
INTRODUCTION

Algebraic K-theory has two components: the classical theory which centers
around the Grothendieck group K0 of a category and uses explicit algebraic presen-
tations, and higher algebraic K-theory which requires topological or homological
machinery to define.

There are three basic versions of the Grothendieck group K0. One involves the
group completion construction, and is used for projective modules over rings, vector
bundles over compact spaces and other symmetric monoidal categories. Another
adds relations for exact sequences, and is used for abelian categories as well as exact
categories; this is the version first used in algebraic geometry. A third adds relations
for weak equivalences, and is used for categories of chain complexes and other
categories with cofibrations and weak equivalences (“Waldhausen categories”).

Similarly, there are four basic constructions for higher algebraic K-theory: the
+–construction (for rings), the group completion constructions (for symmetric
monoidal categories), Quillen’s Q-construction (for exact categories), and Wald-
hausen’s wS. construction (for categories with cofibrations and weak equivalences).
All these constructions give the same K-theory of a ring, but are useful in various
distinct settings. These settings fit together like this:

number theory and
other classical topics

←→ algebraic geometry

↑↓ ↑↓

Homological and
+-constructions
K-theory of rings ←−−−−

Q-construction: K-theory of
vector bundles on schemes,
exact categories, modules
and abelian categories

↑ ↖ ↑

Group Completions
relations to L-theory,
topological K-theory,
stable homotopy theory

←−−−−

Waldhausen Construction:
K-theory of spaces,
K-theory of chain complexes
topological rings

l l

algebraic topology ↔ geometric topology
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All the constructions have one feature in common: Some category C is concocted
from the given setup, and one defines a K-theory space associated to the geometric
realization BC of this category. The K-theory groups are then the homotopy
groups of the K-theory space. In the first chapter, we introduce the basic cast of
characters: projective modules and vector bundles (over a topological space, and
over a scheme). Large segments of this chapter will be familiar to many readers,
but which segments are familiar will depend upon the background and interests
of the reader. The unfamiliar parts of this material may be skipped at first, and
referred back to when relevant. We would like to warn the complacent reader that
the material on the Picard group and Chern classes for topological vector bundles
is in this first chapter.

In the second chapter, we define K0 for all the settings in the above figure,
and give the basic definitions appropriate to these settings: group completions for
symmetric monoidal categories, K0 for rings and topological spaces, λ-operations,
abelian and exact categories, Waldhausen categories. All definitions and manipula-
tions are in terms of generators and relations. Our philosophy is that this algebraic
beginning is the most gentle way to become acquainted with the basic ideas of
higher K-theory. The material on K-theory of schemes is isolated in a separate
section, so it may be skipped by those not interested in algebraic geometry.

In the third chapter we give a brief overview of the classical K-theory for K1

and K2 of a ring. Via the Fundamental Theorem, this leads to Bass’ “negative
K-theory,” meaning groups K

−1, K−2, etc. We cite Matsumoto’s presentation for
K2 of a field from [Milnor], and “Hilbert’s Theorem 90 for K2” (from chapter VI)
in order to get to the main structure results. This chapter ends with a section on
Milnor K-theory, including the transfer map, Izhboldin’s theorem on the lack of
p-torsion, the norm residue symbol and the relation to the Witt ring of a field.

In the fourth chapter we shall describe the four constructions for higher K-
theory, starting with the original BGL+ construction. In the case of P(R), finitely
generated projective R-modules, we show that all the constructions give the same
K-groups: the groups Kn(R). The λ-operations are developed in terms of the S−1S

construction. Non-connective spectra and homotopy K-theory are also presented.
Very few theorems are present here, in order to keep this chapter short. We do
not want to get involved in the technicalities lying just under the surface of each
construction, so the key topological results we need are cited from the literature
when needed.

The fundamental structural theorems for higher K-theory are presented in chap-
ter V. This includes Additivity, Approximation, Cofinality, Resolution, Devissage
and Localization (including the Thomason-Trobaugh localization theorem for schemes).
As applications, we compute the K-theory and G-theory of projective spaces and
Severi-Brauer varieties (§2), construct transfer maps satisfying a projection formula
(§3), prove the Fundamental Theorem for G-theory (§6) and K-theory (§9). Several
cases of Gersten’s DVR conjecture are established in §6 and the Gersten-Quillen
conjecture in §7. This is used to interpret the coniveau spectral sequence in terms
of K-cohomology, and establish Bloch’s Formula that CHp(X) ∼= Hp(X,Kp) for
regular varieties.

In chapter 6 we describe the structure of the K-theory of fields. First we handle
algebraically closed fields (§1), and the real numbers R (§3), following Suslin and
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Harris-Segal. The group K3(F ) can also be handled by comparison to Bloch’s group
B(F ) using these methods (§5). In order to say more, using classical invariants such
as étale cohomology, we introduce the spectral sequence from Motivic Cohomology
to K-theory in §4 and use it in §6–10 to describe the K-theory of local and global
fields.


