. Let A be the category of OX -modules which are f∗-acyclic and Tor-
independent of OX′ . For E in A, the base change formula implies that for all
i ∈ Z:

Tori(f∗E,OY ′) = Lig
∗(f∗E) = R−if ′∗(g

′∗E).

These groups must vanish unless i = 0, because Tori and R
if ′∗ vanish for i < 0.

That is, f∗(E) is Tor-independent of OY ′ , and (g′)∗E is f ′∗-acyclic, and we
have g∗f∗(E) ∼= f ′∗(g

′)∗E. Therefore g∗f∗ = f ′∗(g
′)∗ as exact functors on A. It

remains to apply the Resolution Theorem twice to show that A ⊂ L(f) ⊂M(Y )
induce equivalences on K-theory. The second was observed in

V.3.6
3.6, and the first

follows from Ex.
EV.3.6
3.6(e).

The proof is easier for K(X) → K(Y ′) when f has finite flat dimension,
using the category P(f); f∗ : P(f) → H(Y ) and (g′)∗ : P(f) → VB(X ′) are
exact, and we saw in the proof of

V.3.7.1
3.7.1 that KP(f) ≃ K(X).
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V.3.7.3 Corollary 3.7.3. (Projection formula) If f : X → Y is a projective map of
finite flat dimension, then for x ∈ K0(X) and y ∈ Gn(Y ) we have

f∗(x · f∗y) = f∗(x) · y in Gn(Y ).

The G0 version of this projection formula was given in Ex. II.
EII.8.3
8.3(b). (Cf.

Ex.
EV.3.10
3.10.) We will generalize the projection formula to higher K-theory in

V.3.12
3.12

below.

Proof. As in the proof of
V.3.7.1
3.7.1, let P(f) be the category of f∗-acyclic vector

bundles E on X. By Ex.
EV.3.6
3.6(c) and left exactness of f∗, the hypotheses of the

Resolution Theorem
V.3.1
3.1 are satisfied and we have K∗(X) ∼= K∗P(f). Thus it

suffices to show that the projection formula holds when x = [E] for E in P(f).
Let LE denote the full subcategory of M(Y ) consisting of modules which are
Tor-independent of f∗E and OX . By the Resolution Theorem, K(LE) ≃ G(Y ).
The functor LE → M(Y ) given by F 7→ f∗E ⊗ F is exact, and induces y 7→
f∗(x) · y.

Similarly, the exact functors LE → M(X), sending F to f∗(F ) and E ⊗
f∗(F ), induce y 7→ f∗(y) and y 7→ x · f∗(y), respectively. The projection
formula of

SGA6
[SGA6, III.3.7] shows that Rif∗(E ⊗ f∗F ) = 0 for i > 0 and that

f∗(E ⊗ f∗F ) ∼= f∗(E) ⊗ F . Hence F 7→ f∗(E ⊗ f∗F ) is an exact functor
LE →M(Y ), and the projection formula follows.

Derived Approximation

The third fundamental result for Waldhausen categories is an Approximation
Theorem for the K-theory of categories based upon chain complexes, and is
proven using Waldhausen Approximation

V.2.4
2.4. Roughly speaking, it says that the

K-theory of C only depends on the derived category of C, defined as localization
w−1C of C at the set w of quasi-isomorphisms in C.

In order for the statement of this result to make more sense, C will be a
subcategory of Ch(M) for some abelian category M; recall that the derived
category D(M) is the localization of the category Ch(M) at the family of
quasi-isomorphisms. For basic facts about derived categories and triangulated
categories, we refer the reader to the Appendix to Chapter II, and to the stan-
dard references

Verd
[208],

H20
[86] and

WHomo
[223, 10].

V.3.8 Triangulated and Localizing Categories 3.8. Let C be a full additive sub-
category of Ch(M) which is closed under all the shift operators C 7→ C[n]
and mapping cones. The localization w−1C of C is the category obtained from
C by formally inverting the multiplicatively closed set w = w(C) of all quasi-
isomorphisms in C. (The usual construction, detailed in (II.

II.A.5
A.5), uses a calculus

of fractions to compose maps.) It is a triangulated category by
WHomo
[223, 10.2.5].

Here are two key observations that make it possible for us to better under-
stand these triangulated categories, and to even see that they exist. One is
that chain homotopic maps in C are identified in w−1C; see II, Ex.

II.A.5
A.5 or

WHomo
[223,

10.1.2]. Another is that if w is saturated then C is isomorphic to zero in w−1C
if and only if 0→ C is in w; see II.

II.A.3.2
A.3.2 or

WHomo
[223, 10.3.10].
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We say that C is a localizing subcategory of Ch(M) if the natural map
w−1C → w−1Ch(M) = D(M) is an embedding. This will be the case whenever
the following condition holds: given any quasi-isomorphism C → B with C in
C, there is a quasi-isomorphism B → C ′ with C ′ in C. (See II.

II.A.3
A.3 or

WHomo
[223,

10.3.13].)
For example, if B is a Serre subcategory ofM, the categoryChB(M) of com-

plexes in Ch(M) with homology in B is localizing (
WHomo
[223, 10.4.3]), so DB(M) =

w−1ChB(M) is a subcategory of D(M). The functor D(B)→ DB(A) need not
be an equivalence; see

WHomo
[223, Ex. 10.4.3].

V.3.8.1 Example 3.8.1. If B ⊂ C ⊆ Ch(M), the derived categories w−1B and w−1C
are equivalent if for every complex C in C there is a quasi-isomorphism B

∼−→ C
with B in B. (See TT

[200, 1.9.7].)
For example, if A is an abelian category, the inclusion Chb(A)→ Chhb(A)

induces an equivalence of derived categories, where Chhb(A) is the category of
homologically bounded complexes (II.

II.9.7.4
9.7.4), because (as we saw in

V.2.7.1
2.7.1) every

homologically bounded complex is quasi-isomorphic to a bounded complex.
If R is any ring, ChbM(R) has the same derived category as Chhbpcoh(R) the

homologically bounded pseudo-coherent complexes; see
WHomo
[223, Ex. 10.4.6]. Sim-

ilarly, the inclusions Chbperf(R) ⊂ Ch+
perf(R) ⊂ Chperf(R) induce equivalence

on derived categories.

V.3.8.2 Homotopy Commutative Diagrams 3.8.2. As pointed out in II.
II.A.4
A.4, the

chain homotopy category of C satisfies a calculus of fractions, allowing us to
perform constructions in w−1C. Here is a typical example: any homotopy com-
mutative diagram in C of the form

A′ > B1 < B′

B

f∨
<>

can be made into a commutative diagram by replacing B1 by the homotopy

pullback of B1
f−→ B

=←−B, which is defined as the shifted mapping cone of
B → cone(f), and is quasi-isomorphic to B1.

We are now ready for the Waldhausen version of the Resolution Theorem,
which is due to Thomason and Trobaugh

TT
[200]. Fix an ambient abelian category

M and consider the Waldhausen category Ch(M) of all chain complexes over
M.

V.3.9 Thomason-Trobaugh Resolution Theorem 3.9. Let A ⊂ B be saturated
Waldhausen subcategories of Ch(M), closed under mapping cones and all shift

maps A 7→ A[n]. If w−1A ≃
> w−1B (i.e., the derived categories of A and B

are equivalent), then KA ≃
> KB is a homotopy equivalence.

V.3.9.1 Remark 3.9.1. A map in A is a weak equivalence in A if and only if it is
a weak equivalence in B. This is because, by saturation, both conditions are
equivalent to the mapping cone being zero in the (common) derived category.
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Proof. (Thomason-Trobaugh) Let A+ be the comma category whose objects are
weak equivalences w : A

∼−→ B with A in A and B in B; morphisms in A+ are
commutative diagrams in B. It is a Waldhausen category in a way that makes
A → A+ → B into exact functors; a morphism (A

∼−→ B) → (A′
∼−→ B′) is a

cofibration (resp., weak equivalence) if both its component maps A → A′ and
B → B′ are. The forgetful functor A+ → A is right adjoint to the inclusion
A → A+, and exact, so K(A) ≃ K(A+).

We will show that the Approximation Theorem
V.2.4
2.4 (or, rather, its dual)

applies to the exact functor A+ → B sending A
∼−→ B to B. This will imply

that K(A+) ≃ K(B), proving the theorem.
Condition

V.2.4
2.4(a) is satisfied, because given a map (A

∼−→ B)→ (A′
∼−→ B′)

in A+ and a weak equivalence B
∼−→ B′, the map A→ A′ is a weak equivalence

in B by the saturation axiom, and hence is in wA by
V.3.9.1
3.9.1. Condition

V.2.4
2.4(b)

holds, because the cylinder functor on B induces one on A+. Thus it suffices to
check that the dual (App)op of the approximation property holds for A+ → B;
this will be a consequence of the hypothesis that A and B have the same derived
category.

Using the Gabriel-Zisman Theorem (II.
II.A.3
A.3), the approximation property

(App)op states that given B′
b−→ B

∼←−A with A in A, there is a commutative
diagram

A′′ > A

B′ > B′′

∼
∨

> B

∼
∨

(3.9.2) V.3.9.2

with A′′ in A, such that the bottom composite is b.
By assumption, B′ is quasi-isomorphic to an object A1 of A; by calculus

of fractions this is represented by a chain A1
∼−→ B1

∼←−B′. Composing with
B′ → B

∼←−A yields a map from A1 to A in the derived category, which must be
represented by a chain A1 → A2

∼←−A with A2 in A. Composing B1
∼←−A1 →

A→ B (and using
V.3.8.2
3.8.2) yields a commutative diagram

A1 > A2 <
∼

A

B′ > B1

∼
∨

> B2

∼
∨
<
∼

B

∼
∨

(3.9.3) V.3.9.3

whose bottom composite is chain homotopic to b. Let A′′ and B′′ denote the
shifted mapping cylinders of A ⊕ A1 → A2 and B ⊕ B1 → B2, respectively;
by the 5-lemma (the extension axiom), the induced map A′′ → B′′ is a quasi-
isomorphism. By the universal property of mapping cylinders

WHomo
[223, 1.5.3], the

chain homotopic maps B′
b−→ B → B2 and B → B1 → B2 lift to a map

B → B′′. We have now constructed a diagram like (
V.3.9.2
3.9.2), which commutes up

to chain homotopy. By
V.3.8.2
3.8.2, this suffices to construct a commutative diagram

of this type.
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Applications

The Thomason-Trobaugh Resolution Theorem
V.3.9
3.9 provides a more convenient

criterion than the Waldhausen Approximation Theorem
V.2.4
2.4 in many cases, be-

cause of the simplicity of the criterion
V.3.8.1
3.8.1: every complex in the larger category

must be quasi-isomorphic to a complex in the smaller category.

V.3.10.1 Homologically bounded complexes 3.10.1. If A is abelian, we saw in
V.3.8.1
3.8.1

that Chb(A) ⊂ Chhb(A) have the same derived categories, so Theorem
V.3.9
3.9

applies applies, and (using Theorem
V.2.2
2.2) we recover the computation of

V.2.7.1
2.7.1:

K(A) ≃ KChb(A) ≃ KChhb(A), and Kn(A) ∼= KnChhb(A) for all n.
If R is a ring, we saw in

V.3.8.1
3.8.1 that ChbM(R) and Chhbpcoh(R) have the same

derived categories. Again by Theorem
V.3.9
3.9, we recover the computation of

V.2.7.4
2.7.4:

G(R) ≃ KChhbpcoh(R).
If S is a central multiplicative set in R, it is easy to see by truncating that

ChbSM(R) → Chhbpcoh,S(R) and ChbSP(R) → Chperf,S(R) induce equivalences
on derived categories. By Theorem

V.3.9
3.9, we obtain the calculation of

V.2.7.4
2.7.4 that

they induce homotopy equivalences on K-theory.

V.3.10.2 Example 3.10.2. If X is a noetherian scheme, the discussion of
V.3.10.1
3.10.1 applies

to the abelian category M(X) of coherent OX -modules. We saw in Ex. II.
EII.9.8
9.8

that if a complex E has only finitely many nonzero cohomology sheaves, and
these are coherent, then E is pseudo-coherent (i.e., it is quasi-isomorphic to a
bounded above complex of vector bundles); by truncating below, it is quasi-
isomorphic to a bounded complex of coherent modules. By

V.3.8.1
3.8.1, this proves

that ChbM(X) and Chhbpcoh(X) have the same derived categories, and hence

G(X) ≃ KChbM(X) ≃ KChhbpcoh(X).
Let Z be a closed subscheme of X. We saw in

V.2.6.2
2.6.2 that the relative K-

theory of G(X) → G(X − Z) is the K-theory of the category ChbZM(X) of
complexes of coherent modules which are acyclic on X − Z. It is contained in
the category Chhbpcoh,Z(X) of homologically bounded pseudo-coherent complexes
acyclic on X − Z. The truncation argument in the previous paragraph shows
that these two categories have the same derived categories, and hence the same
K-theory: KChbZM(X) ≃ KChhbpcoh,Z(X).

This argument works if X is quasi-compact but not noetherian, provided
that we understand M(X) to be pseudo-coherent modules (see

TT
[200, 3.11]); this

is the case when X is quasi-projective over a commutative ring). However, it
does not work for general X; see

SGA6
[SGA6, I]. The following definition generalizes

the definition of G0(X) given in II, Ex.
EII.9.8
9.8 and

SGA6
[SGA6, IV(2.2)].

V.3.10.3 Definition 3.10.3. If a scheme X is not noetherian, then we define G(X) to be
KChhbpcoh(X). If Z is closed in X, we define G(X on Z) to be KChhbpcoh,Z(X).

By Theorem
V.2.5
2.5, G(X on Z)→ G(X)→ G(X−Z) is a homotopy fibration,

and we get a long exact sequence on homotopy groups, exactly as in
V.2.6.2
2.6.2.

V.3.10.4 Example 3.10.4. (Thomason) IfX is any quasi-compact scheme, the inclusion
Chbperf(X) ⊂ Chperf(X) induces an equivalence on derived categories by

TT
[200,

3.5]. Comparing with Definition
V.2.7.3
2.7.3, we see that K(X) ≃ KChbperf(X).

August 29, 2013 - Page 394 of
LastPage
568



Chapter V

If X also has an ample family of line bundles (for example if X is quasi-
projective), the inclusion of ChbVB(X) in Chperf(X) induces an equivalence
on derived categories, by

TT
[200, 3.6 and 3.8]. In this case, we get a fancy proof

that K(X) ≃ KVB(X), which was already observed in
V.2.7.3
2.7.3.

Proper transfer f∗ and the Projection Formula

V.3.11 Proper Transfer 3.11. Here is a homological construction of the transfer f∗
of

V.3.7
3.7, associated to a proper map f : X → Y of noetherian schemes. It is based

upon the fact (see
SGA4
[SGA4, V.4.9]) that the direct image f∗ sends flasque sheaves

to flasque sheaves. Let FX denote the Waldhausen category of homologically
bounded complexes of flasque OX -modules whose stalks have cardinality at
most κ for a suitably large κ; f∗ is an exact functor from flasque modules to
flasque modules, and from FX to FY . Moreover, K(FX) is independent of κ by
Approximation

V.2.4
2.4, and FX ⊂ Chhbpcoh(X) induces a homotopy equivalence on

K-theory by Resolution
V.3.9
3.9 (see Ex.

EV.3.8
3.8). Hence we obtain the transfer map f∗

as the composite

G(X) ≃ KChhbpcoh(X) ≃ K(FX)
f∗−→ K(FY ) ≃ KChhbpcoh(Y ) ≃ G(Y ).

Given another proper map g : Y → Z (with Z noetherian), the composition
g∗f∗ : FX → FZ equals (gf)∗. Thus X 7→ K(FX) and hence X 7→ G(X) is a
functor on the category of noetherian schemes and proper maps.

Suppose in addition that X has finite flat dimension over Y , so that f∗ sends
perfect complexes to perfect complexes. (We say that f is a perfect map.) Then
we have an exact functor f∗ : Chperf(X) → Chperf(Y ) and hence a proper

transfer K(X) ≃ KChperf(X)
f∗−→ KChperf(Y ) ≃ K(Y ). The same argument

shows that X 7→ K(X) is a functor on the category of noetherian schemes and
perfect proper maps.

V.3.11.1 Variant 3.11.1. We can alter f∗ using the “Godement resolution” functor T ,
from complexes of OX -modules to complexes of flasque sheaves; one takes the
direct sum total complex of the Godement resolutions of the individual sheaves,
as in

SGA4
[SGA4, XVII.4.2]. Since the direct image f∗ is exact on flasque sheaves, the

functorRf∗ = f∗◦T is exact on all complexes ofOX -modules. The resulting map
Rf∗ : KChhbpcoh(X) → K(FY ) ≃ KChhbpcoh(Y ) is homotopic to the functorial
construction of G(X)→ G(Y ) in

V.3.11
3.11, so f∗(x) = Rf∗(x) for all x ∈ Gm(X).

V.3.12 Projection Formula 3.12. Let f : X → Y be a proper morphism of noether-
ian schemes. Then f∗ : G∗(X) → G∗(Y ) is a graded K∗(Y )-module homomor-
phism: for all x ∈ Gm(X) and y ∈ Kn(Y ):

f∗(x · f∗y) = f∗(x) · y.

Suppose in addition that f has finite flat dimension. Then f∗ : K∗(X)→K∗(Y )
exists and is a graded K∗(Y )-module homomorphism: the same formula holds
in Km+n(Y ) for all x ∈ Km(X), where f∗(x) ∈ Km(Y ).
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Proof. We will express each side as the pairing on K-theory arising from the
construction of IV.

IV.8.11
8.11 applied to a biexact pairing of Waldhausen categories

M(X) × VB(Y ) → AX × F → AY (II.
II.9.5.2
9.5.2). Let AX denote the cate-

gory Chhbpcoh(X) of homologically bounded pseudo-coherent complexes of OX -
modules, and let F denote the category of bounded above perfect complexes
of flat OY -modules. Note that M(X) ⊂ AX induces G(X) ≃ K(AX) by
V.2.7.4
2.7.4 and VB(X) ⊂ F induces K(Y ) ≃ K(F) by Ex.

EV.2.8
2.8. Then the functors

(E,F ) 7→ (Rf∗E)⊗Y F and (E,F ) 7→ Rf∗(E ⊗X f∗F ) are biexact, where Rf∗
is defined in

V.3.11.1
3.11.1. By IV.

IV.8.11
8.11, they induce maps K(AX) ∧K(F) → K(AY )

which on homotopy groups are the pairings sending (x, y) to f∗(x · f∗(y)) and
f∗(x) · y, respectively. The canonical map

(Rf∗E)⊗Y F → f∗(TE ⊗Y f∗F )→ Rf∗(E ⊗X f∗F )

is a natural quasi-isomorphism of pseudo-coherent complexes; see
SGA6
[SGA6,

III.3.7]. Hence it induces a homotopy between the two maps, as desired.
If in addition X has finite flat dimension, we merely replace AX (resp., AY )

by the category of perfect complexes on X (resp., on Y ), and the same proof
works.

EXERCISES

EV.3.1 3.1. Under the hypothesis of the Resolution Theorem
V.3.1
3.1, show that Hn−1 is

closed under admissible subobjects and extensions in Hn. (It suffices to consider
n = 1.)

EV.3.2 3.2. Let f : B → C be a left exact functor between two abelian categories such
that the right derived functors Rif exist, and suppose that every object of B
embeds in an f -acyclic object (an object for which Rif vanishes when i > 0).
Let A be the full subcategory of f -acyclic objects, and Bf the full subcategory
of objects B such that only finitely many Rif(B) are nonzero.

(a) Show that A and Bf are exact subcategories of B, closed under cokernels
of admissible monomorphisms in B, and that f is an exact functor on A.

(b) Show that K(A) ≃ K(Bf ). In this way we can define f∗ : Kn(Bf ) →
Kn(C) by K(Bf ) ≃ K(A)→ K(C).

EV.3.3 3.3. Show that β is an isomorphism in Example
V.3.5.2
3.5.2. To do this, let Fm(M) be

the submodule ofM generated byM−m⊕· · ·⊕Mm, and consider the subcategory
Mm(S) of graded B-modules M with M = Fm(M). Show that KiMm(R) is a
sum of copies of Gi(R) and use the admissible filtration

0 ⊂ F0(M) ⊂ · · · ⊂ Fm(M) =M

of modules in Mm(S) (see
V.1.8
1.8) to show that KiMm(S) ∼= KiMm(R) for all m.
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EV.3.4 3.4. If S = R ⊕ S1 ⊕ · · · is a graded noetherian ring, and both S/R and R/S
have finite flat dimension, modify the previous exercise to show that Example
V.3.5.2
3.5.2 still holds. Hint: Consider S-modules which are acyclic for both ⊗SR and
⊗SS.

EV.3.5 3.5. Suppose thatX
f−→ Y

g−→ Z are proper morphisms of finite flat dimension.
Show that f∗g∗ = (gf)∗ as maps G∗(Z)→ G∗(X).

EV.3.6 3.6. (Quillen) In this exercise, we give another construction of the transfer
map f∗ : G(X) → G(Y ) associated to a projective morphism f : X → Y of
noetherian schemes. Let A ⊂M(X) denote the (exact) subcategory consisting
of all coherent OX -modules F such that Rf i(F) = 0 for i > 0. Because X is
projective, for every coherent OX -module F there is an integer n0 such that,
for all n ≥ n0, the modules F(n) are in A, and are generated by global sections;
see

Hart
[85, III.8.8].

(a) Show that any coherent F embeds in F(n)r for large n and r. Hint: To
prove it for F = OX , apply Hom(OX(n),−) to a surjection OrX → OX(n);
now apply ⊗F .

(b) Show that every coherent module F has a finite A-resolution, starting
with (a).

(c) Show that every vector bundle has a finite resolution by vector bundles in
A.

(d) Use Ex.
EV.3.2
3.2 to define f∗ to be the composition f∗ : G(X) ≃ K(A)→ G(Y ).

Then show that this definition of f∗ is homotopy equivalent to the map
defined in

V.3.7
3.7, so that the maps f∗ : Gn(X)→ Gn(Y ) agree.

(e) Given g : Z → X, let B ⊂ M(X) be the subcategory of modules Tor-
independent of OZ . Show that every F in B has a finite A∩B-resolution.
Hint: If F is in B, so is F(n).

EV.3.7 3.7. Fix a noetherian ring R, and let Ch
hb,+
M (R) be the category of all bounded

below chain complexes of R-modules which are quasi-isomorphic to a (bounded)
complex in Chb(M(R)). For example, injective resolutions of finitely generated

R-modules belong to Ch
hb,+
M (R). Let I ⊂ Ch

hb,+
M (R) denote the subcategory

of complexes of injective R-modules. Show that the derived categories of I,
Ch

hb,+
M (R) and Chb(M(R)) are isomorphic. Conclude that

K(I) ≃ KCh
hb,+
M (R) ≃ KChb(M(R) ≃ G(R).

EV.3.8 3.8. Fix a noetherian scheme X, and let Ch
hb,+
M (X) be the category of all

bounded below chain complexes of OX -modules which are quasi-isomorphic to
a (bounded) complex in Chb(M(X)).

(a) Show that the derived categories of Ch
hb,+
M (X) and Chb(M(X)) are iso-

morphic, and conclude that Ch
hb,+
M (X) ≃ KChb(M(X) ≃ G(X).
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(b) Let I ⊂ F ⊂ Ch
hb,+
M (X) denote the subcategories of complexes of injective

and flasque OX -modules, respectively. Show that K(I) ≃ K(F) ≃ G(X)
as well.

EV.3.9 3.9. If X is a quasi-compact regular scheme, show that every pseudo-coherent
module is perfect (II, Ex.

EII.9.10
9.10). Then show that Chperf(X) is the same as

Chhbpcoh. Conclude that K(X) ≃ G(X) by definition (
V.2.7.3
2.7.3 and

V.3.10.3
3.10.3).

EV.3.10 3.10. (Projection Formula) Suppose that f : X → Y is a proper map be-
tween quasi-projective schemes, both of which have finite flat dimension. Use
a modification of the proof of

V.3.7.3
3.7.3 to show that the proper transfer map

f∗ : Gm(X)→ Gm(Y ) is a K0(Y )-module map, i.e., that f∗(x · f∗y) = f∗(x) · y
for y ∈ K0(X) and x ∈ Gm(X). (The conclusion is a special case of

V.3.12
3.12; see

SGA6
[SGA6, IV.2.11.1].)

EV.3.11 3.11. (Thomason) Let f : X → Y be a proper morphism of noetherian schemes,
and let g : Y ′ → Y be a map Tor-independent of f . Show that the Base Change
Theorem

V.3.7.2
3.7.2 remains valid in this context: if g has finite flat dimension then

g∗f∗ ≃ f ′∗g
′∗ as maps G(X) → G(Y ′), while if f has finite flat dimension then

g∗f∗ ≃ f ′∗g′∗ as maps K(X)→ K(Y ′)

(a) First consider the category C of bounded above pseudo-coherent complexes
of flat modules on X. Then g′

∗
is exact on C and takes values in C′.

Show that the Godement resolution T of
V.3.11.1
3.11.1 sends C to itself, and that

E → TE is a quasi-isomorphism. Then show that the inclusion of C in
Chhbpcoh(X) is an equivalence of derived categories, so G(X) ≃ K(C).

(b) Consider the category A whose objects consist of an E in C, a bounded
above complex F of flat modules on Y with a quasi-isomorphism F →
f∗E, a bounded below complex G of flasque modules on X ′ with a quasi-
isomorphism (g′)∗E → G. Show that A has the same derived category as
C, and conclude that G(X) ≃ K(A).

(c) Show that g∗f∗ is represented by the exact functor on A sending (E,F,G)
to g∗F , and that f ′∗(g

′)∗ is represented by the exact functor sending
(E,F,G) to f ′∗G.

(d) The canonical base change of
SGA4
[SGA4, XVII.4.2.12] is the natural isomor-

phism

g∗F → g∗f∗(E)→ g∗f∗ g
′
∗ g
′∗E = g∗g∗ f

′
∗ g
′∗E → f ′∗ g

′∗E → f ′∗G.

Show that this base change induces the desired homotopy g∗f∗ ≃ f ′∗ g′∗.

EV.3.12 3.12. Suppose that F : M1 → M2 is an additive functor between abelian
categories, and that Ai ⊂ Ch(Mi) (i = 1, 2) are saturated Waldhausen sub-
categories, closed under mapping cones and shifts. If F sends A1 to A2 and
induces an equivalence of derived categories, modify the proof of Theorem

V.3.9
3.9

to show that K(A1) ≃ K(A2).
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EV.3.13 3.13. Let P1
R denote the projective line over an associative ring R, as in

V.1.5.4
1.5.4,

and let Hn denote the subcategory of mod-P1
R of modules having a resolution

of length n by vector bundles. Show that K(P1
R) ≃ KHn for all n.

EV.3.14 3.14. Let S be a set of central nonzerodivisors in a ring R.

(a) Let Chperf(MS) denote the category of perfect chain complexes of
S-torsion R-modules. Show that the inclusion of Chperf(MS) into
Chperf,S(R) induces an equivalence KChperf(MS) ≃ K(R on S). (See
V.2.7.2
2.7.2.) Hint: Consider the functor lim−→Hom(R/sR,−) from ChbSP(R) to
Chperf(MS).

(b) Let H be the additive subcategory of HS(R) generated by the projective
R/sR-modules. Show that KChb(H) ≃ KHS(R).

(c) Show that the inclusion of Chb(H) in Chperf(MS) satisfies property
(App), and conclude that K(R on S) ≃ KHS(R). By Theorem

V.2.6.3
2.6.3,

this yields a long exact sequence

· · ·Kn+1(S
−1R)

∂−→ KnHS(R)→ Kn(R)→ Kn(S
−1R)

∂−→ · · · .

EV.3.15 3.15. Let s be a nonzerodivisor in a commutative noetherian ringR, and assume
that R is flat over a subring R0, with R0 isomorphic to R/sR. Use the projection
formula

V.3.5.3
3.5.3 to show that the transfer map G∗(R/sR)→ G∗(R) is zero.

EV.3.16 3.16. (Thomason
TT
[200, 5.7]) Let X be a quasi-projective scheme, and let Z be

a subscheme defined by an invertible ideal I of OX . Let Chperf,Z(X) denote
the category of perfect complexes on X which are acyclic on X−Z. For reasons
that will become clear in §7, we write K(X on Z) for KChperf,Z(X).

(a) Let MZ(X) denote the category of OX -modules supported on Z, and
let Chperf(MZ) denote the category of perfect complexes of modules in
MZ(X). Show that the inclusion into Chperf,Z(X) induces an equivalence
KChperf(MZ) ≃ K(X on Z).

(b) Let HZ(X) denote the subcategory of modules in H(X) supported on Z.
IfH is the additive subcategory ofHZ(X) generated by the OX/InOX(n),
show that K(H) ∼= KHZ(X).

(c) Show that the inclusion of Chb(H) in Chperf(MZ) satisfies (App), so
that Waldhausen Approximation

V.2.4
2.4 (and

V.2.2
2.2) imply that K(X on Z) ≃

KHZ(X).
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4 Devissage

This is a result that allows us to perform calculations like G∗(Z/pr) ∼= K∗(Fp),
which arise from the inclusion of the abelian category M(Fp) of all finite ele-
mentary abelian p-groups into the abelian category M(Z/pr) of all finite abelian
p-groups of exponent pr. It is due to Quillen and taken from

Q341
[153].

V.4.1 Devissage Theorem 4.1. Let i : A ⊂ B be an inclusion of abelian categories
such that A is an exact abelian subcategory of B (II.

II.6.1.5
6.1.5) and A is closed in

B under subobjects and quotients. Suppose that every object B of B has a finite
filtration

0 = Br ⊂ · · · ⊂ B1 ⊂ B0 = B

by objects in B such that every subquotient Bi/Bi−1 lies in A. Then

K(A) ≃ K(B) and K∗(A) ∼= K∗(B).

Proof. By Quillen’s Theorem A (IV.
IV.3.7
3.7), it suffices to show that the comma

categories Qi/B are contractible for every B in B. If B is in A, then Qi/B ≃ ∗
because B is a terminal object. Since B has a finite filtration, it suffices to show
that the inclusion i/B′ → i/B is a homotopy equivalence for each B′  B in
B with B/B′ in A.

By Ex. IV.
IV.6.1
6.1, we may identify the objects of Qi/B, which are pairs (A,A→

B), with admissible layers u : B1  B2  B such that B2/B1 is in A. Let
J denote the subcategory of Qi/B consisting of all admissible layers of B with
B1 ⊆ B′. We have functors s : Qi/B → J , s(u) = (B1 ∩ B′  B2  B)
and r : J → Qi/B′, r(u) = (B1  B2 ∩ B′  B), because A is closed under
subobjects. The natural transformations u→ s(u)← rs(u) defined by

(B1  B2  B)→ (B1 ∩B′  B2  B)← (B1 ∩B′  B2 ∩B′  B)

show that s is left adjoint to the inclusion J ⊂ Qi/B and that r is right adjoint
to the inclusion Qi/B′ ⊂ J . It follows (IV.

IV.3.2
3.2) that Qi/B′ ⊂ J ⊂ Qi/B are

homotopy equivalences, as desired.

V.4.1.1 Open Problem 4.1.1. Generalize the Devissage Theorem
V.4.1
4.1 to Waldhausen

categories. Such a result should yield the above Devissage Theorem when ap-
plied to Chb(A).

V.4.2 Corollary 4.2. If I is a nilpotent ideal in a noetherian ring R, then G(R/I) ≃
G(R) and hence G∗(R/I) ∼= G∗(R).

Proof. As in II.
II.6.3.1
6.3.1, devissage applies to M(R/I) ⊂ M(R), because every

finitely generated R-module M has a finite filtration by submodules MIn.

V.4.2.1 Example 4.2.1. Let R be an artinian local ring with maximal ideal m (mr = 0)
and quotient field k = R/m. (E.g., R = Z/pr and k = Fp). Then we have
G∗(R) ∼= K∗(k).
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It is instructive to deconstruct the argument slightly. In this case, M(k) is
an exact subcategory of M(R) and every R-moduleM has the natural filtration

0 = mrM ⊂ mr−1M ⊂ · · · ⊂ mM ⊂M.

Note that the Admissible Filtrations Proposition
V.1.8
1.8 does not apply because for

example F (M) =M/mM is not an exact functor.

4.2.2 Open Problem 4.2.2. Compute the K-groups K∗(R) of an artinian local
ring R, assuming K∗(k) is known. If char(k) = 0, this can be done using
cyclic homology (Goodwillie’s Theorem): the relative groups Kn(R,m) and
HCn−1(R,m) are isomorphic. If char(k) 6= 0, this can be done using topological
cyclic homology (McCarthy’s Theorem): Kn(R,m) and TCn(R,m) are isomor-
phic. In terms of generators and relations, though, we only know K0, K1, K2

and sometimes K3 at present. (See II.
II.2.2
2.2, III.

III.2.4
2.4 and III.

III.5.11.1
5.11.1.)

V.4.3 Application 4.3. (Quillen) Let A be an abelian category such that every ob-
ject has finite length. By devissage, K(A) is equivalent to K(Ass), where Ass
is the subcategory of semisimple objects. By Schur’s Lemma, Ass ∼= ⊕M(Di),
where the Di are division rings. (The Di are the endomorphism rings of non-
isomorphic simple objects Ai.) It follows from Ex. IV.

EIV.6.11
6.11 that

K∗(A) ≃ ⊕iK∗(Di).

This applies to finitely generated torsion modules over Dedekind domains and
curves, and more generally to finitely generated modules of finite support over
any commutative ring or scheme.

V.4.4 Application 4.4 (R-modules with support). Given a central element s in a
noetherian ring R, letMs(R) denote the abelian subcategory ofM(R) consisting
of all M such that Msn = 0 for some n. We saw in II.

II.6.3.3
6.3.3 that these modules

have finite filtrations with subquotients in M(R/sR). By devissage, KMs(R) ≃
KM(R/sR), so we have K∗Ms(R) ∼= G∗(R/sR). More generally, given any
ideal I we can form the exact category MI(R) of all M such that MIn = 0 for
some n. Again by devissage, KMI(R) ≃ KM(R/I) and we have K∗MI(R) ∼=
G∗(R/I). The case I = p (K∗Mp(R) ∼= G∗(R/p)) will be useful in section 6
below.

If S is a central multiplicatively closed set in R, the exact category MS(R)
is the filtered colimit over s ∈ S of the Ms(R). By IV.

IV.6.4
6.4, KMS(R) =

ΩBQMS(R) is lim−→KMs(R) and hence

KnMS(R) = lim−→ KnMs(R) = lim−→ Gn(R/sR).

EXERCISES

EV.4.1 4.1. (Jordan-Hölder) Given a ring R, describe the K-theory of the category of
R-modules of finite length. (K0 is given by Ex. II.

EII.6.1
6.1.)
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EV.4.2 4.2. If X is a noetherian scheme, show that G(Xred) ≃ G(X) and hence that
G∗(Xred) ∼= G∗(X). This generalizes the result II.

II.6.3.2
6.3.2 for G0.

EV.4.3 4.3. Let Z be a closed subscheme of a noetherian scheme X, and let MZ(X)
be the exact category of all coherent X-modules supported on Z. Generalize

V.4.4
4.4

and II.
II.6.3.4
6.3.4 by showing that

G(Z) = KM(Z) ≃ KMZ(X).

EV.4.4 4.4. Let S = R⊕ S1 ⊕ · · · be a graded noetherian ring, and let Mb
gr(S) denote

the category of graded modules M with Mn = 0 for all but finitely many n.
(Ex. II.

EII.6.14
6.14) Via S → R, any R-module in Mb

gr(R) = Mgr(R) is a graded

S-module in Mb
gr(S).

(a) Use devissage to show that Mgr(R) ⊂ Mb
gr(S) induces an equivalence

in K-theory, so that (in the notation of Example
V.3.5.2
3.5.2) K∗M

b
gr(S) ≃

G∗(R)[σ, σ
−1].

(a) If t ∈ S1, write Mgr,t(S) for the category of t-torsion modules in Mgr(S).
Show that Mgr(S/tS) ⊂Mgr,t(S) induces KMgr(S/tS) ≃ KMgr,t(S).

5 The Localization Theorem for abelian cate-

gories

The K0 Localization Theorems for abelian categories (II.
II.6.4
6.4) and certain ex-

act categories (II.
II.7.7.4
7.7.4) generalize to higher K-theory, in a way we shall now

describe. It is also due to Quillen.
Recall from the discussion before II.

II.6.4
6.4 that a Serre subcategory of an abelian

category A is an abelian subcategory B which is closed under subobjects, quo-
tients and extensions. The quotient abelian category A/B exists; Gabriel’s
construction of A/B using the Calculus of Fractions is also described just before
II.

II.6.4
6.4.

V.5.1 Abelian Localization Theorem 5.1. Let B be a Serre subcategory of a
(small) abelian category A. Then

K(B)→ K(A) loc
> K(A/B)

is a homotopy fibration sequence. Thus there is a long exact sequence of homo-
topy groups

· · · → Kn+1(A/B) ∂−→ Kn(B)→ Kn(A)
loc
> Kn(A/B)

∂
> Kn−1(B)→ · · ·

(5.1.1) V.5.1.1

ending in K0(B)→ K0(A)→ K0(A/B)→ 0, the exact sequence of II.
II.6.4
6.4.
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Proof. (Quillen) For any A in A, let us write Ā for the object loc(A) of A/B.
Recall from IV.

IV.3.2.3
3.2.3 that for any object L in A/B the comma category L\Qloc

consists of pairs (A, u) with A in A and u : L → Ā a morphism in QA/B.
We will deduce the result from Theorem B (IV.

IV.3.7
3.7), so we need to show that

0\Qloc is homotopy equivalent to QB, and that for every L → L′ the map
L′\Qloc→ L\Qloc is a homotopy equivalence.

To do this, we introduce the full subcategory FL of L\Qloc consisting of
pairs (A, u) in which u is an isomorphism in A/B. (By IV.

IV.6.1.2
6.1.2, isomorphisms

in QA/B are in 1–1 correspondence with isomorphisms in A/B, and are de-
scribed in II.

II.A.1.2
A.1.2.) In particular, the category F0 (L = 0) is equivalent to the

subcategory QB because, by construction (II.
II.6.4
6.4), the objects of B are exactly

the objects of A isomorphic to 0 in A/B. Thus the functor QB → QA factors
as QB ∼= F0 →֒ 0\Qloc→ QA.

V.5.1.2 Claim 5.1.2. The inclusion i : F0 → 0\Qloc is a homotopy equivalence.

This will follow from Quillen’s Theorem A (IV.
IV.3.7
3.7) once we observe that for

every A in A the comma category i/(A, u : 0→ Ā) is contractible. By IV.
IV.6.1.2
6.1.2,

the morphism u in QA/B is the same as a subobject L of Ā in A/B, and this is
represented by a subobject of A. By Ex. IV.

EIV.6.1
6.1, we can represent each object

of i/(A, u) by an admissible layer A1  A2  A in A such that Ā1 = Ā2 = L,
and it is easy to see that i/(A, u) is equivalent to the poset of such layers. But
this poset is directed by the very construction of A/B: A1  A2  A and
A′1  A′2  A both map to (A1 ∩ A′1)  (A2 + A′2)  A. This verifies our
claim, showing that QB → 0\Qloc is a homotopy equivalence.

V.5.1.3 Claim 5.1.3. The inclusion FL ⊂
i
> L\Qloc is a homotopy equivalence for

every L.

This is proven with the same argument used to prove Claim
V.5.1.2
5.1.2. The

only difference is that now the category i/(A, u) is equivalent to the poset of
admissible layers A1  A2  Ā with A2/A1

∼= L; the construction works in
this context to shows that it is directed.

We now introduce several auxiliary categories. Fix N in A and let EN be
the category of pairs (A, h : A→ N) for which h̄ is an isomorphism in A/B. By
definition, a morphism from (A, h) to (A′, h′) is a morphism A և A′′  A′ in
QA such that the two composites A′′ → N agree. It is easily checked that there
is a well defined functor k : EN → QB sending (A, h) to ker(h).

Let E ′N denote the full subcategory of EN on the (A, h) with h onto. We will
show that E ′N → EN and E ′N → QB are homotopy equivalences.

V.5.1.4 Claim 5.1.4. For each N in A, k′ : E ′N → QB is a homotopy equivalence.

This will follow from Theorem A once we show that k′/T is contractible for
each T in QB. An object of this comma category is a datum (A, h, u), where
(A, h) is in EN , and u : ker(h)→ T is in QB. The subcategory C of all (A, h, u)
with u surjective is contractible because it has (N, 1N , 0 և T ) as initial object.
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And the inclusion of C in k′/T is a homotopy equivalence because it has a left
adjoint (IV.

IV.3.2
3.2), sending (A, h, ker(h)  T0 և T ) to (A0, h0, T0 և T ), where

A0 is the pushout of ker(h)→ A along ker(h)  T0 and h0 is the induced map.
The claim follows.

V.5.1.5 Claim 5.1.5. For each N , E ′N →֒ EN is a homotopy equivalence.

Let IN denote the partially ordered set of objects Ni of N such that N/Ni
is in B, and consider the functor EN → IN sending (A, h) to the image h(A).
This is a fibered functor (IV.

IV.3.7.3
3.7.3); the fiber over i is E ′Ni

, and the base change
for Nj ⊂ Ni sends (A, h) to (h−1(Nj), h). Since kN (A, h) = kNi

(A, h), it follows
from Claim

V.5.1.4
5.1.4 that the base change maps E ′Ni

→ E ′Nj
are homotopy equiva-

lences. By Theorem B (IV.
IV.3.7
3.7), E ′N → EN → IN is a homotopy fibration. Since

IN has a final object (N), it is contractible and we get E ′N ≃ EN as claimed.

V.5.1.6 Claim 5.1.6. If g : N → N ′ is a map in A which is an isomorphism in A/B,
then g∗ : EN → EN ′ is a homotopy equivalence.

Indeed, if (A, h) is in EN then ker(h) ⊆ ker(gh) defines a natural transfor-
mation from k : EN → QB to k g∗ : EN → EN ′ → QB. As k is a homotopy
equivalence (by Claims

V.5.1.4
5.1.4 and

V.5.1.5
5.1.5), so is g∗.

Now fix L in A/B, and let IL be the category of pairs (N, N̄
∼−→ L); mor-

phisms are maps g : N → N ′ in A such that N̄ ∼= N̄ ′. This category is filtering
by II.

II.A.1.2
A.1.2, and there is a functor from IL to categories sending (N, N̄

∼−→ L)
to EN and g to g∗.

V.5.1.7 Claim 5.1.7. FL is isomorphic to the colimit over IL of the categories EN .

For each n = (N, N̄
∼−→ L) we have a functor pn : EN → FL sending (A, h)

to L
∼−→ N̄

∼−→ Ā. Since pn = pn′g∗ for each morphism g, there is a functor
p : colim EN → FL.

Consider the composite functor EN k−→ QB ∼−→ F0
∼−→ 0\Qloc, sending

(A, h) to (ker(h), 0); it is a homotopy equivalence by Claims
V.5.1.2
5.1.2–

V.5.1.5
5.1.5. Using

the map i : 0  L in Q(A/B), we have a second functor

EN p−→ FL →֒ L\Qloc
i∗−→ 0\Qloc,

sending (A, h) to (A, 0  Ā). There is a natural transformation between them,
given by the inclusion of ker(h) in A. Hence we have a homotopy commutative
diagram:

EN
pn

> FL ⊂ > L\Qloc

QB

k
∨ ∼

> F0
⊂ > 0\Qloc.

i∗

∨
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From Claims
V.5.1.6
5.1.6 and

V.5.1.7
5.1.7, it follows that each pn : EN → FL is a homotopy

equivalence. From Claim
V.5.1.3
5.1.3, FL →֒ L\Qloc is a homotopy equivalence. It

follows that i∗ : L\Qloc→ 0\Qloc is also a homotopy equivalence. This finishes
the proof of the Localization Theorem

V.5.1
5.1.

Taking homotopy groups with coefficients mod ℓ also converts homotopy fi-
bration sequences into long exact sequences (IV.

IV.2.1.1
2.1.1), so we immediately obtain

a finite coefficient analogue of (
V.5.1.1
5.1.1).

V.5.2 Corollary 5.2. For each ℓ there is also a long exact sequence

· · ·→ Kn+1(A/B;Z/ℓ) ∂−→ Kn(B;Z/ℓ)→Kn(A;Z/ℓ)→ Kn(A/B;Z/ℓ) ∂−→ · · ·

V.5.3 Open Problem 5.3. Let B be a Serre subcategory of an abelian category A
(II.

II.6.4
6.4), and let ChbB(A) denote the category of all bounded complexes in A

whose cohomology lies in B (II, Ex.
EII.9.5
9.5). Is K(ChbB(A)) ≃ K(B)? Such a result

would make the Localization Theorem
V.5.1
5.1 for abelian categories an immediate

consequence of Theorems
V.2.5
2.5 and

V.2.2
2.2.

EXERCISES

EV.5.1 5.1. Suppose that α : A → A is a morphism in A which is an isomorphism in
A/B, and so determines an element [α] of K1(A/B). Show that ∂ : K1(A/B)→
K0(B) sends [α] to [coker(α)]− [ker(α)]. Hint: Use the representative of [α] in
π2BQ(A/B) given in IV, Ex.

EIV.7.9
7.9, and IV.

IV.6.2
6.2.

EV.5.2 5.2. Show that the map Sn → Pn+1(Z/ℓ) of IV.
IV.2.1.1
2.1.1 applied to the homotopy

fibration of Theorem
V.5.1
5.1 yields a commutative diagram comparing the localiza-

tion sequences of (
V.5.1
5.1) and (

V.5.2
5.2):

Kn+1(A/B;Z/ℓ)
∂
> Kn(B;Z/ℓ) > Kn(A;Z/ℓ) > Kn(A/B;Z/ℓ)

Kn(A/B)
∨ ∂

> Kn−1(B)
∨

> Kn−1(A)
∨

> Kn−1(A/B).
∨

EV.5.3 5.3. Suppose that there is a biexact functor A×C → A′ which induces biexact
functors B × C → B′ and A/B × C → A′/B′. Use Ex. IV.

EIV.1.23
1.23 to show that

for x ∈ Kj(A/B) and y ∈ Kn(C) the element {x, y} ∈ Kn+i(A′/B′) satisfies
∂({x, y}) = {∂(x), y} in Kn+i(B′).
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6 Applications of the Localization Theorem

In this section, we give two families of applications of the Localization Theorem
V.5.1
5.1, to G(R) and to G(X). All rings and schemes will be noetherian in this
section, so that M(R) and M(X) are abelian categories.

V.6.1 Application 6.1. Let S be a central multiplicatively closed set in a noether-
ian ring R. We saw in II.

II.6.4.1
6.4.1 that the category MS(R) of finitely gener-

ated S-torsion modules is a Serre subcategory of M(R) with quotient category
M(S−1R). By the Localization Theorem

V.5.1
5.1, there is a homotopy fibration

KMS(R)→ G(R)→ G(S−1R).

We observed in
V.4.4
4.4 that MS(R) is the colimit over all s ∈ S of the M(R/sR),

and that K∗MS(R) ∼= lim−→ G∗(R/sR). Comparing this to the Waldhausen local-

ization sequence (
V.2.6.1
2.6.1), we see that MS(R)→ ChbSM(R) induces a homotopy

equivalence KMS(R)
∼−→ KChbSM(R) = G(R on S).

The prototype is the case when S = {sn}. Here the maps G(R/sR) →
G(R/snR) are homotopy equivalences by devissage, so G(R/sR) ≃ KMS(R);
see

V.4.4
4.4. By inspection, the map G(R/sR) → G(R) identifying it with the

homotopy fiber of G(R)→ G(R[1/s]) is the transfer i∗ (IV.
IV.6.3.3
6.3.3) associated to

i : R→ R/sR. Thus the long exact Localization sequence (
V.5.1.1
5.1.1) becomes:

· · · → Gn+1(R[s
−1])

∂−→ Gn(R/sR)
i∗−→ Gn(R)→ Gn(R[s

−1])
∂−→ · · · .

(6.1.1) V.6.1.1

This is a sequence of K∗(R)-modules, because P(R) acts on the sequence of
abelian categories MS(R)→M(R)→M(S−1R).

V.6.1.2 Example 6.1.2. It is useful to observe that any s ∈ S determines an element [s]
of K1(R[1/s]) and hence G1(R[1/s]), and that ∂(s) ∈ G0(R/sR) is [R/sR]− [I],
where I = {r ∈ R : sr = 0}. This formula is immediate from Ex.

EV.5.1
5.1. In

particular, when R is a domain we have ∂(s) = [R/sR].

V.6.1.3 Example 6.1.3. If R = Z[s, 1/f(s)] with f(0) = 1, the maps i∗ are zero
in (

V.6.1.1
6.1.1) and hence the maps Gn(R)→ Gn(R[1/s]) are injections. Indeed, the

vanishing of i∗ follows from the projection formula (
V.3.5.3
3.5.3): i∗(i

∗y) = i∗(1·i∗y) =
i∗(1) · y together with the observation in

V.6.1.2
6.1.2 that i∗([R/sR]) = i∗∂(s) = 0.

(Cf. Ex.
EV.3.15
3.15.)

For the following result, we adopt the notation that f denotes the inclusion of
R into R[s], j is R[s] →֒ R[s, s−1], and (s = 1) denotes the map from either R[s]
or R[s, s−1] to R, obtained by sending s to 1. Because R has finite flat dimension
over R[s] and R[s, s−1], there are base change maps (s = 1)∗ : G(R[s])→ G(R)
and (s = 1)∗ : G(R[s, s−1])→ G(R).
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V.6.2 Fundamental Theorem for G(R) 6.2. Let R be a noetherian ring. Then:

(i) The flat base change f∗ : G(R)→ G(R[s]) is a homotopy equivalence, split
by (s = 1)∗. Hence

f∗ : Gn(R) ∼= Gn(R[s]) for all n.

(ii) The flat base change j∗ : G(R[s])→ G(R[s, s−1]) induces isomorphisms

Gn(R[s, s
−1]) ∼= Gn(R)⊕Gn−1(R).

Proof. We first observe that (i) implies (ii). Indeed, because (s = 0)∗ : G(R)→
G(R[s]) is zero by

V.3.5.1
3.5.1, the localization sequence (

V.6.1.1
6.1.1) for j : R[s]→ R[s, s−1]

splits into short exact sequences

0→ Gn(R[s])
j∗−→ Gn(R[s, s

−1])
∂−→ Gn−1(R)→ 0.

By (i) we may identify (jf)∗ : Gn(R) → Gn(R[s, s
−1]) with j∗. Because (s =

1) ◦ jf is the identity, (jf)∗(s = 1)∗ is homotopic to the identity of G(R).
Assertion (ii) follows.

To prove (i), we introduce the graded subring S = R[st, t] of R[s, t] where
deg(s) = 0, deg(t) = 1. Let Mb

gr(S) denote the Serre subcategory of all graded
modules M in Mgr(S) with only finitely many nonzero Mn, i.e., graded t-
torsion modules. By devissage (Ex.

EV.4.4
4.4), Mb

gr(S) has the same K-theory as its
subcategory Mgr(S/tS). There is also an equivalence of quotient categories

Mgr(S)/M
b
gr(S)

∼= M(R[s])

induced by the exact functor M 7→ M/(t − 1)M from Mgr(S) to M(R[s]).
Note that both S and S/tS = R[st] are flat over R and that R has finite
flat dimension over both, so the K-theory of both Mgr(S) and Mb

gr(S) are
isomorphic to G(R)[σ, σ−1] by Example

V.3.5.2
3.5.2. Hence the localization sequence

(
V.5.1.1
5.1.1) gives us the following diagram with exact rows:

· · · → KnMgr(S/tS) > KnMgr(S) > Gn(R[s]) → · · ·

0→ Gn(R)⊗ Z[σ, σ−1]

V.3.5.2
3.5.2

∧

h
> Gn(R)⊗ Z[σ, σ−1]

V.3.5.2
3.5.2

∧

> Gn(R) → 0.

∧

To describe the map h, recall from
V.3.5.2
3.5.2 that it is induced by the functor from

M(R) to KMgr(S) sending M to M ⊗ S/tS. We have an exact sequence of
functors from M(R) to Mgr(S):

0→M ⊗ S(−1) t−→ M ⊗ S →M ⊗ S/tS → 0.

As pointed out in Example
V.3.5.2
3.5.2, the first two maps induce the maps σ and 1,

respectively, from Gn(R) to G(R)[σ, σ
−1]. Hence h = 1− σ, proving (i).
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Because R[s] and R[s, s−1] are regular whenever R is, combining Theorems
V.6.2
6.2 and

V.3.3
3.3 yields the following important consequence.

V.6.3 Theorem 6.3. [Fundamental Theorem] If R is a regular noetherian ring, then
the base change K(R) → K(R[s]) is a homotopy equivalence, so Kn(R) ∼=
Kn(R[s]) for all n. In addition,

Kn(R[s, s
−1]) ∼= Kn(R)⊕Kn−1(R) for all n.

In particular, regular rings are Kn-regular for all n (in the sense of III.
III.3.4
3.4).

V.6.3.1 Corollary 6.3.1. For any regular ring R, there is a split exact sequence

0→ Kn(R)→ Kn(R[s])⊕Kn(R[s
−1])→ Kn(R[s, s

−1])
∂
>← Kn−1(R)→ 0,

in which the splitting is multiplication by s ∈ K1(Z[s, s−1]).

Proof. This is obtained from the direct sum of the split exact sequences (
V.6.1.1
6.1.1)

for R[s] → R[s, s−1] and R[s−1] → R[s, s−1], and the isomorphism Kn(R) ∼=
Kn(R[s]). By

V.6.1
6.1, the map ∂ in the localization sequence (

V.6.1.1
6.1.1) isK∗(R)-linear.

Thus for x ∈ Kn−1(R) and s ∈ K1(R[s, s
−1]) we have ∂{s, x} = {∂s, x} = x.

The technique used in
V.6.2
6.2 to prove that G(R) ≃ G(R[s]) applies more gen-

erally to filtered rings. By a filtered ring we mean a ring R equipped with
an increasing filtration {FiR} such that 1 ∈ F0R, FiR · FjR ⊆ Fi+jR and
R = ∪FiR. The associated graded ring is gr(R) = ⊕FiR/Fi−1R. It is easy to
see that if gr(R) is noetherian then so is R.

For example, any positively graded ring such as R[s] is filtered with Fi(R) =
R0 ⊕ · · · ⊕Ri; in this case gr(R) = R.

V.6.4 Theorem 6.4. Let R be a filtered ring such that gr(R) is noetherian and of
finite flat dimension d over k = F0R, and such that k has finite flat dimension
over gr(R). Then k ⊂ R induces G(k) ≃ G(R).

Proof. The hypotheses imply that R has flat dimension fdk A ≤ d. Indeed, since
each of the FiR/Fi−1R has flat dimension at most d it follows by induction
that fdk FiR ≤ d and hence that fdk R ≤ d. Thus the map G(k) → G(R) is
defined. Let S denote the graded subring ⊕(FiR)ti of R[t]. Then S/tS ∼= gr(R),
S is noetherian, fdk S ≤ d and k has finite flat dimension over S. Finally, the
category Mgr(S) is abelian (as S is noetherian) and we have Mgr(S)/M

b
gr(S)

∼=
M(R).

It follows thatKMgr(S) andKMgr(S/tS) ∼= KMb
gr(S) are both isomorphic

to G(k)[σ, σ−1] by Example
V.3.5.2
3.5.2 (and Ex.

EV.3.4
3.4). The rest of the proof is the

same as the proof of the Fundamental Theorem
V.6.2
6.2. (See Ex.

EV.6.12
6.12).

V.6.4.1 Remark 6.4.1. If in addition k is regular, then so is R. (This follows from the
fact that for M ∈M(R), pdR(M) = fdR(M); see

Q341
[153, p. 112].) It follows from

Theorem
V.3.3
3.3 that K(k) ≃ K(R).
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V.6.4.2 Example 6.4.2. Let g be a finite-dimensional Lie algebra over a field k. Then
the universal enveloping algebra R = U(g) is filtered, with F1R = k ⊕ g, and
its associated graded algebra is a polynomial ring (the symmetric algebra of the
vector space g). Thus Theorem

V.6.4
6.4 implies that K(k) ≃ K(U(g)).

V.6.5 Theorem 6.5. (Gersten) Let A = k{X} be a free k-algebra on a set X, where
k is noetherian regular. Then K∗(k{X}) ∼= G∗(k{X}) ∼= K∗(k).

Proof. It is known (see
CLL
[41]) that A is a coherent regular ring, i.e., that the

category M(A) of pseudo-coherent modules is abelian. Hence K∗(A) ∼= G∗(A)
by Theorem

V.3.3
3.3. Replacing k by k[t], we see that the same is true of A[t].

Now A has the set of all words as a k-basis; we grade A by word length and
consider the category of graded pseudo-coherent A-modules. The proof of

V.6.4
6.4

goes through (Exercise
EV.6.13
6.13) to prove that G∗(k) ∼= G∗(A), as desired.

As remarked in IV.
IV.1.9
1.9(iv), the calculation K∗(Z{X}) = K∗(Z) was used by

Anderson to show that Swan’s definition KSw(R) of the higher K-theory of R
agrees with Quillen’s definitions K0(R)×BGL(R)+ and ΩBQP(R) (which we
saw were equivalent in IV.

IV.7.2
7.2).

Dedekind Domains

Suppose that R is a Dedekind domain with fraction field F . Then R and F
and regular, as are the residue fields R/p, so K∗(R) ∼= G∗(R), etc. Hence the
localization sequence of

V.6.1
6.1 with S = R−{0} becomes the long exact sequence:

· · · → Kn+1(F )
∂−→ ⊕pKn(R/p)

⊕(ip)∗
> Kn(R) > Kn(F )

∂
> · · · . (6.6) V.6.6

Here p runs over the nonzero prime ideals of R, and the maps (ip)∗ : Kn(R/p)→
Kn(R) are the transfer maps of

V.3.3.2
3.3.2.

Writing K1(R) = R×⊕SK1(R) (see III.
III.1.1.1
1.1.1), the formula

V.6.1.2
6.1.2 allows us to

identify the ending with the sequence 1 → R× → F×
div
> D(R) → K0(R) →

Z → 0 of I.
I.3.6
3.6. Therefore we may extract the following exact sequence, which

we have already studied in III.
III.6.5
6.5:

⊕pK2(R/p)→ K2(R)→ K2(F )
∂−→ ⊕p (R/p)

× ⊕(ip)∗> SK1(R)→ 1. (6.6.1) V.6.6.1

We claim that ∂ is the tame symbol of III.
III.6.3
6.3 and that the above continues the

sequence of III.
III.6.5
6.5. Since the p-component of ∂ factors through the localization

K2(R) → K2(Rp) and the localization sequence for Rp, we may suppose that
R is a DVR with parameter π. In this case, we know that ∂ in K∗(R)-linear,
so if u ∈ R× has image ū ∈ R/p then ∂{π, u} = [ū] in R/p×. Similarly, ∂
sends {π, π} = {π,−1} to {∂π,−1} = [R/π] · [−1], which is the class of the unit
−1. Since every element of K2(F ) is a product of such terms modulo K2(R), it
follows that ∂ is indeed the tame symbol, as claimed.

Here are two special cases of (
V.6.6
6.6) which arose in chapter III. First, if all

of the residue fields R/p are finite, then K2(R/p) = 0 and we obtain the exact
sequence:

0→ K2(R)→ K2(F )
∂
> ⊕p (R/p)

× ⊕(ip)∗> SK1(R)→ 1.
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V.6.6.2 Corollary 6.6.2. If R is a semilocal Dedekind domain, K3(F )
∂−→ ⊕K2(R/p)

is onto, and we obtain the exact sequence

0→ K2(R)→ K2(F )
∂−→ ⊕p (R/p)

× → 1.

Proof. It suffices to lift a symbol {ā, b̄} ∈ K2(R/p). We can lift ā, b̄ to units
a, b of R as R is semilocal. Choose s ∈ R so that R/sR = R/p. Since ∂ is a
K∗(R)-module homomorphism, we have:

∂({a, b, s}) = {a, b}∂(s) = {a, b} · [R/sR] = (ip)∗{a, b} = {ā, b̄}.

Suppose that R ⊂ R′ is an inclusion of Dedekind domains, with R′ finitely
generated as an R-module. Then the fraction field F ′ of R′ is finite over F , so the
exact functors M(R′)→M(R) and M(F ′)→M(F ) inducing the transfer maps
(IV.

IV.6.3.3
6.3.3) are compatible. Thus we have a homotopy commutative diagram

K(MtorsR
′) > G(R′) > G(F ′)

K(MtorsR)
∨

> G(R)
∨

> G(F ).
∨

(6.6.3) V.6.6.3

Taking homotopy groups yields the morphism of localization sequences (
V.6.6
6.6):

Kn(R
′) > Kn(F

′)
⊕∂p′

> ⊕p′Kn−1(R
′/p′) > Kn−1(R

′)

Kn(R)

NR′/R

∨
> Kn(F )

NF ′/F

∨ ∂
> ⊕pKn−1(R/p)

N̄ = ⊕Np′/p

∨
> Kn−1(R).

∨
(6.6.4) V.6.6.4

If R is a discrete valuation ring with fraction field F , parameter s and residue
field R/sR = k, we define the specialization map λs : Kn(F ) → Kn(k) by
λs(a) = ∂({s, a}). Because ∂ is K∗(R)-linear (

V.6.1.1
6.1.1), a different choice of pa-

rameter will yield a different specialization map: if u ∈ R× is such that s′ = us
then λs′(a) = λs(a) + (−1)n{u, ∂a}.

V.6.7 Theorem 6.7. If a discrete valuation ring R contains a field k0, and [k : k0] is
finite, then the localization sequence (

V.6.6
6.6) breaks up into split exact sequences:

0 > Kn(R) > Kn(F )
∂

←> Kn−1(k) > 0.

Moreover, the canonical map Kn(R)→Kn(k) factors through the specialization
map Kn(F )→ Kn(k). A similar assertion holds for K-theory with coefficients.

Proof. Suppose first that k ⊂ R, so that (
V.6.6
6.6) is a sequence of K∗(k)-modules.

Consider the map Kn(k) → Kn+1(F ) sending a to {s, a}; we have ∂({s, a}) =
{∂(s), a} = [k] · a = a. Hence ∂ is a split surjection, and the result follows.
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In general, there is a finite field extension F ′ of F so that the integral closure
R′ of R contains k, and R → k extends to a map R′ → k with kernel p = tR′.
Then the map ∂′ : Kn+1(R

′[1/t]) → Kn(k) is a surjection, split by a 7→ {t, a},
by the same argument. Now the composition M(R′/tR′) → M(R′) → M(R)
is just M(k) → M(R) so, as in (

V.6.6.4
6.6.4), we have a morphism of localization

sequences

Kn(R
′) > Kn(R

′[1/t])
∂′
>← Kn−1(k)

Kn(R)
∨

> Kn(F )
∨ ∂

> Kn−1(k).

wwwwww

It follows that ∂ is also a split surjection.

V.6.7.1 Corollary 6.7.1. If k is a field, the localization sequence (
V.6.6
6.6) for k[t] ⊂ k(t)

breaks up into split short exact sequences:

0 > Kn(k) ←> Kn(k(t))
∂
> ⊕pKn−1(k[t]/p) > 0.

Proof. When R = k[t](t),
V.6.7
6.7 says that the localization sequence for R ⊂ k(t)

breaks up into split exact sequences 0 → Kn(R) → Kn(k(t)) → Kn−1(k) → 0.
In addition, the map Kn(k) ∼= Kn(k[t]) → Kn(R) is split by (t = 0)∗, so the
localization sequence for k[t]→ R also breaks up into the split exact sequences

0→ Kn(k)→ Kn(R)
∂−→ ⊕p6=0Kn−1(k[t]/p)→ 0. Combining these split exact

sequences yields the result.

We remark that if R contains any field then it always contains a field k0 so
that k is algebraic over k0. Thus the argument used to prove

V.6.7
6.7 actually proves

more.

V.6.7.2 Corollary 6.7.2. If a discrete valuation ring R contains a field k0, then each

Kn+1(F )
∂−→ Kn(k) is onto, and the localization sequence (

V.6.6
6.6) breaks up into

short exact sequences. (The sequences may not split.)

Proof. We may assume that k is algebraic over k0, so that every element a ∈
Kn(k) comes from a ∈ Kn(k

′) for some finite field extension k′ of k0. Passing to
a finite field extension F ′ of F containing k′, such that R→ k extends to R′ as
above, consider the composite γ : Kn(k

′) → Kn+1(F
′) → Kn+1(F ) sending a′

to the transfer of {t, a′}. As in the proof of Theorem
V.6.7
6.7, ∂γ : Kn(k

′)→ Kn(k)
is the canonical map, so a = ∂γ(a′).

Write i and π for the maps R→ F and R→ k, respectively.

V.6.7.3 Lemma 6.7.3. The composition of i∗ : Kn(R) → Kn(F ) and λs is the nat-
ural map π∗ : Kn(R) → Kn(k). A similar assertion holds for K-theory with
coefficients.
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Proof. Because the localization sequence (
V.6.6
6.6) is a sequence of K∗(R)-modules,

for every a ∈ Kn(R) we have

λs(i
∗a) = ∂({s, a}) = {∂(s), a} = [k] · a = π∗(a).

V.6.7.4 Corollary 6.7.4. If k is an algebraically closed field, and A is any commuta-
tive k-algebra, the maps Kn(k) → Kn(A) and Kn(k;Z/m) → Kn(A;Z/m) are
injections.

Proof. Choosing a map A → F to a field, we may assume that A = F . Since
F is the union of its finitely generated subfields Fα and K∗(F ) = lim−→K∗(Fα),
we may assume that F is finitely generated over k. We may now proceed by
induction on the transcendence degree of F over k. It is a standard fact that F is
the fraction field of a discrete valuation ring R, with residue field E = R/sR. By
Lemma

V.6.7.3
6.7.3, the composition of K∗(k) → K∗(F ) with the specialization map

λs is the natural map Kn(k) → Kn(E), which is an injection by the inductive
hypothesis. It follows that K∗(k)→ K∗(F ) is an injection.

To prove that K∗(Z) injects into K∗(Q) it is useful to generalize to integers
in arbitrary global fields. Recall that a global field is either a number field or
the function field of a curve over a finite field.

V.6.8 Theorem 6.8. (Soulé
Sou
[171]) Let R be a Dedekind domain whose field of frac-

tions F is a global field. Then Kn(R) ∼= Kn(F ) for all odd n ≥ 3; for even
n ≥ 2 the localization sequence breaks up into exact sequences:

0→ Kn(R)→ Kn(F )→
⊕

p
Kn−1(R/p)→ 0.

Proof. Let SKn(R) denote the kernel of Kn(R)→ Kn(F ); from (
V.6.6
6.6), it suffices

to prove that SKn(R) = 0 for n ≥ 1. For n = 1 this is the Bass-Milnor-Serre
Theorem III.

III.2.5
2.5 (and III.

III.2.5.1
2.5.1). From the computation of Kn(Fq) in IV.

IV.1.13
1.13

and the fact that Kn(R) is finitely generated (IV.
IV.6.9
6.9), we see that SKn(R) is 0

for n > 0 even, and is finite for n odd. Fixing n = 2i − 1 ≥ 1, we may choose
a positive integer ℓ annihilating the (finite) torsion subgroup of Kn(R). Thus
SKn(R) injects into the subgroup Kn(R)/ℓ of Kn(R;Z/ℓ), which in turn injects
into Kn(F ;Z/ℓ) by Proposition

V.6.8.1
6.8.1 below. Since SKn(R) vanishes in Kn(F )

and hence in Kn(F ;Z/ℓ), this forces SKn(R) to be zero.

V.6.8.1 Proposition 6.8.1. (Soulé) Let R be a Dedekind domain whose field of frac-
tions F is a global field. Then for each ℓ and each even n ≥ 2, the boundary
map ∂ : Kn(F ;Z/ℓ) → ⊕Kn−1(R/p;Z/ℓ) is onto in the localization sequence
with coefficients Z/ℓ.

The conclusion of
V.6.8.1
6.8.1 is false for n = 1. Indeed, the kernel of K0(R)→

K0(F ) is the finite group Pic(R), so K1(F ;Z/ℓ)→ ⊕K0(R/p;Z/ℓ) is not onto.
For n = 2, it is easy to see that the map ∂ : K2(F ;Z/ℓ) → ⊕K1(R/p;Z/ℓ)

is onto, because K1(R;Z/ℓ) injects into K1(F ;Z/ℓ) by Ex. IV.
EIV.2.3
2.3.
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Proof. Since Kn−1(R/p)/2ℓ = Kn−1(R/p;Z/2ℓ) surjects onto Kn−1(R/p)/ℓ =
Kn−1(R/p;Z/ℓ) for each p, we may increase ℓ to assume that ℓ 6≡ 2 (mod 4),
so that the product (IV.

IV.2.8
2.8) is defined on K∗(R;Z/ℓ).

Suppose first that R contains a primitive ℓth root of unity, ζℓ. If β ∈
K2(R;Z/ℓ) is the Bott element (IV.

IV.2.5.2
2.5.2), then multiplication by βi−1 induces

an isomorphism ⊕Z/ℓ ∼= ⊕K1(R/p)/ℓ → ⊕K2i−1(R/p) by IV.
IV.1.13
1.13. That

is, every element of ⊕K2i−1(R/p) has the form βi−1a for a in ⊕K1(R/p).
Lifting a to s ∈ K2(F ), the element x = βi−1s of K2i(F ;Z/ℓ) satisfies
∂(x) = βi−1∂(x) = βi−1a, as desired.

In the general case, we pass to the integral closure R′ of R in the field
F ′ = F (ζℓ). Every prime ideal p of R has a prime ideal p′ of R′ lying over it,
and the transfer maps K2i−1(R

′/p′)→ K2i−1(R/p) are all onto by IV.
IV.1.13
1.13. The

surjectivity of ∂ follows from the commutative diagram

K2i(F
′;Z/ℓ)

∂′

onto
> ⊕p′K2i−1(R

′/p′;Z/ℓ)

K2i(F ;Z/ℓ)
∨ ∂

> ⊕pK2i−1(R/p;Z/ℓ).

onto
∨

V.6.8.2 Wild Kernels 6.8.2. For even n, the map Kn(R;Z/ℓ) → Kn(F ;Z/ℓ) need
not be an injection. In fact the subgroup divKn(F ) of elements of Kn(F ) which
map to zero in each quotient Kn(F )/ℓ ·Kn(F ) lies in the torsion subgroup T of
Kn(R) (by

V.6.8.1
6.8.1) and if ℓ · T = 0 then divKn(F ) is the kernel of Kn(R;Z/ℓ)→

Kn(F ;Z/ℓ). Tate observed that divKn(F ) can be nonzero even for K2. In fact,
divK2i(F ) is isomorphic to the wild kernel, defined as the intersection (over all
valuations v on F ) of the kernels of all maps K2i(F )→ K2i(Fv). This is proven
in

We06
[225].

V.6.9 Gersten’s DVR Conjecture 6.9. Suppose that R is a discrete valuation do-
main with maximal ideal m = sR, residue field k = R/m and field of fractions
F = R[s−1]. The localization sequence (

V.6.6
6.6) becomes

· · · ∂−→ Kn(k)
i∗−→ Kn(R)→ Kn(F )

∂−→ Kn−1(k)
i∗−→ Kn−1(R)→ · · · .

Gersten conjectured that this sequence splits up (for every discrete valuation
ring) into short exact sequences

0→ Kn(R)→ Kn(F )→ Kn−1(k)→ 0.

This conjecture is known for n = 0, 1, 2 (see
V.6.6.2
6.6.2), when char(F ) = char(k)

(
V.6.7
6.7 ff) or when k is algebraic over Fp (

V.6.9.2
6.9.2 and Ex.

EV.6.11
6.11). It is not known in

the general mixed characteristic case, i.e., when char(F ) = 0 and char(k) = p.
However, it does hold for K-theory with coefficients Z/ℓ, as we now show.

V.6.9.1 Theorem 6.9.1. If R is a discrete valuation ring with residue field k, then the
localization sequence with coefficients breaks up:

0→ Kn(R;Z/ℓ)→ Kn(F ;Z/ℓ)
∂−→ Kn−1(k;Z/ℓ)→ 0.
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Proof. We begin with the case when 1/ℓ ∈ k, which is due to Gillet. The
henselization Rh of R is a union of localizations R′m′ over semilocal Dedekind
domains R′ which are étale over R such that R′/m′ ∼= k; see

Milne
[127, I.4.8]. By

Gabber Rigidity IV.
IV.2.10
2.10, K∗(k;Z/ℓ) ∼= K∗(R

h;Z/ℓ) ∼= lim−→K∗(R
′
m′ ;Z/ℓ). Hence

for each a ∈ Kn−1(k;Z/ℓ) there is an (R′,m′) with R′/m′ ∼= k and an a′ ∈
Kn−1(R

′
m′ ;Z/ℓ) mapping to a. If s′ ∈ R′ generates m′ then F ′ = R′[1/s′] is the

field of fractions of R′, and the product b = {a′, s′} is an element of Kn(F
′;Z/ℓ).

By (
V.6.6.3
6.6.3), the functor M(R′)→M(R) induces a map of localization sequences

Kn(R
′;Z/ℓ) > Kn(F

′;Z/ℓ)
⊕∂p
> ⊕pKn−1(R

′/p;Z/ℓ)

Kn(R;Z/ℓ)

NR′/R

∨
> Kn(F ;Z/ℓ)

NF ′/F

∨ ∂
> Kn−1(k;Z/ℓ).

N̄ = ⊕N(R′/p)/k

∨

Because the top row is a sequence of K∗(R;Z/ℓ)-modules (
V.6.1
6.1), we have

∂p{a′, s′} = {a′, ∂ps′} for all p. Since ∂(s′) = [R′/s′R′] = [k] by III.
III.3.1.1
3.1.1, we see

that ∂m′{a′, s′} = {a′, [k]} = a′ · 1 = a, while if p 6= m′ we have ∂p{a′, s′} = 0.
Hence N̄ ⊕ ∂p sends {a′, s′} to a. By commutativity of the right square in the
above diagram, we see that b = NF ′/F ({a′, s′}) is an element of Kn(F ;Z/ℓ)
with ∂(b) = a. This shows that ∂ is onto, and hence that the sequence breaks
up as stated.

Next we consider the case that ℓ = pν and k has characteristic p, which is
due to Geisser and Levine

GeiL
[62, 8.2]. We will need the following facts from VI.

VI.4.7
4.7

below, which were also proven in op. cit.: the group Kn−1(k) has no ℓ-torsion,
and KM

n (k)/ℓν → Kn(k;Z/ℓν) is an isomorphism for all ν. By the Universal
Coefficient Theorem IV.

IV.2.5
2.5, this implies that every element of Kn(k;Z/ℓ) is

the image of a symbol {a1, . . . , an} with ai in k×. If a′i ∈ R× is a lift of ai and
s ∈ R is a parameter then ∂ : K1(F )→ K0(k) sends s to [k] by III.

III.1.1
1.1. It follows

that ∂ : Kn+1(F ;Z/ℓ)→ Kn(k;Z/ℓ) is onto, because it sends {s, a′1, . . . , a′n} to
{a1, . . . , an}.

We can now prove Gersten’s DVR Conjecture
V.6.9
6.9 when k is finite; the same

proof works if k is algebraic over a finite field (Ex.
EV.6.11
6.11).

V.6.9.2 Corollary 6.9.2. If R is a discrete valuation domain whose residue field k is
finite, then for all i > 0: K2i−1(R) ∼= K2i−1(F ) and there is a split exact
sequence

0→ K2i(R)→ K2i(F )
←
> K2i−1(k)→ 0.

Proof. It suffices to show that the map K2i(F )
∂−→ K2i−1(k) is a split surjection

in the localization sequence (
V.6.6
6.6), becauseK2i(k) = 0 by IV.

IV.1.13
1.13. Set ℓ = |k|i−1

and recall from IV.
IV.1.13
1.13 thatK2i−1(k) ∼= Z/ℓ, and henceK2i(k;Z/ℓ) ∼= Z/ℓ. Pick

a generator b of this group; using the surjection K2i+1(F ;Z/ℓ)→ K2i(k;Z/ℓ) ofV.6.9.1
6.9.1, lift b to an element a of K2i+1(F ;Z/ℓ). By compatibility of localization
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sequences (Ex.
EV.5.2
5.2), the image of a under K2i+1(F ;Z/ℓ)→ K2i(F ) is sent by ∂

to b.

We can now determine the K-theory with coefficients of local fields.

V.6.10 Proposition 6.10. Let E be a local field, finite over Qp, and let π be a param-
eter for the ring of integers in E. If the residue field is Fq and q ≡ 1 (mod m),
then K∗(E;Z/m) is a free Z/m[β]-module on generators 1 and z, where β is
the Bott element and z is the class of π in K1(E;Z/m) = E×/E×m.

Since {π, π} = {−1, π} in K2(E) (III.
III.5.10.2
5.10.2), the ring structure is given by

z2 = [−1] · z. If q = 2ν or if q ≡ 1 (mod 2m) then [−1] = 0 in K1(E)/m so
z2 = 0.

Proof. Since the ring R of integers in E is a complete DVR and R/πR ∼= Fq,
Gabber rigidity (IV.

IV.2.10
2.10) implies that K∗(R;Z/m) ∼= K∗(Fq;Z/m) ∼= Z/m[β].

By
V.6.9.2
6.9.2, K∗(E;Z/m) is a free Z/m[β]-module on generators 1 and z.

V.6.10.1 Remark 6.10.1. We will see in VI.
VI.7.4.1
7.4.1 that when n = pν we have

K2i−1(E;Z/n) ∼= (Z/n)d ⊕ Z/mi ⊕ Z/mi−1,

where d = [E : Qp], mi = min{n,w(p)
i } and the numbers w

(p)
i are defined in VI,

VI.2.2
2.2 and

VI.2.3
2.3. By Moore’s Theorem III.

III.6.2.4
6.2.4, the torsion subgroup of K2(E) is

the group of roots of unity in E, cyclic of order w1, so K3(E)(p) must be the

direct sum of Z/w(p)
2 and an extension of a p-divisible group by Zd(p).

I do not know how to reconstruct the other groups K∗(E) from the above
information; there might be a Zd(p) in all odd degrees, or there might be divisible
p-torsion in even degrees.

V.6.10.2 Example 6.10.2. Consider the union Eq of the local fields E over Qp whose
ring of integers R has residue field Fq. For each such E, K∗(E;Z/m) is described
by Proposition

V.6.10
6.10. If E ⊂ E′ is a finite field extension, with ramification

index e, the map K∗(E;Z/m) → K∗(E
′;Z/m) sends zE to e zE′ . If m divides

e, the map sends zE to 0. Taking the direct limit over all E, we see that
K∗(Eq;Z/m) = Z/m[β].

Localization for Schemes

V.6.11 Example 6.11. Let X be a noetherian scheme, j : U ⊂ X an open subscheme,
and Z = X − U the closed complement. In this case we take A = M(X) and
B = MZ(X) the category of coherent X-modules supported on Z, i.e., modules
whose restriction to U is zero. Gabriel has shown that M(X)/MZ(X) is the
category M(U) of coherent U -modules; see II.

II.6.4.2
6.4.2. By devissage (Ex.

EV.4.3
4.3),

KMZ(X) ≃ G(Z). Hence we have a homotopy fibration G(Z) → G(X) →
G(U), and the localization sequence becomes:

· · · ∂−→ Gn(Z)→ Gn(X)
j∗−→ Gn(U)

∂−→ Gn−1(Z)→ · · ·
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ending in the exact sequence G0(Z) → G0(X) → G0(U) → 0 of II.
II.6.4.2
6.4.2. This

is a sequence of K∗(X)-modules, because ⊗ is a biexact pairing of VB(X) with
the sequence M(Z)→M(X)→M(U).

V.6.11.1 Example 6.11.1. If R is commutative noetherian, U = Spec(R[s]) is an
open subset of the line P1

R with complement ∞ : Spec(R) →֒ P1
R. Since

P1
R

π−→ Spec(R) is flat, the map π∗ : G(R) → G(P1
R) exists and j∗π∗ ≃ p∗

is the homotopy equivalence of Theorem
V.6.2
6.2. It follows that π∗ splits the lo-

calization sequence G(R)
∞∗−→ G(P1

R)
j∗−→ G(R) and hence we have Gn(P

1
R)
∼=

Gn(R)⊕Gn(R).
V.6.11.2 Mayer-Vietoris Sequences 6.11.2. If X = U ∪ V then Z = X − U is con-

tained in V and V −Z = U ∩ V . Comparing the two localization sequences, we
see that the square

G(X) > G(U)

G(V )
∨

> G(U ∩ V ).
∨

is homotopy cartesian, i.e., G(X)
∆−→ G(U)×G(V )

±−→ G(U ∩ V ) is a homo-
topy fibration sequence; on homotopy groups it yields the long exact “Mayer-
Vietoris” sequence

· · · → Gn+1(U ∩ V )
∂−→ Gn(X)

∆−→ Gn(U)×Gn(V )
±−→ Gn(U ∩ V )

∂−→ · · · .

V.6.12 Smooth Curves 6.12. Suppose that X is an irreducible curve over a field k,
with function field F . For each closed point x ∈ X, the field k(x) is a finite
field extension of k. The category M0(X) of coherent torsion modules (modules
of finite length) is a Serre subcategory of M(X), and M(F ) ∼= M(X)/M0(X)
(II.

II.6.4.2
6.4.2). By devissage (

V.4.3
4.3), K∗M0(X) ∼= ⊕xK∗(k(x)) = ⊕K∗(x). In this

case, the Localization sequence (
V.5.1.1
5.1.1) becomes:

· · · → Kn+1(F )
∂−→ ⊕x Kn(k(x))

⊕(ix)∗
> Gn(X)→ Kn(F )

∂−→ · · · .

Here the maps (ix)∗ : Kn(x) → Gn(X) are the finite transfer maps of
V.3.6
3.6 and

V.3.6
3.6 associated to the inclusion of x = Spec(k(x)) into X. If X is regular, then
Kn(X) ∼= Gn(X) and this sequence tells us about Kn(X).

The residue fields k(x) of X are finite field extensions of k. As such, we have
transfer maps Nk(x)/k : Kn(k(x))→ Kn(k). The following result, due to Gillet,
generalizes the Weil Reciprocity of III.

III.6.5.3
6.5.3 for symbols {f, g} ∈ K2(F ). We

write ∂x for the component Kn+1(F )→ Kn(x) of the map ∂ in
V.6.12
6.12.

V.6.12.1 Weil Reciprocity Formula 6.12.1. Let X be a projective curve over a field
k, with function field F . For every a ∈ Kn+1(F ) we have the following formula
in Kn(k): ∑

x∈X
Nk(x)/k∂x(a) = 0.
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Proof. Consider the proper transfer π∗ : Gn(X) → Gn(k) of
V.3.7
3.7 associated to

the structure map π : X → Spec(k). By functoriality, π∗(ix)∗ = Nk(x)/k for
each closed point x ∈ X. Because ⊕x(ix)∗∂x = (⊕(ix)∗)∂ = 0, we have:

∑
Nk(x)/k∂x(a) =

∑
π∗(ix)∗∂x(a) = π∗

∑
(ix)∗∂x(a) = 0.

V.6.13 Fundamental Theorem for G(X) 6.13. If X is a noetherian scheme, the

flat maps X[s, s−1] ⊂
j
> X[s]

p
>> X induce a homotopy equivalence p∗ :

G(X) ≃ G(X[s]) and isomorphisms

Gn(X[s, s−1]) ∼= Gn(X)⊕Gn−1(X).

Proof. If z : X → X[s] is the zero-section, we saw in
V.3.6.1
3.6.1 that z∗ = 0. Hence

the Localization Sequence (
V.6.11
6.11) splits into short exact sequences

0
z∗
> Gn(X[s])

j∗

> Gn(X[s, s−1])
∂−→ Gn−1(X)

z∗
> 0.

If f : X → X[s, s−1] is the section s = 1, we saw in
V.3.6.1
3.6.1 that f defines a map

f∗ and that f∗j∗p∗ is homotopic to the identity of G(X). Hence it suffices to
prove that p∗ : G(X) ≃ G(X[s]).

We first suppose that X is separated, so that the intersection of affine opens
is affine, and proceed by induction on the number of affine opens. If X is
affine, this is Theorem

V.6.2
6.2, so suppose that X = U1 ∪ U2 with U2 affine. The

inductive hypothesis applies to U1 and U12 = U1 ∩ U2, and we have a map of
Mayer-Vietoris sequences (

V.6.11.2
6.11.2):

∗ > Gn+1(U12)
∂
> Gn(X) > Gn(U1)×Gn(U2) > Gn(U12)

∗

≃
∨

> Gn+1(U12[s])

≃
∨ ∂

> Gn(X[s])
∨

> Gn(U1[s])×Gn(U2[s])

≃
∨

> Gn(U12[s]).

≃
∨

The 5-lemma implies that G(X) ≃ G(X[s]) for X separated. Another induc-
tion establishes the result for non-separated X, since any open subscheme of a
separated scheme is separated.

V.6.13.1 Corollary 6.13.1. If X is noetherian, then X ×P1 π−→ X and X
∞−→ X ×P1

induce homotopy equivalences (π∗,∞∗) : G(X)⊕G(X)
≃−→ G(X × P1).

Proof. As in
V.6.11.1
6.11.1, the complement of∞(X) is X×A1 and the map π∗ is split

by j∗ : G(X × P1) → G(X × A1) ≃ G(X). Hence π∗ splits the localization

sequence G(X)
∞∗

> G(X × P1)
j∗

> G(X).

V.6.13.2 Corollary 6.13.2. If X is regular noetherian then for all n:

Kn(X)∼=Kn(X[s]), Kn(X[s, s−1]) ∼= Kn(X)⊕Kn−1(X)

and Kn(X × P1) ∼= Kn(X)⊕Kn(X).
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We now generalize
V.6.11.1
6.11.1 and

V.6.13.1
6.13.1 from P1 to Pr; the G0 version of the

following result was given in II, Ex.
EII.6.14
6.14. If X is regular, Theorem

V.6.14
6.14 and

Ex.
EV.6.7
6.7 provide another proof of the Projective Bundle Theorem

V.1.5
1.5 and

V.1.5.1
1.5.1.

V.6.14 Theorem 6.14. If X is a noetherian scheme, the functors M(X)
O(i)
> M(PrX)

sendingM toM⊗O(i) induce an isomorphism
∑O(i) :∐r

i=0G(X)
≃−→ G(PrX).

That is, Gn(P
r
X) ∼= Gn(X)⊗K0(P

r
Z).

Proof. By localization, we may assume X = Spec(R); set S = R[x0, · · · , xr].
The standard description of coherent sheaves on PrR (

Hart
[85, Ex. II.5.9]) amounts

to the equivalence of quotient categories

M(PrR) ∼= Mgr(S)/M
b
gr(S),

where Mb
gr(S) is the Serre subcategory of graded modules M with Mm = 0 for

all but finitely many m. By devissage (Ex.
EV.4.4
4.4), Mb

gr(S) has the same K-theory
as its subcategory Mgr(R), i.e., G∗(R)[σ, σ

−1]. Thus the localization sequence
(
V.5.1.1
5.1.1) and Example

V.3.5.2
3.5.2 give us the following diagram with exact rows

· · · > Kn(Mgr(R)) > Kn(Mgr(R[x0, · · · , xr])) > Gn(P
r
R) > · · ·

0 > Gn(R)⊗ Z[σ, σ−1]

≃
∧

h
> Gn(R)⊗ Z[σ, σ−1]

≃
∧

> Gn(R)

∧

> 0.

Now σ is induced by ⊗SS(−1). Setting E = Sr+1, consider the Koszul resolu-
tion for R (I.

I.5.4
5.4):

0→ ∧r+1E(−r − 1)→ · · · → ∧2E(−2)→ E(−1)→ S → R→ 0.

The Additivity Theorem for ⊗SS(i) : Mgr(S) →Mgr(S) shows that h is mul-
tiplication by the map

∑(
r+1
i

)
(−σ)i = (1 − σ)r+1. Since this is an injection

with the prescribed cokernel, we have proven the first assertion. The second is
immediate from II.

II.8.6
8.6.

EXERCISES

EV.6.1 6.1. Suppose that R is a 1-dimensional commutative noetherian domain with
fraction field F . Show that there is a long exact sequence

· · · → Kn+1(F )
∂−→ ⊕p Kn(R/p)→ Gn(R)→ Kn(F )

∂−→ · · · .

ending in the Heller-Reiner sequence of Ex. II.
EII.6.8
6.8. IfR is regular, i.e., a Dedekind

domain, this is the sequence (
V.6.6
6.6).

Now let R be the local ring of R+ xC[x] at the maximal ideal (x, ix). Show
that G0(R) ∼= Z⊕Z/2, and conclude that the localization sequence (

V.6.1.1
6.1.1) does

not split up into short exact sequences.
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EV.6.2 6.2. If S is the seminormalization of R (I, Ex.
EI.3.15
3.15–

EI.3.16
3.16), and S is finite over

R, show that the transfer G(S)→ G(R) is an equivalence.

EV.6.3 6.3. If R is noetherian, show that the splitting in Theorem
V.6.2
6.2 is given by the

map Gn(R) → Gn+1(R[s, s
−1]) which is multiplication by s ∈ K1(Z[s, s−1]).

Hint: Use Ex.
EV.5.3
5.3 with C = M(R).

EV.6.4 6.4. Let ϕ be an automorphism of a commutative noetherian ring R, and let
Rϕ[t] be the twisted polynomial ring of all polynomials

∑
rit

i with multipli-
cation determined by tr = ϕ(r)t. It is well known that Rϕ[t] is a regular ring
when R is. Show that the hypotheses of Theorem

V.6.4
6.4 are satisfied, so that

G(R) ≃ G(Rϕ[t]). Then show that {tn} is a multiplicative system (II.
II.A.1.1
A.1.1), so

that the localization Rϕ[t, 1/t] is a well defined ring. Then show that there is
an exact sequence:

· · · → Gn(R)
ϕ∗−→ Gn(R)→ Gn(Rϕ[t, 1/t])→ · · · .

EV.6.5 6.5. Let R be commutative noetherian, and S = Sym(P ) the symmetric algebra
(I.

I.5.8
5.8) of a finitely generated projective R-module P . Show that R ⊂ S induces

an equivalence G(R) ≃ G(S). Hint: Locally, S ∼= R[s1, ..., sn].

EV.6.6 6.6. Jouanolou’s Trick. Let X be a noetherian scheme. If p : E → X is a
vector bundle, show that p∗ : G(X)→ G(E) is an equivalence. More generally,
show that p∗ : G(X) → G(E) is an equivalence for any flat map p : E → X
whose fibers are affine spaces (such as a torsor under a vector bundle E).

Jouanolou proved that if X is quasi-projective over a field then there is an
affine scheme E = Spec(R) and a torsor E → X under a vector bundle. It
follows that G(X) ≃ G(R). This trick reduces the study of G(X) for quasi-
projective X to the study of G(R).

EV.6.7 6.7. (Quillen) If E is any vector bundle over X of rank r + 1, we can form the
projective bundle P(E) = Proj(Sym(E)). Modify the proof of Theorem

V.6.14
6.14 to

show that once again the maps M 7→M ⊗O(i) induce an isomorphism

Gn(P(E)) ∼= K0(P(E))⊗Gn(X) ∼=
∐r

i=0
Gn(X).

EV.6.8 6.8. Let X be the affine plane with a double origin over a field k, the standard
example of a (quasi-compact) scheme which is not separated. Generalize II.

II.8.2.4
8.2.4

by showing that G(X) ≃ G(k) ×G(k). Then show that every vector bundle is
trivial and VB(X) ∼= VB(A2), so KVB(X) ≃ K(k). Since G(X) ≃ K(X) (by
Ex.

EV.3.9
3.9), this shows that KVB(X) 6= K(X). Note that G(X) = KVB(X) for

separated regular schemes by Resolution (see
V.3.4.2
3.4.2).

EV.6.9 6.9. (Roberts) If π : X ′ → X is a finite birational map, there is a closed Z ⊂ X
(nowhere dense) such that π : X ′ − Z ′ ∼= X − Z, where Z ′ = Z ×X X ′.
(a) Show that there is a fibration G(Z ′)→ G(Z)×G(X ′)→ G(X). This yields
a Mayer-Vietoris sequence

Gn+1(X)
∂−→ Gn(Z

′)
∆−→ Gn(Z)×Gn(X ′) ±−→ Gn(X)

∂−→ Gn−1(Z
′).
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(b) If X is the node Spec(k[x, y]/(y2 − x3 − x)), show that Gn(X) ∼= Gn(k) ⊕
Gn−1(k) for all n. This contrasts with K0(X) ∼= K0(k)⊕K1(k); see II.

II.2.9.1
2.9.1.

EV.6.10 6.10. Suppose that a curve X is a union of n affine lines, meeting in a set Z
of m rational points (isomorphic to Spec(k)), and that no three lines meet in a
point. Show that Gn(X) ∼= Gn(k)

n ⊕Gn−1(k)m.

EV.6.11 6.11. Let R be a DVR whose residue field k is infinite, but algebraic over Fp.
Modify the proof of

V.6.9.2
6.9.2 to show that Gersten’s DVR conjecture

V.6.9
6.9 holds for

R.

EV.6.12 6.12. Complete the proof of Theorem
V.6.4
6.4 for filtered rings, by mimicking the

proof of Theorem
V.6.2
6.2.

EV.6.13 6.13. Let R = k⊕R1⊕ · · · be a graded ring such that R and R[t] are coherent
(
V.3.3
3.3) and of finite flat dimension over k, and k has finite flat dimension over R.
Modify the proof of Theorem

V.6.4
6.4 to show that k ⊂ R induces G(k) ≃ G(R).

Hint: Mgr(S) is still an abelian category.

EV.6.14 6.14. The formula λs(a) = ∂({s, a}) defines a specialization map for K-theory
with coefficients Z/m. Now suppose that k is algebraically closed, and show
that: (i) the specialization λs : Kn(F ;Z/m)→ Kn(k;Z/m) is independent of
the choice of s ∈ R; (ii) for F = k(t), the specialization λs : Kn(F ;Z/m) →
Kn(k;Z/m) is independent of R and s. Hint: If f ∈ F then λ(f) = 0 as
K1(k;Z/m) = 0.

7 Localization for K∗(R) and K∗(X).

When R is a ring and s ∈ R is a central element, we would like to say something
about the localization map K(R)→ K(R[ 1s ]). If R is regular, we know the third
term in the long exact sequence from the localization theorem for G∗:

· · · ∂−→ Gn(R/sR)
i∗−→ Kn(R)→ Kn(R[1/s])

∂−→ · · · .

Because R is regular, every R/sR-module has finite projective dimension over
R, and i∗ is induced from the inclusion M(R/sR) ⊂M(R) = H(R). More gen-
erally, suppose that S is a central multiplicatively closed set of nonzerodivisors
in R, and consider the category HS(R) of all S-torsion R-modules M in H(R).

We saw in II.
II.7.7.4
7.7.4 that the sequence K0HS(R) → K0(R) → K0(S

−1R) is
exact. This K0 exact sequence has the following extension to higher K-theory.

V.7.1 Theorem 7.1 (Localization for Nonzerodivisors). Let S be a central multi-
plicatively closed subset of R consisting of nonzerodivisors. Then

KHS(R)→ K(R)→ K(S−1R)
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is a homotopy fibration. Thus there is a long exact sequence

· · · → Kn+1(S
−1R)

∂−→ KnHS(R)→ Kn(R)→ Kn(S
−1R)

∂−→ · · ·

ending in K0HS(R)→ K0(R)→ K0(S
−1R), the sequence of II.

II.7.7.4
7.7.4.

In this section, we will give a direct proof of Theorem
V.7.1
7.1, following Quillen.

We note that an indirect proof is given in Exercise
EV.3.14
3.14 above, using Theorem

V.2.6.3
2.6.3. In addition, we saw in Ex.

EV.2.9
2.9 that the nonzerodivisor hypothesis is nec-

essary. In the general case, the third term K(R on S) is more complicated; see
Theorem

V.2.6.3
2.6.3.

V.7.1.1 Caveat 7.1.1. The map K0(R) → K0(S
−1R) is not onto. Instead, the se-

quence continues with K−1HS(R) etc., using negative K-groups. In order to
get a spectrum-level fibration, therefore, one needs to use the non-connective
spectra KB(R) of IV.

IV.10.4
10.4 to get nontrivial negative homotopy groups, or else

replace K(S−1R) with K(P), as we shall now do (and did in the proofs of II.
II.9.8
9.8

and
V.2.6.3
2.6.3).

V.7.2 Definition 7.2. Let P denote the exact subcategory of P(S−1R) consisting of
projective modules which are localizations of projective R-modules.

By Cofinality (IV.
IV.6.4.1
6.4.1) and Ex. IV.

IV.6.6
6.6, KnP ∼= Kn(S

−1R) for n > 0, and
K0(R)→ K0(S

−1R) factors as a surjection K0(R)→ K0P followed by an inclu-
sion K0P → K0(S

−1R). Hence we may replace K(S−1R) by KP in Theorem
V.7.1
7.1.

Let E denote the category of admissible exact sequences in P, as defined in
IV.

IV.7.3
7.3; morphisms are described in (IV.

IV.7.3.1
7.3.1), and the target of A  B ։ C

yields a functor t : E → QP. We write F for the pullback category QP(R)×QPE
whose objects are pairs (P,A  B ։ S−1P ) and whose morphisms are pairs
of compatible morphisms. Since t is a fibered functor (by Ex. IV.

EIV.7.2
7.2), so is

F → QP(R).
The monoidal category T = isoP(R) acts fiberwise on E via the inclusion of

T in E given by IV.
IV.7.4.1
7.4.1. Hence T also acts on F , and we may localize at T (in

the sense of IV.
IV.4.7.1
4.7.1).

V.7.2.1 Lemma 7.2.1. The sequence T−1F → QP(R)→ QP is a homotopy fibration.

Proof. By IV, Ex.
EIV.4.11
4.11, the fibers of T−1F → QP(R) and T−1E → QP are

equivalent. By Quillen’s Theorem B (IV.
IV.3.8.1
3.8.1), we have a homotopy cartesian

square:
T−1F > T−1E (contractible)

QP(R)
∨

> QP.

t
∨

We saw in the proof of Theorem IV.
IV.7.1
7.1 that T−1E is contractible (because E is,

by Ex. IV.
EIV.7.3
7.3), whence the result.
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To prove Theorem
V.7.1
7.1, we need to identify T−1F and KHS(R). We first

observe that we may work with the exact subcategory H1,S of HS(R) consist-
ing of S-torsion modules of projective dimension ≤ 1. Indeed, the Resolution
Theorem (see

V.3.2.1
3.2.1) implies that K∗HS(R) ∼= K∗H1,S .

Next, we construct a diagram of categories on which T acts, of the form

QH1,S <
h G f

> F

and whose localization is QH1,S <
T−1h

T−1G T−1f
> T−1F .

V.7.3 Definition 7.3. Let G denote the category whose objects are exact sequences
0 → K  P ։ M ⊕Q with P,Q in P(R) and M in H1,S . The morphisms in
G are isomorphism classes of diagrams (in which the maps in the bottom row
are direct sums of maps):

K ′ < < K ==== K

P ′
∨
∨

==== P ′
∨
∨

> > P
∨

∨

M ′ ⊕Q′
∨∨

<< M1 ⊕Q1

∨∨
>> M ⊕Q.

∨∨

We let T = isoP(R) act on G by T�(P ։M ⊕Q) = T ⊕ P ։ P ։M ⊕Q.
The functor f : G → F sends K  P ։ M ⊕ Q to (Q,T−1P ։ T−1M).

By inspection, f is compatible with the action of T , so T−1f is defined.
The functor h : G → QH1,S sends K  P ։ M ⊕ Q to M . The action of

T is fiberwise for h (IV, Ex.
EIV.4.11
4.11) so h induces a functor T−1h : T−1G → QP.

Proof of Theorem
V.7.1
7.1. The maps QH1,S

≃−→ T−1G ≃−→ T−1F are homotopy
equivalences by Lemmas

V.7.3.1
7.3.1–

V.7.3.2
7.3.2. Let g be the composite of these equiva-

lences with T−1F → QP(R), so that QH1,S
g−→ QP(R)→ QP is a homotopy

fibration by
V.7.2.1
7.2.1. In Lemma

V.7.4
7.4, we identify −g with the canonical map, prov-

ing the theorem.

V.7.3.1 Lemma 7.3.1. The functor h : G → QH1,S is a homotopy equivalence.
It follows that G → T−1G and T−1G → QH1,S are also homotopy equivalences.

Proof. For each M , let GM denote the category whose objects are surjections
P ։M , and whose morphisms are admissible monics P ′  P in P(R) compat-
ible with the maps to M . Choosing a basepoint P0 ։M , P ×M P ′ is projective
and there are natural transformations (P։M)← (P ×M P ′։M)→ (P0։M)
giving a contracting homotopy for each GM .

The Segal subdivision Sub(GM ) of GM (IV, Ex.
EIV.3.9
3.9) is equivalent to the fiber

h−1(M) (by Ex.
EV.7.2
7.2), so the fibers of h are contractible. Since h is fibered (by

Ex.
EV.7.1
7.1), Quillen’s Theorem A (variation IV.

IV.3.7.4
3.7.4) applies to show that h is a

homotopy equivalence. In particular, since T acts trivially on QH1,S it acts
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invertibly on G in the sense of IV.
IV.4.7
4.7. It follows from Ex. IV.

EIV.4.6
4.6 that G → T−1G

is also a homotopy equivalence.

For the following lemma, we need the following easily checked fact: if P is
a projective R-module, then P is a submodule of S−1P , because S consists of
central nonzerodivisors. In addition, S−1P is the union of the submodules 1

sP ,
s ∈ S.

V.7.3.2 Lemma 7.3.2. The functor f : G → F is a homotopy equivalence, and hence
T−1f : T−1G → T−1F is too.

Proof. We will show that for each Q in P(R) the map (pf)−1(Q) → p−1(Q) is
a homotopy equivalence of fibers. Since p : F → QP(R) and pf : G → QP(R)
are fibered (Ex.

EV.7.1
7.1), the result will follow from Quillen’s Theorem B (IV.

IV.3.8.1
3.8.1).

Fix Q and let TQ be the category whose objects are maps P ։ Q with P
in P(R), and whose morphisms are module injections P ′  P over Q whose
cokernel is S-torsion. Then the functor Sub(TQ) → (pf)−1(Q) which sends
P ′  P over Q to P ։ Q⊕ (P/P ′) is an equivalence of categories (by Ex.

EV.7.3
7.3).

SetW = S−1Q, so that p−1(Q) = EW . Then Sub(TQ)
∼−→ (pf)−1(Q)→ EW

sends P ′  P over Q to S−1P → W ; this factors through the target functor
Sub(TQ)→ TQ (which is a homotopy equivalence by Ex. IV.

EIV.3.9
3.9), and the functor

w : TQ → EW sending P ։ Q to S−1P ։W . Thus we are reduced to showing
that w is an equivalence. By Quillen’s Theorem A (IV.

IV.3.7
3.7), it suffices to fix V

in P and E : V ։W in EW and show that w/E is contractible.
Consider the poset Λ of projective R-submodules P of V such that S−1P ∼=

V , and whose image under V → W is Q. The evident map from Λ to w/E
sending P to (P, S−1P ։ W ) is an equivalence, so we are reduced to showing
that Λ is contractible. Fix P and P ′ in Λ and let K,K ′ denote the kernels of
P ։ Q and P ′ ։ Q. Then S−1K = S−1K ′ and S−1K + P = S−1K ′ + P ′ as
submodules of V . Thus for some s ∈ S, both P and P ′ are contained in the
submodule P ′′ = P + 1

sK of V . But P ′′ is easily seen to be in Λ, proving that
Λ is a filtering poset. Thus Λ and hence w/E are contractible.

V.7.4 Lemma 7.4. The canonical map QH1,S → QP(R) is homotopic to the additive

inverse of g : QH1,S <
T−1h

T−1G T−1f
> T−1F p

> QP(R).

Proof. Recall from II.
II.7.7
7.7 that H1 = H1(R) denotes the category of R-modules

M having a resolution 0 → P1 → P0 → M → 0 with the Pi in P(R). By the
Resolution Theorem

V.3.1.1
3.1.1, K(R) ≃ KH1 and QP(R) ≃ QH1. We claim that

the following diagram commutes up to sign.

G p ◦ f
> QP(R)

QH1,S(R)

h
∨

> QH1.

≃
∨
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The two functors from G to QH1 in this diagram send π = (K  P ։M ⊕Q)
to M and Q, respectively. By Additivity

V.1.2
1.2, their sum is homotopic to the

target functor t. It suffices to show that t is null homotopic.
Let s be the functor G → QP(R) sending π to P ; since s maps all morphisms

to injections, 0  P defines a natural transformation 0⇒ s. Since P ։M ⊕Q
is a natural transformation t⇒ s, we have a homotopy t ∼ s ∼ 0, as desired.

The following result generalizes Exercises III.
EIII.3.10
3.10 and III.

EIII.4.11
4.11.

V.7.5 Proposition 7.5. (Karoubi) Let f : A → B be a ring homomorphism and S
a central multiplicatively closed set of nonzerodivisors in A such that f(S) is
a central set of nonzerodivisors in B. Assume that f : A/sA ∼= B/sB for all
s ∈ S. Then: (1) the functor HS(A)→ HS(B) is an equivalence;

(2) the square
KB(A) > KB(B)

KB(S−1A)

∨
> KB(S−1B)

∨

is homotopy cartesian, and (3) there is a Mayer-Vietoris sequence

· · ·Kn+1(S
−1B)

∂−→Kn(A)
∆−→ Kn(B)×Kn(S

−1A)
±−→ Kn(S

−1B)
∂−→ · · · .

Proof. The assumption implies that Â = lim←−A/sA and B̂ = lim←−B/sB are

isomorphic. Therefore, in order to prove part (1) we may assume that B = Â.
Then B is faithfully flat over A, and ⊗AB is a faithful exact functor from HS(A)
to HS(B). To show that HS(A)→ HS(B) is an equivalence, it suffices to show
that every M in HS(B) is isomorphic to a module coming from HS(A).

Choose a B-module resolution 0→ Q1
f−→ Q0 →M → 0, and s ∈ S so that

sM = 0. Then the inclusion sQ0 ⊂ Q0 factors through a map f ′ : sQ0 → Q1.
The cokernel M ′ = Q1/sQ0 is also in HS(B), and if we choose Q′ so that
Q0 ⊕Q1 ⊕Q′ ∼= Bn then we have a resolution

0→ Bn
γ=(f,f ′,1)

> Bn →M ⊕M ′ → 0.

Replacing M by M ⊕M ′, we may assume that Q1 = Q0 = Bn. Then there is a
matrix γ′ over B such that γγ′ = sI. Now the assumption that A/sA ∼= B/sB
implies that there is a matrix α : An → An of the form α = γ + s2β. Since
α = γ(I+sγ′β) and I+sγ′β is invertible over B = Â, we see that the A-module
coker(α) is in HS(A) and that coker(α)⊗A B ∼= coker(γ) =M .

Part (2) follows from Part(1) and Theorem
V.7.1
7.1; the Mayer-Vietoris sequence

follows formally from the square (as in
V.6.11.2
6.11.2).

V.7.5.1 Example 7.5.1. The proposition applies to S = {pn} and the rings Z →
Z(p) → Ẑp (p-adics). If G is a group, it also applies to Z[G]→ Z(p)[G]→ Ẑp[G].
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That is, K∗(Z[G]) fits into a Mayer-Vietoris sequence involving K∗(Z(p)[G]),

K∗(Z[
1
p ][G]) and K∗(Q[G]), as well as a Mayer-Vietoris sequence of the form:

Kn+1(Q̂p[G])
∂−→Kn(Z[G])→ Kn(Ẑp[G])⊕Kn(Z[

1

p
][G])→ Kn(Q̂p[G])

∂−→ · · · .

More generally, let S ⊂ Z be generated by a finite set P of primes; Proposi-
tion

V.7.5
7.5 applies to Z[G] → ∏

p∈P Ẑp[G], and there is a similar Mayer-Vietoris

sequence relating K∗(Z[G]) to the product of the K∗(Ẑp[G]). This sequence
is particularly useful when G is finite and P is the set of primes dividing |G|,
because the rings S−1Z[G] and Q̂p[G] are semisimple.

Localization for vector bundles

Here is the analogue of Theorem
V.7.1
7.1 for vector bundles on a scheme X, which

generalizes the exact sequence in Ex. II.
EII.8.1
8.1. As discussed in II.

II.8.3
8.3, we assume

that X is quasi-compact in order that every module in H(X) has a finite reso-
lution by vector bundles. We define K(X on Z) to be the K-theory space of the
Waldhausen category Chperf,Z(X) of perfect complexes on X which are exact
on U .

V.7.6 Theorem 7.6. (Thomason-Trobaugh
TT
[200, 5.1]) Let X be a quasi-compact,

quasi-separated scheme, and U a quasi-compact open in X with complement

Z. Then K(X on Z)→ K(X)
j∗−→ K(U) is a homotopy fibration, and there is

a long exact sequence

· · · → Kn+1(U)
∂−→ Kn(X on Z)→ Kn(X)→ Kn(U)

∂−→ · · ·

ending in K0(X on Z)→ K0(X)→ K0(U), the sequence of Ex. II.
EII.8.1
8.1.

Recall that HZ(X) denotes the category of modules in H(X) supported on Z.

V.7.6.1 Corollary 7.6.1. If X is quasiprojective and Z is defined by an invertible ideal,
then HZ(X) ⊂ Chperf,Z(X) induces an equivalence on K-theory. Thus there is
a long exact sequence

· · · → Kn+1(U)
∂−→ KnHZ(X)→ Kn(X)→ Kn(U)

∂−→ · · · .
Proof. (Thomason) The Approximation Theorem implies that KHZ(X) ≃
K(X on Z), as we saw in Ex.

EV.3.16
3.16

V.7.6.2 Remark 7.6.2. Since the model KChperf,Z(X) for the fiber K(X on Z) of
K(X) → K(U) is complicated, it would be nice to have a simpler model. A
näıve guess for such a model would be the K-theory of the category HZ(X).
This is correct if X is regular by the localization sequence (

V.6.11
6.11) for G-theory,

if Z is a divisor (
V.7.6.1
7.6.1), and even if Z is locally a complete intersection in

X
TT
[200, 5.7]. Exercise

EV.7.4
7.4 shows that this cannot be right in general, even if

X = Spec(A).
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V.7.6.3 Definition 7.6.3. Let us define the (non-connective) spectrum KB(X on Z) to
be the homotopy fiber of the morphism KB(X)→ KB(X −Z). Then Theorem
V.7.6
7.6 states that the K-theory spectrum K(X on Z) of Chperf,Z(X) is the (−1)-
connected cover of KB(X on Z). In particular, Kn(X on Z) is πnK

B(X on Z)
for all n ≥ 0. For n < 0 we define Kn(X on Z) = πnK

B(X on Z); since
Kn(X) = πnK

B(X) in this range (by IV.
IV.10.6
10.6), the sequence of Theorem

V.7.6
7.6

may be continued:

K0(X)→ K0(U)→ K−1(X on Z)→ K−1(X)→ K−1(U)→ · · · .

Proof of
V.7.6
7.6. (Thomason) For simplicity, we write A for the Waldhausen cate-

gory Chperf(X) of II.
II.9.7.5
9.7.5, in which weak equivalences are quasi-isomorphisms.

Let w be the class of weak equivalences such that F w−→ wG if and only if
F|U ∼−→ G|U . By the Waldhausen Localization Theorem

V.2.1
2.1, we have a fibra-

tion K(X on Z)→ K(X)→ K(wA). Let G be the cokernel ofK0(X)→ K0(U)
and let B denote the full Waldhausen category of all perfect complexes F on
U with [F ] = 0 in G. By the Cofinality Theorem

V.2.3
2.3, Kn(B) ≃ Kn(U) for all

n > 0 and K0(B) is the image of K0(X) → K0(U). Thus the proof reduces to
showing that K(wA) → K(B) is a homotopy equivalence. By the Approxima-
tion Theorem

V.2.4
2.4, this reduces to showing that A → B induces an equivalence of

derived categories. This is the conclusion of the following theorem of Thomason
and Trobaugh.

V.7.7 Theorem 7.7. w−1Chperf(X)→ w−1B is an equivalence of triangulated cate-
gories. In more detail:

(a) For every perfect complex F on U with [F ] in the image of K0(X) →
K0(U), there is a perfect complex E on X such that E|U ≃ F in D(U).

(b) Given perfect complexes E, E ′ on X and a map b : E|U → E ′|U in D(U),

there is a diagram E a←−E ′′ a′−→ E ′ of perfect complexes on X so that a|U
is an isomorphism and b = a′|U (a|U )−1 in D(U).

(c) If a : E → E ′ is a map of perfect complexes on X which is 0 in D(U),
there is a perfect complex E ′′ and a map s : E ′′ → E which is a quasi-
isomorphism on U such that a s = 0 in D(X).

Proof. The proof of this theorem is quite deep, and beyond the level of this
book; we quote

TT
[200, 5.2.2–4] for the proof. As a side-note, it is part (a) that

was suggested to Thomason by the Trobaugh simulacrum.

V.7.8 7.8. We shall now give an elementary proof (due to Quillen) of Corollary
V.7.6.1
7.6.1

in the easier case when Z is a divisor and U is affine. We need assume that X
is quasi-projective (over a commutative ring R), in order to use the definition
K(X) = KVB(X) in IV.

IV.6.3.4
6.3.4. We write H1,Z(X) for HZ(X) ∩ H1(X), the

(exact) subcategory of modules in H(X) with a length one resolution by vector
bundles, which are supported on Z.
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For our proof of
V.7.6.1
7.6.1, let P denote the exact category of vector bundles on

U of the form j∗(P ), where P is a vector bundle on X. The assumption that U
is affine guarantees P is cofinal in VB(U). Therefore, as with the P of

V.7.2
7.2, we

may replace K(U) by KP. We also need the following analogue of the easily
checked fact about the relation between P and S−1P . If P is a vector bundle
on X then j∗(P ) is a vector bundle on U , and its direct image j∗j

∗(P ) is a
quasicoherent module on X. If X = Spec(R) and I = sR then j∗j

∗(P ) is the
R-module P [1/s].

V.7.8.1 Lemma 7.8.1. If P is a vector bundle on X, then P is a submodule of j∗j
∗(P ),

and j∗j
∗(P ) is the union of its submodules I−nP .

Proof of Corollary
V.7.6.1
7.6.1. The proof of Theorem

V.7.1
7.1 goes through formally, re-

placing P(R) by VB(X), S−1R by U and H1,S by H1,Z(X), the (exact) subcat-
egory of modules in H(X) with a length one resolution by vector bundles, which
are supported on Z. The definitions of P, F and G make sense in this context,
and every exact sequence in P splits because U is affine. Now everything goes
through immediately except for the proof that Λ is a filtering poset. That proof
used the structure of S−1P ; the argument still goes through formally if we use
the corresponding structure of j∗j

∗(P ) which is given by Lemma
V.7.8.1
7.8.1.

V.7.9 Proposition 7.9. (Excision) Let X and Z be as in Theorem
V.7.6
7.6, and let i :

V ⊂ X be the inclusion of an open subscheme containing Z. Then the restriction
i∗ : Chperf,Z(X)→ Chperf,Z(V ) is exact and induces a homotopy equivalence

KB(X on Z)
≃−→ KB(V on Z).

Proof. (
TT
[200, 3.19]) Let T (F) denote the functorial Godement resolution of F ,

and represent the functor Ri∗ as i∗ ◦ T : Chperf,Z(V ) → Chperf,Z(X). This
is an exact functor, taking values in the Waldhausen subcategory A of perfect
complexes which are strictly zero on U = X − Z. The left exact functor ΓZ
(subsheaf with supports in Z) induces an exact functor ΓZ ◦T from Chperf,Z(X)
to A which is an inverse of the inclusion up to natural quasi-isomorphism. Thus
we have a homotopy equivalence KA ≃ KChperf,Z(X).

If F is a perfect complex on V , the natural map i∗Ri∗F → F is a quasi-
isomorphism since F → T (F) is. If G is a perfect complex on X, strictly
zero on U , then G → Ri∗(i

∗G) is a quasi-isomorphism because it is an iso-
morphism at points of Z and a quasi-isomorphism at points of U . Thus
Ri∗ : KChperf,Z(V ) → K(A) is a homotopy inverse of i∗. This proves that

K(X on Z)
≃−→ K(V on Z). Given the Fundamental Theorem for schemes

(
V.8.3
8.3 below), it is a routine matter of bookkeeping to deduce the result for the
non-connective Bass spectra KB .

V.7.10 Corollary 7.10. (Mayer-Vietoris) Let X be a quasi-compact, quasi-separated
scheme, and U , V quasi-compact open subschemes with X = U ∪ V . Then the
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square
KB(X) > KB(U)

KB(V )

∨
> KB(U ∩ V )

∨

is homotopy cartesian, i.e., there is a homotopy fibration sequence

KB(X)→ KB(U)×KB(V )
±−→ KB(U ∩ V ).

On homotopy groups, this yields the long exact “Mayer-Vietoris” sequence:

· · · → Kn+1(U ∩V )
∂−→ Kn(X)

∆−→ Kn(U)×Kn(V )
±−→ Kn(U ∩V )

∂−→ · · · .

Proof. Take Z = X − U in Theorem
V.7.6
7.6, and apply Proposition

V.7.9
7.9.

V.7.11 Corollary 7.11. Let X be a quasi-compact, quasi-separated scheme, and U , V
quasi-compact open subschemes with X = U ∪ V . Then the square

KH(X) > KH(U)

KH(V )
∨

> KH(U ∩ V )
∨

is homotopy cartesian. On homotopy groups, this yields the long exact “Mayer-
Vietoris” sequence:

· · ·KHn+1(U ∩ V )
∂→KHn(X)

∆→KHn(U)×KHn(V )
±→KHn(U ∩ V )

∂→· · ·.

Proof. Recall from IV.
IV.12.7
12.7 that KH(X) is defined to be the realization of

KB(X×∆•). The square of simplicial spectra is degreewise homotopy cartesian
by

V.7.10
7.10, and hence homotopy cartesian.

EXERCISES

EV.7.1 7.1. Show that the functors h : G → QP and pf : G → QP(R) of Definition
V.7.3
7.3

are fibered, with base change φ∗ constructed as in Lemma IV.
IV.7.7
7.7. (The proofs

for h and pf are the same.)

EV.7.2 7.2. Show that there is a functor from the Segal subdivision Sub(GM ) of GM
(IV, Ex.

EIV.3.9
3.9) to the fiber h−1(M), sending P ′  P to P → (P/P ′)⊕M . Then

show that it is an equivalence of categories.

EV.7.3 7.3. Show that the functor Sub(T )→ (pf)−1(Q) which sends P ′  P ։ Q to
P ։ Q⊕ (P/P ′) is an equivalence of categories. (See IV, Ex.

EIV.7.3
7.3.)
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EV.7.4 7.4. (Gersten) Let A be the homogeneous coordinate ring of a smooth pro-
jective curve X over an algebraically closed field. Then A is a 2-dimensional
graded domain such that the “punctured spectrum” U = Spec(A)−{m} is reg-
ular, where m is the maximal ideal at the origin. The blowup of Spec(A) at the
origin is a line bundle over X, and U is isomorphic to the complement of the
zero-section of this bundle.

(a) Show that Kn(U) ∼= Kn(X)⊕Kn−1(X).

(b) Suppose now that A is not a normal domain. We saw in II, Ex.
EII.8.1
8.1 that

Hm(A) ∼= 0. Show that the image of K1(A) → K1(U) is k×, and conclude
that K∗Hm(A) cannot be the third term K∗(Spec(A) on U) in the localization
sequence for K∗(A)→ K∗(U).

EV.7.5 7.5. Let P1
R denote the projective line over an associative ring R, as in

V.1.5.4
1.5.4, let

H1 denote the subcategory of modules which have a resolution of length 1 by
vector bundles, as in Ex.

EV.3.13
3.13, and letH1,t denote the subcategoryH1 consisting

of modules F = (M, 0, 0).

(a) Show thatH1,T (R[t])→ H1,t,M 7→ (M, 0, 0), is an equivalence of categories.

(b) Show that there is an exact functor VB(P1
R)

j∗−→ P(R[1/t]), j∗(F) =M−.

(c) Using Ex.
EV.3.13
3.13, show that the inclusion H1,t ⊂ H1 induces a homotopy

fibration sequence KHT (R[t])→ K(P1
R)

i∗−→ K(R[s]).

(d) If R is commutative, show that the fibration sequence in (c) is the same as
the sequence in

V.7.6.1
7.6.1 with Z the origin of X = P1

R.

For the next few exercises, we fix an automorphism ϕ of a ring R, and form
the twisted polynomial ring Rϕ[t] and its localization Rϕ[t, 1/t], as in Ex.

EV.6.4
6.4.

Similarly, there is a twisted polynomial ring Rϕ−1 [s] and an isomorphism
Rϕ[t, 1/t] ∼= Rϕ−1 [s, 1/s] obtained by identifying s = 1/t. Let H1,t(Rϕ[t]) de-
note the exact category of t-torsion modules in H1(R[t]).

EV.7.6 7.6. Show that KH1,t(Rϕ[t])→ K(Rϕ[t])→ K(Rϕ[t, 1/t]) is a homotopy fibra-
tion. This generalizes Theorem

V.7.1
7.1 and parallels Ex.

EV.6.4
6.4. (This result is due to

Grayson; the induced K1–K0 sequence was discovered by Farrell and Hsiang.)

EV.7.7 7.7. (Twisted projective line P1
R,ϕ) We define mod-P1

R,ϕ to be the abelian
category of triples F = (Mt,Ms, α), where Mt (resp., Ms) is a module over

Rϕ[t] (resp. Rϕ−1 [s]) and α is is an isomorphism Mt[1/t]
∼=−→ Ms[1/s]. It has

a full (exact) subcategory VB(P1
R,ϕ) consisting of triples where Mt and Ms are

finitely generated projective modules, and we write K(P1
R,ϕ) for KVB(P1

R,ϕ).

(a) Show that F(−1) = (Mt, ϕ
∗Ms, αt) is a vector bundle whenever F is.

(b) Generalize Theorem
V.1.5.4
1.5.4 to show that K(R)×K(R) ≃ K(P1

R,ϕ).

(c) Show that there is an exact functor VB(P1
R,ϕ)

j∗−→ P(Rϕ−1 [s]), j∗(F) =Ms.

(d) Show that H1,t(Rϕ[t]) is equivalent to the category of modules F having a
resolution of length 1 by vector bundles, and with j∗(F) = 0. (Cf. Ex.

EV.7.5
7.5(a).)

August 29, 2013 - Page 429 of
LastPage
568



Chapter V

(e) Generalize Ex.
EV.7.5
7.5(c) to show that there is a homotopy fibration

KHT (R[t])→ K(P1
R,ϕ)

j∗−→ K(R[s]).

8 The Fundamental Theorem forK∗(R) andK∗(X)

The main goal of this section is to prove the Fundamental Theorem, which
gives a decomposition of K∗(R[t, 1/t]). For regular rings, the decomposition
simplifies to the formulas NKn(R) = 0 and Kn(R[t, 1/t]) ∼= Kn(R)⊕Kn−1(R)
of Theorem

V.6.3
6.3.

Let R be a ring, set T = {tn} ⊂ R[t], and consider the category H1,T of
t-torsion R[t]-modules M in H1(R[t]). On the one hand, we know from II.

II.7.8.2
7.8.2

that H1,T is equivalent to the category Nil(R) of nilpotent endomorphisms of
projective R-modules (II.

II.7.4.4
7.4.4). We also saw in IV.

IV.6.7
6.7 that the forgetful functor

induces a decomposition KNil(R) ≃ K(R)×Nil(R).

V.8.1 Theorem 8.1. For every R and every n, Niln(R) ∼= NKn+1(R)

Theorem
V.8.1
8.1 was used in IV.

IV.6.7.2
6.7.2 to derive several properties of the group

NK∗(R), including: if R is a Z/pZ-algebra then each NKn(R) is a p-group,
and if Q ⊂ R then NKn(R) is a uniquely divisible abelian group.

Proof. We know from Ex.
EV.7.5
7.5 that Nil(R) is equivalent to the category H1,t of

modules F on the projective line P1
R with j∗F = 0, and which have a length 1

resolution by vector bundles. Substituting this into Corollary
V.7.6.1
7.6.1 (or Ex.

EV.7.5
7.5

if R is not commutative) yields the exact sequence

· · ·Kn+1(R[1/t])→ Kn(R)⊕Niln(R)→ Kn(P
1
R)

j∗−→ Kn(R[1/t]) · · · . (8.1.1) V.8.1.1

Now the composition P(R) ⊂ Nil(R)→ H(P1
R) sends P to (P, 0, 0), and there

is an exact sequence u1(P )  u0(P ) ։ (P, 0, 0) obtained by tensoring P with
the standard resolution 0 → O(−1) → O → (R, 0, 0) → 0. By Additivity

V.1.2
1.2,

the corresponding map K(R)→ K(P1
R) in (

V.8.1.1
8.1.1) is u0 − u1. By the Projective

Bundle Theorem
V.1.5
1.5 (or

V.1.5.4
1.5.4 if R is not commutative), the map (u0, u0 − u1) :

K(R) ×K(R) → K(P1
R) is an equivalence. Since j∗u0(P ) ∼= P ⊗R R[1/t], the

composition j∗ ◦ u0 : K(R) → K(R[1/t]) is the standard base change map
inducing the decomposition Kn(R[1/t]) ∼= Kn(R) ⊕ NKn(R). Thus (

V.8.1.1
8.1.1)

splits into the split extension 0 → Kn(R)
u0−u1

> Kn(P
1
R) → Kn(R) → 0 and

the desired isomorphism NKn+1(R) ∼= Kn+1(R[t])/Kn+1(R)
∼=−→ Niln(R).

V.8.2 Theorem 8.2. [Fundamental Theorem] There is a canonically split exact se-
quence

0→ Kn(R)
∆−→ Kn(R[t])⊕Kn(R[1/t])

±−→ Kn(R[t, 1/t])
∂
>← Kn−1(R)→ 0.

in which the splitting of ∂ is given by multiplication by t ∈ K1(Z[t, t−1]).
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Proof. Because the base change mod-P1
R →mod-R[t] is exact, there is a map

between the localization sequences for T in Theorem
V.7.1
7.1 and (

V.8.1.1
8.1.1), yielding

the commutative diagram:

· · · → KnH1,T > Kn(P
1
R)

j∗
> Kn(R[1/t]) > Kn−1H1,T → · · ·

· · · → KnH1,T

wwwww
f∗ ⊕ 0

> Kn(R[t])
∨ j∗

> Kn(R[t, 1/t])
∨

> Kn−1H1,T → · · · .

wwwww

Now Kn(R) → KnNil(R) → Kn(R[t]) is the transfer map f∗ of (
V.3.3.2
3.3.2), in-

duced from the ring map f : R[t] → R, and Niln(R) → Kn(P
1
R) is zero by the

proof of Theorem
V.8.1
8.1, Since f∗ is zero by

V.3.5.1
3.5.1, the diagram yields the exact

sequence Seq(Kn, R) displayed in the Theorem, for n ≥ 1. The exact sequence
Seq(Kn, R) for n ≤ 0 was constructed in III.

III.4.1.2
4.1.2.

To see that Seq(Kn, R) is split exact, we only need to show that ∂ is split by
the cup product with [t] ∈ K1(R[t, 1/t]). But the maps in the localization se-
quence commute with multiplication by K∗(R), by Exercise

EV.8.1
8.1 (or Ex. IV.

EIV.1.23
1.23).

Hence we have the formula: ∂({t, x}) = ∂(t) · x = [R[t]/tR[t]] · x. This shows
that x 7→ {t, x} is a right inverse to ∂; the maps t 7→ 1 from Kn(R[t]) and
Kn(R[1/t]) to Kn(R) yield the rest of the splitting.

There is of course a variant of the Fundamental Theorem
V.8.2
8.2 for schemes.

For every scheme X, let X[t] and X[t, t−1] denote the schemes X × Spec(Z[t])
and X × Spec(Z[t, t−1]) respectively.

V.8.3 Theorem 8.3. For every quasi-projective scheme X we have canonically split
exact sequences for all n, where the splitting of ∂ is by multiplication by t.

0→ Kn(X)
∆−→ Kn(X[t])⊕Kn(X[1/t])

±−→ Kn(X[t, 1/t])
∂
>← Kn−1(X)→ 0.

in which the splitting of ∂ is given by multiplication by t ∈ K1(Z[t, t−1]).

Proof. Consider the closed subscheme X0 = X × 0 of P1
X . The open inclu-

sion X[t] →֒ P1
X is a flat map, and induces a morphism of homotopy fibration

sequences for n ≥ 1 from Corollary
V.7.6.1
7.6.1:

KnHX0
(P1
X) > Kn(P

1
X)

j∗
> Kn(X[1/t])

∂
> Kn−1HX0

(P1
X)

KnHX0
(X[t])

wwwwww
> Kn(X[t])

∨ j∗
> Kn(X[t, 1/t])

∨ ∂
> Kn−1HX0

(X[t]).

wwwwww (8.3.1) V.8.3.1

As in the proof of Theorem
V.8.1
8.1, there is an exact sequence u1  u0 ։ i∗ of

functors fromVB(X) toH(P1
X), where ui(E) = E⊗O(i) and i∗ is the restriction

of scalars associated to i : X0 →֒ P1
X . By Additivity

V.1.2
1.2, i∗ = u0−u1. Since j∗u0

is the base change, we see that the top row splits in the same way that (
V.8.1.1
8.1.1)

does. Since the map Kn(X) → KnHX0
(X[t]) → Kn(X[t]) is zero by

V.3.6.1
3.6.1, the
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bottom left map is zero on homotopy groups. Via a diagram chase on (
V.8.3.1
8.3.1),

using the Projective Bundle Theorem
V.1.5
1.5, the exact sequence of Theorem

V.8.3
8.3

follows formally for n ≥ 1, and for n = 0 provided we define K−1(X) to be the
cokernel of the displayed map ‘±’.

Since the maps in (
V.8.3.1
8.3.1) are K∗(X)-module maps (by Ex.

EV.8.2
8.2), we have

∂({t, x}) = ∂(t) · x. But the base change X[t]
π→ Spec(Z[t]) induces a mor-

phism of localization sequences, and t lifts to K1(Z[t, 1/t]), so by natural-
ity we have ∂X(t) = π∗∂Z(t) = π∗([Z[t]/t]) = 1 in the subgroup K0(X) of
K0HX0

(X[t]). Hence ∂({t, x}) = x, regarded as an element of the subgroup
K∗(X) of K∗HX0

(X[t]).
Finally, given the result for n = 1, the result follows formally for n ≤ 0,

where Kn−1(X) is given by Definition IV.
IV.10.6
10.6; see Ex.

EV.8.3
8.3.

V.8.3.2 Remark 8.3.2. Kn(X) was defined for n ≤ −1 to be πnK
B(X) in Definition

IV.
IV.10.6
10.6, where KB(X) was defined using Theorem

V.8.4
8.4 below. Unravelling that

definition, we see that the groups Kn(X) may also be inductively defined to
be the cokernel LKn+1(X) of Kn+1(X[t]) ⊕ Kn+1(X[1/t]) → Kn+1(R[t, 1/t]).
As with Definition III.

III.4.1.1
4.1.1, this definition is concocted so that Theorem

V.8.3
8.3

remains true for n = 0 and also for all negative n; see Ex.
EV.8.3
8.3.

Theorems
V.8.2
8.2 and

V.8.3
8.3 have versions which involve the (connective) spectra

K(R) and K(X) associated to K(R) and K(X). Recall from IV.
IV.10.1
10.1 that the

spectrum ΛK(R) is defined so that we have a cofibration sequence

ΛK(R)→ K(R[t]) ∨K(R) K(R[1/t])
f0→K(R[t, 1/t])

∂−→ Ω−1ΛK(R).

Replacing R byX in Definition IV.
IV.10.1
10.1 yields a spectrum ΛK(X) fitting into the

cofibration sequence obtained from this one by replacing R with X throughout.
Fixing a spectrum map S1 → K(Z[t, 1/t]) representing [x] ∈ [S1,K(Z[t, 1/t])] =
K1(Z[t, 1/t]), the product yields a map K(R) to K(R[t, 1/t]); composed with
Ω∂, it yields morphisms of spectra K(R)→ ΛK(R), and K(X)→ ΛK(X). The
following result was used in Section IV.10 to define the non-commutative “Bass
K-theory spectra” KB(R) and KB(X) as the homotopy colimit of the iterates
ΛkK(R) and ΛkK(X).

V.8.4 Theorem 8.4. For any ring R, the map K(R) → ΛK(R) induces a homo-
topy equivalence between K(R) and the (−1)-connective cover of the spectrum
ΛK(R). In particular, Kn(R) ∼= πnΛK(R) for all n ≥ 0.

Similarly, for any quasi-projective scheme X, the map K(X) → ΛK(X)
induces a homotopy equivalence between K(X) and the (−1)-connective cover
of the spectrum ΛK(X). In particular, Kn(X) ∼= πnΛK(X) for all n ≥ 0.

Proof. We give the proof for R; the proof for X is the same. By Theorem
V.8.3
8.3,

there is a morphism K(R) → ΛK(R) which is an isomorphism on πn for all
n ≥ 0, and the only other nonzero homotopy group is π−1ΛK(R) = K−1(R).
The theorem is immediate.
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V.8.4.1 Corollary 8.4.1. For every ring R, the spectrum KB(R[t]) decomposes as
KB(R) ∨NKB(R) and the spectrum KB(R[t, 1/t]) splits as

KB(R[t, 1/t]) ≃ KB(R) ∨NKB(R) ∨NKB(R) ∨ Ω−1KB(R).

Kn-regularity

The following material is due to Vorst
Vo
[212] and van der Kallen. Let s be a

central nonzerodivisor in R, and write [s] : R[x] → R[x] for the substitution
f(x) 7→ f(sx). Let NK∗(R)[s] denote the colimit of the directed system

NK∗(R)
[s]−→ NK∗(R)

[s]−→ NK∗(R)
[s]−→ · · · .

V.8.5 Lemma 8.5. For any central nonzerodivisor s, NK∗(R)[s]
∼=−→NK∗(R[1/s]).

In particular, if NKn(R) = 0 then NKn(R[1/s]) = 0.

Proof. Let C be the colimit of the directed system R[x]
[s]→R[x]

[s]→R[x] · · · of
ring homomorphisms. There is an evident map C → R splitting the inclusion,
and the kernel is the ideal I = xR[1/s][x] ⊂ R[1/s][x]. By IV.

IV.6.4
6.4, K∗(C, I) is

the filtered colimit of the groups NKn(R) = Kn(R[x], x) along the maps [s],
i.e., NK∗(R)[s]. Moreover, C[1/s] ∼= R[1/s][x].

We can apply Proposition
V.7.5
7.5 to R → C, since I/sI = 0 implies R/siR ∼=

C/siC, to obtain the Mayer-Vietoris sequence

· · · → Kn(R)
∆−→ Kn(C)×Kn(R[1/s])

±−→ Kn(R[1/s][x])
∂−→ · · · .

Splitting off Kn(R) from Kn(C) and Kn(R[1/s]) from Kn(R[1/s][x]) yields the
desired isomorphism of NKn(R)[s] ∼= Kn(C, I) with NKn(R[1/s]).

V.8.5.1 Example 8.5.1. If R is commutative and reduced, then NKn(R) = 0 implies
that NKn(RP ) = 0 for every prime ideal P of R. Vorst

Vo
[212] also proved the

converse: if NKn(Rm) = 0 for every maximal ideal m then NKn(R) = 0. Van
der Kallen proved the stronger result that NKn is a Zariski sheaf on Spec(R).

Recall from III.
III.3.4
3.4 that R is called Kn-regular if Kn(R) ∼= Kn(R[t1, . . . , tm])

for all m. By Theorem
V.6.3
6.3, every noetherian regular ring is Kn-regular for all n.

V.8.6 Theorem 8.6. If R is Kn-regular, then it is Kn−1-regular.
More generally, if Kn(R) ∼= Kn(R[s, t]) then Kn−1(R) ∼= Kn−1(R[s]).

Proof. It suffices to suppose that Kn(R) ∼= Kn(R[s, t]), so that NKn(R[s]) = 0,
and prove that NKn−1(R) = 0. By Lemma

V.8.5
8.5, NKn(R[s, 1/s]) = 0. But

NKn−1(R) is a summand of NKn(R[s, 1/s]) by the Fundamental Theorem
V.8.2
8.2.

The following partial converse was proven in
CHWW
[47].

V.8.7 Theorem 8.7. Let R be a commutative ring containing Q.
If R is Kn−1-regular and NKn(R) = 0, then R is Kn-regular.

August 29, 2013 - Page 433 of
LastPage
568



Chapter V

V.8.7.1 Remark 8.7.1. There are rings R for which NKn(R) = 0 but R is not Kn-
regular. For example, the ring R = Q[x, y, z]/(z2+y3+x10+x7y) has K0(R) ∼=
K0(R[t]) but K0(R) 6∼= K0(R[s, t]), and K−1(R) 6∼= K−1(R[t]); see

CHWW
[47].

EXERCISES

EV.8.1 8.1. For any central nonzerodivisor s ∈ R, multiplication by [s] ∈ K1(R[1/s])
yields a map Kn(R) → Kn+1(R[1/s]). Show that the boundary map ∂ :
Kn+1(R[1/s]) → KnHs(R) satisfies ∂({s, x}) = x̄ for every x ∈ Kn(R), where
x̄ is the image of x under the natural map Kn(R) → Kn(R/sR) → KnHs(R).
Hint: Use Exercises

EV.5.3
5.3 and IV.

EIV.1.23
1.23; the ring map Z[t]→ R, t 7→ s, induces com-

patible pairings P(Z[t])×P(R)→ P(R) and P(Z[t, 1/t])×P(R)→ P(R[1/s]).

EV.8.2 8.2. Show that VB(X) acts on the terms in the localization sequence of Corol-
lary

V.7.6.1
7.6.1 in the sense of IV.

IV.6.6.4
6.6.4. Deduce that the map ∂ : Kn(U) →

Kn−1HZ(X) satisfies ∂({u, x}) = ∂(u) · x for u ∈ K∗(U) and x ∈ K∗(X).
Hint: Mimick Ex.

EV.5.3
5.3, using Ex. IV.

EIV.1.23
1.23.

EV.8.3 8.3. Given a scheme X, show that Fn(R) = Kn(X × Spec R) is a contracted
functor in the sense of III.

III.4.1.1
4.1.1. Then show that the functor K−n(X) of

V.8.3.2
8.3.2

is the contracted functor LnF0(Z).

EV.8.4 8.4. Twisted Nil groups, Let ϕ be an automorphism of a ring R, and consider the
category Nil(ϕ) whose objects are pairs (P, ν), where P is a finitely generated
projective R-module and ν is a nilpotent endomorphism of P which is semi-
linear in the sense that ν(xr) = ν(x)ϕ(r). If ϕ = idR, this is the category
Nil(R) of II.

II.7.4.4
7.4.4. As in loc. cit. , we define Niln(ϕ) to be the kernel of the map

KnNil(ϕ) → Kn(R) induced by (P, ν) 7→ P . Similarly, we define NKn(ϕ) to
be the cokernel of the natural map Kn(R)→ Kn(Rϕ[t]).

(a) Show that KnNilϕ(R) ∼= Kn(R) ⊕ Niln(ϕ), and Kn(Rϕ[t]) ∼= Kn(R) ⊕
NKn(ϕ).

(b) Show that Nilϕ(R) is equivalent to the category KH1,t(Rϕ[t]) of Ex.
EV.7.6
7.6.

(c) Show that NKn(ϕ) ∼= NKn(ϕ
−1). Hint: P(Rop) ∼= P(R)op by IV.

IV.6.4
6.4.

(d) Prove the twisted analogue of Theorem
V.8.1
8.1: Niln(ϕ) ∼= NKn+1(ϕ) for all n.

EV.8.5 8.5. (Grayson) Let Kϕ(R) be the homotopy fiber of K(R)
1−ϕ∗

> K(R), and set
Kϕ
n (R) = πnK

ϕ(R). If R is regular, use Ex.
EV.6.4
6.4 to show that K∗(Rϕ[t, 1/t]) ∼=

Kϕ
∗ (R). Then show that there is a canonical isomorphism for any R:

Kn(Rϕ[t, 1/t]) ∼= Kϕ
n (R)⊕Niln−1(ϕ)⊕Niln−1(ϕ

−1).
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9 The coniveau spectral sequence of Gersten

and Quillen

In this section we give another application of the Localization Theorem
V.5.1
5.1,

which reduces the calculation of Gn(X) to a knowledge of the K-theory of fields,
up to extensions. The prototype of the extension problem is illustrated by the
exact sequences in

V.6.6
6.6 and

V.6.12
6.12, for Dedekind domains and smooth curves.

Suppose first that R is a finite-dimensional commutative noetherian ring.
We let Mi(R) denote the subcategory of M(R) consisting of those R-modules
M whose associated prime ideals all have height ≥ i. We saw in II.

II.6.4.3
6.4.3

and Ex. II.
EII.6.9
6.9 that each Mi(R) is a Serre subcategory of M(R) and that

Mi/Mi+1(R) ∼=
⊕

ht(p)=iMp(Rp), where Mp(Rp) is the category of Rp-
modules of finite length.

By devissage (Application
V.4.4
4.4) we have KMp(Rp) ≃ G(k(p)) ≃ K(k(p)),

where k(p) = Rp/pRp, so K∗M
i/Mi+1(R) ∼= ⊕ht(p)=iG∗(k(p)). The Localiza-

tion Theorem yields long exact sequences

∂−→ KnM
i+1(R)→ KnM

i(R)→
⊕

ht(p)=i

Kn(k(p))
∂−→ Kn−1M

i+1(R)→ · · ·

and, writing Mi−1/Mi+1 for Mi−1(R)/Mi+1(R),

⊕

ht(p)=i−1

Kn+1(k(p))
∂−→

⊕

ht(p)=i

Kn(k(p))→ Kn(M
i−1/Mi+1)→

⊕

ht(p)=i−1

Kn(k(p))
∂−→

(9.1) V.9.1

ending in an extension to K1 of the K0 sequence of II.
II.6.4.3
6.4.3:

⊕

ht(p)=i−1

k(p)×
∆−→ Di(R)→ K0(M

i−1/Mi+1)→ Di−1(R)→ 0.

Here Di(R) is the free abelian group on the height i primes, and ∆ sends
r/s ∈ k(p)× to [R/(r, p)]− [R/(s, p)] by Example

V.6.1.2
6.1.2. (This is the formula of

II, Ex.
EII.6.8
6.8.)

Recall from II.
II.6.4.3
6.4.3 that the generalized Weil divisor class group CHi(R) is

defined to be the image of Di(R) → K0M
i−1/Mi+1(R). As the kernel of this

map is the image of ∆, this immediately gives the interpretation, promised in
II.

II.6.4.3
6.4.3:

V.9.1.1 Lemma 9.1.1. CHi(R) is the quotient of Di(R) by the relations that ∆(r/s) =
0 for each r/s ∈ k(p)× and each prime ideal p of height i− 1.

This equivalence relation, that the length of Rp/(r, p) is zero in Di(R) for
each r ∈ R and each prime p of height i − 1, is called rational equivalence; see
Proposition

V.9.4.1
9.4.1.

For general R, the localization sequences (
V.9.1
9.1) cannot break up. Indeed,

we saw in I.
I.3.6
3.6 and II.

II.6.4.3
6.4.3 that even the map ⊕k(y)× ∆−→ Di(X) can be
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nonzero. Instead, the sequences assemble to form a spectral sequence converging
to G∗(R).

V.9.2 Proposition 9.2. If R is noetherian and dim(R) < ∞, there is a convergent
4th quadrant cohomological spectral sequence

Ep,q1 =
⊕

ht(p)=p
K−p−q(k(p))⇒ G−p−q(R).

The edge maps Gn(R)→ E0,−n
1 = ⊕Gn(k(p)) associated to the minimal primes

p of R are induced by the localizations R → Rp followed by the isomorphism
G(k(p)) ≃ G(Rp) of

V.4.2.1
4.2.1.

Along the line p+ q = 0, we have Ep,−p1
∼= Dp(R) and Ep,−p2

∼= CHp(R).

Z 0 0 0
F× → D1(R) 0 0

K2(F ) → ⊕k(x1)× → D2(R) 0

K3(F ) → ⊕K2(x1) → ⊕k(x2)× → D3(R)

The E1 page of the spectral sequence

Proof. Setting Dp,q
1 = ⊕iK−p−qMi(R), the localization sequences (

V.9.1
9.1) yield

an exact couple (D1, E1). Because M(R) = M0(R) and Mp(R) = ∅ for p >
dim(R), the resulting spectral sequence is bounded and converges to K∗(R)
(see

WHomo
[223, 5.9.7]). Since Ep,−p1 is the divisor group Dp(R), and dp−1,p1 is the map

⊕k(x)× ∆−→ Dp(R) of (
V.9.1
9.1), the group Ep,−p2 is isomorphic to CHp(R) by

V.9.1.1
9.1.1.

Finally, the edge maps are given by Gn(R) = KnM(R)→ KnM(R)/M1(R) ∼=
⊕Kn(k(η)); the component maps are induced by M(R)→M(k(η)).

V.9.2.1 Coniveau Filtration 9.2.1. The pth term in the filtration on the abutment
Gn(R) is defined to be the image of KnM

p(R)→ KnM(R). In particular, the
filtration on G0(R) is the coniveau filtration of II.

II.6.4.3
6.4.3.

V.9.2.2 Remark 9.2.2. If f : R → S is flat then ⊗RS sends Mi(R) to Mi(S). It
follows that the spectral sequence (

V.9.2
9.2) is covariant for flat maps.

V.9.2.3 Remark 9.2.3. If dim(R) =∞, it follows from
WHomo
[223, Ex. 5.9.2] that the spectral

sequence (
V.9.2
9.2) converges to lim←−K∗M(R)/Mi(R).

Motivated by his work with Brown, Gersten made the following conjecture
for regular local rings. (If dim(R) = 1, this is Gersten’s conjecture

V.6.9
6.9.) His

conjecture was extended to semilocal rings by Quillen in
Q341
[153], who then estab-

lished the important special case when R is essentially of finite type over a field
(
V.9.6
9.6 below).

V.9.3 Gersten-Quillen Conjecture 9.3. If R is a semilocal regular ring, the maps
KnM

i+1(R)→ KnM
i(R) are zero for every n and i.
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This conjecture implies that, for R a regular semilocal domain, (
V.9.1
9.1) breaks

into short exact sequences

0→ KnM
i(R)→ ⊕ht=iKn(k(p))→ Kn−1M

i+1(R)→ 0,

which splice to yield exact sequences (with F the field of fractions of R):

0→ Kn(R)→ Kn(F )→
⊕

ht(p)=1

Kn−1(k(p))→ · · · →
⊕

ht(p)=i

Kn−i(k(p))→ · · ·

(9.3.1) V.9.3.1

It follows of course that the spectral sequence (
V.9.2
9.2) collapses at E2, with E

p,q
2 = 0

for p > 0. Hence the Gersten-Quillen conjecture
V.9.3
9.3 implies that Kn(R) is the

kernel of Kn(F )→ ⊕Kn−1(k(p)) for all n.

The coniveau filtration for schemes

Of course, the above discussion extends to modules over a noetherian scheme X.
Here we let Mi(X) denote the category of coherent OX -modules whose support
has codimension ≥ i. If i < j we write Mi/Mj for the quotient abelian category
Mi(X)/Mj(X). Then Mi/Mi+1 is equivalent to the direct sum, over all points
x of codimension i in X, of the Mx(OX,x); by devissage this category has the
same K-theory as its subcategory M(k(x)). Thus the Localization Theorem
yields a long exact sequence

⊕

y

Kn+1(k(y))
∂−→
⊕

x

Kn(k(x))→K(Mi−1/Mi+1)→
⊕

y

Kn(k(y)), (9.4) V.9.4

where y runs over all points of codimension i − 1 and x runs over all points of
codimension i. This ends in the K1–K0 sequence of II.

II.6.4.3
6.4.3:

⊕

codim(y)=i−1

k(y)×
∆−→ Di(X)→ K0(M

i−1/Mi+1)→ Di−1(X)→ 0,

where Di(X) denotes the free abelian group on the set of points of X having
codimension i (see II.

II.6.4.3
6.4.3). If r/s ∈ k(p)×, the formula for ∆ on k(y)× is

determined by the formula in (
V.9.1
9.1): choose an affine open Spec(R) ⊂ X con-

taining y; then ∆(r/s) is [R/(r, p)]− [R/(s, p)] in Di(R) ⊂ Di(X). This gives a
presentation for the Weil divisor class group CHi(X) of II.

II.6.4.3
6.4.3, defined as the

image of Di(X) in K0M
i−1/Mi+1: it is the cokernel of ∆.

Now the usual Chow group Ai(X) of codimension i cycles on X modulo
rational equivalence, as defined in

Fulton
[58], is the quotient of Di(X) by the following

relation: for every irreducible subvariety W of X × P1 having codimension i,
meeting X×{0,∞} properly, the cycle [W ∩X×0] is equivalent to [W ∩X×∞].
We have the following identification, which was promised in II.

II.6.4.3
6.4.3.

V.9.4.1 Lemma 9.4.1. CHi(X) is the usual Chow group Ai(X).

Proof. The projection W → P1 defines a rational function, i.e., an element
t ∈ k(W ). Let Y denote the image of the projection W → X, and y its generic
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point; the proper intersection condition implies that Y has codimension i + 1
and W is finite over Y . Hence the norm f ∈ k(y) of t exists. Let x ∈ X be a
point of codimension i; it defines a discrete valuation ν on k(y), and it is well
known

Fulton
[58] that the multiplicity of x in the cycle [W ∩X × 0] − [W ∩X ×∞]

is ν(f).

As observed in
V.9.1
9.1 (and II.

II.6.4.3
6.4.3), the sequences in (

V.9.4
9.4) do not break up for

general X. The proof of Proposition
V.9.2
9.2 generalizes to this context to prove the

following:

V.9.5 Proposition 9.5. (Gersten) If X is noetherian and dim(X) < ∞, there is a
convergent 4th quadrant cohomological spectral sequence (zero unless p+ q ≤ 0):

Ep,q1 =
⊕

codim(x)=p
K−p−q(k(x))⇒ G−p−q(X).

If X is reduced, the components Gn(X)→ Gn(k(η)) of the edge maps Gn(X)→
E0,−n

1 associated to the generic points η of X are induced by the flat maps
Spec(k(η))→ X.

Along the line p+ q = 0, we have Ep,−p2
∼= CHp(X).

V.9.5.1 Coniveau Filtration 9.5.1. The pth term in the filtration on the abutment
Gn(X) is defined to be the image of KnM

p(X)→ KnM(X). In particular, the
filtration on G0(X) is the coniveau filtration of II.

II.6.4.3
6.4.3.

V.9.5.2 Remark 9.5.2. The spectral sequence in
V.9.5
9.5 is covariant for flat morphisms, for

the reasons given in Remark
V.9.2.2
9.2.2. If X is noetherian but not finite-dimensional,

it converges to lim←−K∗M(X)/Mi(X).

We shall now prove the Gersten-Quillen Conjecture
V.9.3
9.3 for algebras over a

field.

V.9.6 Theorem 9.6. (Quillen) Let R be an algebra of finite type over a field, and
let A = S−1R be the semilocal ring of R at a finite set of prime ideals. Then
Conjecture

V.9.3
9.3 holds for A: for each i the map KMi+1(A)→ KMi(A) is zero.

Proof. We may replace R by R[1/f ], f ∈ S, to assume that R is smooth.
BecauseMi+1(S−1R) is the direct limit (over s ∈ S) of theMi+1(R[1/s]), which
in turn is the direct limit (over nonzerodivisors t) of the Mi(R[1/s]/tR[1/s]),
it suffices to show that for every nonzerodivisor t of R that there is an s ∈ S
so that the functor Mi(R/tR) → Mi(R[1/s]) is null homotopic on K-theory
spaces. This is the conclusion of Proposition

V.9.6.1
9.6.1 below.

V.9.6.1 Proposition 9.6.1. (Quillen) Let R be a smooth domain over a field and S ⊂
R a multiplicative set so that S−1R is semilocal. Then for each t 6= 0 in R
with t 6∈ S there is an s ∈ S so that each base change Mi(R/tR)→Mi(R[1/s])
induces a null-homotopic map on K-spaces.

August 29, 2013 - Page 438 of
LastPage
568



Chapter V

Proof. Suppose first that R contains a subring B mapping isomorphically onto
R/tR, and that R is smooth over B. We claim that the kernel I of R→ R/tR
is locally principal. To see this, we may assume that B is local, and even
(by Nakayama’s Lemma) that B is a field. But then R is a Dedekind domain
and every ideal is locally principal, whence the claim. We choose s so that
I[1/s] ∼= R[1/s].

Now for any B-module M we have the characteristic split exact sequence of
R[1/s]-modules:

0→ I[1/s]⊗B M → R[1/s]⊗B M →M [1/s]→ 0.

Since R is flat, if M is in Mi(B) then this is an exact sequence in Mi(R[1/s]).
That is, we have a short exact sequence of exact functors Mi(B)→Mi(R[1/s]).
By the Additivity Theorem

V.1.2
1.2, we see that KMi(B) → KMi(R[1/s]) is null

homotopic.
For the general case of

V.9.6.1
9.6.1, we need the following algebraic lemma, due to

Quillen, and we refer the reader to
Q341
[153, 5.12] for the proof.

V.9.6.2 Lemma 9.6.2. Suppose that X = Spec(R), for a finitely generated ring R over
an infinite field k. If Z ⊂ X is closed of dimension r and T ⊂ X is a finite set
of closed points, then there is a projection X → Spec(k[t1, ..., tr]) which is finite
on Z and smooth at each point of T .

Resuming the proof of
V.9.6
9.6, we next assume that k is an infinite field. Let

A = k[t1, ..., tr] be the polynomial subalgebra of R given by Lemma
V.9.6.1
9.6.1 so

that B = R/tR is finite over A and R is smooth over A at the primes of
R not meeting S. Set R′ = R ⊗A B; then R′/R is finite and hence S−1R′

is also semilocal, and R′ is smooth over B at the primes of R′ not meeting
S. In particular, there is an s ∈ S so that R′[1/s] is smooth (hence flat)
over B. For such s, each Mi(B) →Mi(R[1/s]) factors through exact functors
Mi(B) → Mi(R′[1/s]) → Mi(R[1/s]). But KMi(B) → KMi(R′[1/s]) is zero
by the first part of the proof. It follows that KMi(B) → KMi(R[1/s]) is zero
as well.

Finally, if k is a finite field we invoke the following standard transfer ar-
gument. Given x ∈ KnM

i(R/tR) and a prime p, let k′′ denote the infinite
p-primary algebraic extension of k; as the result is true for R⊗k k′′ then there is
a finite subextension k′ with [k′ : k] = pr so that prx maps to zero over R⊗k k′.
Applying the transfer from KnM

i(R⊗ k′) to KnM
i(R), it follows that F i∗(x) is

killed by a power of p. Since this is true for all p, we must have F i∗(x) = 0.

V.9.6.3 Definition 9.6.3 (Pure exactness). A subgroup B of an abelian group A is
said to be pure if B/nB → A/nA is an injection for every n. More generally, an
exact sequence A∗ of abelian groups is pure exact if the image of each An+1 is
a pure subgroup of An; it follows that each sequence A∗/nA∗ is exact. If A

i
∗ is

a filtered family of pure exact sequences, it is easy to see that colimAi∗ is pure
exact.
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V.9.6.4 Corollary 9.6.4. If R is a semilocal ring, essentially of finite type over a field,
then the sequence (

V.9.3.1
9.3.1) is also pure exact.

In particular, we have exact sequences (see Ex.
EV.9.4
9.4):

0→ Kn(R)/ℓ→ Kn(F )/ℓ→
⊕

ht(p)=1

Kn−1(k(p))/ℓ→ · · · ,

0→ ℓKn(R)→ ℓKn(F )→
⊕

ht(p)=1

ℓKn−1(k(p))→ · · · .

Proof. (Grayson) Because the maps in
V.9.6.1
9.6.1 are null homotopic, we see from

V.1.2.2
1.2.2 that if F is,t is the homotopy fiber of Mi(R/tR) → Mi(R[1/s]) then the

exact sequences 0 → Kn+1M
i(R[1/s]) → πnF

i
s,t → KnM

i(R/tR) → 0 splits.

Taking the direct limit, we see that the sequences 0 → Kn+1M
i(S−1R) →

πnF
i → KnM

i+1(R) → 0 are pure exact. Splicing these sequences together
yields the assertion.

In mixed characteristic, Gillet and Levine proved the following result; we
refer the reader to

GiL
[69] for the proof. Let Λ be a discrete valuation domain with

parameter π, residue field k = Λ/π of characteristic p > 0 and field of fractions
of characteristic 0.

V.9.7 Theorem 9.7. Let A be a smooth algebra of finite type over Λ and S ⊂ A a
multiplicative set so that R = S−1A is semilocal. If t ∈ A and A/tA is flat over
Λ then every base change KMi(A/tA)→ KMi(R) is null-homotopic.

Now the set T = {t ∈ A : R/tR is flat over Λ} is multiplicatively closed,
generated by the height 1 primes other than πR. Hence the localization D =
T−1R is the discrete valuation ringD = R(πR) whose residue field is the quotient
field of R/πR. By Theorem

V.9.7
9.7 with i = 0, Kn(R)→ Kn(D) is an injection.

V.9.7.1 Corollary 9.7.1. Let R be a regular semilocal Λ-algebra, as in
V.9.7
9.7. Then:

(a) For i ≥ 1, the transfer map KMi+1(R)→ KMi(R) is null homotopic.
(b) Each K0M

i(R) is generated by the classes [R/xR], where each x =
(x1, . . . , xi) is a regular sequence in R of length i.

(c) Sequence (
V.9.3.1
9.3.1) is exact except possibly at Kn(R) and ⊕ht=1Kn−1(k(p)).

(d) If Gersten’s DVR conjecture
V.6.9
6.9 is true for D, then the Gersten-Quillen

conjecture
V.9.3
9.3 is true for R.

Proof. (a) As i+1 > 1 = dim(D), each module in KMi+1(R) vanishes over D,
so it is killed by a t for which R/tR is flat. Thus KMi+1(R) is the direct limit
over t ∈ T and s ∈ S of the KMi(A[1/s]/t); since the maps KMi(A[1/s]/t)→
KMi(R) are zero by Theorem

V.9.7
9.7, (a) follows. We prove (b) by induction on i,

the case i = 1 being immediate from the localization sequence

R× → frac(R)×
∆−→ K0M

1(R)→ 0,

together with the formula ∆(r/s) = [R/rR] − [R/sR] of
V.6.1.2
6.1.2. For i > 1 the

localization sequence (
V.9.1
9.1), together with (a), yield an exact sequence

⊕ht(p)=i−1k(p)× ∂−→ K0M
i(R)

0−→ K0(R)
∼=−→ K0(frac(R))→ 0.

August 29, 2013 - Page 440 of
LastPage
568



Chapter V

If 0 6= r, s ∈ R/p then the formula (Ex.
EV.5.1
5.1) for ∂p : k(p)× → K0M

i(R) yields
∂p(r/s) = [R/p+rR]− [R/p+sR]. Thus it suffices to show that each [R/p+rR]
is a sum of terms R/xR. Since the height 1 primes of R are principal we have
p = xR and R/p+ aR = R/(x, r)R when i = 2. By induction there are regular
sequences x of length i− 1 such that [R/p] =

∑
[R/xR] in K0M

i−1(R). Given
r ∈ R − p we can choose (by prime avoidance) an r′ so that p + rR = p + r′R
and (x, r′) is a regular sequence in R. Because R/x is Cohen-Macaulay, all
its associated primes have height i − 1. Hence we have the desired result (by
Ex. II.

EII.6.16
6.16): [R/p+ rR] =

∑
[R/(x, r′)R] in K0M

i(R).
Part (c) is immediate from exactness of Kn(R) → Kn(E) → Kn−1M

1(R),
where F is the field of fractions of R, and part (a), which yields the exact
sequence:

0→ KnM
1(R)→

⊕

ht(p)=1

Kn−1(k(p))→ · · · →
⊕

ht(p)=i

Kn−i(k(p))→ · · ·

It follows that (
V.9.3.1
9.3.1) is exact for R (the Gersten-Quillen conjecture

V.9.3
9.3 holds

for R) if and only if each Kn(R) → Kn(F ) is an injection. Suppose now
that K∗(D) → K∗(F ) is an injection (conjecture

V.6.9
6.9 holds for D). Then the

composition Gn(R) →֒ Gn(D) →֒ Gn(F ) is an injection, proving (d).

K-cohomology

Fix a noetherian scheme X. For each point x, let us write ix for the inclusion
of x in X. Then we obtain a skyscraper sheaf (ix)∗A on X (for the Zariski
topology) for each abelian group A. If we view the coniveau spectral sequence
(
V.9.5
9.5) as a presheaf on X and sheafify, the rows of the E1 page assemble to form
the following chain complexes of sheaves on X:

0→ Kn → ⊕cd=1(ix)∗Kn(x)→ ⊕cd=2(iy)∗Kn(y)→ · · · → 0. (9.8) V.9.8

Here Kn is the sheaf associated to the presheaf U 7→ Kn(U); its stalk at x ∈ X
is Kn(OX,x). Since the stalk sequence of (

V.9.8
9.8) at x ∈ X is the row q = −n

of the coniveau spectral sequence for R = OX,x, we see that if (
V.9.3.1
9.3.1) is exact

for every local ring of X then (
V.9.8
9.8) is an exact sequence of sheaves. Since each

(iy)∗Kn(y) is a flasque sheaf, (
V.9.8
9.8) is a flasque resolution of the sheaf Kn. In

summary, we have proven:

V.9.8.1 Proposition 9.8.1. Assume that X is a regular quasi-projective scheme, or
more generally that the Gersten-Quillen conjecture

V.9.3
9.3 holds for the local rings

of X. Then (
V.9.8
9.8) is a flasque resolution of Kn, and the E2 page of the coniveau

spectral sequence (
V.9.5
9.5) is

Ep,q2
∼= Hp(X,K−q).

In addition, we have Hp(X,Kp) ∼= CHp(X) for all p > 0.

The isomorphism Hp(X,Kp) ∼= CHp(X) is often referred to as Bloch’s for-
mula, since it was first discovered for p = 2 by Spencer Bloch in

Bl74
[24].

August 29, 2013 - Page 441 of
LastPage
568



Chapter V

V.9.8.2 Example 9.8.2. When X is the projective line P1
k over a field k, the direct im-

age π∗ : Kn(P
1
k)→ Kn(k) is compatible with a morphism of spectral sequences

(see Ex.
EV.9.3
9.3); the only nontrivial maps are from E1,−n−1

1 (P1
k) = ⊕Kn(k(x)) to

E0,−n
1 (k) = Kn(k). As these are the transfer maps for the field extensions

k(x)/k, this is a split surjection. Comparing with Corollary
V.1.5.1
1.5.1, we see that

H0(P1
k,Kn) ∼= Kn(k), H1(P1

k,Kn) ∼= Kn−1(k).

EXERCISES

EV.9.1 9.1. Let k be a field and S a multiplicative set in a domain R = k[x1, . . . , xm]/J
so that S−1R is regular. Modify the proof of Proposition

V.9.6
9.6 to show that for

each t 6= 0 in R there is an s ∈ S so that each Mi(R/tR)→Mi(R[1/s]) induces
the zero map on K-groups.

EV.9.2 9.2. (Quillen) Let R = k[[x1, ..., xn]] be a power series ring over a field. Modify
the proof of Theorem

V.9.6
9.6 to show that the maps KMi+1(R) → KMi(R) are

zero, so that (
V.9.3.1
9.3.1) is exact.

If k is complete with respect to a nontrivial valuation, show that the above
holds for the subring A of convergent power series in R.

EV.9.3 9.3. (Gillet) Let f : X → Y be a proper map of relative dimension d. Show that
f∗ : M

i(X)→Mi−d(Y ) for all i, and deduce that there is a homomorphism of
spectral sequences f∗ : Ep,qr (X) → Ep−d,q+dr (Y ), compatible with the proper
transfer map f∗ : G∗(X)→ G∗(Y ) of

V.3.7
3.7, and the pushforward maps CHi(X)→

CHi−d(Y ).

EV.9.4 9.4. Let F : Ab → Ab be any additive functor which commutes with filtered
direct limits. Show that F sends pure exact sequences to pure exact sequences.
In particular, this applies to F (A) = ℓA = {a ∈ A : ℓa = 0} and F (A) = A⊗B.
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10 Descent and Mayer-Vietoris properties

In recent decades, the fact that K-theory has the Mayer-Vietoris property with
respect to special cartesian squares of schemes has played an important role in
understanding its structure. For cartesian squares describing open covers (see
V.10.1
10.1 below), it is equivalent to the assertion that K-theory satisfies “Zariski
descent,” and this in turn is related to features such as the coniveau spectral
sequence of Propositions

V.9.2
9.2 and

V.9.5
9.5. These notions generalize from K-theory to

other presheaves, either of simplicial sets or of spectra, on a finite-dimensional
noetherian scheme X.

As in
V.10.6
10.6 below, a presheaf F is said to satisfy descent if the fibrant re-

placement F (U) → Hzar(U,F ) is a weak equivalence for all U , where “fibrant
replacement” is with respect to the local injective model structure (defined in
V.10.5
10.5 below). From a practical viewpoint, the recognition criterion for descent is
the Mayer-Vietoris property.

V.10.1 Definition 10.1. Let F be a presheaf of simplicial sets (or spectra) on a scheme
X. We say that F has the Mayer-Vietoris property (for the Zariski topology
on X) if for every pair of open subschemes U and V the following square is
homotopy cartesian.

F (U ∪ V ) > F (U)

F (V )
∨

> F (U ∩ V ).
∨

Before defining Zariski descent, we motivate it by stating the following the-
orem, due to Brown and Gersten. We postpone the proof of this theorem until
later in this section.

V.10.2 Theorem 10.2. Let F be a presheaf of simplicial sets (or spectra) on X. Then
F satisfies Zariski descent if and only if it has the Mayer-Vietoris property.

V.10.3 Example 10.3. Recall that G(X) denotes the K-theory space for the category
of coherent sheaves on X. Since restriction of sheaves is functorial, U 7→ G(U)
is a presheaf on X for the Zariski topology. In

V.6.11.2
6.11.2 we saw that G has the

Mayer-Vietoris property on any noetherian scheme X. This was the original
example of a presheaf satisfying Zariski descent, discovered in 1972 by Brown
and Gersten in

BG
[36].

On the other hand, let KB denote the non-connective K-theory spectrum of
vector bundles (IV.

IV.10.6
10.6). As above, U 7→ KB(U) is a presheaf on X. Using big

vector bundles IV.
IV.10.5
10.5, we may even arrange that it is a presheaf on schemes

of finite type over X. Corollary
V.7.10
7.10 states that KB has the Mayer-Vietoris

property on any noetherian scheme X. (This fails for the connective spectrum
K because the map K0(U)⊕K0(V )→ K0(U ∩ V ) may not be onto. Corollary
V.7.11
7.11 states that KH has the Mayer-Vietoris property on any noetherian scheme
X.
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Model categories

In order to define Zariski descent in the category of presheaves on X, we need
to consider two model structures on this category. Recall that a map i : A→ B
is said to have the left lifting property relative to a class F of morphisms if for
every commutative diagram

A
a

> X

B

i
∨ b

> Y

p
∨

with p in F there is a lift h : B → X such that hi = a and ph = b.

V.10.4 Definition 10.4. Let C be a complete and cocomplete category. A model struc-
ture on C consists of three subcategories whose morphisms are called weak equiv-
alences, fibrations and cofibrations, together with two functorial factorizations
of each morphism, satisfying the following properties.

(1) (2-out-of-3) If f and g are composable morphisms in C and two of f , g,
fg are weak equivalences, so is the third.

(2) (Retracts) If f is a retract of g, and g is a weak equivalence (resp., a
fibration, resp., a cofibration) then so is f .

A map which is both a cofibration and a weak equivalence is called a trivial
cofibration, and a map which is both a fibration and a weak equivalence is
called a trivial fibration. These notions are used in the next two axioms.

(3) (Lifting) A trivial cofibration has the left lifting property with respect
to fibrations. Similarly, cofibrations have the left lifting property with
respect to trivial fibrations.

(4) (Factorization) One of the two functorial factorizations of a morphism is
as a trivial cofibration followed by a fibration; the other is as a cofibration
followed by a trivial fibration.

A model category is a category C with a model structure. The homotopy category
of C, Ho C, is defined to be the localization of C with respect to the class of weak
equivalences. (This kind of localization is described in the Appendix to Chapter
II.)

We refer the reader to
Hovey
[90] for more information about model categories. The

main point is that a model structure provides us with a calculus of fractions for
the homotopy category of C.

V.10.4.1 Example 10.4.1. The standard example is the model structure on the cate-
gory of simplicial sets, in which cofibrations are injections, fibrations are Kan
fibrations; a map X → Y is a weak equivalence if its geometric realization
|X| → |Y | is a homotopy equivalence. (|X| is defined in IV.

IV.3.1.4
3.1.4.)
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There is also a model structure on the category of spectra. Since the details
depend on the exact definition of spectrum used, we will not dwell on this point.
The model category of symmetric spectra is introduced and studied in

HSS
[91].

V.10.5 Definition 10.5. A morphism A → B of presheaves (of either simplicial sets
or spectra) is called a global weak equivalence if each A(U) → B(U) is a weak
equivalence; it is called a (Zariski) local weak equivalence if it induces an isomor-
phism on (Zariski) sheaves of homotopy groups (resp., stable homotopy groups).

We say that A(U) → B(U) is a cofibration if each A(U) → B(U) is a cofi-
bration; a local injective fibration is a map which has the right lifting property
with respect to cofibrations which are local weak equivalences. Jardine showed
that the Zariski-local weak equivalences, cofibrations and local injective fibra-
tions determine model structures on the categories of presheaves of simplicial
sets, and of spectra (see

J
[97, 2.3]). We shall call these the local injective model

structures, to distinguish them from other model structures in the literature.

In any model structure, an object B is called fibrant if the terminal map
B → ∗ is a fibration. A fibrant replacement of an object A is a trivial cofibration
A→ B with B fibrant. By the Factorization axiom

V.10.4
10.4(4), there is a functorial

fibrant replacement. For the local injective model structure on presheaves, we
write the fibrant replacement as A → Hzar(−, A), and write Hnzar(X,A) for
π−nHzar(X,A).

V.10.6 Definition 10.6. Let A be a presheaf of either simplicial presheaves or spectra.
We say that A satisfies Zariski descent on a scheme X if the fibrant replacement

A → Hzar(−, A) is a global weak equivalence. That is, if A(U)
≃−→ Hzar(U,A)

is a weak equivalence for every open U in X.
Note that although inverse homotopy equivalences Hzar(U,A)→ A(U) exist,

they are only natural in U up to homotopy (unless A is fibrant).

Given any abelian group A and a positive integer n, the Eilenberg-MacLane
spectrum K(A,n) is a functorial spectrum satisfying πnK(A,n) = A, and
πiK(A,n) = 0 for i 6= n. More generally, given a chain complex A∗ of abelian
groups, the Eilenberg-MacLane spectrum K(A∗, n) is a functorial spectrum sat-
isfying πkK(A∗, n) = Hk−n(A∗). See

WHomo
[223, 8.4.1, 10.9.19 and Ex. 8.4.4] for one

construction.

V.10.6.1 Example 10.6.1. Let A be a Zariski sheaf on X. The Eilenberg-MacLane
spectrum K(A, n) is the sheaf U 7→ K(A(U), n). If A → I is an injective
resolution, then H(−,A) is weak equivalent to the sheaf of Eilenberg-MacLane
spectra K(I, 0), so

Hn(X,A) = π−nH(X,A) ∼= π−nK(I, 0)(X) = HnI(X)

is the usual sheaf cohomology group Hn(X,A). This observation, that the
fibrant replacement is the analogue of an injective resolution, is due to Brown-
Gersten

BG
[36] and dubbed the “Great Enlightenment” by Thomason.
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V.10.6.2 Remark 10.6.2. Given any Grothendieck topology t, we obtain the notion of
t-local weak equivalence of presheaves by replacing Zariski sheaves by t-sheaves
in the above definition. Jardine also showed that the t-local weak equivalences
and cofibrations determine a model structure on the category of presheaves,
where the t-local injective fibrations are defined by the right lifting property.
Thus we have other fibrant replacements A→ Ht(−, A).

We say that A satisfies t-descent (on the appropriate site) if the fibrant
replacement A → Ht(−, A) is a global weak equivalence. The most commonly
used versions are: Zariski descent, étale descent, Nisnevich descent and cdh
descent.

If A is a presheaf of simplicial sets, we can sheafify it to form a Zariski sheaf,
azarA. Since A → azarA is a weak equivalence, their fibrant replacements are
weak equivalent. This is the idea behind our next lemma.

V.10.7 Lemma 10.7. Let A,B be presheaves of simplicial sets on schemes. If B
satisfies Zariski descent, then any natural transformation ηR : A(Spec R) →
B(Spec R) (from commutative rings to simplicial sets) extends to a natural
transformation ηU : A(U)→ H(U,B).

The composite A(U)→ B(U) with a homotopy equivalence H(U,B)
≃→B(U)

exists, but (unless B is fibrant) is only well defined up to weak equivalence.

Proof. Define the presheaf Aaff by Aaff(U) = A(Spec O(U)), and define Baff

similarly; the natural map Aaff → A is a weak equivalence because it is so
locally. Clearly η extends to ηaff : Aaff → Baff. The composite map in the
diagram

A(U) > Hzar(U,A) <
≃
→ Hzar(U,Aaff)

B(U)
≃
> Hzar(U,B) <

≃
Hzar(U,Baff)

ηaff
∨

is the natural transformation we desire. Note that the top right horizontal map
is a trivial fibration, evaluated at U ; the existence of a natural inverse, i.e., a
presheaf map Hzar(−, A) → Hzar(−, Aaff) splitting it, follows from the lifting
axiom

V.10.4
10.4(3). Thus the map A(U)→ Hzar(U,B) is natural in U .

V.10.7.1 Remark 10.7.1. In Lemma
V.10.7
10.7, η only needs to be defined on a category of

commutative rings containing the rings O(U) and maps O(U)→ O(V ).

Zariski descent and the Mayer-Vietoris property

If F is a presheaf of spectra which satisfies Zariski descent, then F has the
Mayer-Vietoris property, by Exercise

EV.10.5
10.5. In order to show that the converse

holds, we need the following result, originally proven for simplicial presheaves
in

BG
[36, Thm. 1′].
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V.10.8 Proposition 10.8. Let X be a finite-dimensional noetherian space, and F a
presheaf of spectra on X which has the Mayer-Vietoris property (for the Zariski
topology). If all the presheaves πqF have zero as associated sheaves, then
πqF (X) = 0 for all q.

Proof. It suffices to prove the following assertion for all d ≥ 0: for all open
X ′ ⊆ X, all q and all a ∈ πqF (X ′), there exists an open U ⊆ X ′ with a|U = 0
and codimX(X −U) ≥ d. Indeed, when d > dim(X) we must have U = X ′ and
hence a|X′ = 0 as required.

The assertion is clear for d = 0 (take U = ∅), so suppose that it holds for
d and consider a ∈ πqF (X

′) as in the assertion. By induction, a|U = 0 for
an open U whose complement Z has codimension ≥ d. Let x1, . . . , xn be the
generic points of Z of codimension d. By assumption, there is a neighborhood
V of these points such that a|V = 0, and X − V has codimension at least d.
The Mayer-Vietoris property gives an exact sequence

πq+1F (U ∩ V )
∂−→ πqF (U ∪ V )→ πqF (U)⊕ πqF (V ).

If a|U∪V vanishes we are done. If not, there is a z ∈ πq+1F (U ∩ V ) with
a = ∂(z). By induction, with X ′′ = U ∩ V , there is an open W in X ′′ whose
complement has codimension ≥ d and such that z|W = 0. Let y1, . . . be the
generic points of X ′′−W , Y the closure of these points in V and set V ′ = V −Y .
Looking at codimensions, we see that V ′ is also a neighborhood of the xi and
that U ∩ V ′ =W . Mapping the above sequence to the exact sequence

πq+1F (W )
∂−→ πqF (U ∪ V ′)→ πqF (U)⊕ πqF (V ′),

we see that a|U∪V ′ = ∂(z|W ) = 0. As U ∪V ′ contains all the xi, its complement
has codimension > d. This completes the inductive step, proving the desired
result.

Proof of Theorem
V.10.2
10.2. We have already noted that the ‘only if’ direction holds

by Ex.
EV.10.5
10.5. In particular, since H(−, E) is fibrant, it always has the Mayer-

Vietoris property. Now assume that E has the Mayer-Vietoris property, and let
F (U) denote the homotopy fiber of E(U)→ H(U,E). Then F is a presheaf, and
F has the Mayer-Vietoris property by Exercise

EV.10.1
10.1. Since E → H(−, E) is a

local weak equivalence, the stalks of the presheaves πqF are zero. By Proposition
V.10.8
10.8, πqF (U) = 0 for all U . From the long exact homotopy sequence of a
fibration, this implies that π∗E(U) ∼= π∗H(U,E) for all U , i.e., E → H(−, E) is
a global weak equivalence.
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Nisnevich descent

To discuss descent for the Nisnevich topology, we need to introduce some ter-
minology. A commutative square of schemes of the form

UY > Y

U
∨ i

> X

f
∨

is called upper distinguished if UY = U ×X Y , U is open in X, f is étale
and (Y − UY ) → (X − U) is an isomorphism of the underlying reduced closed
subschemes. The Nisnevich topology on the category of schemes of finite type
over X is the Grothendieck topology generated by coverings {U → X,Y → X}
for the upper distinguished squares. In fact, a presheaf F is a sheaf if and only
if F takes upper distinguished squares to cartesian (i.e., pullback) squares; see
MVW
[122, 12.7].

For each point x ∈ X, there is a canonical map from the hensel local scheme
SpecOhX,x to X; these form a conservative family of points for the Nisnevich
topology. Thus a sheaf F is zero if and only if its stalks are zero at these points,
and if a ∈ F(X) is zero then for every point x there is a point y in an étale
Y → X such that k(x) ∼= k(y) and a|Y = 0.

V.10.9 Definition 10.9. A presheaf of simplicial sets on X is said to have the Mayer-
Vietoris property for the Nisnevich topology if it sends upper distinguished
squares to homotopy cartesian squares. (Taking Y = V and X = U ∪ V , this
implies that it also has the Mayer-Vietoris property for the Zariski topology.)

V.10.10 Theorem 10.10. A presheaf has the Mayer-Vietoris property for the the Nis-
nevich topology if and only if it satisfies Nisnevich descent.

Proof. (Thomason) The proof of Theorem
V.10.2
10.2 goes through, replacing Ex.

EV.10.5
10.5

by Ex.
EV.10.6
10.6 and Proposition

V.10.8
10.8 by Ex.

EV.10.7
10.7.

V.10.10.1 Example 10.10.1. As in
V.10.3
10.3, the localization sequence

V.6.11
6.11 forG(X)→ G(U)

and devissage (Ex.
EV.4.2
4.2) show that G satisfies Nisnevich descent.

The functor KB satisfies Nisnevich descent, by
TT
[200, 10.8]. It follows

formally from this, and the definition of KH (IV.
IV.12.1
12.1) that homotopy K-theory

KH also satisfies Nisnevich descent.

The descent spectral sequence

The descent spectral sequence, due to Brown and Gersten
BG
[36], is a method

for computing the homotopy groups of a presheaf F of spectra on X. It is
convenient to write Fn for the presheaf of abelian groups U 7→ πnF (U), and let
Fn denote the Zariski sheaf associated to the presheaf Fn.
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V.10.11 Theorem 10.11. Let X be a noetherian scheme with dim(X) < ∞. Then for
every presheaf of spectra F having the Mayer-Vietoris property (for the Zariski
topology on X) there is a spectral sequence:

Epq2 = Hp
zar(X,F−q)⇒ F−p−q(X).

Proof. For each U , we have a Postnikov tower · · ·PnF (U)
pn−→ Pn−1F (U) · · · for

F (U); each pn is a fibration, πqPnF (U) = πqF (U) for n ≤ q and πqPnF (U) = 0
for all n > q. It follows that the fiber of pn is an Eilenberg-MacLane space
K(πnF (U), n). Since the Postnikov tower is functorial, we get a tower of
presheaves of spectra. Since the fibrant replacement is also functorial, we have a

tower of spectra · · ·H(−, PnF )
p′n−→H(−, Pn−1F ) · · · . By Ex.

EV.10.2
10.2, the homotopy

fiber of p′n is K(πnF , n). Thus we have an exact couple with

D1
pq = ⊕πp+qH(X,PpF ) and E1

pq = ⊕πp+qK(πpF , p)(X) = ⊕H−q(X,Fp).
Since the spectral sequence is bounded, it converges to lim−→D1

∗ = π∗F (X); see
WHomo
[223, 5.9.7]. Re-indexing as in

WHomo
[223, 5.4.3], and rewriting E2 as E2 yields the

desired cohomological spectral sequence.

V.10.11.1 Remark 10.11.1. The proof of Theorem
V.10.11
10.11 goes through for the Nisnevich

topology. That is, if F has the Mayer-Vietoris property for the Nisnevich topol-
ogy, there is a spectral sequence:

Epq2 = Hp
nis(X,F−q)⇒ F−p−q(X).

V.10.12 Example 10.12. As in Example
V.10.2
10.2, the G-theory presheaf G satisfies the

Mayer-Vietoris property, so there is a fourth quadrant spectral sequence with
Ep,q2 = Hp(X,G−q) converging to G∗(X). Here Gn is the sheaf associated to the
presheaf Gn. This is the original Brown-Gersten spectral sequence of

BG
[36].

Similarly, the presheaf U 7→ KB satisfies the Mayer-Vietoris property, so
there is a spectral sequence with Ep,q2 = Hp(X,K−q) converging to K∗(X).
This spectral sequence lives mostly in the fourth quadrant. For example for
F = K we have K0 = Z and K1 = O×X (see Section II.2 and III.

III.1.4
1.4), so the rows

q = 0 and q = −1 are the cohomology groups Hp(X,Z) and Hp(X,O×X). This
spectral sequence first appeared in

TT
[200].

If X is regular, of finite type over a field, then Gillet and Soulé proved
in

GiS
[70, 2.2.4] that the descent spectral sequence (

V.10.11
10.11) is isomorphic to the

spectral sequence of Proposition
V.9.8.1
9.8.1, which arises from the coniveau spectral

sequence of
V.9.5
9.5. This assertion holds more generally if X is regular and the

Gersten-Quillen Conjecture
V.9.3
9.3 holds for the local rings of X.

EXERCISES

EV.10.1 10.1. Let F → E → B be a sequence of presheaves which is a homotopy
fibration sequence when evaluated at any U . If E and B have the Mayer-
Vietoris property, for either the Zariski or Nisnevich topology, show that F
does too.
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EV.10.2 10.2. Suppose that F → E → B is a sequence of presheaves such that each
F (U) → E(U) → B(U) is a fibration sequence. Show that each H(U,F ) →
H(U,E)→ H(U,B) is a homotopy fibration sequence.

EV.10.3 10.3. Let F be a simplicial presheaf which is fibrant for the local injective model
structure

V.10.5
10.5. Show that F (V )→ F (U) is a Kan fibration for every U ⊂ V .

EV.10.4 10.4. Let F be a simplicial presheaf which is fibrant for the local injective
model structure

V.10.5
10.5. Show that F has the Mayer-Vietoris property. Hint:

(
MV
[138, 3.3.1]) If F is fibrant, hom(−, F ) takes homotopy cocartesian squares to
homotopy cartesian squares of simplicial sets. Apply this to the square involving
U , V and U ∩ V .

EV.10.5 10.5. (Jardine) Let F be a presheaf of spectra which satisfies Zariski descent
on X. Show that F has the Mayer-Vietoris property. Hint: We may assume
that F is fibrant for the local injective model structure of

V.10.5
10.5. In that case, F

is a sequence of simplicial presheaves Fn, fibrant for the local injective model
structure on simplicial presheaves, such that all the bonding maps Fn → ΩFn+1

are global weak equivalences; see
J
[97].

EV.10.6 10.6. Let F be a presheaf of spectra satisfying Nisnevich descent. Show that
F has the Mayer-Vietoris property for the Nisnevich topology.

EV.10.7 10.7. Show that the Nisnevich analogue of Proposition
V.10.8
10.8 holds: if F has the

Mayer-Vietoris property for the Nisnevich topology, and the Nisnevich sheaves
associated to the πqF are zero, then πqF (X) = 0 for all q. Hint: Consider the
f−1(xi) ⊂ Y .

EV.10.8 10.8. (Gillet) Let G be a sheaf of groups on a scheme X, and ρ : G→ Aut(F)
a representation of G on a locally free OX -module F of rank n. Show that ρ
determines a homotopy class of maps from B•G to B•GLn(OX). Hint: Use the
Mayer-Vietoris property for H(−, B•GLn(OX)) and induction on the number
of open subschemes in a cover trivializing F .

EV.10.9 10.9. Suppose that X is a 1-dimensional noetherian scheme, with singular
points x1, . . . , xs. If Ai is the local ring of X at xi, show that K−1(X) ∼=
⊕K−1(Ai). (Note that Kn(X) = Kn(Ai) = 0 for all n ≤ −2, by Ex. III.

EIII.4.4
4.4.)

Using the fact (III.
III.4.4.3
4.4.3) that K−1 vanishes on hensel local rings, show that

K−1(X) ∼= H1
nis(X,Z). This group is isomorphic to H1

et(X,Z); see III.
III.4.1.4
4.1.4.

EV.10.10 10.10. Suppose that X is an irreducible 2-dimensional noetherian scheme, with
isolated singular points x1, . . . , xs. If Ai is the local ring of X at xi, show that
there is an exact sequence

0→ H2
zar(X,O×X)→ K−1(X)→ ⊕K−1(Ai)→ 0.

If X is normal, it is well known that H1
nis(X,Z) = 0. In this case, use III.

III.4.4.3
4.4.3 to

show that K−1(X) ∼= H2
nis(X,O×X). This can be nonzero, as Ex. III.

EIII.4.13
4.13 shows.
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11 Chern classes

The machinery involved in defining Chern classes on higher K-theory can be
overwhelming, so we begin with two simple constructions over rings.

V.11.1 Dennis Trace map 11.1. Let R be a ring. It is a classical fact that H∗(G;R)
is a direct summand of HH∗(R[G]) for any group G; see

WHomo
[223, 9.1.2]. Using the

ring maps R[GLm(R)]→Mm(R) and Morita invariance of Hochschild homology
WHomo
[223, 9.5], we have natural maps

HH∗(R[GLm(R)])→ HH∗(Mm(R))
∼=−→ HH∗(R).

Via the Hurewicz map πnBGL(R)
+ h−→ Hn(BGL(R)

+,Z), this yields homo-
morphisms:

Kn(R)
h−→ Hn(GL(R),Z) = lim−→m

Hn(GLm(R),Z)→ HHn(R).

They are called the Dennis trace maps, having been discovered by R.K. Dennis
around 1975. In fact, they are ring homomorphisms; see

Igusa
[94, p. 133].

Given any representation ρ : G→ GLm(R), there is a natural map

H∗(G,Z)→ HH∗(R[G])
ρ→HH∗(R[GLm(R)])→ HH∗(Mm(R))

∼=→HH∗(R).

This map, regarded as an element of Hom(H∗(G), HH∗(R)), naturally lifts to
an element c1(ρ) of H0(G,HH). Set ci(ρ) = 0 for i ≥ 2; the verification that
the ci(ρ) form Chern classes (in the sense of

V.11.2
11.2 below) is left to Exercise

EV.11.4
11.4.

Let Ω∗R denote the exterior algebra of Kähler differentials of R over Z
WHomo
[223,

9.4.2]. If Q ⊂ R, there is a projection HHn(R) → ΩnR sending r0 ⊗ · · · ⊗ rn to
(r0/n!) dr1 ∧ · · · ∧ drn. Gersten showed that, up to the factor (−1)n−1n, this
yields Chern classes cn : Kn(R)→ ΩnR. We encountered them briefly in Chapter

III (Ex.
EIII.6.10
6.10 and

EIII.7.7
7.7): if x, y are units of R then c2({x, y}) = −dxx ∧

dy
y .

Chern classes for rings

Suppose that A = A(0)⊕A(1)⊕· · · is a graded-commutative ring. Then for any
group G, the group cohomology ⊕Hi(G,A(i)) is a graded-commutative ring (see
WHomo
[223, 6.7.11]). More generally we may suppose that each A(i) is a chain complex,
so that A = A(0)⊕A(1)⊕ · · · is a graded dg ring; the group hypercohomology
⊕Hi(G,A(i)) is still a graded-commutative ring

V.11.2 Definition 11.2. A theory of Chern classes for a ring R with coefficients A is a

rule assigning to every group G, and every representation G
ρ−→ AutR(P ) with

P in P(R), elements ci(ρ) ∈ Hi(G,A(i)) with c0(ρ) = 1 and satisfying the fol-
lowing axioms. The formal power series ct(ρ) =

∑
ci(ρ)t

i in 1+
∏
Hi(G,A(i))

is called the total Chern class of ρ.

(1) Functoriality. For each homomorphism φ : H → G, ci(ρ ◦ φ) = φ∗ci(ρ).
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(2) Triviality. The trivial representation ε of G on R has ci(ε) = 0 for i > 0.
If ρ : G→ Aut(P ) then ci(ρ) = 0 for i > rank(P ).

(3) Sum Formula. For all ρ1 and ρ2, cn(ρ1 ⊕ ρ2) =
∑
i+j=n ci(ρ1)cj(ρ2).

Alternatively, ct(ρ1 ⊕ ρ2) = ct(ρ1)ct(ρ2).

(4) Multiplicativity. For all ρ1 and ρ2, ct(ρ1 ⊗ ρ2) = ct(ρ) ∗ ct(ρ2). Here ∗
denotes the product in the (non-unital) λ-subring 1+

∏
i>0H

i(G,A(i)) of
W (H∗(G,A)); see II.

II.4.3
4.3. (We ignore this axiom if R is non-commutative.)

V.11.2.1 Example 11.2.1. Taking G = 1, the Chern classes ci(ρ) belong to the coho-
mology HiA(i) of the complex A(i). Since ρ : 1 → Aut(P ) depends only on
P , we write ci(P ) for ci(ρ). The Sum Formula for ct(P ⊕ Q) shows that the
total Chern class ct factors through K0(R), with ct([P ]) = ct(P ). Comparing
the above axioms to the axioms given in II.

II.4.11
4.11, we see that a theory of Chern

classes for R induces Chern classes ci : K0(R)→ HiA(i) in the sense of II.
II.4.11
4.11.

V.11.2.2 Variant 11.2.2. A common trick is to replace A(i) by its cohomological shift
B(i) = A(i)[i]. Since HnB(i) = HnA(i)[i] = Hi+nA(i), a theory of Chern
classes for B is a rule assigning elements ci(ρ) ∈ H2i(G,A(i)).

V.11.2.3 Universal Elements 11.2.3. In any such theory, the tautological representa-
tions idn : GLn(R)→ Aut(Rn) play a distinguished role. They are intercon-
nected by the natural inclusions ρmn : GLn(R) →֒ GLm(R) for m ≥ n, and if
m ≥ n then cn(idn) = ρ∗mncn(idm). These elements form an inverse system,
and we set

cn(id) = lim←−m cn(idm) ∈ lim←−m Hn(GLm(R), A(n)).

The elements cn(id) are universal in the sense that, if P⊕Q ∼= Rm and we extend

G
ρ−→ Aut(P ) to ρ⊕1Q : G→ GLm(R), then we have cn(ρ) = (ρ⊕1Q)∗cn(idm).

To get Chern classes, we need to recall how the cohomology H∗(G,A) is
computed. Let B∗ denote the bar resolution of G (it is a projective Z[G]-
module resolution of Z), and set C = B∗ ⊗Z[G] Z, so that H∗(G,Z) = H∗C.
Since G acts trivially on A, H∗(G,A) is the cohomology of HomZ[G](B∗, A) =

HomZ(C,A). The ith cohomology of this Hom complex is the group of chain
homotopy equivalence classes of maps C → A[i], and each such class determines
a map from Hn(G,Z) = Hn(C) to Hn−iA = Hi−nA; see

WHomo
[223, 2.7.5].

When A is a complex of Z/m-modules, we could replace the bar construction
B∗ with B∗/mB∗ in the above: H∗(G,A) is the cohomology of Hom(C/mC,A).
Since H∗(G,Z/m) = H∗(C/mC), we get maps H∗(G,Z/m)→ Hi−nA.

V.11.3 Lemma 11.3. A theory of Chern classes for a ring R with coefficients A yields
homomorphisms for all n, i > 0, called Chern classes:

ci,n : Kn(R)→ Hn−iA(i) = Hi−nA(i).
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If A is a graded ring, the maps are zero for i 6= n and we simply have classes

ci : Ki(R)→ A(i).

When R is commutative, we have the product rule: if am ∈ Km(R) and an ∈
Kn(R) then

cm+n(aman) =
−(m+ n− 1)!

(m− 1)!(n− 1)!
cm(am)cn(an).

In particular, cn({x1, . . . , xn}) = (−1)n−1(n − 1)!c1(x1) · · · c1(xn) for all
x1, . . . , xn in K1(R).

Proof. By the above remarks, each element ci(idm) determines a homomorphism
H∗(GLm(R),Z) → H∗A(i). By functoriality, these maps are compatible as m
varies and yield a homomorphism ci from H∗(GL(R),Z) = lim−→H∗(GLm(R),Z)
to H∗A(i). Via the Hurewicz map h, this yields homomorphisms for n > 0:

ci,n : Kn(R)
h−→ Hn(GL(R),Z)

ci−→ Hi−nA(i).

In the special case that A is a ring, the target vanishes for i 6= n. The product
rule follows from Exercise

EV.11.3
11.3, which states that the right side is cm(am) ∗

cn(an).

V.11.3.1 Construction 11.3.1. Here is a homotopy-theoretic construction for the maps
ci,n of Lemma

V.11.3
11.3, due to Quillen. Recall that the Dold-Kan correspon-

dence applied to the chain complex A(i)[i] produces an H-space K(A(i), i),
called a generalized Eilenberg-MacLane space, with πnK(A(i), i) = Hn−iA(i).
It classifies cohomology in the sense that for any topological space X, ele-
ments of Hn(X,A(i)) are in 1–1 correspondence with homotopy classes of maps
X → K(A(i), n); for X = BG, elements of Hn(G,A(i)) = Hn(BG,A(i)) corre-
spond to maps BG→ K(A(i), n). See

WHomo
[223, 6.10.5 and 8.6.4].

In this way, each ci(id) determines a system of maps BGLm(R) →
K(A(i), i), compatible up to homotopy. As K(A(i), i) is an H-space, these
maps factor through the spaces BGLm(R)+; via the telescope construction,
they determine a map BGL(R)+ → K(A(i), i). The Chern classes of

V.11.3
11.3 may

also be defined as:

ci,n : Kn(R) = πnBGL(R)
+ → πnK(A(i), i) = Hi−nA(i).

The map BGL(R)+ → K(A(i), i) can be made functorial in R by the following
trick. Apply the integral completion functor Z∞ (IV.

IV.1.9
1.9.ii) to get a functo-

rial map Z∞BGL(R) → Z∞K(A(i), i), and choose a homotopy inverse for the
homotopy equivalence K(A(i), i)→ Z∞K(A(i), i).

V.11.3.2 Finite coefficients 11.3.2. If A is a complex of Z/m-modules, then the
ci(idm) determine a homomorphism from H∗(GL(R),Z/m) to H∗A(i), by the
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remarks before
V.11.3
11.3. Via the Hurewicz map h (Ex. IV.

EIV.2.4
2.4), this yields homo-

morphisms for n > 0:

ci,n : Kn(R;Z/m)
h−→ Hn(GL(R),Z/m)

ci−→ Hi−nA(i).

The product rule holds in this case if m is odd or if 8|m; see IV.
IV.2.8
2.8.

V.11.4 Example 11.4. Suppose that A is a complex of Zariski sheaves on X =
Spec(R). If A → I is an injective resolution (or the total complex of a
Cartan-Eilenberg resolution if A is a bounded below complex), then H∗I(X) =
H∗(X,A). If A = ⊕A(i), a theory of Chern classes for R with coefficients
A = ⊕I(i)(X) yields Chern classes ci,n : Kn(R)→ Hi−n(X,A(i)). We will see
many examples of this construction below.

Chern classes for schemes

One way to get a theory of Chern classes for a scheme X is to consider
equivariant cohomology groups H∗(X,G,A). The functors F 7→ Hn(X,G,F)
are defined to be the right derived functors of the functor H0(X,G,F) =
HomX,G(ZX ,F) = H0(X,FG), where F belongs to the abelian category of
sheaves of G-modules on X. Since it is useful to include open subschemes of X,
we want to extend the definition in a natural way over a category of schemes
including X.

V.11.5 Definition 11.5. Let V be a category of schemes, and A = ⊕A(i) a graded
complex of Zariski sheaves of abelian groups on V, forming a graded sheaf of
dg rings. A theory of Chern classes on V is a rule associating to every X in
V, every sheaf G of groups on X and every representation ρ of G in a locally
free OX -module F , elements ci(ρ) ∈ Hi(X,G,A(i)) for i ≥ 0, with c0(ρ) = 1,
satisfying the following axioms (resembling those of

V.11.2
11.2). Here ct(ρ) denotes

the total Chern class
∑
ci(ρ)t

i in 1 +
∏
Hi(X,G,A(i)).

(1) Functoriality. For each compatible system φ of morphisms X
f−→ X ′,

G→ f∗G′ and F → f∗F ′ we have ci(φ
∗ρ) = φ∗ci(ρ).

(2) Triviality. The trivial representation ε of G on OX has ci(ε) = 0 for i > 0.
If ρ : G→ Aut(F) then ci(ρ) = 0 for i > rank(F).

(3) Whitney sum formula. If 0 → ρ′ → ρ → ρ′′ → 0 is a short ex-
act sequence of representations of G in locally free OX -modules, then
ct(ρ) = ct(ρ

′)ct(ρ
′′).

(4) Multiplicativity. Given representations ρ1 and ρ2 of G on locally free OX -
modules, ct(ρ1 ⊗ ρ2) = ct(ρ) ∗ ct(ρ2). Here ∗ denotes the product in the
non-unital λ-subring

∏
i>0H

i(X,G,A(i)) of W (H∗(X,G,A)); see II.
II.4.3
4.3.

V.11.5.1 Example 11.5.1. Taking G = 1, the Chern classes ci(ρ) belong to the coho-
mology Hi(X,A(i)) of the complex A(i). By the Whitney sum formula, the
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total Chern class ct factors through K0(X); cf.
V.11.2.1
11.2.1. Comparing the above

axioms to the axioms given in II.
II.4.11
4.11, we see that a theory of Chern classes for

X induces Chern classes ci : K0(X)→ Hi(X,A(i)) in the sense of II.
II.4.11
4.11.

V.11.6 Lemma 11.6. Let G be a sheaf of groups and A a complex of Zariski sheaves
on a scheme X, with injective resolution A → I. Then there are natural maps

Hn(X,G,A)→ Hn(G, I(X))→
⊕

i+j=n

Hom
(
Hi(G,Z), H

j(X,A)
)
.

Proof. Since G acts trivially on A, we can compute the equivariant cohomology
of A as hyperExt groups. Take an injective sheaf resolution A → I and let B∗
denote the bar resolution of G, with C = B∗ ⊗Z[G] Z as before. Then

Hn(X,G,A) = HnHomZ[G](B∗,Z)⊗ I(X) = HnHomZ(C,Z)⊗ I(X).

The cohomology of the natural map Hom(C,Z) ⊗ I(X) → Hom(C, I(X)) is
the desired map Hn(X,G,A)→ Hn(G, I(X)). The second map in the Lemma
comes from the discussion before Lemma

V.11.3
11.3, since H∗I(X) = H∗(X,A).

V.11.7 Corollary 11.7. A theory of Chern classes for Spec(R) with coefficients A (in
the sense of Definition

V.11.5
11.5) determines a theory of Chern classes for the ring

R with coefficients I(X) (in the sense of Definition
V.11.2
11.2), and hence (by

V.11.3
11.3)

Chern class homomorphisms

ci,n : Kn(R)→ Hi−n(Spec(R),A(i)).

V.11.8 Proposition 11.8. A theory of Chern classes for X with coefficients A deter-
mines Chern class homomorphisms

ci,n : Kn(X)→ Hi−n(X,A(i)).

Proof. By
V.11.7
11.7, there is a theory of Chern classes for rings, and by Con-

struction
V.11.3.1
11.3.1 there are natural transformations ci : K0(R) × BGL(R)+ →

K(A(i)(R), i)). Let K(OX) denote the presheaf sending X to K0(R) ×
BGL(R)+, where R = O(X); the map K → K(OX) is a local weak equiva-
lence (

V.10.5
10.5). By construction, the presheaf H(−,K(A(i), i)) satisfies Zariski

descent (
V.10.6
10.6). By Lemma

V.10.7
10.7, each of the ci extends to a morphism of

presheaves ci : Hzar(−,K(OX))→ H(−,K(A(i), i)). Composing with K(X)→
Hzar(X,K)→ Hzar(X,K(OX)) and taking homotopy groups yields the desired
Chern classes on X.

V.11.9 Example 11.9. Let Ki be the Zariski sheaf on a scheme X associated to the
presheaf U 7→ Ki(U). (This sheaf was discussed in

V.9.8
9.8 and

V.10.12
10.12.) Gillet

showed in his 1978 thesis (see
Gillet
[67, §8]) that there is a theory of Chern classes

with coefficients ⊕Ki, defined on the category of (smooth) varieties of finite
type over a field. By

V.11.7
11.7 and

V.11.8
11.8, this yields Chern classes for each algebra,

ci,n : Kn(R)→ Hi−n(Spec(R),Ki), and more generally Chern classes Kn(X)→
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Hi−n(X,Ki). Via the isomorphism Pic(X) ∼= H1(X,O×X) of I.
I.5.10.1
5.10.1, the Chern

class c1,0 : K0(X) → Pic(X) is the determinant II.
II.2.6
2.6. The Splitting Principle

II.
II.8.8.1
8.8.1 implies that the Chern classes ci,0 : K0(X) → Hi(X,Ki) ∼= CHi(X)

are the same as the Chern classes of II.
II.8.9
8.9, discovered by Grothendieck (where

the last isomorphism is Bloch’s formula
V.9.8.1
9.8.1).

If x is a unit of R, the map c1,0 : R× → H0(R,K1) = R× is the natural
identification, so by the product rule the map cn,n : Kn(R) → H0(R,Kn)
satisfies

cn,n({x1, . . . , xn}) = (−1)n−1(n− 1)!{x1, . . . , xn}.

Étale Chern classes

V.11.10 Example 11.10. In
GDix
[81, p. 245], Grothendieck constructed a theory of étale

Chern classes ci(ρ) ∈ H2i
et (X,G, µ

⊗i
m ) for every X over Spec(Z[1/m]). This is

the case of Definition
V.11.5
11.5 in which A(i) = Rπ∗µ

⊗i
m [i] (using the shift trick of

V.11.2.2
11.2.2), where Rπ∗ is the direct image functor from étale sheaves to Zariski
sheaves: Hi−n(X,A(i)) = H2i−n

et (X,µ⊗im ). This yields a theory of étale Chern
classes and hence (by

V.11.8
11.8) Chern class maps

ci,n : Kn(X;Z/m)→ H2i−n(X,Rπ∗µ
⊗i
m ) = H2i−n

et (X,µ⊗im ).

Soulé introduced the étale Chern classes Kn(R;Z/m)
ci,n
>H2i−n

et (Spec(R), µ⊗im )
in

Sou
[171], using them to detect many of the elements of Kn(Z) described in

Chapter VI. Suslin used the étale class c2,2 to describe K3(F ) in
Su91
[187]; see

VI.
VI.5.19
5.19 below.
By construction, c1(ρ) is the boundary of the element in H1

et(X,G,Gm)
classifying the G-line bundle of det(ρ). Letting G be R× and ρ : G → Aut(R)
the canonical isomorphism, we see that c1,1 : R× → H1

et(Spec(R), µm) is the
Kummer map R×/R×n ⊂ H1

et(Spec(R), µm). Therefore the Chern class c1,1 :
K1(R) → H1

et(Spec(R), µm) is the determinant K1(R) → R× followed by the
Kummer map.

V.11.10.1 Lemma 11.10.1. If R contains a primitive mth root of unity ζ, with corre-
sponding Bott element β ∈ K2(R;Z/m), then c1,2 : K2(R;Z/m) → H0

et(R,µm)
sends K2(R)/m to 0 and satisfies c1,2(β) = ζ.

Proof. Recall that H1
et(Spec(R),Gm) ∼= R×. We claim that the left square in

the following diagram is commutative. (The right square clearly commutes.)

K2(R) > K2(R;Z/m)
Bockstein

> K1(R)
m

> K1(R)

0 → H0
et(R,µm)

c1,2
∨

> H0
et(R,Gm)

det
∨

m
> H0

et(R,Gm).

det
∨

Since the Bockstein sends β to ζ, and K2(R) to 0, the lemma will follow.
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To see the claim, we fix injective resolutions Gm → J and µm → I; we have
a distinguished triangle

I > J m
> J δ

> I[1].

If C is the standard chain complex for G introduced before Lemma
V.11.3
11.3, then

δ induces a map Hom(C,Z)⊗J (X)→ Hom(C,Z)⊗I(X)[1]. By construction,
the boundary H1

et(X,G,Gm) → H2
et(X,G, µm) is the cohomology of this map.

By Lemma
V.11.6
11.6, this induces a map

Hom(H1(G,Z), H
0
et(X,Gm))→ Hom(H2(G,Z/m), H0

et(X,µm)).

For G = GLn(R), c1,2 is the image of det, and the result follows.

Motivic Chern classes

Let Z(i), i ≥ 0 denote the motivic complexes (of Zariski sheaves), defined on
the category V of smooth quasi-projective varieties over a fixed field k, as in
MVW
[122]. The motivic cohomology of X, Hn,i(X,Z), is defined to be Hn(X,Z(i)).
Here is our main result, due to S. Bloch

Bl86
[25]:

V.11.11 Theorem 11.11. There is a theory of Chern classes with coefficients in motivic
cohomology. The associated Chern classes are ci,n : Kn(X)→ H2i−n,i(X).

V.11.11.1 Remark 11.11.1. The Chern classes ci,0 : K0(X) → H2i,i(X) ∼= CHi(X) are
the same as the Chern classes of II.

II.8.9
8.9, discovered by Grothendieck in 1957.

The class c1,1 : K1(R) → H1,1(Spec(R)) ∼= R× is the same as the determinant
map of III.

III.1.1.1
1.1.1.

Before proving Theorem
V.11.11
11.11, we use it to generate many other applications.

V.11.12 Examples 11.12. A. Huber has constructed natural multiplicative transforma-
tions from motivic cohomology to other cohomology theories; see

Hu
[92]. Applying

them to the motivic classes ci(ρ) yields a theory of Chern classes, and hence
Chern classes, for these other cohomology theories. Here is an enumeration.

(1) deRham. If k is a field of characteristic 0, and X is smooth, the deRham
cohomology groups H∗dR(X) are defined using the deRham complex Ω∗X .
Thus we have Chern classes ci : Kn(X)→ H2i−n

dR (X).

(2) Betti. If X is a smooth variety over C, there is a topological space X(C)
and its Betti (=topological) cohomology is H∗top(X(C),Z). The Betti

Chern classes are ci : Kn(X) → H2i−n
top (X(C),Z), arising from the re-

alization Hn,i(X) → Hn
top(X(C),Z). Beilinson has pointed out that the

image of the Betti Chern classes in H∗top(X(C),C) are compatible with
the deRham Chern classes, via the Hodge structure on H∗top(X(C),C).
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Of course, if R is a C-algebra the natural maps GL(R)→ GL(R)top (described
in IV.

IV.3.9.2
3.9.2) induce the transformations H∗(GL(R)) −→ Htop

∗ (GL(R)top), as
well as Hn,i(X,GLn(R)) → Hn

top(X(C), GLn(R)top). It should come as no
surprise that these Chern classes are nothing more than the maps Kn(X) →
KU−n(X(C)) followed by the topological Chern classes ci : KU

−n(X(C)) →
H2i−n

top (X(C)) of II.
II.3.7
3.7.

(3) Deligne-Beilinson. If X is a smooth variety defined over C, the Deligne-
Beilinson cohomology groups H∗D(X,Z(∗)) are defined using truncations
of the augmented deRham complex Z → Ω∗X . The map Hn,i(X) →
Hn
D(X,Z(i)) induces Chern classes Kn(X)→ H2i−n

D (X,Z(i)). These were
first described by Beilinson.

(4) ℓ-adic. If k is a field of characteristic 6= ℓ, the ℓ-adic cohomology of a
variety makes sense and there are maps Hn,i(X) → Hn

ℓ (X,Zℓ(i)). This
gives ℓ-adic Chern classes

ci : Kn(X)→ H2i−n
et (X,Zℓ(i)).

The projection to H2i−n
et (X,µ⊗iℓν ) recovers the étale Chern classes of

V.11.10
11.10.

We shall now use the motivic Chern classes to prove that KM
∗ (F )→ K∗(F )

is an injection modulo torsion for any field F . For this we use the ring map

KM
∗ (F )

∼=−→ ⊕i Hi,i(Spec(F )), induced by the isomorphism KM
1 (F ) = F× ∼=

H1,1(F ) and the presentation of KM
∗ (F ). It is an isomorphism, by a theorem

of Totaro and Nesterenko-Suslin
NS
[144].

V.11.13 Lemma 11.13. Let F be a field. Then the composition of KM
i (F ) → Ki(F )

and ci,i : Ki(F )→ Hi,i(Spec(F )) ∼= KM
i (F ) is multiplication by (−1)i−1(i−1)!.

In particular, KM
∗ (F )→ K∗(F ) is an injection modulo torsion.

Proof. Since c1,1(a) = a, the product rule
V.11.3
11.3 implies that ci,i : Ki(F ) →

KM
i (F ) takes {a1, . . . , ai} to (−1)i−1(i− 1)!{a1, . . . , ai}.

The outlines of the following proof are due to Grothendieck, and use only
formal properties of motivic cohomology; these properties will be axiomatized
in

V.11.14
11.14.

Proof of Theorem
V.11.11
11.11. Let B•G denote the simplicial group scheme

Spec(k) ⇇ G ←←← G×G ⇇
⇇ · · · ,

and similarly for E•G. Given a representation ρ of G in a locally freeOX -module
F , G acts on the geometric vector bundle A of rank n associated to F , and we can
construct the projective bundle P = P(A)×GE•G over B•G. There is a canonical
line bundle L on P, and an element ξ ∈ H2,1(P) ∼= H1(P,O×) = Pic(P)
associated to L. By the Projective Bundle Theorem

MVW
[122, 15.12], H∗,∗(P) is a
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free H∗,∗(B•G)-module with basis the elements ξi ∈ H2i,i(P) (0 ≤ i < n). That
is, we have an isomorphism

⊕n−1i=0 H
p−2i,q−i(B•G)

(1,ξ,...,ξn−1)
> Hp,q(P).

The Chern classes ci = cGi (ρ) ∈ H2i,i(B•G) are defined by the coefficients of
xn ∈ H2n,n(P) relative to this basis, by the following equation in H2n,n(P):

ξn − c1ξn−1 + · · ·+ (−1)iciξn−i + · · ·+ (−1)ncn = 0.

By definition, we have cGi (ρ) = 0 for i > n. For each n, this construction is
natural in G and ρ. Moreover, if ǫ : G→ GLn is the trivial representation, then
P is Pn−1×B•G; since ξ

n = 0 in H2n,n(Pn−1), we have cGi (ǫ) = 0 for all i > 0.
We now fix n and X. For every sheaf A and sheaf G of groups on X, there is

a canonical map H∗(B•G,A) → H∗(X,G,A); setting A = Z(i), we define the
classes ci(ρ) ∈ H2i(X,G,Z(i)) to be the images of the ci ∈ H2i,i(B•G) under
this map.

It remains to verify the axioms in Definition
V.11.5
11.5. The Functoriality and

Triviality axioms have been already checked. For the Whitney sum formula,
suppose that we are given representations ρ′ and ρ′′ in locally free sheaves F ′,
F ′′ of rank n′ and n′′, respectively, and a representation ρ on an extension F .
The projective space bundle P(F) contains P(F ′), and P(F)−P(F ′) is a vector
bundle over P(F ′′). The localization exact sequence of

MVW
[122, (14.5.5)] becomes:

H2n−2n′′,n′

(P(F ′′)) i∗−→ H2n,n(P(F)) j∗−→ H2n,n(P(F ′′)).

Now both i∗(1) and f
′′ = ξn

′′− c1(ρ′′) + · · · ± cn′′ generate the kernel of j∗. By
the projection formula, f ′ = ξn

′−c1(ρ′)+· · ·±cn′ satisfies 0 = i∗(i
∗f ′) = i∗(1)f

′.
Hence 0 = f ′′f ′ in H2n,n(P(F)). Since this is a monic polynomial in ξ, we must
have

ξn− c1(ρ) + · · ·+±cn = (ξn
′′− c1(ρ′′) + · · · ± cn′′)(ξn

′− c1(ρ′) + · · · ± cn′).

Equating the coefficients give the Whitney sum formula.
For the Multiplicativity axiom, we may use the splitting principle to assume

both sheaves have filtrations with line bundles as quotients. By the Whitney
sum formula, we may further reduce to the case in which F1 and F2 are lines
bundles. In the case the formula is just the isomorphism Pic(X) ∼= H2,1(X),
L 7→ c1(L); see

MVW
[122, 4.2].

Twisted duality theory

Although many cohomology theories (such as those listed in
V.11.12
11.12) come

equipped with a natural map from motivic cohomology, and thus have induced
Chern classes, it is possible to axiomatize the proof of Theorem

V.11.11
11.11 to avoid

the need from such a natural map. This was done by Gillet in
Gillet
[67], using the

notion of a twisted duality theory. Fix a category V of schemes over a base S,
and a graded sheaf ⊕A(i) of dg rings, as in

V.11.5
11.5. We assume that A satisfies

the homotopy invariance property: H∗(X,A(∗)) ∼= H∗(X × A1,A(∗)).
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V.11.14 Definition 11.14. A twisted duality theory on V with coefficients A consists
of a covariant bigraded “homology” functor Hn(−,A(i)) on the subcategory of
proper maps in V, equipped with contravariant maps j∗ for open immersions
and (for X flat over S of relative dimension d) a distinguished element ηX
of H2d(X,A(d)) called the fundamental classes of X, subject to the following
axioms.

(i) For every open immersion j : U →֒ X and every proper map p : Y → X,
the following square commutes:

Hn(Y,A(i))
j∗Y > Hn(U ×X Y,A(i))

Hn(X,A(i))

p!
∨ j∗

> Hn(U,A(i)).

pU !

∨

(ii) If j : U → X is an open immersion with closed complement ι : Z → X,
there is a long exact sequence (natural for proper maps)

· · ·Hn(Z,A(i)) ι!−→ Hn(X,A(i)) j∗−→ Hn(U,A(i)) ∂−→ Hn−1(Z,A(i)) · · ·

(iii) For each (X,U,Z) as in (ii), there is a cap product

Hp(X,A(r))⊗Hq
Z(X,A(s))

∩−→ Hp−q(Z,A(r − s)),

which is a pairing of presheaves on each X, and such that for each proper
map p : Y → X the projection formula holds:

p!(y) ∩ z = pZ !(y ∩ p∗(z)), y ∈ Hp(Y,A(r)), z ∈ Hq
Z(X,A(s)).

(iv) IfX is smooth over S of relative dimension d, and Z →֒ X is closed, the cap

product with ηX is an isomorphism: H2d−n
Z (X,A(d−s)) ∼=−→ Hn(Z,A(s)).

(This axiom determines H∗(Z,A(∗)).) In addition:

• the isomorphism H0(X,A(0)) ηX∩
> H2d(X,A(d)) sends 1 to ηX ;

• If Z has codimension 1, the fundamental class ηZ corresponds to an
element [Z] of H2

Z(X,A(1)), i.e., ηX ∩ [Z] = ηZ . Writing cycle(Z) for the
image of [Z] in H2(X,A(1)), we require that these cycle classes extend to
a natural transformation Pic(X)→ H2(X,A(1)).

(v) If Z
ι−→ X is a closed immersion of smooth schemes (of codimension c)

then the isomorphismHn(Z,A(r)) ∼= Hn+2c
Z (X,A(r+c)) in (iv) is induced

by a map ι! : A(r)
∼=−→ Rι!A(r+ c)[2c] in the derived category of Z, where

ι! is the “sections with support” functor. The projection formula of (iii)
for Z → X is represented in the derived category of X by the commutative
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diagram

Rι!A(r)⊗L A(s) Rι!(1⊗ ι!)
> Rι!

(
A(r)⊗L A(s)

)
> Rι!A(r + s)

Rι!A(r + c)[2c]⊗L A(s)

≃ ι! ⊗ 1
∨

> Rι!A(r + s+ c)[2c].

≃ ι!
∨

(vi) For all n ≥ 1 and X in V, let ξ ∈ H2(PnX ,A(1)) be the cycle class of a
hyperplane. Then the map π∗ : H∗(X,A(∗))→ H∗(PnX ,A(∗)), composed
with the cap product with powers of ξ, is onto, and the cap product with
powers of ξ induces an isomorphism:

⊕n

i=0
Hn+2i(X,A(q + i))

(1,ξ,...,ξn)∩π∗

> Hn(P
n
X ,A(q)).

Gillet
[67, 2.2] If there is a twisted duality theory on V with coefficients A, then

there is a theory of Chern classes on V with coefficients A.

EXERCISES

EV.11.1 11.1. Suppose given a theory of Chern classes for a ring A with coefficients in
a cochain complex C, as in

V.11.2
11.2, and let RA(G) denote the representation ring

of G over A (see Ex. II.
EII.4.2
4.2). Show that there are well defined functions cn :

RA(G)→ Hi(G,C(i)) forming Chern classes on the λ-ring RA(G) in the sense
of II.

II.4.11
4.11. If K is the space K(C) =

∏
K(C(n), n), show that they determine

a natural transformation RA(G) → [BG,K(C)]. By the universal property of
the +-construction (IV.

IV.5.7
5.7), this yields a unique element of [BGL(A)+,K(C)].

Compare this with the construction in
V.11.3
11.3.

EV.11.2 11.2. Consider the unital λ-ring Z× (1 +
∏
Hn(G,A(n))) with multiplication

(a, f) ∗ (b, g) = (ab, f bga(f ∗ g)). Show that (rank, ct) : K∗(X) → Z × (1 +∏
Hn(G,A(n))) is a homomorphism of unital λ-rings.

EV.11.3 11.3. (Grothendieck) Let H = ⊕Hn be a graded ring and write W for the
non-unital subalgebra 1 +

∏
Hn of W (H). Show that for x ∈ Hm, y ∈ Hn we

have

(1− x) ∗ (1− y) = 1− −(m+ n− 1)!

(m− 1)!(n− 1)!
xy + · · · .

Hint: In the universal case H = Z[x, y], W (H) embeds in W (H ⊗Q). Now use
the isomorphism W (H ⊗Q) ∼=

∏
H ⊗Q and compute in the mn coordinate.

EV.11.4 11.4. Dennis trace as a Chern class. Let C∗(R) denote the standard Hochschild
chain complex with Hn(C∗(R)) = HHn(R); see

WHomo
[223, 9.1]. In the notation of

V.11.2.3
11.2.3, there is a natural chain map B∗⊗Z→ C∗(Z[G]), representing an element
ofH0 Hom(B∗⊗Z, C∗(Z[G])), which on homology is theH∗(G,Z)→ HH∗(Z[G])
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of
V.11.1
11.1; see

WHomo
[223, 9.7.5]. Since the C∗(Mm(R)) → C∗(R) are chain maps

WHomo
[223,

9.5.7], any representation ρ determines a chain map and an associated element
c1(ρ) of H

0(G,C∗(R)) = H0 Hom(B∗ ⊗ Z, C∗(R)).
Setting A(0) = Z, A(1) = C∗[−1] and A(n) = 0 for n > 1, we may regard

c1(ρ) as an element of H1(G,A(1)). Show that c1(ρ) determines a theory of
Chern classes with ci(ρ) = 0 for i ≥ 2. Hint: the product c1(ρ1)c1(ρ2) is in
H2(G,A(2)) = 0, and the method of

V.11.2.3
11.2.3 applies.

EV.11.5 11.5. Suppose that R contains both 1/m and the group µm of primitive mth

roots of unity. Let ρ : µm → GL2(R) be the representation ρ(ζ)(x, y) =
(ζx, ζ−1y). Show that the étale Chern class c2,2(ρ) : H4(µm,Z/m) →
H0

et(R,µ
⊗2
m ) ∼= Z/m is an isomorphism. Hint: if λ : µm → R× is the tau-

tological representation, show that c2,2 = c1,1(λ)
2.

EV.11.6 11.6. Show that a theory of Chern classes with coefficients A(i) yields Chern
classes with coefficients B(i) = A(i) ⊗L Z/m, and that there is a commutative
diagram

Kn(X) > Kn(X;Z/m) > Kn−1(R)

Hi−n(X,A(i))

ci
∨

> Hi−n(X,B(i))

ci
∨

> Hi+1−n(X,A(i)).

ci
∨

Hint: Hom(C∗,A)[1]→ Hom(C∗,A⊗L Z/m)→ Hom(C∗,A)→ is a triangle.
As an application of this, let A(i) be the complex for Deligne-Beilinson

cohomology of a complex variety; B(i) computes étale cohomology, and we have
a commutative diagram, showing that the étale and Deligne-Beilinson Chern
classes are compatible.

Kn(X) > Kn(X;Z/m) > Kn−1(R)

H2i−n
D (X,Z(i))

ci
∨

> H2i−n
et (X,µ⊗im )

ci
∨

> H2i+1−n
D (X,Z(i)).

ci
∨

EV1.1.7 11.7. By Kummer theory, H1
et(X,µm) ∼= m Pic(X) ⊕ U(X)/mU(X), where

U(X) = O(X)×. Modifying Example
V.11.10
11.10, show that the Chern class

c1,1 : K1(X;Z/m) → H1
et(X,µm) sends K1(X)/m to U(X)/mU(X) by the

determinant, and that the induced quotient map c1,1 : mK0(X) → m Pic(X)
may be identified with the canonical map of II.

II.8.1
8.1.

EV.11.8 11.8. (Suslin) Suppose given a theory of Chern classes for a field F with
coefficients A. Show that the Chern class cn : Kn(F )→ H0A(n) factors through
Suslin’s map Kn(F ) → KM

n (F ) described in IV.
IV.1.15
1.15. In particular, the K-

cohomology Chern class cn : Kn(F ) → H0(Spec(F ),Kn) ∼= Kn(F ) factors
through Kn(F )→ KM

n (F ). Hint: Use KM
n (F ) ∼= Hn(GLn(F ))/Hn(GLn−1(F ))

to reduce to the Triviality axiom
V.11.2
11.2(2) that cn(idn−1) = 0.
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The higher K-theory of

Fields

The problem of computing the higher K-groups of fields has a rich history,
beginning with Quillen’s calculation for finite fields (IV.

IV.1.13
1.13), and Borel’s cal-

culation of K∗(F ) ⊗ Q for number fields (IV.
IV.1.18
1.18), Tate’s calculations of the

Milnor K-groups of number fields (III.
III.7.2
7.2(a)) and Quillen’s observation that

the image of the stable homotopy groups πs∗ in K∗(Z) contained the image of
the J-homomorphism, whose orders are described by Bernoulli numbers. In
the early 1970’s, a series of conjectures were made concerning the K-theory of
number fields, and the structure of Milnor K-theory. After decades of partial
calculations and further conjectures, the broad picture is now in place. The goal
of this chapter is to explain what we now know about the K-theory of fields,
and especially number fields.

1 K-theory of algebraically closed fields

We begin by calculating the K-theory of algebraically closed fields. The results
in this section are due to Suslin

Su83, Su84
[182, 184].

Let C be a smooth curve over an algebraically closed field k, with function
field F . The local ring of C at any closed point c ∈ C is a discrete valuation ring,
and we have a specialization map λc : K∗(F,Z/m) → K∗(k,Z/m) (see V.

V.6.7
6.7

and Ex.V.
EV.6.14
6.14). If C = P1, we saw in V, Ex.

EV.6.14
6.14 that all of the specialization

maps λc agree. The following result, due to Suslin
Su83
[182], shows that this holds

more generally.

VI.1.1 Theorem 1.1. (Rigidity) Let C be a smooth curve over an algebraically closed
field k, with function field F = k(C). If c0, c1 are two closed points of C, the
specializations K∗(F,Z/m)→ K∗(k,Z/m) coincide.
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Proof. There is no loss of generality in assuming that C is a projective curve.
Suppose that f : C → P1 is a finite map. Let R0 and R′ be the local ring in k(t)
at t = 0 and its integral closure in F = k(C), respectively. If sc is a parameter
at c and ec is the ramification index at c, so that t = u

∏
secc in R′, then for

a ∈ K∗(F,Z/m) we have ∂c({t, a}) = ec∂c{sc, a} = ecλc(a). Since k(c) = k for
all closed c ∈ C, we see from Chapter V, (

V.6.6.4
6.6.4) that

λ0(NF/k(t)a) = ∂0NF/k(t)({t, a}) =
∑

f(c)=0

Nc∂c({t, a}) =
∑

f(c)=0

ecλc(a).

A similar formula holds for any other point of P1. In particular, since λ0(Na) =
λ∞(Na) we have the formula

∑
f(c)=0

ecλc(a) =
∑

f(c)=∞
ecλc(a).

We can assemble this information as follows. Let A denote the abelian
group Hom(K∗(F ;Z/m),K∗(k,Z/m)), and recall that Cart(C) denotes the
free abelian group on the closed points of C. There is a homomorphism
λ : Cart(C) → A sending [c] to the specialization map λc of V.

V.6.7
6.7. If we

regard f as an element of F×, its divisor is
∑
f(c)=0 ec[c]−

∑
f(c)=∞ ec[c]. The

displayed equation amounts to the formula λ ◦ div = 0. Now the Picard group
Pic(C) is the cokernel of the divisor map F× → Cart(C) (see I.

I.5.12
5.12), so λ

factors through Pic(C). Since A is a group of exponent m, λ factors through
Pic(C) ⊗ Z/m. However, the kernel J(C) of the degree map Pic(C) → Z is
a divisible group (I.

I.5.16
5.16, so λ is zero on J(C). Since [c0] − [c1] ∈ J(C), this

implies that λc0 = λc1 .

VI.1.2 Corollary 1.2. If A is any finitely generated smooth integral k-algebra, and
h0, h1 : A → k are any k-algebra homomorphisms, then the induced maps h∗i :
K∗(A;Z/m)→ K∗(k;Z/m) coincide.

Proof. The kernels of the hi are maximal ideals, and it is known that there is a
prime ideal p of A contained in their intersection such that A/p is 1-dimensional.
If R is the normalization of A/p then the hi factor through A→ R. Therefore we
can replace A by R. Since C = Spec(R) is a smooth curve, the specializations λi
on F = k(C) agree by Theorem

VI.1.1
1.1. The result follows, since by Theorem V.

V.6.7
6.7,

the induced maps h∗i factor asK∗(R;Z/m)→ K∗(F ;Z/m)
λi−→K∗(k;Z/m).

VI.1.3 Theorem 1.3. If k ⊂ F is an inclusion of algebraically closed fields, the maps
Kn(k;Z/m)→ Kn(F ;Z/m) are isomorphisms for all m.

Proof. We saw in V.
V.6.7.4
6.7.4 that both Kn(k) → Kn(F ) and Kn(k;Z/m) →

Kn(F ;Z/m) are injections. To see surjectivity, we write F as the union of
its finitely generated subalgebras A. Therefore every element of Kn(F ;Z/m)
is the image of some element of Kn(A;Z/m) under the map induced from the
inclusion h0 : A →֒ F . Since the singular locus of A is closed, some localization
A[1/s] is smooth, so we may assume that A is smooth.
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But for any maximal ideal m of A we have a second map h1 : A → A/m =
k →֒ F . Both h0 and h1 factor through the basechange A → A ⊗k F and
the induced maps hi : A ⊗k F → F . Since A ⊗k F is smooth over F , the
map h∗0 : Kn(A;Z/m) → Kn(F ;Z/m) coincides with h∗1 : Kn(A;Z/m) →
Kn(k;Z/m)→ Kn(F ;Z/m) by Corollary

VI.1.2
1.2. This finishes the proof.

Finite characteristic. For algebraically closed fields of characteristic p > 0,
we may take k = F̄p to determine K∗(F ). Recall from IV.

IV.1.13
1.13 that Kn(F̄p) = 0

for even n > 0, and that K2i−1(F̄p) = ∪K2i−1(Fpν ) is isomorphic as an abelian
group to F̄×p ∼= Q/Z[ 1p ]. In particular, Kn(F ;Z/p) = Kn(F̄p;Z/p) = 0; this

implies that Kn(F ) is uniquely p-divisible. (We saw in IV.
IV.5.6
5.6 that this is true

more generally for perfect fields of characteristic p.)
We also saw in IV.

IV.1.13.2
1.13.2 that if p ∤ m and β ∈ K2(F̄p;Z/m) ∼= µm(F̄p)

is the Bott element (whose Bockstein is a primitive mth root of unity), then
K∗(F̄p;Z/m) ∼= Z/m[β] as a graded ring. The action of the Frobenius auto-
morphism φ(x) = xp on F induces multiplication by pi on K2i−1(F̄p); we say
that the action is twisted i times. The following corollary to Theorem

VI.1.3
1.3 is

immediate from these remarks.

VI.1.3.1 Corollary 1.3.1. Let F be an algebraically closed field of characteristic p > 0.
(i) If n is even and n > 0, Kn(F ) is uniquely divisible.
(ii) If n = 2i−1 is odd, K2i−1(F ) is the direct sum of a uniquely divisible group
and the torsion group Q/Z[ 1p ]. In particular, it is divisible with no p-torsion,
and the Frobenius automorphism acts on the torsion subgroup as multiplication
by pi.
(iii) When p ∤ m, the choice of a Bott element β ∈ K2(F ;Z/m) determines a
graded ring isomorphism K∗(F ;Z/m) ∼= Z/m[β].

Recall that any divisible abelian group is the direct sum of a uniquely divis-
ible group and a divisible torsion group, a divisible torsion group is the sum of
its Sylow subgroups, and an ℓ-primary divisible group is a direct sum of copies
of Z/ℓ∞. Therefore K2i−1(F ) is the direct sum of a uniquely divisible group
and ⊕ℓ 6=pZ/ℓ∞ ∼= Q/Z[ 1p ].

VI.1.3.2 Remark 1.3.2. If F is any separably closed field of characteristic p, then
Kn(F ) is non-canonically a summand of Kn(F̄ ) by a transfer argument (as
it is uniquely p-divisible for all n > 0, by IV.

IV.5.6
5.6). Therefore Kn(F ) also has the

structure described in Corollary
VI.1.3.1
1.3.1; see Exercise

EVI.1.1
1.1.

We now turn to the structure of K∗(F ) when F has characteristic zero.

VI.1.4 Proposition 1.4. If F is an algebraically closed field of characteristic 0 then
for every m > 0 the choice of a Bott element β ∈ K2(F ;Z/m) determines a
graded ring isomorphism K∗(F ;Z/m) ∼= Z/m[β].

Proof. Pick a primitive mth root of unity ζ in Q̄, and let β be the corresponding
Bott element in K2(Q(ζ);Z/m). We use this choice to define a Bott element
β ∈ K2(E;Z/m) for all fields containing Q(ζ), natural in E. By Theorem

VI.1.3
1.3,
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it suffices to show that the induced ring map Z/m[β] → K∗(F ;Z/m) is an
isomorphism for some algebraically closed field F containing Q̄.

Fix an algebraic closure Q̄p of Qp, where p ∤ m. For each q = pν , let Eq
denote the maximal algebraic extension of Qp inside Q̄p with residue field Fq; Q̄p
is the union of the Eq. For each q ≡ 1 (mod m), we saw in Example V.

V.6.10.2
6.10.2

(which uses Gabber rigidity) that K∗(Eq;Z/m) = Z/m[β]. If q|q′, the map
K∗(Eq;Z/m) → K∗(Eq′ ;Z/m) is an isomorphism, by naturality of β. Taking
the direct limit over q, we have K∗(Q̄p;Z/m) = Z/m[β], as desired.

VI.1.4.1 Remark 1.4.1. There is a map K∗(C;Z/m)→ π∗(BU ;Z/m) arising from the
change of topology; see IV.

IV.4.12.3
4.12.3. Suslin proved in

Su84
[184] that this map is an iso-

morphism. We can formally recover this result from Proposition
VI.1.4
1.4, since both

rings are polynomial rings in one variable, and the generator β ∈ K2(C;Z/m)
maps to a generator of π2(BU ;Z/m) by IV.

IV.1.13.2
1.13.2.

To determine the structure of K∗(F ) when F has characteristic 0, we need a
result of Harris and Segal

HS
[84, 3.1]. Let m = ℓν be a prime power and R a ring

containing the group µm of mth roots of unity. The group µm ≀Σn = (µm)n⋊Σn
embeds into GLn(R) as the group of invertible n × n matrices with only one
nonzero entry in each row and column, every nonzero entry being in µm. Taking
the union over n, the group G = µm ≀ Σ∞ embeds into GL(R).

There is an induced map π∗(BG
+)→ K∗(R) when µm ⊂ R. Given a finite

field Fq with ℓ ∤ q, transfer maps for R = Fq(ζ2ℓ) give maps π∗(BG
+) →

K∗(R)→ K∗(Fq). Let µ(ℓ)(F ) denote the ℓ-primary subgroup of µ(F ).

VI.1.5 Theorem 1.5. (Harris-Segal) If ℓ ∤ q and |µ(ℓ)(Fq(ζℓ))| = m, then each group
π2i−1B(µm ≀Σ∞)+ contains a cyclic summand which maps isomorphically to the
ℓ-Sylow subgroup of π2i−1BGL(Fq)+ = K2i−1(Fq) ∼= Z/(qi − 1).

Proof. Fix i and letN = ℓν be the largest power of ℓ dividing qi−1. Theorem 3.1
of

HS
[84] states that both π2i−1(BG

+)(ℓ) → K2i−1(Fq)(ℓ) and π2i(BG
+;Z/N) →

K2i(Fq;Z/N) ∼= Z/N are onto. Since π2i(BG
+;Z/N) is a Z/N -module (IV.

IV.2.2
2.2),

the latter map splits, i.e., there is a Z/N summand in π2i(BG
+;Z/N) and hence

in π2i−1(BG
+) mapping isomorphically onto K2i−1(Fq;Z/N) ∼= Z/N .

VI.1.5.1 Corollary 1.5.1. For each prime ℓ 6= p and each i > 0, K2i−1(Q̄p) contains a
nonzero torsion ℓ-group.

Proof. Fix a q = pν such that q ≡ 1 (mod ℓ), and q ≡ 1 (mod 4) if ℓ = 2, and
let m be the largest power of ℓ dividing q − 1. We consider the set of all local
fields E over Qp (contained in a fixed common Q̄p) whose ring of integers R has
residue field Fq. For each such E, we have K2i−1(R) ∼= K2i−1(E) by V.

V.6.9.2
6.9.2. If

Rq denotes the union of these R, and Eq is the the union E, this implies that
K2i−1(Rq) ∼= K2i−1(Eq).

Because G is a torsion group, the homology groups H∗(G;Q) vanish for
∗ > 0, so the groups π∗(BG

+) are torsion groups by the Hurewicz theo-
rem. Since G → GL(Fq) factors through GL(Rq), the surjection π∗(BG

+) →
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π∗BGL(Fq)+ = K∗(Fq) factors through π∗BGL(Rq)
+ = K∗(Rq) and hence

through K2i−1(Eq). It follows that K2i−1(Eq) contains a torsion group map-
ping onto the ℓ-torsion subgroup of K2i−1(Fq) ∼= Z/(q − 1). Taking the direct
limit over q, it follows that the ℓ-torsion subgroup of K2i−1(Q̄p;Z/m) maps onto
the ℓ-torsion subgroup of K2i−1(F̄p).

VI.1.5.2 Corollary 1.5.2. If q ≡ 1 (mod ℓ) and m is the order of µ(ℓ)(Fq) then each
group K2i−1(Z[ζm]) ∼= K2i−1(Q(ζm)) contains a cyclic summand mapping iso-
morphically onto the ℓ-primary component of K2i−1(Fq) ∼= Z/(qi − 1).

In fact, the summand is the torsion subgroup of K2i−1(Q(ζm)), as we shall see
in Theorem

VI.8.2
8.2.

Proof. We haveK2i−1(Z[ζm]) ∼= K2i−1(Q(ζm)) by V.
V.6.8
6.8, and there is a canonical

ring map Z[ζm] → Fq. Since µm ⊂ Z[ζm], the split surjection of Theorem
VI.1.5
1.5

factors through π2i−1(BG
+)→ K2i−1(Z[ζm])→ K2i−1(Fq).

VI.1.5.3 Remark 1.5.3. Let S denote the symmetric monoidal category of finite free
µm-sets (IV.

IV.4.1.1
4.1.1). The space K(S) is Z×BG+, and the Barratt-Priddy The-

orem identifies it with the zeroth space of the spectrum Σ∞(BG+). As pointed
out in IV.

IV.4.10.1
4.10.1, the map BG+ → GL(R)+ arises from the free R-module

functor S → P(R), and therefore K(S) → K(R) extends to a map of spectra
K(S)→ K(R).

If k ⊂ F is an inclusion of algebraically closed fields, K∗(k) → K∗(F ) is an
injection by V.

V.6.7.4
6.7.4. The following result implies that it is an isomorphism on

torsion subgroups, and that Kn(F ) is divisible for n 6= 0.

VI.1.6 Theorem 1.6. Let F be an algebraically closed field of characteristic 0. Then
(i) If n is even and n > 0, Kn(F ) is uniquely divisible.
(ii) If n = 2i−1 is odd, K2i−1(F ) is the direct sum of a uniquely divisible group
and a torsion group isomorphic to Q/Z.

Proof. Fix i > 0. For each prime ℓ, the group K2i−1(F ;Z/ℓ) is zero by Proposi-
tion

VI.1.4
1.4. By the universal coefficient sequence IV.

IV.2.5
2.5, K2i−2(F ) has no ℓ-torsion

and K2i−1(F )/ℓ = 0. That is, K2i−1(F ) is ℓ-divisible for all ℓ and hence divis-
ible, while K2i−2(F ) is torsionfree. We now consider the universal coefficient
sequence

0→ K2i(F )/ℓ→ K2i(F ;Z/ℓ)→ ℓK2i−1(F )→ 0.

The middle group is Z/ℓ by Proposition
VI.1.4
1.4. By Corollary

VI.1.5.1
1.5.1, the exponent ℓ

subgroup of K2i−1(F ) is nonzero, and hence cyclic of order ℓ. This implies that
K2i(F )/ℓ = 0, i.e., the torsionfree group K2i(F ) is divisible.

Since a divisible abelian group is the direct sum of a uniquely divisible group
and a divisible torsion group, a divisible torsion group is the sum of its Sylow
subgroups, and an ℓ-primary divisible group is a direct sum of copies of Z/ℓ∞,
it follows that K2i−1(F ) is the direct sum of a uniquely divisible group and
⊕ℓZ/ℓ∞ ∼= Q/Z.
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We conclude this section with a description of the torsion module of
K2i−1(F ) as a representation of the group Aut(F ) of field automorphisms of
F . For this we need some elementary remarks. If F is algebraically closed,
there is a tautological action of Aut(F ) on the group µ = µ(F ) of roots of unity
in F : g ∈ Aut(F ) sends ζ to g(ζ). This action gives a surjective homomorphism
Aut(F ) → Aut(µ), called the cyclotomic representation. To describe Aut(µ),
recall that the group µ(F ) is isomorphic to either Q/Z or Q/Z[ 1p ], according to
the characteristic of F .

Since any endomorphism of Q/Z induces an endomorphism of its exponentm
subgroup Z/m, and is equivalent to a compatible family of such, End(Q/Z) is

isomorphic to Ẑ = lim←−Z/m. It is easy to see that Ẑ is the product over all primes

ℓ of the ℓ-adic integers Ẑℓ, so Aut(µ) ∼=
∏

Ẑ×ℓ . A similar argument, with p ∤ m,

shows that End(Q/Z[ 1p ]) is isomorphic to
∏
ℓ 6=p Ẑℓ, and Aut(µ) ∼=

∏
ℓ 6=p Ẑ

×
ℓ .

If char(F ) = 0, the subfield of F fixed by the kernel of Aut(F )→ Aut(µ) is
the infinite cyclotomic extensionQ(µ) = ∪mQ(ζm), by elementary Galois theory,

and Aut(F ) surjects onto Aut(Q(µ)) = Gal(Q(µ)/Q) ∼= Aut(µ) ∼= Ẑ×. If F is
algebraically closed of characteristic p > 0, the situation is similar: Aut(F )
surjects onto Aut(F̄p) = Gal(F̄p/Fp) ∼= Aut(µ); the Frobenius is topologically
dense in this group.

VI.1.7 Definition 1.7. For all i ∈ Z, we shall write µ(i) for the abelian group µ,
made into a Aut(F )-module by letting g ∈ Aut(F ) act as ζ 7→ gi(ζ). (This
modified module structure is called the ith Tate twist of the cyclotomic module
µ.) If M is any Aut(F )-submodule of µ, we write M(i) for the abelian group
M , considered as a submodule of µ(i). In particular, its Sylow decomposition
is µ(i) = ⊕Z/ℓ∞(i).

VI.1.7.1 Proposition 1.7.1. If F is algebraically closed and i > 0, the torsion submod-
ule of K2i−1(F ) is isomorphic to µ(i) as an Aut(F )-module.

Proof. It suffices to show that the submodule mK2i−1(F ) is isomorphic to µm(i)
for all m > 0 prime to the characteristic. Fix a primitive mth root of unity ζ in
F , and let β be the corresponding Bott element. Then K∗(F ;Z/m) ∼= Z/m[β],
by either

VI.1.3.1
1.3.1 or

VI.1.6
1.6; Since mK2i−1(F ) ∼= K2i(F ;Z/m) as Aut(F )-modules,

and the abelian group K2i(F ;Z/m) is isomorphic to Z/m on generator βi.
By naturality of the product (IV,

IV.1.10
1.10 and

IV.2.8
2.8), the group Aut(F ) acts on

K∗(F ;Z/m) by ring automorphisms. For each g ∈ Aut(F ) there is an a ∈ Z/m×

such that g(ζ) = ζa. Thus g sends β to aβ, and g sends βi to (aβ)i = aiβi. Since
µm(i) is isomorphic to the abelian group Z/m with g acting as multiplication
by ai, we have µm(i) ∼= K2i(F ;Z/m).

EXERCISES

EVI.1.1 1.1. Show that the conclusion of
VI.1.3.1
1.3.1 holds for any separably closed field of

characteristic p: if n > 0 is even then Kn(F ) is uniquely divisible, while if n is
odd then Kn(F ) is the sum of a uniquely divisible group and (Q/Z)(p). Hint:
By IV.

IV.5.6
5.6, Kn(F ) is uniquely p-divisible for all n > 0.
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EVI.1.2 1.2. (Suslin) Let k ⊂ F be an extension of algebraically closed fields, and
let X be an algebraic variety over k. Write XF for the corresponding variety
X ⊗k F over F . In this exercise we show that the groups G∗(X;Z/m) (defined
in IV.

IV.6.3.4
6.3.4) are independent of k.

(i) If R is the local ring of a smooth curve C at a point c, show that there is
a specialization map λc : G∗(Xk(C);Z/m)→ G∗(X;Z/m).

(ii) Rigidity. Show that the specialization λc is independent of the choice of c.

(iii) If h1, h2 : A→ k are as in
VI.1.2
1.2, show that the maps h∗i : G∗(XA;Z/m) →

G∗(X;Z/m) exist and coincide.

(iv) Show that the base-change G∗(X;Z/m) → G∗(XF ;Z/m) is an isomor-
phism.

EVI.1.3 1.3. Let E be a local field, finite over Qp and with residue field Fq. Use TheoremVI.1.6
1.6 and the proof of

VI.1.5.1
1.5.1 to show thatK2i−1(E)tors is the direct sum of Z/(qi−1)

and a p-group, and that K2i−1(E)tors → K2i−1(Q̄p) is an injection modulo p-
torsion.

EVI.1.4 1.4. The Galois group Γ = Gal(Q(ζm)/Q) acts on µm and hence on the group
G of Theorem

VI.1.5
1.5. Show that the induced action of Γ on π∗(BG

+) is trivial,
and conclude that the summand of K2i−1(Q(ζ)) in

VI.1.5.2
1.5.2 is invariant under Γ.

2 The e-invariant of a field

The odd-indexed K-groups of any field F have a canonical torsion summand,
discovered by Harris and Segal in

HS
[84]. It is detected by a map called the e-

invariant, which we now define.
Let F̄ be a separably closed field, and µ = µ(F̄ ) the group of its roots of

unity. We saw in Proposition
VI.1.7.1
1.7.1 (and Ex.

EVI.1.1
1.1) that K2i−1(F̄ )tors is isomorphic

to the Tate twist µ(i) of µ as an Aut(F̄ )-module (see Definition
VI.1.7
1.7). The

target group µ(i)G is always the direct sum of its ℓ-primary Sylow subgroups
µ(ℓ)(i)

G ∼= Z/ℓ∞(i)G.

VI.2.1 Definition 2.1. Let F be a field, with separable closure F̄ and Galois group
G = Gal(F̄ /F ). Since K∗(F )→ K∗(F̄ ) is a homomorphism of G-modules, with
G acting trivially on Kn(F ), it follows that there is a natural map

e : K2i−1(F )tors → K2i−1(F̄ )
G
tors
∼= µ(i)G.

We shall call e the e-invariant.
If µ(i)G is a finite group it is cyclic, and we write wi(F ) for its order, so that

µ(i)G ∼= Z/wi(F ). If ℓ is a prime, we write w
(ℓ)
i (F ) for the order of µ(ℓ)(i)

G.

Thus the target of the e-invariant is
⊕

ℓ Z/w
(ℓ)
i (F ), and wi(F ) =

∏
w

(ℓ)
i (F ).
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VI.2.1.1 Example 2.1.1 (finite fields). It is a pleasant exercise to show that wi(Fq) =
qi − 1 for all i. Since this is the order of K2i−1(Fq) by IV.

IV.1.13
1.13, we see that in

this case, the e-invariant is an isomorphism. (See Exercise IV.
EIV.1.26
1.26.)

VI.2.1.2 Example 2.1.2. If i is odd, wi(Q) = 2 and wi(Q(
√
−1)) = 4. If i is even

then wi(Q) = wi(Q(
√
−1)), and ℓ|wi(Q) exactly when (ℓ − 1) divides i. We

have: w2 = 24, w4 = 240, w6 = 504 = 23 · 32 · 7, w8 = 480 = 25 · 3 · 5,
w10 = 1320 = 23 · 3 · 5 · 11, and w12 = 65, 520 = 24 · 32 · 5 · 7 · 13. These formulas
may be derived from Propositions

VI.2.2
2.2 and

VI.2.3
2.3 below.

In
LSz
[108], Lee and Szczarba used a variant of the formula K3(R) =

H3(St(R);Z) (Ex. IV.
EIV.1.9
1.9) to show that K3(Z) ∼= K3(Q) ∼= Z/48. It follows

that the e-invariant K3(Q) → Z/24 cannot be an injection. (We will see in
Remark

VI.2.1.3
2.1.3 that it vanishes on the nonzero symbol {−1,−1,−1}.)

VI.2.1.3 Remark 2.1.3. The complex Adams e-invariant for stable homotopy is a map
from πs2i−1 to Z/wi(Q), whence our terminology. Quillen observed in

Qlet
[155] that

the Adams e-invariant is the composition πs2i−1 → K2i−1(Q)
e−→ Z/wi(Q).

(Adams defined his e-invariant using π2i(BU)/wi(Q); Quillen’s assertions have
been translated using Remark

VI.1.4.1
1.4.1.)

If i is positive and divisible by 4, the real (Adams) e-invariant coincides with
the complex e-invariant. If i ≡ 2 (mod 4), the real e-invariant is a map

πs2i−1 → π2i(BO)/2wi(Q) = Z/2wi(Q)

For all even i > 0, Adams proved in 1966 that the real e-invariant restricts to
an injection on the image of J : π2i−1O → πs2i−1 and induces an isomorphism
(imJ)2i−1 ∼= Z/wi(Q). His proof used the “Adams Conjecture,” which was later
verified by Quillen. Quillen showed in

Qlet
[155] that the real e-invariant factors

through K2i−1(Z) = K2i−1(Q), so (imJ)2i−1 injects into K2i−1(Z). In partic-
ular, the image {−1,−1,−1} of η3 ∈ πs3 is nonzero in K3(Z) (see Ex. IV.

EIV.1.12
1.12).

Since the map from π8k+3(BO) = Z to π8k+3(BU) = Z has image 2Z, it fol-
lows that the e-invariant K8k+3(Q) → Z/w4k+2(Q) of Definition

VI.2.1
2.1 is not an

injection on (imJ)8k+3.
Not all of the image of J injects into K∗(Z). If n ≡ 0, 1 (mod 8) then

J(πnO) ∼= Z/2, but Waldhausen showed (in 1982) that these elements map to
zero in Kn(Z).

Formulas for wi(F )

We now turn to formulas for the numbers w
(ℓ)
i (F ). Let ζm denote a primitive

mth root of unity. For odd ℓ, we have the following simple formula.

VI.2.2 Proposition 2.2. Fix a prime ℓ 6= 2, and let F be a field of characteristic 6= ℓ.
Let a ≤ ∞ be maximal such that F (ζℓ) contains a primitive ℓath root of unity

and set r = [F (ζℓ) : F ]. If i = cℓb, where ℓ ∤ c, then the numbers w
(ℓ)
i = w

(ℓ)
i (F )

are ℓa+b if r | i, and 1 otherwise. That is:

(a) If ζℓ ∈ F then w
(ℓ)
i = ℓa+b;
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(b) If ζℓ 6∈ F and i ≡ 0 (mod r) then w
(ℓ)
i = ℓa+b;

(c) If ζℓ 6∈ F and i 6≡ 0 (mod r) then w
(ℓ)
i = 1.

Proof. Since ℓ is odd, G = Gal(F (ζℓν )/F ) is a cyclic group of order rℓν−a for
all ν ≥ a. If a generator of G acts on µℓν by ζ 7→ ζg for some g ∈ (Z/ℓν)×

then it acts on µ⊗i by ζ 7→ ζg
i

. Now use the criterion of Lemma
VI.2.2.1
2.2.1; if r | i

then Gal(F (ζℓa+b)/F ) is cyclic of order rℓb, while if r ∤ i the exponent r of
Gal(F (ζℓ)/F ) does not divide i.

VI.2.2.1 Lemma 2.2.1. w
(ℓ)
i (F ) = max{ℓν | Gal(F (ζℓν )/F ) has exponent dividing i}

Proof. Set ζ = ζℓν . Then ζ⊗i is invariant under g ∈ Gal(F̄ /F ) precisely
when gi(ζ) = ζ, and ζ⊗i is invariant under all of G precisely when the group
Gal(F (ζℓν )/F ) has exponent i.

VI.2.2.2 Example 2.2.2. Consider F = Q(ζpa). If i = cpb then w
(p)
i (F ) = pa+b (p 6= 2).

If ℓ 6= 2, p then w
(ℓ)
i (F ) = w

(ℓ)
i (Q) for all i. This number is 1 unless (ℓ− 1) | i;

if (ℓ − 1)|i but ℓ ∤ i then w
(ℓ)
i (F ) = ℓ. In particular, if ℓ = 3 and p 6= 3 then

w
(3)
i (F ) = 1 for odd i, and w

(3)
i (F ) = 3 exactly when i ≡ 2, 4 (mod 6).

The situation is more complicated when ℓ = 2, because Aut(µ2ν ) = (Z/2ν)×

contains two involutions if ν ≥ 3. We say that a field F is exceptional if
char(F ) = 0 and the Galois groups Gal(F (ζ2ν )/F ) are not cyclic for large ν. If
F is not exceptional, we say that it is non-exceptional.

VI.2.3 Proposition 2.3. (ℓ = 2) Let F be a field of characteristic 6= 2. Let a be
maximal such that F (

√
−1) contains a primitive 2ath root of unity. If i = c2b,

where 2 ∤ c, then the 2-primary numbers w
(2)
i = w

(2)
i (F ) are:

(a) If
√
−1 ∈ F then w

(2)
i = 2a+b for all i.

(b) If
√
−1 /∈ F and i is odd then w

(2)
i = 2.

(c) If
√
−1 /∈ F , F is exceptional and i is even then w

(2)
i = 2a+b.

(d) If
√
−1 /∈ F , F is non–exceptional and i is even then w

(2)
i = 2a+b−1.

The proof of Proposition
VI.2.3
2.3(a,b,d) is almost identical to that of

VI.2.2
2.2 with

r = 1. The proof in the exceptional case (c) is relegated to Exercise
EVI.2.2
2.2.

Both R and Q2 are exceptional, and so are each of their subfields. In par-
ticular, real number fields (like Q) are exceptional, and so are some totally
imaginary number fields, like Q(

√
−7).

VI.2.3.1 Example 2.3.1. (local fields) Let E be a local field, finite over Qp and with
residue field Fq. Then wi(E) is wi(Fq) = qi − 1 times a power of p. (The
precise power of p is given in Exercise

EVI.2.3
2.3 when E = Qp.) This follows from

Propositions
VI.2.2
2.2 and

VI.2.3
2.3, using the observation that (for ℓ 6= p) the number of

ℓ-primary roots of unity in E(ζℓ) is the same as in Fq(ζℓ).

By Exercise
EVI.1.3
1.3, the map K2i−1(E)tors

e−→ Z/wi(E) is a surjection up
to p-torsion, and induces an isomorphism on ℓ-primary torsion subgroups
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K2i−1(E){ℓ} ∼= Z/w(ℓ)
i for ℓ 6= p. We will see in Proposition

VI.7.3
7.3 that the

torsion subgroup of K2i−1(E) is exactly Z/wi(E).

Bernoulli numbers

The numbers wi(Q) are related to the Bernoulli numbers Bk. These were defined
by Jacob Bernoulli in 1713 as coefficients in the power series

t

et − 1
= 1− t

2
+
∞∑

k=1

(−1)k+1Bk
t2k

(2k)!
.

(We use the topologists’ Bk from
MSt
[135], all of which are positive. Number

theorists would write it as (−1)k+1B2k.) The first few Bernoulli numbers are:

B1=
1

6
, B2=

1

30
, B3 =

1

42
, B4 =

1

30
, B5=

5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
.

The denominator of Bk is always squarefree, divisible by 6, and equal to the
product of all primes with (p− 1)|2k. Moreover, if (p− 1) ∤ 2k then p is not in
the denominator of Bk/k even if p|k; see MSt

[135]. From this information, it is easy
to verify the following identity. Recall from

VI.2.1.2
2.1.2 that wi(Q) = 2 when i is odd.

VI.2.4 Lemma 2.4. If i = 2k is even then wi(Q) is the denominator of Bk/4k. The
prime ℓ divides wi(Q) exactly when (ℓ− 1) divides i.

Although the numerator of Bk is difficult to describe, it is related to the
notion of irregular primes, which we now define.

VI.2.4.1 Example 2.4.1 (Irregular Primes). A prime p is called irregular if p divides
the order hp of Pic(Z[µp]); if p is not irregular it is called regular. Iwasawa
proved that a prime p is regular if and only if Pic(Z[µpν ]) has no p-torsion for
all ν. The smallest irregular primes are 37, 59, 67, 101, 103, 131 and 149. Siegel
conjectured that asymptotically about 39% of all primes are irregular; about
39% of the primes less than 4 million are irregular.

Kummer proved that p is irregular if and only if p divides the numerator of
one of the Bernoulli numbers Bk, k ≤ (p − 3)/2 (see Washington

Wash
[216, 5.34]).

By Kummer’s congruences (
Wash
[216, 5.14]), a regular prime p does not divide the

numerator of any Bk/k (but 5|B5). Thus only irregular primes can divide the
numerator of Bk/k.

The historical interest in regular primes is Kummer’s 1847 proof of Fermat’s
Last Theorem (case I) for regular primes: xp + yp = zp has no solution in
which p ∤ xyz. For us, certain calculations of K-groups become easier at regular
primes. (See Example

VI.8.3.2
8.3.2 and Proposition

VI.10.5
10.5.)

VI.2.4.2 Remark 2.4.2. Bernoulli numbers also arise as values of the Riemann zeta
function. Euler proved (in 1735) that ζQ(2k) = Bk(2π)

2k/2(2k)!. By the func-
tional equation, we have ζQ(1−2k) = (−1)kBk/2k. By Lemma

VI.2.4
2.4, the denom-

inator of ζQ(1− 2k) is 1
2w2k(Q).
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VI.2.4.3 Remark 2.4.3. The Bernoulli numbers are of interest to topologists because
if n = 4k − 1 the image of J : πnSO → πsn is cyclic of order equal to the
denominator of Bk/4k, and the numerator determines the number of exotic
(4k − 1)-spheres which bound parallelizable manifolds; see

MSt
[135, App.B].

VI.2.5 Harris-Segal Theorem 2.5. Let F be a field with 1/ℓ ∈ F ; if ℓ = 2, we also

suppose that F is non-exceptional. Set wi = w
(ℓ)
i (F ). Then each K2i−1(F ) has

a direct summand isomorphic to Z/wi, detected by the e-invariant.
If F is the field of fractions of an integrally closed domain R then K2i−1(R)

also has a direct summand isomorphic to Z/wi(F ), detected by the e-invariant.
The splitting Z/wi → K2i−1(R) is called the Harris-Segal map, and its image

is called the (ℓ-primary) Harris-Segal summand of K2i−1(R).

We will see in Theorem
VI.8.2
8.2 below that Z/wi is the torsion subgroup of

K2i−1(Z[ζℓa ]). It follows that the Harris-Segal map is unique, and hence so is the
Harris-Segal summand of K2i−1(R). This uniqueness was originally established
by Kahn and others.

Proof. Suppose first that either ℓ 6= 2 and ζℓ ∈ R, or that ℓ = 2 and ζ4 ∈ R. If
R has m = ℓa ℓ-primary roots of unity, then w

(ℓ)
i (Q(ζm)) equals wi = w

(ℓ)
i (F )

by
VI.2.2
2.2 and

VI.2.3
2.3. Thus there is no loss in generality in assuming that R = Z[ζm].

Pick a prime p with p 6≡ 1 (mod ℓa+1). Then ζℓa+1 6∈ Fp, and if p is any prime
ideal of R = Z[ζm] lying over p then the residue field R/p is Fq = Fp(ζm). We

have wi = w
(ℓ)
i (Fq) by Example

VI.2.3.1
2.3.1.

The quotient map R→ R/p factors through the p-adic completion R̂p, whose

field of fractions is the local field E = Qp(ζm). By Example
VI.2.3.1
2.3.1, w

(ℓ)
i (E) = wi

and K2i−1(E){ℓ} e−→ Z/wi is an isomorphism. Now the e-invariant for the
finite group K2i−1(R) is the composite

K2i−1(R)(ℓ) ∼= K2i−1(Q(ζm))(ℓ) → K2i−1(E){ℓ} e−→ Z/wi.

By Corollary
VI.1.5.2
1.5.2, K2i−1(R) contains a cyclic summand A of order wi, map-

ping to the summand Z/wi of K2i−1(Fq) under K2i−1(R) → K2i−1(R̂p) →
K2i−1(Fq). Therefore A injects into (and is isomorphic to) K2i−1(R̂p){ℓ} ∼=
K2i−1(E){ℓ} ∼= Z/wi. The theorem now follows in this case.

Suppose now that ζℓ 6∈ R. By Exercise
EVI.2.5
2.5, we may assume that F is a

subfield of Q(ζm), that Q(ζm) = F (ζℓ), and that R is the integral closure of Z
in F . We may suppose that r = [Q(ζm) : F ] divides i since otherwise wi = 1,

and set Γ = Gal(Q(ζm)/F ). By Proposition
VI.2.2
2.2, wi = w

(ℓ)
i (Q[ζm]). We have

just seen that there is a summand A of K2i−1(Q[ζm]) mapping isomorphically
to Z/wi by the e-invariant. By Ex.

EVI.1.4
1.4, Γ acts trivially on A.

Since f : R→ Z[ζm] is Galois, the map f∗f∗ is multiplication by
∑
g∈G g on

K2i−1(Z[ζm]), and hence multiplication by r on A (see Ex. IV.
EIV.6.13
6.13). Since f∗f

∗

is multiplication by r on f∗(A), we see that f∗ : f∗(A)→ A is an isomorphism
with inverse f∗/r. Hence f∗(A) is a summand of K2i−1(R), and the e-invariant

K2i−1(R)
f∗

−→ K2i−1(Z[ζm])
e−→ Z/wi maps f∗(A) isomorphically to Z/wi.
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When ℓ = 2 and F is non-exceptional but
√
−1 6∈ F , we may again assume

by Ex.
EVI.2.5
2.5 that F is a subfield of index 2 in Q(ζm) = F (

√
−1). By Proposition

VI.2.3
2.3, w

(2)
i (Q(ζm)) = 2wi and there is a summand A of K2i−1(Q(ζm)) mapping

isomorphically to Z/2wi by the e-invariant; by Ex.
EVI.1.4
1.4, Γ acts trivially on A and

we set Ā = f∗(A). Since f
∗f∗ is multiplication by 2 on A, the image of Ā is 2A.

From the diagram

Ā > > K2i−1(F )
e
> Z/wi

A

f∗

∨
> > K2i−1(Q(ζm))

include
∨ e

> Z/2wi

we see that Ā ∼= 2A ∼= Z/wi, as desired.

VI.2.5.1 Remark 2.5.1. If F is an exceptional field, a transfer argument using F (
√
−1)

shows that there is a cyclic summand in K2i−1(F ) whose order is either wi(F ),
2wi(F ) or wi(F )/2. (Exercise

EVI.2.4
2.4); we will also call these Harris-Segal sum-

mands.
When F is a totally imaginary number field, we will see in Theorem

VI.8.4
8.4

below that the Harris-Segal summand always has order wi(F ). The following
theorem, extracted from Theorem

VI.9.5
9.5 below, shows that all possibilities occur

for real number fields, i.e., number fields embeddable in R.

VI.2.6 Theorem 2.6. Let F be a real number field. Then the Harris-Segal summands
in K2i−1(F ) and K2i−1(OF ) are isomorphic to:

(1) Z/wi(F ), if i ≡ 0 (mod 4) or i ≡ 1 (mod 4), i.e., 2i−1 ≡ ±1 (mod 8);

(2) Z/2wi(F ), if i ≡ 2 (mod 4), i.e., 2i− 1 ≡ 3 (mod 8);

(3) Z/ 1
2wi(F ), if i ≡ 3 (mod 4), i.e., 2i− 1 ≡ 5 (mod 8).

VI.2.7 Example 2.7. Let F = Q(ζ + ζ−1) be the maximal real subfield of the cy-
clotomic field Q(ζ), ζp = 1 with p odd. Then wi(F ) = 2 for odd i, and
wi(F ) = wi(Q(ζ)) for even i > 0 by

VI.2.2
2.2 and

VI.2.3
2.3 (see Ex.

EVI.2.6
2.6). Note that

p |wi(F (ζ)) for all i, p |wi(F ) if and only if i is even, and p |wi(Q) only when
(p− 1)|i; see VI.2.2.2

2.2.2.
If n ≡ 3 (mod 4), the groups Kn(Z[ζ + ζ−1]) = Kn(F ) are classically finite

(see IV.
IV.6.9
6.9 or

VI.8.1
8.1); the order of their Harris-Segal summands are given by Theo-

rem
VI.2.6
2.6. When n 6≡ −1 (mod 2p− 2), the group Kn(F ) has an extra p-primary

factor not coming from the image of J (see
VI.2.1.3
2.1.3).

EXERCISES

EVI.2.1 2.1. For every prime ℓ with 1/ℓ ∈ F , show that the following are equivalent:
(i) F (ζℓ) has only finitely many ℓ-primary roots of 1;

(ii) w
(ℓ)
i (F ) is finite for some i ≡ 0 (mod 2(ℓ− 1));

(iii) w
(ℓ)
i (F ) is finite for all i > 0.
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EVI.2.2 2.2. Prove Proposition
VI.2.3
2.3(c), giving the formula w

(2)
i (F ) = 2a+b when i is even

and F is exceptional. Hint: Consider µ(i)H , H = Gal(F̄ /F (
√
−1)).

EVI.2.3 2.3. If p is odd, show that wi(Qp) = pi−1 unless (p−1)|i, and if i = m(p−1)pb

(p ∤ m) then wi(Qp) = (pi − 1)p1+b.
For p = 2, show that wi(Q2) = 2(2i − 1) for i odd; if i is even, say i = 2bm

with m odd, show that wi(Q2) = (2i − 1)22+b.

EVI.2.4 2.4. Let f : F → E be a field extension of degree 2, and suppose x ∈ K∗(E)
is fixed by Gal(E/F ). If x generates a direct summand of order 2m, show that
f∗(x) is contained in a cyclic summand of K∗(F ) of order either m, 2m or 4m.

EVI.2.5 2.5. Let F be a field of characteristic 0. If ℓ 6= 2 and a <∞ is as in
VI.2.2
2.2, show

that there is a subfield F0 of Q(ζℓa) such that w
(ℓ)
i (F0) = w

(ℓ)
i (F ). If ℓ = 2

and a < ∞ is as in
VI.2.3
2.3, show that there is a subfield F0 of Q(ζ2a) such that

w
(2)
i (F0) = w

(2)
i (F ), and that F0 is exceptional (resp., non-exceptional) if F is.

EVI.2.6 2.6. Let ℓ be an odd prime, and F = Q(ζℓ + ζ−1ℓ ) the maximal real subfield of
Q(ζℓ). Show that wi(F ) = 2 for odd i, and that wi(F ) = wi(Q(ζℓ)) for even
i > 0. In particular, ℓ|wi(Q(ζℓ)) for all i, but ℓ|wi(F ) if and only if i is even.

3 The K-theory of R

In this section, we describe the algebraic K-theory of the real numbers R, or
rather the torsion subgroup Kn(R)tors of Kn(R). Here is the punchline:

VI.3.1 Theorem 3.1. (Suslin) For all n ≥ 1,
(a) Kn(R) is the direct sum of a uniquely divisible group and Kn(R)tors.
(b) The torsion groups and Kn(R)tors → Kn(C)tors are given by Table

VI.3.1.1
3.1.1.

(c) The map Kn(R;Z/m)→ K̃O(Sn;Z/m) = πn(BO;Z/m) is an isomorphism
for all integers m.

i (mod 8) 1 2 3 4 5 6 7 8

Ki(R) Z/2 Z/2 Q/Z 0 0 0 Q/Z 0

↓ injects 0 a 7→ 2a 0 0 0 ∼= 0

Ki(C) Q/Z 0 Q/Z 0 Q/Z 0 Q/Z 0

↓ 0 0 ∼= 0 0 0 a 7→ 2a 0

Ki(H) 0 0 Q/Z 0 Z/2 Z/2 Q/Z 0

Table 3.1.1: The torsion subgroups of Kn(R), Kn(C) and Kn(H), n > 0. VI.3.1.1
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VI.3.1.2 Remark 3.1.2. Table
VI.3.1.1
3.1.1 shows that Kn(R)tors ∼= πn+1(BO;Q/Z) is the

Harris-Segal summand of Kn(R) (in the sense of
VI.2.5.1
2.5.1) for all n odd; the e-

invariant (Definition
VI.2.1
2.1) is the map from Kn(R)tors to Kn(C)tors. When n is

8k+1, the Z/2-summand inKn(R) is generated by the image of Adams’ element
µn ∈ πsn; Adams showed that µn is detected by the complex Adams e-invariant.
Adams also showed that the elements µ8k+2 = η · µ8k+1 and µ8k+3 = η2 · µ8k+1

are nonzero and detected by the real Adams e-invariant which, as Quillen showed
in

Qlet
[155], maps πsn to Kn(R)tors ∼= πn+1(BO;Q/Z). (See Remark

VI.2.1.3
2.1.3.) It

follows that when n = 8k + 3, the kernel of the e-invariant Kn(R)tors → Q/Z
is isomorphic to Z/2, and is generated by the nonzero element {−1,−1, µ8k+1}.
When n = 8k + 5, the Harris-Segal summand is zero even though the target of
the e-invariant is Z/2.

A similar calculation for the quaternions H is also due to Suslin
Su86
[185, 3.5].

The proof uses the algebraic group SLn(H) in place of SLn(R).

VI.3.2 Theorem 3.2. (Suslin) For all n ≥ 1,
(a) Kn(H) is the direct sum of a uniquely divisible group and Kn(H)tors.
(b) The torsion groups and Kn(C)tors → Kn(H)tors are given by Table

VI.3.1.1
3.1.1.

(c) The map Kn(H;Z/m) → K̃Sp(Sn;Z/m) = πn(BSp;Z/m) is an isomor-
phism for all integers m.

The method of proof uses a universal homotopy construction which is of
independent interest, and also gives an alternative calculation of K∗(C) to the
one we gave in Proposition

VI.1.4
1.4. As observed in

VI.1.4.1
1.4.1, the punchline of that

calculation is that, for all n ≥ 1, Kn(C;Z/m)→ K̃U(Sn;Z/m) = πn(BU ;Z/m)
is an isomorphism.

We begin with some general remarks. If G is a topological group, then it
is important to distinguish between the classifying space BGδ of the discrete
group G, which is the simplicial set of IV.

IV.3.4.1
3.4.1, and the classifying space BGtop

of the topological group Gtop, which is discussed in IV.
IV.3.9
3.9. For example, the

homotopy groups of BGL(C)δ are zero, except for the fundamental group, while
the homotopy groups of BGL(C)top ≃ BU are given by Bott periodicity II.

II.3.1.1
3.1.1.

Next, suppose that G is a Lie group having finitely many components,
equipped with a left invariant Riemannian metric. Given ε > 0, let Gε denote
the ε–ball about 1. If ε is small, then Gε is geodesically convex; the geodesic
between any two points lies in Gε.

VI.3.3 Definition 3.3. Let BGε denote the simplicial subset of BGδ whose p-simplices
are the p-tuples [g1, . . . , gp] such that there is a point in the intersection of Gε
with all the translates g1 · · · giGε, i ≤ p. (This condition is preserved by the
face and degeneracy maps of BGδ.)

Suslin proved the following result in
Su84
[184, 4.1].

VI.3.4 Theorem 3.4. (Suslin) Let G be a Lie group. If ε is small enough so that Gε
is geodesically convex, then BGε → BGδ → BGtop is a homotopy fibration.
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The next step is the construction of a universal chain homotopy. Given
a commutative ring R, the algebraic group GLn is Spec(H), where H is the
Hopf algebra R[{xij}ni,j=1][det(X)−1], where det(X) is the determinant of the
universal matrix X = (xij) in GLn(H). For every commutative R-algebra B
there is a bijection HomR(H,B)→ GLn(B) sending f to the matrix f(X); the
counit structure map H → R corresponds to the identity matrix of GLn(R).

For each positive integer p, let Ap denote the henselization of the p-fold tensor
product H⊗p along the kernel of the evident structure map H⊗p → R, so that
(Ap, Ip) is a hensel pair, where Ip is the kernel of Ap → R. For i = 1, . . . , p,
the coordinates pri : H → H⊗p → Ap determine matrices Xi = pri(X) in
GLn(A

p), and since Xi is congruent to the identity modulo Ip we even have
Xi ∈ GLn(Ip).

Recall that for any discrete group G and integer m, the homology groups
H∗(G,Z/m) of G are the homology of a standard chain complex, which we will
write as C∗(G), whose degree p piece is Z/m[Gp]; see

WHomo
[223, 6.5]. We write up

for the p-chain [X1, ..., Xp] in Cp(GLn(I
p)). The differential d sends up to

[X2, ..., Xp] +

p−1∑

i=1

(−1)i[. . . , XiXi+1, . . . ] + (−1)p[X1, ..., Xp−1].

Now the Ap fit together to form a cosimplicial R-algebra A•, whose cofaces
∂j : Ap → Ap+1 are induced by the comultiplication ∆ : H → H⊗H. Applying
GLn yields cosimplicial groups GLn(A

•) and GLn(I
•). We are interested in

the cosimplicial chain complex C∗(GLn(I
•)), which we may regard as a third

quadrant double chain complex, with Cp(GLn(I
−q)) in the (p, q) spot. Thus

(up) = (0, u1, u2, . . . ) is an element of total degree 0 in the associated product
total complex, i.e., in

∏∞
p=0 Cp(GLn(I

p)) (see
WHomo
[223, 1.2.6]). By construction,

d(up) =
∑

(−1)j∂j(up−1), so up is a cycle in this total complex.

VI.3.5 Proposition 3.5. For each n, the image of the cycle (up) in
∏∞
p=0 Cp(GL(I

p))
is a boundary in the product total complex of C∗(GL(I

•)). That is, there are
chains cp ∈ Cp+1(GL(I

p)) so that d(cp) +
∑

(−1)j∂j(cp−1) = up for all p ≥ 1.

Proof. Since the reduced complex C̃∗(G) is the subcomplex of C∗(G) obtained

by setting C0 = 0, and up ∈ C̃p, it suffices to show that (up) is a boundary in

the total complex T∗ of C̃∗(GL(I
•)). By Gabber Rigidity IV.

IV.2.10
2.10, the reduced

homology H̃∗(GL(I
t),Z/m) is zero for each t. Thus the rows C̃∗(GL(I

−q)) of
the double complex are exact. By the Acyclic Assembly Lemma

WHomo
[223, 2.7.3],

the product total complex T∗ is exact, so every cycle is a boundary.

VI.3.6 Lemma 3.6. For G = GLn(R), if ε is small enough then the embedding

BGε → BGδ → BGL(R)

induces the zero map on H̃∗(−,Z/m).
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Proof. Let Bp denote the ring of germs of continuous R-valued functions on the
topological space Gp = G× · · · ×G defined in some neighborhood of (1, . . . , 1);
Bp is a hensel ring. The coordinate functions give a canonical map H⊗p → Bp,
whose henselization is a map Ap → Bp, and we write cpctn for the image of cp

in Cp+1(GL(B
p)). Since GL(Bp) is the group of germs of continuous GL(R)-

valued functions on Gp, up is the germ of the function Gp → GL(R)p sending
(g1, . . . , gp) to (g1, . . . , gp), and cpctn is a Z/m-linear combination of germs of
continuous functions γ : Gp → GL(R)p+1. That is, we may regard each cpctn as
a continuous map of some neighborhood of (1, . . . , 1) to Cp+1(GL(R)top).

If N is a fixed integer, there is an ε > 0 so that the cpctn are defined on
(Gε)

p for all p ≤ N . Extending cpctn by linearity, we get homomorphisms sp :
Cp(BGε)→ Cp+1(BSL(R)top). It is clear from Proposition

VI.3.5
3.5 that s is a chain

contraction for the canonical embedding C̃∗(BGε) → C̃∗(BGL(R)top), defined
in degrees at most N . This proves the Lemma.

VI.3.7 Proposition 3.7. For G = SLn(R), if ε is small enough then
(a) the embedding BGε → BGδ → BSL(R) induces the zero map on

H̃∗(−,Z/m).

(b) H̃i(BGε,Z/m) = 0 for all i ≤ (n− 1)/2.
(c) Hi(BG

δ,Z/m)→ Hi(BG
top,Z/m) is an isomorphism for all i ≤ (n− 1)/2.

Proof. Since H∗(BSL(R))→ H∗(BGL(R)) is a split injection (see Ex.
EVI.3.1
3.1), part

(a) follows from Lemma
VI.3.6
3.6. For (b) and (c), let q be the smallest integer such

that H̃q(BGε,Z/m) is nonzero; we will show that q > (n − 1)/2. Since BGε
has only one 0-simplex, q ≥ 1. Consider the Serre spectral sequence associated
to

VI.3.4
3.4:

E2
p,q = Hp(BG

top, Hq(BGε,Z/m))⇒ H∗(BG
δ,Z/m).

Then Hi(BG
δ,Z/m) → Hi(BG

top,Z/m) is an isomorphism for i < q and the
exact sequence of low degree terms for the spectral sequence is

Hq+1(BG
δ,Z/m)

onto−→ Hq+1(BG
top,Z/m)

dq→Hq(BGε,Z/m)→ Hq(BG
δ,Z/m).

Milnor proved in
M-Lie
[132, Thm. 1] that the left-hand map is a split surjection;

it follows that the right-hand map is an injection. By Homological Stability
IV.

IV.1.14
1.14, Hi(BSLn(R)δ) → Hi(BSL(R)δ) is an isomorphism for i ≤ (n − 1)/2;

part (a) implies that q > (n− 1)/2. This proves parts (b) and (c).

VI.3.8 Corollary 3.8. BSL(R)δ → BSL(R)top and BGL(R)δ → BGL(R)top induce

isomorphisms on H̃∗(−,Z/m).

Proof. Set G = SLn(R). Passing to the limit as n → ∞ in
VI.3.7
3.7 proves the

assertion for SL.

Proof of Theorem
VI.3.1
3.1. Since BSL(R)+ and BSL(R)top ≃ BSO are simply

connected, Corollary
VI.3.8
3.8 implies that πn(BSL(R)+;Z/m) → πn(BSO;Z/m)

is an isomorphism for all n. We saw in Chapter IV, Ex.
EIV.1.8
1.8 that the map
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πn(BSL(R)+;Z/m) → Kn(R;Z/m) is an isomorphism for n ≥ 3, and an in-
jection for n = 2 with cokernel Z/2; the same is true for πn(BSO;Z/m) →
πn(BO;Z/m). This proves part (c) for n ≥ 3; the result for n = 1, 2 is classical
(see III.

III.1.5.4
1.5.4 and IV.

IV.2.5.1
2.5.1, or

Milnor
[131, p. 61]).

Now consider the action of complex conjugation c on K∗(C). The image
of i∗ : Kn(R) → Kn(C) lands in the invariant subgroup Kn(C)c, which by
Theorem

VI.1.6
1.6 is the direct sum of a uniquely divisible group and a torsion group

(which is either 0, Z/2, 0 or Q/Z depending on n modulo 4). The transfer
i∗ satisfies i∗i

∗ = 2 and i∗i∗ = 1 + c; see Ex. IV.
EIV.6.13
6.13. Hence (for n ≥ 1)

Kn(R) is the direct sum of its torsion submodule Kn(R)tors and the uniquely
divisible abelian group Kn(C)c⊗Q, and the kernel and cokernel of Kn(R)tors →
Kn(C)ctors are elementary abelian 2-groups. By Ex. IV.

IV.2.6
2.6, we have Kn(R)tors ∼=

Kn+1(R;Q/Z) ∼= πn+1(BO,Q/Z). These torsion groups may be read off from
Bott periodicity II.

II.3.1.1
3.1.1.

EXERCISES

EVI.3.1 3.1. For any commutative ring R and ideal I, show that R× acts trivially on the
homology of SL(R) and GL(R), while (1 + I)× acts trivially on the homology
of SL(I) and GL(I). Conclude that SL(R)→ GL(R) and SL(I)→ GL(I) are
split injections on homology.

EVI.3.2 3.2. Using Exercise
EVI.3.1
3.1, show that there is a universal homotopy construction

for SLn parallel to the one in Proposition
VI.3.5
3.5 for GLn. Use this to prove

Proposition
VI.3.7
3.7 directly, modifying the proof of Lemma

VI.3.6
3.6.

EVI.3.3 3.3. Check that
VI.3.6
3.6,

VI.3.7
3.7 and

VI.3.8
3.8 go through with R replaced by C. Using these,

prove the analogue of Theorem
VI.3.1
3.1 for C and compare it to Theorem

VI.1.6
1.6.

EVI.3.4 3.4. If F is any formally real field, such as R ∩ Q̄, show that K∗(F ;Z/m) ∼=
K∗(R;Z/m) for all m.

4 Relation to motivic cohomology

Motivic cohomology theory, developed by Voevodsky, is intimately related to
algebraic K-theory. For every abelian group A and every (n, i), the motivic
cohomology of a smooth scheme X over a field consists of groups Hn(X,A(i)),
defined as the hypercohomology of a certain chain complex A(i) of Nisnevich
sheaves. An introduction to motivic cohomology is beyond the scope of this
book, and we refer the reader to

MVW
[122] for the definitions and properties of

motivic cohomology.

When A = Q, we have isomorphisms Hn(X,Q(i)) ∼= K
(i)
2i−n(X), where the

right side refers to the eigenspace of K2i−n(X)⊗Q on which the Adams opera-
tions ψk act as multiplication by ki, described in IV, Theorem

IV.5.11
5.11. This fact

is due to Bloch
Bl86
[25], and follows from

VI.4.2
4.2 and

VI.4.9
4.9 below; see Ex.

EVI.4.5
4.5.
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Here is the fundamental structure theorem for motivic cohomology with
finite coefficients, due to Rost and Voevodsky. Since the proof is scattered over
15-20 research papers, we refer the reader to the book

HW
[82] for the proof.

For any smooth X, there is a natural map Hn(X,Z/m(i)) → Hn
et(X,µ

⊗i
m )

from motivic to étale cohomology. It arises from the forgetful functor a∗ from
étale sheaves to Nisnevich sheaves on X, via the isomorphism Hn

et(X,µ
⊗i
m ) ∼=

Hn
nis(X,Ra∗µ

⊗i
m ) and a natural map Z/m(i)→ Ra∗µ

⊗i
m .

VI.4.1 Norm Residue Theorem 4.1. (Rost-Voevodsky) If k is a field containing
1/m, the natural map induces isomorphisms

Hn(k,Z/m(i)) ∼=
{
Hn

et(k, µ
⊗i
m ) n ≤ i

0 n > i.

If X is a smooth scheme over k, the natural map Hn(X,Z/m(i))→ Hn
et(X,µ

⊗i
m )

is an isomorphism for n ≤ i. For n > i, the map identifies Hn(X,Z/m(i))
with the Zariski hypercohomology on X of the truncated direct image complex
τ≤iRa∗(µ

⊗i
m ).

A result of Totaro, and Nesterenko-Suslin
NS, Totaro
[144, 201] states that

the ith norm residue symbol (III.
III.7.11
7.11) factors through an isomorphism

KM
i (k)

∼=−→ Hi(k,Z(i)), compatibly with multiplication. This means that the
Milnor K-theory ring KM

∗ (k) (III.
III.7.1
7.1) is isomorphic to the ring ⊕Hi(k,Z(i)).

Since Hi(k,Z(i))/m ∼= Hi(k,Z/m(i)), we deduce the following special case of
Theorem

VI.4.1
4.1. This special case was once called the Bloch-Kato conjecture, and

is in fact equivalent to Theorem
VI.4.1
4.1; see

SV00
[190],

GL01
[63] or

HW
[82] for a proof.

VI.4.1.1 Corollary 4.1.1. If k is a field containing 1/m, the norm residue symbols are

isomorphisms for all i: KM
i (k)/m

≃→Hi
et(k, µ

⊗i
m ). They form a ring isomor-

phism:

⊕KM
i (k)/m

∼=−→ ⊕Hi(k,Z(i))/m ∼= ⊕Hi(k,Z/m(i)) ∼= ⊕Hi
et(k, µ

⊗i
m ).

The Merkurjev-Suslin isomorphism K2(k)/m ∼= H2
et(k, µ

⊗2
m ) of

MS
[125], men-

tioned in III.
III.6.10.4
6.10.4, is the case i = 2 of

VI.4.1.1
4.1.1. The isomorphism KM

3 (k)/m ∼=
H3

et(k, µ
⊗3
m ) for m = 2ν was established by Rost and Merkurjev-Suslin; see

MS2
[126].

The key technical tool which allows us to use Theorem
VI.4.1
4.1 in order to make

calculations is the motivic-to-K-theory spectral sequence, so-named because it
goes from motivic cohomology to algebraic K-theory. The construction of this
spectral sequence is given in the references cited in the Historical Remark

VI.4.4
4.4;

the final assertion in
VI.4.2
4.2 is immediate from the first assertion and Theorem

VI.4.1
4.1.

VI.4.2 Theorem 4.2. For any coefficient group A, and any smooth scheme X over a
field k, there is a spectral sequence, natural in X and A:

Ep,q2 = Hp−q(X,A(−q))⇒ K−p−q(X;A).

If X = Spec(k) and A = Z/m, where 1/m ∈ k, then the E2 terms are just the
étale cohomology groups of k, truncated to lie in the octant q ≤ p ≤ 0.
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VI.4.2.1 Addendum 4.2.1. If A = Z/m and m 6≡ 2 (mod 4), the spectral sequence has
a multiplicative structure which is the product in motivic cohomology on the
E2 page and the K-theory product (IV.

IV.2.8
2.8) on the abutment.

For any coefficients Z/m, there is a pairing between the spectral sequence of
(
VI.4.2
4.2) for Z coefficients and the spectral sequence of (

VI.4.2
4.2) with coefficients Z/m.

On the E2 page, it is the product in motivic cohomology and on the abutment
it is the pairing K∗(X)⊗K∗(X;Z/m)→ K∗(X;Z/m) of IV, Ex.

EIV.2.5
2.5.

VI.4.2.2 Remark 4.2.2. The spectral sequence of (
VI.4.2
4.2) has an analogue for non-smooth

schemes over k, in which the motivic cohomology groups are replaced by higher
Chow groups CHi(X,n). It is established in

FS
[56, 13.12] and

Le01
[109, 18.9]. For

any equidimensional quasi-projective scheme X, there is a convergent spectral
sequence

Ep,q2 = CH−q(X,−p− q)⇒ G−p−q(X).

If X is smooth and k is perfect, then Hn(X,Z(i)) ∼= CHi(X, 2i − n); see
MVW
[122, 19.1]. This identifies the present spectral sequence with (

VI.4.2
4.2). Since

CHi(X,n) is the same as the Borel-Moore homology group HBM
2i+n(X,Z(i)),

this spectral sequence is sometimes cited as a homology spectral sequence with
E2
p,q = HBM

p−q (X,Z(−q)).

VI.4.3 Edge Map 4.3. Let k be a field. The edge map K2i(k;Z/m)→ H0
et(k, µ

⊗i
m ) in

(
VI.4.2
4.2) is the e-invariant of

VI.2.1
2.1, and is an isomorphism for the algebraic closure k̄

of k; the details are given in Example
VI.4.5
4.5(ii) below.

We now consider the other edge map, from E0,−n
2 = Hn(k,Z(n)) ∼= KM

n (k)
to Kn(k). Since the ring KM

∗ (k) is generated by its degree 1 terms, and
the low degree terms of (

VI.4.2
4.2) yield isomorphisms H1(k,Z(1)) ∼= K1(k), and

H1(k,Z/m(1)) ∼= K1(k)/m, the multiplicative structure described in
VI.4.2.1
4.2.1 im-

plies that the edge maps in the spectral sequence are canonically identified
with the maps KM

∗ (k) → K∗(k) and KM
∗ (k)/m → K∗(k;Z/m) described in

IV.
IV.1.10.1
1.10.1. (This was first observed in

GeiL
[62, 3.3] and later in

FS
[56, 15.5].)

By V.
V.11.13
11.13, the kernel of the edge map KM

n (k)→ Kn(k) is a torsion group
of exponent (n−1)!. This is not best possible; we will see in

VI.4.3.2
4.3.2 that the edge

map KM
3 (k)→ K3(k) is an injection.

Since {−1,−1,−1,−1} is nonzero in KM
4 (Q) and KM

4 (R) but zero in K4(Q)
(by Ex. IV.

EIV.1.12
1.12), the edge map KM

4 (k)→ K4(k) is not an injection for subfields
of R. This means that the differential d2 : H1(Q,Z(3))→ KM

4 (Q) is nonzero.
Similarly, using the étale Chern class c3,3 : K3(k,Z/m) → Hn

et(k, µ
⊗n
m ) of

V.
V.11.10
11.10, we see that the kernel of the edge map KM

n (k)/m → Kn(k;Z/m) has
exponent (n−1)!. (The composition of c3,3 with the isomorphism Hn

et(k, µ
⊗n
m ) ∼=

KM
n (k)/m of Corollary

VI.4.1.1
4.1.1 satisfies c3,3(x) = −2x for all x ∈ KM

3 (k)/m.)
Since KM

3 (Q) ∼= Z/2 on {−1,−1,−1} (Remark
VI.2.1.3
2.1.3), and this element dies in

K3(Q)/8 ∼= Z/8 and hence K3(Q;Z/8), the edge map KM
3 (Q)/8→ K3(Q;Z/8)

is not an injection.
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VI.4.3.1 Low degree terms 4.3.1. When k is a field, the edge map KM
2 (k) → K2(k)

is an isomorphism by Matsumoto’s Theorem III.
III.6.1
6.1, so the low degree sequence

0→ KM
2 (k)/m→ K2(k;Z/m)→ µm(k)→ 0 of (

VI.4.2
4.2) may be identified with the

Universal Coefficient sequence IV.
IV.2.5
2.5. This yields the Merkurjev-Suslin formula

K2(k)/m ∼= H2
et(k, µ

⊗2
m ) of III(

III.6.10.4
6.10.4). Since Hn(X,Z(0)) = 0 for n < 0 and

Hn(X,Z(1)) = 0 for n ≤ 0, by
MVW
[122, 4.2], we also obtain the exact sequences

K4(k)→ H0(k,Z(2))
d2−→ KM

3 (k)→ K3(k)→ H1(k,Z(2))→ 0,

K4(k;Z/m)→ H0
et(k, µ

⊗2
m )

d2−→ KM
3 (k)/m→ K3(k;Z/m)→ H1

et(k, µ
⊗2
m )→ 0.

Since the kernel of KM
3 (k)/m→K3(k;Z/m) is nonzero for k=Q, the differential

d2 can be nontrivial with finite coefficients. The integral d2 is always zero:

VI.4.3.2 Proposition 4.3.2. The map KM
3 (k)→K3(k) is an injection for every field k.

Proof. We have seen that the kernel of KM
3 (k) → K3(k) has exponent 2. If

char(k) = 2, then KM
3 (k) has no 2-torsion (Izhboldin’s Theorem III.

III.7.8
7.8) and

the result holds, so we may suppose that char(k) 6= 2. Consider the motivic
group H(k) = H0(k,Z(2))/2. Since the differential d2 : H0(k,Z(2)) → KM

3 (k)
in

VI.4.3.1
4.3.1 factors through H(k), it suffices to show that H(k) = 0. By universal

coefficients, H(k) is a subgroup of H0(k,Z/2(2)) ∼= H0
et(k,Z/2) = Z/2; by

naturality this implies that H(k) ⊆ H(k′) ⊂ Z/2 for any field extension k′ of
k. Thus we may suppose that k is algebraically closed. In this case, K4(k) is
divisible (by

VI.1.6
1.6) and KM

3 (k) is uniquely divisible (by III.
III.7.2
7.2), so it follows from

VI.4.3.1
4.3.1 that H0(k,Z(2)) is divisible and hence H(k) = 0.

VI.4.4 Historical Remark 4.4. This spectral sequence (
VI.4.2
4.2) has an awkward history.

In 1972, Lichtenbaum
Li2
[112] made several conjectures relating the K-theory of

integers in number fields to étale cohomology and (via this) to values of Zeta
functions at negative integers (see

VI.8.8
8.8 below). Expanding on these conjectures,

Quillen speculated that there should be a spectral sequence like (
VI.4.2
4.2) (with

finite coefficients) at the 1974 Vancouver ICM, and Beilinson suggested in 1982
that one might exist with coefficients Z.

The existence of such a spectral sequence was claimed by Bloch and Licht-
enbaum in their 1994 preprint

BL
[27], which was heavily cited for a decade, but

there is a gap in their proof. Friedlander and Suslin showed in
FS
[56] that one

could start with the construction of
BL
[27] to get a spectral sequence for all smooth

schemes, together with the multiplicative structure of
VI.4.2.1
4.2.1. The spectral se-

quence in
BL
[27] was also used to construct the Borel-Moore spectral sequence in

VI.4.2.2
4.2.2 for quasi-projective X in

FS
[56, 13.12] and

Le01
[109, 8.9]

Also in the early 1990s, Grayson constructed a spectral sequence in
Gra95
[78],

following suggestions of Goodwillie and Lichtenbaum. Although it converged to
theK-theory of regular rings, it was not clear what the E2 terms were until 2001,
when Suslin showed (in

Su03
[189]) that the E2 terms in Grayson’s spectral sequence

agreed with motivic cohomology for fields. Using the machinery of
FS
[56], Suslin
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then constructed the spectral sequence of Theorem
VI.4.2
4.2 for all smooth varieties

over a field, and also established the multiplicative structure of
VI.4.2.1
4.2.1.

In 2000–1, Voevodsky observed (in
VV02a, VV02b
[209, 210]) that the slice filtration for

the motivic spectrum representing K-theory (of smooth varieties) gave rise to
a spectral sequence, and showed that it had the form given in Theorem

VI.4.2
4.2

modulo two conjectures about motivic homotopy theory (since verified). Yet a
third construction was given by Levine in

Le01
[109]

Le08
[110]; a proof that these three

spectral sequences agree is also given in
Le08
[110].

VI.4.4.1 Remark 4.4.1. A similar motivic spectral sequence was established by Levine
in

Le01
[109, (8.8)] over a Dedekind domain, in which the group Hn

M (X,A(i)) is
defined to be the (2i − n)th hypercohomology on X of the complex of higher
Chow group sheaves zi ⊗A.

We now give several examples in which the motivic-to-K-theory spectral
sequence degenerates at the E2 page, quickly yielding the K-groups.

VI.4.5 Examples 4.5. (i) When k is a separably closed field, Hn
et(k,−) = 0 for

n > 0 and the spectral sequence degenerates along the line p = q to yield
K2i(k;Z/m) ∼= Z/m, K2i−1(k;Z/m) = 0. This recovers the calculations of

VI.1.3.1
1.3.1

and
VI.1.4
1.4 above. In particular, the Bott element β ∈ K2(k,Z/m) (for a fixed

choice of ζ) corresponds to the canonical element ζ in E−1,−12 = H0
et(k, µm).

(ii) If k is any field containing 1/m, and G = Gal(k̄/k), then H0
et(k, µ

⊗i
m )

is the subgroup of µ⊗im invariant under G; by Definition
VI.2.1
2.1 it is isomorphic to

Z/(m,wi(k)). By naturality in k and (i), the edge map of (
VI.4.2
4.2) (followed by

the inclusion) is the composition K2i(k;Z/m) → K2i(k̄;Z/m) → µ⊗im . There-
fore the edge map vanishes on K2i(k)/m and (by the Universal Coefficient Se-
quence of IV.

IV.2.5
2.5) induces the e-invariant mK2i−1(k) → Hom(Z/m,Z/wi(k)) =

Z/(m,wi(k)) of
VI.2.1
2.1.

(iii) For a finite field Fq with m prime to q, we have Hn
et(Fq,−) = 0 for n > 1

Shatz
[168, p. 69]. There is also a duality isomorphism H1

et(Fq, µ
⊗i
m ) ∼= H0

et(Fq, µ
⊗i
m ).

Thus each diagonal p + q = −n in the spectral sequence (
VI.4.2
4.2) has only one

nonzero entry, so K2i(Fq;Z/m) and K2i−1(Fq;Z/m) are both isomorphic to
Z/(m,wi(k)). This recovers the computation for finite fields given in

VI.2.1.1
2.1.1 and

IV.
IV.1.13.1
1.13.1.
(iv) Let F be the function field of a curve over a separably closed field

containing 1/m. Then Hn
et(F,−) = 0 for n > 1 (see

Shatz
[168, p. 119]) and

H0
et(F, µ

⊗i
m ) ∼= Z/m as in (i). By Kummer theory,

H1
et(F, µ

⊗i
m ) ∼= H1

et(F, µm)⊗ µ⊗i−1m
∼= F×/F×m ⊗ µ⊗i−1m .

(The twist by µ⊗i−1m is to keep track of the action of the Galois group.)
As in (iii), the spectral sequence degenerates to yield K2i(F ;Z/m) ∼= Z/m,
K2i−1(F ;Z/m) ∼= F×/F×m. Since the spectral sequence is multiplicative, it
follows that the map F×/F×m → K2i+1(F ;Z/m) sending u to {βi, u} is an
isomorphism because it corresponds to the isomorphism E0,−1

2 → E−i,−i−12 ob-
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tained by multiplication by the element ζ⊗i of E−i,−i2 . Thus

Kn(F ;Z/m) ∼=
{
Z/m on βi, n = 2i,

F×/F×m on {βi, u} n = 2i+ 1.

When X has dimension d > 0, the spectral sequence (
VI.4.2
4.2) extends to

the fourth quadrant, with terms only in columns ≤ d. This is because
Hn(X,A(i)) = 0 for n > i+ d; see

MVW
[122, 3.6]. To illustrate this, we consider the

case d = 1, i.e., when X is a curve.

VI.4.6 Example 4.6. Let X be a smooth projective curve over a field k containing
1/m, with function field F . By Theorem

VI.4.1
4.1, Ep,q2 = Hp−q(X,Z/m(−q)) is

Hp−q
et (X,µ⊗qm ) for p ≤ 0, and Ep,q2 = 0 for p ≥ 2 by the above remarks. That

is, the E2-terms in the third quadrant of (
VI.4.2
4.2) are étale cohomology groups,

but there are also modified terms in the column p = +1. To determine these,
we note that a comparison of the localization sequences for Spec(F ) → X in
motivic cohomology

MVW
[122, 14.5] and étale cohomology yields an exact sequence

0→ Hi+1(X,Z/m(i))→ Hi+1
et (X,µ⊗im )→ Hi+1

et (F, µ⊗im ).

In particular, E1,0
2 = 0 and E1,−1

2 = E1,−1
∞ = Pic(X)/m. In this case, we

can identify the group K0(X;Z/m) = Z/m⊕ Pic(X)/m (see II.
II.8.2.1
8.2.1) with the

abutment of (
VI.4.2
4.2) in total degree 0.

Now suppose that k is separably closed andm = ℓν . Then X has (ℓ-primary)
étale cohomological dimension 2, and it is well known that H1

et(X,µm) ∼=
mPic(X) and H2

et(X,µm) ∼= Z/m; see
Milne
[127, pp. 126, 175]. Thus the spec-

tral sequence has only three diagonals (p − q = 0, 1, 2) with terms Z/m,

mPic(X) ∼= (Z/m)2g and Pic(X)/m ∼= Z/m (see I.
I.5.16
5.16); the only nonzero term

in the column p = +1 is Pic(X)/m ∼= Z/m. By
VI.4.5
4.5(iv), there is simply no room

for any differentials, so the spectral sequence degenerates at E2. Since the
e-invariant maps K2i(k;Z/m) isomorphically onto µ⊗im

∼= E−i,−i∞ , the extensions
split and we obtain

VI.4.6.1 Proposition 4.6.1. Let X be a smooth projective curve over a separably closed
field containing 1/m. Then

Kn(X;Z/m) =

{
Z/m⊕ Z/m, n = 2i, n ≥ 0,

mPic(X) ∼= (Z/m)2g, n = 2i− 1, n > 0.

The multiplicative structure of K∗(X;Z/m) is given in Exercise
VI.4.3
4.3. When

k = F̄p, the structure of K∗(X) is given in Theorem
VI.6.4
6.4 below.

Geisser and Levine proved in
GeiL
[62] that if k is a field of characteristic p > 0

then the motivic cohomology groups Hn,i(X,Z/pν) vanish for all i 6= n. This
allows us to clarify the relationship between KM

∗ (k) and K∗(k) at the prime p.
Part (b) should be compared with Izhboldin’s Theorem III.

III.7.8
7.8 that KM

n (k) has
no p-torsion.
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VI.4.7 Theorem 4.7. Let k be a field of characteristic p. Then for all n ≥ 0,
(a) for all ν > 0, the map KM

n (k)/pν → Kn(k;Z/pν) is an isomorphism;
(b) Kn(k) has no p-torsion;
(c) the kernel and cokernel of KM

n (k)→ Kn(k) are uniquely p-divisible.

Proof. The Geisser-Levine result implies that the spectral sequence (
VI.4.2
4.2) with

coefficients Z/pν collapses at E2, with all terms zero except for E0,q
2 =

KM
−q(k)/p

ν . Hence the edge maps of
VI.4.3
4.3 are isomorphisms. This yields (a). Since

the surjection KM
n (k)→ KM

n (k)/p ∼= Kn(k;Z/p) factors through Kn(k)/p, the
Universal Coefficient sequence of IV.

IV.2.5
2.5 implies (b), that Kn−1(k) has no p-

torsion. Finally (c) follows from the 5-lemma applied to the diagram

0 > KM
n (k)

p
> KM

n (k) > KM
n (k)/p > 0

0 > Kn(k)
∨ p

> Kn(k)
∨

> Kn(k;Z/p)

∼=
∨

> 0.

VI.4.8 Example 4.8 (Periodicity for ℓ > 2). Let β denote the Bott element in
K2(Z[ζℓ];Z/ℓ) corresponding to the primitive ℓth root of unity ζℓ, as in IV.

IV.2.5.2
2.5.2,

and let b ∈ K2(ℓ−1)(Z;Z/ℓ) denote the image of −βℓ−1 under the trans-

fer map i∗. Since i∗(b) = −(ℓ − 1)βℓ−1 = βℓ−1, the e-invariant of b is
the canonical generator ζ⊗ℓ−1 of H0(Z[1/ℓ], µℓ−1ℓ ) by naturality. If X is any
smooth variety over a field containing 1/ℓ, multiplication by b gives a map
Kn(X;Z/ℓ) → Kn+2(ℓ−1)(X;Z/ℓ); we refer to this as a periodicity map. In-
deed, the multiplicative pairing in Addendum

VI.4.2.1
4.2.1, of b with the spectral

sequence converging to K∗(X;Z/ℓ), gives a morphism of spectral sequences
Ep,qr → Ep+1−ℓ,q+1−ℓ

r from (
VI.4.2
4.2) to a shift of itself. On the E2 page, these maps

are isomorphisms for p ≤ 0, induced by µ⊗iℓ
∼= µ⊗i+ℓ−1ℓ .

The term ‘periodicity map’ comes from the fact that the periodicity map is an

isomorphism Kn(X;Z/ℓ)
≃−→ Kn+2(ℓ−1)(X;Z/ℓ) for all n > dim(X) + cdℓ(X),

cdℓ(X) being the étale cohomological dimension of X for ℓ-primary sheaves.
This follows from the comparison theorem for the morphism ∪b of the spectral
sequence (

VI.4.2
4.2) to itself.

VI.4.8.1 Example 4.8.1 (Periodicity for ℓ = 2). Pick a generator v41 of the group
πs8(S

0;Z/16) ∼= Z/16; it defines a generator of K8(Z[1/2];Z/16) and, by the
edge map in (

VI.4.2
4.2), a canonical element of H0

et(Z[1/2];µ
⊗4
16 ) which we shall also

call v41 . If X is any scheme, smooth over Z[1/2], the multiplicative pairing of
v41 (see Addendum

VI.4.2.1
4.2.1) with the spectral sequence converging to K∗(X;Z/2)

gives a morphism of spectral sequences Ep,qr → Ep−4,q−4r from (
VI.4.2
4.2) to itself.

For p ≤ 0 these maps are isomorphisms, induced by Ep,q2
∼= Hp−q

et (X,Z/2); we
shall refer to these isomorphisms as periodicity isomorphisms.

VI.4.9 Example 4.9 (Adams Operations). The Adams operations ψk act on the spec-
tral sequence (

VI.4.2
4.2), commuting with the differentials and converging to the
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action of ψk on K∗(k) and K∗(k;Z/m) (§IV.IV.55), with ψk = ki on the row
q = −i. This was proven by Soulé; see

GiS
[70, 7.1]. Since (ki − ki+r−1) dr(x) =

dr(ψ
kx)− ψk(drx) = 0 for all x in row −i, we see that the image of the differ-

entials dr are groups of bounded exponent. That is, the spectral sequence (
VI.4.2
4.2)

degenerates modulo bounded torsion.

EXERCISES

EVI.4.1 4.1. If cdℓ(k) = d and µℓν ⊂ k, show that ∪β : Kn(k;Z/ℓν) → Kn+2(k;Z/ℓν)
is an isomorphism for all n ≥ d. This is a strong form of periodicity.

EVI.4.2 4.2. (Browder) Let Fq be a finite field with ℓ ∤ q. Show that the periodicity
maps Kn(Fq;Z/ℓ)→ Kn+2(ℓ−1)(Fq;Z/ℓ) of

VI.4.8
4.8 are isomorphisms for all n ≥ 0.

EVI.4.3 4.3. Let X be a smooth projective curve over an algebraically closed field k,
and [x] ∈ Pic(X) the class of a closed point x. By I.

I.5.16
5.16, Pic(X)/m ∼= Z/m on

[x], and by II.
II.8.2.1
8.2.1 we have K0(X)/m ∼= Z/m⊕Z/m with basis {1, [x]}. In this

exercise, we clarify (
VI.4.2.1
4.2.1), assuming 1/m ∈ k.

(i) Show that multiplication by the Bott element βi induces an isomorphism

K0(X)/m
∼=−→ K2i(X;Z/m).

(ii) Show that K1(X) is divisible, so that the map K1(X;Z/m) → mPic(X)
in the Universal Coefficient sequence is an isomorphism.

(iii) Show that multiplication by the Bott element βi induces an isomorphism

K1(X;Z/m)
∼=−→ K2i+1(X;Z/m).

(iv) Conclude that the ring K∗(X;Z/m) is Z/m[β] ⊗ Z/m[M ], where M =
Pic(X)/m⊕ mPic(X) is a graded ideal of square zero.

EVI.4.4 4.4. Use the formula Hn(P1
k, A(i))

∼= Hn(k,A(i))⊕Hn−2(k,A(i−1)) (see
MVW
[122,

15.12]) to show that the spectral sequence (
VI.4.2
4.2) for P1

k is the direct sum of two
copies of the spectral sequence for k, on generators 1 ∈ E0,0

2 and [L] ∈ E1,−1
2 .

Using this, re-derive the calculation of V.
V.6.14
6.14 that Kn(P

1
k)
∼= Kn(k)⊗K0(P

1).

EVI.4.5 4.5. Use (
VI.4.2
4.2) and

VI.4.9
4.9 to recover the isomorphism Hn(X,Q(i)) ∼= K

(i)
2i−n(X),

due to Bloch
Bl86
[25].

EVI.4.6 4.6. The Vanishing Conjecture in K-theory states that K
(i)
n (X) vanishes when-

ever i ≤ n/2, n > 0. (See
Sou85
[174, p. 501].) Using the Universal Coefficient sequence

0→ Hj(X,Z(i))/m→ Hj(X,Z/m(i))→ mH
j+1(X,Z(i))→ 0,

(a) show that Hj(X,Z(i)) is uniquely divisible for j ≤ 0, and (b) conclude
that the Vanishing Conjecture is equivalent to the assertion that Hj(X,Z(i))
vanishes for all j ≤ 0 (i 6= 0). This and Exercise

EVI.4.5
4.5 show that the Vanishing

Conjecture holds for any field k whose groups Kn(k) are finitely generated, such
as number fields.
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5 K3 of a field

In this section, we study the group K3(F ) of a field F . By Proposition
VI.4.3.2
4.3.2,

KM
3 (F ) injects into K3(F ). By IV.

IV.1.20
1.20, the map K3(F )→ H3(SL(F )) is onto,

and its kernel is the subgroup of KM
3 (F ) generated by the symbols {−1, a, b}.

Assuming thatKM
3 (F ) is known, we may use homological techniques. The focus

of this section will be to relate the group K ind
3 (F ) := K3(F )/K

M
3 (F ) to Bloch’s

group B(F ) of a field F , which we now define.

For any abelian group A, let ∧̃2A denote the quotient of the group A ⊗ A
by the subgroup generated by all a⊗ b+ b⊗ a. The exterior power ∧2A is the
quotient of ∧̃2A by the subgroup (isomorphic to A/2A) of all symbols x ∧ x.

VI.5.1 Definition 5.1. For any field F , let P(F ) denote the abelian group presented
with generators symbols [x] for x ∈ F − {0}, with relations [1] = 0 and

[x]− [y] + [y/x]−
[
1− x−1
1− y−1

]
+

[
1− x
1− y

]
= 0, x 6= y in F − {0, 1}.

There is a canonical map P(F )→ ∧̃2F× sending [1] to 0 and [x] to x ∧ (1− x)
for x 6= 1, and Bloch’s group B(F ) is defined to be its kernel. Thus we have an
exact sequence

0→ B(F )→ P(F )→ ∧̃2F× → K2(F )→ 0.

VI.5.1.1 Remark 5.1.1. Since the cases B(F2) = 0 and B(F3) = Z are pathological, we
will tacitly assume that |F | ≥ 4 in this section. Theorem

VI.5.2
5.2 below implies that

if q > 3 is odd then B(Fq) is cyclic of order (q + 1)/2, while if q > 3 is even
then B(Fq) is cyclic of order q + 1. This is easy to check for small values of q;
see Ex.

VI.5.3
5.3.

VI.5.1.2 Remark 5.1.2. The group P(F ) is closely related to the scissors congruence
group for polyhedra in hyperbolic 3-space H3 with vertices in H3 or ∂H3, and
has its origins in Hilbert’s Third Problem. It was first studied for C by Wigner,
Bloch and Thurston and later by Dupont and Sah; see

DSah
[51, 4.10].

For any finite cyclic abelian group A of even order m, there is a unique
nontrivial extension Ã of A by Z/2. If A is cyclic of odd order, we set Ã = A.
Since the group µ(F ) of roots of unity is a union of finite cyclic groups, we may
define µ̃(F ) as the union of the µ̃n(F ). Here is the main result of this section.

VI.5.2 Theorem 5.2. (Suslin) For any field F with |F | ≥ 4, there is an exact sequence

0→ µ̃(F )→ Kind
3 (F )→ B(F )→ 0.

The proof is taken from
Su91
[187, 5.2], and will be given at the end of this section.

To prepare for the proof, we introduce the element c in Lemma
VI.5.4
5.4 and construct

a map ψ : H3(GL(F ),Z)→ B(F ) in Theorem
VI.5.7
5.7. In Theorem

VI.5.16
5.16 we connect

ψ to the group M of monomials matrices, and the group µ̃(F ) appears in
VI.5.20
5.20

as part of the calculation of π3(BM
+). The proof of Theorem

VI.5.2
5.2 is obtained

by collating all this information.
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VI.5.2.1 Remark 5.2.1. In fact, B(Q) ∼= Z/6. This follows from Theorem
VI.5.2
5.2 and

the calculations that K3(Q) ∼= Z/48 (
VI.2.1.2
2.1.2), KM

3 (Q) ∼= Z/2 (III.
III.7.2
7.2.d) and

µ̃(Q) ∼= Z/4. In fact, the element c = [2] + [−1] has order exactly 6 in both
B(Q) and B(R). This may be proven using the Rogers L-function, which is
built from the dilogarithm function. See

Su91
[187, pp. 219–220].

As an application, we compute K3 of a number field F . Let r1 and r2 denote
the number of real and complex embeddings, i.e., the number of factors of R
and C in the R-algebra F ⊗Q R. Then KM

3 (F ) ∼= (Z/2)r1 by III.
III.7.2
7.2(d), and

K3(F ) is finitely generated by IV.
IV.6.9
6.9 and V.

V.6.8
6.8. By Borel’s Theorem IV.

IV.1.18
1.18,

K3(F ) is the sum of Zr2 and a finite group. We can make this precise.

VI.5.3 Corollary 5.3. Let F be a number field, with r1 real embeddings and r2 complex
embeddings, and set w = w2(F ). Then Kind

3 (F ) ∼= Zr2 ⊕ Z/w, and:
(a) If F is totally imaginary then K3(F ) ∼= Zr2 ⊕ Z/w;
(b) If F has r1 > 0 embeddings into R then

K3(F ) ∼= Zr2 ⊕ Z/(2w)⊕ (Z/2)r1−1.

Proof. By
VI.4.3.1
4.3.1 and Proposition

VI.4.3.2
4.3.2, there is an exact sequence

0→ KM
3 (F )→ K3(F )→ H1(F,Z(2))→ 0.

ThereforeH1(F,Z(2)) ∼= K ind
3 (F ) is the direct sum of Zr2 and a finite group, say

of order m′. Choose m divisible by m′ and w. Because H0(F,Z(2)) is divisible
by Ex.

VI.4.6
4.6(a), the map H0(F, µ⊗2m ) → H1(F,Z(2))tors is an isomorphism. But

H0(F, µ⊗2m ) ∼= Z/w, so K ind
3 (F ) ∼= Z/w. This establishes the result when F is

totally imaginary, since in that case KM
3 (F ) = 0.

When F = Q then w = 24 and K3(Q) ∼= Z/48 is a nontrivial extension of
Z/w by Z/2; K3(Q) embeds in K3(R) by Theorem

VI.3.1
3.1 and

VI.3.1.2
3.1.2. When F has

a real embedding, it follows that K3(Q) ⊆ K3(F ) so {−1,−1,−1} is a nonzero
element of 2K3(F ). Hence the extension is nontrivial, as claimed.

VI.5.3.1 Rigidity Conjecture 5.3.1. (Suslin
Su86
[185, 5.4]) Let F0 denote the algebraic

closure of the prime field in F . The Rigidity Conjecture states that Kind
3 (F0)→

Kind
3 (F ) is an isomorphism. If char(F ) > 0 then Kind

3 (F0) is Z/w2(F ); if
char(F ) = 0, Kind

3 (F0) is given by Corollary
VI.5.3
5.3.

The element c of B(F )

The elements c = [x] + [1− x] and 〈x〉 = [x] + [x−1] of B(F ) play an important
role, as illustrated by the following calculations.

VI.5.4 Lemma 5.4. Assuming that |F | ≥ 4,
(a) c = [x] + [1− x] is independent of the choice of x ∈ F − {0, 1}.
(b) For each x in F − {0, 1}, 2〈x〉 = 0.
(c) There is a homomorphism F× → B(F ) sending x to 〈x〉.
(d) 3c = 〈−1〉 and hence 6c = 0 in B(F ).
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Proof. Given x 6= y in F − {0, 1}, we have the relations in P(F ):

[1− y]− [1− x] +
[
1− x
1− y

]
−
[
1− x−1
1− y−1

]
+ [y/x] = 0;

[x−1]− [y−1] + [x/y]−
[
1− x
1− y

]
+

[
1− x−1
1− y−1

]
= 0.

Subtracting the first from the relation in
VI.5.1
5.1 yields [x]+[1−x]− [y]− [1−y] = 0,

whence (a) holds. Adding the second to the relation in
VI.5.1
5.1 yields 〈y〉 − 〈x〉 =

〈y/x〉. Interchanging x and y, and using 〈y/x〉 = 〈x/y〉, we obtain 2〈y/x〉 = 0.
Because |F | ≥ 4, any z ∈ F −{0, 1} has the form z = zx/x for x 6= 1 and hence
2〈z〉 = 0. For (d), we compute using (b) and (c):

3c =[x] + [1− x] + [x−1] + [1− x−1] + [(1− x)−1] + [1− (1− x)−1]
=〈x〉+ 〈1− x〉+ 〈1− x−1〉 = 〈−(1− x)2〉 = 〈−1〉.

VI.5.4.1 Corollary 5.4.1. If char(F ) = 2 or
√
−1 ∈ F then 3c = 0 in B(F ); if

char(F ) = 3 or 3
√
−1 ∈ F then 2c = 0 in B(F ).

The map ψ : H3(GL2)→ B(F )

We will now construct a canonical map H3(GL2(F ),Z) → B(F ); see Theorem
VI.5.7
5.7. To do this, we use the group hyperhomology of GL2(F ) with coefficients
in the chain complex arising from the following construction (for a suitable X).

VI.5.5 Definition 5.5. If X is any set, let C∗(X) denote the “configuration” chain
complex in which Cn is the free abelian group on the set of (n + 1)-tuples
(x0, . . . , xn) of distinct points in X, with differential

d(x0, . . . , xn) =

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn).

There is a natural augmentation C0(X)→ Z sending each (x) to 1.
If a group G acts on X, then C∗(X) is a complex of G-modules, and we may

form its hyperhomology Hn(G,C∗(X)); see
WHomo
[223, 6.1.15]. There is a canonical

map Hn(G,C∗(X))→ Hn(CG), where CG denotes C∗(X)⊗G Z.

VI.5.5.1 Lemma 5.5.1. If X is infinite then C∗(X)→ Z is a quasi-isomorphism.

Proof. If X0 is a proper subset of X and z ∈ X − X0 then sn(x0, . . . ) =
(z, x0, . . . ) defines a chain homotopy sn : Cn(X0) → Cn+1(X) from the in-
clusion C∗(X0) → C∗(X) to the projection C∗(X0) → Z → C∗(X), where the
last map sends 1 to (z).

If X is finite and |X| > n+ 1, we still have HnC∗(X) = 0, by Exercise
EVI.5.1
5.1.

VI.5.5.2 Corollary 5.5.2. If a group G acts on X, and X is infinite (or |X| > n+ 1),
then Hn(G,C∗(X)) ∼= Hn(G,Z).

August 29, 2013 - Page 489 of
LastPage
568



Chapter VI

The case of most interest to us is the action of the group G = GL2(F )
on X = P1(F ). If n ≤ 2 then G acts transitively on the basis of Cn(X), and
Cn(X)⊗GZ is an induced module from the stabilizer subgroup Gx of an element
x. By Shapiro’s Lemma

WHomo
[223, 6.3.2] we have Hq(Cn(X)⊗G Z) = Hq(Gx,Z).

VI.5.6 Lemma 5.6. H0(CG) = Z, Hn(CG) = 0 for n = 1, 2 and H3(CG) ∼= P(F ).

Proof. By right exactness of ⊗G, we have H0(C∗(X)⊗GZ) = Z. The differential
from C2 ⊗G Z ∼= Z to C1 ⊗G Z ∼= Z is an isomorphism, since d(0, 1,∞) ≡ (0, 1).
For n = 3 we write [x] for (0,∞, 1, x); C3 is a free Z[G]-module on the set
{[x] : x ∈ F − {0, 1}}. Similarly, C4 is a free Z[G]-module of the set of all
5-tuples (0,∞, 1, x, y) and we have

d(0,∞, 1, x, y) =(∞, 1, x, y)−(0, 1, x, y)+ (0,∞, x, y)− (0,∞, 1, y)+ (0,∞, 1, x)

=

[
1− x
1− y

]
−
[
1− x−1
1− y−1

]
+ [y/x]− [y] + [x].

Thus the cokernel H3(CG) of d : C4 ⊗G Z→ C3 ⊗G Z is P(F ).

VI.5.6.1 Remark 5.6.1. The proof of Lemma
VI.5.6
5.6 goes through for all finite fields, since

|P1(F )| ≥ |P1(F2)| = 7. Hence Hn(C∗(X)) = 0 for n ≤ 3 by Exercise
EVI.5.1
5.1.

Let T2 denote the diagonal subgroup (isomorphic to F× × F×) of GL2(F );
the semidirect product T2 ⋊Σ2 is the subgroup of M2 of monomial matrices in
GL2(F ) (matrices with only one nonzero term in every row and column).

VI.5.7 Theorem 5.7. For all F , H1(GL2(F ),Z) = F×, H2(GL2(F ),Z) = (
∧2

F×)⊕
K2(F ) and there is a map ψ and an exact sequence

H3(M2,Z)→ H3(GL2(F ),Z)
ψ−→ B(F )→ 0.

Note: there was a typo in the published version.)
To prove Theorem

VI.5.7
5.7, we consider the hyperhomology spectral sequence

E1
p,q = Hq(G,Cp(X))⇒ Hp+q(G,C∗(X)) ∼= Hp+q(G,Z) (5.8) VI.5.8

with G = GL2(F ); see
WHomo
[223, 6.1.15]. By Lemma

VI.5.6
5.6, the edge map H3(G,Z)→

E∞3,0 lands in a subset of E1
3,0 = H3(CG) ∼= P(F ), which we must show is B(F ).

It is not hard to determine all 10 nonzero terms of total degree at most 4
in (

VI.5.8
5.8). Indeed, the stabilizer of 0 ∈ X is the group B of upper triangular

matrices, so E1
0,q = Hq(G,C0) = Hq(B,Z); the stabilizer of (0,∞) ∈ X2 is the

diagonal subgroup T2 = F× × F×, so E1
1,q = Hq(G,C1) = Hq(T2,Z), and the

stabilizer of (0,∞, 1) ∈ X3 is the subgroup ∆ = {(a, a−1)} of T2, isomorphic
to F×, so E1

2,q = Hq(∆,Z). By
Su84
[184, §3], the inclusion T2 ⊂ B induces an

isomorphism on homology.
It is not hard to see that the differential d1 :Hq(∆) → Hq(T2) is induced by

the inclusion ∆ ⊂ T2. Since the inclusion is split (by projection onto the first
component of T2), the map d1 : Hq(∆)→ Hq(T2) is a split injection, and hence
E2

2,q = 0 for all q. The following lemma is proven in Exercise
EVI.5.2
5.2.
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VI.5.8.1 Lemma 5.8.1. Let σ : T2 → T2 be the involution σ(a, b) = (b, a). Then the
differential d1 : Hq(T2)→ Hq(B) ∼= Hq(T2) is induced by 1− σ.

Thus E2
0,q = Hq(T2)σ and E2

1,q = Hq(T2)
σ/Hq(F

×).

Proof of Theorem
VI.5.7
5.7. (

Su91
[187, Thm. 2.1]) By Lemma

VI.5.8.1
5.8.1, the row q = 1 in (

VI.5.8
5.8)

has E2
0,1 = (T2)σ = F× and E2

1,1 = 0 (because T σ2 = F×). Writing (Hn)σ for
Hn(T2,Z)σ, the low degree terms of the E2 page are depicted in Figure

VI.5.8.2
5.8.2.

(H3)σ

(H2)σ (H2)
σ 0

F× 0 0 E2
3,1

Z 0 0 P(F )

Figure 5.8.2: The E2 page of (
VI.5.8
5.8). VI.5.8.2

By the Künneth formula
WHomo
[223, 6.1.13], Hn(T2) ∼= ⊕i+j=nHi(F

×)⊗Hj(F
×),

with σ interchanging the factors; if x, y ∈ Hi(F
×) then σ(x ⊗ y) = y ⊗ x =

(−1)ix ⊗ y. Since H2(F
×) = ∧2F×, the group H2(T2)σ is the direct sum of

∧2F× and ∧̃2(F×). A routine but tedious calculation shows that the differential

d3 : P(F ) → H2(T2)σ is the canonical map P(F ) → ∧̃2(F×) of VI.5.1
5.1 followed by

the split inclusion of ∧̃2(F×) into H2(T2)σ; see
Su91
[187, 2.4]. Thus the cokernel

of d3 is E3
0,2
∼= ∧2F× ⊕ K2(F ). In particular, we have E3

3,0 = B(F ) and
H2(GL2(F ),Z) ∼= E3

0,2
∼= ∧2F× ⊕K2(F ).

Let K denote the kernel of the edge map H3(GL2(F ),Z) → B(F ). From
(
VI.5.8.2
5.8.2) we see that K is an extension of a quotient Q2 of H2(T2)

σ by a quotient
Q3 of H3(T2)σ. Moreover, H3(GL2(F ),Z) is an extension of B(F ) by K.

Recall that M2
∼= T2 ⋊ Σ2. Since Hp(Σ2, T2) = 0 for p 6= 0, the Hochschild-

Serre spectral sequence Hp(Σ2, HqT2)⇒ Hp+q(M2) degenerates enough to show
that the cokernel of H3(T2) ⊕ H3(Σ2) → H3(M2) is a quotient of H2(T2)σ.
Analyzing the subquotient Q2 in (

VI.5.8.2
5.8.2), Suslin showed in

Su91
[187, p. 223] that K

is the image of H3(M2,Z)→ H3(GL2(F ),Z). The result follows.

In order to extend the map H3(GL2,Z)
ψ−→ B(F ) of Theorem

VI.5.7
5.7 to a map

ψ : H3(GL3,Z)→ P(F ), we need a small digression.

A cyclic homology construction

Recall that under the Dold-Kan correspondence
WHomo
[223, 8.4], a nonnegative chain

complex C∗ (i.e., one with Cn = 0 if n < 0) corresponds to to a simplicial

abelian group {C̃n}. Conversely, given a simplicial abelian group {C̃n}, C∗ is
the associated reduced chain complex.

For example, the chain complex C∗(X) of Definition
VI.5.5
5.5 corresponds to a

simplicial abelian group; C̃n(X) is the free abelian group on the set Xn+1 of

all (n+ 1)-tuples (x0, . . . , xn) in X, including duplication. In fact, C̃n(X) is a
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cyclic abelian group in the following sense. (These assertions are relegated to
Ex.

EVI.5.6
5.6.)

VI.5.9 Definition 5.9. (
WHomo
[223, 9.6]) A cyclic abelian group is a simplicial abelian group

{C̃n} together with an automorphism tn of each C̃n satisfying: tn+1
n = 1;

∂itn = tn∂i−1 and σitn = tnσi for i 6= 0; ∂0tn = ∂n and σ0tn = t2n+1σn.

The associated acyclic complex (Ca∗ , d
a) is the complex obtained from the re-

duced complex C∗ by omitting the last face operator; Ca∗ is acyclic, and there
is a chain map N : C∗ → Ca∗ defined by N =

∑n
i=0(−1)itin on Cn. The map-

ping cone of N has Cn−1 ⊕ Can in degree n, and (b, c) 7→ b defines a natural

quasi-isomorphism cone(N)[1]
≃−→ C∗ (see

WHomo
[223, 1.5]). In fact, cone(N)[1] is a

reduced form of two columns of Tsygan’s double complex
WHomo
[223, 9.6.6].

Since N0 : C0 → Ca0 is the natural identification isomorphism, we may
truncate the zero terms to get a morphism of chain complexes

0 < C1 <
d

C2 <
d · · · < d

Cn <
d

0 < Ca1

N
∨
<

da
Ca2

N
∨
<

da · · ·

N
∨
<

da
Can

N
∨
<

da
.

(5.9.1) VI.5.9.1

We write D∗ for the the associated mapping cone of this morphism. Thus, D0 =
Ca1 , and Dn = Can+1 ⊕Cn for n > 0 with differential (x, y) 7→ (dax−Ny,−dy).
Then cone(N)[1]→ D∗ is a quasi-isomorphism.

VI.5.9.2 Example 5.9.1. When X = P2(F ), let Cn denote the subgroup of Cn(X) gen-
erated by the (n + 1)-tuples of points (x0, . . . , xn) for which no three xi are
collinear. Since Cn is closed under the operator tn, the associated simplicial
abelian subgroup {C̃n} of {C̃n(X)} has the structure of a cyclic abelian sub-
group. The proof of Lemma

VI.5.5.1
5.5.1 goes through to show that if X is infinite

then C∗ → Z and hence C∗ → C∗(X) are quasi-isomorphisms. It follows that
the map ε : D0 → Z sending (x, y) to 1 induces a quasi-isomorphism D∗ → Z.

Under the canonical action of the group GL3 = GL3(F ) on X = P2(F ),
GL3 sends the subcomplex C∗ of C∗(X) to itself, so GL3 acts on C∗ and D∗.

The map ψ : H3(GL3)→ B(F )

We shall now construct a map H3(GL3,Z)
ψ−→ P(F ) whose image is B(F ). We

will relate it to the map of Theorem
VI.5.7
5.7 in Lemma

VI.5.10
5.10.

Let C∗ be the subcomplex of Example
VI.5.9.2
5.9.1 for X = P2(F ). By

VI.5.5
5.5 and

Lemma
VI.5.5.1
5.5.1, the hyperhomology Hn(GL3, C∗) is just Hn(GL3,Z) when F is

infinite (or |F | > n + 1), and there is a canonical map from Hn(GL3,Z) =
Hn(GL3, D∗) to Hn(DG), where DG denotes D∗ ⊗GL3

Z.
The four points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1) and

q = (1 : 1 : 1) play a useful role in any analysis of the action of GL3 on P2(F ).
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For example, the Z[GL3]-module C3 is generated by P = (p1, p2, q, p3). Just as
in Lemma

VI.5.6
5.6, Cn ⊗G Z = Z for n ≤ 3, while C4 and C5 are free Z[G]-modules

on the set of all 5-tuples and 6-tuples
[a
x

]
:= (p1, p2, q, (1 : a : x), p3)

[
a

x

b

y

]
:= (p1, p2, q, (1 : a : x), (1 : b, y), p3) ,

where a 6= x, b 6= y, a 6= b, x 6= y and ay 6= bx. By inspection of DG,
d(
[
a
x

]
) = P , da(

[
a
x

]
) = N(

[
a
x

]
) = 0, and d : (DG)3 → (DG)2 is zero. Thus the

terms n ≤ 4 of the complex DG have the form:

⊕Z
[a
x

]
⊕Z

[
a

x

b

y

]




−1 0
−N da





> ZP ⊕
⊕

Z
[a
x

]
0−→ Z2 > Z2 > Z→ 0.

The map ψ′ : (DG)3 → P(F ) defined by ψ′(P ) = 2c, ψ′(
[
a
x

]
) = a vanishes on

the image of (DG)4, by a straightforward calculation done in
Su91
[187, 3.3], so it

induces a homomorphism ψ : H3(GL3,Z)→ H3(DG)→ P(F ).

VI.5.10 Lemma 5.10. The composition H3(GL2,Z) → H3(GL3,Z)
ψ−→ P(F ) is the

homomorphism H3(GL2,Z)→ B(F ) ⊂ P(F ) of Theorem VI.5.7
5.7.

Proof. (
Su91
[187, 3.4]) The subgroup GL2 = GL2(F ) also acts on X = P2(F ) and

fixes the origin p3 = (0 : 0 : 1), so it acts on X0 = X − {p3}. The maps fn :
Cn(X0) → Cn+1(X) = Can+1(X) ⊂ Dn sending (x0, . . . , xn) to (x0, . . . , xn, p3)
satisfy fd = daf , so they form a GL2-equivariant chain map f : C∗(X0) →
Ca∗ (X)/C0(X)[1].

If C ′n denotes the subgroup f−1n (Cn+1) of Cn(X0), then the restriction of
f defines a GL2-equivariant chain map C ′∗ → Ca∗/C

a
0 [1] ⊂ D∗. Therefore the

composition of Lemma
VI.5.10
5.10 factors as

H3(GL2,Z)→ H3(C
′
∗GL2

)
f−→ H4(C

a
G)→ H3(DG)

ψ′

−→ P(F ).

The projection from P2(F ) − {p3} to P1(F ) with center p3 is GL2-equivariant
and determines a homomorphism from C ′∗ to C1

∗ = C∗(P
1(F )) over Z. By

inspection, the composition H3(GL2) → H3(C
′
∗GL2

) → H3(C
1
∗GL2

) ∼= P(F ) is
the inclusion of Theorem

VI.5.7
5.7.

VI.5.11 Lemma 5.11. Let T3 denote the diagonal subgroup F××F××F× of GL3(F ).
If F is infinite, Hn(T3,Z)→ Hn(D∗T3

) is zero for n > 0.

Proof. Since p1 = (1 : 0 : 0) and p2 = (0 : 0 : 1) are fixed by T3, the aug-
mentation D0 → Z has a T3-equivariant section sending 1 to (p1, p2). There-
fore D∗ ∼= Z ⊕ D′∗ as T3-modules, and D′∗ is acyclic. Therefore if n > 0
we have Hn(T3, D′∗) = 0. Since Hn(D∗T3

) = Hn(D
′
∗T3

) for n > 0, the map
Hn(T3,Z)→ Hn(D∗T3

) factors through Hn(T3, D′∗) = 0.
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VI.5.12 Proposition 5.12. The image of ψ is B(F ), and there is an exact sequence

H3(M2,Z)⊕H3(T3,Z)→ H3(GL3(F ),Z)
ψ−→ B(F )→ 0.

Proof. By
Su-KM
[183, 3.4], H3(T3,Z) and H3(GL2,Z) generate H3(GL3,Z). The re-

striction of ψ to H3(T3,Z) is zero by Lemma
VI.5.11
5.11, since it factors as

H3(T3,Z)→ H3(DT3
)→ H3(DG)

ψ′

−→ P(F ).

The proposition now follows from Theorem
VI.5.7
5.7 and Lemma

VI.5.10
5.10.

VI.5.12.1 Remark 5.12.1. The map ψ extends to a map defined on H3(GL(F ),Z), be-
cause of the stability result H3(GL3(F ),Z) ∼= H3(GL(F ),Z); see IV.

IV.1.15
1.15.

We now consider the image of H3(Σ∞,Z) in B(F ), where we regard Σ∞ as
the subgroup of permutation matrices in GL(F ), i.e., as the direct limit of the
permutation embeddings ιn : Σn ⊂ GLn(F ). We will use the following trick.

Let S be the p-Sylow subgroup of a finite group G. Then the transfer-
corestriction composition Hn(G) −→ Hn(S) −→ Hn(G) is multiplication by
[G : S], which is prime to p. Therefore the p-primary torsion in Hn(G,Z) is
the image of Hn(S,Z) when n > 0.

VI.5.13 Proposition 5.13. The image of H3(Σ∞,Z)
ι∗−→ H3(GL(F ),Z)

ψ−→ B(F ) is
the subgroup generated by 2c, which is trivial or cyclic of order 3.

Proof. We saw in Ex. IV.
EIV.1.13
1.13 that H3(Σ∞,Z) ∼= Z/12 ⊕ (Z/2)2, so the image

of H3(Σ∞,Z)→ H3(GL(F ),Z) has at most 2- and 3-primary torsion. Nakaoka
proved in

Nak
[141] that H3(Σ6,Z) ∼= H3(Σ∞,Z).

Using the Sylow 2-subgroup of Σ6, Suslin proves
Su-KM
[183, 4.4.1] that the 2-

primary subgroup of H3(Σ6,Z) maps to zero in B(F ). We omit the details.
Now the 3-primary component of H3(Σ6,Z) is the image of H3(S), where

S is a Sylow 3-subgroup of Σ6. We may take S = A3 × σA3σ
−1, generated

by the 3-cycles (123) and (456), where σ = (14)(25)(36). Since H2(A3,Z) = 0,
the Künneth formula yields H3(S,Z) = H3(A3,Z) ⊕H3(σA3σ

−1,Z). By
WHomo
[223,

6.7.8], these two summands have the same image in H3(Σ6,Z). By Lemma
VI.5.14
5.14

below, the 3-primary component of the image of H3(S,Z) in B(F ) is generated
by 2c, as desired.

We are reduced to the alternating group A3, which is cyclic of order 3, em-
bedded in GL3(F ) as the subgroup of even permutation matrices. We need to

analyze the homomorphism H3(A3,Z)→ H3(GL3(F ),Z)
ψ−→ B(F ).

VI.5.14 Lemma 5.14. If |F | ≥ 4, the image of Z/3∼=H3(A3) in B(F ) is generated by
2c.

Proof. If char(F ) = 3 then the permutation representation of A3 is conjugate
to an upper triangular representation, so H∗(A3,Z)→ H∗(GL3(F ),Z) is trivial
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(see
Su82
[181]). Since 2c = 0 by Corollary

VI.5.4.1
5.4.1, the result follows. Thus we may

assume that char(F ) 6= 3.
When char(F ) 6= 3, the permutation representation is conjugate to the

representation A3 → GL2(F ) with generator λ =
(

0
1
−1
−1

)
. For example, if

char(F ) = 2, this representation identifies A3 with a subgroup of Σ3
∼= GL2(F2).

By the Comparison Theorem
WHomo
[223, 2.2.6], there is a morphism between Z[A3]-

module resolutions of Z, from the standard periodic free resolution (see
WHomo
[223,

6.2.1]) to C∗:

Z[A3] <
1− λ

Z[A3] <
1 + λ+ λ2

Z[A3] <
1− λ

Z[A3] <
1 + λ+ λ2 · · ·

C0

f0
∨
<

d
C1

f1
∨
<

d
C2

f2
∨
<

d
C3

f3
∨
<

d · · · .

(5.14.1) VI.5.14.1

We can build the morphisms fn by induction on n, starting with f0(1) = (0),
f1(1) = (∞, 0) and f2(1) = (∞, 0, x) + (1,∞, x) = (0, 1, x) for any x ∈ F
(x 6= 0, 1). If we set w = 1− 1/x and choose y 6=∞, 0, 1, x, w (which is possible
when |F | ≥ 4) then we may also take

f3(1) =− (∞, 0, x, y)− (1,∞, x, y)− (0, 1, x, y)

+ (1,∞, w, y) + (0, 1, w, y) + (∞, 0, w, y).

Here we have regarded F as embedded in P1(F ) via x 7→
(
1
x

)
. Taking coin-

variants in (
VI.5.14.1
5.14.1), the generator 1 of H3(A3) in the periodic complex maps to

f3(1), representing an element of H3(C∗G). Applying ψ sends this element to

−
[
x

y

]
−
[
y − 1

x− 1

]
−
[
y(x− 1)

x(y − 1)

]
+ [x(1− y)] +

[
1− x
xy

]
+

[
y

(1− x)(1− y)

]

in B(F ). As |F | ≥ 4, we can take x 6= −1 and y = x−1, so this expression
becomes −[x2]−2[−x2]+2[x−1]+[1/x2]. This equals −2c, by Exercise

EVI.5.5
5.5.

Monomial matrices

By definition, a monomial matrix in GLn(F ) is one which has only one nonzero
entry in each row and column. We write Mn for the group of all monomial
matrices in GLn(F ) andM for the union of theMn in GL(F ); Mn is isomorphic
to the wreath product F× ≀Σn = (F×)n⋊Σn and M ∼= F× ≀Σ∞. We encountered
M2 in the proof of Theorem

VI.5.7
5.7 and the subgroup µ(F ) ≀ Σn of Mn in Theorem

VI.1.5
1.5.

VI.5.15 Proposition 5.15. Let ι : Σ∞ → GL(F ) be the inclusion. Then there is an
exact sequence:

H3(M,Z) > H3(GL(F ),Z)⊕H3(Σ∞,Z)
(ψ,−ψι∗)

> B(F )→ 0.
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Proof. (Cf.
Su91
[187, 4.3]) Let H0

3Mn denote the kernel of H3(Mn,Z)→ H3(Σn,Z);
it suffices to show that the image of H0

3Mn → H3(GL(F ),Z) is the kernel of ψ
for large n. The image contains the kernel of ψ because, by Proposition

VI.5.12
5.12,

the kernel of ψ comes from the image of H3(T3,Z), which is in H0
3Mn, and

H3(M2,Z), which is in H0
3Mn by Ex.

EVI.5.10
5.10(d) since the image of H3(Σ2,Z) is in

the image of H3([M,M ],Z) by Ex.
EVI.5.12
5.12.

The group Mn = Tn⋊Σn contains M2×Σn−2 as a subgroup. Let S denote
the group Σ2×Σn−2, and write A for the kernel of the split surjection H3(M2×
Σn−2,Z)→ H3(S,Z). By Ex.

EVI.5.10
5.10(e), H3(T3,Z)⊕A maps onto H0

3Mn.
By the Künneth formula for M2 × Σn−2, A is the direct sum of H0

3 (M2,Z),
H0

2 (M2,Z) ⊗ H1(Σn−2,Z) and F× ⊗ H2(Σn−2,Z). Suslin proved in
Su-KM
[183, 4.2]

that the images of the latter two summands in H3(Mn) are contained in the
image of H3(Tn,Z) for large n. It follows that the image of H0

3Mn is the kernel
of ψ.

In Example IV.
IV.4.10.1
4.10.1, IV.

IV.4.6.1
4.6.1 and Ex. IV.

EIV.1.27
1.27 we saw that the homotopy

groups of K(F×-Setsfin) ≃ Z × BM+ form a graded-commutative ring with
π1(BM

+) ∼= F× × πs1. By Ex. IV.
EIV.4.12
4.12, K∗(F

×-Setsfin) → K∗(F ) is a ring
homomorphism. By Matsumoto’s Theorem III.

III.6.1
6.1, it follows that π2(BM

+)→
K2(F ) is onto; in fact, π2(BM

+) = πs2⊕∧̃
2
F× by Exercise

VI.5.11
5.11. Multiplying by

π1(BM
+), this implies that KM

3 (F ) lies in the image of π3(BM
+)→ K3(F ).

We saw in Theorem
VI.5.7
5.7 that the kernel of the map H3(GL2) → B(F ) is

the image of H3(M2). The monomial matrices M3 in GL3(F ) contain T3, so
Proposition

VI.5.12
5.12 shows that the kernel of ψ is contained in the image of H3(M3).

VI.5.16 Theorem 5.16. (
Su91
[187, Lemma 5.4]) The cokernel of π3BM

+ → K3(F ) is
B(F )/(2c), and there is an exact sequence:

π3(BM
+) > K3(F )⊕ πs3

(ψ,−ψι∗)
> B(F )→ 0.

Proof. Write HnG for Hn(G,Z), and let P denote the commutator subgroup
[M,M ]; we saw in IV, Ex.

EIV.1.27
1.27 that P is perfect. By IV.

IV.1.19
1.19–

IV.1.20
1.20, πs3 maps onto

H3A∞ and there is a commutative diagram

π2(BP
+)
◦η
> π3(BP

+)
h
> H3P → 0

K2(F )
∨ [−1]

> K3(F )
∨ h

> H3SL(F )→ 0.
∨

Since πnBP
+ ∼= πnBM

+ for n ≥ 2 (Ex. IV.
EIV.1.8
1.8), and π2(BM

+) → K2(F ) is
onto (as we noted above), a diagram chase shows that K3(F )/π3(BM

+) ∼=
H3SL(F )/H3P .

Let SM denote the kernel of det :M → F×. We saw in Chapter IV, Ex.
EIV.1.27
1.27

that BM+ ≃ BP+ ×B(F×)×BΣ2; it follows that BSM
+ ≃ BP+ ×BΣ2. By

the Künneth formula, H3SM ∼= H3P ⊕ (H2P ⊗H1Σ2)⊕H3Σ2. Under the map
H3SM → H3SL(F ), the final term lands in the image of H3P by Ex.

EVI.5.12
5.12, and
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the middle term factors through H2SL(F )⊗H1SL(F ), which is zero as SL(F )
is perfect. Hence H3SL(F )/H3P = H3SL(F )/H3SM .

This explains the top half of the following diagram.

H3(P ) > H3(SL) > K3(F )/π3(BM
+) > 0

H3(SM)
∨

> H3(SL)
∨

> H3(SL)/H3(SM)

∼=∨
> 0

H3(M)
∨

> H3(GL)
∨

> B(F )/(2c)

∼=∨
> 0.

Similarly, Ex. IV.
EIV.1.8
1.8(a) implies that HnGL(F ) ∼= ⊕i+j=nHiSL(F )⊗HjF

×.
There is a compatible splitting HnM ∼= ⊕i+j=nHiSM ⊗HjF

× by Ex. IV.
EIV.1.27
1.27.

This implies thatHnSL(F )/HnSM→HnGL(F )/HnM is injective for all n. For
n=3, the summands H3F

× and H2SL(F )⊗F× of H3GL(F ) are in the image of
H3SM (because π2BSM

+→K2(F ) ∼=H2SL(F ) is onto). Since H1SL(F ) = 0,
we conclude that H3SL(F )/H3SM → H3GL(F )/H3M is onto and hence an
isomorphism.

Finally, combining Propositions
VI.5.12
5.12 and

VI.5.13
5.13 with Exercise

EVI.5.10
5.10 and Lemma

VI.5.14
5.14, we see that H3SL(F ) → B(F ) is onto, and the cokernel of H3M →
H3GL(F ) is B(F )/(2c). Concatenating the isomorphisms yields the first asser-
tion. The second assertion follows from this by the argument in the proof of
Proposition

VI.5.15
5.15.

We define πind
3 (BM+) to be the quotient of π3(BM

+) by all products from
π1(BM

+)⊗π2(BM+). There is a natural map πind
3 (BM+)→ πs3/(η

3) ∼= Z/12.
Since the products map to KM

3 (F ) in K3(F ), we have the following reformula-
tion.

VI.5.16.1 Corollary 5.16.1. The sequence of Theorem
VI.5.16
5.16 induces an exact sequence

πind
3 (BM+)→ Kind

3 (F )⊕ Z/12→B(F )→ 0.

Thus to prove Theorem
VI.5.2
5.2, we need to study πind

3 (BM+).

VI.5.16.2 Remark 5.16.2. The diagram in the proof of Theorem
VI.5.16
5.16 shows that the map

πind
3 (BM+)→ K ind

3 (F ) is a quotient of the map H3(P,Z)→ H3(SL(R),Z).

If E is any homology theory and X any pointed topological space, the Atiyah-
Hirzebruch spectral sequence converging to E∗(X) has E2

p,q = Hp(X,Eq(∗)). For
stable homotopy we have E∗(X) = πs∗(X). When X = BG+, the Barratt-Priddy
Theorem (IV.

IV.4.10.1
4.10.1) states that πs∗(BG+) = π∗(Z×B(G ≀ Σ∞)+).

VI.5.17 Proposition 5.17. There is an exact sequence

0→ µ2(F )→ πind
3 (BM+)

γ−→ µ(F )⊕ Z/12→ 0.
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Proof. (
Su91
[187, §5]) We analyze the Atiyah-Hirzebruch spectral sequence

E2
p,q = Hp(F

×, πsq)⇒ πp+q(Z×BM+)

which has a module structure over the stable homotopy ring πs∗. Note that the
y-axis E2

0,∗ = πs∗ is a canonical summand of π∗(Z × BM+), so it survives to

E∞. By Ex.
EVI.5.11
5.11, π2BM

+/πs2
∼= ∧̃2F×. It is easy to see that the map from

E2
1,1 = F×/F×2 to E∞1,1 = ∧̃2F× is injective, as it sends x to x ⊗ x. It follows

that the differential from E2
3,0 = H3(F

×,Z) to E2
1,1 is zero, so E

∞
3,0 = H3(F

×,Z);
see Figure

VI.5.17.1
5.17.1.

πs3

πs2 F×/F×2

πs1 F×/F×2 E2
2,1

Z F× ∧2F× H3(F
×) H4(F

×)

Figure 5.17.1: The E2 page converging to π∗(Z×BM+) VI.5.17.1

The universal coefficient sequence expresses E2
2,1 = H2(F

×,Z/2) as an exten-
sion:

0→ (∧2F×)/2→ H2(F
×,Z/2)→ µ2(F )→ 0.

The differential E2
4,0 −→ E2

2,1 lands in (∧2F×)/2 because the composite to µ2(F )

is zero: by naturality in F , it factors through the divisible group H4(F̄
×,Z).

The cokernel of the product maps from F×⊗π2
2 and ∧2F×⊗πs1 → H3(F

×,Z)
is therefore the direct sum of πs3/(η

3) and an extension of H3(F
×,Z) by

µ2(F ). Modding out by the products from ∧2F× ⊗ F× replaces H3(F
×,Z)

by H3(F
×,Z)/ ∧3 F×, which by Ex.

EVI.5.9
5.9 is isomorphic to µ(F ).

Since H3(P,Z) ∼= π3(BM
+)/η ◦ π2(BM+) (see IV.

IV.1.19
1.19), there is a natural

surjection H3(P,Z)→ πind
3 (BM+). Consider the homomorphism δ : µ(F )→ P

sending x to
(
x
0

0
x−1

)
. The composition with the map γ of Proposition

VI.5.17
5.17 is:

µ(F ) ∼= H3(µ(F ),Z)
δ−→ H3(P,Z)

onto−→ πind
3 (BM+)

γ−→ µ(F ).

VI.5.18 Lemma 5.18. The composition µ(F )
δ−→ πind

3 (BM+)
γ−→ µ(F ) sends x to x2.

Proof. Let us write µ for µ(F ) and HnG for Hn(G,Z). The homomorphism

µ
δ−→ P factors throughD = µ⋊Σ2 (where Σ2 → A∞ ⊂ P is given by (12)(34)),

and the map µ ∼= H3(µ) → H3(D) lands in the subgroup H3(µ)Σ2
∼= µ/{±1}.

By Exercise
EVI.5.13
5.13, the composition of µ→ µ/{±1} with H3(D)→ H3(P )

γ−→ µ
sends x ∈ µ to x2.

Recall that the e-invariant maps Kind
3 (F ) to H0(F, µ⊗2) ⊂ µ(F̄ ) (see Defi-

nition
VI.2.1
2.1). We use it to detect the image of µ(F ) in πind

3 (BM+).
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VI.5.19 Lemma 5.19. The following composition is an injection:

µ(F )
δ−→ πind

3 (BM+)→ Kind
3 (F )

e−→ H0(F, µ⊗2).

If F is algebraically closed it is an isomorphism.

Proof. If F ⊂ F ′, µ(F ) ⊆ µ(F ′). Therefore we may enlarge F to assume that it
is algebraically closed. In this case H0(F, µ⊗2) = µ(F ) and KM

3 (F ) is uniquely
divisible (III.

III.7.2
7.2), so it is a summand of K3(F ) (by V.

V.11.13
11.13) and therefore

mK3(F ) ∼= mK
ind
3 (F ).

Now consider the étale Chern class c2,4 : K4(F ;Z/m)→ H0(F, µ⊗2m ), where
1/m ∈ F and m 6≡ 2 (mod 4). Since K4(F ;Z/m) ∼= Z/m on generator β2 (

VI.1.4
1.4)

and c1(β) = ζ by V.
V.11.10.1
11.10.1, the product rule yields c2(β

2) = ζ−1 ⊗ ζ. Since
the Bockstein is an isomorphism: K4(F ;Z/m) ∼= mK3(F ), this implies that the
e-invariant is −c2,4 on mK3(F ).

The isomorphism K4(F ;Z/m) ∼= mK
ind
3 (F ) factors through the Hurewicz

map, the map H4(SL(F ),Z/m) → mH3(SL(F ),Z) and the quotient map

mH3(SL(F ),Z) → mK
ind
3 (F ) of IV.

IV.1.20
1.20. Therefore we have a commutative

diagram:

H4(µ,Z/m)
δ
> H4(P,Z/m) > H4(SL(F ),Z/m)

c2,4
> H0

et(F, µ
⊗2
m )

µm

∼=
∨ δ

> mπ
ind
3 (BM+)

∨
> mK

ind
3 (F )

∨ −e
> µm ⊗ µm.

wwwwww

Since the top composition is an isomorphism by Ex.V.
EV.11.5
11.5, the result follows.

VI.5.20 Corollary 5.20. πind
3 (BM+) ∼= µ̃(F )⊕ Z/12.

Proof. If char(F ) = 2, the result is immediate from Proposition
VI.5.17
5.17, so we

may suppose that char(F ) 6= 2. If F ⊂ E then µ(F ) ⊆ µ(E) and therefore, by
naturality of Proposition

VI.5.17
5.17 in F , the map on π3(BM

+) groups is an injection.
We may therefore assume that F is algebraically closed. In this case, it follows
from

VI.5.18
5.18 and

VI.5.19
5.19 that (δ, i) : µ(F ) ⊕ Z/12 → π3(BM

+) is an isomorphism,
because γδ is onto and δ(−1) is a nonzero element of the kernel µ2(F ) of γ.

Proof of Theorem
VI.5.2
5.2. (Suslin) By Corollaries

VI.5.16.1
5.16.1 and

VI.5.20
5.20, the kernel of

K ind
3 (F ) → B(F ) is the image of µ̃(F ). Thus it suffices to show that the

summand µ̃(F ) of π3(BM
+) (given by Corollary

VI.5.20
5.20) injects into K ind

3 (F ).
When F is algebraically closed, this is given by Lemma

VI.5.19
5.19. Since µ̃(F )→ µ̃(E)

is an injection for all field extensions F ⊂ E, the general case follows.
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EXERCISES

EVI.5.1 5.1. (Hutchinson) If |X| = d, Cn(X) = 0 for n ≥ d by
VI.5.5
5.5. Show that

Hn(C∗(X)) = 0 for all n 6= 0, d− 1, and that Hn(C
′
∗(X)) = 0 for all n 6= d− 1.

(C ′∗ is defined in
VI.5.10
5.10.) Conclude that if |X| ≥ 5 then H3(G,Z) ∼= H3(G,C∗(X))

and H4(G,C
′
∗(X)) = 0.

EVI.5.2 5.2. (
Su91
[187, Lemma 2.3])) In this exercise we prove Lemma

VI.5.8.1
5.8.1. In the hy-

percohomology spectral sequence (
VI.5.8
5.8), the differential d1 from Hq(G,C1) to

Hq(G,C0) ∼= Hq(B,Z) ∼= Hq(T2,Z) is induced by the map d10 − d11 : C1 → C0,
where d10(x0, x1) = x1 and d11(x0, x1) = x0. Let T2 be the diagonal subgroup,
and B the upper triangular subgroup of GL2(F ). We saw after (

VI.5.8
5.8) that the

inclusion of T2 and B induces isomorphisms ι : Hq(T2,Z)
∼=−→ Hq(G,C1) and

Hq(B,Z)
∼=−→ Hq(G,C0). Show that:

(i) d10 ι = σ(d11 ι), where σ is the involution σ(a, b) = (b, a) of F 2;
(ii) The composition d10 ι is the natural mapHq(T2,Z)→ Hq(B,Z) ∼= Hq(G,C0);
(iii) The fact that Hq(T2,Z) → Hq(B,Z) is an isomorphism (

Su84
[184, §3]) implies

that d1 = 1− σ.
EVI.5.3 5.3. Show that B(F5) ∼= Z/3 on generator c = [2] = 2[3], with [−1] = 0. Then

show that B(F7) ∼= Z/4 on generator [−1] = 2[3] with c = [4] = 2[−1]. (In both
cases, [3] 6∈ B(F).) Show that B(F4) ∼= Z/5.

EVI.5.4 5.4. Show that c = 0 in B(Fq) if either: (a) char(Fq) = 2 and q ≡ 1 (mod 3);
(b) char(Fq) = 3 and q ≡ 1 (mod 4); or (c) char(Fq) > 3 and q ≡ 1 (mod 6);

EVI.5.5 5.5. (Dupont-Sah) Show that [x2] = 2 ([x] + [−x] + [−1]) in P(F ) for all x 6=
±1. Using this, show that [x2] + 2[−x2]− 2[x− 1]− [1/x2] = 2c.

EVI.5.6 5.6. Given an arbitrary set X, let C̃n(X) be the free abelian group on the set
Xn+1 of all (n+ 1)-tuples (x0, . . . , xn) in X, including duplication.

a) Show that C̃n(X) is a simplicial abelian group, whose degeneracy oper-
ators σi are duplication of the ith entry. Under the Dold-Kan correspondence,
the simplicial abelian group C̃n(X) corresponds to the chain complex C∗(X) of
Definition

VI.5.5
5.5.

b) Show that the rotations tn(x0, . . . , xn) = (xn, x0, . . . , xn−1) satisfy t
n+1
n =

1, ∂itn = tn∂i−1 and σitn = tnσi for i 6= 0, ∂0tn = ∂n and σ0tn = t2n+1σn. This

shows that C̃n(X) is a cyclic abelian group (Definition
VI.5.9
5.9).

EVI.5.7 5.7. Transfer maps. Let F ⊂ E be a finite field extension. If the transfer map
K3(E) → K3(F ) induces a map NE/F : B(E) → B(F ) (via Theorem

VI.5.2
5.2), we

call NE/F a transfer map. If NE/F exists, the composition B(F ) → B(E) →
B(F ) must be multiplication by [E : F ].

(a) Conclude that there is no transfer map NE/F : B(E) → B(F ) defined
for all F ⊂ E. Hint: Consider F5 ⊂ F25 or R ⊂ C.

(b) Show that a transfer map B(E) → B(F ) exists if µ(F ) = µ(E), or
more generally if E has an F -basis such that µ(E) is represented by monomial
matrices over F .
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EVI.5.8 5.8. If F0 is the field of constants in F , show that B(F )/B(F0) is the cokernel
of KM

3 (F ) ⊕K3(F0) → K3(F ). (The Rigidity Conjecture
VI.5.3.1
5.3.1 implies that it

is zero.) Conclude that B(F (t)) ∼= B(F ), using V.
V.6.7.1
6.7.1.

EVI.5.9 5.9. If A is an abelian group, H∗(A,Z) is a graded-commutative ring
WHomo
[223,

6.5.14]. Since H1(A,Z) ∼= A, there is a ring map ∧∗A → H∗(A,Z). The
Künneth formula

WHomo
[223, 6.1.13] for H∗(A×A) and the diagonal provide a natural

map H3(A,Z) → H3(A × A,Z) → Tor(A,A), whose image is invariant under
the transposition involution τ on A×A.

(a) Show that ∧2A → H2(A,Z) is an isomorphism, and that ∧3A →
H3(A,Z) is an injection whose cokernel H ind

3 (A) is canonically isomorphic to
Tor(A,A)τ . Hint: It is true for cyclic groups; use the Künneth formula to check
it for finitely generated A.

(b) If A is a finite cyclic group and σ is an automorphism of A, show that
the composite

A ∼= H ind
3 (A)

σ−→ H ind
3 (A) ∼= A

sends a ∈ A to σ2(a). In particular, σ acts trivially when σ2 = 1.

EVI.5.10 5.10. In this exercise we analyze H3 of the group Mn = Tn ⋊ Σn of monomial
matrices in GLn(F ), using the Hochschild-Serre spectral sequence. Here F is
a field and Tn = (F×)n denotes the subgroup of diagonal matrices. In this
exercise we write Hi(G) for Hi(G,Z).

(a) Show that the images of H3(T3) and H3(Tn) in H3(Mn(F )) are the same.
(b) Show that H∗(Σn, Tn) ∼= H∗(Σn−1, F

×). (The group Σn−1 is the stabi-
lizer of T1 = F×.)

(c) Show that H∗(Σn,∧2Tn) ∼= H∗(Σn−1,∧2F×)⊕H∗(Σ2×Σn−2, F
×⊗F×).

(d) When n = 2, conclude that H3(M2) ∼= H3(Σ2)⊕H3(T2)Σ2
⊕ ∧̃2F×.

(e) Let A denote the kernel of H3(M2 × Σn−2,Z) → H3(Σ2 × Σn−2,Z).
Conclude that H3(T3)⊕A→ H3(Mn)→ H3(Σn,Z) is exact for n ≥ 5.

EVI.5.11 5.11. Show that H2(P,Z) ∼= π2BM
+ equals πs2 ⊕ ∧̃

2
F×, where P = [M,M ].

Hint: Recall from IV, Ex.
EIV.1.27
1.27 that BM+ ≃ BP+ × B(F×) × BΣ2. Thus it

suffices to compute H2(M,Z). Now use Mn = Tn ⋊ Σn and Exercise
EVI.5.10
5.10(b,c).

EVI.5.12 5.12. Show that the linear transformation α(x1, x2, x3) = (x2, x1,−x3) is in
SM , inducing a decomposition SM ∼= P ⋊ Σ2. If char(F ) 6= 2, show that α
is conjugate in GL3(F ) to the matrix diag(−1,−1,+1) in P , and hence that
the image of H∗(Σ2,Z) → H∗(SM,Z) → H∗(GL(F ),Z) lies in the image of
H∗(P,Z). If char(F ) = 2, show that α is conjugate to an upper triangular
matrix in GL3(F ) and hence that the map H∗(Σ,Z)→ H∗(GL(F ),Z) is trivial.

EVI.5.13 5.13. Let T ′ denote the group of diagonal matrices in SL(F ).
(a) Show that P ∼= T ′ ⋊A∞, and that H3(T

′,Z)A∞
∼= H3(F

×,Z).
(b) Use the proof of Proposition

VI.5.17
5.17 to show that µ(F ) ∼= H3(F

×,Z)/∧3F×
is the image of H3(T

′,Z) in H3(P,Z)/ ∧3 F× ∼= π3(BM
+).

(c) If D = µ(F )⋊Σ2, show that the map from H3(D,Z) to π3(BM+) sends
µ(F )/{±1} to µ(F ).
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6 Global fields of finite characteristic

A global field of finite characteristic p is a field F which is finitely generated of
transcendence degree one over Fp; the algebraic closure of Fp in F is a finite field
Fq of characteristic p. It is classical (see

Hart
[85, I.6]) that there is a unique smooth

projective curve X over Fq whose function field is F . If S is any nonempty set
of closed points of X, then X\S is affine; we call the coordinate ring R of X\S
the ring of S-integers in F . In this section, we discuss the K-theory of F , X
and the rings of S-integers of F .

Any discussion of the K-theory of F must involve the K-theory of X. For
example, K1(F ) is related to the Picard group Pic(X) by the Units-Pic sequence
(I.

I.5.12
5.12):

1→ F×q → F× → ⊕x∈XZ→ Pic(X)→ 0.

Recall that K0(X) = Z⊕ Pic(X), and that Pic(X) ∼= Z⊕ J(X), where J(X) is
a finite group (see I.

I.5.17
5.17).

Since K2 vanishes on finite fields (III.
III.6.1.1
6.1.1), the localization sequence V.

V.6.12
6.12

for X ends in the exact sequence

0→ K2(X)→ K2(F )
∂−→ ⊕x∈X k(x)× → K1(X)→ F×q → 0.

By classical Weil reciprocity V.
V.6.12.1
6.12.1, the cokernel of ∂ is F×q , so K1(X) ∼=

F×q × F×q . By III.
III.2.5.1
2.5.1, if R is the coordinate ring of any affine open in X then

SK1(R) = 0. A diagram chase shows that the image of K1(X) in K1(F ) = F×

is F×q .
By III.

III.7.2
7.2(a) (due to Bass and Tate), the kernel K2(X) of ∂ is finite of order

prime to p. This establishes the low dimensional cases of the following theorem,
first proven by Harder

Har
[83], using the method pioneered by Borel

Bor
[28].

VI.6.1 Harder’s Theorem 6.1. Let X be a smooth projective curve over a finite field
of characteristic p. For n≥1, each Kn(X) is a finite group of order prime to p.

Parshin has conjectured that if X is any smooth projective variety over a
finite field then Kn(X) is a torsion group for n ≥ 1. Harder’s Theorem

VI.6.1
6.1

shows that Parshin’s conjecture holds for curves.

Proof. By III.
III.7.2
7.2(a), KM

n (F ) = 0 for all n ≥ 3. By Geisser and Levine’s Theo-
rem

VI.4.7
4.7, the Quillen groups Kn(F ) are uniquely p-divisible for n ≥ 3. For every

closed point x ∈ X, the groups Kn(x) are finite of order prime to p (n > 0)
because k(x) is a finite field extension of Fq. From the localization sequence

⊕x∈XKn(x)→ Kn(X)→ Kn(F )→ ⊕x∈XKn−1(x),

a diagram chase shows that Kn(X) is uniquely p-divisible. By IV.
IV.6.9
6.9 (due

to Quillen), the abelian groups Kn(X) are finitely generated. As any finitely
generated p-divisible abelian group A is finite with p ∤ |A|, this is true for each
Kn(X).
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VI.6.2 Corollary 6.2. If R is the ring of S-integers in F = Fq(X) (and S 6= ∅) then:

a) K1(R) ∼= R× ∼= F×q × Zs, |S| = s− 1;

b) For n ≥ 2, Kn(R) is a finite group of order prime to p.

Proof. Recall (III.
III.1.1.1
1.1.1) that K1(R) = R× ⊕ SK1(R). We saw in III.

III.2.5.1
2.5.1 that

SK1(R) = 0, and the units of R were determined in I.
I.5.17
5.17, whence (a). The rest

follows from the localization sequence Kn(X)→ Kn(R)→ ⊕x∈SKn−1(x).

VI.6.3 Example 6.3 (The e-invariant). The targets of the e-invariant of X and F are
the same groups as for Fq, because every root of unity is algebraic over Fq.
Hence the inclusions of K2i−1(Fq) ∼= Z/(qi − 1) in K2i−1(X) and K2i−1(F ) are
split by the e-invariant, and this group is the Harris-Segal summand (

VI.2.5.1
2.5.1).

The inverse limit of the finite curves Xν = X × Spec(Fqν ) is the curve
X̄ = X ⊗Fq

F̄q over the algebraic closure F̄q. To understand Kn(X) for n > 1,
it is useful to know not only what the groups Kn(X̄) are, but how the (geometric)
Frobenius ϕ : x 7→ xq acts on them.

By II.
II.8.2.1
8.2.1 and I.

I.5.16
5.16, K0(X̄) = Z⊕ Z⊕ J(X̄), where J(X̄) is the group of

points on the Jacobian variety over F̄q; it is a divisible torsion group. If ℓ 6= p,
the ℓ-primary torsion subgroup J(X̄)ℓ of J(X̄) is isomorphic to the abelian group
(Z/ℓ∞)2g. The group J(X̄) may or may not have p-torsion. For example, if X
is an elliptic curve then the p-torsion in J(X̄) is either 0 or Z/p∞, depending
on whether X is supersingular (see

Hart
[85, Ex. IV.4.15]). Note that the localization

J(X̄)[1/p] is the direct sum over all ℓ 6= p of the ℓ-primary groups J(X̄)ℓ.
Next, recall that the group of units F̄×q may be identified with the group µ of

all roots of unity in F̄q; its underlying abelian group is isomorphic to Q/Z[1/p].
Passing to the direct limit of the K1(Xν) yields K1(X̄) ∼= µ⊕ µ.

For n ≥ 1, the groups Kn(X̄) are all torsion groups, of order prime to p,
because this is true of each Kn(Xν) by

VI.6.1
6.1. We can now determine the abelian

group structure of the Kn(X̄) as well as the action of the Galois group on them.
Recall from Definition

VI.1.7
1.7 that M(i) denotes the ith Tate twist of a Galois

module M .

VI.6.4 Theorem 6.4. Let X be a smooth projective curve over Fq, and set X̄ = X⊗Fq

F̄q. Then for all n ≥ 0 we have isomorphisms of Gal(F̄q/Fq)-modules:

Kn(X̄) ∼=





Z⊕ Z⊕ J(X̄), n = 0

µ(i)⊕ µ(i), n = 2i− 1 > 0

J(X̄)[1/p](i), n = 2i > 0.

For ℓ 6= p, the ℓ-primary subgroup of Kn−1(X̄) is isomorphic to Kn(X̄;Z/ℓ∞),
n > 0, whose Galois module structure is given by:

Kn(X̄;Z/ℓ∞) ∼=
{
Z/ℓ∞(i)⊕ Z/ℓ∞(i), n = 2i ≥ 0

J(X̄)ℓ(i− 1), n = 2i− 1 > 0.
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Proof. Since the groups Kn(X̄) are torsion for all n > 0, the universal coef-
ficient theorem (Ex. IV.

EIV.2.6
2.6) shows that Kn(X̄;Z/ℓ∞) is isomorphic to the ℓ-

primary subgroup of Kn−1(X̄). Thus we only need to determine the Galois
modules Kn(X̄;Z/ℓ∞). For n = 0, 1, 2 they may be read off from the above
discussion. For n > 2 we consider the motivic spectral sequence (

VI.4.2
4.2); by

Theorem
VI.4.1
4.1, the terms Ep,q2 vanish unless p = q, q + 1, q + 2. There is no

room for differentials, so the spectral sequence degenerates at E2 to yield the
groups Kn(X̄;Z/ℓ∞). There are no extension issues because the edge maps
are the e-invariants K2i(X;Z/ℓ∞) → H0

et(X̄,Z/ℓ
∞(i)) = Z/ℓ∞(i) of

VI.6.3
6.3, and

are therefore split surjections. Finally, we note that as Galois modules we
have H1

et(X̄,Z/ℓ
∞(i)) ∼= J(X̄)ℓ(i − 1), and (by Poincaré Duality

Milne2
[128, V.2])

H2
et(X̄,Z/ℓ

∞(i+ 1)) ∼= Z/ℓ∞(i).

Passing to invariants under the group G = Gal(F̄q/Fq), there is a natu-
ral map from Kn(X) to Kn(X̄)G. For odd n, we see from

VI.6.4
6.4 and

VI.2.3
2.3 that

K2i−1(X̄)G ∼= Z/(qi − 1) ⊕ Z/(qi − 1); for even n, we have the less con-
crete description K2i(X̄)G ∼= J(X̄)[1/p](i)G. One way of studying this group
is to consider the action of the Frobenius on H∗et(X̄,Qℓ(i)) and use the iden-
tity H∗et(X,Qℓ(i)) = H∗et(X̄,Qℓ(i))

G, which follows from the spectral sequence
Hp(G,H∗et(X̄,Qℓ(i)))⇒ H∗et(X,Qℓ(i)) since H

p(G,−) is torsion for p > 0; see
WHomo
[223, 6.11.14].

VI.6.5 Example 6.5. ϕ∗ acts trivially on H0
et(X̄,Qℓ) = Qℓ and H2

et(X̄,Qℓ(1)) = Qℓ.
It acts as q−i on the twisted groups H0

et(X̄,Qℓ(i)) and H
2
et(X̄,Qℓ(i+1). Taking

G-invariants yields H0
et(X,Qℓ(i)) = 0 for i 6= 0 and H2

et(X,Qℓ(i)) = 0 for i 6= 1.
Weil’s 1948 proof of the Riemann Hypothesis for Curves implies that the

eigenvalues of ϕ∗ acting on H1
et(X̄,Qℓ(i)) have absolute value q1/2−i. Taking

G-invariants yields H1
et(X,Qℓ(i)) = 0 for all i.

For any G-module M , we have an exact sequence
WHomo
[223, 6.1.4]

0→MG →M
ϕ∗−1

> M → H1(G,M)→ 0. (6.5.1) 6.5.1

The case i = 1 of the following result reproduces Weil’s theorem that the ℓ-
primary torsion part of the Picard group of X is J(X̄)Gℓ .

VI.6.6 Lemma 6.6. For a smooth projective curve X over Fq, ℓ ∤ q and i ≥ 2 we have:

(1) Hn+1
et (X,Zℓ(i)) ∼= Hn

et(X,Z/ℓ
∞(i)) ∼= Hn

et(X̄,Z/ℓ
∞(i))G for all n;

(2) H0
et(X,Z/ℓ

∞(i)) ∼= Z/w(ℓ)
i (F );

(3) H1
et(X,Z/ℓ

∞(i)) ∼= J(X̄)ℓ(i− 1)G;

(4) H2
et(X,Z/ℓ

∞(i)) ∼= Z/w(ℓ)
i−1(F ); and

(5) Hn
et(X,Z/ℓ

∞(i)) = 0 for all n ≥ 3.
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Proof. Since i ≥ 2, we see from
VI.6.5
6.5 that Hn

et(X,Qℓ(i)) = 0 for all n. Since
Qℓ/Zℓ = Z/ℓ∞, this yields Hn

et(X,Z/ℓ
∞(i)) ∼= Hn+1

et (X,Zℓ(i)) for all n.
Since each Hn = Hn

et(X̄,Z/ℓ
∞(i)) is a quotient of Hn

et(X̄,Qℓ(i)), ϕ
∗ − 1

is a surjection, i.e., H1(G,Hn) = 0. Since Hn(G,−) = 0 for n > 1, the
Leray spectral sequence Ep,q2 = Hp(G,Hq

et(X̄,Z/ℓ
∞(i))) ⇒ Hp+q

et (X,Z/ℓ∞(i))
for X → Spec(Fq)

Milne
[127, III.1.18], collapses for i > 1 to yield exact sequences

0→ Hn
et(X,Z/ℓ

∞(i))→ Hn
et(X̄,Z/ℓ

∞(i))
ϕ∗−1

> Hn
et(X̄,Z/ℓ

∞(i))→ 0.

In particular, Hn
et(X,Z/ℓ

∞(i)) = 0 for n > 2. As in the proof of
VI.6.4
6.4,

H1
et(X,Z/ℓ

∞(i)) is J(X̄)ℓ(i − 1), so H1
et(X,Z/ℓ

∞(i)) ∼= J(X̄)ℓ(i − 1)G, and
H2

et(X̄,Z/ℓ
∞(i)) is Z/ℓ∞(i−1) by duality, soH2

et(X,Z/ℓ
∞(i)) is Z/ℓ∞(i−1)G ∼=

Z/w(ℓ)
i−1.

Given the calculation of Kn(X̄)G in Theorem
VI.6.4
6.4 and the calculation of

Hn
et(X,Z/ℓ

∞(i)) in
VI.6.6
6.6, we see that the natural map Kn(X) → Kn(X̄)G is a

surjection. Thus the real content of the following theorem is that Kn(X) →
Kn(X̄)G is an isomorphism.

VI.6.7 Theorem 6.7. Let X be the smooth projective curve corresponding to a global
field F over Fq. Then K0(X) = Z ⊕ Pic(X), and the finite groups Kn(X) for
n > 0 are given by:

Kn(X) ∼= Kn(X̄)G ∼=
{
Kn(Fq)⊕Kn(Fq), n odd,⊕

ℓ 6=p J(X̄)ℓ(i)
G, n = 2i even.

Proof. We may assume that n 6= 0, so that the groups Kn(X) are finite by
VI.6.1
6.1.

It suffices to calculate the ℓ-primary part Kn+1(X;Z/ℓ∞) of Kn(X). But this
follows from the motivic spectral sequence (

VI.4.2
4.2), which degenerates by

VI.6.6
6.6.

VI.6.8 Theorem 6.8. If F is the function field of a smooth projective curve X over
Fq, then for all i ≥ 1: Fq ⊂ F induces an isomorphism K2i+1(Fq) ∼= K2i+1(F ),
and there is an exact reciprocity sequence (generalizing V.

V.6.12.1
6.12.1):

0→ K2i(X)→ K2i(F )
⊕∂x
> ⊕x∈X K2i−1(Fq(x))

N
> K2i−1(Fq)→ 0.

Proof. The calculation of K2(F ) was carried out at the beginning of this sec-
tion, so we restrict attention to Kn(F ) for n ≥ 3. Because K2i(Fq) = 0, the
localization sequence V.

V.6.12
6.12 breaks up into exact sequences for i ≥ 2:

0→K2i(X)→ K2i(F )
⊕∂x
> ⊕x∈XK2i−1(Fq(x))→ K2i−1(X)→K2i−1(F )→0.

Let SK2i−1(X) denote the kernel of K2i−1(X) → K2i−1(F ). Since Fq ⊂
F ⊂ F̄ induces an injection from the subgroup K2i−1(Fq) of K2i−1(F̄q) into
K2i−1(F̄ ) by V.

V.6.7.4
6.7.4, we see from Theorem

VI.6.7
6.7 that |SK2i−1(X)| is at most
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|K2i−1(Fq)|. As in V.
V.6.12
6.12, for each closed point x the composition of the trans-

fer K2i−1(Fq(x)) → SK2i−1(X) with the proper transfer π∗ : K2i−1(X) →
K2i−1(Fq) is the transfer associated to Fq ⊂ Fq(x), i.e., the transfer map
K2i−1(Fq(x)) → K2i−1(Fq); each of these transfer maps are onto by IV.

IV.1.13
1.13.

It follows that π∗ : SK2i−1(X) → K2i−1(Fq) is an isomorphism. The theorem
now follows.

VI.6.9 Remark 6.9 (The Zeta Function). We can relate the orders of the K-groups
of the curve X to values of the zeta function ζX(s). By definition, ζX(s) =
Z(X, q−s), where

Z(X, t) = exp

( ∞∑

n=1

|X(Fqn)|
tn

n

)
.

Weil proved that Z(X, t) = P (t)/(1 − t)(1 − qt) for every smooth projective
curve X, where P (t) ∈ Z[t] is a polynomial of degree 2 · genus(X) with all
roots of absolute value 1/

√
q. This formula is a restatement of Weil’s proof

of the Riemann Hypothesis for X (
VI.6.5
6.5 above), given Grothendieck’s formula

P (t) = det(1− ϕ∗t), where ϕ∗ is regarded as an endomorphism of H1
et(X̄;Qℓ).

Note that by
VI.6.5
6.5 the action of ϕ∗ on H0

et(X̄;Qℓ) has det(1−ϕ∗t) = (1− t), and
the action on H2

et(X̄;Qℓ) has det(1− ϕ∗t) = (1− qt).
Here is application of Theorem

VI.6.7
6.7, which was conjectured by Lichtenbaum

in
Li3
[113] and proven by Thomason in

Th
[199, (4.7)]. For legibility, let #A denote

the order of a finite abelian group A.

VI.6.10 Proposition 6.10. If X is a smooth projective curve over Fq then for all i ≥ 2,

#K2i−2(X) ·#K2i−3(Fq)

#K2i−1(Fq) ·#K2i−3(X)
=
∏

ℓ

#H2
et(X;Zℓ(i))

#H1
et(X;Zℓ(i)) ·#H3

et(X;Zℓ(i))
=
∣∣ζX(1−i)

∣∣.

Proof. We have seen that all the groups appearing in this formula are finite.
The first equality follows from

VI.6.6
6.6 and

VI.6.7
6.7. The second equality follows from

the formula for ζX(1− i) in VI.6.9
6.9.

EXERCISES

EVI.6.1 6.1. Let X be the projective line P1
Fq

over Fq. Use Theorem
VI.6.7
6.7 to recover the

calculation of K∗(X) in V.
V.1.5
1.5. Show directly that Z(X, t) = 1/(1 − t)(1 − qt)

and use this to verify the formula in
VI.6.10
6.10 for ζX(i− 1).

EVI.6.2 6.2. Let R be the ring of S-integers in a global field F = Fq(X) of finite
characteristic. Show that Kn(R) → Kn(F ) is an injection for all n ≥ 1, and
that K2i−1(R) → K2i−1(F ) is an isomorphism for all i > 1. (This generalizes
the Bass-Milnor-Serre Theorem III.

III.2.5
2.5, and provides another proof of

VI.6.2
6.2(a).)

EVI.6.3 6.3. Let F = Fq(X) be a global field, of degree d over a function field Fq(t). For
i > 0, show that the transfer K2i(F )→ K2i(Fq(t)) is onto, and that the transfer
K2i−1(F )→ K2i−1(Fq(t)) is multiplication by d (under the identification of both
groups with K2i−1(Fq) in

VI.6.8
6.8).
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7 Local Fields

A local field is a field E which is complete under a discrete valuation v, and
whose residue field kv is finite. The subring V of elements of positive valuation
is a complete valuation domain. It is classical that every local field is either a
finite extension of the p-adic rationals Q̂p or isomorphic to Fq((t)). (See

S-LF
[167].)

We saw in II.
II.2.2
2.2 and III.

III.1.4
1.4 that K0(V ) = K0(E) = Z and K1(V ) = V ×,

K1(E) = E× ∼= (V ×)×Z, where the factor Z is identified with the powers {πm}
of a parameter π of V . It is well known that V × ∼= µ(E) × U1, where µ(E)
is the group of roots of unity in E (or V ), and U1 ⊆ 1 + πV is a torsionfree
Zp-module.

We also saw in Moore’s Theorem (Chapter III, Theorem
III.6.2.4
6.2.4 and Ex.

EIII.6.11
6.11)

that K2(E) ∼= U2 ⊕ F×q , where U2 is an uncountable, uniquely divisible abelian
group. Since K2(E) ∼= K2(V )⊕ F×q by V.

V.6.9.2
6.9.2, this implies that K2(V ) ∼= U2.

VI.7.1 Proposition 7.1. Let E be a local field. For n ≥ 3, KM
n (E) is an uncountable,

uniquely divisible group. The group K2(E) is the sum of F×q and an uncountable,
uniquely divisible group.

Proof. The group is uncountable by Ex. III.
EIII.7.14
7.14, and divisibility follows easily

from Moore’s Theorem (see III, Ex.
EIII.7.4
7.4). We give a proof that it is uniquely di-

visible using the isomorphism KM
n (E) ∼= Hn(E,Z(n)). If char(E) = p, KM

n (E)
has no p-torsion by Izhboldin’s Theorem III.

III.7.8
7.8, so we consider m-torsion when

1/m ∈ E. The long exact sequence in motivic cohomology associated to the co-

efficient sequence 0→ Z(n)
m−→ Z(n)→ Z/m(n)→ 0 yields the exact sequence

for m:

Hn−1
et (E, µ⊗nm )→ KM

n (E)
m−→ KM

n (E)→ Hn
et(E, µ

⊗n
m ). (7.1.1) VI.7.1.1

SinceHn
et(E,−) = 0 for n ≥ 3, this immediately implies thatKM

n (E) is uniquely
m-divisible for n > 3 (and m-divisible for n = 3). Moreover, the m-torsion
subgroup of KM

3 (E) is a quotient of the group H2
et(E, µ

⊗3
m ), which by duality

is Z/(w2,m), where w2 = w2(E) is q2 − 1 by
VI.2.3.1
2.3.1. Thus the torsion subgroup

of KM
3 (E) is a quotient of w2. We may therefore assume that w2 divides m.

Now map the sequence (
VI.7.1.1
7.1.1) for m2 to the sequence (

VI.7.1.1
7.1.1) for m; the map

from Z/wi = H2
et(E, µ

⊗3
m2) to Z/wi = H2

et(E, µ
⊗3
m ) is the identity but the map

from the image m2KM
3 (E) to mK

M
3 (E) is multiplication by m and thus zero, as

required.

Equicharacteristic local fields

We first dispose of the equi-characteristic case, where E = Fq((t)), V ∼= Fq[[π]]
and char(E) = p. In this case, µ(E) = F×q , and U1 = 1+πFq[[π]] is isomorphic
to the big Witt vectors of Fq (II.

II.4.3
4.3), which is the product of a countably infinite

number of copies of Zp (see Ex.
EVI.7.2
7.2). (In fact, it is a countably infinite product

of copies of the ring Zp[ζq−1] of Witt vectors over Fq.)
Here is a description of the abelian group structure on Kn(V ) for n ≥ 2.

August 29, 2013 - Page 507 of
LastPage
568



Chapter VI

VI.7.2 Theorem 7.2. Let V = Fq[[π]] be the ring of integers in the local field E =
Fq((π)). For n ≥ 2 there are uncountable, uniquely divisible abelian groups Un
and canonical isomorphisms:

Kn(E) ∼= Kn(V )⊕Kn−1(Fq), Kn(V ) ∼= Kn(Fq)⊕ Un.

Proof. The splitting Kn(E) ∼= Kn(V ) ⊕ Kn−1(Fq) was established in V.
V.6.9.2
6.9.2.

Now let Un denote the kernel of the canonical map Kn(V ) → Kn(Fq). Since
V → Fq splits, naturality yields Kn(V ) = Un ⊕ Kn(Fq). By Gabber rigidity
(IV.

IV.2.10
2.10), Un is uniquely ℓ-divisible for all ℓ 6= p and n > 0. It suffices to show

that Un is uncountable and uniquely p-divisible when n ≥ 2; this holds for n = 2
by

VI.7.1
7.1.
Now the Milnor groups KM

n (E) are uncountable, uniquely divisible abelian
groups for n ≥ 3, by Proposition

VI.7.1
7.1. The group KM

n (E) is a summand of
the Quillen K-group Kn(E) by V.

V.11.13
11.13,

VI.4.3
4.3 or

VI.4.9
4.9. On the other hand, the

Geisser-Levine theorem
VI.4.7
4.7 shows that the complementary summand is uniquely

p-divisible.

p-adic local fields

In the mixed characteristic case, when char(E) = 0, even the structure of V × is
quite interesting. The torsionfree part U1 is a free Zp-module of rank [E : Qp];
it is contained in (1 + πV )× and injects into E as a lattice by the convergent
power series for x 7→ ln(x).

The quotient V × → F×q splits, and the subgroup of V × isomorphic to F×q
is called the group of Teichmüller units. Thus K1(V ) = V × is a product U1 ×
F×q ×µp∞(E), where µp∞(E) is the finite cyclic group of p-primary roots of unity
in V . There seems to be no simple formula for the order of the cyclic p-group
µp∞(E).

To understand the groups Kn(E) for n ≥ 3, recall from Proposition
VI.7.1
7.1

that KM
n (E) is an uncountable, uniquely divisible abelian group. From Example

VI.4.3
4.3, this is a direct summand of Kn(E); since Kn(E) ∼= Kn(V )⊕Kn−1(Fq) by
V.

V.6.9.2
6.9.2, it is also a summand of Kn(V ). Thus, as in the equicharacteristic case,

Kn(E) will contain an uncountable uniquely divisible summand about which we
can say very little.

Before stating our next result, we need an étale calculation. Since E has étale
cohomological dimension 2, we may ignore Hn

et(E,−) for n > 2. By Tate–Poitou
duality

Milne2
[128, I.2.3], H2

et(E, µ
⊗i+1
m ) is isomorphic to H0

et(E, µ
⊗i
m ). We shall as-

sume that i > 0 and m is divisible by wi(E), so that these groups are isomorphic
to Z/wi(E). Now consider the change of coefficients µ⊗im ⊂ µ⊗im2 . The induced
endomorphisms of Z/wi(E) = H0

et(E, µ
⊗i
m ) and Z/wi(E) = H2

et(E, µ
⊗i+1
m ) are

the identity map and the zero map, respectively. Since µ = ∪µm, passing to the
limit over m yields:

H0
et(E, µ

⊗i) ∼= Z/wi(E) and H2
et(E, µ

⊗i+1) = 0, i > 0.

Recall that an abelian group which is uniquely ℓ-divisible for all ℓ 6= p is the
same thing as a Z(p)-module.

August 29, 2013 - Page 508 of
LastPage
568



Chapter VI

VI.7.3 Proposition 7.3. For n > 0 we have Kn(E) ∼= Kn(V ) ⊕ Kn−1(Fq), and the
groups Kn(V ) are Z(p)-modules.

When n = 2i − 1, Kn(V ) ∼= Kn(E) is the direct sum of a torsionfree
Z(p)-module and the Harris-Segal summand (see

VI.2.5
2.5), which is isomorphic to

Z/wi(E).

When n = 2i, Kn(V ) is the direct sum of Z/w(p)
i (E) and a divisible Z(p)-

module.

Proof. The decomposition Kn(E) ∼= Kn(V ) ⊕ Kn−1(Fq) was established in
V.

V.6.9.2
6.9.2. In particular, K2i−1(V ) ∼= K2i−1(E).
To see that K2i−1(E) has a cyclic summand of order wi(E), consider the

spectral sequence (
VI.4.2
4.2) with coefficients Q/Z. By the above remarks, it de-

generates completely to yield K2i(E;Q/Z) ∼= Z/wi(E). Since this injects into
K2i(Ē;Q/Z) ∼= Q/Z (by Theorem

VI.1.6
1.6, Ē being the algebraic closure of E), this

implies that the e-invariant is an isomorphism: K2i(E;Q/Z)
≃−→ Z/wi(E). By

Ex. IV.
EIV.2.6
2.6, this implies that K2i−1(E) ∼= Ti ⊕ Z/wi(E) where Ti is torsionfree.

To see thatK2i(E) is the sum of a divisible group and Z/wi(E), fix i and sup-
pose that wi(E) dividesm. Since Hn

et(E,−) = 0 for n > 2, the spectral sequence
(
VI.4.2
4.2) with coefficients Z/m degenerates completely and describes K2i(E;Z/m)
as an extension of H0

et(E, µ
⊗i
m ) ∼= Z/wi(E) by H2

et(E, µ
⊗i+1
m ) ∼= Z/wi(E). By

the previous paragraph, the quotient Z/wi(E) is identified with the m-torsion
in K2i−1(E), so the kernel Z/wi(E) is identified with K2i(E)/m. Setting
m = m′wi(E), it follows that the subgroup Di = wi(E)K2i(E) of K2i(E) is a

divisible group. Thus K2i(E) ∼= Di ⊕ Z/wi(E), and K2i(V ) ∼= Di ⊕ Z/w(p)
i (E).

It remains to show that Ti and Di are uniquely ℓ-divisible for ℓ 6= p and
i > 0, i.e., that Ti/ℓTi = ℓ(Di) = 0. By Universal Coefficients IV.

IV.2.5
2.5 and the

calculations above, K2i−1(V ;Z/ℓν) is isomorphic to Z/w(ℓ)
i (E)⊕Ti/ℓνTi⊕ℓν (Di)

for large ν. By Gabber Rigidity IV.
IV.2.10
2.10, K2i−1(V ;Z/ℓν) and K2i−1(Fq;Z/ℓν) ∼=

w
(ℓ)
i (Fq) are isomorphic. Since w

(ℓ)
i (E) = w

(ℓ)
i (Fq) by

VI.2.3.1
2.3.1, we have Ti/ℓ

νTi =

ℓν (Di) = 0, as required.

VI.7.3.1 Remark 7.3.1. Either Ti fails to be p-divisible, or else Di−1 has p-torsion.
This follows from Corollary

VI.7.4.1
7.4.1 below: dim(Ti/pTi) + dim(pDi−1) = [E : Qp].

We now consider the p-adic K-groups K∗(E;Zp) of E, as in IV.
IV.2.9
2.9. This

result was first proved in
RW
[161, 3.7] for p = 2, and in

HM
[88, thm.A] for p > 2.

VI.7.4 Theorem 7.4. Let E be a local field, of degree d over Qp, with ring of integers
V . Then for n ≥ 2 we have:

Kn(V ;Zp) ∼= Kn(E;Zp) ∼=
{
Z/w(p)

i (E), n = 2i,

(Zp)d ⊕ Z/w(p)
i (E), n = 2i− 1.

}

Proof. It is classical that the groups H∗et(E;Z/pν) are finitely generated groups,
and that the H∗et(E;Z/p) are finitely generated Zp-modules. Since this implies
that the groups Kn(E;Z/p) are finitely generated, this implies (by IV.

IV.2.9
2.9) that
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Kn(E;Zp) is an extension of the Tate module of Kn−1(E) by the p-adic comple-
tion of Kn(E). Since the Tate module of K2i−1(E) is trivial by

VI.7.3
7.3, this implies

that K2i(E;Zp) ∼= lim←−K2i(E)/pν ∼= Z/w(p)
i (E).

By
VI.7.3
7.3 and IV.

IV.2.9
2.9, Kn(V ;Zp) ∼= Kn(E;Zp) for all n > 0. Hence it suffices to

consider the p-adic group K2i−1(V ;Zp). By
VI.7.3
7.3 and IV.

IV.2.9
2.9 again, K2i−1(V ;Zp)

is the direct sum of the finite p-group Z/w(p)
i (E) and two finitely generated

torsionfree Zp-modules: the Tate module of Di−1 and Ti ⊗Z Zp. All that is left
is to calculate the rank of K2i−1(V ;Zp).

Wagoner proved in
Wag
[213] that the Qp-vector space Kn(V ;Zp) ⊗ Q has di-

mension [E : Qp] when n is odd and n ≥ 3. (Wagoner’s continuous K-
groups were identified with K∗(E;Zp) in

Pa
[149].) Hence K2i−1(V ;Zp) has rank

d = [E : Qp].

VI.7.4.1 Corollary 7.4.1. For i > 1 and all large ν we have

K2i−1(E;Z/pν) ∼= H1
et(E, µ

⊗i
pν )
∼= (Z/pν)[E:Qp] ⊕ Z/w(p)

i (E)⊕ Z/w(p)
i−1(E).

Proof. This follows from Universal Coefficients and Theorem
VI.7.4
7.4.

VI.7.4.2 Corollary 7.4.2. K3(V ) contains a torsionfree subgroup isomorphic to Zd(p),

whose p-adic completion is isomorphic to K3(V ;Zp) ∼= (Zp)d.

Proof. Combine
VI.7.4
7.4 with Moore’s theorem III.

III.6.2.4
6.2.4 that D1 is torsionfree.

VI.7.4.3 Remark 7.4.3. Surprisingly, the cohomology groups H1
et(E;µ⊗im ) (for m = pν)

were not known before the K-group K2i−1(E;Z/m) was calculated, circa 2000.

VI.7.5 Warning 7.5. Unfortunately, I do not know how to reconstruct the homotopy
groups Kn(V ) from the information in

VI.7.4
7.4. Any of the Zp’s in K2i−1(V ;Zp)

could come from either a Z(p) in K2i−1(V ) or a Z/p∞ in K2i−2(V ). Another
problem is illustrated by the case n = 1, V = Zp and p 6= 2. The information
that lim←−K1(V )/pν ∼= (1 + πV )× ∼= V is not enough to deduce that K1(V ) ⊗
Z(p)

∼= V .
Even if we knew that lim←−Kn(V )/pν = Zp, we would still not be able to

determine the underlying abelian group Kn(V ) exactly. To see why, note that
the extension 0→ Z(p) → Zp → Zp/Z(p) → 0 doesn’t split, because there are no
p-divisible elements in Zp, yet Zp/Z(p)

∼= Qp/Q is a uniquely divisible abelian

group. For example, I doubt that the extension 0 → Zd(p) → K3(V ) → U3 → 0
splits in Corollary

VI.7.4.2
7.4.2.

Here are some more cases when I can show that the Zp’s in K2i−1(V ;Zp)
come from torsionfree elements in K2i−1(E); I do not know any example where
a Z/p∞ appears in K2i(E).
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VI.7.6 Example 7.6. If k > 0, then K4k+1(Z2) contains a subgroup T isomorphic to
Z(2), and the quotient K4k+1(Z2)/(T ⊕ Z/wi(Q2)) is uniquely divisible. (By

Exercise
EVI.2.3
2.3, wi(Q2) = 2(22k+1 − 1).) This follows from Rognes’ theorem

RognesZ2
[158,

4.13] that the map from K4k+1(Z) ⊗ Z2
∼= Z2 ⊕ (Z/2) to K4k+1(Z2;Z2) is an

isomorphism for all k > 1. (The information about the torsion subgroups,
missing in

RognesZ2
[158], follows from

VI.7.4
7.4 and

VI.7.4.1
7.4.1.) Since this map factors through

K4k+1(Z2), the assertion follows.

VI.7.7 Example 7.7. Let F be a totally imaginary number field of degree d = 2r2
over Q, with s prime ideals over p, and let E1, ..., Es be the completions of F at
these primes. By Borel’s Theorem IV.

IV.1.18
1.18, there is a subgroup of K2i−1(F ) iso-

morphic to Zr2 ; its image in ⊕K2i−1(Ej) is a subgroup of rank at most r2, while
⊕K2i−1(Ej ;Zp) has rank 2r2 =

∑
[Ej : Qp]. So these subgroups of K2i−1(Ej)

can account for at most half of the torsionfree part of ⊕K2i−1(Ej ;Zp).

VI.7.8 Example 7.8. Suppose that F is a totally real number field, of degree d = r1
over Q, and let E1, ..., Es be the completions of F at the prime ideals over p.
By Borel’s Theorem IV.

IV.1.18
1.18, there is a subgroup of K4k+1(F ) isomorphic to

Zd for all k > 0; its image in ⊕K4k+1(Ej) is a subgroup of rank d. Although
⊕K4k+1(Ej ;Zp) also has rank d =

∑
[Ej : Qp], this does not imply that the

p-adic completion Zdp of the subgroup injects into ⊕K4k+1(Ej ;Zp).
Implications like this are related to Leopoldt’s conjecture, which states that

the torsionfree part Zd−1p of (OF )× ⊗ Zp injects into the torsionfree part Zdp
of
∏s
j=1O×Ej

; see
Wash
[216, 5.31]. This conjecture has been proven when F is an

abelian extension of Q; see
Wash
[216, 5.32].

When F is a totally real abelian extension of Q, and p is a regular prime,
Soulé shows in

Sou81
[173, 3.1, 3.7] that the torsion free part Zdp of K4k+1(F ) ⊗ Zp

injects into ⊕K4k+1(Ej ;Zp) ∼= (Zp)d, because the cokernel is determined by
the Leopoldt p-adic L-function Lp(F, ω

2k, 2k+1), which is a p-adic unit in this
favorable scenario. Therefore in this case we also have a summand Zd(p) in each

of the groups K4k+1(Ej).

We conclude this section with a description of the topological type of the
p-adic completions (see IV.

IV.2.9
2.9) K̂(V )p and K̂(E)p, when p is odd, due to

Hesselholt and Madsen
HM
[88]. Recall that FΨk denotes the homotopy fiber of

Ψk − 1 : Z × BU → BU . Since Ψk = ki on π2i(BU) = Z when i > 0, and
π2i−1(BU) = 0, we see that π2i−1FΨ

k ∼= Z/(ki−1), and that all even homotopy
groups of FΨk vanish, except for π0(FΨ

k) = Z.

VI.7.9 Theorem 7.9. (
HM
[88, thm.D]) Let E be a local field, of degree d over Qp, with p

odd. Then after p-completion, there is a number k (given below) so that

K̂(V )p ≃ SU × Ud−1 × FΨk ×BFΨk, K̂(E)p ≃ Ud × FΨk ×BFΨk.
The number k is defined as follows. As in Proposition

VI.2.2
2.2, let pa be the

number of p-primary roots of unity in E(µp) and set r = [E(µp) : E]. If γ
is a topological generator of Z×p , then k = γn, where n = pa−1(p− 1)/r. (See
Exercise

EVI.7.4
7.4.)
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EXERCISES

EVI.7.1 7.1. Show that M =
∏∞
i=1 Zp is not a free Zp-module. Hint: Consider the

submodule S of all (a1, ...) in M where all but finitely many ai are divisible by
pν for all ν. If M were free, S would also be free. Show that S/p is countable,
and that

∏
piZp is an uncountably generated submodule of S. Hence S cannot

be free.

EVI.7.2 7.2. When E = Fq[[π]], show that the subgroup W (Fq) = 1 + πFq[[π]] of units
is a module over Zp, by defining (1+ πf)a for all power series f and all a ∈ Zp.
If {ui} is a basis of Fq over Fp, show that every element of W (Fq) is uniquely
the product of terms (1+uit

n)ani , where ani ∈ Zp. This shows that W (Fq) is a
countably infinite product of copies of Zp. Using Ex.

EVI.7.1
7.1, conclude that W (Fq)

is not a free Zp-module.

EVI.7.3 7.3. Show that the first étale Chern classes K2i−1(E;Z/pν) ∼= H1(E, µ⊗ipν ) are
natural isomorphisms for all i and ν.

EVI.7.4 7.4. In Theorem
VI.7.9
7.9, check that π2i−1FΨ

k ∼= Zp/(ki − 1) is Z/wi(E) for all i.
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8 Number fields at primes where cd = 2

In this section we quickly obtain a cohomological description of the odd torsion in
the K-groups of a number field, and also the 2-primary torsion in the K-groups
of a totally imaginary number field. These are the cases where cdℓ(OS) = 2; see
Milne2
[128, 4.10]. This bound forces the motivic spectral sequence (

VI.4.2
4.2) to degenerate

completely, leaving an easily-solved extension problem.

VI.8.1 Classical Data 8.1. Let OS be a ring of integers in a number field F . By
Chapter IV,

IV.1.18
1.18 and

IV.6.9
6.9, the groups Kn(F ) are finite when n is even and

nonzero; if n is odd and n ≥ 3 the groups Kn(F ) are the direct sum of a finite
group and Zr, where r is r2 when n ≡ 3 (mod 4) and r1 + r2 when n ≡ 1
(mod 4). Here r1 is the number of real embeddings of F , and r2 is the number
of complex embeddings (up to conjugacy), so that [F : Q] = r1 + 2r2. The
formulas for K0(OS) = Z⊕Pic(OS) and K1(OS) = O×S ∼= Zr2+|S|−1⊕µ(F ) are
different; see II.

II.2.6.3
2.6.3 and III.

III.1.3.6
1.3.6.

The Brauer group of OS is determined by the sequence

0→ Br(OS)→ (Z/2)r1 ⊕
∐

v∈S
finite

(Q/Z)
add−→ Q/Z→ 0. (8.1.1) VI.8.1.1

The notation A(ℓ) will denote the localization of an abelian group A at the
prime ℓ, and the notation ℓA will denote the subgroup {a ∈ A | ℓa = 0}.

VI.8.2 Theorem 8.2. Let F be a number field, and let OS be a ring of integers in F .
Fix a prime ℓ; if ℓ = 2 we suppose F totally imaginary. Then for all n ≥ 2:

Kn(OS)(ℓ) ∼=





H2
et(OS [1/ℓ];Zℓ(i+ 1)) for n = 2i > 0;

Zr2(ℓ) ⊕ Z/w(ℓ)
i (F ) for n = 2i− 1, i even;

Zr2+r1(ℓ) ⊕ Z/w(ℓ)
i (F ) for n = 2i− 1, i odd.

Proof. Set R = OS [1/ℓ]. For each prime ideal p over ℓ, Kn−1(R/p) has no ℓ-
torsion by IV.

IV.1.13
1.13. By the localization sequence (V, (

V.6.6
6.6) or

V.6.8
6.8), Kn(OS)(ℓ) =

Kn(R)(ℓ). Thus we may replace OS by R = OS [1/ℓ]. Since the rank of Kn(R)
is classically known (see

VI.8.1
8.1), it suffices by IV.

IV.2.9
2.9 and Ex. IV.

EIV.2.6
2.6 to determine

K2i−1(R){ℓ} = K2i(R;Z/ℓ∞) and K2i(R){ℓ} = K2i(R;Zℓ).
If F is a number field, the étale ℓ-cohomological dimension of R (and of F )

is 2, unless ℓ = 2 and r1 > 0 (F has a real embedding). Since H2
et(R;Z/ℓ

∞(i)) =
0 by Ex.

EVI.8.1
8.1, the motivic spectral sequence (

VI.4.2
4.2) with coefficients Z/ℓ∞ has at

most one nonzero entry in each total degree at the E2 page. Thus we may read
off:

Kn(R;Z/ℓ
∞) ∼=

{
H0(R;Z/ℓ∞(i)) = Z/w(ℓ)

i (F ) for n = 2i ≥ 2,

H1(R;Z/ℓ∞(i)) for n = 2i− 1 ≥ 1.

The description of K2i−1(R){ℓ} = K2i(R;Z/ℓ∞) follows.
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The same argument works for ℓ-adic coefficients Zℓ; for i > 0 we have
Hn

et(R,Zℓ(i)) = 0 for n 6= 1, 2, so the spectral sequence (
VI.4.2
4.2) degenerates to

yield K2i−1(R;Zℓ) ∼= H1
et(R,Zℓ(i)) and K2i(R;Zℓ) ∼= H2

et(R,Zℓ(i + 1)) (which
is a finite group by Exercise

EVI.8.2
8.2). The description of K2i(R){ℓ} = K2i(R;Zℓ)

follows.

VI.8.3 Corollary 8.3. For all odd ℓ and i > 0, K2i(OS)/ℓ ∼= H2
et(OS [1/ℓ], µ⊗i+1

ℓ ).
The same formula holds for ℓ = 2 if F is totally imaginary.

Proof. Immediate from
VI.8.2
8.2 since H2

et(R,Zℓ(i+ 1))/ℓ ∼= H2
et(R,µ

⊗i+1
ℓ ).

VI.8.3.1 Example 8.3.1. Let F be a number field containing a primitive ℓth root
of unity, ℓ 6= 2, and let S be the set of primes over ℓ in OF . If t is
the rank of Pic(OS)/ℓ, then H2

et(OS , µℓ) has rank t + |S| − 1 by (
VI.8.1.1
8.1.1).

Since H2
et(OS , µ⊗i+1

ℓ ) ∼= H2
et(OS , µℓ) ⊗ µ⊗iℓ , it follows from Corollary

VI.8.3
8.3 that

K2i(OS)/ℓ has rank t + |S| − 1. Hence the ℓ-primary subgroup of the finite
group K2i(OF ) has t+ |S| − 1 nonzero summands for each i ≥ 1.

VI.8.3.2 Example 8.3.2. If ℓ 6= 2 is a regular prime (see
VI.2.4.1
2.4.1), we claim that K2i(Z[ζℓ])

has no ℓ-torsion. The case K0 is tautological since Pic(OF )/ℓ = 0 by definition.
Setting R = Z[ζℓ, 1/ℓ], we have |S| = 1 and Br(R) = 0 by (

VI.8.1.1
8.1.1). The caseK2 is

known classically; see III.
III.6.9.3
6.9.3. By Theorem

VI.8.2
8.2, K2i(Z[ζℓ])(ℓ) ∼= H2

et(R,Zℓ(i +
1)). By Example

VI.8.3.1
8.3.1, H2

et(R,Zℓ(i+ 1)) = 0 and the claim now follows.
Note that every odd-indexed group K2i−1(Z[ζℓ]) ∼= Zr2 ⊕ Z/wi(F ) has non-

trivial ℓ-torsion, because w
(ℓ)
i (F ) ≥ ℓ for all i by VI.2.2

2.2.

Combining Theorems
VI.8.1
8.1 and

VI.8.2
8.2, we obtain a description of K∗(OS) when

F is totally imaginary. This includes exceptional number fields such as Q(
√
−7).

VI.8.4 Theorem 8.4. Let F be a totally imaginary number field, and let OS be the
ring of S-integers in F for some set S of finite places. Then:

Kn(OS) ∼=





Z⊕ Pic(OS), for n = 0;

Zr2+|S|−1 ⊕ Z/w1(F ), for n = 1;

⊕ℓ H2
et(OS [1/ℓ];Zℓ(i+ 1)) for n = 2i ≥ 2;

Zr2 ⊕ Z/wi(F ) for n = 2i− 1 ≥ 3.

Proof. The cases n = 0, 1 and the ranks of Kn are part of the Classical Data
VI.8.1
8.1. Since F is totally imaginary, the torsion comes from Theorem

VI.8.2
8.2.

Similarly, the mod-ℓ spectral sequence (
VI.4.2
4.2) collapses when ℓ is odd to yield

the K-theory of OS with coefficients Z/ℓ, as our next example illustrates.

VI.8.5 Example 8.5. If OS contains a primitive ℓth root of unity and 1/ℓ ∈ OS then
H1(OS ;µ⊗iℓ ) ∼= O×S /O×ℓS ⊕ ℓ Pic(OS) and H2(OS ;µ⊗iℓ ) ∼= Pic(OS)/ℓ⊕ ℓBr(OS)
for all i, so K0(OS ;Z/ℓ) ∼= Z/ℓ⊕ Pic(OS)/ℓ and

Kn(OS ;Z/ℓ) ∼=
{
O×S /O×ℓS ⊕ ℓ Pic(OS) for n = 2i− 1 ≥ 1,

Z/ℓ⊕ Pic(OS)/ℓ⊕ ℓBr(OS) for n = 2i ≥ 2.
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The Z/ℓ summands in degrees 2i are generated by the powers βi of the Bott
element β ∈ K2(OS ;Z/ℓ) (see IV.

IV.2.5.2
2.5.2). In fact, K∗(OS ;Z/ℓ) is free as a graded

Z[β]-module on Pic(OS)/ℓ, K1(OS ;Z/ℓ) and ℓBr(OS) ⊆ K2(OS ;Z/ℓ); this is
immediate from the multiplicative properties of (

VI.4.2
4.2) described in

VI.4.2.1
4.2.1. Taking

the direct limit over S, we also have K0(F ) = Z/ℓ and

Kn(F ;Z/ℓ) ∼=
{
F×/F×ℓ, for n = 2i− 1 ≥ 1,

Z/ℓ⊕ ℓBr(F ) for n = 2i ≥ 2.

We conclude this section with a comparison to the odd part of ζF (1− 2k).

VI.8.6 Birch-Tate Conjecture 8.6. If F is a number field, the zeta function ζF (s)
has a pole of order r2 at s = −1. Birch and Tate conjectured in 1970 that for
totally real number fields (r2 = 0) we have

ζF (−1) = (−1)r1 |K2(OF )|/w2(F ).

The odd part of this conjecture was proven by Wiles in
Wi
[229], using Tate’s

calculation that K2(OS)/m ∼= H2
et(OS , µ⊗2m ) when 1/m ∈ OS (see

Tate
[198] or

III(
III.6.10.4
6.10.4)).

The two-primary part of the Birch-Tate conjecture is still open, but it is
known to be a consequence of the 2-adic Main Conjecture of Iwasawa Theory (see
Kolster’s appendix to

RW
[161]). This was proven by Wiles for abelian extensions F

of Q in loc. cit. , so the full Birch-Tate Conjecture holds for all abelian extensions
of Q. For example, when F = Q we have ζQ(−1) = −1/12, |K2(Z)| = 2 and
w2(Q) = 24; see the Classical Data

VI.8.1
8.1

To generalize the Birch-Tate Conjecture
VI.8.6
8.6, we invoke the following deep

result of Wiles
Wi
[229, Thm. 1.6], which is often called the “Main Conjecture” of

Iwasawa Theory.

VI.8.7 Theorem 8.7. (Wiles) Let F be a totally real number field. If ℓ is odd and
OS = OF [1/ℓ], then for all even integers 2k > 0 there is a rational number uk,
prime to ℓ, such that:

ζF (1− 2k) = uk
|H2

et(OS ,Zℓ(2k)|
|H1

et(OS ,Zℓ(2k)|
.

The numerator and denominator on the right side are finite (Ex.
VI.8.1
8.1–

VI.8.2
8.2). Note

that if F is not totally real then ζF (s) has a pole of order r2 at s = 1− 2k.
We can now verify a conjecture of Lichtenbaum, made in

Li2
[112, 2.4–2.6],

which was only stated up to powers of 2.

VI.8.8 Theorem 8.8. If F is totally real, and Gal(F/Q) is abelian, then for all k ≥ 1:

ζF (1− 2k) = (−1)kr1 2r1 |K4k−2(OF )|
|K4k−1(OF )|

.
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Proof. We first show that the left and right sides of
VI.8.8
8.8 have the same power

of each odd prime ℓ. The group H2
et(OF [1/ℓ],Zℓ(2k)) is the ℓ-primary part of

K4k−2(OF ) by Theorem
VI.8.2
8.2. The group H1

et(OF [1/ℓ],Zℓ(2k)) in the numerator

of
VI.8.7
8.7 is K4k−1(OF )(ℓ) ∼= Z/w(ℓ)

2k (F ) by the proof of
VI.8.2
8.2; the details of this

identification are left to Exercise
EVI.8.3
8.3.

By the functional equation for ζF , the sign of ζF (1 − 2k) is (−1)kr1 .
Therefore it remains to check the power of 2 in Theorem

VI.8.8
8.8. By The-

orem
VI.9.12
9.12 in the next section, the power of 2 on the right side equals

|H2
et(OF [1/ℓ],Z2(2k))|/|H1

et(OF [1/ℓ],Z2(2k))|. By the 2-adic Main Conjecture
of Iwasawa Theory, which is known for abelian F , this equals the 2-part of
ζF (1− 2k).

EXERCISES

EVI.8.1 8.1. Suppose that ℓ is odd, or that F is totally imaginary. If R is any ring
of integers in F containing 1/ℓ, and i ≥ 2, show that H2

et(R,Zℓ(i)) is a finite
group, and conclude that H2

et(R,Z/ℓ
∞(i)) = 0. Hint: Use (

VI.4.2
4.2) to compare it to

K2i−2(R), which is finite by IV.
IV.1.18
1.18, IV.

IV.2.9
2.9 and IV.

IV.6.9
6.9. Then apply Ex. IV.

EIV.2.6
2.6.

EVI.8.2 8.2. Supose that F is any number field, and let R be any ring of integers in F
containing 1/ℓ. Show that H2

et(R,Zℓ(i)) is a finite group for all i ≥ 2, Hint: Let
R′ be the integral closure of R in F (

√
−1). Use a transfer argument to show

that the kernel A of H2
et(R,Zℓ(i)) → H2

et(R
′,Zℓ(i)) has exponent 2; A is finite

because it injects into H2
et(R,µ2). Now apply Exercise

EVI.8.1
8.1.

EVI.8.3 8.3. Let ℓ be an odd prime and F a number field. If i > 1, show that for every
ring OS of integers in F containing 1/ℓ,

H1
et(OS ,Zℓ(i)) ∼= H1

et(F,Zℓ(i)) ∼= Zrℓ ⊕ Z/w(ℓ)
i (F ),

where r is r2 for even i and r1 + r2 for odd i. Hint: Compare to K2i−1(F ;Zℓ),
as in the proof of

VI.8.2
8.2.

EVI.8.4 8.4. It is well known that Z[i] is a principal ideal domain. Show that the
finite group Kn(Z[i]) has odd order for all even n > 0. Hint: Show that
H2

et(Z[
1
2 , i], µ4) = 0.

EVI.8.5 8.5. Show that K3(Z[i]) ∼= Z⊕ Z/24, K7(Z[i]) ∼= Z⊕ Z/240 and

K4k+1(Z[i]) ∼= Z⊕ Z/4

for all k > 0. Note that the groups wi(Q(
√
−1)) are given in

VI.2.1.2
2.1.2.

EVI.8.6 8.6. Let F be a number field. Recall (Ex. IV.
EIV.7.10
7.10) that there is a canonical

involution on K∗(F ), and that it is multiplication by −1 on K1(F ) = F×. Show
that it is multiplication by (−1)i on K2i−1(OF ) and K2i−2(OF ) for i > 1. Hint:
Pick an odd prime ℓ and consider the canonical involution on K2i−1(F (ζℓ);Z/ℓ).

August 29, 2013 - Page 516 of
LastPage
568



Chapter VI

9 Real number fields at the prime 2

Let F be a real number field, i.e., F has r1 > 0 embeddings into R. The
calculation of the algebraic K-theory of F at the prime 2 is somewhat different
from the calculation at odd primes, for two reasons. One reason is that a real
number field has infinite cohomological dimension, which complicates descent
methods. A second reason is that the Galois group of a cyclotomic extension
need not be cyclic, so that the e-invariant may not split (see Example

VI.2.1.2
2.1.2).

A final reason, explained in IV.
IV.2.8
2.8, is that, while K∗(F ;Z/2ν) is a graded ring

for 2ν = 8 and a graded-commutative ring for 2ν ≥ 16, its graded product may
be non-associative and non-commutative for 2ν = 4, and the groups K∗(F ;Z/2)
do not have a natural multiplication.

For the real numbers R, the mod 2 motivic spectral sequence has Ep,q2 = Z/2
for all p, q in the octant q ≤ p ≤ 0. In order to distinguish between these terms,
it is useful to label the nonzero elements of H0

et(R,Z/2(i)) as βi, writing 1 for
β0. Using the multiplicative pairing with the spectral sequence ′E∗,∗2 converging
to K∗(R), multiplication by the element η of ′E0,−1

2 = H1(R,Z(1)) allows us to
write the nonzero elements in the −ith column as ηjβi. (See Table

VI.9.1.1
9.1.1 below)

From Suslin’s calculation of Kn(R) in Theorem
VI.3.1
3.1, we know that the groups

Kn(R;Z/2) are cyclic and 8-periodic (for n ≥ 0) with orders 2, 2, 4, 2, 2, 0, 0, 0
for n = 0, 1, . . . , 7. The unexpected case K2(R;Z/2) ∼= Z/4 is described in
IV.

IV.2.5.1
2.5.1.

VI.9.1 Theorem 9.1. In the spectral sequence (
VI.4.2
4.2) converging to K∗(R;Z/2), all the

d2 differentials with nonzero source on the lines p ≡ 1, 2 (mod 4) are isomor-
phisms. Hence the spectral sequence degenerates at E3. The only extensions are
the nontrivial extensions Z/4 in K8a+2(R;Z/2).

Proof. Recall from
VI.4.8.1
4.8.1 that the mod 2 spectral sequence has periodicity iso-

morphisms Ep,qr
≃−→ Ep−4,q−4r , p ≤ 0. Therefore it suffices to work with the

columns −3 ≤ p ≤ 0. These columns are shown in Table
VI.9.1.1
9.1.1.

Because K3(R;Z/2) ∼= Z/2, the differential closest to the origin, from β2 to
η3, must be nonzero. Since the pairing with ′E2 is multiplicative and d2(η) = 0,
we must have d2(η

jβ2) = ηj+3 for all j ≥ 0. Thus the column p = −2 of E3 is
zero, and every term in the column p = 0 of E3 is zero except for {1, η, η2}.

Similarly, we must have d2(β3) = η3β1 because K5(R;Z/2) = 0. By multi-
plicativity, this yields d2(η

jβ3) = ηj+3β1 for all j ≥ 0. Thus the column p = −3
of E3 is zero, and every term in the column p = −1 of E3 is zero except for
{β1, ηβ1, η2β1}.

VI.9.1.2 Variant 9.1.2. The spectral sequence (
VI.4.2
4.2) with coefficients Z/2∞ is very sim-

ilar, except that when p > q, Ep,q2 = Hp−q
et (R;Z/2∞(−q)) is: 0 for p even; Z/2

for p odd. If p is odd, the coefficient map Z/2 → Z/2∞ induces isomorphisms
on the Ep,q2 terms, so by Theorem

VI.9.1
9.1 all the d2 differentials with nonzero source

in the columns p ≡ 1 (mod 4) are isomorphisms. Again, the spectral sequence
converging to K∗(R;Z/2∞) degenerates at E3 = E∞. The only extensions are
the nontrivial extensions of Z/2∞ by Z/2 in K8a+4(R;Z/2∞) ∼= Z/2∞.
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p = −3 −2 −1 0
1

β1 η
β2 ηβ1 η2

β3 ηβ2 η2β1 η3

ηβ3 η2β2 η3β1 η4

The first 4 columns of E2

−3 −2 −1 0
1

β1 η
0 ηβ1 η2

0 0 η2β1 0
0 0 0 0

The same columns of E3

Table 9.1.1: The mod 2 spectral sequence for R. VI.9.1.1

VI.9.1.3 Variant 9.1.3. The analysis of the spectral sequence with 2-adic coefficients
is very similar, except that (a) H0(R;Z2(i)) is: Z2 for i even; 0 for i odd and
(b) (for p > q) Ep,q2 = Hp−q

et (R;Z/2∞(−q)) is: Z/2 for p even; 0 for p odd. All
differentials with nonzero source in the column p ≡ 2 (mod 4) are onto. Since
there are no extensions to worry about, we omit the details.

We now consider the K-theory of the ring OS of integers in a number field
F with coefficients Z/2∞. The E2 terms in the spectral sequence (

VI.4.2
4.2) are

the (étale) cohomology groups Hn(OS ;Z/2∞(i)). Following Tate, the r1 real
embeddings of F define natural maps αnS(i):

Hn(OS ;Z/2∞(i))
αn

S(i)
>

r1⊕
Hn(R;Z/2∞(i)) ∼=

{
(Z/2)r1 , i− n odd

0, i− n even.
(9.2) VI.9.2

This map is an isomorphism for all n ≥ 3 by Tate-Poitou duality
Milne2
[128, I(4.20)].

It is also an isomorphism for n = 2 and i ≥ 2, as shown in Exercise
VI.9.1
9.1.

Write H̃1(OS ;Z/2∞(i)) for the kernel of α1
S(i).

VI.9.3 Lemma 9.3. For even i, H1(F ;Z/2∞(i))
α1(i)

> (Z/2)r1 is a split surjection.

Hence H1(OS ;Z/2∞(i)) ∼= (Z/2)r1 ⊕ H̃1(OS ;Z/2∞(i)) for sufficiently large S.

Proof. By the strong approximation theorem for units of F , the left vertical
map is a split surjection in the diagram:

F×/F×2
∼=
> H1(F,Z/2) > H1(F,Z/2∞(i))

(Z/2)r1 = ⊕ R×/R×2

split onto ⊕σ
∨ ∼=

> ⊕H1(R,Z/2)
∨ ∼=

> ⊕H1(R,Z/2∞(i)).

α1(i)
∨

Since F×/F×2 is the direct limit (over S) of the groups O×S /O×2S , we may
replace F by OS for sufficiently large S.

The next result is taken from
RW
[161, 6.9]. When n ≡ 5 (mod 8), we have an

unknown group extension; to express it, we write A ⋊ B for an abelian group
extension of B by A.
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VI.9.4 Theorem 9.4. Let F be a real number field, and let OS be a ring of S-integers
in F containing OF [ 12 ]. Then α1

S(4k) is onto (k > 0), and for all n ≥ 0:

Kn(OS ;Z/2∞) ∼=





Z/w4k(F ) for n = 8k,

H1(OS ;Z/2∞(4k + 1)) for n = 8k + 1,

Z/2 for n = 8k + 2,

H1(OS ;Z/2∞(4k + 2)) for n = 8k + 3,

Z/2w4k+2 ⊕ (Z/2)r1−1 for n = 8k + 4,

(Z/2)r1−1 ⋊H1(OS ;Z/2∞(4k + 3)) for n = 8k + 5,

0 for n = 8k + 6,

H̃1(OS ;Z/2∞(4k + 4)) for n = 8k + 7.

Proof. Consider the morphism αS of spectral sequences (
VI.4.2
4.2) with coefficients

Z/2∞, from that for OS to the direct sum of r1 copies of that for R. By
naturality, the morphism in the Ep,q2 spot is the map αp−qS (−q) of (

VI.9.2
9.2). By

Tate-Poitou duality and Ex.
EVI.9.1
9.1, this is an isomorphism on Ep,q2 except on the

diagonal p = q, where it is the injection of Z/w(2)
−q(F ) into Z/2∞, and on the

critical diagonal p = q + 1.
When p ≡ +1 (mod 4), we saw in

VI.9.1.2
9.1.2 that dp,q2 (R) is an isomorphism

whenever q ≤ p < 0. It follows that we may identify dp,q2 (OS) with αp−qS .
Therefore dp,q2 (OS) is an isomorphism if p ≥ 2 + q, and an injection if p = q.
As in

VI.9.1.2
9.1.2, the spectral sequence degenerates at E3, yielding Kn(OS ;Z/2∞)

as proclaimed, except for two points: (a) when n = 8k + 4, the extension of
Z/w4k+2 by (Z/2)r1 is seen to be nontrivial by comparison with the extension
for R, and (b) when n = 8k+6, it only shows that Kn(OS ;Z/2∞) is the cokernel
of α1

S(4k + 4).
To resolve (b) we must show that the map α1

S(4k + 4) is onto when k ≥ 0.
Set n = 8k + 6. Since Kn(OS) is finite, Kn(OS ;Z/2∞) must equal the 2-
primary subgroup of Kn−1(OS), which is independent of S by V.

V.6.8
6.8. But for

sufficiently large S, the map α1(4k+4) is a surjection by Lemma
VI.9.3
9.3, and hence

Kn(OS ;Z/2∞) = 0.

VI.9.5 Theorem 9.5. Let OS be a ring of S-integers in a number field F . Then for
each odd n ≥ 3, the group Kn(OS) ∼= Kn(F ) is given by:

(a) If F is totally imaginary, Kn(F ) ∼= Zr2 ⊕ Z/wi(F );

(b) If F has r1 > 0 real embeddings then, setting i = (n+ 1)/2,

Kn(F ) ∼=





Zr1+r2 ⊕ Z/wi(F ), n ≡ 1 (mod 8)

Zr2 ⊕ Z/2wi(F )⊕ (Z/2)r1−1, n ≡ 3 (mod 8)

Zr1+r2 ⊕ Z/ 1
2wi(F ), n ≡ 5 (mod 8)

Zr2 ⊕ Z/wi(F ), n ≡ 7 (mod 8).

Note that these groups are determined only by the number r1, r2 of real and
complex places of F and the integers wi(F ).
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Proof. Part (a), when F is totally imaginary, is given by Theorem
VI.8.4
8.4. In

case (b), since the rank is classically known (see
VI.8.1
8.1), and Kn(OS) ∼= Kn(F )

by V.
V.6.8
6.8, it suffices to determine the torsion subgroup of Kn(OS). The odd

torsion is given by Theorem
VI.8.2
8.2, so we need only worry about the 2-primary

torsion. Since Kn+1(OS) is finite, it follows from Ex. IV.
EIV.2.6
2.6 that the 2-primary

subgroup of Kn(OS) is Kn+1(OS ;Z/2∞), which we can read off from Theorem
VI.9.4
9.4, recalling from

VI.2.3
2.3(b) that w

(2)
i (F ) = 2 for odd i.

VI.9.5.1 Example 9.5.1. Kn(Q) ∼= Z for all n ≡ 5 (mod 8) as wi(Q) = 2; see
VI.2.1.2
2.1.2.

More generally, if F has a real embedding and n ≡ 5 (mod 8), then Kn(F )
has no 2-primary torsion, because 1

2wi(F ) is an odd integer when i is odd; see
VI.2.3
2.3(b).

The narrow Picard group

To determine the 2-primary torsion in Kn(OS) when n is even, we need to
introduce the narrow Picard group and the signature defect of the ring OS. We
begin with some terminology.

Each real embedding σi : F → R determines a map F× → R× → Z/2,
detecting the sign of units of F under that embedding. The sum of these is the
sign map σ : F× > (Z/2)r1 ; it is surjective by the strong approximation
theorem for F . The kernel F×+ of σ is called the group of totally positive units
in F , since it consists of units which are positive under every real embedding.

If R = OS is a ring of integers in F , we write R×+ for R× ∩ F×+ ,
the subgroup of totally positive units in R. Since the sign map σ factors
through F×/F×2 = H1

et(F,Z/2), the restriction to R× also factors through
α1 :H1

et(R,Z/2)→ (Z/2)r1 . This map is part of a family of maps

αn : Hn
et(R,Z/2)→ ⊕r1Hn

et(R,Z/2) = (Z/2)r1 (9.6) VI.9.6

related to the maps αn(i) in (
VI.9.2
9.2). By Tate-Poitou duality, αn is an isomorphism

for all n ≥ 3; it is a surjection for n = 2 (see Ex.
EVI.9.2
9.2). We will be interested in

α1. The following classical definitions are due to Weber; see
Co
[42, 5.2.7] or

Neu
[145,

VI.1].

VI.9.6.1 Definition 9.6.1. The signature defect j(R) of R is defined to be the dimension
of the cokernel of α1. Since the sign of −1 nontrivial, we have 0 ≤ j(R) < r1.
Note that j(F ) = 0, and that j(OS) ≤ j(OF ) for all S.

The narrow Picard group Pic+(R) is defined to be the cokernel of the re-
stricted divisor map F×+ →

⊕
℘ 6∈S Z of I.

I.3.5
3.5; it is a finite group. Some authors

call Pic+(OS) the ray class group and write it as ClSF .

The kernel of the restricted divisor map is clearly R×+, and it is easy to see
from this that there is an exact sequence

0→ R×+ → R×
σ−→ (Z/2)r1 → Pic+(R)→ Pic(R)→ 0.
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For simplicity we write Hn(R,Z/2) for Hn
et(R,Z/2) and, as in (

VI.9.2
9.2), we

define H̃n(R;Z/2) to be the kernel of αn. A diagram chase (left to Ex.
EVI.9.3
9.3

shows that there is an exact sequence

0→H̃1(R;Z/2)→ H1(R;Z/2)
α1

−→ (Z/2)r1→Pic+(R)/2→ Pic(R)/2→0.
(9.6.2) VI.9.6.2

Thus the signature defect j(R) of R is also the dimension of the kernel of
Pic+(R)/2 → Pic(R)/2. If we let t and u denote the dimensions of Pic(R)/2
and Pic+(R)/2, respectively, then this means that u = t + j(R). If s denotes
the number of finite places of OS, then dimH1(OS ;Z/2) = r1 + r2 + s+ t and
dimH2(OS ;Z/2) = r1 + s + t − 1. This follows from

VI.8.1
8.1 and (

VI.8.1.1
8.1.1), using

Kummer theory.

VI.9.6.3 Lemma 9.6.3. Suppose that 1
2 ∈ OS. Then dim H̃1(OS ,Z/2) = r2+s+u, and

dim H̃2(OS ,Z/2) = t+ s− 1.

Proof. The first assertion is immediate from (
VI.9.6.2
9.6.2). Since α2 is onto, the second

assertion follows.

VI.9.7 Theorem 9.7. Let F be a real number field, and OS a ring of integers contain-
ing 1

2 . If j = j(OS) is the signature defect, then the mod 2 algebraic K-groups
of OS are given (up to extensions) for n > 0 as follows:

Kn(OS ;Z/2) ∼=





H̃2(OS ;Z/2)⊕ Z/2 for n = 8k,

H1(OS ;Z/2) for n = 8k + 1,

H2(OS ;Z/2)⋊ Z/2 for n = 8k + 2,

(Z/2)r1−1 ⋊H1(OS ;Z/2) for n = 8k + 3,

(Z/2)j ⋊H2(OS ;Z/2) for n = 8k + 4,

(Z/2)r1−1 ⋊ H̃1(OS ;Z/2) for n = 8k + 5,

(Z/2)j ⊕ H̃2(OS ;Z/2) for n = 8k + 6,

H̃1(OS ;Z/2) for n = 8k + 7.

Proof. (Cf.
RW
[161, 7.8].) As in the proof of Theorem

VI.9.4
9.4, we compare the spectral

sequence for R = OS with the sum of r1 copies of the spectral sequence for R.
For n ≥ 3 we have Hn(R;Z/2) ∼= (Z/2)r1 . It is not hard to see that we may
identify the differentials d2 : Hn(R,Z/2) → Hn+3(R,Z/2) with the maps αn.
Since these maps are described in

VI.9.6
9.6, we see from periodicity

VI.4.8.1
4.8.1 that the

columns p ≤ 0 of E3 are 4-periodic, and all nonzero entries are described by
Figure

VI.9.7.1
9.7.1.

As in Example
VI.4.6
4.6, the E2 page of the spectral sequence (

VI.4.2
4.2) has only

one nonzero entry for p > 0, namely E+1,−1
3 = Pic(R)/2, and it only affects

K0(R;Z/2). By inspection, E3 = E∞, yielding the desired description of the
groups Kn(R,Z/2) in terms of extensions. The proof that the extensions split
for n ≡ 0, 6 (mod 8) is left to Exercises

EVI.9.4
9.4 and

EVI.9.5
9.5.
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p = −3 −2 −1 0
1

β1 H1

0 H1 H2

0 H̃1 H2 (Z/2)r1−1

H̃1 H̃2 (Z/2)r1−1 (Z/2)j

H̃2 0 (Z/2)j 0
0 0 0 0

The first 4 columns of E3 = E∞

Table 9.7.1: The mod 2 spectral sequence for OS . VI.9.7.1

The case F = Q has historical importance, because of its connection with the
image of J (see

VI.2.1.3
2.1.3 or

Qlet
[155]) and classical number theory. The following result

was first established in
We97
[224]; the groups are not truly periodic only because the

order of K8k−1(Z) depends upon k.

VI.9.8 Corollary 9.8. For n ≥ 0, the 2-primary subgroups of Kn(Z) and Kn(Z[1/2])
are essentially periodic, of period eight, and are given by the following table for
n ≥ 2. (When n ≡ 7 (mod 8), we set k = (n+ 1)/8.)

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z){2} Z/2 Z/2 Z/16 0 0 0 Z/16k 0

In particular, Kn(Z) and Kn(Z[1/2]) have odd order for all n ≡ 4, 6, 8
(mod 8), and the finite group K8k+2(Z) is the sum of Z/2 and a finite group of
odd order. We will say more about the odd torsion in the next section.

Proof. When n is odd, this is Theorem
VI.9.5
9.5; w

(2)
4k is the 2-primary part of 16k

by
VI.2.3
2.3(c). For R = Z[1/2] we have s = 1 and t = u = j = 0. By Lemma

VI.9.6.3
9.6.3 we have dim H̃1(R;Z/2) = 1 and H̃2(R;Z/2) = 0. By

VI.9.7
9.7, the groups

Kn(Z[1/2];Z/2) are periodic of orders 2, 4, 4, 4, 2, 2, 1, 2 for n ≡ 0, 1, ..., 7
respectively. The groups Kn(Z[1/2]) for n odd, given in

VI.9.5
9.5, together with

the Z/2 summand in K8k+2(Z) provided by topology (see
VI.2.1.3
2.1.3), account for

all of Kn(Z[1/2];Z/2), and hence must contain all of the 2-primary torsion in
Kn(Z[1/2]).

Recall that the 2-rank of an abelian group A is just the dimension of
Hom(Z/2, A). We have already seen (in Theorem

VI.9.5
9.5) that for n ≡ 1, 3, 5, 7

(mod 8) the 2-ranks of Kn(OS) are: 1, r1, 0 and 1, respectively.

VI.9.9 Corollary 9.9. For n ≡ 2, 4, 6, 8 (mod 8), n > 0, the respective 2-ranks of the
finite groups Kn(OS) are: r1+ s+ t− 1, j+ s+ t− 1, j+ s+ t− 1 and s+ t− 1.

Here j is the signature defect of OS (
VI.9.6.1
9.6.1), s is the number of finite places

of OS and t is the rank of Pic(OS)/2.
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Proof. Since Kn(R;Z/2) is an extension of Hom(Z/2,Kn−1R) by Kn(R)/2, and
the dimensions of the odd groups are known, we can read this off from the list
given in Theorem

VI.9.7
9.7, using Lemma

VI.9.6.3
9.6.3.

VI.9.9.1 Example 9.9.1. Consider F = Q(
√
p), where p is prime. When p ≡ 1

(mod 8), it is well known that t = j = 0 but s = 2. It follows that K8k+2(OF )
has 2-rank 3, while the two-primary summand of Kn(OF ) is nonzero and cyclic
when n ≡ 4, 6, 8 (mod 8).

When p ≡ 7 (mod 8), we have j = 1 for both OF and R = OF [1/2]. Since
r1 = 2 and s = 1, the 2-ranks of the finite groups Kn(R) are: t+ 2, t+ 1, t+ 1
and t for n ≡ 2, 4, 6, 8 (mod 8) by

VI.9.9
9.9. For example, if t = 0 (Pic(R)/2 = 0)

then Kn(R) has odd order for n ≡ 8 (mod 8), but the 2-primary summand of
Kn(R) is (Z/2)2 when n ≡ 2 and is cyclic when n ≡ 4, 6.

VI.9.9.2 Example 9.9.2. (2–regular fields) A number field F is said to be 2–regular if
there is only one prime over 2 and the narrow Picard group Pic+(OF [ 12 ]) is odd
(i.e., t = u = 0 and s = 1). In this case, we see from

VI.9.9
9.9 that K8k+2(OF ) is the

sum of (Z/2)r1 and a finite odd group, while Kn(OF ) has odd order for all n ≡
4, 6, 8 (mod 8) (n > 0). In particular, the map KM

4 (F )→ K4(F ) must be zero,
since it factors through the odd order group K4(OF ), and KM

4 (F ) ∼= (Z/2)r1 .
Browkin and Schinzel

BrwS
[35] and Rognes and Østvær

ROst
[160] have studied this

case. For example, when F = Q(
√
m) and m > 0 (r1 = 2), the field F is 2-

regular exactly when m = 2, or m = p or m = 2p with p ≡ 3, 5 (mod 8) prime.
(See

BrwS
[35].)

A useful example is F = Q(
√
2). Note that KM

4 (F ) ∼= (Z/2)2 is generated
by the Steinberg symbols {−1,−1,−1,−1} and {−1,−1,−1, 1 +

√
2}. Both

symbols must vanish in K4(Z[
√
2]), since this group has odd order. This is the

case j = 0, r1 = 2 of Corollary
VI.9.10
9.10.

Let ρ denote the rank of the image of the group KM
4 (F ) ∼= (Z/2)r1 in K4(F ).

VI.9.10 Corollary 9.10. Let F be a real number field. Then j(OF [1/2]) ≤ ρ ≤ r1 − 1.
The image (Z/2)ρ of KM

4 (F ) → K4(F ) lies in the subgroup K4(OF ), and its
image in K4(OS)/2 has rank j(OS) whenever S contains all primes over 2.

In particular, the image (Z/2)ρ of KM
4 (F )→ K4(F ) lies in 2 ·K4(F ).

Proof. By Ex. IV.
EIV.1.12
1.12(d), {−1,−1,−1,−1} is nonzero in KM

4 (F ) but zero in
K4(F ). Since KM

4 (F ) ∼= (Z/2)r1 by III.
III.7.2
7.2(d), we have ρ < r1. The asser-

tion that KM
4 (F )→ K4(F ) factors through K4(OF ) follows from the fact that

K3(OF ) = K3(F ) (see V.
V.6.8
6.8), by multiplying KM

3 (F ) and K3(OF ) ∼= K3(F )
by [−1] ∈ K1(Z). We saw in

VI.4.3
4.3 that the edge map Hn(F,Z(n)) → Kn(F ) in

the motivic spectral sequence agrees with the usual map KM
n (F ) → Kn(F ).

By Theorem
VI.4.1
4.1 (due to Voevodsky), KM

n (F )/2ν ∼= Hn(F,Z(n))/2ν ∼=
Hn(F,Z/2ν(n)). For n = 4, the image of the edge map from H4(OS ,Z/2ν(4)) ∼=
H4(F,Z/2ν(4)) → K4(OS ;Z/2) has rank j by Table

VI.9.7.1
9.7.1; this implies the as-

sertion that the image in K4(OS)/2 ⊂ K4(OS ;Z/2) has rank j(OS). Finally,
taking OS = OF [1/2] yields the inequality j(OS) ≤ ρ.
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VI.9.10.1 Example 9.10.1. (ρ = 1) Consider F = Q(
√
7), OF = Z[

√
7] and R =

OF [1/2]; here s = 1, t = 0 and j(R) = ρ = 1 (the fundamental unit u = 8+3
√
7

is totally positive). Hence the image of KM
4 (F ) ∼= (Z/2)2 in K4(Z[

√
7]) is Z/2

on the symbol σ = {−1,−1,−1,
√
7}, and this is all of the 2-primary torsion in

K4(Z[
√
7]) by

VI.9.9
9.9.

On the other hand, OS = Z[
√
7, 1/7] still has ρ = 1, but now j = 0, and

the 2-rank of K4(OS) is still one by
VI.9.9
9.9. Hence the extension 0 → K4(OF ) →

K4(OS) → Z/48 → 0 of V.
V.6.8
6.8 cannot be split, implying that the 2-primary

subgroup of K4(OS) must then be Z/32.
In fact, the nonzero element σ is divisible in K4(F ). This follows from the

fact that if p ≡ 3 (mod 28) then there is an irreducible q = a+b
√
7 whose norm

is −p = qq̄. Hence R′ = Z[
√
7, 1/2q] has j(R′) = 0 but ρ = 1, and the extension

0 → K4(OF ) → K4(OS) → Z/(p2 − 1) → 0 of V.
V.6.8
6.8 is not split. If in addition

p ≡ −1 (mod 2ν) — there are infinitely many such p for each ν — then there
is an element v of K4(R

′) such that 2ν+1v = σ See
WeTK
[226] for details.

VI.9.10.2 Question 9.10.2. Can ρ be less than the minimum of r1− 1 and j+ s+ t− 1?

As in (
VI.9.2
9.2), when i is even we define H̃2(R;Z2(i)) to be the kernel of α2(i) :

H2(R;Z2(i))→ H2(R;Z2(i))
r1 ∼= (Z/2)r1 . By Lemma

VI.9.6.3
9.6.3, H̃2(R;Z2(i)) has

2-rank s+ t− 1. The following result is taken from
RW
[161, 0.6].

VI.9.11 Theorem 9.11. Let F be a number field with at least one real embedding, and
let R = OS denote a ring of integers in F containing 1/2. Let j be the signature

defect of R, and write wi for w
(2)
i (F ).

Then there is an integer ρ, j ≤ ρ < r1, such that, for all n ≥ 2, the two-
primary subgroup Kn(OS){2} of Kn(OS) is isomorphic to:

Kn(OS){2} ∼=





H2
et(R;Z2(4k + 1)) for n = 8k,

Z/2 for n = 8k + 1,

H2
et(R;Z2(4k + 2)) for n = 8k + 2,

(Z/2)r1−1 ⊕ Z/2w4k+2 for n = 8k + 3,

(Z/2)ρ ⋊H2
et(R;Z2(4k + 3)) for n = 8k + 4,

0 for n = 8k + 5,

H̃2
et(R;Z2(4k + 4)) for n = 8k + 6,

Z/w4k+4 for n = 8k + 7.

Proof. When n = 2i − 1 is odd, this is Theorem
VI.9.5
9.5, since w

(2)
i (F ) = 2 when

n ≡ 1 (mod 4) by
VI.2.3
2.3(b). When n = 2 it is III.

III.6.9.3
6.9.3. To determine the two-

primary subgroup Kn(OS){2} of the finite group K2i+2(OS) when n = 2i + 2,
we use the universal coefficient sequence

0→ (Z/2∞)r → K2i+3(OS ;Z/2∞)→ K2i+2(OS){2} → 0,

where r is the rank of K2i+3(OS) and is given by
VI.8.1
8.1 (r = r1 + r2 or r2).

To compare this with Theorem
VI.9.4
9.4, we note that H1(OS ,Z/2∞(i)) is the di-

rect sum of (Z/2∞)r and a finite group, which must be H2(OS ,Z2(i)) by uni-
versal coefficients; see

RW
[161, 2.4(b)]. Since α1

S(i) : H1(R;Z2(i)) → (Z/2)r1
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must vanish on the divisible group (Z/2∞)r, it induces the natural map
α2
S(i) : H

2
et(OS ;Z2(i))→ (Z/2)r1 and

H̃1(OS ,Z/2∞(i)) ∼= (Z/2∞)r ⊕ H̃2(OS ,Z2(i)).

This proves all of the theorem, except for the description of Kn(OS), n = 8k+4.
By mod 2 periodicity

VI.4.8.1
4.8.1, the integer ρ of

VI.9.10
9.10 equals the rank of the image

of H4(OS ,Z/2(4)) ∼= H4(OS ,Z/2(4k + 4)) ∼= (Z/2)r1 in Hom(Z/2,Kn(OS)),
considered as a quotient of Kn+1(OS ;Z/2).

We can combine the 2-primary information in
VI.9.11
9.11 with the odd torsion

information in
VI.8.2
8.2 and

VI.8.8
8.8 to relate the orders of K-groups to the orders of étale

cohomology groups. Up to a factor of 2r1 , they were conjectured by Lichtenbaum
in

Li2
[112]. Let |A| denote the order of a finite abelian group A.

VI.9.12 Theorem 9.12. Let F be a totally real number field, with r1 real embeddings,
and let OS be a ring of integers in F . Then for all even i > 0

2r1 · |K2i−2(OS)|
|K2i−1(OS)|

=

∏
ℓ |H2

et(OS [1/ℓ];Zℓ(i))|∏
ℓ |H1

et(OS [1/ℓ];Zℓ(i))|
.

Proof. Since 2i− 1 ≡ 3 (mod 4), all groups involved are finite (see
VI.8.1
8.1, Ex.

EVI.8.2
8.2

and Ex.
EVI.8.3
8.3.) Write hn,i(ℓ) for the order of Hn

et(OS [1/ℓ];Zℓ(i)). By Ex.
EVI.8.3
8.3,

h1,i(ℓ) = w
(ℓ)
i (F ). By

VI.9.5
9.5, the ℓ-primary subgroup of K2i−1(OS) has order

h1,i(ℓ) for all odd ℓ and all even i > 0, and also for ℓ = 2 with the exception
that when 2i− 1 ≡ 3 (mod 8) then the order is 2r1h1,i(2).

By Theorems
VI.8.2
8.2 and

VI.9.11
9.11, the ℓ-primary subgroup of K2i−2(OS) has order

h2,i(ℓ) for all ℓ, except when ℓ = 2 and 2i−2 ≡ 6 (mod 8) when it is h1,i(2)/2r1 .
Combining these cases yields the formula asserted by the theorem.

Theorem
VI.9.12
9.12 was used in the previous section (Theorem

VI.8.8
8.8) to equate the

ratio of orders of the finite groups K4k−2(OF ) and K4k−1(OF ) with |ζF (1 −
2k)|/2r1 .

EXERCISES

EVI.9.1 9.1. Suppose that F has r1 > 0 embeddings into R. Show that

H2
et(OS ;Z/2∞(i)) ∼= H2

et(F ;Z/2
∞(i)) ∼=

{
(Z/2)r1 , i ≥ 3 odd

0, i ≥ 2 even.

Using (
VI.8.1.1
8.1.1), determine H2

et(OS ;Z/2∞(1)). Hint: Compare F with F (
√
−1),

and use Exercise
EVI.8.1
8.1 to see that H2

et(OS ;Z/2∞(i)) has exponent 2. Hence the
Kummer sequence is:

0→ H2
et(OS ;Z/2∞(i))→ H3

et(OS ;Z/2)→ H3
et(OS ;Z/2∞(i))→ 0.

Now plug in the values of the H3 groups, which are known by (
VI.9.2
9.2).
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EVI.9.2 9.2. Show that α2 is onto. Hint: Use Ex.
VI.9.1
9.1 and the coefficient sequence for

Z/2 ⊂ Z/2∞(4) to show that the map H2
et(R;Z/2)→ H2

et(R;Z/2
∞(4)) is onto.

EVI.9.3 9.3. Establish the exact sequence (
VI.9.6.2
9.6.2). (This is taken from

RW
[161, 9.6].)

EVI.9.4 9.4. The stable homotopy group π8k(QS
0;Z/2) contains an element β8k of ex-

ponent 2 which maps onto the generator of K8k(R;Z/2) ∼= Z/2; see
RW
[161, 5.1].

Use it to show the extension K8k(OS ;Z/2) of Z/2 by H̃2(OS ,Z/2) splits in
Theorem

VI.9.7
9.7.

EVI.9.5 9.5. Show that the extension K8k+6(OS ;Z/2) splits in Thm.
VI.9.7
9.7. Conclude that

K8k+6(OS)/2 ∼= H̃2(OS ,Z/2)⊕ (Z/2)j . Hint: use Example
VI.9.5.1
9.5.1.

EVI.9.6 9.6. Let R = OF [1/2], where F is a real number field. Show thatK8k+4(R;Z/2)
is an extension of 2Br(R) by Pic+(R)/2.

Let Br+(R) denote the kernel of the canonical map Br(R)→ (Z/2)r1 induced
by (

VI.8.1.1
8.1.1). Show that K8k+6(R;Z/2) ∼= Pic+(R)/2⊕ 2Br+(R). (See

RW
[161, 7.8].)
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10 The K-theory of Z

The determination of the groups Kn(Z) has been a driving force in the develop-
ment of K-theory. We saw in Chapters II and III that the groups K0(Z), K1(Z)
and K2(Z) are related to very classical mathematics. In the 1970’s, homologi-
cal methods led to the calculation of the rank of Kn(Z) by Borel (see

VI.8.1
8.1) and

K3(Z) ∼= Z/48 by Lee and Szczarba (see Example
VI.2.1.2
2.1.2 or

LSz
[108]).

In order to describe the groups Kn(Z), we use the Bernoulli numbers Bk.
We let ck denote the numerator of Bk/4k; ck is a product of irregular primes
(see

VI.2.4.1
2.4.1). We saw in Lemma

VI.2.4
2.4 that the denominator of Bk/4k is w2k, so

Bk/4k = ck/w2k.

VI.10.1 Theorem 10.1. For n 6≡ 0 (mod 4) and n > 1, we have:

(1) If n = 8k + 1, Kn(Z) ∼= Kn(Q) ∼= Z⊕ Z/2;

(2) If n = 8k + 2, |Kn(Z)| = 2c2k+1;

(3) If n = 8k + 3, Kn(Z) ∼= Kn(Q) ∼= Z/2w4k+2;

(5) If n = 8k + 5, Kn(Z) ∼= Kn(Q) ∼= Z;

(6) If n = 8k + 6, |Kn(Z)| = c2k+1;

(7) If n = 8k + 7, Kn(Z) ∼= Kn(Q) ∼= Z/w4k+4.

As a consequence, for k ≥ 1 we have:
|K4k−2(Z)|
|K4k−1(Z)|

=
Bk
4k

=
(−1)k

2
ζ(1− 2k).

Proof. The equality Bk/4k = (−1)kζ(1− 2k)/2 comes from
VI.2.4.2
2.4.2. The equality

of this with |K4k−2(Z)|/|K4k−1(Z)| comes from Theorem
VI.8.8
8.8 (using

VI.9.12
9.12). This

gives the displayed formula.
When n is odd, the groups Kn(Z) were determined in Theorem

VI.9.5
9.5, and

Kn(Z) ∼= Kn(Q) by V.
V.6.8
6.8. Thus we may suppose that n = 4k − 2. Since the 2-

primary torsion in Kn(Z) was determined in Corollary
VI.9.8
9.8, we can ignore factors

of 2. But up to a factor of 2, |K4k−1(Z)| = w2k(Q) so the displayed formula
yields |K4k−2(Z)|/w2k = Bk/4k and hence |K4k−2(Z)| = ck.

The groups Kn(Z) are much harder to determine when n ≡ 0 (mod 4). The
group K4(Z) was proven to be zero in the late 1990’s by Soulé and Rognes (see
Remark

VI.10.1.3
10.1.3 or

Rognes
[159]). If n = 4i ≥ 8, the orders of the groups K4i(Z) are

known to be products of irregular primes ℓ, with ℓ > 108, and are conjectured to
be zero; this conjecture follows from, and implies, Vandiver’s conjecture (stated
in

VI.10.8
10.8 below).

In Table
VI.10.1.1
10.1.1, we have summarized what we know for n < 20, 000; conjec-

turally the same pattern holds for all n (see Theorem
VI.10.2
10.2).
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K0(Z) = Z K8(Z) = (0?) K16(Z) = (0?) K8k(Z) = (0?), k≥1
K1(Z) = Z/2 K9(Z) = Z⊕ Z/2 K17(Z) = Z⊕ Z/2 K8k+1(Z) = Z⊕ Z/2
K2(Z) = Z/2 K10(Z) = Z/2 K18(Z) = Z/2 K8k+2(Z) = Z/2c2k+1

K3(Z) = Z/48 K11(Z) = Z/1008 K19(Z) = Z/528 K8k+3(Z) = Z/2w4k+2

K4(Z) = 0 K12(Z) = (0?) K20(Z) = (0?) K8k+4(Z) = (0?)
K5(Z) = Z K13(Z) = Z K21(Z) = Z K8k+5(Z) = Z
K6(Z) = 0 K14(Z) = 0 K22(Z) = Z/691 K8k+6(Z) = Z/c2k+2

K7(Z) = Z/240 K15(Z) = Z/480 K23(Z) = Z/65520 K8k+7(Z) = Z/w4k+4.

Table 10.1.1: The groups Kn(Z), n < 20, 000.
The notation ‘(0?)’ refers to a finite group, conjecturally zero,
whose order is a product of irregular primes > 108. VI.10.1.1

VI.10.1.2 Example 10.1.2 (Relation to πsn). Using homotopy-theoretic techniques, the
torsion subgroups of Kn(Z) had been detected by the late 1970’s, due to the
work of Quillen

Qlet
[155], Harris-Segal

HS
[84], Soulé

Sou
[171] and others.

As pointed out in Remark
VI.2.1.3
2.1.3, the image of the natural maps πsn → Kn(Z)

capture most of the Harris-Segal summands
VI.2.5.1
2.5.1. When n is 8k + 1 or 8k + 2,

there is a Z/2-summand in Kn(Z), generated by the image of Adams’ element
µn. (It is the 2-torsion subgroup by

VI.9.8
9.8.) Since w4k+1(Q) = 2, we may view it

as the Harris-Segal summand when n = 8k + 1. When n = 8k + 5, the Harris-
Segal summand is zero by Example

VI.9.5.1
9.5.1. When n = 8k + 7 the Harris-Segal

summand of Kn(Z) is isomorphic to the subgroup J(πnO) ∼= Z/w4k+4(Q) of πsn.

When n = 8k + 3, the subgroup J(πnO) ∼= Z/w4k+2(Q) of πsn is contained
in the Harris-Segal summand Z/(2wi) of Kn(Z); the injectivity was proven
by Quillen in

Qlet
[155], and Browder showed that the order of the summand was

2wi(Q).

The remaining calculations of K∗(Z) depend upon the development of mo-
tivic cohomology, via the tools described in Section 4, and date to the period
1997–2007. The 2-primary torsion was resolved in 1997 using

V-MC
[211] (see Sec-

tion 9), while the order of the odd torsion (conjectured by Lichtenbaum) was
only determined using the Norm Residue Theorem

VI.4.1
4.1 of Rost and Voevodsky.

VI.10.1.3 Remark 10.1.3 (Homological methods). Lee-Szczarba
LSz
[108] and Soulé

So78
[172]

used homological methods in the 1970s to show that K3(Z) ∼= Z/48 and that
there is no p-torsion in K4(Z) or K5(Z) for p > 3. Much later, Rognes

Rognes
[159]

and Elbaz-Vincent–Gangl–Soulé
EGS
[53] refined this to show that K4(Z) = 0,

K5(Z) = Z, and that K6(Z) has at most 3-torsion. This used the calculation in
RW
[161] (using

V-MC
[211]) that there is no 2-torsion in K4(Z), K5(Z) or K6(Z).

Our general description of K∗(Z) is completed by the following assertion,
which follows immediately from Theorems

VI.10.1
10.1,

VI.10.9
10.9 and

VI.10.10
10.10 below, It was

observed independently by Kurihara
Kur
[105] and Mitchell

Mit
[137].

VI.10.2 Theorem 10.2. If Vandiver’s conjecture holds, then the groups Kn(Z) are
given by Table

VI.10.2.1
10.2.1, for all n ≥ 2. Here k is the integer part of 1 + n

4 .
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n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z) Z⊕ Z/2 Z/2ck Z/2w2k 0 Z Z/ck Z/w2k 0

Table 10.2.1: The K-theory of Z, assuming Vandiver’s Conjecture VI.10.2.1

When n is at most 20,000 and n ≡ 2 (mod 4), we show that the finite groups
Kn(Z) are cyclic in Examples

VI.10.3
10.3 and

VI.10.3.2
10.3.2. (The order is ck or 2ck, where

k = (n+ 2)/4, by Theorem VI.10.1.)

VI.10.3 Examples 10.3. For n at most 450, the group Kn(Z) is cyclic because its order
is squarefree. For n ≤ 30 we need only consult

VI.2.4
2.4 to see that the groups K2(Z),

K10(Z), K18(Z) and K26(Z) are isomorphic to Z/2, while K6(Z) = K14(Z) = 0.
Since c6 = 691, c8 = 3617, c9 = 43867 and c13 = 657931 are all prime, we have

K22(Z) ∼= Z/691, K30(Z) ∼= Z/3617,

K34(Z) ∼= Z/2⊕ Z/43867 and K50
∼= Z/2⊕ Z/657931.

The next hundred values of ck are also squarefree: c10 = 283 ·617, c11 = 131 ·
593, c12 = 103 · 2294797, c14 = 9349 · 362903 and c15 = 1721 · 1001259881 are all
products of two primes, while c16 = 37 ·683 ·305065927 is a product of 3 primes.
Hence K38(Z) = Z/c10, K42(Z) = Z/2c11, K46 = Z/c12, K54(Z) = Z/c14,
K58(Z) = Z/2c15 and

K62(Z) = Z/c16 = Z/37⊕ Z/683⊕ Z/305065927.

Thus the first occurrence of the smallest irregular prime (37) is in K62(Z);
it also appears as a Z/37 summand in K134(Z), K206(Z), . . . , K494(Z). In fact,
there is 37-torsion in every group K72a+62(Z) (see Ex.

EVI.10.2
10.2). This direct method

fails for K454(Z), because its order 2c114 is divisible by 1032.

To go further, we need to consider the torsion in the groups K4k−2(Z) on
a prime-by-prime basis. Since the 2-torsion has order at most 2 by

VI.9.8
9.8, we

may suppose that ℓ is an odd prime. Our method is to consider the cyclotomic
extension Z[ζℓ] of Z, ζℓ = e2πi/ℓ. Because Kn(Z) → Kn(Z[1/ℓ]) is an iso-
morphism on ℓ-torsion (by the Localization Sequence V.

V.6.6
6.6), and similarly for

Kn(Z[ζℓ])→ Kn(Z[ζℓ, 1/ℓ]), it suffices to work with Z[1/ℓ] and R = Z[ζℓ, 1/ℓ].

VI.10.3.1 The usual transfer argument 10.3.1. The ring extension Z[1/ℓ] ⊂ R is Ga-
lois and its Galois group G = Gal(Q(ζ)/Q) is cyclic of order ℓ − 1. The map
i∗ : K∗(Z) → K∗(R) identifies Kn(Z[1/ℓ])(ℓ) with Kn(R)

G
(ℓ) for all n, because

i∗i
∗ is multiplication by |G| on K∗(Z) and i∗i∗ is multiplication by |G| on

Kn(R)
G (see Ex. IV.

EIV.6.13
6.13). This style of argument is called the usual transfer

argument.

VI.10.3.2 Example 10.3.2. The group K4k−2(Z) is cyclic (of order ck or 2ck) for all
k ≤ 5000. To see this, we observe that K4k−2(Z)(ℓ) is cyclic if ℓ

2 does not divide
ck, and in this range only seven of the ck are not square-free; see

OEIS
[170, A090943].
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The numerator ck is divisible by ℓ2 only for the following pairs (k, ℓ): (114, 103),
(142, 37), (457, 59), (717, 271), (1646, 67), (2884, 101) and (3151, 157). In each
of these cases, we note that Pic(Z[ζℓ])/ℓ = Pic(R)/ℓ ∼= Z/ℓ. By Example

VI.8.3.1
8.3.1,

K4k−2(R)/ℓ ∼= Pic(R)/ℓ ∼= Z/ℓ. The usual transfer argument (
VI.10.3.1
10.3.1) now

shows that K4k−2(Z)/ℓ is either 0 or Z/ℓ for all k. Since ck is divisible by ℓ2

but not ℓ3, K4k−2(Z)(ℓ) ∼= Z/ℓ2.

VI.10.4 Representations of G over Z/ℓ 10.4. When G is the cyclic group of order
ℓ− 1, a Z/ℓ[G]-module is just a Z/ℓ-vector space on which G acts linearly. By

Maschke’s theorem, Z/ℓ[G] ∼=
∏ℓ−2
i=0 Z/ℓ is a simple ring, so every Z/ℓ[G]-module

has a unique decomposition as a sum of its ℓ− 1 irreducible modules. Since µℓ
is an irreducible G-module, it is easy to see that the irreducible G-modules are
µ⊗iℓ , i = 0, 1, ..., ℓ − 2. The “trivial” G-module is µ⊗ℓ−1ℓ = µ⊗0ℓ = Z/ℓ. By

convention, µ⊗iℓ = µ
⊗i+a(ℓ−1)
ℓ for all integers a.

For example, the G-submodule 〈βi〉 of K2i(Z[ζ];Z/ℓ) generated by βi is
isomorphic to µ⊗iℓ . It is a trivial G-module only when (ℓ− 1)|i.

If A is any Z/ℓ[G]-module, it is traditional to decompose A = ⊕A[i], where
A[i] denotes the sum of all G-submodules of A isomorphic to µ⊗iℓ .

VI.10.4.1 Example 10.4.1. Set R = Z[ζℓ, 1/ℓ]. It is known that the torsionfree part

R×/µℓ ∼= Z
ℓ−1
2 of the units of R is isomorphic as a G-module to Z[G] ⊗Z[c]

Z, where c is complex conjugation. (This is sometimes included as part of
Dirichlet’s theorem on units.) It follows that as a G-module,

R×/R×ℓ ∼= µℓ ⊕ (Z/ℓ)⊕ µ⊗2ℓ ⊕ · · · ⊕ µ⊗ℓ−3ℓ .

The first two terms µℓ and Z/ℓ are generated by the root of unity ζℓ and the class
of the unit ℓ of R. It will be convenient to choose units x0 = ℓ, x1, . . . , x(ℓ−3)/2
of R such that xi generates the summand µ−2iℓ of R×/R×ℓ; the notation is set
up so that xi ⊗ ζ⊗2iℓ is a G-invariant element of R× ⊗ µ⊗2iℓ .

VI.10.4.2 Example 10.4.2. The G-module decomposition of M = R× ⊗ µ⊗i−1ℓ is ob-
tained from Example

VI.10.4.1
10.4.1 by tensoring with µ⊗i−1ℓ . If i is even, Z/ℓ occurs

only when i ≡ 0 (mod ℓ − 1), corresponding to ζ⊗i. If i is odd, exactly one
term of M is Z/ℓ; MG is Z/ℓ on the generator xj ⊗ ζi−1ℓ , where i ≡ 1 + 2j
(mod ℓ− 1).

Torsion for odd regular primes

Suppose that ℓ is an odd regular prime. By definition, Pic(Z[ζ]) has no ℓ-
torsion, and K1(R)/ℓ ∼= R×/R×ℓ by III.

III.1.3.6
1.3.6. Kummer showed that ℓ cannot

divide the order of any numerator ck of Bk/k (see
VI.2.4.1
2.4.1). Therefore the case

2i = 4k − 2 of the following result follows from Theorem
VI.10.1
10.1.

VI.10.5 Proposition 10.5. When ℓ is an odd regular prime, the group K2i(Z) has no
ℓ-torsion. Thus the only ℓ-torsion subgroups of K∗(Z) are the Harris-Segal

subgroups Z/w(ℓ)
i (Q) of K2i−1(Z) when i ≡ 0 (mod ℓ− 1).
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Proof. Since ℓ is regular, we saw in Example
VI.8.3.2
8.3.2 that the group K2i(Z[ζ]) has

no ℓ-torsion. Hence the same is true for its G-invariant subgroup, K2i(Z). The
restriction on i comes from Example

VI.2.2.2
2.2.2.

We can also describe the algebra structure of K∗(Z;Z/ℓ). For this we
set R = Z[ζℓ, 1/ℓ] and G = Gal(Q(ζ)/Q), noting that K∗(Z[1/ℓ];Z/ℓ) ∼=
K∗(R;Z/ℓ)G by the usual transfer argument (

VI.10.3.1
10.3.1). Recall from Example

VI.8.5
8.5 that K∗(R;Z/ℓ) is a free graded Z/ℓ[β]-module on ℓ+1

2 generators: the xi of
R×/R×ℓ = K1(R;Z/ℓ), together with 1 ∈ K0(R;Z/ℓ).

Thus K2i(R;Z/ℓ) ∼= Z/ℓ is generated by βi, and is isomorphic to µ⊗iℓ as
a G-module. It follows that K2i(R;Z/ℓ)G is zero unless i = a(ℓ − 1), when it
is Z/ℓ on the generator βi. By abuse of notation, we shall write βℓ−1 for the
element of K2(ℓ−1)(Z;Z/ℓ) corresponding to βℓ−1; if i = a(ℓ− 1) we shall write

βi for the element (βℓ−1)a of K2i(Z;Z/ℓ) corresponding to βi ∈ K2i(R;Z/ℓ)G.
By Example

VI.8.5
8.5, K2i−1(R;Z/ℓ) is just R× ⊗ µ⊗i−1ℓ when ℓ is regular. The

G-module structure was determined in Example
VI.10.4.2
10.4.2: if i is even, exactly one

term is Z/ℓ; if i is odd, Z/ℓ occurs only when i ≡ 1 (mod ℓ− 1).
Multiplying [ζ] ∈ K1(R;Z/ℓ) by βℓ−2 yields the G-invariant element v =

[ζ]βℓ−2 of K2ℓ−3(R;Z/ℓ). Again by abuse of notation, we write v for the cor-
responding element of K2ℓ−3(Z;Z/ℓ).

Similarly, multiplying xk ∈ R× = K1(R) by β2k ∈ K4k(R;Z/ℓ) gives a G-
invariant element yk = xkβ

2k of K4k+1(R;Z/ℓ) with y0 = [ℓ] in K1(R;Z/ℓ).
Again by abuse of notation, we write yk for the corresponding element of
K4k+1(Z;Z/ℓ).

VI.10.6 Theorem 10.6. If ℓ is an odd regular prime then K∗ = K∗(Z[1/ℓ];Z/ℓ) is a free
graded module over the polynomial ring Z/ℓ[βℓ−1]. It has (ℓ+ 3)/2 generators:
1 ∈ K0, v ∈ K2ℓ−3, and the elements yk ∈ K4k+1 (k = 0, ..., ℓ−32 ) described
above.

Similarly, K∗(Z;Z/ℓ) is a free graded module over Z/ℓ[βℓ−1]; a generating
set is obtained from the generators of K∗ by replacing y0 by y0β

ℓ−1.
The Z/ℓ[βℓ−1]-submodule generated by v and βℓ−1 comes from the Harris-

Segal summands of K2i−1(Z). The submodule generated by the y’s comes from
the Z summands in Kn(Z), n ≡ 1 (mod 4).

Proof. K∗(Z[1/ℓ];Z/ℓ) is the G-invariant subalgebra of K∗(R;Z/ℓ). Given
VI.10.5
10.5,

it is not very hard to check that this is just the subalgebra described in the
theorem. Since ℓ − 1 is even, the elements ykβ

a(ℓ−1) are in Kn(Z;Z/ℓ) for
some n ≡ 1 (mod 4). Since Kn−1(Z) has no ℓ-torsion by Proposition

VI.10.5
10.5,

Kn(Z;Z/ℓ) = Kn(Z)/ℓ. Since 1 ≤ 4k + 1 ≤ 2ℓ − 4, we have n ≡ 4k + 1 6≡ 0
(mod 2ℓ−2) and henceKn(Z) has no ℓ-torsion (combine

VI.10.1
10.1 with

VI.2.1.2
2.1.2). Hence

the element ykβ
a(ℓ−1) must come from the Z-summand of Kn(Z[1/ℓ]).

VI.10.6.1 Examples 10.6.1. When ℓ = 3, the groups Kn = Kn(Z[1/3];Z/3) are 4-
periodic of ranks 1, 1, 0, 1, generated by an appropriate power of β2 ∈ K4 times
one of {1, [3], v}. Here v ∈ K3.
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When ℓ = 5, the groups Kn = Kn(Z[1/5];Z/5) are 8-periodic, with respec-
tive ranks 1, 1, 0, 0, 0, 1, 0, 1 (n = 0, ..., 7), generated by an appropriate power of
β4 ∈ K8 times one of {1, [5], y1, v}. Here y1 ∈ K5 (x1 is the golden mean) and
v ∈ K7.

Torsion for irregular primes

Now suppose that ℓ is an irregular prime, so that Pic(R) has ℓ-torsion for R =
Z[ζ, 1/ℓ]. Then H1

et(R,µℓ) is R×/ℓ ⊕ ℓPic(R) and H2
et(R,µℓ)

∼= Pic(R)/ℓ by
Kummer theory and (

VI.8.1.1
8.1.1). This yields K∗(R;Z/ℓ) by Example

VI.8.5
8.5.

Set P = Pic(R)/ℓ. When ℓ is irregular, the G-module structure of P is not
fully understood; see Vandiver’s conjecture

VI.10.8
10.8 below.

VI.10.7 Lemma 10.7. For i = 0,−1,−2,−3, P = Pic(R)/ℓ contains no summands
isomorphic to µ⊗iℓ , i.e., P [i] = 0.

Proof. The usual transfer argument shows that PG ∼= Pic(Z[1/ℓ])/ℓ = 0. Hence
P contains no summands isomorphic to Z/ℓ. By III.

III.6.9.3
6.9.3, there is a G-module

isomorphism (P ⊗ µℓ) ∼= K2(R)/ℓ. Since K2(R)/ℓ
G ∼= K2(Z[1/ℓ])/ℓ = 0, (P ⊗

µℓ) has no Z/ℓ summands — and hence P contains no summands isomorphic
to µ⊗−1ℓ .

Finally, we have (P ⊗ µ⊗2ℓ ) ∼= K4(R)/ℓ and (P ⊗ µ⊗3ℓ ) ∼= K6(R)/ℓ by
VI.8.3
8.3.

Again, the transfer argument shows that Kn(R)/ℓ
G ∼= Kn(Z[1/ℓ])/ℓ for n =

4, 6. The groups K4(Z) and K6(Z) are known to be zero by
Rognes
[159] and

EGS
[53];

see
VI.10.1.3
10.1.3. It follows that P contains no summands isomorphic to µ⊗−2ℓ or

µ⊗−3ℓ .

VI.10.8 Vandiver’s Conjecture 10.8. If ℓ is an irregular prime then Pic(Z[ζℓ+ ζ−1ℓ ])
has no ℓ-torsion. Equivalently, the natural representation of G = Gal(Q(ζℓ)/Q)
on Pic(Z[ζℓ])/ℓ is a sum of G-modules µ⊗iℓ with i odd.

This means that complex conjugation c acts as multiplication by −1 on
the ℓ-torsion subgroup of Pic(Z[ζℓ])/ℓ, because c is the unique element of G of
order 2.

As partial evidence for this conjecture, we mention that Vandiver’s conjecture
has been verified for all primes up to 163 million; see

BH
[38]. We also known from

Lemma
VI.10.7
10.7 that µ⊗iℓ does not occur as a summand of Pic(R)/ℓ for i = 0,−2.

VI.10.8.1 Remark 10.8.1. The Herbrand-Ribet theorem
Wash
[216, 6.17–18] states that ℓ|Bk

if and only if (Pic R/ℓ)[ℓ−2k] 6= 0. Among irregular primes < 4000, this happens
for at most 3 values of k. For example, 37|c16 (see

VI.10.3
10.3), so (Pic R/ℓ)[5] = Z/37

and (Pic R/ℓ)[k] = 0 for k 6= 5.

VI.10.8.2 Historical Remark 10.8.2. What we now call “Vandiver’s conjecture” was
actually discussed by Kummer and Kronecker in 1849–1853; Harry Vandiver
was not born until 1882 and only started using this assumption circa 1920 (e.g.,
in

Van29
[202] and

Van34
[203]), but only retroactively claimed to have conjectured it “about

25 years ago” in the 1946 paper
Van46
[204, p. 576].
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In 1849, Kronecker asked if Kummer conjectured that a certain lemma (
Wash
[216,

5.36]) held for all p, and that therefore p never divided h+ (i.e., Vandiver’s con-
jecture holds). Kummer’s reply

Kum
[104, pp.114–115] pointed out that the Lemma

could not hold for irregular p, and then referred to the assertion [Vandiver’s con-
jecture] as the noch zu beweisenden Satz (theorem still to be proven). Kummer
also pointed out some of its consequences. In an 1853 letter (see

Kum
[104, p.123]),

Kummer wrote to Kronecker that in spite of months of effort, the assertion [now
called Vandiver’s conjecture] was still unproven.

For the rest of this chapter, we set R = Z[ζℓ, 1/ℓ], and P = Pic(R)/ℓ.

VI.10.9 Theorem 10.9. (Kurihara
Kur
[105]) Let ℓ be an irregular prime number. Then

the following are equivalent for every integer k between 1 and ℓ−1
2 :

(1) Pic(Z[ζ])/ℓ[−2k] = 0.

(2) K4k(Z) has no ℓ-torsion;

(3) K2a(ℓ−1)+4k(Z) has no ℓ-torsion for all a ≥ 0;

(4) H2
et(Z[1/ℓ], µ

⊗2k+1
ℓ ) = 0.

In particular, Vandiver’s conjecture for ℓ is equivalent to the assertion that
K4k(Z) has no ℓ-torsion for all k < ℓ−1

2 , and implies that K4k(Z) has no ℓ-
torsion for all k.

Proof. By Kummer theory and (
VI.8.1.1
8.1.1), P ∼= H2

et(R,µℓ). Hence P ⊗ µ⊗2kℓ
∼=

H2
et(R,µ

⊗2k+1
ℓ ) as G-modules. Taking G-invariant subgroups shows that

H2
et(Z[1/ℓ], µ

⊗2k+1
ℓ ) ∼= (P ⊗ µ⊗2kℓ )G ∼= P [−2k].

Hence (1) and (4) are equivalent. By
VI.8.3
8.3, K4k(Z)/ℓ ∼= H2

et(Z[1/ℓ], µ
⊗2k+1
ℓ ) for

all k > 0. Since µ⊗bℓ = µ
⊗a(ℓ−1)+b
ℓ for all a and b, this shows that (2) and (3)

are separately equivalent to (4).

VI.10.10 Theorem 10.10. If Vandiver’s conjecture holds for ℓ then the ℓ-primary tor-
sion subgroup of K4k−2(Z) is cyclic for all k.

If Vandiver’s conjecture holds for all ℓ, the groups K4k−2(Z) are cyclic for
all k.

(We know that the groups K4k−2(Z) are cyclic for all k < 5000, by
VI.10.3.2
10.3.2.)

Proof. Vandiver’s conjecture also implies that each of the “odd” summands
P [1−2k] = P [ℓ−2k] of P is cyclic; see

Wash
[216, 10.15]. Taking the G-invariant

subgroups of Pic(R) ⊗ µ⊗2k−1ℓ
∼= H2

et(R,µ
⊗2k
ℓ ), this implies that the group

P [1−2k] ∼= H2
et(Z[1/ℓ], µ

⊗2k
ℓ ) is cyclic. By Corollary

VI.8.3
8.3, this group is the ℓ-

torsion in K4k−2(Z[1/ℓ])/ℓ.
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VI.10.11 Remark 10.11. The elements of K2i(Z) of odd order become divisible in the
larger group K2i(Q). (The assertion that an element a is divisible in A means
that for every m there is an element b so that a = mb.) This was proven by
Banaszak and Kolster for i odd (see

Ban
[12, Thm. 2]), and for i even by Banaszak

and Gajda
BaGj
[13, Proof of Prop. 8]. It is an open question whether there are any

divisible elements of even order.
For example, recall from

VI.10.3
10.3 that K22(Z) = Z/691 and K30(Z) ∼= Z/3617.

Banaszak observed
Ban
[12] that these groups are divisible in K22(Q) and K30(Q),

i.e., that the inclusions K22(Z) ⊂ K22(Q) and K30(Z) ⊂ K30(Q) do not split.

Let tj (resp., sj) be generators of the summand of Pic(R)/ℓ (resp.

K1(R;Z/ℓ)) isomorphic to µ⊗−jℓ . The following result follows easily from Exam-
ples

VI.8.5
8.5 and

VI.10.4.1
10.4.1, using the proofs of

VI.10.6
10.6,

VI.10.9
10.9 and

VI.10.10
10.10. It was originally

proven in Mitchell
Mit
[137].

VI.10.12 Theorem 10.12. If ℓ is an irregular prime for which Vandiver’s conjecture
holds, then K∗ = K∗(Z;Z/ℓ) is a free module over Z/ℓ[βℓ−1] on 1, v ∈ K2ℓ−3,
the (ℓ − 3)/2 generators yk ∈ K4k+1 described in Theorem

VI.10.6
10.6, together with

the generators tjβ
j ∈ K2j and sjβ

j ∈ K2j+1 (j = 3, 5, ..., (ℓ− 8)).

EXERCISES

EVI.10.1 10.1. Let ℓ be an irregular prime and suppose that Kn(Z) has no ℓ-torsion for
some positive n ≡ 0 (mod 4). Show that K4k(Z) has no ℓ-torsion for every k
satisfying n ≡ 4k (mod 2ℓ− 2).

EVI.10.2 10.2. Show thatKn(Z) has nonzero 37-torsion for all positive n ≡ 62 (mod 72),
and that Kn(Z) has nonzero 103-torsion for all positive n ≡ 46 (mod 204).

EVI.10.3 10.3. Give a careful proof of Theorem
VI.10.12
10.12, by using Examples

VI.8.5
8.5 and

VI.10.4.1
10.4.1

for Z[ζℓ, 1/ℓ] to modify the proof of Theorem
VI.10.6
10.6.

EVI.10.4 10.4. The Bockstein operation b : Kn(R;Z/ℓ)→ Kn+1(R;Z/ℓ) is the boundary
map in the long exact sequence associated to the coefficient sequence 0→ Z/ℓ→
Z/ℓ2 → Z/ℓ → 0. Show that when R = Z the Bockstein sends v to βℓ−1, tj to
sj and tjβ

j to sjβ
j in Theorems

VI.10.6
10.6 and

VI.10.12
10.12.
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[X,N] continuous maps from X to N, page 32
αnS(i) signature map on Hn(OS), page 516
A(G) Burnside ring of G, page 65
A(X), An(X) K-theory of spaces, K(Rf (X)), page 336
Afd(X) K-theory of finitely dominated spaces, page 336
Az(R) Category of Azumaya algebras, page 106
B(F ) Bloch’s group for a field, page 485
BC geometric realization of a category, page 286
BCtop geometric realization of a topological category, page 293
BGδ clasifying space of a discrete group, page 474
BGε subcomplex of BGδ, page 474
BGL(R)+ connected K-theory space of R, page 259
Bk Bernoulli numbers, page 470
BO classifying space for real vector bundles, page 84
BOn classifying space for real vector bundles, page 38
BSp classifying space for symplectic vector bundles, page 84
BSpn classifying space for symplectic vector bundles, page 38
BU classifying space for complex vector bundles, page 84
BUn classifying space for complex vector bundles, page 38
C(R) cone ring of R, page 5
C/d or d\C comma category, page 286
Cart(R) Cartier divisor group, page 20
Cart(X) Cartier divisors on X, page 56
Ch(A) chain complexes in A, page 160
Chhb(A) homologically bounded complexes, page 380
Chhbpcoh pseudo-coherent complexes, page 381
Chperf(R), Chperf(X) perfect chain complexes, page 381

ChbSP(R) bounded S-torsion complexes, page 168
CHi(R) generalized Weil divisor class group, page 121
Cl(R) Weil divisor class group of R, page 23
cn Chern classes, page 98
D(R) Weil divisor group, page 22
E(R) elementary group, generated by elementary matrices, page 179
EA extension category, page 327
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End∗(k) K-theory of endomorphisms, page 322
End(R) category of endomorphisms, page 132
F−1 contraction of F , page 209
FP(R) faithfully projective R-modules, page 106
F(R) category of based free modules, page 298
Free(R) category of free modules, page 131
G(R), G(X) K-theory of finitely generated/coherent modules, page 319
G(R on S) relative G-theory for R→ S−1R, page 379
G(X on Z) relative G-theory for X\Z → X, page 379
G-Sets category of G-sets, page 105
G•A Gillet-Grayson construction, page 343
G0(R), G0(X) K0 of M(R), of M(X), page 115
Gder0 (X) G0 of pseudo-coherent modules, page 170
GLn(I) linear group of a non-unital ring I, page 6
GLn(R) group of invertible n× n matrices, page 2
GL(R) linear group of a unital ring, page 178
Grassn Grassmann manifold, page 37
GW (F ) Grothendieck-Witt ring, page 108
H quaternion algebra over R, page 474
Hzar(−, A) Zariski descent spectrum, page 443
H(R) R-modules with finite resolutions, page 135
HS(R) S-torsion modules in H(R), page 136
H(X) OX-modules with finite resolutions, page 146
H0 ring of continuous maps X → Z, page 71
H̃2(R;Z2(i)) subgroup of H̃2(R;Z2(i)), page 522
HC∗ cyclic homology, page 399
HZ(X) modules in K(X) supported on Z, page 155
I
∫
X translation category, page 287

IBP invariant basis property, page 2
isoS category of isomorphisms in S, page 298
j(R) signature defect of R, page 518
KB(R), KB(X) Bass K-theory spectrum, page 348
K(A) = ΩBQA Quillen K-theory space, page 319
K(C) = ΩBwS•C Waldhausen K-theory space, page 334

K̂(R)ℓ ℓ-adic completion of K, page 281
K(R on S) relative K-theory for R→ S−1R, page 380
K(X on Z) relative K-theory for X\Z → X, page 397
KH(R), KH(X) homotopy K-theory of R or X, page 358
K0(A) K0 of an abelian category, page 113
K0(C) K0 of an exact category, page 128
K0(wC) K0 of a Waldhausen category, page 158

K̃0(R) ideal of K0(R), page 71
K0(R) K0 of a ring, page 68
K0(R on S) K0 of S-torsion homology complexes, page 168
K�

0 (S) K0 of a symmertic monoidal category, page 105
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K̃0(X) ideal of K0(X), page 145
K0(X) K0 of a scheme, page 129
Kder

0 (X) K0 of perfect modules, page 171
K0
G(X) K0 of topological G-bundles, page 107

K1(R) K1 of a ring, page 178
K2(R) K2 of a ring, page 216
Kind

3 (F ) K3(F )/K
M
3 (F ) (K3-indecomposable), page 485

Kn(A) Kn of an exact category, page 319

K
(i)
Q eigenspace in λ-ring K, page 98

K
(i)
n (R) eigenspace in Kn(R) for ψ

k, page 315
Kn(R) Kn of a ring, page 260
K−n(R) negative K-groups of R, page 209
Kn(R, I) relative K-groups of an ideal, page 266
Kn(R;Z/ℓ) Kn with coefficients, page 279
K�
n (S) Kn of a symmetric monoidal category, page 300

Kn(X) Kn of a scheme, page 319

K̃O(X) reduced K-theory, page 82
KO(X) K-theory of real vector bundles, page 82
KO0(X), KOn(X) representable KO-theory, page 85
KSp(X) K-theory of symplectic vector bundles, page 82
KSp0(X), KSpn(X) representable KSp-theory, page 85
KU(X) K-theory of complex vector bundles, page 82
KU0(X), KUn(X) representable KU -theory, page 85
KVn Karoubi-Villamayor groups, page 351
LF contraction of F , page 209
M(R) finitely generated R-modules, page 115
Mi(R) modules supported in codimension ≥ i, page 433
MS(R) S-torsion R-modules, page 117
Mgr(S) category of graded S-modules, page 126
M(X) category of coherent modules, page 116
MZ(X) coherent modules supported on Z, page 118
M−1M group completion of a monoid, page 63
Mn monomial matrices in GLn(F ), page 493
Mn(R) ring of n× n matrices, page 2
modS(R) category of S-torsion modules, page 120
MR Mumford-regular vector bundles, page 149
µ⊗i twisted Galois representation, page 276
Nil(k) K-theory of nilpotent endomorphisms, page 323
Nil(R) category of nilpotent endomorphisms, page 132
NKn(R) the quotient Kn(R[t])/Ki(R), page 201
NS(X) Néron-Severi group, page 61
ν(n)F logarithmic deRham group, page 250
ΩG loop space of G, page 83
Ω(BG) loop space of BG, page 38
ΩnF Kähler differentials, page 243

August 29, 2013 - Page 537 of
LastPage
568



Chapter VI

ΩR algebraic loop ring of ring R, page 355
P(F ) scissors congruence group, page 485
P(R) category of projective modules, page 8
π1(BC) fundamental group of a category, page 288
πind
3 (BM+) indecomposables of π3(BM

+), page 495
πn(X;Z/ℓ) homotopy with coefficients, page 277
Pic(R) Picard category (line bundles), page 105
Pic(R) Picard group of R, page 18
Pic(X) Picard group of X, page 50
Pic+(R) narrow Picard group, page 518
Pn projective n-space, page 50
QA Quillen’s Q-construction, page 317
Quadǫ(A) category of quadratic modules, page 299
Quad(F ) category of quadratic spaces, page 110
ρ rank of KM

4 (F )→ K4(F ), page 521
R(G) Representation ring of G, page 66
r1, r2 number of real (complex) embeddings, page 270
R[∆•] simplicial ring of standard simplices, page 351
RepC(G) category of complex representations of G, page 105
Rf (X) finite spaces over X, page 159
Rfd(X) finitely dominated spaces over X, page 169
Rn free R-module of rank n, page 1
σ(M) shift automorphism on graded modules, page 126
Σn symmetric group of permutations, page 262
S−1S group completion category, page 299
Seq(F,R) sequence for contracted functors, page 209
Setsfin category of finite sets, page 105
SK0(R) ideal of K0(R), page 75
SK0(X) ideal of K0(X), page 145
SK1(A) subgroup of K1(A), A semisimple, page 180
SK1(R) subgroup of K1(R), page 179
SLn(R) special linear group of a ring, page 179
(Sn) stable range condition, page 4
SnC category of n-fold extensions, page 333
sr(R) stable range, page 4
St(R) Steinberg group, page 216
⋆ star operation on St(R), page 223
〈S,X〉, S−1X localization categories, page 303
U(R) group of units in R, page 2
Unip(R) group of unipotent matrices, page 350
v41 generator of πs(S8;Z/16), page 483
VB(X) category of algebraic vector bundles, page 46
VBC(X) category of complex vector bundles, page 31
VBR(X) category of real vector bundles, page 31
VBn(X) vector bundles of rank n, page 38
wij(r) special element of St(R), page 224
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W (F ) Witt ring of quadratic forms, page 108
W (R) a subgroup of units, page 182
W (R) ring of big Witt vectors, page 92
Wh0(G) 0th Whitehead group, page 72
Wh1(G) 1st Whitehead group, page 187
Whn(G) n

th Whitehead group, page 266
wi Stiefel–Whitney classes, page 39
wi(F ) exponent of the e-invariant, page 467
WQ(F ) K0 of split quadratic forms, page 110
wS•C Waldhausen construction, page 334
ζF (s) Riemann zeta function, page 470
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+–construction, iii, iv, 262, 258–276,
301–311, 319, 327, 459, 464–
467, 494–500

+ = Q theorem, 259, 264, 327, 327–
331, 372

F -regular ring, 350
Ω-spectrum, see spectrum
δ-functors, 141
γ-dimension, 95, 316
γ-filtration, 96, 96–103, 145, 152, 153,

315–316
γ-operations, 94, 94–103, 312–316
λ-operations, iv, 63, 90, 90–103, 152,

268, 311–316
λ-ring, 90, 90–103, 152, 450, 452, 459

λ-semiring, 90
free λ-ring, 93, 98, 101
line element, 91, 91–103, 152,

153
positive structure, 91, 91–104,

152
special, 90–92, 93, 141, 152, 311–

314
ψk, see Adams operations
(App), see Approximation theorem

A(G), see Burnside ring
A(X) (K-theory of spaces), 336, 373
Afd(X), 336
abelian category, 113

exact subcategory, 115
absolute excision, 267
absolutely flat ring, 7
f∗-acyclic module, 148
acyclic functor, 209
acyclic map, 262, 262, 263
acyclic space, 261

Adams e-invariant, 102, 468, 474
Adams Conjecture, 267
Adams operations, 93, 93, 267, 268,

312–316, 477, 483, 509
Adams’ element µn, 474, 526
Adams, J.F., 93, 102, 267, 468, 474
additive category, 113
additive function, 114, 134, 144, 162
Additivity theorem, iv, 337, 363–373,

386, 387, 416, 422, 428, 429,
437

admissible filtration, 371
Almkvist, G., 132, 323
ample line element, 102
analytic isomorphism, 208, 215
analytic space, 47, 49, 61
analytic vector bundle, 47, 49
Anderson, D., 265, 353, 357, 407
Approximation theorem, iv, 166, 167–

171, 378, 377–382, 389, 391,
397, 423, 424

Approximation theorem for units, 516,
518

Araki, S., 280
Arf invariant, 111, 112
Arf, C., 112
Artamanov, V., 9
Artin-Schrier extension, 237, 250
Artin-Schrier operator, 250
Artin-Wedderburn Theorem, 2, 69,

240
artinian ring, 5, 70, 72, 98, 213, 269,

361, 398, 399
simple, 2, 72

Asok, A., 0
assembly map, 266, 266, 307
Atiyah, M., 51, 52, 90, 107
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Auslander-Buchsbaum equality, 155
Azumaya algebra, 106, 370, 371

Bak, A., 308
Banach algebra, 183–190, 222–223
Banaszak, G., 532
Barratt-Priddy Theorem, 306, 307,

342, 465, 495
base change, 76, 78, 115, 137–156,

176, 385–396, 404–438
flat, 115–126, 319, 386, 405

based free module, 1, 298, 303, 305
Bass’ Finiteness Conjecture, 324
Bass, H., iv, v, 3, 12, 14, 35, 72, 74,

80, 111, 182, 185, 194, 206,
209–214, 220, 231, 234, 242,
244, 245, 255, 256, 259, 304,
305, 324, 347, 358, 425, 430,
500

Bass-Milnor-Serre Theorem, 182, 193,
194, 282, 410, 504

Beilinson, A., 316, 455, 456, 480
Beilinson-Lichtenbaum conjectures, v,

481
Bernoulli numbers, 461, 470, 470–

471, 525–531
Bernoulli, J., 470
Berthelot, P., 148
Bertini’s Theorem, 60
bicategory, 294, 294–297, 321–326,

340, 374
biexact, see exact functor
bifibrations, see biWaldhausen category
big vector bundles, 348, 441
binary icosohedral group, 272
binomial ring, 90, 90–94
Birch, B., 513
Birch–Tate conjecture, 513, 513
bisimplicial sets, 290, 290–297, 335–

343, 353, 365, 378
bivariant K-theory, 81
biWaldhausen category, 159, 159–168
Bloch’s formula, v, 439, 454
Bloch’s group, v, 485, 485–500
Bloch, S., 250–251, 439, 455, 477–485
Bloch-Kato conjecture, v, 478, 481

Boavida, P., 0
Bockstein, 268, 454, 463, 497, 532
Borel’s Theorem, 270, 461, 486, 509,

525
Borel, A., 270, 271, 461, 500, 525
Borel-Moore homology, 479
Bott element, 268, 269, 279, 279–283,

411, 413, 454, 463–466, 481–
484, 513

Bott periodicity, 83, 84, 88, 293, 294,
474, 477, 483, 519, 520, 523

Bourbaki, N., 7
Bousfield-Kan integral completion, 264,

451
Braeunling, O., 0
Brasca, R., 0
Brauer group, 106, 106–107, 181,

239–242, 511–513, 524
Brauer lifting, 268, 314
Browder, W., 268, 269, 281, 484, 526
Browkin, J., 521
Brown, K., 434, 441, 443, 446
BSp, 38, 83–87, 474
Burnside ring, 65, 66, 67, 105, 111,

310

calculus of fractions, 174, 390, 400,
442

Calegari, F., 0
Calkin category, 213
Calmes, B., 0
Campbell-Hausdorff formula, 196
Cancellation Theorem

Bass, 3, 4
Bass-Serre, 12, 19, 35, 51, 60, 72,

80, 95
vector bundles, 35–37, 39, 95
Witt, 108, 112

cap product, 458
Cartan homomorphism, 115, 115,

116, 125, 129, 145
Cartan, H., 270
Cartan-Eilenberg resolution, 452
Carter, D., 214
Cartier divisor, see divisor
Cartier operator, 250, 254
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Castelnuovo, G., 59, 149
category with cofibrations, 157, 157–

165, 170, 332
and weak equivalences, see Wald-

hausen category
Čech cohomology, 54, 55, 100
cellular approximation, 83
cellular chain complex, 289
central simple algebra, 106, 180, 191,

239, 240, 270, 369, 370
characteristic exact sequence, 364, 394
Chase, S., 201
Chern character, 88, 100, 103, 153
Chern class, iv, 38–43, 58, 87, 92–104,

449–460
K-cohomology, 454, 460
ℓ-adic, 456
étale, 282, 454, 454–460, 479,

497, 510
axioms, 40, 98, 449, 452
Betti, 49, 52, 61, 455
Chow, 153, 454, 455
deRham, 455
Deligne-Beilinson, 456, 460
motivic, 455, 456
on a λ-ring, 98
theory of, 449, 449–460
total, 41, 87–88, 99, 156, 449–452

Chern roots, 99, 99–104
Chern, S.-S., 41
Chevalley groups, 216
Chow groups, 122, 153, 153–156, 435–

455
Claborn, L., 121, 143
classifiying space, 295
classifying bundle, 38
classifying space, 38, 262, 288, 293,

294, 298, 299, 308, 474
closed under kernels, 128–140, 146,

147, 161, 162, 170–172, 375,
376, 381–385

clutching map, 36, 33–37
coconut, 3
coend, 290
cofibered functor, see fibered functor

cofibration sequence, 157, 199, 332–
341, 363–367

cofibrations, see category with cofibra-
tions

cofinal functor, 214, 307–310
cofinal monoid, 65–68, 71, 77, 81–83,

92–100, 190, 302, 308
cofinal subcategory, 106, 106–107,

130, 131, 143, 147, 164–172,
185–187, 220, 299, 306, 320,
325, 338–343, 376–382, 425

Cofinality theorem, iv, 106, 130, 147,
164, 166, 172, 307, 307–309,
320, 338, 363, 377, 376–
380, 419, 424

Cohen-Macaulay ring, 155, 438
coherent module, 12, 47, 47–60, 116,

118, 120, 121, 127, 132, 145–
155

analytic, 48, 49
big, 349
over X, 387–418

coherent ring, 384, 407, 418
Cohn, P.M., 4, 189
comma category, 286, see Quillen’s

Theorem A, 286–297, 324,
391

commutator subgroup, 179, 350
complete ideal, 70, 215, 281
completion, ℓ-adic, 281, 471, 508, 509
conductor ideal, 13, 26, 29
conductor square, see Milnor square
cone ring, 2, 5, 69, 81, 190, 267
configuration complex, 487, 487–498
coniveau filtration, 121, 434, 436
coniveau spectral sequence, see spectral

sequence
contracted functor, 209, 209–214
covering space, 295
Cranch, J., 0
Crissman, C., 0
crossed product algebra, 239
Csirik, J., 0
cusp, 26, 77
cyclic abelian group, 490, 498
cyclic algebra, 239–240, 369, 370
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cyclic homology, 399, 489
topological (TC), 399

cyclotomic representation, 466
cyclotomic units, 195
cylinder axiom, 337, 374
cylinder functor, 337, 337–343, 365–

379, 391

Davis, J., 0
Dayton, B., 212
Dedekind domain, 21, 21, 22, 119,

120, 181, 190, 193, 235, 282,
324, 399, 407–416, 433–436,
481

degree of divisor, see divisor, 58
Deitmar, A., 326
Deligne, P., 142, 155, 456
Deligne-Beilinson cohomology, 456,

460
Dennis trace map, see trace, 449
Dennis, R.K., 217, 220, 225, 449
Dennis-Stein symbols, 225, 225–228
denominator set, 173, 207
derived category, 162, 176, 177, 383,

389–397, 424, 458
descent, 444

étale, 444, 515
Nisnevich, 446, 444–448
Zariski, 443, 441–448, 453

determinant
line bundle, see line bundle
of a projective module, 19, 18–19,

74, 111, 301
of a vector bundle, 34, 39, 53,

144, 156
of an endomorphism, 19
on K0, 74, 92, 111, 144, 145,

301, 454
on K1, 180, 301

devissage, iv, 117, 117–127, 206, 363,
398, 398–400, 404, 405, 413,
414, 416, 433, 435, 446

Dickson, L.E.J., 179
Dieudonné, J., 180, 182
dimension function, 80
direct sum ring, 5, 69, 81

Dirichlet Unit Theorem, 182, 195
discrete valuation domain (DVR), 21,

22, 24, 57, 232–242, 245,
247, 248, 256, 407–418, 435,
438, 461, 505

discriminant, 109, 108–109, 271
division ring, 1–10, 68–69, 180–191,

221, 225, 399
divisor

Cartier, 20, 20–24, 56, 56–59,
462

Weil, 23, 57, 57, 58, 59, 62, 121,
423, 424

divisor class group, 23, 23, 24, 29, 57,
57–62, 121, 145

relative, 29
Weil, 121, 125, 433, 435

divisorial ideal, 23
divisorial scheme, 147
dlog symbol, 249–257, 358
Dold-Kan correspondence, 451, 489,

498
double s.e.s., 345
Drinfeld, V., 213, 282
dual bundle, 38, 41, 50
dual module, 15, 18, 50, 75
dual numbers, 228
Dupont, J., 485, 498

e-invariant, 467, 467, 474, 479, 481,
483, 496, 497, 501, 507, 515

Eilenberg swindle, 6, 14, 68, 81, 114,
143, 159, 161, 189, 372

Eilenberg, S., 14
Eilenberg-MacLane homology, 289
Eilenberg-MacLane space, 447, 451
Eilenberg-MacLane spectrum, 443
Elbaz-Vincent, P., 526
elementary expansion, 187
elementary group, 179, 350
elementary matrix, 179, 179–188,

192, 194, 216, 223, 259, 275,
350, 353

elementary row operations, 6, 180, 183
elementary symmetric function, 43,

99, 254
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elliptic curve, 52, 501
End∗(R), 132, 133, 141, 323
equivariant cohomology, 452
étale cohomology, 210, 478–484, 506,

511–524
étale descent, 444
Euclidean algorithm, 217
Euclidean domain, 182, 189
Euler characteristic, 124, 124, 133–

154, 161, 376
Euler class, 39
Euler, L., 470
exact category, iii, 128, 128–155, 157–

172, 176, 258, 279, 317–327,
336–346

quasi-exact, 326, 326, 327, 331
split exact, 129, 139, 172, 327–

329, 346
exact couple, 434, 447
exact functor, 114–126, 128–142, 151,

159, 159–166, 332–343
biexact, 131, 164, 321–414

exact subcategory, 128, 172
exceptional field, 469, 469–473, 512
excision

absolute, 267
for Pic, 28
for GL, 6
for K∗, 425
for K0, 78, 192
for K1, 195, 228
for KH∗, 360–361
for KV∗, 354

exotic spheres, 471
extension axiom, 333–343, 374–379
extension category, 162, 342, 364, 371

Sn, 332–343
En, 163, 170, 333, 338, 419

Extension theorem, 365, 365, 366,
367, 373

exterior algebra, 270
exterior power

bundle, 41, 50, 53, 90
module, 18, 90–101, 243, 249,

311, 485

family of vector spaces, 31
Farrell, T., 323, 427
Farrell-Jones Conjecture, 266
Fermat’s Last Theorem, 470
Fernandez Boix, A., 0
fibered functor, 292, 290–297, 309,

310, 329–331, 419
fibrant replacement, 441–448
fibration, 277, see model category

homotopy, 261, 261–279, 290–
297, 309, 325, 328–329, 335,
342, 354–361, 371–380, 400–
448

filtered objects, 117, 142
filtered ring, 406, 418
finitely dominated complexes, 172
finitely dominated spaces, 169, 336
flabby group, 275
flag bundle, 42, 43, 54, 152–156
flasque category, 372
flasque module, 396
flasque resolution, 387, 439
flasque ring, 69, 76, 187, 212–215,

267, 275, 372
flasque sheaves, 393, 396
Fossum, R., 121, 143
fractional ideal, 20, 21, 56
free module, 1–17, 45, 46, 106, 131,

307, 457
Friedlander, E., 480
Frobenius map, 101, 251, 268, 313,

463, 466, 501, 502
Frobenius operator, 141
Frobenius Reciprocity, 67
Fundamental Theorem

for G-theory, iv, 383–387, 405,
406, 415

for G0, 122–126, 146
for K-theory, iv, 347–363, 425,

428, 429, 431
for K0, iv, 136, 205, 209, 282,

316, 347
for K1, 197, 204–206, 209, 347
for K−n, 209

G(R on S), 379, 404
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G(X on Z), 171, 379, 392
Gabber rigidity, see Rigidity theorem,

464
Gabber, O., 250, 281, 282
Gabriel, P., 174, 400, 413
Gabriel-Zisman theorem, 174, 391
GAGA, 47
Galois cohomology, 241, 255
Galois symbol, see norm residue sym-

bol, 241
Gangl, H., 526
Garkusha, G., 0
Garland, H., 270
Gauss, C. F., 243
Geisser, T., 0, 412, 482, 500
Geisser-Levine theorem, 482–483, 500,

506
Geller, S., 316
generated by global sections, see global

sections
geometric realization, iv, 258, 285,

284–296, 298, 300, 317–331,
360, 362, 442

bicategory, 294, 322
bisimplicial set, 290, 353
simplicial space, 293, 334, 351
simplicial spectrum, 351, 358,

360, 362, 426
topological category, 293, 302

Gersten’s DVR conjecture, iv, 411,
412, 418, 438

Gersten, S., 139, 265, 267, 325, 348,
350, 372, 407, 411–436, 441,
443, 446, 449

Gersten-Quillen conjecture, iv, 434,
434–439, 447

ghost map, see Witt vectors
Gillet, H., 259, 338, 343, 345, 375,

412, 414, 438–440, 447, 448,
453, 457

GL-fibration, 353, 353–360
GLn of a non-unital ring I, 6, 6–55
global field, 244, 410, 500–504

ring of integers, 500–504
global sections, 33, 41–42, 45, 51, 56,

60, 61, 144–153, 369, 395

Glueing axiom (W3), 158, 332
Godement resolution, 393, 396, 425
Goodearl, K., 7
Goodwillie, T., 399, 480
GR0 , 142
graded modules Mgr(S), 126, 141
Grassmannian, 37, 38, 83, 84, 293,

294
Grayson’s trick, 172, 338, 339
Grayson, D., 0, 141, 259, 338, 343,

345, 427–437, 480
Great Enlightenment, 443
Grinberg, D., 0
Grothendieck group, iii, 63, 105–107,

113, 114, 144, 145, 157, 172,
212, 252, 311

of monoids, 68
Grothendieck topology, 444
Grothendieck, A., 52, 59, 90, 93, 122,

134, 145, 153, 157, 287, 454–
459, 504

Grothendieck-Witt ring, 108, 108–112
group completion

of a space, iii, iv, 259, 264, 301,
299–309, 327, 330

of monoids, iii, 63, 63–68, 81–86,
90, 91, 101, 104–105, 288,
300

group-like H-space, 301

h-cobordism, 188
H-unital ring, 267, 275
Haesemeyer, C., v, 0
Handelman, D., 7
Harder’s Theorem, 500
Harder, G., 500
Harris, B., v, 464, 467, 526
Harris-Segal summand, 471, 472, 474,

501, 507, 526–529
Hasse invariant, 239, 253, 254
Hasse–Witt invariant, 254
Hasse-Schilling-Maass norm theorem,

181
Hattori’s formula, 74
Hattori, A., 73, 74
Hattori-Stallings trace, see trace
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Hauptvermutung, 188
Heifer, A., 0
Heller, A., 117, 119, 125
Heller-Reiner sequence, 125, 416
Hensel local ring, 213, 215, 281, 446,

448
Hensel pair, 281, see Hensel local ring
henselization, 412, 475
Herbrand-Ribet theorem, 530
Hermitian metric, 32, 33
Hesselholt, L., 509
higher Chow group, 351, 479, 481
Higman’s trick, 201, 203, 204, 351
Higman, G., 203
Hilbert symbol, 232, 233, 243
Hilbert’s Theorem 90

for KM
∗ , 252

for K2, iv, 236–238
for units, 236–241

Hilbert’s Third Problem, 485
Hilbert, D., 236
Hilton-Milnor theorem, 271, 272
Hinich, V., 379
Hirzebruch character, 104, 154
Hochschild homology, 449
Hodge structure, 455
homological stability, 269, 492
homologically bounded complexes, 124,

167
homology isomorphism, 301, 302, 306,

312
homology sphere, 272
homotopization, see homotopy invari-

ant, 351
strict [F ], 350

homotopy K-theory, 358–362, 446
homotopy cartesian, 414, 419, 422,

426, 441, 446, 448
homotopy category, see model category
homotopy fibration, see fibration
homotopy invariant, 35, 36, 82, 350,

350–356, 358, 457
Hopf element η, 271, 274, 468, 474,

494–496, 515
Hopf invariant, 102, 103
Hopf, H., 218

Hornbostel, J., 0
Hsiang, W.-C., 427
Huber, A., 455
Hurewicz map, 269–283, 449, 451,

452, 464, 497
Hutchinson, K., 498
hyperbolic plane, see Witt ring
hyperbolic space, 308, 485

ideal class group, see Picard group
idempotent completion, 131, 131, 139,

140, 172, 310, 343, 376
idempotent lifting, 15, 25, 70
image of J , 102, 461, 468–472, 520,

526
indecomposable, see vector bundle
infinite loop space, 86, 264–282, 300,

302–308, 320, 321, 335, 351,
371, 372

machines, 302, 308
map, 326, 351

infinite sum ring, 69, 81
inner product space, see Witt ring
invariant basis property (IBP), 2, 2–5,

45, 68–70, 79, 131, 299
invertible ideal, 20, 21, 56–59, 423
involution

canonical, 331, 514
on KU , 88, 89
on rings, 299, 308

irregular prime, 470, 470, 525–532
Isomorphism Conjecture, 266
ivertible sheaf, see line bundle
Iwasawa theory, 513, 514
Iwasawa, K., 470
Izhboldin’s theorem, iv, 250, 480, 482,

505
Izhboldin, O., 250, 257

Jacobian variety, 22, 59, 462, 500–503
Jacobson radical, 6, 10, 182
Jardine, J.F., 448
Jordan-Hölder theorem, 4, 115, 124–

125, 399
Jouanolou’s trick, 417
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K-cohomology, iv, 439–440, 447, 453,
454

K-theory of spaces, see A(X)
K-theory space, iv, 258–259

exact category, 279, 319
monoidal category, 279, 300, 302
of a ring, 259, 264, 265
relative, 335, 371
Waldhausen, 279, 334, 336

K-theory spectrum, 279, 302, 336,
340, 348

Bass, 347–349, 358, 419, 425,
430, 431, 441, 446, 447

K-theory with coefficients, 187, 214,
268, 279, 277–283, 359, 403,
410–418, 460, 462–484, 497,
500–532

K(R on S), 168, 169, 172, 380, 381,
382, 397, 419

K(X on Z), 397, 423–425, 427
Kähler differentials, 196, 243, 249, 449
Kahn, B., 471
Kaplansky, I., 10, 14, 17, 69, 71
Karoubi, M., 69, 100, 208, 212, 213,

215, 308, 355, 372, 422
Karoubi-Villamayor K-theory, 259,

351, 350–358
Karoubi-Villamayor K-theory, 358
Kato, K., 113, 248–255
Kedlaya, K., 0
Keller, B., 140, 143
Kervaire, M., 219, 272
Keune, F., 221, 267
KH∗, see homotopy K-theory
Kleisli rectification, 17, 320, 325, 349
Kn-regular ring, 202, 359–362, 431
Knebusch, M., 108
Kolster, M., 513, 532
Koszul sequence, 51, 127, 151, 367,

369, 416
Kratzer, C., 315
Kronecker, L., 530, 531
Krull domain, see Cartier divisor
Krull-Schmidt Theorem, 52, 69, 107,

111, 129
Kuku, A., 269

Kummer theory, 232, 241, 255, 454,
460, 481, 519, 523, 530, 531

Kummer’s congruences, 470
Kummer, E., 470, 528, 530, 531
Kurihara, M., 526, 531

L-theory, 308
Lück, W., 139
Lam, T-Y, 67, 142
Landweber, P., 0
lax functor, 296, 325, 349
Leary, I., 0
Lee, R., 468, 525, 526
Leibniz rule, 196
Leopoldt’s conjecture, 509
Levikov, J., 0
Levine, M., 412, 438, 481–482, 500
Lichtenbaum, S., 480, 504, 513, 523,

526
Lie algebra, 407
Lie group, 38, 474
line bundle, 18, 18–29, 32, 46, 50–54,

56, 61, 62, 92, 105, 145, 152,
155, 427, 456, 457

G-bundle, 454
ample, 60, 147, 153, 393
clasification, 38
classification, 40, 454
degree, see vector bundle
determinant, 144, 145, 152
topological, 18, 32, 33, 36–43, 52,

58, 87, 88, 92
twisting, 51, 51, 52, 148

line element, see λ-ring
local coefficient system, 289
local field, 232–243, 253–257, 413,

464–471, 505–509
Localization

G-theory, 379–382, 433–439
K0, 119–126
category, 119, 173–177, 389
cohomology, 482
Quillen, iv, 235–242, 400–428,

500–503, 511, 527
Waldhausen, 165, 165–169, 374–

382
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locally factorial, see unique factoriza-
tion domain (UFD)

locally free module, 42, 45, 46, 53, 60
locally small, see set theory
Loday symbols, 275, 316
Loday, J.-L., 0, 265–267
Lorenz, M., 0

Möbius bundle, 31, 32, 37
Maazen, H., 225
Madsen, I., 509
Mal’cev, A.I., 66
mapping telescope, 295, 305–309, 451
Maschke’s Theorem, 66, 74
Maschke’s theorem, 528
Matsumoto’s theorem, 230, 230–240,

244, 480, 494
Matsumoto, H., iv, 230
May, J.P., 303
Mayer-Vietoris property, see descent,

446

Mayer-Vietoris sequence, 55, 67, 194,
211–215, 222–228, 357, 361–
362, 382, 414–426

KV -theory, 355
Mazza, C., v, 0
McCarthy, R., 399
McGibbon, C., 85
Mennicke symbol, 189, 184–190, 193–

195
Merkurjev, A., 221, 233–240, 478
Merkurjev-Suslin theorem, 240–242,

478–480
Milnor K-theory, iv, 244, 244–257,

265, 274, 461, 478
Milnor Conjecture, 253, 255
Milnor patching, see patching modules
Milnor square, 13, 13–16, 25–30, 80,

194–195, 212, 222
Milnor, J., 13, 85, 182, 194, 216, 217,

244–255
Mitchell, S., 526
model category, 442–448

local injective, 443, 443–448
monomial matrices, 276, 464, 488–500
Moore complex, 352

Moore space/spectrum, 277, 278
Moore’s theorem, 232, 243, 256, 413,

505, 508
Moore, C., 233
Moore, J., 356
Morita equivalence, 75, 75–81, 179,

226, 373
Morita invariant functor

HH∗, 449
Kn, 76, 185, 213, 220, 226, 275,

320
motivic cohomology, 316, 351, 455–

457, 477–484, 505, 526
multiplicative system, 173, 392, 404,

417
Mumford, D., 149
Mumford-regular, 149, 149–156, 367–

370
Murthy, M.P., 214

ν(n)F , 250, 249–257
Néron-Severi group, 61
Nakaoka, M., 274, 492
narrow Picard group, see Picard group
negative K-theory, iv, 209–215, 259,

419, 430
theory of, 212

Neisendorfer, J., 278
Nenashev, A., 345
nerve of a category, 285
Nesterenko, Y., 456, 478
Newton, I., 99
Nil∗(R), 132, 133, see NK∗, 141, 142,

201–207, 323, 428–432
Nil(R), see Nil∗(R)
nilpotent ideal, 6, 15, 55

K∗ of, 70, 118, 196, 208, 275,
353–357, 361, 398

K̃0 is, 71, 95, 95–97, 111, 153
Nisnevich sheaves, 477–478
Nisnevich topology, 446
Nisnevich, Y., 446
NK∗, 201–208, 229, 322–324, 357,

362, 428–432
node, 26, 29, 61, 77, 418
non-exceptional, see exceptional field
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non-noetherian, see pseudo-coherent
norm, see transfer map

on KM
∗ , 247, 249–252

reduced, 180, 180–191, 221
norm residue symbol, iv, 232, 232–

255, 478
Norm Residue Theorem, v, 252, 255,

478, 526
number field

K3, 486
2–regular, 521
rank of Kn, 270
real, 469, 472, 515–524
real embeddings, 242, 245, 270
ring of integers, 22, 182, 193, 282,

324, 410, 480, 511–524
totally imaginary, 193, 217, 469,

472, 486, 509, 511–514, 517,
518

totally real, 509, 513, 523

OEIS (online encyclopedia of integer
sequences), 527

Ojanguren, M., 5
Oliver, R., 187
Open Patching, see patching modules
order, 271
Ore condition, 173
Ore, Ø, 173
Orlov, D., 253
orthogonal group, 184, 308
Østvær, 521
Østvær, P.A., 0

P(F ), 485–498
Paluch, M., 0
paracompact space, 32–34, 36, 38, 42,

82–88
parallelizable manifolds, 471
Parshin’s conjecture, 500
Parshin, A., 500
partially ordered abelian group, 66, 79,

80, 91
patching bundles, 33–36, 49, 54, 55
patching modules, 12–16, 25–28, 34,

36, 46, 57, 76

Pedrini, C., 59
Pelaez, P., 0
perfect complex, 168, 168–171, 368,

381, 388–397, 423–425
perfect group, 181, 192, 218, 259–276,

306, 310, 494, 495
perfect map, 393
perfect module, 380, 396
perfect radical, 263, 273
periodicity, see Bott periodicity
periodicity map, 483, 515
permutation matrices, 179, 228, 262,

274, 308, 357, 492
permutation representation, 274, 492
Peterson, F., 277
Pfister, A., 109
phantom map, 301
Picard category, 105, 111, 299, 301,

307
Picard group, iv, 18, 18–30, 50, 55–58,

74–96, 144–156, 202, 210,
214, 282, 299, 301, 324, 361,
410, 454–460, 462, 470, 482,
484, 500, 502, 503, 511–524,
528, 530–532

narrow, 518, 518–524
relative, 28, 29

Picard variety, 59, 61
Picard, E., 59
Pierce’s theorem, 71
Platonov, V., 181
Poincaré Conjecture, 188
Poincaré Duality, 502
Poincaré, H., 188, 272
Polo, P., 0
Pontrjagin class, 41, 43
Pontrjagin, L., 41
positive homotopy K-theory, 356
positive structure, see λ-ring
Postnikov tower, 447
power norm residue, see norm residue

symbol, 240
pre-fibered functor, see fibered functor
primitive elements, 270, 271
principal ideal domain (PID), 9, 21,

68, 115, 514
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product
in πs∗, 274
in K∗, 185, 214, 226–227, 265–

276, 280–283, 321, 302–326,
329, 340, 347, 386–387, 429,
430, 451, 479, 515

in K0, 68, 69, 78, 131–142, 164
in KU∗, 88
K∗(R;Z/ℓ), 279, 283, 411
motivic cohomology, 479

projection formula, iv, 60, 78, 140,
148, 155, 155, 227, 231, 237,
238, 241, 247, 248, 250, 322,
384–389, 393–397, 404, 457,
458

projective bundle, see projective space
bundle

Projective Bundle Theorem, 127, 148,
151–153, 367, 370, 373, 416,
417, 428, 430, 457

projective module, iii, iv, 7, 1–42, 46–
63, 68–81, 90, 95, 101, 105–
111, 113, 129–143, 147, 170,
178, 184–186, 199, 203, 206,
220, 227, 258, 298, 307–308,
311, 316, 319, 368, 372, 380–
381, 384–397, 419–428, 432,
450

big projective, 17
classification, 19, 75
faithfully, 106, 107, 111
graded, 372, 373
infinitely generated, 9, 10, 14, 17,

111
lifting property, 7, 8, 21, 51, 168,

169, 199
projective object, 139
projective space bundle, 53, 54, 62,

148, 152, 153, 156, 367, 417,
457

pseudo-coherent
complex, 168–171, 381, 390–397
module, 129, 139, 168, 319, 381,

382, 384, 392, 396, 407
strictly –, 170

punctured spectrum, 427

pure exact sequence, 437–440

Q–construction, iii, 317–327, 331
quadratic forms, 110, 110–113, 369
quadratic module, 299, 308
Quadratic reciprocity, 243
quadratic space, see quadratic forms
quasi-exact category, see exact category
quasi-separated scheme, 349, 368, 373,

381, 423, 425, 426
quasicoherent module, 47, 47, 51, 60,

147–150, 425
quaternion algebra, see cyclic algebra
quaternionic bundle, see vector bundle
Quillen’s Theorem A, 291, 291–325,

343, 345, 365, 378, 383, 398,
401, 420

Quillen’s Theorem B, 292, 292–297,
325, 329, 330, 345, 401, 419,
421

Quillen, D., iii, v, 9, 139, 140, 148,
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338, 348, 365–374, 383, 395,
398–401, 407, 417, 419–424,
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193–196, 225, 228, 281

nilradical, 24–30, 71, 95, 196, 361
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45–60, 71–75, 78, 80, 84, 91,
95, 106, 109, 111, 144–156
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rational equivalence, 433, 435
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Reiner, I., 125
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replete category, 143
representation ring R(G), 66, 66, 91,

91–101, 105, 107, 311–316
Resolution theorem, iv, 134, 125–148,

383, 383–397, 420, 421
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Schur’s Lemma, 69, 399
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214, 270, 271, 273, 423
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Serre’s formula, 115, 122, 125, 138
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Smale, S., 188
small category, see set theory
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418, 461, 467
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stable range, 4, 3–7, 70–72, 181, 188,
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module, 2, 1–9, 19, 68, 106, 136
vector bundles, 34, 37
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modules, 12, 68, 199
vector bundles, 37, 83

Stallings, J., 73
Steiberg group, 264
Stein spaces, 48
Stein, M., 225
Steinberg group, 216, 216–228, 264,

273

relative, 221, 227, 228
Steinberg identity, 230, 230–242, 255
Steinberg relations, 216
Steinberg symbols, 224, 223–257, 265,

274, 315, 521
Steinberg, R., 109, 112, 216, 219
Stiefel, E., 40
Stiefel–Whitney class, 39, 38–41, 49,

87–89, 92, 99
axioms (SW1–4), 39
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Stienstra, J., 207, 225, 323
strictly cofinal subcategory, 338, 342
Strooker, J., 357
structure group, 34, 35, 38, 44
Subbundle theorem, 33, 42, 43, 82, 129
subintegral extension, 30, 362
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Suslin, A., v, 9, 181, 189, 220, 221,

235–243, 267, 269, 271, 272,
454, 456, 460–467, 473–474,
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suspension ring, 190, 215, 348
Swallowing lemma, 297
Swan’s theorem, 9, 17, 18, 42, 42, 74
Swan, R., 27, 72, 101, 139, 190–196,

264, 373, 407
Sylvester, J., 217
symmetric algebra, 53, 407, 417
symmetric bilinear form, see Witt ring
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104, 104–114, 129, 164, 258,
279, 298–310, 326–329, 465

acts on X, 303–310
symmetric spectra, 443
syzygy, 138
Szarba, R., 468, 526
Szczarba, R., 525

tame symbol, 233, 233–243, 245, 407
tangent bundle, see vector bundle
Tate module, 281, 508
Tate twist, 466, 467, 481, 501
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Thurston, W., 485
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Todd class, 154
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torsor, 417
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Totaro, B., 456, 478
trace
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Hattori-Stallings, 73, 74
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trace ideal of a module, 16, 17
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260, 268, 281, 316, 319, 322,
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438–440, 464, 477, 483, 498,
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Traverso’s theorem, 26, 27, 202, 361
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177, 389, 424
t-structure, 172
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Trobaugh, T., see Thomason, R.
Tsygan’s double complex, 490
Tulenbaev, M., 220
twisted duality theory, 457–459
twisted polynomial ring, 417, 427, 432
twisted projective line, 427, 428

Uncle Tom’s Cabin, v
unimodular row, 3–5, 12, 25, 28, 188,

189, 269
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unique factorization domain (UFD),

23, 24, 57
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unit-regular ring, 7, 70
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228, 263, 264, 273
universal coefficient sequence, 278,

278–283, 359, 412, 465, 480,
481, 483, 484, 496, 502, 507,
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van der Kallen, W., 220, 225, 228, 431
Van Kampen’s theorem, 288
Vandiver’s Conjecture, 530, 525–532
Vandiver, H., 530
Vanishing Conjecture, 316, 484
Vaserstein, L., 4, 181–195, 220
vector bundle

G-, 107, 111, 454
algebraic, iv, 1, 18, 45–62, 373–

457
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55, 83, 84, 293, 294
complex conjugate, 42, 88
complexification, 42, 84
degree, 39, 52–59, 154, 462
indecomposable, 51–53
normal bundle, 33
not projective, 51
on spheres, 36, 37, 83
quaternionic, 32–44, 89
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Veldkamp, F., 5
Verdier, J.-L., 176
Verschiebung operator, 141
Villamayor, O., 212, 213, 355
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Volodin space, 262, 261–273
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Wagoner, J., 81, 267, 275, 348, 372,
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extensional, 333, 379
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172, 332–342, 366, 376–381,
390, 425
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326, 330, 335–341, 375–382,
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Wall’s finiteness obstruction, 266
Wall, C.T.C., 72, 73
Wang, S., 180
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Weber, M., 518
Weil divisor, see divisor
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class group
Weil Reciprocity Formula, 235, 247,

256, 414, 500, 503
Weil, A., 59, 235, 502, 504
Whitehead group, 187, 266

higher Whn, 266
Whitehead products, 272
Whitehead Theorem, 167
Whitehead torsion, 187, 188
Whitehead’s Lemma, 181
Whitehead, J.H.C., 6, 181, 187
Whitney sum, 31–42, 82, 89, 105
Whitney sum formula, 39–41, 43, 107,

254, 452–457
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Wigner, D., 485
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Wiles, A., 513
Witt ring, iv, 108, 112, 107–113, 252,

254
Witt vectors, 90, 92, 132, 141, 142,

207, 323, 450, 452, 505
Witt, E., 108
Wodzicki, M., 267
wS. construction, iii, 334

Yoneda embedding, 139, 140, 376

Zariski descent, see descent
Zassenhaus’ Lemma, 124
zeta function, 271, 480, 513–514, 523,
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of a curve, 504
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Sou [171] C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et coho-
mologie étale, Invent. Math. 55 (1979), 251–295.

August 29, 2013 - Page 564 of
LastPage
568



Chapter VI
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Reine Angew. Math. 365 (1985), 218–220.

Su76 [178] A. Suslin, On a theorem of Cohn, Zap. Nauk LOMI (1976), 127–130.
English transl. in J. Soviet Math. 17 (1981), 1801–1803.

Su77 [179] A. Suslin, On the structure of the special linear group over polynomial
rings, Math. USSR Izv. 11 (1977), 221–238.

Su81 [180] A. Suslin, On the equivalence of K-theories, Comm. in Alg. 9 (1981),
1559–1565.

Su82 [181] A. Suslin, Stability in algebraic K-theory, pp. 304–333 in Lecture Notes
in Math. 966, Springer-Verlag, 1982.

Su83 [182] A. Suslin, On the K-theory of algebraically closed fields, Invent. Math. 73
(1983), 241–245.

Su-KM [183] A. Suslin Homology of GLn, characteristic classes and Milnor K-theory,
pp. 357–375 in Lecture Notes in Math. 1046, Springer Verlag, 1984.

Su84 [184] A. Suslin, On the K-theory of local fields, J. Pure Appl. Alg. 34 (1984),
319–330.

Su86 [185] A. Suslin, Algebraic K-theory of fields, pp. 222–244 in Proc. Berkeley
ICM Vol. 1, Amer. Math. Soc., Providence, 1987.

Su87 [186] A. Suslin, Torsion in K2 of fields, K-theory 1 (1987), 5–29.

Su91 [187] A. Suslin, K3 of a field, and the Bloch group (Russian), Trudy Mat. Inst.
Steklov 183 (1990), 180–199. English transl. in Proc. Steklov Inst. Math.
(1991), 217–239.

Su95 [188] A. Suslin, Excision in integer algebraic K-theory (Russian), Trudy Mat.
Inst. Steklov 208 (1995), Teor. Chisel, Algebra i Algebr. Geom., 290–317.

August 29, 2013 - Page 565 of
LastPage
568



Chapter VI

Su03 [189] A. Suslin, On the Grayson spectral sequence, Trudy Mat. Inst. Steklova
241 (2003), 218–253. English transl. in Proc. Steklov Inst. Math. 241
(2003), 202–237.

SV00 [190] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomol-
ogy with finite coefficients, pp. 117–189 in NATO Sci. Ser. C Math. Phys.
Sci. 548, Kluwer, 2000.

SuW [191] A. Suslin and M. Wodzicki, Excision in algebraic K-theory, Annals of
Math. 136 (1992), 51–122.

Suz [192] M. Suzuki, Group Theory I Springer-Verlag, 1982.

Swan [193] R. Swan, Algebraic K-theory, Lecture Notes in Math. 76, Springer, 1968.

Swan70 [194] R. Swan, A Splitting Principle in Algebraic K-theory, pp.155–159 in Proc.
Sympos. Pure Math. XXI, AMS, 1971.

Swan71 [195] R. Swan, Excision in algebraic K-theory, J. Pure Applied Algebra 1
(1971), 221–252.

Swan72 [196] R. Swan, Some relations between higher K-functors, J. Algebra 21 (1972),
113–136.

Swan80 [197] R. Swan, On Seminormality, J. Algebra 67 (1980), 210–229.

Tate [198] J. Tate, On the torsion in K2 of fields, Algebraic Number Theory (1976
Kyoto Internat. Sympos.), Japan Soc. Promotion Sci., Tokyo, 1977.

Th [199] R. W. Thomason, Algebraic K-theory and Étale Cohomology, Ann. Sci.
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