
CHAPTER VI

THE HIGHER K-THEORY OF FIELDS

The problem of computing the higher K-groups of fields has a rich history, be-
ginning with Quillen’s calculation for finite fields (IV.1.13), and Borel’s calculation
of K∗(F ) ⊗ Q for number fields (IV.1.18), Tate’s calculations of the Milnor K-
groups of number fields (III.7.2) and Quillen’s observation that the image of the
stable homotopy groups πs∗ in K∗(Z) contained the image of the J-homomorphism,
whose orders are described by Bernoulli numbers. In the early 1970’s, a series of
conjectures were made concerning the K-theory of number fields, and the structure
of Milnor K-theory. After decades of partial calculations and further conjectures,
the broad picture is now in place. The goal of this chapter is to explain what we
now know about the K-theory of fields, and especially number fields.

§1. K-theory of algebraically closed fields

We begin by calculating the K-theory of algebraically closed fields. The results
in this section are due to Suslin [Su83, Su84].

Let C be a smooth curve over an algebraically closed field k, with function field
F . The local ring of C at any closed point c ∈ C is a discrete valuation ring,
and we have a specialization map λc : K∗(F,Z/m) → K∗(k,Z/m) (see V.6.7 and
Ex.V.6.14). If C = P1, we saw in IV, Ex. 6.14 that all of the specialization maps
λc agree. The following result, due to Suslin [Su83], shows that this holds more
generally.

Theorem 1.1. (Rigidity) Let C be a smooth curve over an algebraically closed
field k, with function field F = k(C). If c0, c1 are two closed points of C, the
specializations K∗(F,Z/m)→ K∗(k,Z/m) coincide.

Proof. There is no loss of generality in assuming that C is a projective curve.
Suppose that f : C → P1 is a finite map. Let R0 and R′ be the local ring in k(t)
at t = 0 and its integral closure in F = k(C), respectively. If sc is a parameter
at c and ec is the ramification index at c, so that t = u

∏
secc in R′, then for

a ∈ K∗(F,Z/m) we have ∂c({t, a}) = ec∂c{sc, a} = ecλc(a). Since k(c) = k for all
closed c ∈ C, we see from Chapter V, (6.6.4) that

λ0(NF/k(t)a) = ∂0NF/k(t)({t, a}) =
∑

f(c)=0

Nc∂c({t, a}) =
∑

f(c)=0

ecλc(a).

A similar formula holds for any other point of P1. In particular, since λ0(Na) =
λ∞(Na) we have the formula

∑
f(c)=0

ecλc(a) =
∑

f(c)=∞
ecλc(a).
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2 VI. THE HIGHER K-THEORY OF FIELDS

We can assemble this information as follows. Let A denote the abelian group
Hom(K∗(F ;Z/m),K∗(k,Z/m)), and recall that Cart(C) denotes the free abelian
group on the closed points of C. There is a homomorphism λ : Cart(C) → A
sending [c] to the specialization map λc of IV.6.7. If we regard f as an element of
F×, its divisor is

∑
f(c)=0 ec[c] −

∑
f(c)=∞ ec[c]. The displayed equation amounts

to the formula λ ◦ div = 0. Now the Picard group Pic(C) is the cokernel of the
divisor map F× → Cart(C) (see I.5.12), so λ factors through Pic(C). Since A is a
group of exponent m, λ factors through Pic(C)⊗ Z/m. However, the kernel J(C)
of the degree map Pic(C) → Z is a divisible group (I.5.16), so λ is zero on J(C).
Since [c0]− [c1] ∈ J(C), this implies that λc0 = λc1 . �

Corollary 1.2. If A is any finitely generated smooth integral k-algebra, and
h0, h1 : A → k are any k-algebra homomorphisms, then the induced maps h∗i :
K∗(A;Z/m)→ K∗(k;Z/m) coincide.

Proof. The kernels of the hi are maximal ideals, and it is known that there is
a prime ideal p of A contained in their intersection such that A/p is 1-dimensional.
If R is the normalization of A/p then the hi factor through A → R. Therefore we
can replace A by R. Since C = Spec(R) is a smooth curve, the specializations λi
on F = k(C) agree by Theorem 1.1. The result follows, since by Theorem V.6.7,

the induced maps h∗i factor as K∗(R;Z/m)→ K∗(F ;Z/m)
λi−→ K∗(k;Z/m). �

Theorem 1.3. If k ⊂ F is an inclusion of algebraically closed fields, the maps
Kn(k;Z/m)→ Kn(F ;Z/m) are isomorphisms for all m.

Proof. We saw in V.6.7.2 that both Kn(k) → Kn(F ) and Kn(k;Z/m) →
Kn(F ;Z/m) are injections. To see surjectivity, we write F as the union of its
finitely generated subalgebras A. Therefore every element of Kn(F ;Z/m) is the
image of some element of Kn(A;Z/m) under the map induced from the inclusion
h0 : A →֒ F . Since the singular locus of A is closed, some localization A[1/s] is
smooth, so we may assume that A is smooth.

But for any maximal ideal m of A we have a second map h1 : A→ A/m = k →֒ F .
Both h0 and h1 factor through the basechange A→ A⊗k F and the induced maps
hi : A ⊗k F → F . Since A ⊗k F is smooth over F , the map h∗0 : Kn(A;Z/m) →
Kn(F ;Z/m) coincides with h∗1 : Kn(A;Z/m) → Kn(k;Z/m) → Kn(F ;Z/m) by
Corollary 1.2. This finishes the proof. �

Finite characteristic. For algebraically closed fields of characteristic p > 0, we
may take k = F̄p to determine K∗(F ). Recall from IV.1.13 that Kn(F̄p) = 0 for
even n > 0, and that K2i−1(F̄p) = ∪K2i−1(Fpν ) is isomorphic as an abelian group
to F̄×

p
∼= Q/Z[ 1p ]. In particular, Kn(F ;Z/p) = Kn(F̄p;Z/p) = 0; this implies that

Kn(F ) is uniquely p-divisible. (We saw in IV.5.6 that this is true more generally
for perfect fields of characteristic p.)

We also saw in IV.1.13 that if p ∤ m and β ∈ K2(F̄p;Z/m) ∼= µm(F̄p) is the Bott
element (whose Bockstein is a primitive mth root of unity), then K∗(F̄p;Z/m) ∼=
Z/m[β] as a graded ring. The action of the Frobenius automorphism φ(x) = xp

on F induces multiplication by pi on K2i−1(F̄p); we say that the action is twisted i
times. The following corollary to Theorem 1.3 is immediate from these remarks.
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Corollary 1.3.1. Let F be an algebraically closed field of characteristic p > 0.
(i) If n is even and n > 0, Kn(F ) is uniquely divisible.
(ii) If n = 2i − 1 is odd, K2i−1(F ) is the direct sum of a uniquely divisible group
and the torsion group Q/Z[ 1p ]. In particular, it is divisible with no p-torsion, and

the Frobenius automorphism acts on the torsion subgroup as multiplication by pi.
(iii) When p ∤ m, the choice of a Bott element β ∈ K2(F ;Z/m) determines a graded
ring isomorphism K∗(F ;Z/m) ∼= Z/m[β].

Recall that any divisible abelian group is the direct sum of a uniquely divisible
group and a divisible torsion group, a divisible torsion group is the sum of its
Sylow subgroups, and an ℓ-primary divisible group is a direct sum of copies of
Z/ℓ∞. Therefore K2i−1(F ) is the direct sum of a uniquely divisible group and
⊕ℓ 6=pZ/ℓ∞ ∼= Q/Z[ 1p ].

1.3.2. If F is any separably closed field of characteristic p, then Kn(F ) is non-
canonically a summand of Kn(F̄ ) by a transfer argument (as it is uniquely p-
divisible for all n > 0, by IV.5.6). Therefore Kn(F ) also has the structure described
in Corollary 1.3.1; see Exercise 1.1.

We now turn to the structure of K∗(F ) when F has characteristic zero.

Proposition 1.4. If F is an algebraically closed field of characteristic 0 then
for every m > 0 the choice of a Bott element β ∈ K2(F ;Z/m) determines a graded
ring isomorphism K∗(F ;Z/m) ∼= Z/m[β].

Proof. Pick a primitivemth root of unity ζ in Q̄, and let β be the corresponding
Bott element in K2(Q(ζ);Z/m). We use this choice to define a Bott element β ∈
K2(E;Z/m) for all fields containing Q(ζ), natural in E. By Theorem 1.3, it suffices
to show that the induced ring map Z/m[β] → K∗(F ;Z/m) is an isomorphism for
some algebraically closed field F containing Q̄.

Fix an algebraic closure Q̄p of Qp, where p ∤ m. For each q = pν , let Eq denote
the maximal algebraic extension of Qp inside Q̄p with residue field Fq; Q̄p is the
union of the Eq. For each q ≡ 1 (mod m), we saw in Example V.6.10.2 (which uses
Gabber rigidity) that K∗(Eq;Z/m) = Z/m[β]. If q|q′, the map K∗(Eq;Z/m) →
K∗(Eq′ ;Z/m) is an isomorphism, by naturality of β. Taking the direct limit over
q, we have K∗(Q̄p;Z/m) = Z/m[β], as desired. �

Remark 1.4.1. There is a map K∗(C;Z/m) → π∗(BU ;Z/m) arising from the
change of topology; see IV.4.12.3. Suslin proved in [Su84] that this map is an
isomorphism. We can formally recover this result from Proposition 1.4, since both
rings are polynomial rings in one variable, and the generator β ∈ K2(C;Z/m) maps
to a generator of π2(BU ;Z/m) by IV.1.13.2.

To determine the structure of K∗(F ) when F has characteristic 0, we need a
result of Harris and Segal [HS, 3.1]. Let m = ℓν be a prime power and R a ring
containing the group µm of mth roots of unity. The group µm ≀ Σn = (µm)n ⋊ Σn
embeds into GLn(R) as the group of invertible n×n matrices with only one nonzero
entry in each row and column, every nonzero entry being in µm. Taking the union
over n, the group G = µm ≀ Σ∞ embeds into GL(R).

There is an induced map π∗(BG
+)→ K∗(R) when µm ⊂ R. Given a finite field

Fq with ℓ ∤ q, transfer maps for R = Fq(ζ2ℓ) give maps π∗(BG
+) → K∗(R) →

K∗(Fq). Let µ(ℓ)(F ) denote the ℓ-primary subgroup of µ(F ).



4 VI. THE HIGHER K-THEORY OF FIELDS

Theorem 1.5. (Harris-Segal) If ℓ ∤ q and |µ(ℓ)(Fq(ζℓ))| = m, then each group

π2i−1B(µm ≀ Σ∞)+ contains a cyclic summand which maps isomorphically to the
ℓ-Sylow subgroup of π2i−1BGL(Fq)

+ = K2i−1(Fq) ∼= Z/(qi − 1).

Proof. Fix i and let N = ℓν be the largest power of ℓ dividing qi−1. Theorem
3.1 of [HS] states that both π2i−1(BG

+)(ℓ) → K2i−1(Fq)(ℓ) and π2i(BG
+;Z/N)→

K2i(Fq;Z/N) ∼= Z/N are onto. Since π2i(BG
+;Z/N) is a Z/N -module (IV.2.2),

the latter map splits, i.e., there is a Z/N summand in π2i(BG
+;Z/N) and hence

in π2i−1(BG
+) mapping isomorphically onto K2i−1(Fq;Z/N) ∼= Z/N . �

Corollary 1.5.1. For each prime ℓ 6= p and each i > 0, K2i−1(Q̄p) contains
a nonzero torsion ℓ-group.

Proof. Fix a q = pν such that q ≡ 1 (mod ℓ), and q ≡ 1 (mod 4) if ℓ = 2,
and let m be the largest power of ℓ dividing q − 1. We consider the set of all local
fields E over Qp (contained in a fixed common Q̄p) whose ring of integers R has
residue field Fq. For each such E, we have K2i−1(R) ∼= K2i−1(E) by V.6.9.2. If
Rq denotes the union of these R, and Eq is the the union E, this implies that
K2i−1(Rq) ∼= K2i−1(Eq).

Because G is a torsion group, the homology groups H∗(G;Q) vanish for ∗ >
0, so the groups π∗(BG

+) are torsion groups by the Hurewicz theorem. Since
G→ GL(Fq) factors through GL(Rq), the surjection π∗(BG

+)→ π∗BGL(Fq)
+ =

K∗(Fq) factors through π∗BGL(Rq)
+ = K∗(Rq) and hence through K2i−1(Eq).

It follows that K2i−1(Eq) contains a torsion group mapping onto the ℓ-torsion
subgroup of K2i−1(Fq) ∼= Z/(q − 1). Taking the direct limit over q, it follows that
the ℓ-torsion subgroup of K2i−1(Q̄p;Z/m) maps onto the ℓ-torsion subgroup of
K2i−1(F̄p). �

Corollary 1.5.2. If q ≡ 1 (mod ℓ) and m is the order of µ(ℓ)(Fq) then each
group K2i−1(Z[ζm]) ∼= K2i−1(Q(ζm)) contains a cyclic summand mapping isomor-
phically onto the ℓ-primary component of K2i−1(Fq) ∼= Z/(qi − 1).

In fact, the summand is the torsion subgroup of K2i−1(Q(ζm)), as we shall see
in Theorem 8.2.

Proof. We have K2i−1(Z[ζm]) ∼= K2i−1(Q(ζm)) by V.6.8, and there is a canon-
ical ring map Z[ζm] → Fq. Since µm ⊂ Z[ζm], the split surjection of Theorem 1.5
factors through π2i−1(BG

+)→ K2i−1(Z[ζm])→ K2i−1(Fq). �

Remark 1.5.3. Let S denote the symmetric monoidal category of finite free
µm-sets (IV.4.1.1). The space K(S) is Z×BG+, and the Barratt-Priddy Theorem
identifies it with the zeroth space of the spectrum Σ∞(BG+). As pointed out in
IV.4.10.1, the map BG+ → GL(R)+ arises from the free R-module functor S →
P(R), and therefore K(S)→ K(R) extends to a map of spectra K(S)→ K(R).

If k ⊂ F is an inclusion of algebraically closed fields, K∗(k) → K∗(F ) is an
injection by V.6.7.2. The following result implies that it is an isomorphism on
torsion subgroups, and that Kn(F ) is divisible for n 6= 0.

Theorem 1.6. Let F be an algebraically closed field of characteristic 0. Then
(i) If n is even and n > 0, Kn(F ) is uniquely divisible.
(ii) If n = 2i − 1 is odd, K2i−1(F ) is the direct sum of a uniquely divisible group
and a torsion group isomorphic to Q/Z.
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Proof. Fix i > 0. For each prime ℓ, the group K2i−1(F ;Z/ℓ) is zero by Propo-
sition 1.4. By the universal coefficient sequence IV.2.5, K2i−2(F ) has no ℓ-torsion
and K2i−1(F )/ℓ = 0. That is, K2i−1(F ) is ℓ-divisible for all ℓ and hence divisible,
while K2i−2(F ) is torsionfree. We now consider the universal coefficient sequence

0→ K2i(F )/ℓ→ K2i(F ;Z/ℓ)→ ℓK2i−1(F )→ 0.

The middle group is Z/ℓ by Proposition 1.4. By Corollary 1.5.1, the exponent ℓ
subgroup of K2i−1(F ) is nonzero, and hence cyclic of order ℓ. This implies that
K2i(F )/ℓ = 0, i.e., the torsionfree group K2i(F ) is divisible.

Since a divisible abelian group is the direct sum of a uniquely divisible group and
a divisible torsion group, a divisible torsion group is the sum of its Sylow subgroups,
and an ℓ-primary divisible group is a direct sum of copies of Z/ℓ∞, it follows that
K2i−1(F ) is the direct sum of a uniquely divisible group and ⊕ℓZ/ℓ∞ ∼= Q/Z. �

We conclude this section with a description of the torsion module of K2i−1(F )
as a representation of the group Aut(F ) of field automorphisms of F . For this we
need some elementary remarks. If F is algebraically closed, there is a tautological
action of Aut(F ) on the group µ = µ(F ) of roots of unity in F : g ∈ Aut(F ) sends
ζ to g(ζ). This action gives a surjective homomorphism Aut(F ) → Aut(µ), called
the cyclotomic representation. To describe Aut(µ), recall that the group µ(F ) is
isomorphic to either Q/Z or Q/Z[ 1p ], according to the characteristic of F .

Since any endomorphism of Q/Z induces an endomorphism of its exponent m
subgroup Z/m, and is equivalent to a compatible family of such, End(Q/Z) is

isomorphic to Ẑ = limZ/m. It is easy to see that Ẑ is the product over all primes

ℓ of the ℓ-adic integers Ẑℓ, so Aut(µ) ∼=
∏

Ẑ×
ℓ . A similar argument, with p ∤ m,

shows that End(Q/Z[ 1p ]) is isomorphic to
∏
ℓ 6=p Ẑℓ, and Aut(µ) ∼=

∏
ℓ 6=p Ẑ

×
ℓ .

If char(F ) = 0, the subfield of F fixed by the kernel of Aut(F ) → Aut(µ) is
the infinite cyclotomic extension Q(µ) = ∪mQ(ζm), by elementary Galois theory,

and Aut(F ) surjects onto Aut(Q(µ)) = Gal(Q(µ)/Q) ∼= Aut(µ) ∼= Ẑ×. If F is
algebraically closed of characteristic p > 0, the situation is similar: Aut(F ) surjects
onto Aut(F̄p) = Gal(F̄p/Fp) ∼= Aut(µ); the Frobenius is topologically dense in this
group.

Definition 1.7. For all i ∈ Z, we shall write µ(i) for the abelian group µ,
made into a Aut(F )-module by letting g ∈ Aut(F ) act as ζ 7→ gi(ζ). (This modified
module structure is called the ith Tate twist of the cyclotomic module µ.) If M is
any Aut(F )-submodule of µ, we write M(i) for the abelian group M , considered as
a submodule of µ(i). In particular, its Sylow decomposition is µ(i) = ⊕Z/ℓ∞(i).

Proposition 1.7.1. If F is algebraically closed and i > 0, the torsion submodule
of K2i−1(F ) is isomorphic to µ(i) as an Aut(F )-module.

Proof. It suffices to show that the submodule mK2i−1(F ) is isomorphic to
µm(i) for all m > 0 prime to the characteristic. Fix a primitive mth root of unity ζ
in F , and let β be the corresponding Bott element. Then K∗(F ;Z/m) ∼= Z/m[β],
by either 1.3.1 or 1.6; Since mK2i−1(F ) ∼= K2i(F ;Z/m) as Aut(F )-modules, and
the abelian group K2i(F ;Z/m) is isomorphic to Z/m on generator βi.
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By naturality of the product (IV, 1.10 and 2.8), the group Aut(F ) acts on
K∗(F ;Z/m) by ring automorphisms. For each g ∈ Aut(F ) there is an a ∈ Z/m×

such that g(ζ) = ζa. Thus g sends β to aβ, and g sends βi to (aβ)i = aiβi. Since
µm(i) is isomorphic to the abelian group Z/m with g acting as multiplication by
ai, we have µm(i) ∼= K2i(F ;Z/m). �

EXERCISES

1.1 Show that the conclusion of 1.3.1 holds for any separably closed field of charac-
teristic p: if n > 0 is even then Kn(F ) is uniquely divisible, while if n is odd then
Kn(F ) is the sum of a uniquely divisible group and (Q/Z)(p). Hint: By IV.5.6,
Kn(F ) is uniquely p-divisible for all n > 0.

1.2 (Suslin) Let k ⊂ F be an extension of algebraically closed fields, and let X be
an algebraic variety over k. Write XF for the corresponding variety X ⊗k F over
F . In this exercise we show that the groups G∗(X;Z/m) are independent of k.

(i) If R is the local ring of a smooth curve C at a point c, show that there is a
specialization map λc : G∗(Xk(C);Z/m)→ G∗(X;Z/m).

(ii) (Rigidity) Show that the specialization λc is independent of the choice of c.
(iii) If hi : A→k is as in 1.2, show that maps h∗i : G∗(XA;Z/m)→ G∗(X;Z/m)

exist and coincide.
(iv) Show that the base-change G∗(X;Z/m)→ G∗(XF ;Z/m) is an isomorphism.

1.3 Let E be a local field, finite over Qp and with residue field Fq. Use Theorem 1.6
and the proof of 1.5.1 to show that K2i−1(E)tors is the direct sum of Z/(qi−1) and
a p-group, and that K2i−1(E)tors → K2i−1(Q̄p) is an injection modulo p-torsion.

1.4 The Galois group Γ = Gal(Q(ζm)/Q) acts on µm and hence on the group G
of Theorem 1.5. Show that the induced action of Γ on π∗(BG

+) is trivial, and
conclude that the summand of K2i−1(Q(ζ)) in 1.5.2 is invariant under Γ.

§2. The e-invariant of a field

The odd-indexed K-groups of any field F have a canonical torsion summand,
discovered by Harris and Segal in [HS]. It is detected by a map called the e-invariant,
which we now define.

Let F̄ be a separably closed field, and µ = µ(F̄ ) the group of its roots of unity. We
saw in Proposition 1.7.1 (and Ex. 1.1) that K2i−1(F̄ )tors is isomorphic to the Tate
twist µ(i) of µ as an Aut(F̄ )-module (see Definition 1.7). The target group µ(i)G

is always the direct sum of its ℓ-primary Sylow subgroups µ(ℓ)(i)
G ∼= Z/ℓ∞(i)G.

Definition 2.1. Let F be a field, with separable closure F̄ and Galois group
G = Gal(F̄ /F ). Since K∗(F )→ K∗(F̄ ) is a homomorphism of G-modules, with G
acting trivially on Kn(F ), it follows that there is a natural map

e : K2i−1(F )tors → K2i−1(F̄ )
G
tors
∼= µ(i)G.

We shall call e the e-invariant.
If µ(i)G is a finite group it is cyclic, and we write wi(F ) for its order, so that

µ(i)G ∼= Z/wi(F ). If ℓ is a prime, we write w
(ℓ)
i (F ) for the order of µ(ℓ)(i)

G. Thus

the target of the e-invariant is
⊕

ℓ Z/w
(ℓ)
i (F ), and wi(F ) =

∏
w

(ℓ)
i (F ).
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Example 2.1.1 (finite fields). It is a pleasant exercise to show that wi(Fq) =
qi − 1 for all i. Since this is the order of K2i−1(Fq) by IV.1.13, we see that in this
case, the e-invariant is an isomorphism. (See Exercise IV.1.26.)

Example 2.1.2. If i is odd, wi(Q) = 2 and wi(Q(
√
−1)) = 4. If i is even

then wi(Q) = wi(Q(
√
−1)), and ℓ|wi(Q) exactly when (ℓ − 1) divides i. We have:

w2 = 24, w4 = 240, w6 = 504 = 23·32·7, w8 = 480 = 25·3·5, w10 = 1320 = 23·3·5·11,
and w12 = 65, 520 = 24·32·5·7·13. These formulas may be derived from Propositions
2.2 and 2.3 below.

In [LSz], Lee and Szczarba used a variant of the formula K3(R) = H3(St(R);Z)
(Ex. IV.1.10) to show that K3(Z) ∼= K3(Q) ∼= Z/48. It follows that the e-invariant
K3(Q)→ Z/24 cannot be an injection. (We will see in Remark 2.1.3 that it vanishes
on the nonzero symbol {−1,−1,−1}.)

Remark 2.1.3. The complex Adams e-invariant for stable homotopy is a map
from πs2i−1 to Z/wi(Q), whence our terminology. Quillen observed in [Qlet] that

the Adams e-invariant is the composition πs2i−1 → K2i−1(Q)
e−→ Z/wi(Q). (Adams

defined his e-invariant using π2i(BU)/wi(Q); Quillen’s assertions have been trans-
lated using Remark 1.4.1.)

If i is positive and divisible by 4, the real Adams e-invariant coincides with
the complex e-invariant. If i ≡ 2 (mod 4), the real (Adams) e-invariant is a map
πs2i−1 → π2i(BO)/2wi(Q) = Z/2wi(Q). For all even i > 0, Adams proved in 1966
that the real e-invariant restricts to an injection on the image of J : π2i−1O → πs2i−1

and induces an isomorphism (imJ)2i−1
∼= Z/wi(Q). His proof used the “Adams

Conjecture,” which was later verified by Quillen. Quillen showed in [Qlet] that the
real Adams e-invariant factors through K2i−1(Z) = K2i−1(Q), so (imJ)2i−1 injects
into K2i−1(Z). In particular, the image {−1,−1,−1} of η3 ∈ πs3 is nonzero (see
Ex. IV.1.12). Since the map from π8k+3(BO) = Z to π8k+3(BU) = Z has image
2Z, it follows that the e-invariant K8k+3(Q)→ Z/w4k+2(Q) of Definition 2.1 is not
an injection on (imJ)8k+3.

Not all of the image of J injects into K∗(Z). If n ≡ 0, 1 (mod 8) then J(πnO) ∼=
Z/2, but Waldhausen showed (in 1982) that these elements map to zero in Kn(Z).

Formulas for wi(F )

We now turn to formulas for the numbers w
(ℓ)
i (F ). Let ζm denote a primitive

mth root of unity. For odd ℓ, we have the following simple formula.

Proposition 2.2. Fix a prime ℓ 6= 2, and let F be a field of characteristic 6= ℓ.
Let a ≤ ∞ be maximal such that F (ζℓ) contains a primitive ℓath root of unity and

set r = [F (ζℓ) : F ]. If i = cℓb, where ℓ ∤ c, then the numbers w
(ℓ)
i = w

(ℓ)
i (F ) are

ℓa+b if r | i, and 1 otherwise. That is:

(a) If ζℓ ∈ F then w
(ℓ)
i = ℓa+b;

(b) If ζℓ 6∈ F and i ≡ 0 (mod r) then w
(ℓ)
i = ℓa+b;

(c) If ζℓ 6∈ F and i 6≡ 0 (mod r) then w
(ℓ)
i = 1.

Proof. Since ℓ is odd, G = Gal(F (ζℓν )/F ) is a cyclic group of order rℓν−a for
all ν ≥ a. If a generator of G acts on µℓa+ν by ζ 7→ ζg for some g ∈ (Z/ℓa+ν)×

then it acts on µ⊗i by ζ 7→ ζg
i

. Now use the criterion of Lemma 2.2.1; if r | i then
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Gal(F (ζℓa+b)/F ) is cyclic of order rℓb, while if r ∤ i the exponent r of Gal(F (ζℓ)/F )
does not divide i. �

Lemma 2.2.1. w
(ℓ)
i (F ) = max{ℓν | Gal(F (ζℓν )/F ) has exponent dividing i}

Proof. Set ζ = ζℓν . Then ζ⊗i is invariant under g ∈ Gal(F̄ /F ) precisely
when gi(ζ) = ζ, and ζ⊗i is invariant under all of G precisely when the group
Gal(F (ζℓν )/F ) has exponent i. �

Example 2.2.2. Consider F = Q(ζpa). If i = cpb then w
(p)
i (F ) = pa+b (p 6= 2).

If ℓ 6= 2, p then w
(ℓ)
i (F ) = w

(ℓ)
i (Q) for all i. This number is 1 unless (ℓ − 1) | i;

if (ℓ − 1)|i but ℓ ∤ i then w
(ℓ)
i (F ) = ℓ. In particular, if ℓ = 3 and p 6= 3 then

w
(3)
i (F ) = 1 for odd i, and w

(3)
i (F ) = 3 exactly when i ≡ 2, 4 (mod 6).

The situation is more complicated when ℓ = 2, because Aut(µ2ν ) = (Z/2ν)×

contains two involutions if ν ≥ 3. We say that a field F is exceptional if char(F ) =
0 and the Galois groups Gal(F (ζ2ν )/F ) are not cyclic for large ν. If F is not
exceptional, we say that it is non-exceptional.

Proposition 2.3. (ℓ = 2) Let F be a field of characteristic 6= 2. Let a be
maximal such that F (

√
−1) contains a primitive 2ath root of unity. If i = c2b,

where 2 ∤ c, then the 2-primary numbers w
(2)
i = w

(2)
i (F ) are:

(a) If
√
−1 ∈ F then w

(2)
i = 2a+b for all i.

(b) If
√
−1 /∈ F and i is odd then w

(2)
i = 2.

(c) If
√
−1 /∈ F , F is exceptional and i is even then w

(2)
i = 2a+b.

(d) If
√
−1 /∈ F , F is non–exceptional and i is even then w

(2)
i = 2a+b−1.

The proof of Proposition 2.3(a,b,d) is almost identical to that of 2.2 with r = 1.
The proof in the exceptional case (c) is relegated to Exercise 2.2.

Both R and Q2 are exceptional, and so are each of their subfields. In particular,
real number fields (like Q) are exceptional, and so are some totally imaginary
number fields, like Q(

√
−7).

Example 2.3.1 (local fields). Let E be a local field, finite over Qp and with
residue field Fq. Then wi(E) is wi(Fq) = qi − 1 times a power of p. (The precise
power of p is given in Exercise 2.3 when E = Qp.) This follows from Propositions
2.2 and 2.3, using the observation that (for ℓ 6= p) the number of ℓ-primary roots
of unity in E(ζℓ) is the same as in Fq(ζℓ).

By Exercise 1.3, the mapK2i−1(E)tors
e−→ Z/wi(E) is a surjection up to p-torsion,

and induces an isomorphism on ℓ-primary torsion subgroups K2i−1(E){ℓ} ∼= Z/w
(ℓ)
i

for ℓ 6= p. We will see in Proposition 7.3 that the torsion subgroup of K2i−1(E) is
exactly Z/wi(E).

Bernoulli numbers

The numbers wi(Q) are related to the Bernoulli numbers Bk. These were defined
by Jacob Bernoulli in 1713 as coefficients in the power series

t

et − 1
= 1− t

2
+

∞∑

k=1

(−1)k+1Bk
t2k

(2k)!
.
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(We use the topologists’ Bk from [MSt], all of which are positive. Number theorists
would write it as (−1)k+1B2k.) The first few Bernoulli numbers are:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, B5 =

5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
.

The denominator of Bk is always squarefree, divisible by 6, and equal to the product
of all primes with (p−1)|2k. Moreover, if (p−1) ∤ 2k then p is not in the denominator
of Bk/k even if p|k; see [MSt]. From this information, it is easy to verify the
following identity. Recall from 2.1.2 that wi(Q) = 2 when i is odd.

Lemma 2.4. If i = 2k is even then wi(Q) is the denominator of Bk/4k. The
prime ℓ divides wi(Q) exactly when (ℓ− 1) divides i.

Although the numerator of Bk is difficult to describe, it is related to the notion
of irregular primes, which we now define.

Iregular Primes 2.4.1. A prime p is called irregular if p divides the order hp
of Pic(Z[µp]); if p is not irregular it is called regular. Iwasawa proved that a prime p
is regular if and only if Pic(Z[µpν ]) has no p-torsion for all ν. The smallest irregular
primes are 37, 59, 67, 101, 103, 131 and 149. Siegel conjectured that asymptotically
about 39% of all primes are irregular, and about 39% of the primes less than
4 million are irregular.

Kummer proved that p is irregular if and only if p divides the numerator of
one of the Bernoulli numbers Bk, k ≤ (p − 3)/2 (see [Wash, 5.34]). By Kummer’s
congruences ([Wash, 5.14]), a regular prime p does not divide the numerator of any
Bk/k (but 5|B5). Thus only irregular primes can divide the numerator of Bk/k.

The historical interest in regular primes is Kummer’s 1847 proof of Fermat’s
Last Theorem (case I) for regular primes: xp + yp = zp has no solution in which
p ∤ xyz. For us, certain calculations of K-groups become easier at regular primes.
(See Example 8.3.2 and Proposition 10.5.)

Remark 2.4.2. Bernoulli numbers also arise as values of the Riemann zeta
function. Euler proved (in 1735) that ζQ(2k) = Bk(2π)

2k/2(2k)!. By the functional
equation, we have ζQ(1 − 2k) = (−1)kBk/2k. By Lemma 2.4, the denominator of
ζQ(1− 2k) is 1

2w2k(Q).

Remark 2.4.3. The Bernoulli numbers are of interest to topologists because if
n = 4k− 1 the image of J : πnSO → πsn is cyclic of order equal to the denominator
of Bk/4k, and the numerator determines the number of exotic (4k − 1)-spheres
which bound parallelizable manifolds; see [MSt, App.B].

Harris-Segal Theorem 2.5. Let F be a field with 1/ℓ ∈ F ; if ℓ = 2, we also

suppose that F is non-exceptional. Set wi = w
(ℓ)
i (F ). Then each K2i−1(F ) has a

direct summand isomorphic to Z/wi(F ), detected by the e-invariant.
If F is the field of fractions of an integrally closed domain R then K2i−1(R) also

has a direct summand isomorphic to Z/wi(F ), detected by the e-invariant.
The splitting Z/wi → K2i−1(R) is called the Harris-Segal map, and its image is

called the (ℓ-primary) Harris-Segal summand of K2i−1(R).

We will see in Theorem 8.2 below that Z/wi is the torsion subgroup ofK2i−1(Z[ζℓa ]).
It follows that the Harris-Segal map is unique, and hence so is the Harris-Segal sum-
mand of K2i−1(R). This uniqueness was originally established by Kahn and others.
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Proof. Suppose first that either ℓ 6= 2 and ζℓ ∈ R, or that ℓ = 2 and ζ4 ∈ R.
If R has m = ℓa ℓ-primary roots of unity, then w

(ℓ)
i (Q(ζm)) equals wi = w

(ℓ)
i (F )

by 2.2 and 2.3. Thus there is no loss in generality in assuming that R = Z[ζm].
Pick a prime p with p 6≡ 1 (mod ℓa+1). Then ζℓa+1 6∈ Fp, and if p is any prime
ideal of R = Z[ζm] lying over p then the residue field R/p is Fq = Fp(ζm). We have

wi = w
(ℓ)
i (Fq) by Example 2.2.2.

The quotient map R → R/p factors through the p-adic completion R̂p, whose

field of fractions is the local field E = Qp(ζm). By Example 2.3.2, w
(ℓ)
i (E) = wi

and K2i−1(E){ℓ} e−→ Z/wi is an isomorphism. Now the e-invariant for the finite
group K2i−1(R) is the composite

K2i−1(R)(ℓ) ∼= K2i−1(Q(ζm))(ℓ) −→ K2i−1(E){ℓ} e−→ Z/wi.

By Corollary 1.5.2, K2i−1(R) contains a cyclic summand A of order wi, mapping

to the summand Z/wi of K2i−1(Fq) under K2i−1(R) → K2i−1(R̂p) → K2i−1(Fq).

Therefore A injects into (and is isomorphic to) K2i−1(R̂p){ℓ} ∼= K2i−1(E){ℓ} ∼=
Z/wi. The theorem now follows in this case.

Suppose now that ζℓ 6∈ R. By Exercise 2.5, we may assume that F is a subfield
of Q(ζm), that Q(ζm) = F (ζℓ), and that R is the integral closure of Z in F . We
may suppose that r = [Q(ζm) : F ] divides i since otherwise wi = 1, and set

Γ = Gal(Q(ζm)/F ). By Proposition 2.2, wi = w
(ℓ)
i (Q[ζm]). We have just seen that

there is a summand A of K2i−1(Q[ζm]) mapping isomorphically to Z/wi by the
e-invariant. By Ex. 1.4, Γ acts trivially on A.

Since f : R → Z[ζm] is Galois, the map f∗f∗ is multiplication by
∑
g∈G g on

K2i−1(Z[ζm]), and hence multiplication by r on A (see Ex. IV.6.13). Since f∗f
∗

is multiplication by r on f∗(A), we see that f∗ : f∗(A) → A is an isomorphism
with inverse f∗/r. Hence f∗(A) is a summand of K2i−1(R), and the e-invariant

K2i−1(R)
f∗

−→ K2i−1(Z[ζm])
e−→ Z/wi maps f∗(A) isomorphically to Z/wi.

When ℓ = 2 and F is non-exceptional but
√
−1 6∈ F , we may again assume

by Ex. 2.5 that F is a subfield of index 2 in Q(ζm) = F (
√
−1). By Proposition

2.3, w
(2)
i (Q(ζm)) = 2wi and there is a summand A of K2i−1(Q(ζm)) mapping

isomorphically to Z/2wi by the e-invariant; by Ex. 1.4, Γ acts trivially on A and we
set Ā = f∗(A). Since f

∗f∗ is multiplication by 2 on A, the image of Ā is 2A. From
the diagram

Ā ⊂ K2i−1(F )
e−−−−→ Z/wi

f∗

y
yinclude

A ⊂ K2i−1(Q(ζm))
e−−−−→ Z/2wi

we see that Ā ∼= 2A ∼= Z/wi, as desired. �

Remark 2.5.1. If F is an exceptional field, a transfer argument using F (
√
−1)

shows that there is a cyclic summand in K2i−1(F ) whose order is either wi(F ),
2wi(F ) or wi(F )/2. (Exercise 2.4); we will also call these Harris-Segal summands.

When F is a totally imaginary number field, we will see in Theorem 8.4 below
that the Harris-Segal summand always has order wi(F ). The following theorem,
extracted from Theorem 9.5 below, shows that all possibilities occur for real number
fields, i.e., number fields embeddable in R.
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Theorem 2.6. Let F be a real number field. Then the Harris-Segal summands
in K2i−1(F ) and K2i−1(OF ) are isomorphic to:

(1) Z/wi(F ), if i ≡ 0 (mod 4) or i ≡ 1 (mod 4), i.e., 2i− 1 ≡ ±1 (mod 8);
(2) Z/2wi(F ), if i ≡ 2 (mod 4), i.e., 2i− 1 ≡ 3 (mod 8);
(3) Z/ 1

2wi(F ), if i ≡ 3 (mod 4), i.e., 2i− 1 ≡ 5 (mod 8).

Example 2.7. Let F = Q(ζ + ζ−1) be the maximal real subfield of the cyclo-
tomic field Q(ζ), ζp = 1 with p odd. Then wi(F ) = 2 for odd i, and wi(F ) =
wi(Q(ζ)) for even i > 0 by 2.2 and 2.3 (see Ex. 2.6). Note that p |wi(F (ζ)) for all
i, p |wi(F ) if and only if i is even, and p |wi(Q) only when (p− 1)|i; see 2.2.2.

If n ≡ 3 (mod 4), the groups Kn(Z[ζ + ζ−1]) = Kn(F ) are classically finite (see
8.1); the order of their Harris-Segal summands are given by Theorem 2.6. When
n 6≡ −1 (mod 2p− 2), the group Kn(F ) has an extra p-primary factor not coming
from the image of J (see 2.1.3).

EXERCISES

2.1 For every prime ℓ with 1/ℓ ∈ F , show that the following are equivalent:
(i) F (ζℓ) has only finitely many ℓ-primary roots of 1;

(ii) w
(ℓ)
i (F ) is finite for some i ≡ 0 (mod 2(ℓ− 1));

(iii) w
(ℓ)
i (F ) is finite for all i > 0.

2.2 Prove Proposition 2.3(c), giving the formula w
(2)
i (F ) = 2a+b when i is even and

F is exceptional. Hint: Consider µ(i)H , H = Gal(F̄ /F (
√
−1)).

2.3 If p is odd, show that wi(Qp) = pi − 1 unless (p − 1)|i, and if i = m(p − 1)pb

(p ∤ m) then wi(Qp) = (pi − 1)p1+b.
For p = 2, show that wi(Q2) = 2(2i − 1) for i odd; if i is even, say i = 2bm with

m odd, show that wi(Q2) = (2i − 1)22+b.

2.4 Let f : F → E be a field extension of degree 2, and suppose x ∈ K∗(E) is fixed
by Gal(E/F ). If x generates a direct summand of order 2m, show that f∗(x) is
contained in a cyclic summand of K∗(F ) of order either m, 2m or 4m.

2.5 Let F be a field of characteristic 0. If ℓ 6= 2 and a <∞ is as in 2.2, show that

there is a subfield F0 of Q(ζℓa) such that w
(ℓ)
i (F0) = w

(ℓ)
i (F ). If ℓ = 2 and a <∞ is

as in 2.3, show that there is a subfield F0 of Q(ζ2a) such that w
(2)
i (F0) = w

(2)
i (F ),

and that F0 is exceptional (resp., non-exceptional) if F is.

2.6 Let ℓ be an odd prime, and F = Q(ζℓ+ζ
−1
ℓ ) the maximal real subfield of Q(ζℓ).

Show that wi(F ) = 2 for odd i, and that wi(F ) = wi(Q(ζℓ)) for even i > 0. In
particular, ℓ|wi(Q(ζℓ)) for all i, but ℓ|wi(F ) if and only if i is even.
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§3. The K-theory of R

In this section, we describe the algebraic K-theory of the real numbers R, or
rather the torsion subgroup Kn(R)tors of Kn(R). Here is the punchline:

Theorem 3.1. (Suslin) For all n ≥ 1,
(a) Kn(R) is the direct sum of a uniquely divisible group and Kn(R)tors.
(b) The torsion groups and Kn(R)tors → Kn(C)tors are given by Table 3.1.1.

(c) The map Kn(R;Z/m)→ K̃O(Sn;Z/m) = πn(BO;Z/m) is an isomorphism.

i (mod 8) 1 2 3 4 5 6 7 8

Ki(R) Z/2 Z/2 Q/Z 0 0 0 Q/Z 0

↓ injects 0 a 7→ 2a 0 0 0 ∼= 0

Ki(C) Q/Z 0 Q/Z 0 Q/Z 0 Q/Z 0

↓ 0 0 ∼= 0 0 0 a 7→ 2a 0

Ki(H) 0 0 Q/Z 0 Z/2 Z/2 Q/Z 0

Table 3.1.1. The torsion subgroups of Kn(R), Kn(C) and Kn(H), n > 0.

Remark 3.1.2. Table 3.1.1 shows that Kn(R)tors ∼= πn+1(BO;Q/Z) is the
Harris-Segal summand of Kn(R) (in the sense of 2.5.1) for all n odd; the e-invariant
(Definition 2.1) is the map from Kn(R)tors to Kn(C)tors. When n is 8k + 1, the
Z/2-summand in Kn(R) is generated by the image of Adams’ element µn ∈ πsn;
Adams showed that µn is detected by the complex Adams e-invariant. Adams also
showed that the elements µ8k+2 = η · µ8k+1 and µ8k+3 = η2 · µ8k+1 are nonzero
and detected by the real Adams e-invariant which, as Quillen showed in [Qlet],
maps πsn to Kn(R)tors ∼= πn+1(BO;Q/Z). (See Remark 2.1.3.) It follows that when
n = 8k + 3, the kernel of the e-invariant Kn(R)tors → Q/Z is isomorphic to Z/2,
and is generated by the nonzero element {−1,−1, µ8k+1}. When n = 8k + 5, the
Harris-Segal summand is zero even though the target of the e-invariant is Z/2.

A similar calculation for the quaternions H is also due to Suslin [Su86, 3.5]. The
proof uses the algebraic group SLn(H) in place of SLn(R).

Theorem 3.2. (Suslin) For all n ≥ 1,
(a) Kn(H) is the direct sum of a uniquely divisible group and Kn(H)tors.
(b) The torsion groups and Kn(C)tors → Kn(H)tors are given by Table 3.1.1.

(c) The map Kn(H;Z/m)→ K̃Sp(Sn;Z/m) = πn(BSp;Z/m) is an isomorphism.

The method of proof uses a universal homotopy construction which is of indepen-
dent interest, and also gives an alternative calculation of K∗(C) to the one we gave
in Proposition 1.4. As observed in 1.4.1, the punchline of that calculation is that,

for all n ≥ 1, Kn(C;Z/m)→ K̃U(Sn;Z/m) = πn(BU ;Z/m) is an isomorphism.

We begin with some general remarks. If G is a topological group, then it is
important to distinguish between the classifying space BGδ of the discrete group
G, which is the simplicial set of IV.3.4.1, and the classifying space BGtop of the
topological group Gtop, which is discussed in IV.3.9. For example, the homotopy
groups of BGL(C)δ are zero, except for the fundamental group, while the homotopy
groups of BGL(C)top ≃ BU are given by Bott Periodicity II.3.1.1.
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Next, suppose that G is a Lie group having finitely many components, equipped
with a left invariant Riemannian metric. Given ε > 0, let Gε denote the ε–ball
about 1. If ε is small, then Gε is geodesically convex; the geodesic between any two
points lies in Gε.

Definition 3.3. Let BGε denote the simplicial subset of BGδ whose p-simplices
are the p-tuples [g1, . . . , gp] such that there is a point in the intersection of Gε with
all the translates g1 · · · giGε, i ≤ p. (This condition is preserved by the face and
degeneracy maps of BGδ.)

Suslin proved the following result in [Su84, 4.1].

Theorem 3.4. (Suslin) Let G be a Lie group. If ε is small enough so that Gε
is geodesically convex, then BGε → BGδ → BGtop is a homotopy fibration.

The next step is the construction of a universal chain homotopy. Given a com-
mutative ring R, the algebraic group GLn is Spec(H), where H is the Hopf algebra
R[{xij}ni,j=1][det(X)−1], where det(X) is the determinant of the universal matrix
X = (xij) in GLn(H). For every commutative R-algebra B there is a bijection
HomR(H,B) → GLn(B) sending f to the matrix f(X); the counit structure map
H → R corresponds to the identity matrix of GLn(R).

For each positive integer p, let Ap denote the henselization of the p-fold tensor
product H⊗p along the kernel of the evident structure map H⊗p → R, so that
(Ap, Ip) is a hensel pair, where Ip is the kernel of Ap → R. For i = 1, . . . , p, the
coordinates pri : H → H⊗p → Ap determine matrices Xi = pri(X) in GLn(A

p),
and since Xi is congruent to the identity modulo Ip we even have Xi ∈ GLn(Ip).

Recall that for any discrete group G and integerm, the homology H∗(G,Z/m) of
G is the homology of a standard complex, which we will write as C∗(G), whose de-
gree p piece is Z/m[Gp]; see [WHomo, 6.5]. We write up for the p-chain [X1, ..., Xp]
in Cp(GLn(I

p)). The differential d sends up to

[X2, ..., Xp] +

p−1∑

i=1

(−1)i[. . . , XiXi+1, . . . ] + (−1)p−1[X1, ..., Xp−1].

Now the Ap fit together to form a cosimplicial R-algebra A•, whose cofaces
∂j : Ap → Ap+1 are induced by the comultiplication ∆ : H → H ⊗ H. Ap-
plying GLn yields cosimplicial groups GLn(A

•) and GLn(I
•). We are interested

in the cosimplicial chain complex C∗(GLn(I
•)), which we may regard as a third

quadrant double chain complex, with Cp(GLn(I
−q)) in the (p, q) spot. Thus

(up) = (0, u1, u2, . . . ) is an element of total degree 0 in the associated product
total complex, i.e., in

∏∞
p=0 Cp(GLn(I

p)) (see [WHomo, 1.2.6]). By construction,

d(up) =
∑

(−1)j∂j(up−1), so up is a cycle in this total complex.

Proposition 3.5. For each n, the image of the cycle (up) in
∏∞
p=0 Cp(GL(I

p))

is a boundary in the product total complex of C∗(GL(I
•)). That is, there are chains

cp ∈ Cp+1(GL(I
p)) so that d(cp) +

∑
(−1)j∂j(cp−1) = up for all p ≥ 1.

Proof. Since the reduced complex C̃∗(G) is the subcomplex of C∗(G) obtained

by setting C0 = 0, and up ∈ C̃p, it suffices to show that (up) is a boundary in
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the total complex T∗ of C̃∗(GL(I
•)). By Gabber Rigidity IV.2.10, the reduced

homology H̃∗(GL(I
t),Z/m) is zero for each t. Thus the rows C̃∗(GL(I

−q)) of the
double complex are exact. By the Acyclic Assembly Lemma [WHomo, 2.7.3], the
product total complex T∗ is exact, so every cycle is a boundary. �

Lemma 3.6. For G = GLn(R), if ε is small enough then the embedding BGε →
BGδ → BGL(R) induces the zero map on H̃∗(−,Z/m).

Proof. Let Bp denote the ring of germs of continuous R-valued functions on
the topological space Gp = G× · · · ×G defined in some neighborhood of (1, . . . , 1);
Bp is a hensel ring. The coordinate functions give a canonical map H⊗p → Bp,
whose henselization is a map Ap → Bp, and we write cpctn for the image of cp in
Cp+1(GL(B

p)). Since GL(Bp) is the group of germs of continuous GL(R)-valued
functions on Gp, up is the germ of the function Gp → GL(R)p sending (g1, . . . , gp) to
(g1, . . . , gp), and c

p
ctn is a Z/m-linear combination of germs of continuous functions

γ : Gp → GL(R)p+1. That is, we may regard each cpctn as a continuous map of some
neighborhood of (1, . . . , 1) to Cp+1(GL(R)

top).
If N is a fixed integer, there is an ε > 0 so that the cpctn are defined on (Gε)

p

for all p ≤ N . Extending cpctn by linearity, we get homomorphisms sp : Cp(BGε)→
Cp+1(BSL(R)

top). It is clear from Proposition 3.5 that s is a chain contraction for

the canonical embedding C̃∗(BGε) → C̃∗(BGL(R)
top), defined in degrees at most

N . This proves the Lemma. �

Proposition 3.7. For G = SLn(R), if ε is small enough then

(a) the embedding BGε → BGδ → BSL(R) induces the zero map on H̃∗(−,Z/m).

(b) H̃i(BGε,Z/m) = 0 for all i ≤ (n− 1)/2.
(c) Hi(BG

δ,Z/m)→ Hi(BG
top,Z/m) is an isomorphism for all i ≤ (n− 1)/2.

Proof. Since H∗(BSL(R)) → H∗(BGL(R)) is a split injection (see Ex. 3.1),
part (a) follows from Lemma 3.6. For (b) and (c), let q be the smallest integer such

that H̃q(BGε,Z/m) is nonzero; we will show that q > (n − 1)/2. Since BGε has
only one 0-simplex, q ≥ 1. Consider the Serre spectral sequence associated to 3.4:

E2
p,q = Hp(BG

top, Hq(BGε,Z/m))⇒ H∗(BG
δ,Z/m).

Then Hi(BG
δ,Z/m)→ Hi(BG

top,Z/m) is an isomorphism for i < q and the exact
sequence of low degree terms for the spectral sequence is

Hq+1(BG
δ,Z/m)

onto−−→ Hq+1(BG
top,Z/m)

dq−→ Hq(BGε,Z/m)→ Hq(BG
δ,Z/m).

Milnor proved in [M-Lie, Thm. 1] that the left-hand map is a split surjection; it
follows that the right-hand map is an injection. By Homological Stability IV.1.15,
Hi(BSLn(R)

δ) → Hi(BSL(R)
δ) is an isomorphism for i ≤ (n − 1)/2; part (a)

implies that q > (n− 1)/2. This proves parts (b) and (c). �

Corollary 3.8. BSL(R)δ → BSL(R)top and BGL(R)δ → BGL(R)top induce

isomorphisms on H̃∗(−,Z/m).

Proof. Set G = SLn(R). Passing to the limit as n → ∞ in 3.7 proves the
assertion for SL. �
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Proof of Theorem 3.1. Since BSL(R)+ and BSL(R)top ≃ BSO are simply
connected, Corollary 3.8 implies that πn(BSL(R)

+;Z/m) → πn(BSO;Z/m) is an
isomorphism for all n. We saw in Chapter IV, Ex. 1.8 that πn(BSL(R)

+;Z/m)→
Kn(R;Z/m) is an isomorphism for n ≥ 3, and an injection for n = 2 with cokernel
Z/2; the same is true for πn(BSO;Z/m) → πn(BO;Z/m). This proves part (c)
for n ≥ 3; the result for n = 1, 2 is classical (see III.1.5.4 and IV.2.5.1, or [Milnor,
p. 61]).

Now consider the action of complex conjugation c on K∗(C). The image of
i∗ : Kn(R) → Kn(C) lands in the invariant subgroup Kn(C)

c, which by Theorem
1.6 is the direct sum of a uniquely divisible group and a torsion group (which is one
of 0, Z/2, 0 or Q/Z depending on n modulo 4). The transfer i∗ satisfies i∗i

∗ = 2
and i∗i∗ = 1 + c; see Ex. IV.6.13. Hence (for n ≥ 1) Kn(R) is the direct sum of its
torsion submodule Kn(R)tors and the uniquely divisible abelian group Kn(C)

c⊗Q,
and the kernel and cokernel of Kn(R)tors → Kn(C)

c
tors are elementary abelian 2-

groups. By Ex. IV.2.6, we have Kn(R)tors ∼= Kn+1(R;Q/Z) ∼= πn+1(BO,Q/Z).
These torsion groups may be read off from Bott Periodicity II.3.1.1. �

EXERCISES

3.1 For any commutative ring R and ideal I, show that R× acts trivially on the
homology of SL(R) and GL(R), while (1 + I)× acts trivially on the homology of
SL(I) and GL(I). Conclude that SL(R) → GL(R) and SL(I) → GL(I) are split
injections on homology.

3.2 Using Exercise 3.1, show that there is a universal homotopy construction for
SLn parallel to the one in Proposition 3.5 for GLn. Use this to prove Proposition
3.7 directly, modifying the proof of Lemma 3.6.

3.3 Check that 3.6, 3.7 and 3.8 go through with R replaced by C. Using these,
prove the analogue of Theorem 3.1 for C and compare it to Theorem 1.5.

3.4 If F is any formally real field, such as R ∩ Q̄, show that K∗(F ;Z/m) ∼=
K∗(R;Z/m) for all m.

§4. Relation to motivic cohomology

Motivic cohomology theory, developed by Voevodsky, is intimately related to
algebraic K-theory. For every abelian group A and every (n, i), the motivic coho-
mology of a smooth scheme X over a field consists of groups Hn(X,A(i)), defined
as the hypercohomology of a certain chain complex A(i) of Nisnevich sheaves. An
introduction to motivic cohomology is beyond the scope of this book, and we refer
the reader to [MVW] for the definitions and properties of motivic cohomology.

When A = Q, we have isomorphisms Hn(X,Q(i)) ∼= K
(i)
2i−n(X), where the right

side refers to the eigenspace of K2i−n(X)⊗ Q on which the Adams operations ψk

act as multiplication by ki, described in IV, Theorem 5.11. This fact is due to
Bloch [Bl86], and follows from 4.1 and 4.9 below; see Ex. 4.5.

Here is the fundamental structure theorem for motivic cohomology with finite
coefficients, due to Rost and Voevodsky. Since the proof is scattered over 15-20
research papers, we refer the reader to the book [HW] for the proof.

For any smooth X, there is a natural map Hn(X,Z/m(i)) → Hn
et(X,µ

⊗i
m )

from motivic to étale cohomology. It arises from the forgetful functor a∗ from
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étale sheaves to Nisnevich sheaves on X, via the isomorphism Hn
et(X,µ

⊗i
m ) ∼=

Hn
nis(X,Ra∗µ

⊗i
m ) and a natural map Z/m(i)→ Ra∗µ

⊗i
m .

Norm Residue Theorem 4.1 (Rost-Voevodsky). If k is a field containing
1/m, the natural map induces isomorphisms

Hn(k,Z/m(i)) ∼=
{
Hn

et(k, µ
⊗i
m ) n ≤ i

0 n > i.

If X is a smooth scheme over k, the natural map Hn(X,Z/m(i))→ Hn
et(X,µ

⊗i
m ) is

an isomorphism for n ≤ i. For n > i, the map identifies Hn(X,Z/m(i)) with the
Zariski hypercohomology on X of the truncated direct image complex τ≤iRa∗(µ

⊗i
m ).

A result of Totaro, and Nesterenko-Suslin [NS, Tot] states that the ith Galois

symbol (III.7.11) factors through an isomorphism KM
i (k)

≃−→ Hi(k,Z(i)), compati-
bly with multiplication. This means that the Milnor K-theory ring KM

∗ (k) (III.7.1)
is isomorphic to the ring ⊕Hi(k,Z(i)). Since Hi(k,Z(i))/m ∼= Hi(k,Z/m(i)), we
deduce the following special case of Theorem 4.1. This special case was once called
the Bloch-Kato conjecture, and is in fact equivalent to Theorem 4.1; see [SV00],
[GL01] or [HW] for a proof of this equivalence.

Corollary 4.1.1. If k is a field containing 1/m, the Galois symbols are iso-

morphisms for all n: KM
i (k)/m

≃−→ Hi
et(k, µ

⊗i
m ). They induce a ring isomorphism:

⊕KM
i (k)/m

≃−→ ⊕Hi(k,Z(i))/m ∼= ⊕Hi(k,Z/m(i)) ∼= ⊕Hi
et(k, µ

⊗i
m ).

The Merkurjev-Suslin isomorphism K2(k)/m ∼= H2
et(k, µ

⊗2
m ) of [MS], mentioned

in III.6.10.4, is the case i = 2 of 4.1.1. The isomorphism KM
3 (k)/m ∼= H3

et(k, µ
⊗3
m )

for m = 2ν was established by Rost and Merkurjev-Suslin; see [MS2].
The key technical tool which allows us to use Theorem 4.1 in order to make

calculations is the motivic-to-K-theory spectral sequence, so-named because it goes
from motivic cohomology to algebraic K-theory. The construction of this spectral
sequence is given in the references cited in the Historical Remark 4.4; the final
assertion in 4.2 is immediate from the first assertion and Theorem 4.1.

Theorem 4.2. For any coefficient group A, and any smooth scheme X over a
field k, there is a spectral sequence, natural in X and A:

Ep,q2 = Hp−q(X,A(−q))⇒ K−p−q(X;A).

If X = Spec(k) and A = Z/m, where 1/m ∈ k, then the E2 terms are just the étale
cohomology groups of k, truncated to lie in the octant q ≤ p ≤ 0.

Addendum 4.2.1. If A = Z/m and m 6≡ 2 (mod 4), the spectral sequence has
a multiplicative structure which is the product in motivic cohomology on the E2

page and the K-theory product (IV.8) on the abutment.
For any coefficients Z/m, there is a pairing between the spectral sequence 4.2

for Z coefficients and the spectral sequence 4.2 with coefficients Z/m. On the E2

page, it is the product in motivic cohomology and on the abutment it is the pairing
K∗(X)⊗K∗(X;Z/m)→ K∗(X;Z/m) of IV, Ex. 2.5.
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Remark 4.2.2. The spectral sequence (4.2) has an analogue for non-smooth
schemes over k, in which the motivic cohomology groups are replaced by higher
Chow groups CHi(X,n). It is established in [FS, 13.12] and [L01, 8.9]. For any
equidimensional quasi-projective scheme X, there is a convergent spectral sequence

Ep,q2 = CH−q(X,−p− q)⇒ G−p−q(X).

If X is smooth and k is perfect, then Hn(X,Z(i)) ∼= CHi(X, 2i − n); see [MVW,
19.1]. This identifies the present spectral sequence with (4.2). Since CHi(X,n) is
the same as the Borel-Moore homology groupHBM

2i+n(X,Z(i)), this spectral sequence

is sometimes cited as a homology spectral sequence with E2
p,q = HBM

p−q (X,Z(−q)).
Edge map 4.3. Let k be a field. The edge map K2i(k;Z/m) → H0

et(k, µ
⊗i
m ) in

(4.2) is the e-invariant of 2.1, and is an isomorphism for the algebraic closure k̄ of
k; the details are given in Example 4.5(ii) below.

We now consider the other edge map, from Ep,−n2 = Hn(k,Z(n)) ∼= KM
n (k) to

Kn(k). Since the ring K
M
∗ (k) is generated by its degree 1 terms, and the low degree

terms of (4.2) yield isomorphisms H1(k,Z(1)) ∼= K1(k), and H1(k,Z/m(1)) ∼=
K1(k)/m, the multiplicative structure described in 4.2.1 implies that the edge maps
in the spectral sequence are canonically identified with the maps KM

∗ (k)→ K∗(k)
and KM

∗ (k)/m → K∗(k;Z/m) described in IV.1.10.1. (This was first observed in
[GeilL, 3.3] and later in [FS, 15.5].)

By V.11.13, the kernel of the edge map KM
n (k) → Kn(k) is a torsion group of

exponent (n− 1)!. This is not best possible; we will see in 4.3.2 that the edge map
KM

3 (k)→ K3(k) is an injection.
Since {−1,−1,−1,−1} is nonzero in KM

4 (Q) and KM
4 (R) but zero in K4(Q) (by

Ex. IV.1.12), the edge map KM
4 (k) → K4(k) is not an injection for subfields of R.

This means that the differential d2 : H1(Q,Z(3))→ KM
4 (Q) is nonzero.

Similarly, using the étale Chern class c3,3 : K3(k,Z/m)→ Hn
et(k, µ

⊗n
m ) of V.11.10,

we see that the kernel of the edge map KM
n (k)/m → Kn(k;Z/m) has exponent

(n−1)!. (The composition of c3,3 with the isomorphismHn
et(k, µ

⊗n
m ) ∼= KM

n (k)/m of
Corollary 4.1.1 satisfies c3,3(x) = −2x for all x ∈ KM

3 (k)/m.) Since KM
3 (Q) ∼= Z/2

on {−1,−1,−1} (Remark 2.1.3), and this element dies in K3(Q)/8 ∼= Z/8 and
hence K3(Q;Z/8), the edge map KM

3 (Q)/8→ K3(Q;Z/8) is not an injection.

Low degree terms 4.3.1. When k is a field, the edge map KM
2 (k) → K2(k)

is an isomorphism by Matsumoto’s Theorem III.6.1, so the low degree sequence
0 → KM

2 (k)/m → K2(k;Z/m) → µm(k) → 0 of 4.2 may be identified with the
Universal Coefficient sequence IV.2.5. This yields the Merkurjev-Suslin formula
K2(k)/m ∼= H2

et(k, µ
⊗2
m ) of III(6.10.4). Since Hn(X,Z(0)) = 0 for n < 0 and

Hn(X,Z(1)) = 0 for n ≤ 0, by [MVW, 4.2], we also obtain the exact sequences

K4(k)→ H0(k,Z(2))
d2−→ KM

3 (k)→ K3(k)→ H1(k,Z(2))→ 0,

K4(k;Z/m)→ H0
et(k, µ

⊗2
m )

d2−→ KM
3 (k)/m→ K3(k;Z/m)→ H1

et(k, µ
⊗2
m )→ 0.

Since the kernel of KM
3 (k)/m→ K3(k;Z/m) is nonzero for k = Q, the differential

d2 can be nontrivial with finite coefficients. The integral d2 is always zero:
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Proposition 4.3.2. The map KM
3 (k)→K3(k) is an injection for every field k.

Proof. We have seen that the kernel of KM
3 (k) → K3(k) has exponent 2. If

char(k) = 2, then KM
3 (k) has no 2-torsion (Izhboldin’s Theorem III.7.8) and the

result holds, so we may suppose that char(k) 6= 2. Consider the motivic group
H(k) = H0(k,Z(2))/2. Since the differential d2 : H0(k,Z(2)) → KM

3 (k) in 4.3.1
factors through H(k), it suffices to show that H(k) = 0. By universal coefficients,
H(k) is a subgroup of H0(k,Z/2(2)) ∼= H0

et(k,Z/2) = Z/2; by naturality this
implies that H(k) ⊆ H(k′) ⊂ Z/2 for any field extension k′ of k. Thus we may
suppose that k is algebraically closed. In this case, K4(k) is divisible (by 1.6) and
KM

3 (k) is uniquely divisible (by III.7.2), so it follows from 4.3.1 that H0(k,Z(2))
is divisible and hence H(k) = 0. �

Historical Remark 4.4. This spectral sequence 4.2 has an awkward history.
In 1972, Lichtenbaum [Li2] made several conjectures relating the K-theory of inte-
gers in number fields to étale cohomology and (via this) to values of Zeta functions
at negative integers (see 6.10 below). Expanding on these conjectures, Quillen spec-
ulated that there should be a spectral sequence like (4.2) (with finite coefficients)
at the 1974 Vancouver ICM, and Beilinson suggested in 1982 that one might exist
with coefficients Z.

The existence of such a spectral sequence was claimed by Bloch and Lichtenbaum
in their 1994 preprint [BL], which was heavily cited for a decade, but there is a gap
in their proof. Friedlander and Suslin showed in [FS] that one could start with the
construction of [BL] to get a spectral sequence for all smooth schemes, together
with the multiplicative structure of 4.2.1. The spectral sequence in [BL] was also
used to construct the Borel-Moore spectral sequence in 4.2.3 for quasi-projective X
in [FS, 13.12] and [L01, 8.9]

Also in the early 1990s, Grayson constructed a spectral sequence in [Gr95], fol-
lowing suggestions of Goodwillie and Lichtenbaum. Although it converged to the
K-theory of regular rings, it was not clear what the E2 terms were until 2001, when
Suslin showed (in [Su03]) that the E2 terms in Grayson’s spectral sequence agreed
with motivic cohomology for fields. Using the machinery of [FS], Suslin then con-
structed the spectral sequence of Theorem 4.2 for all smooth varieties over a field,
and also established the multiplicative structure of 4.2.1.

In 2000–1, Voevodsky observed (in [VV02a, VV02b]) that the slice filtration
for the motivic spectrum representing K-theory (of smooth varieties) gave rise
to a spectral sequence, and showed that it had the form given in Theorem 4.2
modulo two conjectures about motivic homotopy theory (since verified). Yet a
third construction was given by Levine in [Le01] [Le08]; a proof that these three
spectral sequences agree is also given in [Le08].

Remark 4.4.1. A similar motivic spectral sequence was established by Levine
in [Le01, (8.8)] over a Dedekind domain, in which the group Hn

M (X,A(i)) is defined
to be the (2i− n)th hypercohomology on X of the complex of higher Chow group
sheaves zi ⊗A.

We now give several examples in which the motivic-to-K-theory spectral se-
quence degenerates at the E2 page, quickly yielding the K-groups.
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Examples 4.5. (i) When k is a separably closed field, Hn
et(k,−) = 0 for n > 0

and the spectral sequence degenerates along the line p = q to yield K2i(k;Z/m) ∼=
Z/m, K2i−1(k;Z/m) = 0. This recovers the calculations of 1.3.1 and 1.4 above. In
particular, the Bott element β ∈ K2(k,Z/m) (for a fixed choice of ζ) corresponds

to the canonical element ζ in E−1,−1
2 = H0

et(k, µm).

(ii) If k is any field containing 1/m, and G = Gal(k̄/k), then H0
et(k, µ

⊗i
m )

is the subgroup of µ⊗i
m invariant under G; by Definition 2.1 it is isomorphic to

Z/(m,wi(k)). By naturality in k and (i), the edge map of 4.2 (followed by the in-
clusion) is the composition K2i(k;Z/m)→ K2i(k̄;Z/m)→ µ⊗i

m . Therefore the edge
map vanishes on K2i(k)/m and (by the Universal Coefficient Sequence of IV.2.5)
induces the e-invariant mK2i−1(k)→ Hom(Z/m,Z/wi(k)) = Z/(m,wi(k)) of 2.1.

(iii) For a finite field Fq with m prime to q, we have Hn
et(Fq,−) = 0 for n > 1

[Shatz, p. 69]. There is also a duality isomorphism H1
et(Fq, µ

⊗i
m ) ∼= H0

et(Fq, µ
⊗i
m ).

Thus each diagonal p + q = −n in the spectral sequence 4.2 has only one nonzero
entry, so K2i(Fq;Z/m) and K2i−1(Fq;Z/m) are both isomorphic to Z/(m,wi(k)).
This recovers the computation for finite fields given in 2.1.1 and IV.1.13.1.

(iv) Let F be the function field of a curve over a separably closed field containing
1/m. Then Hn

et(F,−) = 0 for n > 1 (see [Shatz, p. 119]) and H0
et(F, µ

⊗i
m ) ∼= Z/m as

in (i). By Kummer theory,

H1
et(F, µ

⊗i
m ) ∼= H1

et(F, µm)⊗ µ⊗i−1
m

∼= F×/F×m ⊗ µ⊗i−1
m .

(The twist by µ⊗i−1
m is to keep track of the action of the Galois group.) As in (iii),

the spectral sequence degenerates to yield K2i(F ;Z/m) ∼= Z/m, K2i−1(F ;Z/m) ∼=
F×/F×m. Since the spectral sequence is multiplicative, it follows that the map
F×/F×m → K2i+1(F ;Z/m) sending u to {βi, u} is an isomorphism because it

corresponds to the isomorphism E0,−1
2 → E−i,−i−1

2 obtained by multiplication by

the element ζ⊗i of E−i,−i
2 . Thus

Kn(F ;Z/m) ∼=
{

Z/m on βi, n = 2i,

F×/F×m on {βi, u} n = 2i+ 1.

When X has dimension d > 0, the spectral sequence (4.2) extends to the fourth
quadrant, with terms only in columns ≤ d. This is because Hn(X,A(i)) = 0 for
n > i+d; see [MVW, 3.6]. To illustrate this, we consider the case d = 1, i.e., when
X is a curve.

Example 4.6. LetX be a smooth projective curve over a field k containing 1/m,

with function field F . By Theorem 4.1, Ep,q2 = Hp−q(X,Z/m(−q)) isHp−q
et (X,µ⊗q

m )
for p ≤ 0, and Ep,q2 = 0 for p ≥ 2 by the above remarks. That is, the E2-terms in
the third quadrant of (4.2) are étale cohomology groups, but there are also modified
terms in the column p = +1. To determine these, we note that a comparison of the
localization sequences for Spec(F ) → X in motivic cohomology [MVW, 14.5] and
étale cohomology yields an exact sequence

0→ Hi+1(X,Z/m(i))→ Hi+1
et (X,µ⊗i

m )→ Hi+1
et (F, µ⊗i

m ).
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In particular, E1,0
2 = 0 and E1,−1

2 = E1,−1
∞ = Pic(X)/m. In this case, we can

identify the groupK0(X;Z/m) = Z/m⊕Pic(X)/m (see II.8.2.1) with the abutment
of (4.2) in total degree 0.

Now suppose that k is separably closed and m = ℓν . Then X has (ℓ-primary)
étale cohomological dimension 2, and it is well known that H1

et(X,µm) ∼= mPic(X)
and H2

et(X,µm) ∼= Z/m; see [Milne, pp. 126, 175]. Thus the spectral sequence has
only three diagonals (p − q = 0, 1, 2) with terms Z/m, mPic(X) ∼= (Z/m)2g and
Pic(X)/m ∼= Z/m (see I.5.15); the only nonzero term in the column p = +1 is
Pic(X)/m ∼= Z/m. By 4.5(ii), there is simply no room for any differentials, so
the spectral sequence degenerates at E2. Since the e-invariant maps K2i(k;Z/m)
isomorphically onto µ⊗i

m
∼= E−i,−i

∞ , the extensions split and we obtain

Proposition 4.6.1. Let X be a smooth projective curve over a separably closed
field containing 1/m. Then

Kn(X;Z/m) =

{
Z/m⊕ Z/m, n = 2i, n ≥ 0,

mPic(X) ∼= (Z/m)2g, n = 2i− 1, n > 0.

The multiplicative structure of K∗(X;Z/m) is given in Exercise 4.3. When
k = F̄p, the structure of K∗(X) is given in Theorem 6.4 below.

Geisser and Levine proved in [GeiL] that if k is a field of characteristic p > 0
then the motivic cohomology groups Hn,i(X,Z/pν) vanish for all i 6= n. This allows
us to clarify the relationship between KM

∗ (k) and K∗(k) at the prime p. Part (b)
should be compared with Izhboldin’s Theorem III.7.8 that KM

n (k) has no p-torsion.

Theorem 4.7. Let k be a field of characteristic p. Then for all n ≥ 0,
(a) for all ν > 0, the map KM

n (k)/pν → Kn(k;Z/p
ν) is an isomorphism;

(b) Kn(k) has no p-torsion;
(c) the kernel and cokernel of KM

n (k)→ Kn(k) are uniquely p-divisible groups.

proof. The Geisser-Levine result implies that the spectral sequence (4.2) with

coefficients Z/pν collapses at E2, with all terms zero except for E0,q
2 = KM

−q(k)/p
ν .

Hence the edge maps of 4.2.2 are isomorphisms. This yields (a). Since the sur-
jection KM

n (k) → KM
n (k)/p ∼= Kn(k;Z/p) factors through Kn(k)/p, the Universal

Coefficient sequence of IV.2.5 implies (b), that Kn−1(k) has no p-torsion. Finally
(c) follows from the 5-lemma applied to the diagram

0 −−−−→ KM
n (k)

p−−−−→ KM
n (k) −−−−→ KM

n (k)/p −−−−→ 0
y

y
y∼=

0 −−−−→ Kn(k)
p−−−−→ Kn(k) −−−−→ Kn(k;Z/p) −−−−→ 0. �

4.8 Periodicity for ℓ > 2. Let β denote the Bott element in K2(Z[ζℓ];Z/ℓ)
corresponding to the primitive ℓth root of unity ζℓ, and let b ∈ K2(ℓ−1)(Z;Z/ℓ) de-

note the image of −βℓ−1 under the transfer map i∗. Since i
∗(b) = −(ℓ− 1)βℓ−1 =

βℓ−1, the e-invariant of b is the canonical generator ζ⊗ℓ−1 of H0(Z[1/ℓ], µℓ−1
ℓ ) by
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naturality. If X is any smooth variety over a field containing 1/ℓ, multiplication by
b gives a map Kn(X;Z/ℓ) → Kn+2(ℓ−1)(X;Z/ℓ); we refer to this as a periodicity
map. Indeed, the multiplicative pairing in Addendum 4.2.1, of b with the spec-
tral sequence converging to K∗(X;Z/ℓ), gives a morphism of spectral sequences
Ep,qr → Ep+1−ℓ,q+1−ℓ

r from (4.2) to a shift of itself. On the E2 page, these maps

are isomorphisms for p ≤ 0, induced by µ⊗i
ℓ
∼= µ⊗i+ℓ−1

ℓ .
The term ‘periodicity map’ comes from the fact that the periodicity map is

an isomorphism Kn(X;Z/ℓ)
≃−→ Kn+2(ℓ−1)(X;Z/ℓ) for all n > dim(X) + cdℓ(X),

cdℓ(X) being the étale cohomological dimension of X for ℓ-primary sheaves. This
follows from the comparison theorem for the morphism ∪b of the spectral sequence
(4.2) to itself.

4.8.1 Periodicity for ℓ = 2. Pick a generator v41 of πs(S8;Z/16) ∼= Z/16; it
defines a generator of K8(Z[1/2];Z/16) and, by the edge map in (4.2), a canoni-
cal element of H0

et(Z[1/2];µ
⊗4
16 ) which we shall also call v41 . If X is any scheme,

smooth over Z[1/2], the multiplicative pairing of v41 (see Addendum 4.2.1) with the
spectral sequence converging to K∗(X;Z/2) gives a morphism of spectral sequences
Ep,qr → Ep−4,q−4

r from (4.2) to itself. For p ≤ 0 these maps are isomorphisms, in-

duced by Ep,q2
∼= Hp−q

et (X,Z/2); we shall refer to these isomorphisms as periodicity
isomorphisms.

Adams Operations 4.9. The Adams operations ψk act on the spectral se-
quence (4.2), commuting with the differentials and converging to the action of ψk

on K∗(k) and K∗(k;Z/m) (IV.5), with ψk = ki on the row q = −i. This was proven
by Soule; see [GiS, 7.1]. Since (ki − ki+r−1) dr(x) = dr(ψ

kx)− ψk(drx) = 0 for all
x in row −i, we see that the image of the differentials dr are groups of bounded
exponent. That is, the spectral sequence (4.2) degenerates modulo bounded torsion.

EXERCISES

4.1 If cdℓ(k) = d and µℓν ⊂ k, show that ∪β : Kn(k;Z/ℓ
ν)→ Kn+2(k;Z/ℓ

ν) is an
isomorphism for all n ≥ d. This is a strong form of periodicity.

4.2 (Browder) Show that the periodicity maps Kn(Fq;Z/ℓ) → Kn+2(ℓ−1)(Fq;Z/ℓ)
of 4.8 are isomorphisms for finite fields Fq (with ℓ ∤ q) for all n ≥ 0.

4.3 Let X be a smooth projective curve over an algebraically closed field k, and
[x] ∈ Pic(X) the class of a closed point x. By I.5.15, Pic(X)/m ∼= Z/m on [x], and
by II.8.2.1 we have K0(X)/m ∼= Z/m ⊕ Z/m with basis {1, [x]}. In this exercise,
we clarify (4.2.1), assuming 1/m ∈ k.

(i) Show that multiplication by the Bott element βi induces an isomorphism

K0(X)/m
≃−→ K2i(X;Z/m).

(ii) Show that K1(X) is divisible, so that the map K1(X;Z/m) → mPic(X) in
the Universal Coefficient sequence is an isomorphism.

(iii) Show that multiplication by the Bott element βi induces an isomorphism

K1(X;Z/m)
≃−→ K2i+1(X;Z/m).

(iv) Conclude that the ring K∗(X;Z/m) is Z/m[β] ⊗ Z/m[M ], where M =
Pic(X)/m⊕ mPic(X) is a graded ideal of square zero.

4.4 Use the formula Hn(P1
k, A(i))

∼= Hn(k,A(i))⊕Hn−2(k,A(i− 1)) (see [MVW,
15.12]) to show that the spectral sequence (4.2) for P1

k is the direct sum of two
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copies of the spectral sequence for k, on generators 1 ∈ E0,0
2 and [L] ∈ E1,−1

2 .

Using this, re-derive the calculation of V.6.14 that Kn(P
1
k)
∼= Kn(k)⊗K0(P

1).

4.5 Use (4.2) and 4.9 to recover Bloch’s isomorphism Hn(X,Q(i)) ∼= K
(i)
2i−n(X).

4.6 The Vanishing Conjecture in K-theory states that K
(i)
n (X) vanishes whenever

i ≤ n/2, n > 0. (See [Sou85, p. 501].) Using the Universal Coefficient sequence

0→ Hj(X,Z(i))/m→ Hj(X,Z/m(i))→ mH
j+1(X,Z(i))→ 0,

(a) show that Hj(X,Z(i)) is uniquely divisible for j ≤ 0, and (b) conclude that the
Vanishing Conjecture is equivalent to the assertion that Hj(X,Z(i)) vanishes for
all j ≤ 0 (i 6= 0). This and Exercise 4.5 show that the Vanishing Conjecture holds
for any field k whose groups Kn(k) are finitely generated, such as number fields.
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§5. K3 of a field

In this section, we study the group K3(F ) of a field F . By Proposition 4.3.2,
KM

3 (F ) injects into K3(F ). By IV.1.20, the map K3(F )→ H3(SL(F )) is onto, and
its kernel is the subgroup of KM

3 (F ) generated by the symbols {−1, a, b}. Assuming
thatKM

3 (F ) is known, we may use homological techniques. The focus of this section
will be to relate the group K ind

3 (F ) := K3(F )/K
M
3 (F ) to Bloch’s group B(F ) of a

field F , which we now define.
For any abelian group A, let ∧̃2A denote the quotient of the group A⊗A by the

subgroup generated by all a⊗ b+ b⊗ a. The exterior product ∧2A is the quotient
of ∧̃2A by the subgroup (isomorphic to A/2A) of all symbols x ∧ x.

Definition 5.1. For any field F , let P(F ) denote the abelian group presented
with generators symbols [x] for x ∈ F − {0}, with relations [1] = 0 and

[x]− [y] + [y/x]−
[
1− x−1

1− y−1

]
+

[
1− x
1− y

]
= 0, x 6= y in F − {0, 1}.

There is a canonical map P(F )→ ∧̃2F× sending [1] to 0 and [x] to x ∧ (1− x) for
x 6= 1, and Bloch’s group B(F ) is defined to be its kernel. Thus we have an exact
sequence

0→ B(F )→ P(F )→ ∧̃2F× → K2(F )→ 0.

Remark 5.1.1. Since the cases B(F2) = 0 and B(F3) = Z are pathological, we
will tacitly assume that |F | ≥ 4 in this section. Theorem 5.2 below implies that
if q > 3 is odd then B(Fq) is cyclic of order (q + 1)/2, while if q > 3 is even then
B(Fq) is cyclic of order q + 1. This is easy to check for small values of q.

Remark 5.1.2. The group P(F ) is closely related to the scissors congruence
group for polyhedra in hyperbolic 3-space H3 with vertices in H3 or ∂H3, and has
its origins in Hilbert’s Third Problem. It was first studied for C by Wigner, Bloch
and Thurston and later by Dupont and Sah; see [DSah, 4.10].

For any finite cyclic abelian group A of even order m, there is a unique nontrivial
extension Ã of A by Z/2. If A is cyclic of odd order, we set Ã = A. Since the group
µ(F ) of roots of unity is a union of finite cyclic groups, we may define µ̃(F ) as the
union of the µ̃n(F ). Here is the main result of this section.

Theorem 5.2. (Suslin) For any infinite field F , there is an exact sequence

0→ µ̃(F )→ K ind
3 (F )→ B(F )→ 0.

The proof is taken from [Su91, 5.2], and will be given at the end of this section.
To prepare for the proof, we introduce the element c in Lemma 5.4 and construct a
map ψ : H3(GL(F ),Z)→ B(F ) in Theorem 5.7. In Theorem 5.16 we connect ψ to
the group M of monomials matrices, and the group µ̃(F ) appears in 5.20 as part
of the calculation of π3(BM

+). The proof of Theorem 5.2 is obtained by collating
all this information.
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Remark 5.2.1. In fact, B(Q) ∼= Z/6. This follows from Theorem 5.2 and the
calculations that K3(Q) ∼= Z/48 (2.1.2), KM

3 (Q) ∼= Z/2 (III.7.2.d) and µ̃(Q) ∼= Z/4.
In fact, the element c = [2]+[−1] has order exactly 6 in both B(Q) and B(R). This
may be proven using the Rogers L-function, which is built from the dilogarithm
function. See [Su91, pp. 219–220].

As an application, we compute K3 of a number field F . Let r1 and r2 denote
the number of real and complex embeddings, i.e., the number of factors of R and
C in the R-algebra F ⊗Q R. Then KM

3 (F ) ∼= (Z/2)r1 by III.7.2(d), and K3(F ) is
finitely generated by IV.6.9 and V.6.8. By Borel’s Theorem IV.1.18, K3(F ) is the
sum of Zr2 and a finite group. We can make this precise.

Corollary 5.3. Let F be a number field, with r1 real embeddings and r2 com-
plex embeddings, and set w = w2(F ). Then K ind

3 (F ) ∼= Zr2 ⊕ Z/w, and:
(a) If F is totally imaginary then K3(F ) ∼= Zr2 ⊕ Z/w;
(b) If F has r1 > 0 embeddings into R then K3(F ) ∼= Zr2 ⊕Z/(2w)⊕ (Z/2)r1−1.

Proof. By 4.3.1 and Proposition 4.3.2, there is an exact sequence

0→ KM
3 (F )→ K3(F )→ H1(F,Z(2))→ 0.

Therefore H1(F,Z(2)) ∼= K ind
3 (F ) is the direct sum of Zr2 and a finite group, say

of order m′. Choose m divisible by m′ and w. Because H0(F,Z(2)) is divisible
by Ex. 4.6(a), the map H0(F, µ⊗2

m ) → H0(F,Z(2))tors is an isomorphism. But
H0(F, µ⊗2

m ) ∼= Z/w, so K ind
3 (F ) ∼= Z/w. This establishes the result when F is

totally imaginary, since in that case KM
3 (F ) = 0.

When F = Q then w = 24 and K3(Q) ∼= Z/48 is a nontrivial extension of Z/w
by Z/2; K3(Q) embeds in K3(R) by Theorem 3.1. When F has a real embedding,
it follows that K3(Q) ⊆ K3(F ) so {−1,−1,−1} is a nonzero element of 2K3(F ).
Hence the extension is nontrivial, as claimed. �

Rigidity Conjecture 5.3.1. (Suslin [Su86, 5.4]) Let F0 denote the algebraic
closure of the prime field in F . The Rigidity Conjecture states that K ind

3 (F0) →
K ind

3 (F ) is an isomorphism. If char(F ) > 0 then K ind
3 (F0) is Z/w2(F ); if char(F ) =

0, K ind
3 (F0) is given by Corollary 5.3.

The element c of B(F )

The elements c = [x]+ [1−x] and 〈x〉 = [x]+ [x−1] of B(F ) play an important role,
as illustrated by the following calculations.

Lemma 5.4. Assuming that |F | > 3,
(a) c = [x] + [1− x] is independent of the choice of x ∈ F − {0, 1}.
(b) For each x in F − {0, 1}, 2〈x〉 = 0.
(c) There is a homomorphism F× → B(F ) sending x to 〈x〉.
(d) 3c = 〈−1〉 and hence 6c = 0 in B(F ).

Proof. Given x 6= y, we have the relations in P(F ):

[1− y]− [1− x] +
[
1− x
1− y

]
−

[
1− x−1

1− y−1

]
+ [y/x] = 0;

[x−1]− [y−1] + [x/y]−
[
1− x
1− y

]
+

[
1− x−1

1− y−1

]
= 0.
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Subtracting the first from the relation in 5.1 yields [x] + [1− x]− [y]− [1− y] = 0,
whence (a) holds. Adding the second to the relation in 5.1 yields 〈y〉−〈x〉 = 〈y/x〉.
Interchanging x and y, and using 〈y/x〉 = 〈x/y〉, we obtain 2〈x〉 = 0. Because
|F | ≥ 4, any z ∈ F − {0, 1} has the form z = zx/x for x 6= 1 and hence 2〈z〉 = 0.
For (d), we compute using (b) and (c):

3c =[x] + [1− x] + [x−1] + [1− x−1] + [(1− x)−1] + [1− (1− x)−1]

=〈x〉+ 〈1− x〉+ 〈1− x−1〉 = 〈−(1− x)2〉 = 〈−1〉. �

Corollary 5.4.1. If char(F ) = 2 or
√
−1 ∈ F then 3c = 0 in B(F ); if

char(F ) = 3 or 3
√
−1 ∈ F then 2c = 0 in B(F ).

The map ψ : H3(GL2)→ B(F )

We will now construct a canonical map H3(GL2(F ),Z)→ B(F ); see Theorem 5.7.
To do this, we use the group hyperhomology of GL2(F ) with coefficients in the
chain complex arising from the following construction (for a suitable X).

Definition 5.5. If X is any set, let C∗(X) denote the “configuration” chain
complex in which Cn is the free abelian group on the set of (n+1)-tuples (x0, . . . , xn)
of distinct points in X, with differential

d(x0, . . . , xn) =
n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn).

There is a natural augmentation C0(X)→ Z sending each (x) to 1.
If a group G acts on X, then C∗(X) is a complex of G-modules, and we may

form its hyperhomology Hn(G,C∗(X)); see [WHomo, 6.1.15]. There is a canonical
map from Hn(G,C∗(X)) to Hn(CG), where CG denotes C∗(X)⊗G Z.

Lemma 5.5.1. If X is infinite then C∗(X)→ Z is a quasi-isomorphism.

Proof. If X0 is a proper subset of X and z ∈ X − X0 then sn(x0, . . . ) =
(z, x0, . . . ) defines a chain homotopy sn : Cn(X0) → Cn+1(X) from the inclusion
C∗(X0) → C∗(X) to the projection C∗(X0) → Z → C∗(X), where the last map
sends 1 to (z). �

If X is finite and |X| > n+ 1, we still have HnC∗(X) = 0, by Exercise 5.1.

Corollary 5.5.2. If a group G acts on X, and X is infinite (or |X| > n+1),
then Hn(G,C∗(X)) ∼= Hn(G,Z).

The case of most interest to us is the action of the group G = GL2(F ) on
X = P1(F ). If n ≤ 2 thenG acts transitively on the basis of Cn(X), and Cn(X)⊗GZ
is an induced module from the stablizer subgroup Gx of an element x. By Shapiro’s
Lemma [WH, 6.3.2] we have Hq(Cn(X)⊗G Z) = Hq(Gx,Z).

Lemma 5.6. H0(CG) = Z, Hn(CG) = 0 for n = 1, 2 and H3(CG) ∼= P(F ).
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Proof. By right exactness of ⊗G, we have H0(C∗(X)⊗G Z) = Z. The differen-
tial from C2⊗G Z ∼= Z to C1⊗G Z ∼= Z is an isomorphism, since d(0, 1,∞) ≡ (0, 1).
For n = 3 we write [x] for (0,∞, 1, x); C3 is a free Z[G]-module on the set
{[x], x ∈ F − {0, 1}}. Similarly, C4 is a free Z[G]-module of the set of all 5-tuples
(0,∞, 1, x, y) and we have

d(0,∞, 1, x, y) =(∞, 1, x, y)− (0, 1, x, y) + (0,∞, x, y)− (0,∞, 1, y) + (0,∞, 1, x)

=

[
1− x
1− y

]
−

[
1− x−1

1− y−1

]
+ [y/x]− [y] + [x].

Thus the cokernel H3(CG) of d : C4 ⊗G Z→ C3 ⊗G Z is P(F ). �

Remark 5.6.1. The proof of Lemma 5.6 goes through for all finite fields, since
|P1(F )| ≥ |P1(F2)| = 7. Hence Hn(C∗(X)) = 0 for n ≤ 3 by Exercise 5.1.

Let T2 denote the diagonal subgroup (isomorphic to F× × F×) of GL2(F ); the
semidirect product T2⋊Σ2 is the subgroup of M2 of monomial matrices in GL2(F )
(matrices with only one nonzero term in every row and column).

Theorem 5.7. For all F , H2(GL2(F ),Z) = F×, and there is an exact sequence

H3(M2,Z)→ H3(GL2(F ),Z)
ψ−→ B(F )→ 0.

To prove Theorem 5.7, we consider the hyperhomology spectral sequence

(5.8) E1
p,q = Hq(G,Cp(X))⇒ Hp+q(G,C∗(X)) ∼= Hp+q(G,Z)

with G = GL2(F ); see [WHomo, 6.1.15]. By Lemma 5.6, the edge map H3(G,Z)→
E∞

3,0 lands in a subset of E1
3,0 = H3(CG) ∼= P(F ), which we must show is B(F ).

It is not hard to determine all 10 nonzero terms of total degree at most 4 in
(5.8). Indeed, the stabilizer of 0 ∈ X is the group B of upper triangular matrices,
so E1

0,q = Hq(G,C0) = Hq(B,Z); the stabilizer of (0,∞) ∈ X2 is the diagonal

subgroup T2 = F× × F×, so E1
1,q = Hq(G,C1) = Hq(T2,Z), and the stabilizer

of (0,∞, 1) ∈ X3 is the subgroup ∆ = {(a, a−1)} of T2, isomorphic to F×, so
E1

2,q = Hq(∆,Z). By [Su84, §3], the inclusion T2 ⊂ B induces an isomorphism on
homology.

It is not hard to see that the differential d1 : Hq(∆) → Hq(T2) is induced by
the inclusion ∆ ⊂ T2. Since the inclusion is split (by projection onto the first
component of T2), the map d1 : Hq(∆) → Hq(T2) is a split injection, and hence
E2

2,q = 0 for all q. The following lemma is proven in Exercise 5.2.

Lemma 5.8.1. Let σ : T2 → T2 be the involution σ(a, b) = (b, a). Then the
differential d1 : Hq(T2)→ Hq(B) ∼= Hq(T2) is induced by 1− σ.

Thus E2
0,q = Hq(T2)σ and E2

1,q = Hq(T2)
σ/Hq(F

×).

Proof of Theorem 5.7. ([Su91, Thm. 2.1]) By Lemma 5.8.1, the row q = 1
in (5.8) has E2

0,1 = (T2)σ = F× and E2
1,1 = 0 (because Tσ2 = F×). Writing (Hn)σ

for Hn(T2,Z)σ, the low degree terms of the E2 page are depicted in Figure 5.8.2.
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(H3)σ

(H2)σ (H2)
σ 0

F× 0 0 E2
3,1

Z 0 0 P(F )

Figure 5.8.2. The E2 page of (5.8)

By the Künneth formula [WH, 6.1.13], H∗(T2) ∼= H∗(F
×) ⊗ H∗(F

×), with σ
interchanging the factors; if x, y ∈ Hi(F

×) then σ(x ⊗ y) = y ⊗ x = (−1)ix ⊗ y.
Since H2(F

×) = ∧2F×, the group H2(T2)σ is the direct sum of ∧2F× and ∧̃2(F×).
A routine but tedious calculation shows that the differential d3 : P(F )→ H2(T2)σ is
the canonical map P(F )→ ∧̃2(F×) of 5.1 followed by the split inclusion of ∧̃2(F×)
into H2(T2)σ; see [Su91, 2.4]. Thus the cokernel of d3 is E3

0,2
∼= ∧2F× ⊕K2(F ). In

particular, we have E3
3,0 = B(F ) and H2(GL2(F ),Z) ∼= E3

0,2
∼= ∧2F× ⊕K2(F ).

Let K denote the kernel of the edge map H3(GL2(F ),Z)→ B(F ). From (5.8.2)
we see that K is an extension of a quotient Q2 of H2(T2)

σ by a quotient Q3 of
H3(T2)σ. It follows that H3(GL2(F ),Z) is an extension of B(F ) by K.

Recall that M2
∼= T2 ⋊Σ2. Since Hp(Σ2, T2) = 0 for p 6= 0, the Hochschild-Serre

spectral sequence Hp(Σ2, HqT2)⇒ Hp+q(M2) degenerates enough to show that the
cokernel of H3(T2) ⊕ H3(Σ2) → H3(M2) is a quotient of H2(T2)σ. Analyzing the
subquotient Q2 in (5.8), Suslin showed in [Su91, p. 223] that K is the image of
H3(M2,Z)→ H3(GL2(F ),Z). The result follows. �

In order to extend the map H3(GL2,Z)
ψ−→ B(F ) of Theorem 5.7 to a map

ψ : H3(GL3,Z)→ P(F ), we need a small digression.

A cyclic homology construction

Recall that under the Dold-Kan correspondence [WHomo, 8.4], a nonnegative chain
complex C∗ (i.e., one with Cn = 0 if n < 0) corresponds to to a simplicial abelian

group {C̃n}. Conversely, given a simplicial abelian group {C̃n}, C∗ is the associated
reduced chain complex.

For example, the chain complex C∗(X) of Definition 5.5 corresponds to a simpli-

cial abelian group; C̃n(X) is the free abelian group on the set Xn+1 of all (n+ 1)-

tuples (x0, . . . , xn) in X, including duplication. In fact, C̃n(X) is a cyclic abelian
group in the following sense. (These assertions are relegated to Ex. 5.6.)

Definition 5.9. ([WHomo, 9.6]) A cyclic abelian group is a simplicial abelian

group {C̃n} together with an automorphism tn of each C̃n satisfying: tn+1
n = 1;

∂itn = tn∂i−1 and σitn = tnσi for i 6= 0; ∂0tn = ∂n and σ0tn = t2n+1σn.

The associated acyclic complex (Ca∗ , d
a) is the complex obtained from the reduced

complex C∗ by omitting the last face operator; Ca∗ is acyclic, and there is a chain
map N : C∗ → Ca∗ defined by N =

∑n
i=0(−1)itin on Cn. The mapping cone of

N has Cn−1 ⊕ Can in degree n, and (b, c) 7→ b defines a natural quasi-isomorphism

cone(N)[1]
≃−→ C∗ (see [WHomo, 1.5]). In fact, cone(N)[1] is a reduced form of two

columns of Tsygan’s double complex [WHomo, 9.6.6].
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Since N0 : C0 → Ca0 is the natural identification isomorphism, we may truncate
the zero terms to get a morphism of chain complexes

(5.9.1)

0 ←−−−− C1
d←−−−− C2

d←−−−− · · · d←−−−− Cn
d←−−−−

N

y N

y N

y N

y

0 ←−−−− Ca1
da←−−−− Ca2

da←−−−− · · · da←−−−− Can
da←−−−− .

We writeD∗ for the the associated mapping cone of this morphism. Thus, D0 = Ca1 ,
and Dn = Can+1 ⊕ Cn for n > 0 with differential (x, y) 7→ (dax −Ny,−dy). Then
cone(N)[1]→ D∗ is a quasi-isomorphism.

Example 5.9.2. WhenX = P2(F ), let Cn denote the subgroup of Cn(X) gener-
ated by the (n+1)-tuples of points (x0, . . . , xn) for which no three xi are collinear.
Since Cn is closed under the operator tn, the associated simplicial abelian sub-

group {C̃n} of {C̃n(X)} has the structure of a cyclic abelian subgroup. The proof
of Lemma 5.5.1 goes through to show that if X is infinite then C∗ → Z and hence
C∗ → C∗(X) are quasi-isomorphisms. It follows that the map ε : D0 → Z sending
(x, y) to 1 induces a quasi-isomorphism D∗ → Z.

Under the canonical action of the group GL3 = GL3(F ) on X = P2(F ), GL3

sends the subcomplex C∗ of C∗(X) to itself, so GL3 acts on C∗ and D∗.

The map ψ : H3(GL3)→ B(F )

We shall now construct a map H3(GL3,Z)
ψ−→ P(F ) whose image is B(F ). We will

relate it to the map of Theorem 5.7 in Lemma 5.10.
Let C∗ be the subcomplex of Example 5.9.2 for X = P2(F ). By 5.5 and Lemma

5.5.1, the hyperhomology Hn(GL3, C∗) of GL3 = GL3(F ) is just Hn(GL3,Z) when
F is infinite (or |F | > n + 1), and there is a canonical map from Hn(GL3,Z) =
Hn(GL3, D∗) to Hn(DG), where DG denotes D∗ ⊗GL3

Z.
The four points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1) and q = (1 : 1 : 1)

play a useful role in any analysis of the action of GL3 on P2(F ). For example,
the Z[GL3]-module C3 is generated by P = (p1, p2, q, p3). Just as in Lemma 5.6,
Cn ⊗G Z = Z for n ≤ 3, while C4 and C5 are free Z[G]-modules on the set of all
5-tuples and 6-tuples

[a
x

]
:= (p1, p2, q, (1 : a : x), p3)

[
a

x

b

y

]
:= (p1, p2, q, (1 : a : x), (1 : b, y), p3) ,

where a 6= x, b 6= y, a 6= b, x 6= y and ay 6= bx. By inspection of DG, d(
[
a
x

]
) = P ,

da(
[
a
x

]
) = N(

[
a
x

]
) = 0, and d : (DG)3 → (DG)2 is zero. Thus the terms n ≤ 4 of

the complex DG have the form:

⊕Z
[a
x

]
⊕ Z

[
a

x

b

y

]
(
−1 0
−N da

)

−−−−−−−−−−→ ZP ⊕
⊕

Z
[a
x

]
0−→ Z2 −→ Z2 −→ Z→ 0.
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The map ψ′ : (DG)3 → P(F ) defined by ψ′(P ) = 2c, ψ′(
[
a
x

]
) = a vanishes on the

image of (DG)4, by a straightforward calculation done in [Su91, 3.3], so it induces
a homomorphism ψ : H3(GL3,Z)→ H3(DG)→ P(F ).

Lemma 5.10. The composition H3(GL2,Z) → H3(GL3,Z)
ψ−→ P(F ) is the ho-

momorphism H3(GL2,Z)→ B(F ) ⊂ P(F ) of Theorem 5.7.

Proof. ([Su91, 3.4]) The subgroup GL2 = GL2(F ) also acts on X = P2(F )
and fixes the origin p3 = (0 : 0 : 1), so it acts on X0 = X − {p3}. The maps
fn : Cn(X0)→ Cn+1(X) = Can+1(X) ⊂ Dn sending (x0, . . . , xn) to (x0, . . . , xn, p3)
satisfy fd = daf , so they form a GL2-equivariant chain map f : C∗(X0) →
Ca∗ (X)/C0(X)[1].

If C ′
n denotes the subgroup f−1

n (Cn+1) of Cn(X0), then the restriction of f defines
a GL2-equivariant chain map C ′

∗ → Ca∗/C
a
0 [1] ⊂ D∗. Therefore the composition of

Lemma 5.10 factors as

H3(GL2,Z)→ H3(C
′
∗GL2

)
f−→ H4(C

a
G)→ H3(DG)

ψ′

−→ P(F ).

The projection from P2(F )− {p3} to P1(F ) with center p3 is GL2-equivariant and
determines a homomorphism from C ′

∗ to C1
∗ = C∗(P

1(F )) over Z. By inspection,
the composition H3(GL2)→ H3(C

′
∗GL2

)→ H3(C
1
∗GL2

) ∼= P(F ) is the inclusion of
Theorem 5.7. �

Lemma 5.11. Let T3 denote the diagonal subgroup F× × F× × F× of GL3(F ).
If F is infinite, Hn(T3,Z)→ Hn(D∗T3

) is zero for n > 0.

Proof. Since p1 = (1 : 0 : 0) and p2 = (0 : 0 : 1) are fixed by T3, the
augmentation D0 → Z has a T3-equivariant section sending 1 to (p1, p2). Therefore
D∗
∼= Z ⊕ D′

∗ as T3-modules, and D′
∗ is acyclic. Therefore if n > 0 we have

Hn(T3, D
′
∗) = 0. Since Hn(D∗T3

) = Hn(D
′
∗T3

) for n > 0, the map Hn(T3,Z) →
Hn(D∗T3

) factors through Hn(T3, D
′
∗) = 0. �

Proposition 5.12. The image of ψ is B(F ), and there is an exact sequence

H3(M2,Z)⊕H3(T3,Z)→ H3(GL3(F ),Z)
ψ−→ B(F )→ 0.

Proof. By [Su-KM, 3.4], H3(T3,Z) and H3(GL2,Z) generate H3(GL3,Z). The
restriction of ψ to H3(T3,Z) is zero by Lemma 5.11, since it factors as

H3(T3,Z)→ H3(DT3
)→ H3(DG)

ψ′

−→ P(F ).
The proposition now follows from Theorem 5.7 and Lemma 5.10. �

Remark 5.12.1. The map ψ extends to a map defined on H3(GL(F ),Z), be-
cause of the stability result H3(GL3(F ),Z) ∼= H3(GL(F ),Z); see IV.1.15.

We now consider the image of H3(Σ∞,Z) in B(F ), where we regard Σ∞ as
the subgroup of permutation matrices in GL(F ), i.e., as the direct limit of the
permutation embeddings ιn : Σn ⊂ GLn(F ). We will use the following trick.

Let S be the p-Sylow subgroup of a finite groupG. Then the transfer-corestriction
composition Hn(G)→ Hn(S)→ Hn(G) is multiplication by [G : S], which is prime
to p. Therefore the p-primary torsion in Hn(G,Z) is the image of Hn(S,Z) when
n > 0.
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Proposition 5.13. The image of H3(Σ∞,Z)
ι∗−→ H3(GL(F ),Z)

ψ−→ B(F ) is the
subgroup generated by 2c, which is trivial or cyclic of order 3.

Proof. We saw in Ex. IV.1.13 that H3(Σ∞,Z) ∼= Z/12⊕ (Z/2)2, so the image
of H3(Σ∞,Z) → H3(GL(F ),Z) has at most 2- and 3-primary torsion. Nakaoka
proved in [Nak] that H3(Σ6,Z) ∼= H3(Σ∞,Z).

Using the Sylow 2-subgroup of Σ6, Suslin proves [Su-KM, 4.4.1] that the 2-
primary subgroup of H3(Σ6,Z) maps to zero in B(F ). We omit the details.

Now the 3-primary component of H3(Σ6,Z) is the image of H3(S), where S is
a Sylow 3-subgroup of Σ6. We may take S = A3 × σA3σ

−1, generated by the 3-
cycles (123) and (456), where σ = (14)(25)(36). Since H2(A3,Z) = 0, the Künneth
formula yields H3(S,Z) = H3(A3,Z)⊕H3(σA3σ

−1,Z). By [WHomo, 6.7.8], these
two summands have the same image in H3(Σ6,Z). By Lemma 5.14, the 3-primary
component of the image of H3(S,Z) in B(F ) is generated by 2c, as desired. �

We are reduced to the alternating group A3, which is cyclic of order 3, embedded
in GL3(F ) as the subgroup of even permutation matrices. We need to analyze the

homomorphism H3(A3,Z)→ H3(GL3(F ),Z)
ψ−→ B(F ).

Lemma 5.14. If |F |≥4, the image of Z/3∼=H3(A3) in B(F ) is generated by 2c.

Proof. If char(F ) = 3 then the permutation representation of A3 is conjugate
to an upper triangular representation, soH∗(A3,Z)→ H∗(GL3(F ),Z) is trivial (see
[S82]). Since 2c = 0 by Corollary 5.4.1, the result follows. Thus we may assume
that char(F ) 6= 3.

When char(F ) 6= 3, the permutation representation is conjugate to the represen-

tation A3 → GL2(F ) with generator λ =
(

0
1
−1
−1

)
. For example, if char(F ) = 2, this

representation identifies A3 with a subgroup of Σ3
∼= GL2(F2). By the Comparison

Theorem [WHomo, 2.2.6], there is a morphism between Z[A3]-module resolutions
of Z, from the standard periodic free resolution (see [WHomo, 6.2.1]) to C∗:

(5.14.1)

Z[A3]
1−λ←−−−− Z[A3]

1+λ+λ2

←−−−−− Z[A3]
1−λ←−−−− Z[A3]

1+λ+λ2

←−−−−− · · ·
f0

y f1

y f2

y f3

y

C0
d←−−−− C1

d←−−−− C2
d←−−−− C3

d←−−−− · · · .
We can build the morphisms fn by induction on n, starting with f0(1) = (0),
f1(1) = (∞, 0) and f2(1) = (∞, 0, x)+(1,∞, x) = (0, 1, x) for any x ∈ F (x 6= 0, 1).
If we set w = 1− 1/x and choose y 6=∞, 0, 1, x, w (which is possible when |F | ≥ 4)
then we may also take

f3(1) =− (∞, 0, x, y)− (1,∞, x, y)− (0, 1, x, y)

+ (1,∞, w, y) + (0, 1, w, y) + (∞, 0, w, y).

Here we have regarded F as embedded in P1(F ) via x 7→
(
1
x

)
. Taking coinvariants

in (5.14.1), the generator 1 of H3(A3) in the periodic complex maps to f3(1),
representing an element of H3(C∗G). Applying ψ sends this element to

−
[
x

y

]
−
[
y − 1

x− 1

]
−

[
y(x− 1)

x(y − 1)

]
+ [x(1− y)] +

[
1− x
xy

]
+

[
y

(1− x)(1− y)

]
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in B(F ). As |F | ≥ 4, we can take x 6= −1 and y = x−1, so this expression becomes
−[x2]− 2[−x2] + 2[x− 1] + [1/x2]. This equals −2c, by Exercise 5.5. �

Monomial matrices

By definition, a monomial matrix in GLn(F ) is one which has only one nonzero
entry in each row and column. We writeMn for the group of all monomial matrices
in GLn(F ) and M for the union of the Mn in GL(F ); Mn is isomorphic to the
wreath products F× ≀ Σn = (F×)n ⋊ Σn and M ∼= F× ≀ Σ∞. We encountered M2

in Theorem 5.7, and the subgroup µ(F ) ≀ Σn of Mn in Theorem 1.5.

Proposition 5.15. Let ι : Σ∞ → GL(F ) be the inclusion. Then there is an
exact sequence:

H3(M,Z) −→ H3(GL(F ),Z)⊕H3(Σ∞,Z)
(ψ,−ψι∗)−−−−−−→ B(F )→ 0.

Proof. (Cf. [Su91, 4.3]) LetH0
3Mn denote the kernel ofH3(Mn,Z)→H3(Σn,Z);

it suffices to show that the image of H0
3Mn → H3(GL(F ),Z) is the kernel of ψ for

large n. The image contains the kernel of ψ because, by Proposition 5.12, the
kernel of ψ comes from the image of H3(T3,Z), which is in H0

3Mn, and H3(M2,Z),
which is in H0

3Mn by Ex. 5.10(d) since the image of H3(Σ2,Z) is in the image of
H3([M,M ],Z) by Ex. 5.12.

The group Mn = Tn ⋊ Σn contains M2 × Σn−2 as a subgroup. Let S denote
the group Σ2 × Σn−2, and write A for the kernel of the split surjection H3(M2 ×
Σn−2,Z)→ H3(S,Z). By Ex. 5.10(e), H3(T3,Z) +A maps onto H0

3Mn.
By the Künneth formula for M2 × Σn−2, A is the direct sum of H0

3 (M2,Z),
H0

2 (M2,Z) ⊗ H1(Σn−2,Z) and F× ⊗ H2(Σn−2,Z). Suslin proved in [Su-KM, 4.2]
that the images of the latter two summands in H3(Mn) are contained in the image
of H3(Tn,Z) for large n. It follows that the image of H0

3Mn is the kernel of ψ. �

In Example IV.4.10.1 and Ex. IV.1.27 we saw that the homotopy groups of
K(F×-Setsfin) ≃ Z × BM+ form a graded-commutative ring with π1(BM

+) ∼=
F× × πs1. By Ex. IV.4.12 , K∗(F

×-Setsfin)→ K∗(F ) is a ring homomorphism. By
Matsumoto’s Theorem III.6.1, it follows that π2(BM

+) → K2(F ) is onto; in fact,
π2(BM

+) = πs2 ⊕ ∧̃2F× by Exercise 5.11. Multiplying by π1(BM
+), this implies

that KM
3 (F ) lies in the image of π3(BM

+)→ K3(F ).
We saw in Theorem 5.7 that the kernel of the mapH3(GL2)→ B(F ) is the image

of H3(M2). The monomial matrices M3 in GL3(F ) contain T3, so Proposition 5.12
shows that the kernel of ψ is contained in the image of H3(M3).

Theorem 5.16. ( [Su91, Lemma 5.4]) The cokernel of π3BM
+ → K3(F ) is

B(F )/(2c), and there is an exact sequence:

π3(BM
+)→ K3(F )⊕ πs3

(ψ,−ψι∗)−−−−−−→ B(F )→ 0.

Proof. Write HnG for Hn(G,Z), and let P denote the commutator subgroup
[M,M ]; we saw in IV, Ex. 1.27 that P is perfect. By IV.1.19–20, πs3 maps onto
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H3A∞ and there is a commutative diagram

π2(BP
+)

◦η−−−−→ π3(BP
+)

h−−−−→ H3P → 0
y

y
y

K2(F )
[−1]−−−−→ K3(F )

h−−−−→ H3SL(F )→ 0.

Since πnBP
+ ∼= πnBM

+ for n ≥ 2 (Ex. IV.1.8), and π2(BM
+)→ K2(F ) is onto (as

we noted above), a diagram chase shows that K3(F )/π3(BM
+) ∼= H3SL(F )/H3P .

Let SM denote the kernel of det : M → F×. We saw in Chapter IV, Ex. 1.27
that BM+ ≃ BP+ × B(F×) × BΣ2; it follows that BSM+ ≃ BP+ × BΣ2. By
the Künneth formula, H3SM ∼= H3P ⊕ (H2P ⊗H1Σ2) ⊕ H3Σ2. Under the map
H3SM → H3SL(F ), the final term lands in the image of H3P by Ex. 5.12, and
the middle term factors through H2SL(F ) ⊗H1SL(F ), which is zero as SL(F ) is
perfect. Hence H3SL(F )/H3P = H3SL(F )/H3SM .

This explains the top half of the following diagram.

H3(P ) −−−−→ H3(SL) −−−−→ K3(F )/π3(BM
+)→ 0

y
y

y∼=

H3(SM) −−−−→ H3(SL) −−−−→ H3(SL)/H3(SM)→ 0
y

y
y∼=

H3(M) −−−−→ H3(GL) −−−−→ B(F )/(2c)→ 0.

Similarly, Ex. IV.1.8 implies that HnGL(F ) ∼= ⊕i+j=nHiSL(F )⊗HjF
×. There

is a compatible splitting HnM ∼= ⊕i+j=nHiSM ⊗ HjF
× by Ex. IV.1.27. This

implies that HnSL(F )/HnSM→HnGL(F )/HnM is injective for all n. For n=3,
the summands H3F

× and H2SL(F )⊗F× of H3GL(F ) are in the image of H3SM
(because π2BSM

+→K2(F ) ∼=H2SL(F ) is onto). SinceH1SL(F ) = 0, we conclude
that H3SL(F )/H3SM → H3GL(F )/H3M is onto and hence an isomorphism.

Finally, combining Propositions 5.12 and 5.13 with Exercise 5.10 and Lemma
5.14, we see that H3SL(F )→ B(F ) is onto, and the cokernel of H3M → H3GL(F )
is B(F )/(2c). Concatenating the isomorphisms yields the first assertion. The
second assertion follows from this by the argument in the proof of Proposition
5.15. �

We define πind
3 (BM+) to be the quotient of π3(BM

+) by all products from
π1(BM

+) ⊗ π2(BM+). There is a natural map πind
3 (BM+) → πs3/(η

3) ∼= Z/12.
Since the products map to KM

3 (F ) in K3(F ), we have the following reformulation.

Corollary 5.16.1. The sequence of Theorem 5.16 induces an exact sequence

πind
3 (BM+)→ K ind

3 (F )⊕ Z/12 −→ B(F )→ 0.

Thus to prove Theorem 5.2, we need to study πind
3 (BM+).

Remark 5.16.2. The diagram in the proof of Theorem 5.16 shows that the map
πind
3 (BM+)→ K ind

3 (F ) is a quotient of the map H3(P,Z)→ H3(SL(R),Z).
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If E is any homology theory and X any pointed topological space, the Atiyah-
Hirzebruch spectral sequence converging to E∗(X) has E2

p,q = Hp(X,Eq(∗)). For
stable homotopy we have E∗(X) = πs∗(X). When X = BG+, the Barratt-Priddy
Theorem (IV.4.10.1) states that πs∗(BG+) = π∗(Z×B(G ≀ Σ∞)+).

Proposition 5.17. There is an exact sequence

0→ µ2(F )→ πind
3 (BM+)

γ−→ µ(F )⊕ Z/12→ 0.

Proof. ([Su91, §5]) We analyze the Atiyah-Hirzebruch spectral sequence

E2
p,q = Hp(F

×, πsq)⇒ πp+q(Z×BM+)

which has a module structure over the stable homotopy ring πs∗. Note that the y-
axis E2

0,∗ = πs∗ is a canonical summand of π∗(Z×BM+), so it survives to E∞. By

Ex. 5.11, π2BM
+/πs2

∼= ∧̃2F×. It is easy to see that the map from E2
1,1 = F×/F×2

to E∞
1,1 = ∧̃2F× is injective, as it sends x to x ⊗ x. It follows that the differential

from E2
3,0 = H3(F

×,Z) to E2
1,1 is zero, so E∞

3,0 = H3(F
×,Z); see Figure 5.17.1.

πs3

πs2 F×/F×2

πs1 F×/F×2 E2
2,1

Z F× ∧2F× H3(F
×) H4(F

×)

Figure 5.17.1. The E2 page converging to π∗(Z×BM+)

The universal coefficient sequence expresses E2
2,1 = H2(F

×,Z/2) as an extension:

0→ (∧2F×)/2→ H2(F
×,Z/2)→ µ2(F )→ 0.

The differential E2
4,0 −→ E2

2,1 lands in (∧2F×)/2 because the composite to µ2(F ) is

zero: by naturality in F , it factors through the divisible group H4(F̄
×,Z).

The cokernel of the product maps from F×⊗π2
2 and ∧2F×⊗πs1 → H3(F

×,Z) is
therefore the direct sum of πs3/(η

3) and an extension of H3(F
×,Z) by µ2(F ). Mod-

ding out by the products from ∧2F×⊗F× replacesH3(F
×,Z) byH3(F

×,Z)/∧3F×,
which by Ex. 5.9 is isomorphic to µ(F ). �

Since H3(P,Z) ∼= π3(BM
+)/η◦π2(BM+) (see IV.1.19), there is a natural surjec-

tion H3(P,Z) → πind
3 (BM+). Consider the homomorphism δ : µ(F ) → P sending

x to
(
x
0

0
x−1

)
. The composition with the map γ of Proposition 5.17 is:

µ(F ) ∼= H3(µ(F ),Z)
δ−→ H3(P,Z)

onto−−→ πind
3 (BM+)

γ−→ µ(F ).
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Lemma 5.18. The composition µ(F )
δ−→ πind

3 (BM+)
γ−→ µ(F ) sends x to x2.

Proof. Let us write µ for µ(F ) and HnG for Hn(G,Z). The homomorphism

µ
δ−→ P factors through D = µ ⋊ Σ2 (where Σ2 → A∞ ⊂ P is given by (12)(34)),

and the map µ ∼= H3(µ) → H3(D) lands in the subgroup H3(µ)Σ2
∼= µ/{±1}. By

Exercise 5.13, the composition of µ → µ/{±1} with H3(D) → H3(P )
γ−→ µ sends

x ∈ µ to x2. �

Recall that the e-invariant maps K ind
3 (F ) to H0(F, µ⊗2) ⊂ µ(F̄ ) (see Definition

2.1). We use it to detect the image of µ(F ) in πind
3 (BM+).

Lemma 5.19. The following composition is an injection:

µ(F )
δ−→ πind

3 (BM+)→ K ind
3 (F )

e−→ H0(F, µ⊗2).

If F is algebraically closed it is an isomorphism.

Proof. If F ⊂ F ′, µ(F ) ⊆ µ(F ′). Therefore we may enlarge F to assume
that it is algebraically closed. In this case H0(F, µ⊗2) = µ(F ) and KM

3 (F ) is
uniquely divisible (III.7.2), so it is a summand of K3(F ) (by V.11.13) and therefore

mK3(F ) ∼= mK
ind
3 (F ).

Now consider the étale Chern class c2,4 : K4(F ;Z/m) → H0(F, µ⊗2
m ), where

1/m ∈ F and m 6≡ 2 (mod 4). Since K4(F ;Z/m) ∼= Z/m on generator β2 (1.4)
and c1(β) = ζ by V.11.10.1, the product rule yields c2(β

2) = ζ−1 ⊗ ζ. Since
the Bockstein is an isomorphism: K4(F ;Z/m) ∼= mK3(F ), this implies that the
e-invariant is −c2,4 on mK3(F ).

The isomorphism K4(F ;Z/m) ∼= mK
ind
3 (F ) factors through the Hurewicz map,

the map H4(SL(F ),Z/m)→ mH3(SL(F ),Z) and the quotient mH3(SL(F ),Z)→
mK

ind
3 (F ) of IV.1.20. Therefore we have a commutative diagram:

H4(µ,Z/m)
δ−−−−→ H4(P,Z/m) −−−−→ H4(SL(F ),Z/m)

c2,4−−−−→ H0
et(F, µ

⊗2
m )

y∼=

y
y

∥∥∥

µm
δ−−−−→ mπ

ind
3 (BM+) −−−−→ mK

ind
3 (F )

−e−−−−→ µm ⊗ µm.
Since the top composition is an isomorphism by Ex.V.11.5, the result follows. �

Corollary 5.20. πind
3 (BM+) ∼= µ̃(F )⊕ Z/12.

Proof. If char(F ) = 2, the result is immediate from Proposition 5.17, so we
may suppose that char(F ) 6= 2. If F ⊂ E then µ(F ) ⊆ µ(E) and therefore, by
naturality of Proposition 5.17 in F , the map on π3(BM

+) groups is an injection.
We may therefore assume that F is algebraically closed. In this case, it follows from
5.18 and 5.19 that (δ, i) : µ(F )⊕Z/12→ π3(BM

+) is an isomorphism, because γδ
is onto and δ(−1) is a nonzero element of the kernel µ2(F ) of γ. �

Proof of Theorem 5.2. (Suslin) By Corollaries 5.16.1 and 5.20, the kernel of
K ind

3 (F )→ B(F ) is the image of µ̃(F ). Thus it suffices to show that the summand
µ̃(F ) of π3(BM

+) (given by Corollary 5.20) injects into K ind
3 (F ). When F is

algebraically closed, this is given by Lemma 5.19. Since µ̃(F )→ µ̃(E) is an injection
for all field extensions F ⊂ E, the general case follows. �
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EXERCISES

5.1 (Hutchinson) If |X| = d, Cn(X) = 0 for n ≥ d by 5.5. Show that Hn(C∗(X)) =
0 for all n 6= 0, d − 1, and that Hn(C

′
∗(X)) = 0 for all n 6= d − 1. (C ′

∗ is de-
fined in 5.10.) Conclude that if |X| ≥ 5 then H3(G,Z) ∼= H3(G,C∗(X)) and
H4(G,C

′
∗(X)) = 0.

5.2 In this exercise we prove Lemma 5.8.1. In the hypercohomology spectral
sequence (5.8), the differential d1 from Hq(G,C1) to Hq(G,C0) ∼= Hq(B,Z) ∼=
Hq(T2,Z) is induced by the map d10 − d11 : C1 → C0, where d

1
0(x0, x1) = x1 and

d11(x0, x1) = x0. Let T2 be the diagonal subgroup, and B the upper triangular
subgroup of GL2(F ). We saw after (5.8) that the inclusion of T2 and B induces

isomorphisms ι : Hq(T2,Z)
∼=−→ Hq(G,C1) and Hq(B,Z)

∼=−→ Hq(G,C0). Show that:
(i) d10 ι = σ(d11 ι), where σ is the involution σ(a, b) = (b, a) of F 2;
(ii) The composition d10 ι is the natural map Hq(T2,Z)→ Hq(B,Z) ∼= Hq(G,C0);
(iii) The fact that Hq(T2,Z) → Hq(B,Z) is an isomorphism ([Su84, §3]) implies
that d1 = 1− σ.
5.3 Show that B(F5) ∼= Z/3 on generator c = [2] = 2[3], with [−1] = 0. Then show
that B(F7) ∼= Z/4 on generator [−1] = 2[3] with c = [4] = 2[−1]. (In both cases,
[3] 6∈ B(F).)

5.4 Show that c = 0 in B(Fq) if either: (a) char(Fq) = 2 and q ≡ 1 (mod 3); (b)
char(Fq) = 3 and q ≡ 1 (mod 4); or (c) char(Fq) > 3 and q ≡ 1 (mod 6);

5.5 (Dupont-Sah) Show that [x2] = 2 ([x] + [−x] + [−1]) in P(F ) for all x 6= ±1.
Using this, show that [x2] + 2[−x2]− 2[x− 1]− [1/x2] = 2c.

5.6 Given an arbitrary set X, let C̃n(X) be the free abelian group on the set Xn+1

of all (n+ 1)-tuples (x0, . . . , xn) in X, including duplication.

a) Show that C̃n(X) is a simplicial abelian group, whose degeneracy operators σi
are duplication of the ith entry. Under the Dold-Kan correspondence, the simplicial

abelian group C̃n(X) corresponds to the chain complex C∗(X) of Definition 5.5.

b) Show that the rotations tn(x0, . . . , xn) = (xn, x0, . . . , xn−1) satisfy t
n+1
n = 1,

∂itn = tn∂i−1 and σitn = tnσi for i 6= 0, ∂0tn = ∂n and σ0tn = t2n+1σn. This shows

that C̃n(X) is a cyclic abelian group [WHomo, 9.6.1].

5.7 Transfer maps. Let F ⊂ E be a finite field extension. If the transfer map
K3(E) → K3(F ) induces a map NE/F : B(E) → B(F ) (via Theorem 5.2), we call
NE/F a transfer map. If NE/F exists, the composition B(F ) → B(E) → B(F )
must be multiplication by [E : F ].

(a) Conclude that there is no transfer map NE/F : B(E)→ B(F ) defined for all
F ⊂ E. Hint: Consider F5 ⊂ F25 or R ⊂ C.

(b) Show that a transfer map B(E) → B(F ) exists if µ(F ) = µ(E), or more
generally if E has an F -basis such that µ(E) is represented by monomial matrices
over F .

5.8 If F0 is the field of constants in F , show that B(F )/B(F0) is the cokernel of
KM

3 (F )⊕K3(F0)→ K3(F ). (The Rigidity Conjecture 5.3.1 implies that it is zero.)
Conclude that B(F (t)) ∼= B(F ), using V.6.7.1.
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5.9 If A is an abelian group, H∗(A,Z) is a graded-commutative ring [WHomo,
6.5.14]. Since H1(A,Z) ∼= A, there is a ring map ∧∗A → H∗(A,Z). The Künneth
formula [WHomo, 6.1.13] for H∗(A × A) and the diagonal provide a natural map
H3(A,Z)→ H3(A× A,Z)→ Tor(A,A), whose image is invariant under the trans-
position involution τ on A×A.

(a) Show that ∧2A → H2(A,Z) is an isomorphism, and that ∧3A → H3(A,Z)
is an injection whose cokernel H ind

3 (A) is canonically isomorphic to Tor(A,A)τ .
Hint: It is true for cyclic groups; use the Künneth formula to check it for finitely
generated A.

(b) If A is a finite cyclic group and σ is an automorphism of A, show that the
composite

A ∼= H ind
3 (A)

σ−→ H ind
3 (A) ∼= A

sends a ∈ A to σ2(a). In particular, σ acts trivially when σ2 = 1.

5.10 In this exercise we analyze H3 of the group Mn = Tn ⋊ Σn of monomial
matrices in GLn(F ), using the Hochschild-Serre spectral sequence. Here F is a
field and Tn = (F×)n denotes the subgroup of diagonal matrices. In this exercise
we write Hi(G) for Hi(G,Z).

(a) Show that the images of H3(T3) and H3(Tn) in H3(Mn(F )) are the same.
(b) Show that H∗(Σn, Tn) ∼= H∗(Σn−1, F

×). (Σn−1 is the stabilizer of T1 = F×.)
(c) Show that H∗(Σn,∧2Tn) ∼= H∗(Σn−1,∧2F×)⊕H∗(Σ2 × Σn−2, F

× ⊗ F×).
(d) When n = 2, conclude that H3(M2) ∼= H3(Σ2)⊕H3(T2)Σ2

⊕ ∧̃2F×.
(e) Let A denote the kernel of H3(M2×Σn−2,Z)→ H3(Σ2×Σn−2,Z). Conclude

that H3(T3) +A→ H3(Mn)→ H3(Σn,Z) is exact for n ≥ 5.

5.11 Show that H2(P,Z) ∼= π2BM
+ equals πs2 ⊕ ∧̃2F×, where P = [M,M ].

Hint: Recall from IV, Ex. 1.13 that BM+ ≃ BP+×B(F×)×BΣ2. Thus it suffices
to compute H2(M,Z). Now use Exercise 5.10(b,c).

5.12 Show that the linear transformation α(x1, x2, x3) = (x2, x1,−x3) is in SM ,
inducing a decomposition SM ∼= P ⋊ Σ2. If char(F ) 6= 2, show that α is conju-
gate in GL3(F ) to the matrix diag(−1,−1,+1) in P , and hence that the image
of H∗(Σ2,Z) → H∗(SM,Z) → H∗(GL(F ),Z) lies in the image of H∗(P,Z). If
char(F ) = 2, show that α is conjugate to an upper triangular matrix in GL3(F )
and hence that the map H∗(Σ,Z)→ H∗(GL(F ),Z) is trivial.

5.13 Let T ′ denote the group of diagonal matrices in SL(F ).
(a) Show that P ∼= T ′ ⋊A∞, and that H3(T

′,Z)A∞

∼= H3(F
×,Z).

(b) Use the proof of Proposition 5.17 to show that µ(F ) ∼= H3(F
×,Z)/∧3 F× is

the image of H3(T
′,Z) in H3(P,Z)/ ∧3 F× ∼= π3(BM

+).
(c) If D = µ(F ) ⋊ Σ2, show that the map from H3(D,Z) to π3(BM

+) sends
µ(F )/{±1} to µ(F ).
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§6. Global fields of finite characteristic

A global field of finite characteristic p is a field F which is finitely generated of
transcendence degree one over Fp; the algebraic closure of Fp in F is a finite field
Fq of characteristic p. It is classical (see [Hart, I.6]) that there is a unique smooth
projective curve X over Fq whose function field is F . If S is any nonempty set of
closed points of X, then X\S is affine; we call the coordinate ring R of X\S the
ring of S-integers in F . In this section, we discuss the K-theory of F , X and the
rings of S-integers of F .

Any discussion of the K-theory of F must involve the K-theory of X. For
example, K1(F ) is related to the Picard group Pic(X) by the Units-Pic sequence
I.5.12:

1→ F×
q → F× → ⊕x∈XZ→ Pic(X)→ 0.

Recall that K0(X) = Z ⊕ Pic(X), and that Pic(X) ∼= Z ⊕ J(X), where J(X) is a
finite group (see I.5.16).

Since K2 vanishes on finite fields (III.6.1.1), the localization sequence V.6.12 for
X ends in the exact sequence

0→ K2(X)→ K2(F )
∂−→ ⊕x∈Xk(x)× → K1(X)→ F×

q → 0.

By classical Weil reciprocity (V.6.12.1), the cokernel of ∂ is F×
q , so K1(X) ∼= F×

q ×
F×
q . By III.2.5.1, if R is the coordinate ring of any affine open in X then SK1(R) =

0. A diagram chase shows that the image of K1(X) in K1(F ) = F× is F×
q .

By III.7.2(a) (due to Bass and Tate), the kernel K2(X) of ∂ is finite of order
prime to p. This establishes the low dimensional cases of the following theorem,
first proven by Harder [Har], using the method pioneered by Borel [Bo].

Harder’s Theorem 6.1. Let X be a smooth projective curve over a finite field
of characteristic p. For n ≥ 1, each Kn(X) is a finite group of order prime to p.

Parshin has conjectured that if X is any smooth projective variety over a finite
field then Kn(X) is a torsion group for n ≥ 1. Harder’s Theorem (6.1) shows that
Parshin’s conjecture holds for curves.

Proof. By III.7.2(a), KM
n (F ) = 0 for all n ≥ 3. By Geisser and Levine’s

Theorem 4.7, the Quillen groups Kn(F ) are uniquely p-divisible for n ≥ 3. For
every closed point x ∈ X, the groups Kn(x) are finite of order prime to p (n > 0)
because k(x) is a finite field extension of Fq. From the localization sequence

⊕x∈XKn(x)→ Kn(X)→ Kn(F )→ ⊕x∈XKn−1(x),

a diagram chase shows that Kn(X) is uniquely p-divisible. By IV.6.9 (due to
Quillen), the abelian groupsKn(X) are finitely generated. As any finitely generated
p-divisible abelian group A is finite with p ∤ |A|, this is true for each Kn(X). �

Corollary 6.2. If R is the ring of S-integers in F = Fq(X) (and S 6= ∅) then:
a) K1(R) ∼= R× ∼= F×

q × Zs, |S| = s− 1;
b) For n ≥ 2, Kn(R) is a finite group of order prime to p.

Proof. Recall (III.1.1.1) that K1(R) = R×⊕SK1(R). We saw in III.2.5.1 that
SK1(R) = 0, and the units of R were determined in I.5.16, whence (a). The rest
follows from the localization sequence Kn(X)→ Kn(R)→ ⊕x∈SKn−1(x). �
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The e-invariant 6.3. The targets of the e-invariant of X and F are the same
groups as for Fq, because every root of unity is algebraic over Fq. Hence the
inclusions of K2i−1(Fq) ∼= Z/(qi − 1) in K2i−1(X) and K2i−1(F ) are split by the
e-invariant, and this group is the Harris-Segal summand.

The inverse limit of the finite curves Xν = X × Spec(Fqν ) is the curve X̄ =
X⊗Fq

F̄q over the algebraic closure F̄q. To understand Kn(X) for n > 1, it is useful

to know not only what the groups Kn(X̄) are, but how the (geometric) Frobenius
ϕ : x 7→ xq acts on them.

By II.8.2.1 and I.5.15, K0(X̄) = Z ⊕ Z ⊕ J(X̄), where J(X̄) is the group of
points on the Jacobian variety over F̄q; it is a divisible torsion group. If ℓ 6= p,
the ℓ-primary torsion subgroup J(X̄)ℓ of J(X̄) is isomorphic to the abelian group
(Z/ℓ∞)2g. The group J(X̄) may or may not have p-torsion. For example, if X is an
elliptic curve then the p-torsion in J(X̄) is either 0 or Z/p∞, depending on whether
X is supersingular (see [Hart, Ex. IV.4.15]). Note that the localization J(X̄)[1/p]
is the direct sum over all ℓ 6= p of the ℓ-primary groups J(X̄)ℓ.

Next, recall that the group of units F̄×
q may be identified with the group µ of

all roots of unity in F̄q; its underlying abelian group is isomorphic to Q/Z[1/p].
Passing to the direct limit of the K1(Xν) yields K1(X̄) ∼= µ⊕ µ.

For n ≥ 1, the groups Kn(X̄) are all torsion groups, of order prime to p, because
this is true of each Kn(Xν) by 6.1. We can now determine the abelian group
structure of the Kn(X̄) as well as the action of the Galois group on them. Recall
from Definition 1.7 that M(i) denotes the ith Tate twist of a Galois module M .

Theorem 6.4. Let X be a smooth projective curve over Fq, and set X̄ = X⊗Fq

F̄q. Then for all n ≥ 0 we have isomorphisms of Gal(F̄q/Fq)-modules:

Kn(X̄) ∼=





Z⊕ Z⊕ J(X̄), n = 0

µ(i)⊕ µ(i), n = 2i− 1 > 0

J(X̄)[1/p](i), n = 2i > 0.

For ℓ 6= p, the ℓ-primary subgroup of Kn−1(X) is isomorphic to Kn(X̄;Z/ℓ∞),
n > 0, whose Galois module structure is given by:

Kn(X̄;Z/ℓ∞) ∼=
{

Z/ℓ∞(i)⊕ Z/ℓ∞(i), n = 2i ≥ 0

J(X̄)ℓ(i− 1), n = 2i− 1 > 0.

Proof. Since the groups Kn(X̄) are torsion for all n > 0, the universal co-
efficient theorem (Ex. IV.2.6) shows that Kn(X̄;Z/ℓ∞) is isomorphic to the ℓ-
primary subgroup ofKn−1(X̄). Thus we only need to determine the Galois modules
Kn(X̄;Z/ℓ∞). For n = 0, 1, 2 they may be read off from the above discussion. For
n > 2 we consider the motivic spectral sequence (4.2); by Theorem 4.1, the terms
Ep,q2 vanish unless p = q, q + 1, q + 2. There is no room for differentials, so the
spectral sequence degenerates at E2 to yield the groups Kn(X̄;Z/ℓ∞). There are
no extension issues because the edge maps are the e-invariants K2i(X;Z/ℓ∞) →
H0

et(X̄,Z/ℓ
∞(i)) = Z/ℓ∞(i) of 6.3, and are therefore split surjections. Finally, we

note that as Galois modules we have H1
et(X̄,Z/ℓ

∞(i)) ∼= J(X̄)ℓ(i − 1), and (by
Poincaré Duality [Milne2, V.2]) H2

et(X̄,Z/ℓ
∞(i+ 1)) ∼= Z/ℓ∞(i). �



§6. GLOBAL FIELDS OF FINITE CHARACTERISTIC 39

Passing to invariants under the group G = Gal(F̄q/Fq), there is a natural map
from Kn(X) to Kn(X̄)G. For odd n, we see from 6.4 and 2.3 that K2i−1(X̄)G ∼=
Z/(qi−1)⊕Z/(qi−1); for even n, we have the less concrete description K2i(X̄)G ∼=
J(X̄)[1/p](i)G. One way of studying this group is to consider the action of the
Frobenius on H∗

et(X̄,Qℓ(i)) and use the identity H∗
et(X,Qℓ(i)) = H∗

et(X̄,Qℓ(i))
G,

which follows from the spectral sequence Hp(G,H∗
et(X̄,Qℓ(i))) ⇒ H∗

et(X,Qℓ(i))
since Hp(G,−) is torsion for p > 0; see [WHomo, 6.11.14].

Example 6.5. ϕ∗ acts trivially on H0
et(X̄,Qℓ) = Qℓ and H2

et(X̄,Qℓ(1)) = Qℓ.
It acts as q−i on the twisted groups H0

et(X̄,Qℓ(i)) and H2
et(X̄,Qℓ(i + 1). Taking

G-invariants yields H0
et(X,Qℓ(i)) = 0 for i 6= 0 and H2

et(X,Qℓ(i)) = 0 for i 6= 1.
Weil’s 1948 proof of the Riemann Hypothesis for Curves implies that the eigenval-

ues of ϕ∗ acting on H1
et(X̄,Qℓ(i)) have absolute value q1/2−i. Taking G-invariants

yields H1
et(X,Qℓ(i)) = 0 for all i.

For any G-module M , we have an exact sequence [WH, 6.1.4]

(6.5.1) 0→MG →M
ϕ∗−1−−−→M → H1(G,M)→ 0.

The case i = 1 of the following result reproduces Weil’s theorem that the ℓ-primary
torsion part of the Picard group of X is J(X̄)Gℓ .

Lemma 6.6. For a smooth projective curve X over Fq, ℓ ∤ q and i ≥ 2 we have:

(1) Hn+1
et (X,Zℓ(i)) ∼= Hn

et(X,Z/ℓ
∞(i)) ∼= Hn

et(X̄,Z/ℓ
∞(i))G for all n;

(2) H0
et(X,Z/ℓ

∞(i)) ∼= Z/w
(ℓ)
i (F );

(3) H1
et(X,Z/ℓ

∞(i)) ∼= J(X̄)ℓ(i− 1)G;

(4) H2
et(X,Z/ℓ

∞(i)) ∼= Z/w
(ℓ)
i−1(F ); and

(5) Hn
et(X,Z/ℓ

∞(i)) = 0 for all n ≥ 3.

Proof. Since i ≥ 2, we see from 6.5 that Hn
et(X,Qℓ(i)) = 0 for all n. Since

Qℓ/Zℓ = Z/ℓ∞, this yields Hn
et(X,Z/ℓ

∞(i)) ∼= Hn+1
et (X,Zℓ(i)) for all n.

Since each Hn = Hn
et(X̄,Z/ℓ

∞(i)) is a quotient of Hn
et(X̄,Qℓ(i)), ϕ

∗ − 1 is a
surjection, i.e., H1(G,Hn) = 0. Since Hn(G,−) = 0 for n > 1, the Leray spectral

sequence Ep,q2 = Hp(G,Hq
et(X̄,Z/ℓ

∞(i))) ⇒ Hp+q
et (X,Z/ℓ∞(i)) for X → Spec(Fq)

[Milne, III.1.18], collapses for i > 1 to yield exact sequences

0→ Hn
et(X,Z/ℓ

∞(i))→ Hn
et(X̄,Z/ℓ

∞(i))
ϕ∗−1−−−→ Hn

et(X̄,Z/ℓ
∞(i))→ 0.

In particular, Hn
et(X,Z/ℓ

∞(i)) = 0 for n>2. As in the proof of 6.4, H1
et(X,Z/ℓ

∞(i))
is J(X̄)ℓ(i − 1), so H1

et(X,Z/ℓ
∞(i)) ∼= J(X̄)ℓ(i − 1)G, and H2

et(X̄,Z/ℓ
∞(i)) is

Z/ℓ∞(i− 1) by duality, so H2
et(X,Z/ℓ

∞(i)) is Z/ℓ∞(i− 1)G ∼= Z/w
(ℓ)
i−1. �

Given the calculation of Kn(X̄)G in 6.4 and the calculation of Hn
et(X,Z/ℓ

∞(i))
in 6.6, we see that the natural map Kn(X) → Kn(X̄)G is a surjection. Thus the
real content of the following theorem is that Kn(X)→ Kn(X̄)G is an isomorphism.

Theorem 6.7. Let X be the smooth projective curve corresponding to a global
field F over Fq. Then K0(X) = Z⊕Pic(X), and the finite groups Kn(X) for n > 0
are given by:

Kn(X) ∼= Kn(X̄)G ∼=
{
Kn(Fq)⊕Kn(Fq), n odd,
⊕

ℓ 6=p J(X̄)ℓ(i)
G, n = 2i even.
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Proof. We may assume that n 6= 0, so that the groups Kn(X) are finite by
6.1. It suffices to calculate the ℓ-primary part Kn+1(X;Z/ℓ∞) of Kn(X). But this
follows from the motivic spectral sequence (4.2), which degenerates by 6.6. �

Theorem 6.8. If F is the function field of a smooth projective curve X over
Fq, then for all i ≥ 1: Fq ⊂ F induces an isomorphism K2i+1(Fq) ∼= K2i+1(F ),
and there is an exact reciprocity sequence (generalizing V.6.12.1):

0→ K2i(X)→ K2i(F )
⊕∂x−−→ ⊕x∈XK2i−1(Fq(x))

N−→ K2i−1(Fq)→ 0.

Proof. The calculation of K2(F ) was carried out at the beginning of this sec-
tion, so we restrict attention to Kn(F ) for n ≥ 3. Because K2i(Fq) = 0, the
localization sequence V.6.12 breaks up into exact sequences for i ≥ 2:

0→ K2i(X)→ K2i(F )
⊕∂x−−→ ⊕x∈XK2i−1(Fq(x))→ K2i−1(X)→ K2i−1(F )→ 0.

Let SK2i−1(X) denote the kernel of K2i−1(X) → K2i−1(F ). Since Fq ⊂ F ⊂ F̄
induces an injection from the subgroup K2i−1(Fq) of K2i−1(F̄q) into K2i−1(F̄ ) by
V.6.7.2, we see from Theorem 6.7 that |SK2i−1(X)| is at most |K2i−1(Fq)|. As
in V.6.12, for each closed point x the composition of the transfer K2i−1(Fq(x)) →
SK2i−1(X) with the proper transfer π∗ : K2i−1(X) → K2i−1(Fq) is the transfer
associated to Fq ⊂ Fq(x), i.e., the transfer map K2i−1(Fq(x)) → K2i−1(Fq); each
of these transfer maps are onto by IV.1.13. It follows that π∗ : SK2i−1(X) →
K2i−1(Fq) is an isomorphism. The theorem now follows. �

The Zeta Function 6.9. We can relate the orders of the K-groups of the
curve X to values of the zeta function ζX(s). By definition, ζX(s) = Z(X, q−s),
where

Z(X, t) = exp

( ∞∑

n=1

|X(Fqn)|
tn

n

)
.

Weil proved that Z(X, t) = P (t)/(1− t)(1− qt) for every smooth projective curve
X, where P (t) ∈ Z[t] is a polynomial of degree 2 · genus(X) with all roots of
absolute value 1/

√
q. This formula is a restatement of Weil’s proof of the Riemann

Hypothesis for X (6.5 above), given Grothendieck’s formula P (t) = det(1 − ϕ∗t),
where ϕ∗ is regarded as an endomorphism of H1

et(X̄;Qℓ). Note that by 6.5 the
action of ϕ∗ on H0

et(X̄;Qℓ) has det(1−ϕ∗t) = (1− t), and the action on H2
et(X̄;Qℓ)

has det(1− ϕ∗t) = (1− qt).
Here is application of Theorem 6.7, which was conjectured by Lichtenbaum in

[Li3] and proven by Thomason in [Th, (4.7)]. For legibility, let #A denote the order
of a finite abelian group A.

Proposition 6.10. If X is a smooth projective curve over Fq then for all i ≥ 2,

#K2i−2(X) ·#K2i−3(Fq)

#K2i−1(Fq) ·#K2i−3(X)
=

∏

ℓ

#H2
et(X;Zℓ(i))

#H1
et(X;Zℓ(i)) ·#H3

et(X;Zℓ(i))
=

∣∣ζX(1− i)
∣∣.

Proof. We have seen that all the groups appearing in this formula are finite.
The first equality follows from 6.6 and 6.7. The second equality follows from the
formula for ζX(1− i) in 6.9. �
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EXERCISES

6.1 Let X be the projective line P1
Fq

over Fq. Use Theorem 6.7 to recover the

calculation of K∗(X) in IV.1.5. Show directly that Z(X, t) = 1/(1− t)(1− qt) and
use this to verify the formula in 6.9 for ζX(i− 1).

6.2 Let R be the ring of S-integers in a global field F = Fq(X) of finite char-
acteristic. Show that Kn(R) → Kn(F ) is an injection for all n ≥ 1, and that
K2i−1(R) → K2i−1(F ) is an isomorphism for all i > 1. (This generalizes the
Bass-Milnor-Serre Theorem III.2.5, and provides another proof of 6.2(a).)

6.3 Let F = Fq(X) be a global field, of degree d over a function field Fq(t). For
i > 0, show that the transfer K2i(F ) → K2i(Fq(t)) is onto, and that the transfer
K2i−1(F ) → K2i−1(Fq(t)) is multiplication by d (under the identification of both
groups with K2i−1(Fq) in 6.8).
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§7. Local Fields

A local field is a field E which is complete under a discrete valuation v, and
whose residue field kv is finite. The subring V of elements of positive valuation is
a complete valuation domain. It is classical that every local field is either a finite
extension of the p-adic rationals Q̂p or of Fq((t)). (See [S-LF].)

We saw in II.2 and III.1.4 that K0(V ) = K0(E) = Z and K1(V ) = V ×, K1(E) =
E× ∼= (V ×)×Z, where the factor Z is identified with the powers {πm} of a parameter
π of V . It is well known that V × ∼= µ(E)×U1, where µ(E) is the group of roots of
unity in E (or V ), and that U1 is a torsionfree Zp-module.

We also saw in Moore’s Theorem (Chapter III, Theorem 6.2.4 and Ex. 6.11) that
K2(E) ∼= U2 ⊕ F×

q , where U2 is an uncountable, uniquely divisible abelian group.

Since K2(E) ∼= K2(V )⊕ F×
q by V.6.9.2, this implies that K2(V ) ∼= U2.

Proposition 7.1. Let E be a local field. For n ≥ 3, KM
n (E) is an uncountable,

uniquely divisible group. The group K2(E) is the sum of F×
q and an uncountable,

uniquely divisible group.

Proof. The group is uncountable by Ex. III.7.14, and divisibility follows easily
from Moore’s Theorem (see III, Ex. 7.4). We give a proof that it is uniquely divisible
using the isomorphism KM

n (E) ∼= Hn(E,Z(n)). If char(E) = p, KM
n (E) has no

p-torsion by Izhboldin’s Theorem III.7.8, so we consider m-torsion when 1/m ∈
E. The long exact sequence in motivic cohomology associated to the coefficient

sequence 0→ Z(n)
m−→ Z(n)→ Z/m(n)→ 0 yields the exact sequence for m:

(7.1.1) Hn−1
et (E, µ⊗n

m )→ KM
n (E)

m−→ KM
n (E)→ Hn

et(E, µ
⊗n
m ).

Since Hn
et(E,−)=0 for n ≥ 3, this immediately implies that KM

n (E) is uniquely m-
divisible for n > 3 (and m-divisible for n = 3). Moreover, the m-torsion subgroup
of KM

3 (E) is a quotient of the group H2
et(E, µ

⊗3
m ), which by duality is Z/(w2,m),

where w2 = w2(E) is q2 − 1 by 2.3.1. Thus the torsion subgroup of KM
3 (E) is a

quotient of w2. We may therefore assume that w2 dividesm. Now map the sequence
(7.1.1) for m2 to the sequence (7.1.1) for m; the map from Z/wi = H2

et(E, µ
⊗3
m2)

to Z/wi = H2
et(E, µ

⊗3
m ) is the identity but the map from the image m2KM

3 (E) to

mK
M
3 (E) is multiplication by m and thus zero, as required. �

Equicharacteristic local fields

We first dispose of the equi-characteristic case, where E = Fq((t)), V ∼= Fq[[π]]
and char(E) = p. In this case, µ(E) = F×

q , and U1 = 1 + πFq[[π]] is isomorphic
to the big Witt vectors of Fq (II.4.3), which is the product of a countably infinite
number of copies of Zp (see Ex. 7.2). (In fact, it is a countably infinite product of
copies of the ring Zp[ζq−1] of Witt vectors over Fq.

Here is a description of the abelian group structure on Kn(V ) for n ≥ 2.

Theorem 7.2. Let V = Fq[[π]] be the ring of integers in the local field E =
Fq((π)). For n ≥ 2 there are uncountable, uniquely divisible abelian groups Un and
canonical isomorphisms:

Kn(E) ∼= Kn(V )⊕Kn−1(Fq), Kn(V ) ∼= Kn(Fq)⊕ Un.
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Proof. The splitting Kn(E) ∼= Kn(V )⊕Kn−1(Fq) was established in V.6.9.2.
Now let Un denote the kernel of the canonical mapKn(V )→ Kn(Fq). Since V → Fq
splits, naturality yields Kn(V ) = Un ⊕Kn(Fq). By Gabber rigidity (IV.2.10), Un
is uniquely ℓ-divisible for all ℓ 6= p and n > 0. It suffices to show that Un is
uncountable and uniquely p-divisible when n ≥ 2; this holds for n = 2 by 7.1.

Now the Milnor groups KM
n (E) are uncountable, uniquely divisible abelian

groups for n ≥ 3, by Proposition 7.1. The group KM
n (E) is a summand of the

Quillen K-group Kn(E) by 4.3 or 4.9. On the other hand, the Geisser-Levine
Theorem 4.7 shows that the complementary summand is uniquely p-divisible. �

p-adic local fields

In the mixed characteristic case, when char(E) = 0, even the structure of V × is
quite interesting. The torsionfree part U1 is a free Zp-module of rank [E : Qp]; it
is contained in (1 + πV )× and injects into E as a lattice by the convergent power
series for x 7→ ln(x).

The quotient V × → F×
q splits, and the subgroup of V × isomorphic to F×

q is called

the group of Teichmüller units. Thus K1(V ) = V × is a product U1×F×
1 ×µp∞(E),

where µp∞(E) is the finite cyclic group of p-primary roots of unity in V . There
seems to be no simple formula for the order of the cyclic p-group µp∞(E).

To understand the groups Kn(E) for n ≥ 3, recall from Proposition 7.1 that
KM
n (E) is an uncountable, uniquely divisible abelian group. From Example 4.3,

this is a direct summand of Kn(E); since Kn(E) ∼= Kn(V )⊕Kn−1(Fq) by V.6.9.2,
it is also a summand of Kn(V ). Thus, as in the equicharacteristic case, Kn(E) will
contain an uncountable uniquely divisible summand about which we can say very
little.

Before stating our next result, we need an étale calculation. Since E has étale
cohomological dimension 2, we may ignore Hn

et(E,−) for n > 2. By Tate–Poitou
duality [Milne2, I.2.3], H2

et(E, µ
⊗i+1
m ) is isomorphic to H0

et(E, µ
⊗i
m ). We shall as-

sume that i > 0 and m is divisible by wi(E), so that these groups are isomorphic
to Z/wi(E). Now consider the change of coefficients µ⊗i

m ⊂ µ⊗i
m2 . The induced

endomorphisms of Z/wi(E) = H0
et(E, µ

⊗i
m ) and Z/wi(E) = H2

et(E, µ
⊗i+1
m ) are the

identity map and the zero map, respectively. Since µ = ∪µm, passing to the limit
over m yields:

H0
et(E, µ

⊗i) ∼= Z/wi(E) and H2
et(E, µ

⊗i+1) = 0, i > 0.

Recall that an abelian group which is uniquely ℓ-divisible for all ℓ 6= p is the
same thing as a Z(p)-module.

Proposition 7.3. For n > 0 we have Kn(E) ∼= Kn(V ) ⊕ Kn−1(Fq), and the
groups Kn(V ) are Z(p)-modules.

When n = 2i−1, Kn(V ) ∼= Kn(E) is the direct sum of a torsionfree Z(p)-module
and the Harris-Segal summand (see 2.5), which is isomorphic to Z/wi(E).

When n = 2i, Kn(V ) is the direct sum of Z/w
(p)
i (E) and a divisible Z(p)-module.

Proof. The decomposition Kn(E) ∼= Kn(V ) ⊕ Kn−1(Fq) was established in
V.6.9.2. In particular, K2i−1(V ) ∼= K2i−1(E).
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To see that K2i−1(E) has a cyclic summand of order wi(E), consider the spec-
tral sequence (4.2) with coefficients Q/Z. By the above remarks, it degenerates
completely to yield K2i(E;Q/Z) ∼= Z/wi(E). Since this injects into K2i(Ē;Q/Z) ∼=
Q/Z (by Theorem 1.6, Ē being the algebraic closure of E), this implies that the

Adams e-invariant is an isomorphism: K2i(E;Q/Z)
≃−→ Z/wi(E). By Ex. IV.2.5,

this implies that K2i−1(E) ∼= Ti ⊕ Z/wi(E) where Ti is torsionfree.
To see thatK2i(E) is the sum of a divisible group and Z/wi(E), fix i and suppose

that wi(E) divides m. Since Hn
et(E,−) = 0 for n > 2, the spectral sequence (4.2)

with coefficients Z/m degenerates completely and describes K2i(E;Z/m) as an
extension of H0

et(E, µ
⊗i
m ) ∼= Z/wi(E) by H2

et(E, µ
⊗i+1
m ) ∼= Z/wi(E). By the previous

paragraph, the quotient Z/wi(E) is identified with the m-torsion in K2i−1(E),
so the kernel Z/wi(E) is identified with K2i(E)/m. Setting m = m′wi(E), it
follows that the subgroup Di = wi(E)K2i(E) of K2i(E) is a divisible group. Thus

K2i(E) ∼= Di ⊕ Z/wi(E), and K2i(V ) ∼= Di ⊕ Z/w
(p)
i (E).

It remains to show that Ti and Di are uniquely ℓ-divisible for ℓ 6= p and i > 0,
i.e., that Ti/ℓTi = ℓ(Di) = 0. By Universal Coefficients IV.2.5 and the calculations

above, K2i−1(V ;Z/ℓν) is isomorphic to Z/w
(ℓ)
i (E) ⊕ Ti/ℓνTi ⊕ ℓν (Di) for large ν.

By Gabber Rigidity IV.2.10, K2i−1(V ;Z/ℓν) and K2i−1(Fq;Z/ℓ
ν) ∼= w

(ℓ)
i (Fq) are

isomorphic. Since w
(ℓ)
i (E) = w

(ℓ)
i (Fq) by 2.3.1, we have Ti/ℓ

νTi = ℓν (Di) = 0, as
required. �

Remark 7.3.1. Either Ti fails to be p-divisible, or else Di−1 has p-torsion. This
follows from Corollary 7.4.1 below: dim(Ti/pTi) + dim(pDi−1) = [E : Qp].

We now consider the p-adic K-groups K∗(E;Zp) of E, as in IV.2.9. This result
was first proved in [RW, 3.7] for p = 2, and in [HM, thm.A] for p > 2.

Theorem 7.4. Let E be a local field, of degree d over Qp, with ring of integers
V . Then for n ≥ 2 we have:

Kn(V ;Zp) ∼= Kn(E;Zp) ∼=
{

Z/w
(p)
i (E), n = 2i,

(Zp)
d ⊕ Z/w

(p)
i (E), n = 2i− 1.

}

Proof. It is classical that the groupsH∗
et(E;Z/pν) are finitely generated groups,

and that the H∗
et(E;Z/p) are finitely generated Zp-modules. Since this implies

that the groups Kn(E;Z/p) are finitely generated, this implies (by IV.2.9) that
Kn(E;Zp) is an extension of the Tate module of Kn−1(E) by the p-adic completion
of Kn(E). Since the Tate module of K2i−1(E) is trivial by 7.3, this implies that

K2i(E;Zp) ∼= lim←−K2i(E)/pν ∼= Z/w
(p)
i (E).

By 7.3 and IV.2.9, Kn(V ;Zp) ∼= Kn(E;Zp) for all n > 0. Hence it suffices to
consider the p-adic group K2i−1(V ;Zp). By 7.3 and IV.2.9 again, K2i−1(V ;Zp) is

the direct sum of the finite p-group Z/w
(p)
i (E) and two finitely generated torsionfree

Zp-modules: the Tate module of Di−1 and Ti ⊗Z Zp. All that is left is to calculate
the rank of K2i−1(V ;Zp).

Wagoner proved in [Wag] that the Qp-vector space Kn(V ;Zp)⊗Q has dimension
[E : Qp] when n is odd and n ≥ 3. (Wagoner’s continuous K-groups were identified
with K∗(E;Zp) in [Pa].) Hence K2i−1(V ;Zp) has rank d = [E : Qp]. �
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Corollary 7.4.1. For i > 1 and all large ν we have

K2i−1(E;Z/pν) ∼= H1
et(E, µ

⊗i
pν )
∼= (Z/pν)[E:Qp] ⊕ Z/w

(p)
i (E)⊕ Z/w

(p)
i−1(E).

Proof. This follows from Universal Coefficients and Theorem 7.4. �

Corollary 7.4.2. K3(V ) contains a torsionfree subgroup isomorphic to Zd(p),

whose p-adic completion is isomorphic to K3(V ;Zp) ∼= (Zp)
d.

Proof. Combine 7.4 with Moore’s theorem III.6.2.4 that D1 is torsionfree. �

Remark 7.4.3. Surprisingly, the cohomology groups H1
et(E;µ⊗i

m ) (for m = pν)
were not known before the K-group K2i−1(E;Z/m) was calculated, circa 2000.

Warning 7.5. Unfortunately, I do not know how to reconstruct the homotopy
groups Kn(V ) from the information in 7.4. Any of the Zp’s in K2i−1(V ;Zp) could
come from either a Z(p) in K2i−1(V ) or a Z/p∞ in K2i−2(V ). Another prob-
lem is illustrated by the case n = 1, V = Zp and p 6= 2. The information that
lim←−K1(V )/pν ∼= (1 + πV )× ∼= V is not enough to deduce that K1(V )⊗ Z(p)

∼= V .
Even if we knew that lim←−Kn(V )/pν = Zp, we would still not be able to determine

the underlying abelian group Kn(V ) exactly. To see why, note that the extension
0 → Z(p) → Zp → Zp/Z(p) → 0 doesn’t split, because there are no p-divisible
elements in Zp, yet Zp/Z(p)

∼= Qp/Q is a uniquely divisible abelian group. For

example, I doubt that the extension 0 → Zd(p) → K3(V ) → U3 → 0 splits in

Corollary 7.4.1.

Here are some more cases when I can show that the Zp’s in K2i−1(V ;Zp) come
from torsionfree elements in K2i−1(E); I do not know any example where a Z/p∞

appears in K2i(E).

Example 7.6. If k > 0, then K4k+1(Z2) contains a subgroup T isomorphic to
Z(2), and the quotient K4k+1(Z2)/(T⊕Z/wi(Q2) is uniquely divisible. (By Exercise

2.3, wi(Q2) = 2(22k+1− 1).) This follows from Rognes’ theorem [R1, 4.13] that the
map from K4k+1(Z)⊗ Z2

∼= Z2 ⊕ (Z/2) to K4k+1(Z2;Z2) is an isomorphism for all
k > 1. (The information about the torsion subgroups, missing in [R1], follows from
7.4 and 7.4.1.) Since this map factors through K4k+1(Z2), the assertion follows.

Example 7.7. Let F be a totally imaginary number field of degree d = 2r2
over Q, with s prime ideals over p, and let E1, ..., Es be the completions of F
at these primes. By Borel’s Theorem IV.1.18, there is a subgroup of K2i−1(F )
isomorphic to Zr2 ; its image in ⊕K2i−1(Ej) is a subgroup of rank at most r2, while
⊕K2i−1(Ej ;Zp) has rank 2r2 =

∑
[Ej : Qp]. So these subgroups of K2i−1(Ej) can

account for at most half of the torsionfree part of ⊕K2i−1(Ej ;Zp).

Example 7.8. Suppose that F is a totally real number field, of degree d = r1
over Q, and let E1, ..., Es be the completions of F at the prime ideals over p. By
Borel’s Theorem IV.1.18, there is a subgroup of K4k+1(F ) isomorphic to Zd for all
k > 0; its image in ⊕K4k+1(Ej) is a subgroup of rank d. Although ⊕K4k+1(Ej ;Zp)
also has rank d =

∑
[Ej : Qp], this does not imply that the p-adic completion Zdp

of the subgroup injects into ⊕K4k+1(Ej ;Zp).
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Implications like this are related to Leopoldt’s conjecture, which states that the
torsionfree part Zd−1

p of (OF )×⊗Zp injects into the torsionfree part Zdp of
∏s
j=1O×

Ej
;

see [Wash, 5.31]. This conjecture has been proven when F is an abelian extension
of Q; see [Wash, 5.32].

When F is a totally real abelian extension of Q, and p is a regular prime, Soulé
shows in [Sou81, 3.1, 3.7] that the torsion free part Zdp of K4k+1(F ) ⊗ Zp injects

into ⊕K4k+1(Ej ;Zp) ∼= (Zp)
d, because the cokernel is determined by the Leopoldt

p-adic L-function Lp(F, ω
2k, 2k+1), which is a p-adic unit in this favorable scenario.

Therefore in this case we also have a summand Zd(p) in each of the groupsK4k+1(Ej).

We conclude this section with a description of the topological type of K̂(V ) and

K̂(E), when p is odd, due to Hesselholt and Madsen [HM]. Recall that FΨk denotes
the homotopy fiber of Ψk − 1 : Z × BU → BU . Since Ψk = ki on π2i(BU) = Z
when i > 0, and π2i−1(BU) = 0, we see that π2i−1FΨ

k ∼= Z/(ki − 1), and that all
even homotopy groups of FΨk vanish, except for π0(FΨ

k) = Z.

Theorem 7.9. ([HM, thm.D]) Let E be a local field, of degree d over Qp, with
p odd. Then after p-completion, there is a number k (given below) so that

K̂(V ) ≃ SU × Ud−1 × FΨk ×BFΨk, K̂(E) ≃ Ud × FΨk ×BFΨk.

The number k is defined as follows. As in Proposition 2.2, let pa be the number
of p-primary roots of unity in E(µp) and set r = [E(µp) : E]. If γ is a topological
generator of Z×

p , then k = γn, where n = pa−1(p− 1)/r. (See Exercise 7.4.)

EXERCISES

7.1 Show thatM =
∏∞
i=1 Zp is not a free Zp-module. Hint: Consider the submodule

S of all (a1, ...) in M where all but finitely many ai are divisible by pν for all ν. If
M were free, S would also be free. Show that S/p is countable, and that

∏
piZp is

an uncountably generated submodule of S. Hence S cannot be free.

7.2 When E = Fq[[π]], show that the subgroup W (Fq) = 1 + πFq[[π]] of units is a
module over Zp, by defining (1+ πf)a for all power series f and all a ∈ Zp. If {ui}
is a basis of Fq over Fp, show that every element of W (Fq) is uniquely the product
of terms (1 + uit

n)ani , where ani ∈ Zp. This shows that W (Fq) is a countably
infinite product of copies of Zp. Using Ex. 7.1, conclude that W (Fq) is not a free
Zp-module.

7.3 Show that the first étale Chern classes K2i−1(E;Z/pν) ∼= H1(E, µ⊗i
pν ) are nat-

ural isomorphisms for all i and ν.

7.4 In Theorem 7.9, check that π2i−1FΨ
k ∼= Zp/(k

i − 1) is Z/wi(E) for all i.
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§8. Number fields at primes where cd = 2

In this section we quickly obtain a cohomological description of the odd torsion
in the K-groups of a number field, and also the 2-primary torsion in the K-groups
of a totally imaginary number field. These are the cases where cdℓ(OS) = 2; see
[Milne2, 4.10]. This bound forces the motivic spectral sequence 4.2 to degenerate
completely, leaving an easily-solved extension problem.

Classical Data 8.1. Let OS be a ring of integers in a number field F . By
Chapter IV, 1.18 and 6.9, the groups Kn(F ) are finite when n is even and nonzero;
if n is odd and n ≥ 3 the groups Kn(F ) are the direct sum of a finite group and Zr,
where r is r2 when n ≡ 3 (mod 4) and r1 + r2 when n ≡ 1 (mod 4). Here r1 is the
number of real embeddings of F , and r2 is the number of complex embeddings (up
to conjugacy), so that [F : Q] = r1 +2r2. The formulas for K0(OS) = Z⊕Pic(OS)
and K1(OS) = O×

S
∼= Zr2+|S|−1 ⊕ µ(F ) are different; see II.2.6.3 and III.1.3.6.

The Brauer group of OS is determined by the sequence

(8.1.1) 0→ Br(OS)→ (Z/2)r1 ⊕
∐

v∈S
finite

(Q/Z)
add−−→ Q/Z→ 0.

The notation A(ℓ) will denote the localization of an abelian group A at the
prime ℓ, and the notation ℓA will denote the subgroup {a ∈ A | ℓa = 0}.

Theorem 8.2. Let F be a number field, and let OS be a ring of integers in F .
Fix a prime ℓ; if ℓ = 2 we suppose F totally imaginary. Then for all n ≥ 2:

Kn(OS)(ℓ) ∼=





H2
et(OS [1/ℓ];Zℓ(i+ 1)) for n = 2i > 0;

Zr2(ℓ) ⊕ Z/w
(ℓ)
i (F ) for n = 2i− 1, i even;

Zr2+r1(ℓ) ⊕ Z/w
(ℓ)
i (F ) for n = 2i− 1, i odd.

Proof. Set R = OS [1/ℓ]. Then by the localization sequence (V, 6.6 or 6.8),
Kn(OS)(ℓ) = Kn(R)(ℓ). Thus we may replace OS by R = OS [1/ℓ]. Since the
rank of Kn(R) is classically known (see 8.1), it suffices by IV.2.9 and Ex. IV.2.6 to
determine K2i−1(R){ℓ} = K2i(R;Z/ℓ

∞) and K2i(R){ℓ} = K2i(R;Zℓ).
If F is a number field, the étale ℓ-cohomological dimension of R (and of F ) is 2,

unless ℓ = 2 and r1 > 0 (F has a real embedding). Since H2
et(R;Z/ℓ

∞(i)) = 0 by
Ex. 8.1, the motivic spectral sequence 4.2 with coefficients Z/ℓ∞ has at most one
nonzero entry in each total degree at the E2 page. Thus we may read off:

Kn(R;Z/ℓ
∞) ∼=

{
H0(R;Z/ℓ∞(i)) = Z/w

(ℓ)
i (F ) for n = 2i ≥ 2,

H1(R;Z/ℓ∞(i)) for n = 2i− 1 ≥ 1.

The description of K2i−1(R){ℓ} = K2i(R;Z/ℓ
∞) follows.

The same argument works for coefficients Zℓ; for i > 0 we have Hn
et(R,Zℓ(i)) = 0

for n 6= 1, 2, so the spectral sequence (4.2) degenerates to yield K2i−1(R;Zℓ) ∼=
H1

et(R,Zℓ(i)) andK2i(R;Zℓ) ∼= H2
et(R,Zℓ(i+1)) (which is a finite group by Ex. 8.1).

The description of K2i(R){ℓ} = K2i(R;Zℓ) follows. �



48 VI. THE HIGHER K-THEORY OF FIELDS

Corollary 8.3. For all odd ℓ and i > 0, K2i(OS)/ℓ ∼= H2
et(OS [1/ℓ], µ⊗i+1

ℓ ).
The same formula holds for ℓ = 2 if F is totally imaginary.

Proof. Immediate from 8.2 since H2
et(R,Zℓ(i+ 1))/ℓ ∼= H2

et(R,µ
⊗i+1
ℓ ). �

Example 8.3.1. Let F be a number field containing a primitive ℓth root of
unity, ℓ 6= 2, and let S be the set of primes over ℓ in OF . If t is the rank of
Pic(OS)/ℓ, then H2

et(OS , µℓ) has rank t+ |S|−1 by (8.1.1). Since H2
et(OS , µ⊗i+1

ℓ ) ∼=
H2

et(OS , µℓ)⊗µ⊗i
ℓ , it follows from Corollary 8.3 that K2i(OS)/ℓ has rank t+ |S|−1.

Hence the ℓ-primary subgroup of the finite group K2i(OF ) has t+ |S| − 1 nonzero
summands for each i ≥ 1.

Example 8.3.2. If ℓ 6= 2 is a regular prime (see 2.4.1), we claim that K2i(Z[ζℓ])
has no ℓ-torsion. The case K0 is tautological since Pic(OF )/ℓ = 0 by definition.
Setting R = Z[ζℓ, 1/ℓ], we have |S| = 1 and Br(R) = 0 by (8.1.1). The case K2 is
known classically; see III.6.9.3. By Theorem 8.2, K2i(Z[ζℓ])(ℓ) ∼= H2

et(R,Zℓ(i+ 1)).

By Example 8.3.1, H2
et(R,Zℓ(i+ 1)) = 0 and the claim now follows.

Note that every odd-indexed group K2i−1(Z[ζℓ]) ∼= Zr2⊕Z/wi(F ) has nontrivial

ℓ-torsion, because w
(ℓ)
i (F ) ≥ ℓ for all i by 2.2.

Combining Theorems 8.1 and 8.2, we obtain a description of K∗(OS) when F is
totally imaginary. This includes exceptional number fields such as Q(

√
−7).

Theorem 8.4. Let F be a totally imaginary number field, and let OS be the
ring of S-integers in F for some set S of finite places. Then:

Kn(OS) ∼=





Z⊕ Pic(OS), for n = 0;

Zr2+|S|−1 ⊕ Z/w1(F ), for n = 1;

⊕ℓ H2
et(OS [1/ℓ];Zℓ(i+ 1)) for n = 2i ≥ 2;

Zr2 ⊕ Z/wi(F ) for n = 2i− 1 ≥ 3.

Proof. The cases n = 0, 1 and the ranks of Kn are part of the Classical Data
8.1. Since F is totally imaginary, the torsion comes from Theorem 8.2. �

Similarly, the mod-ℓ spectral sequence (4.2) collapses when ℓ is odd to yield the
K-theory of OS with coefficients Z/ℓ, as our next example illustrates.

Example 8.5. If OS contains a primitive ℓth root of unity and 1/ℓ ∈ OS then

H1(OS ;µ⊗i
ℓ ) ∼= O×

S /O×ℓ
S ⊕ ℓ Pic(OS) and H2(OS ;µ⊗i

ℓ ) ∼= Pic(OS)/ℓ⊕ ℓBr(OS) for
all i, so K0(OS ;Z/ℓ) ∼= Z/ℓ⊕ Pic(OS)/ℓ and

Kn(OS ;Z/ℓ) ∼=
{ O×

S /O×ℓ
S ⊕ ℓ Pic(OS) for n = 2i− 1 ≥ 1,

Z/ℓ⊕ Pic(OS)/ℓ⊕ ℓBr(OS) for n = 2i ≥ 2.

The Z/ℓ summands in degrees 2i are generated by the powers βi of the Bott element
β ∈ K2(OS ;Z/ℓ) (see IV.2.5.2). In fact, K∗(OS ;Z/ℓ) is free as a graded Z[β]-
module on Pic(OS)/ℓ, K1(OS ;Z/ℓ) and ℓBr(OS) ⊆ K2(OS ;Z/ℓ); this is immediate
from the multiplicative properties of 4.2 described in 4.2.1. Taking the direct limit
over S, we also have K0(F ) = Z/ℓ and

Kn(F ;Z/ℓ) ∼=
{
F×/F×ℓ, for n = 2i− 1 ≥ 1,

Z/ℓ⊕ ℓBr(F ) for n = 2i ≥ 2.

We conclude this section with a comparison to the odd part of ζF (1− 2k).
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Birch-Tate Conjecture 8.6. If F is a number field, the zeta function ζF (s)
has a pole of order r2 at s = −1. Birch and Tate conjectured in 1970 that for
totally real number fields (r2 = 0) we have

ζF (−1) = (−1)r1 |K2(OF )|/w2(F ).

The odd part of this conjecture was proven by Wiles in [Wi], using Tate’s calculation
that K2(OS)/m ∼= H2

et(OS , µ⊗2
m ) when 1/m ∈ OS (see [Tate] or III(6.10.4)).

The two-primary part of the Birch-Tate conjecture is still open, but it is known
to be a consequence of the 2-adic Main Conjecture of Iwasawa Theory (see Kolster’s
appendix to [RW]). This was proven by Wiles for abelian extensions of Q in loc. cit.,
so the full Birch-Tate Conjecture holds for all abelian extensions of Q. For example,
when F = Q we have ζQ(−1) = −1/12, |K2(Z)| = 2 and w2(Q) = 24; see the
Classical Data 8.1.

To generalize the Birch-Tate Conjecture 8.6, we invoke the following deep result
of Wiles [Wi, Thm. 1.6], which is often called the “Main Conjecture” of Iwasawa
Theory.

Theorem 8.7 (Wiles). Let F be a totally real number field. If ℓ is odd and
OS = OF [1/ℓ], then for all even integers 2k > 0 there is a rational number uk,
prime to ℓ, such that:

ζF (1− 2k) = uk
|H2

et(OS ,Zℓ(2k)|
|H1

et(OS ,Zℓ(2k)|
.

The numerator and denominator on the right side are finite (Ex. 8.1–8.2). Note
that if F is not totally real then ζF (s) has a pole of order r2 at s = 1− 2k.

We can now verify a conjecture of Lichtenbaum, made in [Li2, 2.4–2.6], which
was only stated up to powers of 2.

Theorem 8.8. If F is totally real, and Gal(F/Q) is abelian, then for all k ≥ 1:

ζF (1− 2k) = (−1)kr1 2r1 |K4k−2(OF )|
|K4k−1(OF )|

.

Proof. We first show that the left and right sides of 8.8 have the same power
of each odd prime ℓ. The group H2

et(OF [1/ℓ],Zℓ(2k)) is the ℓ-primary part of
K4k−2(OF ) by Theorem 8.2. The group H1

et(OF [1/ℓ],Zℓ(2k)) in the numerator

of 8.7 is K4k−1(OF )(ℓ) ∼= Z/w
(ℓ)
2k (F ) by the proof of 8.2; the details are left to

Exercise 8.3.
By the functional equation, the sign of ζF (1−2k) is (−1)kr1 . Therefore it remains

to check the power of 2 in Theorem 8.8. By Theorem 9.12 in the next Section, the
power of 2 on the right side equals |H2

et(OF [1/ℓ],Z2(2k))|/|H1
et(OF [1/ℓ],Z2(2k))|.

By the 2-adic Main Conjecture of Iwasawa Theory, which is known for abelian F ,
this equals the 2-part of ζF (1− 2k). �
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EXERCISES

8.1 Suppose that ℓ is odd, or that F is totally imaginary. If R is any ring of
integers in F containing 1/ℓ, and i ≥ 2, show that H2

et(R,Zℓ(i)) is a finite group,
and conclude that H2

et(R,Z/ℓ
∞(i)) = 0. Hint: Use 4.2 to compare it to K2i−2(R),

which is finite by IV, 1.18, 2.9 and 8.8. Then apply Ex. IV.2.6.

8.2 Supose that F is any number field, and let R be any ring of integers in F
containing 1/ℓ. Show that H2

et(R,Zℓ(i)) is a finite group for all i ≥ 2, Hint: Let
R′ be the integral closure of R in F (

√
−1). Use a transfer argument to show that

the kernel A of H2
et(R,Zℓ(i)) → H2

et(R
′,Zℓ(i)) has exponent 2; A is finite because

it injects into H2
et(R,µ2). Now apply Exercise 8.1.

8.3 Let ℓ be an odd prime and F a number field. If i > 1, show that for every ring
OS of integers in F containing 1/ℓ,

H1
et(OS ,Zℓ(i)) ∼= H1

et(F,Zℓ(i))
∼= Zrℓ ⊕ Z/w

(ℓ)
i (F ),

where r is r2 for even i and r1 + r2 for odd i. Hint: Compare to K2i−1(F ;Zℓ), as
in the proof of 8.2.

8.4 It is well known that Z[i] is a principal ideal domain. Show that the finite group
Kn(Z[i]) has odd order for all even n > 0. Hint: Show that H2

et(Z[
1
2 , i], µ4) = 0.

8.5 Show that K3(Z[i]) ∼= Z ⊕ Z/24, K7(Z[i]) ∼= Z ⊕ Z/240 and K4k+1(Z[i]) ∼=
Z⊕ Z/4 for all k > 0. Note that the groups wi(Q(

√
−1)) are given in 2.1.2.

8.6 Let F be a number field. Recall (Ex. IV.7.10) that there is a canonical involution
on K∗(F ), and that it is multiplication by −1 on K1(F ) = F×. Show that it is
multiplication by (−1)i on K2i−1(OF ) and K2i−2(OF ) for i > 1. Hint: Pick an
odd prime ℓ and consider the canonical involution on K2i−1(F (ζℓ);Z/ℓ).

§9. Real number fields at the prime 2

Let F be a real number field, i.e., F has r1 > 0 embeddings into R. The
calculation of the algebraic K-theory of F at the prime 2 is somewhat different from
the calculation at odd primes, for two reasons. One reason is that a real number
field has infinite cohomological dimension, which complicates descent methods. A
second reason is that the Galois group of a cyclotomic extension need not be cyclic,
so that the e-invariant may not split (see 2.1.2). A final reason, explained in IV.2.8,
is that, while K∗(F ;Z/2

ν) is a graded ring for ℓν = 8 and a graded-commutative
ring for 2ν ≥ 16, its graded product may be non-associative and non-commutative
for ℓν = 4, the groups K∗(F ;Z/2) do not have a natural multiplication.

For the real numbers R, the mod 2 motivic spectral sequence has Ep,q2 = Z/2 for
all p, q in the octant q ≤ p ≤ 0. In order to distinguish between these terms, it is
useful to label the nonzero elements of H0

et(R,Z/2(i)) as βi, writing 1 for β0. Using
the multiplicative pairing with the spectral sequence ′E∗,∗

2 converging to K∗(R),

multiplication by the element η of ′E0,−1
2 = H1(R,Z(1)) allows us to write the

nonzero elements in the −ith column as ηjβi. (See Table 9.1.1 below)
From Suslin’s calculation of Kn(R) in Theorem 3.1, we know that the groups

Kn(R;Z/2) are cyclic and 8-periodic (for n ≥ 0) with orders 2, 2, 4, 2, 2, 0, 0, 0 for
n = 0, 1, . . . , 7. The unexpected case K2(R;Z/2) ∼= Z/4 is described in IV.2.5.1.
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Theorem 9.1. In the spectral sequence 4.2 converging to K∗(R;Z/2), all the d2
differentials with nonzero source on the lines p ≡ 1, 2 (mod 4) are isomorphisms.
Hence the spectral sequence degenerates at E3. The only extensions are the non-
trivial extensions Z/4 in K8a+2(R;Z/2).

Proof. Recall from 4.8.1 that the mod 2 spectral sequence has periodicity iso-

morphisms Ep,qr
≃−→ Ep−4,q−4

r , p ≤ 0. Therefore it suffices to work with the columns
−3 ≤ p ≤ 0. These columns are shown in Table 9.1.1.

Because K3(R;Z/2) ∼= Z/2, the differential closest to the origin, from β2 to η3,
must be nonzero. Since the pairing with ′E2 is multiplicative and d2(η) = 0, we
must have d2(η

jβ2) = ηj+3 for all j ≥ 0. Thus the column p = −2 of E3 is zero,
and every term in the column p = 0 of E3 is zero except for {1, η, η2}.

Similarly, we must have d2(β3) = η3β1 because K5(R;Z/2) = 0. By multi-
plicativity, this yields d2(η

jβ3) = ηj+3β1 for all j ≥ 0. Thus the column p = −3
of E3 is zero, and every term in the column p = −1 of E3 is zero except for
{β1, ηβ1, η2β1}. �

p = −3 −2 −1 0
1

β1 η
β2 ηβ1 η2

β3 ηβ2 η2β1 η3

ηβ3 η2β2 η3β1 η4

The first 4 columns of E2

−3 −2 −1 0
1

β1 η
0 ηβ1 η2

0 0 η2β1 0
0 0 0 0

The same columns of E3

Table 9.1.1. The mod 2 spectral sequence for R.

Variant 9.1.2. The spectral sequence 4.2 with coefficients Z/2∞ is very similar,

except that when p > q, Ep,q2 = Hp−q
et (R;Z/2∞(−q)) is: 0 for p even; Z/2 for p

odd. If p is odd, the coefficient map Z/2 → Z/2∞ induces isomorphisms on the
Ep,q2 terms, so by Theorem 9.1 all the d2 differentials with nonzero source in the
columns p ≡ 1 (mod 4) are isomorphisms. Again, the spectral sequence converging
to K∗(R;Z/2

∞) degenerates at E3 = E∞. The only extensions are the nontrivial
extensions of Z/2∞ by Z/2 in K8a+4(R;Z/2

∞) ∼= Z/2∞.

Variant 9.1.3. The analysis of the spectral sequence with 2-adic coefficients is
very similar, except that (a) H0(R;Z2(i)) is: Z2 for i even; 0 for i odd and (b) (for

p > q) Ep,q2 = Hp−q
et (R;Z/2∞(−q)) is: Z/2 for p even; 0 for p odd. All differentials

with nonzero source in the column p ≡ 2 (mod 4) are onto. Since there are no
extensions to worry about, we omit the details.

We now consider the K-theory of the ring OS of integers in a number field F
with coefficients Z/2∞. The E2 terms in the spectral sequence 4.2 are the (étale)
cohomology groups Hn(OS ;Z/2∞(i)). Following Tate, the r1 real embeddings of
F define natural maps αnS(i):

(9.2) αnS(i) : H
n(OS ;Z/2∞(i)) −→

r1⊕
Hn(R;Z/2∞(i)) ∼=

{
(Z/2)r1 , i− n odd

0, i− n even.

This map is an isomorphism for all n ≥ 3 by Tate-Poitou duality [Milne2, I(4.20)].
It is also an isomorphism for n = 2 and i ≥ 2, as shown in Exercise 9.1.

Write H̃1(OS ;Z/2∞(i)) for the kernel of α1
S(i).
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Lemma 9.3. For even i, H1(F ;Z/2∞(i))
α1(i)−−−→ (Z/2)r1 is a split surjection.

Hence H1(OS ;Z/2∞(i)) ∼= (Z/2)r1 ⊕ H̃1(OS ;Z/2∞(i)) for sufficiently large S.

Proof. By the strong approximation theorem for units of F , the left vertical
map is a split surjection in the diagram:

F×/F×2
∼=−→ H1(F,Z/2) −→ H1(F,Z/2∞(i))

split onto

y⊕σ

y
yα1(i)

(Z/2)r1 = ⊕ R×/R×2
∼=−→ ⊕H1(R,Z/2)

∼=−→ ⊕H1(R,Z/2∞(i)).

Since F×/F×2 is the direct limit (over S) of the groups O×
S /O×2

S , we may replace
F by OS for sufficiently large S. �

The next result is taken from [RW, 6.9]. When n ≡ 5 (mod 8), we have an
unknown group extension; to express it, we write A ⋊ B for an abelian group
extension of B by A.

Theorem 9.4. Let F be a real number field, and let OS be a ring of S-integers
in F containing OF [ 12 ]. Then α1

S(4k) is onto (k > 0), and for all n ≥ 0:

Kn(OS ;Z/2∞) ∼=





Z/w4k(F ) for n = 8k,

H1(OS ;Z/2∞(4k + 1)) for n = 8k + 1,

Z/2 for n = 8k + 2,

H1(OS ;Z/2∞(4k + 2)) for n = 8k + 3,

Z/2w4k+2 ⊕ (Z/2)r1−1 for n = 8k + 4,

(Z/2)r1−1 ⋊H1(OS ;Z/2∞(4k + 3)) for n = 8k + 5,

0 for n = 8k + 6,

H̃1(OS ;Z/2∞(4k + 4)) for n = 8k + 7.

Proof. Consider the morphism αS of spectral sequences (4.2) with coefficients
Z/2∞, from that for OS to the direct sum of r1 copies of that for R. By naturality,

the morphism in the Ep,q2 spot is the map αp−qS (−q) of (9.2). By Tate-Poitou duality
and Ex. 9.1, this is an isomorphism except on the two diagonals p = q, where it is

the injection of Z/w
(2)
−q(F ) into Z/2∞, and on the critical diagonal p = q + 1.

When p ≡ +1 (mod 4), we saw in 9.1.2 that dp,q2 (R) is an isomorphism whenever

q ≤ p < 0. It follows that we may identify dp,q2 (OS) with αp−qS . Therefore dp,q2 (OS)
is an isomorphism if p ≥ 2 + q, and an injection if p = q. As in 9.1.2, the spectral
sequence degenerates at E3, yielding Kn(OS ;Z/2∞) as proclaimed, except for two
points: (a) when n = 8k + 4, the extension of Z/w4k+2 by (Z/2)r1 is seen to be
nontrivial by comparison with the extension for R, and (b) when n = 8k + 6, it
only shows that Kn(OS ;Z/2∞) is the cokernel of α1

S(4k + 4).
To resolve (b) we must show that the map α1

S(4k+4) is onto when k ≥ 0. Set n =
8k+ 6. Since Kn(OS) is finite, Kn(OS ;Z/2∞) must equal the 2-primary subgroup
of Kn−1(OS), which is independent of S by V.6.8. But for sufficiently large S, the
map α1(4k + 4) is a surjection by Lemma 9.3, and hence Kn(OS ;Z/2∞) = 0. �
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Theorem 9.5. Let OS be a ring of S-integers in a number field F . Then for
each odd n ≥ 3, the group Kn(OS) ∼= Kn(F ) is given by:

a) If F is totally imaginary, Kn(F ) ∼= Zr2 ⊕ Z/wi(F );
b) If F has r1 > 0 real embeddings then, setting i = (n+ 1)/2,

Kn(F ) ∼=





Zr1+r2 ⊕ Z/wi(F ), n ≡ 1 (mod 8)

Zr2 ⊕ Z/2wi(F )⊕ (Z/2)r1−1, n ≡ 3 (mod 8)

Zr1+r2 ⊕ Z/ 1
2wi(F ), n ≡ 5 (mod 8)

Zr2 ⊕ Z/wi(F ), n ≡ 7 (mod 8)

Note that these groups are determined only by the number r1, r2 of real and
complex places of F and the integers wi(F ).

Proof. Part (a), when F is totally imaginary, is given by Theorem 8.4. In
case (b), since the rank is classically known (see 8.1), and Kn(OS) ∼= Kn(F ) by
V.6.8, it suffices to determine the torsion subgroup of Kn(OS). The odd tor-
sion is given by Theorem 8.2, so we need only worry about the 2-primary torsion.
Since Kn+1(OS) is finite, it follows from Ex. IV.2.6 that the 2-primary subgroup
of Kn(OS) is Kn+1(OS ;Z/2∞), which we can read off from Theorem 9.4, recalling

from 2.3(b) that w
(2)
i (F ) = 2 for odd i. �

Example 9.5.1. Kn(Q) ∼= Z for all n ≡ 5 (mod 8) as wi(Q) = 2; see 2.1.2.
More generally, if F has a real embedding and n ≡ 5 (mod 8), then Kn(F ) has no
2-primary torsion, because 1

2wi(F ) is an odd integer when i is odd; see 2.3(b).

The narrow Picard group

To determine the 2-primary torsion in Kn(OS) when n is even, we need to
introduce the narrow Picard group and the signature defect of the ring OS . We
begin with some terminology.

Each real embedding σi : F → R determines a map F× → R× → Z/2, detecting
the sign of units of F under that embedding. The sum of these is the sign map
σ : F× −→ (Z/2)r1 ; it is surjective by the strong approximation theorem for F . The
kernel F×

+ of σ is called the group of totally positive units in F , since it consists of
units which are positive under every real embedding.

If R = OS is a ring of integers in F , we write R×
+ for R× ∩ F×

+ , the subgroup
of totally positive units in R. Since the sign map σ factors through F×/F×2 =
H1

et(F,Z/2), the restriction to R× also factors through α1 : H1
et(R,Z/2)→ (Z/2)r1 .

This map is part of a family of maps

(9.6) αn : Hn
et(R,Z/2)→ ⊕r1Hn

et(R,Z/2) = (Z/2)r1

related to the maps αn(i) in (9.2). By Tate-Poitou duality, αn is an isomorphism
for all n ≥ 3; it is a surjection for n = 2 (see Ex. 9.2). We will be interested in α1.
The following classical definitions are due to Weber; see [Co, 5.2.7] or [Neu, VI.1].
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Definition 9.6.1. The signature defect j(R) of R is defined to be the dimension
of the cokernel of α1. Since the sign of −1 nontrivial, we have 0 ≤ j(R) < r1. Note
that j(F ) = 0, and that j(OS) ≤ j(OF ) for all S.

The narrow Picard group Pic+(R) is defined to be the cokernel of the restricted
divisor map F×

+ →
⊕

℘ 6∈S Z of I.3.5; it is a finite group. Some authors call Pic+(OS)
the ray class group and write it as ClSF .

The kernel of the restricted divisor map is clearly R×
+, and it is easy to see from

this that there is an exact sequence

0→ R×
+ → R× σ−→ (Z/2)r1 → Pic+(R) −→ Pic(R)→ 0.

For simplicity we write Hn(R,Z/2) for Hn
et(R,Z/2) and, as in (9.2), we define

H̃n(R;Z/2) to be the kernel of αn. A diagram chase (left to Ex. 9.3) shows that
there is an exact sequence

(9.6.2) 0→H̃1(R;Z/2)→ H1(R;Z/2)
α1

−→ (Z/2)r1→Pic+(R)/2→ Pic(R)/2→0.

Thus the signature defect j(R) is also the dimension of the kernel of Pic+(R)/2→
Pic(R)/2. If we let t and u denote the dimensions of Pic(R)/2 and Pic+(R)/2,
respectively, then this means that u = t + j(R). If s denotes the number of finite
places of OS , then dimH1(OS ;Z/2) = r1 + r2 + s + t and dimH2(OS ;Z/2) =
r1 + s+ t− 1. This follows from 8.1 and (8.1.1), using Kummer theory.

Lemma 9.6.3. Suppose that 1
2 ∈ OS. Then dim H̃1(OS ,Z/2) = r2 + s+ u, and

dim H̃2(OS ,Z/2) = t+ s− 1.

Proof. The first assertion is immediate from (9.6.2). Since α2 is onto, the
second assertion follows. �

Theorem 9.7. Let F be a real number field, and OS a ring of integers containing
1
2 . If j = j(OS) is the signature defect, then the mod 2 algebraic K-groups of OS
are given (up to extensions) for n > 0 as follows:

Kn(OS ;Z/2) ∼=





H̃2(OS ;Z/2)⊕ Z/2 for n = 8k,

H1(OS ;Z/2) for n = 8k + 1,

H2(OS ;Z/2)⋊ Z/2 for n = 8k + 2,

(Z/2)r1−1 ⋊H1(OS ;Z/2) for n = 8k + 3,

(Z/2)j ⋊H2(OS ;Z/2) for n = 8k + 4,

(Z/2)r1−1 ⋊ H̃1(OS ;Z/2) for n = 8k + 5,

(Z/2)j ⊕ H̃2(OS ;Z/2) for n = 8k + 6,

H̃1(OS ;Z/2) for n = 8k + 7.
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p = −3 −2 −1 0
1

β1 H1

0 H1 H2

0 H̃1 H2 (Z/2)r1−1

H̃1 H̃2 (Z/2)r1−1 (Z/2)j

H̃2 0 (Z/2)j 0
0 0 0 0

The first 4 columns of E3 = E∞

Table 9.7.1. The mod 2 spectral sequence for OS .

Proof. (Cf. [RW, 7.8].) As in the proof of Theorem 9.4, we compare the spectral
sequence for R = OS with the sum of r1 copies of the spectral sequence for R. For
n ≥ 3 we have Hn(R;Z/2) ∼= (Z/2)r1 . It is not hard to see that we may identify
the differentials d2 : Hn(R,Z/2) → Hn+3(R,Z/2) with the maps αn. Since these
maps are described in 9.6, we see from periodicity 4.8.1 that the columns p ≤ 0 of
E3 are 4-periodic, and all nonzero entries are described by Figure 9.7.1.

As in Example 4.6, the E2 page of the spectral sequence 4.2 has only one nonzero
entry for p > 0, namely E+1,−1

3 = Pic(R)/2, and it only affects K0(R;Z/2). By
inspection, E3 = E∞, yielding the desired description of the groups Kn(R,Z/2) in
terms of extensions. The proof that the extensions split for n ≡ 0, 6 (mod 8) is left
to Exercises 9.4 and 9.5. �

The case F = Q has historical importance, because of its connection with the
image of J (see 2.1.3 or [Q5]) and classical number theory. The following result was
first established in [We2]; the groups are not truly periodic only because the order
of K8k−1(Z) depends upon k.

Corollary 9.8. For n ≥ 0, the 2-primary subgroups of Kn(Z) and Kn(Z[1/2])
are essentially periodic, of period eight, and are given by the following table for
n ≥ 2. (When n ≡ 7 (mod 8), we set k = (n+ 1)/8.)

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z){2} Z/2 Z/2 Z/16 0 0 0 Z/16k 0

In particular, Kn(Z) and Kn(Z[1/2]) have odd order for all n ≡ 4, 6, 8 (mod 8),
and the finite group K8k+2(Z) is the sum of Z/2 and a finite group of odd order.
We will say more about the odd torsion in the next section.

Proof. When n is odd, this is Theorem 9.5; w
(2)
4k is the 2-primary part of 16k

by 2.3(c). For R = Z[1/2] we have s = 1 and t = u = j = 0. By Lemma 9.6.3 we

have dim H̃1(R;Z/2) = 1 and H̃2(R;Z/2) = 0. By 9.7, the groups Kn(Z[1/2];Z/2)
are periodic of orders 2, 4, 4, 4, 2, 2, 1, 2 for n ≡ 0, 1, ..., 7 respectively. The groups
Kn(Z[1/2]) for n odd, given in 9.5, together with the Z/2 summand in K8k+2(Z)
provided by topology (see 2.1.3), account for all of Kn(Z[1/2];Z/2), and hence must
contain all of the 2-primary torsion in Kn(Z[1/2]). �
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Recall that the 2-rank of an abelian group A is the dimension of Hom(Z/2, A).
We have already seen (in Theorem 9.5) that for n ≡ 1, 3, 5, 7 (mod 8) the 2-ranks
of Kn(OS) are: 1, r1, 0 and 1, respectively.

Corollary 9.9. For n ≡ 2, 4, 6, 8 (mod 8), n > 0, the respective 2-ranks of the
finite groups Kn(OS) are: r1 + s+ t− 1, j + s+ t− 1, j + s+ t− 1 and s+ t− 1.

Here j is the signature defect of OS (9.6.1), s is the number of finite places of
OS and t is the rank of Pic(OS)/2.

Proof. Since Kn(R;Z/2) is an extension of Hom(Z/2,Kn−1R) by Kn(R)/2,
and the dimensions of the odd groups are known, we can read this off from the list
given in Theorem 9.7, using Lemma 9.6.3. �

Example 9.9.1. Consider F = Q(
√
p), where p is prime. When p ≡ 1 (mod 8),

it is well known that t = j = 0 but s = 2. It follows that K8k+2(OF ) has 2-rank 3,
while the two-primary summand of Kn(OF ) is nonzero and cyclic when n ≡ 4, 6, 8
(mod 8).

When p ≡ 7 (mod 8), we have j = 1 for both OF and R = OF [1/2]. Since
r1 = 2 and s = 1, the 2-ranks of the finite groups Kn(R) are: t + 2, t + 1, t + 1
and t for n ≡ 2, 4, 6, 8 (mod 8) by 9.9. For example, if t = 0 (Pic(R)/2 = 0) then
Kn(R) has odd order for n ≡ 8 (mod 8), but the 2-primary summand of Kn(R) is
(Z/2)2 when n ≡ 2 and is cyclic when n ≡ 4, 6.

Example 9.9.2. (2–regular fields) A number field F is said to be 2–regular if
there is only one prime over 2 and the narrow Picard group Pic+(OF [ 12 ]) is odd
(i.e., t = u = 0 and s = 1). In this case, we see from 9.9 that K8k+2(OF ) is the sum
of (Z/2)r1 and a finite odd group, while Kn(OF ) has odd order for all n ≡ 4, 6, 8
(mod 8) (n > 0). In particular, the map KM

4 (F ) → K4(F ) must be zero, since it
factors through the odd order group K4(OF ), and KM

4 (F ) ∼= (Z/2)r1 .
Browkin and Schinzel [BrwS] and Rognes and Østvær [ROst] have studied this

case. For example, when F = Q(
√
m) and m > 0 (r1 = 2), the field F is 2-regular

exactly when m = 2, or m = p or m = 2p with p ≡ 3, 5 (mod 8) prime. (See
[BrwS].)

A useful example is F = Q(
√
2). Note that KM

4 (F ) ∼= (Z/2)2 is generated by

the Steinberg symbols {−1,−1,−1,−1} and {−1,−1,−1, 1 +
√
2}. Both symbols

must vanish in K4(Z[
√
2]), since this group has odd order. This is the case j = 0,

r1 = 2 of the following result.

Let ρ denote the rank of the image of the group KM
4 (F ) ∼= (Z/2)r1 in K4(F ).

Corollary 9.10. Let F be a real number field. Then j(OF [1/2]) ≤ ρ ≤ r1− 1.
The image (Z/2)ρ of KM

4 (F )→ K4(F ) lies in the subgroup K4(OF ), and its image
in K4(OS)/2 has rank j(OS) whenever S contains all primes over 2.

In particular, the image (Z/2)ρ of KM
4 (F ) lies in 2 ·K4(F ).

Proof. By Ex. IV.1.12(d), {−1,−1,−1,−1} is nonzero in KM
4 (F ) but zero in

K4(F ). Since K
M
4 (F ) ∼= (Z/2)r1 by III.7.2(d), we have ρ < r1. The assertion that

KM
4 (F ) → K4(F ) factors through K4(OF ) follows from the fact that K3(OF ) =

K3(F ) (see IV.6.8), by multiplyingKM
3 (F ) andK3(OF ) ∼= K3(F ) by [−1] ∈ K1(Z).

We saw in 4.3 that the edge map Hn(F,Z(n)) → Kn(F ) in the motivic spectral
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sequence agrees with the usual map KM
n (F ) → Kn(F ). By Theorem 4.1 (due to

Voevodsky), KM
n (F )/2ν ∼= Hn(F,Z(n))/2ν ∼= Hn(F,Z/2ν(n)). For n = 4, the

image of the edge map from H4(OS ,Z/2ν(4)) ∼= H4(F,Z/2ν(4)) → K4(OS ;Z/2)
has rank j by Table 9.7.1; this implies the assertion that the image in K4(OS)/2 ⊂
K4(OS ;Z/2) has rank j(OS). Finally, taking OS = OF [1/2] yields the inequality
j(OS) ≤ ρ. �

Example 9.10.1. (ρ = 1) Consider F = Q(
√
7), OF = Z[

√
7] and R = OF [1/2];

here s = 1, t = 0 and j(R) = ρ = 1 (the fundamental unit u = 8 + 3
√
7 is totally

positive). Hence the image of KM
4 (F ) ∼= (Z/2)2 in K4(Z[

√
7]) is Z/2 on the symbol

σ = {−1,−1,−1,
√
7}, and this is all of the 2-primary torsion in K4(Z[

√
7]) by 9.9.

On the other hand, OS = Z[
√
7, 1/7] still has ρ = 1, but now j = 0, and the 2-

rank of K4(OS) is still one by 9.9. Hence the extension 0→ K4(OF )→ K4(OS)→
Z/48→ 0 of V.6.8 cannot be split, implying that the 2-primary subgroup ofK4(OS)
must then be Z/32.

In fact, the nonzero element σ is divisible in K4(F ). This follows from the fact

that if p ≡ 3 (mod 28) then there is an irreducible q = a + b
√
7 whose norm is

−p = qq̄. Hence R′ = Z[
√
7, 1/2q] has j(R′) = 0 but ρ = 1, and the extension

0 → K4(OF ) → K4(OS) → Z/(p2 − 1) → 0 of V.6.8 is not split. If in addition
p ≡ −1 (mod 2ν) — there are infinitely many such p for each ν — then there is an
element v of K4(R

′) such that 2ν+1v = σ See [We3] for details.

Question 9.10.2. Can ρ be less than the minimum of r1− 1 and j + s+ t− 1?

As in (9.2), when i is even we define H̃2(R;Z2(i)) to be the kernel of α2(i) :

H2(R;Z2(i)) → H2(R;Z2(i))
r1 ∼= (Z/2)r1 . By Lemma 9.6.3, H̃2(R;Z2(i)) has

2-rank s+ t− 1. The following result is taken from [RW, 0.6].

Theorem 9.11. Let F be a number field with at least one real embedding, and
let R = OS denote a ring of integers in F containing 1/2. Let j be the signature

defect of R, and write wi for w
(2)
i (F ).

Then there is an integer ρ, j ≤ ρ < r1, such that, for all n ≥ 2, the two-primary
subgroup Kn(OS){2} of Kn(OS) is isomorphic to:

Kn(OS){2} ∼=





H2
et(R;Z2(4k + 1)) for n = 8k,

Z/2 for n = 8k + 1,

H2
et(R;Z2(4k + 2)) for n = 8k + 2,

(Z/2)r1−1 ⊕ Z/2w4k+2 for n = 8k + 3,

(Z/2)ρ ⋊H2
et(R;Z2(4k + 3)) for n = 8k + 4,

0 for n = 8k + 5,

H̃2
et(R;Z2(4k + 4)) for n = 8k + 6,

Z/w4k+4 for n = 8k + 7.

Proof. When n = 2i − 1 is odd, this is Theorem 9.5, since w
(2)
i (F ) = 2 when

n ≡ 1 (mod 4) by 2.3(b). When n = 2 it is III.6.9.3. To determine the two-primary
subgroup Kn(OS){2} of the finite group K2i+2(OS) when n = 2i + 2, we use the
universal coefficient sequence

0→ (Z/2∞)r → K2i+3(OS ;Z/2∞)→ K2i+2(OS){2} → 0,
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where r is the rank of K2i+3(OS) and is given by 8.1 (r = r1+r2 or r2). To compare
this with Theorem 9.4, we note that H1(OS ,Z/2∞(i)) is the direct sum of (Z/2∞)r

and a finite group, which must be H2(OS ,Z2(i)) by universal coefficients; see [RW,
2.4(b)]. Since α1

S(i) : H
1(R;Z2(i)) → (Z/2)r1 must vanish on the divisible group

(Z/2∞)r, it induces the natural map α2
S(i) : H

2
et(OS ;Z2(i))→ (Z/2)r1 and

H̃1(OS ,Z/2∞(i)) ∼= (Z/2∞)r ⊕ H̃2(OS ,Z2(i)).

This proves all of the theorem, except for the description of Kn(OS), n = 8k + 4.
By mod 2 periodicity 4.8.1, the integer ρ of 9.10 equals the rank of the image of
H4(OS ,Z/2(4)) ∼= H4(OS ,Z/2(4k + 4)) ∼= (Z/2)r1 in Hom(Z/2,Kn(OS)), consid-
ered as a quotient of Kn+1(OS ;Z/2). �

We can combine the 2-primary information in 9.11 with the odd torsion informa-
tion in 8.2 and 8.8 to relate the orders ofK-groups to the orders of étale cohomology
groups. Up to a factor of 2r1 , they were conjectured by Lichtenbaum in [Li2]. Let
|A| denote the order of a finite abelian group A.

Theorem 9.12. Let F be a totally real number field, with r1 real embeddings,
and let OS be a ring of integers in F . Then for all even i > 0

2r1 · |K2i−2(OS)|
|K2i−1(OS)|

=

∏
ℓ |H2

et(OS [1/ℓ];Zℓ(i))|∏
ℓ |H1

et(OS [1/ℓ];Zℓ(i))|
.

Proof. Since 2i− 1 ≡ 3 (mod 4), all groups involved are finite (see 8.1, Ex. 8.2
and Ex. 8.3.) Write hn,i(ℓ) for the order ofHn

et(OS [1/ℓ];Zℓ(i)). By Ex. 8.3, h1,i(ℓ) =

w
(ℓ)
i (F ). By 9.5, the ℓ-primary subgroup of K2i−1(OS) has order h1,i(ℓ) for all odd

ℓ and all even i > 0, and also for ℓ = 2 with the exception that when 2i − 1 ≡ 3
(mod 8) then the order is 2r1h1,i(2).

By Theorems 8.2 and 9.11, the ℓ-primary subgroup of K2i−2(OS) has order
h2,i(ℓ) for all ℓ, except when ℓ = 2 and 2i − 2 ≡ 6 (mod 8) when it is h1,i(2)/2r1 .
Combining these cases yields the formula asserted by the theorem. �

Theorem 9.12 was used in the previous section (Theorem 8.8) to equate the ratio
of orders of the finite groups K4k−2(OF ) and K4k−1(OF ) with |ζF (1− 2k)|/2r1 .

EXERCISES

9.1 Suppose that F has r1 > 0 embeddings into R. Show that

H2
et(OS ;Z/2∞(i)) ∼= H2

et(F ;Z/2
∞(i)) ∼=

{
(Z/2)r1 , i ≥ 3 odd

0, i ≥ 2 even.

Using (8.1.1), determine H2
et(OS ;Z/2∞(1)). Hint: Compare F with F (

√
−1), and

use Exercise 8.1 to see that H2
et(OS ;Z/2∞(i)) has exponent 2. Hence the Kummer

sequence is:

0→ H2
et(OS ;Z/2∞(i))→ H3

et(OS ;Z/2)→ H3
et(OS ;Z/2∞(i))→ 0.

Now plug in the values of the H3 groups, which are known by (9.2).
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9.2 Show that α2 is onto. Hint: Use Ex. 9.1 and the coefficient sequence for Z/2 ⊂
Z/2∞(4) to show that the map H2

et(R;Z/2)→ H2
et(R;Z/2

∞(4)) is onto.

9.3 Establish the exact sequence (9.6.2). (This is taken from [RW, 9.6].)

9.4 The stable homotopy group π8k(QS
0;Z/2) contains an element β8k of expo-

nent 2 which maps onto the generator of K8k(R;Z/2) ∼= Z/2; see [RW, 5.1]. Use it

to show the extension K8k(OS ;Z/2) of Z/2 by H̃2(OS ,Z/2) splits in Theorem 9.7.

9.5 Show that the extension K8k+6(OS ;Z/2) splits in Thm. 9.7. Conclude that

K8k+6(OS)/2 ∼= H̃2(OS ,Z/2)⊕ (Z/2)j . Hint: use Example 9.5.1.

9.6 Let R = OF [1/2], where F is a real number field. Show that K8k+4(R;Z/2) is
an extension of 2Br(R) by Pic+(R)/2.

Let Br+(R) denote the kernel of the canonical map Br(R) → (Z/2)r1 induced
by (8.1.1). Show that K8k+7(R;Z/2) ∼= Pic+(R)/2⊕ 2Br+(R). (See [RW, 7.8].)
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§10. The K-theory of Z

The determination of the groups Kn(Z) has been a driving force in the develop-
ment ofK-theory. We saw in Chapters II and III that the groupsK0(Z), K1(Z) and
K2(Z) are related to very classical mathematics. In the 1970’s, homological meth-
ods led to the calculation of the rank of Kn(Z) by Borel (see 8.1) and K3(Z) ∼= Z/48
by Lee and Szczarba (see Example 2.1.2 or [LSz]).

In order to describe the groups Kn(Z), we use the Bernoulli numbers Bk. We let
ck denote the numerator of Bk/4k; ck is a product of irregular primes (see 2.4.1).
We saw in Lemma 2.4 that the denominator of Bk/4k is w2k, so Bk/4k = ck/w2k.

Theorem 10.1. For n 6≡ 0 (mod 4) and n > 1, we have:

(1) If n = 8k + 1, Kn(Z) ∼= Kn(Q) ∼= Z⊕ Z/2;
(2) If n = 8k + 2, |Kn(Z)| = 2c2k+1;
(3) If n = 8k + 3, Kn(Z) ∼= Kn(Q) ∼= Z/2w4k+2;
(4) If n = 8k + 5, Kn(Z) ∼= Kn(Q) ∼= Z;
(5) If n = 8k + 6, |Kn(Z)| = c2k+1;
(6) If n = 8k + 7, Kn(Z) ∼= Kn(Q) ∼= Z/c4k+4.

As a consequence, for k ≥ 1 we have:
|K4k−2(Z)|
|K4k−1(Z)|

=
Bk
4k

=
(−1)k

2
ζ(1− 2k).

Proof. The equality Bk/4k = (−1)kζ(1−2k)/2 comes from 2.4.2. The equality
of this with |K4k−2(Z)|/|K4k−1(Z)| comes from Theorem 8.8 (using 9.12). This
gives the displayed formula.

When n is odd, the groupsKn(Z) were determined in Theorem 9.5, andKn(Z) ∼=
Kn(Q) by IV.6.8. Thus we may suppose that n = 4k − 2. Since the 2-primary
torsion in Kn(Z) was determined in Corollary 9.8, we can ignore factors of 2.
But up to a factor of 2, |K4k−1(Z)| = w2k(Q) so the displayed formula yields
|K4k−2(Z)|/w2k = Bk/4k and hence |K4k−2(Z)| = ck. �

The groups Kn(Z) are much harder to determine when n ≡ 0 (mod 4). The
group K4(Z) was proven to be zero in the late 1990’s (see Remark 10.1.3 or
[Rognes]). If n = 4i ≥ 8, the groups K4i(Z) are known to be products of ir-
regular primes ℓ, with ℓ > 108, and are conjectured to be zero; this conjecture
follows from, and implies, Vandiver’s conjecture (stated in 10.8 below).

In Table 10.1.1, we have summarized what we know for n < 20, 000; conjecturally
the same pattern holds for all n (see Theorem 10.2).

K0(Z) = Z K8(Z) = (0?) K16(Z) = (0?) K8k(Z) = (0?), k ≥ 1
K1(Z) = Z/2 K9(Z) = Z⊕ Z/2 K17(Z) = Z⊕ Z/2 K8k+1(Z) = Z⊕ Z/2
K2(Z) = Z/2 K10(Z) = Z/2 K18(Z) = Z/2 K8k+2(Z) = Z/2c2k+1

K3(Z) = Z/48 K11(Z) = Z/1008 K19(Z) = Z/528 K8k+3(Z) = Z/2w4k+2

K4(Z) = 0 K12(Z) = (0?) K20(Z) = (0?) K8k+4(Z) = (0?)
K5(Z) = Z K13(Z) = Z K21(Z) = Z K8k+5(Z) = Z
K6(Z) = 0 K14(Z) = 0 K22(Z) = Z/691 K8k+6(Z) = Z/c2k+2

K7(Z) = Z/240 K15(Z) = Z/480 K23(Z) = Z/65520 K8k+7(Z) = Z/w4k+4.

Table 10.1.1. The groups Kn(Z), n < 20, 000. The notation ‘(0?)’ refers to a
finite group, conjecturally zero, whose order is a product of irregular primes > 108.
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Relation to πsn 10.1.2. Using homotopy-theoretic techniques, the torsion sub-
groups of Kn(Z) had been detected by the late 1970’s, due to the work of Quillen
[Qlet], Harris-Segal [HS], Soulé [Sou] and others.

As pointed out in Remark 2.1.3, the image of the natural maps πsn → Kn(Z)
capture most of the Harris-Segal summands 2.5. When n is 8k+1 or 8k+2, there
is a Z/2-summand in Kn(Z), generated by the image of Adams’ element µn. (It is
the 2-torsion subgroup by 9.8.) Since w4k+1(Q) = 2, we may view it as the Harris-
Segal summand when n = 8k + 1. When n = 8k + 5, the Harris-Segal summand is
zero by Example 9.5.1. When n = 8k + 7 the Harris-Segal summand of Kn(Z) is
isomorphic to the subgroup J(πnO) ∼= Z/w4k+4(Q) of πsn.

When n = 8k+3, the subgroup J(πnO) ∼= Z/w4k+2(Q) of πsn is contained in the
Harris-Segal summand Z/(2wi) of Kn(Z); the injectivity was proven by Quillen in
[Qlet], and Browder showed that the order of the summand was 2wi(Q).

The remaining calculations of K∗(Z) depend upon the development of motivic
cohomology, via the tools described in Section 4, and date to the period 1997–2007.
The 2-primary torsion was resolved in 1997 using [V-MC] (see Section 9), while the
order of the odd torsion (conjectured by Lichtenbaum) was only determined using
the Norm Residue Theorem 4.1 of Rost and Voevodsky.

Homological methods 10.1.3. Lee-Szczarba [LSz] and Soulé [So78] used ho-
mological methods in the 1970s to show that K3(Z) ∼= Z/48 and that there is no
p-torsion in K4(Z) or K5(Z) for p > 3. Much later, Rognes [Rognes] and Elbaz-
Vincent–Gangl–Soulé [EGS] refined this to show that K4(Z) = 0, K5(Z) = Z, and
thatK6(Z) has at most 3-torsion. This used the calculation in [RW] (using [V-MC])
that there is no 2-torsion in K4(Z), K5(Z) or K6(Z).

Our general description of K∗(Z) is completed by the following assertion, which
follows immediately from Theorems 10.1,10.9 and 10.10 below, It was observed
independently by Kurihara [Kur] and Mitchell [Mit].

Theorem 10.2. If Vandiver’s conjecture holds, then the groups Kn(Z) are given
by Table 10.2.1, for all n ≥ 2. Here k is the integer part of 1 + n

4 .

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z) Z⊕ Z/2 Z/2ck Z/2w2k 0 Z Z/ck Z/w2k 0

Table 10.2.1. The K-theory of Z, assuming Vandiver’s Conjecture.

When n is at most 20,000 and n ≡ 2 (mod 4), we show that the finite groups
Kn(Z) are cyclic in Examples 10.3 and 10.3.2. (The order is ck or 2ck, where
k = (n+ 2)/4, by Theorem 10.1.)

Examples 10.3. For n at most 450, the group Kn(Z) is cyclic because its order
is squarefree. For n ≤ 30 we need only consult 2.1.2 to see that the groups K2(Z),
K10(Z), K18(Z) and K26(Z) are isomorphic to Z/2, while K6(Z) = K14(Z) = 0.
Since c6 = 691, c8 = 3617, c9 = 43867 and c13 = 657931 are all prime, we have
K22(Z) ∼= Z/691, K30(Z) ∼= Z/3617, K34(Z) ∼= Z/2 ⊕ Z/43867 and K50

∼= Z/2 ⊕
Z/657931.

The next hundred values of ck are also squarefree: c10 = 283 ·617, c11 = 131 ·593,
c12 = 103 ·2294797, c14 = 9349 ·362903 and c15 = 1721 ·1001259881 are all products
of two primes, while c16 = 37 · 683 · 305065927 is a product of 3 primes. Hence
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K38(Z) = Z/c10, K42(Z) = Z/2c11, K46 = Z/c12, K54(Z) = Z/c14, K58(Z) =
Z/2c15 and K62(Z) = Z/c16 = Z/37⊕ Z/683⊕ Z/305065927.

Thus the first occurrence of the smallest irregular prime (37) is in K62(Z); it
also appears as a Z/37 summand in K134(Z), K206(Z), . . . , K494(Z). In fact, there
is 37-torsion in every group K72a+62(Z) (see Ex. 10.2). This direct method fails for
K454(Z), because its order 2c114 is divisible by 1032.

To go further, we need to consider the torsion in the groupsK4k−2(Z) on a prime-
by-prime basis. Since the 2-torsion has order at most 2 by 9.8, we may suppose
that ℓ is an odd prime. Our method is to consider the cyclotomic extension Z[ζℓ]
of Z, ζℓ = e2πi/ℓ. Because Kn(Z)→ Kn(Z[1/ℓ]) is an isomorphism on ℓ-torsion (by
the Localization Sequence V.6.6), and similarly for Kn(Z[ζℓ]) → Kn(Z[ζℓ, 1/ℓ]), it
suffices to work with Z[1/ℓ] and R = Z[ζℓ, 1/ℓ].

The usual transfer argument 10.3.1. The ring extension Z[1/ℓ] ⊂ R is
Galois and its Galois group G = Gal(Q(ζ)/Q) is cyclic of order ℓ − 1. The map
i∗ : K∗(Z) → K∗(R) identifies Kn(Z[1/ℓ])(ℓ) with Kn(R)

G
(ℓ) for all n, because i∗i

∗

is multiplication by |G| on K∗(Z) and i
∗i∗ is multiplication by |G| on Kn(R)

G (see
Ex. IV.6.13). This style of argument is called the usual transfer argument.

Example 10.3.2. The group K4k−2(Z) is cyclic (of order ck or 2ck) for all
k ≤ 5000. To see this, we observe that K4k−2(Z)(ℓ) is cyclic if ℓ2 does not di-
vide ck, and in this range only seven of the ck are not square-free; see [OEIS,
A090943]. The numerator ck is divisible by ℓ2 only for the following pairs (k, ℓ):
(114, 103), (142, 37), (457, 59), (717, 271), (1646, 67), (2884, 101) and (3151, 157).
In each of these cases, we note that Pic(Z[ζℓ]) = Pic(R)/ℓ ∼= Z/ℓ. By Example
8.3.1, K4k−2(R)/ℓ ∼= Pic(R) ∼= Z/ℓ. The usual transfer argument (10.3.1) now
shows that K4k−2(Z)/ℓ is either 0 or Z/ℓ for all k. Since ck is divisible by ℓ2 but
not ℓ3, K4k−2(Z)(ℓ) ∼= Z/ℓ2.

Representations of G over Z/ℓ 10.4. When G is the cyclic group of order
ℓ − 1, a Z/ℓ[G]-module is just a Z/ℓ-vector space on which G acts linearly. By

Maschke’s theorem, Z/ℓ[G] ∼=
∏ℓ−2
i=0 Z/ℓ is a simple ring, so every Z/ℓ[G]-module

has a unique decomposition as a sum of its ℓ − 1 irreducible modules. Since µℓ is
an irreducible G-module, it is easy to see that the irreducible G-modules are µ⊗i

ℓ ,

i = 0, 1, ..., ℓ − 2. The “trivial” G-module is µ⊗ℓ−1
ℓ = µ⊗0

ℓ = Z/ℓ. By convention,

µ⊗i
ℓ = µ

⊗i+a(ℓ−1)
ℓ for all integers a.

For example, the G-submodule 〈βi〉 of K2i(Z[ζ];Z/ℓ) generated by βi is isomor-
phic to µ⊗i

ℓ . It is a trivial G-module only when (ℓ− 1)|i.
If A is any Z/ℓ[G]-module, it is traditional to decompose A = ⊕A[i], where A[i]

denotes the sum of all G-submodules of A isomorphic to µ⊗i
ℓ .

Example 10.4.1. Set R = Z[ζℓ, 1/ℓ]. It is known that the torsionfree part

R×/µℓ ∼= Z
ℓ−1

2 of the units of R is isomorphic as a G-module to Z[G]⊗Z[c]Z, where
c is complex conjugation. (This is sometimes included as part of Dirichlet’s theorem
on units.) It follows that as a G-module,

R×/R×ℓ ∼= µℓ ⊕ (Z/ℓ)⊕ µ⊗2
ℓ ⊕ · · · ⊕ µ⊗ℓ−3

ℓ .
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The first two terms µℓ and Z/ℓ are generated by the root of unity ζℓ and the class
of the unit ℓ of R. It will be convenient to choose units x0 = ℓ, x1, . . . , x(ℓ−3)/2 of

R such that xi generates the summand µ−2i
ℓ of R×/R×ℓ; the notation is set up so

that xi ⊗ ζ⊗2i
ℓ is a G-invariant element of R× ⊗ µ⊗2i

ℓ .

Example 10.4.2. The G-module decomposition ofM = R×⊗µ⊗i−1
ℓ is obtained

from Example 10.4.1 by tensoring with µ⊗i−1
ℓ . If i is even, Z/ℓ occurs only when

i ≡ 0 (mod ℓ− 1), corresponding to ζ⊗i. If i is odd, exactly one term of M is Z/ℓ;
MG is Z/ℓ on the generator xj ⊗ ζi−1

ℓ , where i ≡ 1 + 2j (mod ℓ− 1).

Torsion for odd regular primes

Suppose that ℓ is an odd regular prime. By definition, Pic(Z[ζ]) has no ℓ-torsion,
and K1(R)/ℓ ∼= R×/R×ℓ by III.1.3.6. Kummer showed that ℓ cannot divide the
order of any numerator ck of Bk/k (see 2.4.1). Therefore the case 2i = 4k − 2 of
the following result follows from Theorem 10.1.

Proposition 10.5. When ℓ is an odd regular prime, the group K2i(Z) has no ℓ-
torsion. Thus the only ℓ-torsion subgroups of K∗(Z) are the Harris-Segal subgroups

Z/w
(ℓ)
i (Q) of K2i−1(Z) when i ≡ 0 (mod ℓ− 1).

Proof. Since ℓ is regular, we saw in Example 8.3.2 that the group K2i(Z[ζ])
has no ℓ-torsion. Hence the same is true for its G-invariant subgroup, K2i(Z). The
restriction on i comes from Example 2.1.2. �

We can also describe the algebra structure of K∗(Z;Z/ℓ). For this we set R =
Z[ζℓ, 1/ℓ] and G = Gal(Q(ζ)/Q), noting that K∗(Z[1/ℓ];Z/ℓ) ∼= K∗(R;Z/ℓ)

G by
the usual transfer argument (10.3.1). Recall from Example 8.5 that K∗(R;Z/ℓ) is
a free graded Z/ℓ[β]-module on ℓ+1

2 generators: the xi of R
×/R×ℓ = K1(R;Z/ℓ),

together with 1 ∈ K0(R;Z/ℓ).

Thus K2i(R;Z/ℓ) ∼= Z/ℓ is generated by βi, and is isomorphic to µ⊗i
ℓ as a G-

module. It follows that K2i(R;Z/ℓ)
G is zero unless i = a(ℓ − 1), when it is Z/ℓ

on the generator βi. By abuse of notation, we shall write βℓ−1 for the element
of K2(ℓ−1)(Z;Z/ℓ) corresponding to βℓ−1; if i = a(ℓ − 1) we shall write βi for the

element (βℓ−1)a of K2i(Z;Z/ℓ) corresponding to βi ∈ K2i(R;Z/ℓ)
G.

By Example 8.5, K2i−1(R;Z/ℓ) is just R× ⊗ µ⊗i−1
ℓ when ℓ is regular. The G-

module structure was determined in Example 10.4.2: if i is even, exactly one term
is Z/ℓ; if i is odd, Z/ℓ occurs only when i ≡ 1 (mod ℓ− 1).

Multiplying [ζ] ∈ K1(R;Z/ℓ) by β
ℓ−2 yields the G-invariant element v = [ζ]βℓ−2

of K2ℓ−3(R;Z/ℓ). Again by abuse of notation, we write v for the corresponding
element of K2ℓ−3(Z;Z/ℓ).

Similarly, multiplying xk ∈ R× = K1(R) by β2k ∈ K4k(R;Z/ℓ) gives a G-
invariant element yk = xkβ

2k of K4k+1(R;Z/ℓ) with y0 = [ℓ] in K1(R;Z/ℓ). Again
by abuse of notation, we write yk for the corresponding element of K4k+1(Z;Z/ℓ).

Theorem 10.6. If ℓ is an odd regular prime then K∗ = K∗(Z[1/ℓ];Z/ℓ) is a
free graded module over the polynomial ring Z/ℓ[βℓ−1]. It has (ℓ+3)/2 generators:
1 ∈ K0, v ∈ K2ℓ−3, and the elements yk ∈ K4k+1 (k = 0, ..., ℓ−3

2 ) described above.



64 VI. THE HIGHER K-THEORY OF FIELDS

Similarly, K∗(Z;Z/ℓ) is a free graded module over Z/ℓ[βℓ−1]; a generating set is
obtained from the generators of K∗ by replacing y0 by y0β

ℓ−1.
The Z/ℓ[βℓ−1]-submodule generated by v and βℓ−1 comes from the Harris-Segal

summands of K2i−1(Z). The submodule generated by the y’s comes from the Z
summands in Kn(Z), n ≡ 1 (mod 4).

Proof. K∗(Z[1/ℓ];Z/ℓ) is the G-invariant subalgebra of K∗(R;Z/ℓ). Given
10.5, it is not very hard to check that this is just the subalgebra described in the
theorem. Since ℓ − 1 is even, the elements ykβ

a(ℓ−1) are in Kn(Z;Z/ℓ) for some
n ≡ 1 (mod 4). Since Kn−1(Z) has no ℓ-torsion by Proposition 10.5, Kn(Z;Z/ℓ) =
Kn(Z)/ℓ. Since 1 ≤ 4k + 1 ≤ 2ℓ − 4, we have n ≡ 4k + 1 6≡ 0 (mod 2ℓ − 2)
and hence Kn(Z) has no ℓ-torsion (combine 10.1 with 2.1.2). Hence the element
ykβ

a(ℓ−1) must come from the Z-summand of Kn(Z[1/ℓ]). �

Examples 10.6.1. When ℓ = 3, the groups Kn = Kn(Z[1/3];Z/3) are 4-
periodic of ranks 1, 1, 0, 1, generated by an appropriate power of β2 ∈ K4 times
one of {1, [3], v}. Here v ∈ K3.

When ℓ = 5, the groups Kn = Kn(Z[1/5];Z/5) are 8-periodic, with respective
ranks 1, 1, 0, 0, 0, 1, 0, 1 (n = 0, ..., 7), generated by an appropriate power of β4 ∈ K8

times one of {1, [5], y1, v}. Here y1 ∈ K5 (x1 is the golden mean) and v ∈ K7.

Torsion for irregular primes

Now suppose that ℓ is an irregular prime, so that Pic(R) has ℓ-torsion for
R = Z[ζ, 1/ℓ]. Then H1

et(R,µℓ) is R×/ℓ ⊕ ℓ Pic(R) and H2
et(R,µℓ)

∼= Pic(R)/ℓ
by Kummer theory and (8.1.1). This yields K∗(R;Z/ℓ) by Example 8.5.

Set P = Pic(R)/ℓ. When ℓ is irregular, the G-module structure of P is not fully
understood; see Vandiver’s conjecture 10.8 below.

Lemma 10.7. For i = 0,−1,−2,−3, P contains no summands isomorphic to
µ⊗i
ℓ , i.e., P [i] = 0.

Proof. The usual transfer argument shows that PG ∼= Pic(Z[1/ℓ])/ℓ = 0.
Hence P contains no summands isomorphic to Z/ℓ. By III.6.9.3, there is a G-
module isomorphism (P ⊗ µℓ) ∼= K2(R)/ℓ. Since K2(R)/ℓ

G ∼= K2(Z[1/ℓ])/ℓ = 0,
(P ⊗ µℓ) has no Z/ℓ summands — and hence P contains no summands isomorphic
to µ⊗−1

ℓ .

Finally, we have (P ⊗µ⊗2
ℓ ) ∼= K4(R)/ℓ and (P ⊗µ⊗3

ℓ ) ∼= K6(R)/ℓ by 8.3. Again,
the transfer argument shows that Kn(R)/ℓ

G ∼= Kn(Z[1/ℓ])/ℓ for n = 4, 6. The
groups K4(Z) and K6(Z) are known to be zero by [Rognes] and [EGS]; see 10.1.3.
It follows that P contains no summands isomorphic to µ⊗−2

ℓ or µ⊗−3
ℓ . �

Vandiver’s conjecture 10.8. If ℓ is an irregular prime then Pic(Z[ζℓ+ ζ−1
ℓ ])

has no ℓ-torsion. Equivalently, the natural representation of G = Gal(Q(ζℓ)/Q) on
Pic(Z[ζℓ])/ℓ is a sum of G-modules µ⊗i

ℓ with i odd.
This means that complex conjugation c acts as multiplication by −1 on the

ℓ-torsion subgroup of Pic(Z[ζℓ])/ℓ, because c is the unique element of G of order 2.

As partial evidence for this conjecture, we mention that Vandiver’s conjecture
has been verified for all primes up to 163 million; see [BH]. We also known from
Lemma 10.7 that µ⊗i

ℓ does not occur as a summand of Pic(R)/ℓ for i = 0,−2.
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Remark 10.8.1. The Herbrand-Ribet theorem [Wash, 6.17–18] states that ℓ|Bk
if and only if (Pic R/ℓ)[ℓ−2k] 6= 0. Among irregular primes < 4000, this happens
for at most 3 values of k. For example, 37|c16 (see 10.3), so (Pic R/ℓ)[5] = Z/37
and (Pic R/ℓ)[k] = 0 for k 6= 5.

Historical Remark 10.8.2. What we now call “Vandiver’s conjecture” was
actually discussed by Kummer and Kronecker in 1849–1853; Harry Vandiver was
not born until 1882 and only started using this assumption circa 1920 (e.g., in
[Van29] and [Van34]), but only retroactively claimed to have conjectured it “about
25 years ago” in the 1946 paper [Van46, p. 576].

In 1849, Kronecker asked if Kummer conjectured that a certain lemma ([Wash,
5.36]) held for all p, and that therefore p never divided h+ (i.e., Vandiver’s conjec-
ture holds). Kummer’s reply [Kum, pp.114–115] pointed out that the Lemma could
not hold for irregular p, and then referred to the assertion [Vandiver’s conjecture]
as the noch zu beweisenden Satz (theorem still to be proven). Kummer also pointed
out some of its consequences. In an 1853 letter (see [Kum, p.123]), Kummer wrote
to Kronecker that in spite of months of effort, the assertion [now called Vandiver’s
conjecture] was still unproven.

For the rest of this paper, we set R = Z[ζℓ, 1/ℓ], and P = Pic(R)/ℓ.

Theorem 10.9. (Kurihara [Kur]) Let ℓ be an irregular prime number. Then
the following are equivalent for every integer k between 1 and ℓ−1

2 :

(1) Pic(Z[ζ])/ℓ[−2k] = 0.
(2) K4k(Z) has no ℓ-torsion;
(3) K2a(ℓ−1)+4k(Z) has no ℓ-torsion for all a ≥ 0;

(4) H2
et(Z[1/ℓ], µ

⊗2k+1
ℓ ) = 0.

In particular, Vandiver’s conjecture for ℓ is equivalent to the assertion that K4k(Z)
has no ℓ-torsion for all k< ℓ−1

2 , and implies that K4k(Z) has no ℓ-torsion for all k.

Proof. By Kummer theory and (8.1.1), P ∼= H2
et(R,µℓ). Hence P ⊗ µ⊗2k

ℓ
∼=

H2
et(R,µ

⊗2k+1
ℓ ) as G-modules. Taking G-invariant subgroups shows that

H2
et(Z[1/ℓ], µ

⊗2k+1
ℓ ) ∼= (P ⊗ µ⊗2k

ℓ )G ∼= P [−2k].

Hence (1) and (4) are equivalent.

By 8.3, K4k(Z)/ℓ ∼= H2
et(Z[1/ℓ], µ

⊗2k+1
ℓ ) for all k > 0. Since µ⊗b

ℓ = µ
⊗a(ℓ−1)+b
ℓ

for all a and b, this shows that (2) and (3) are separately equivalent to (4). �

Theorem 10.10. If Vandiver’s conjecture holds for ℓ then the ℓ-primary torsion
subgroup of K4k−2(Z) is cyclic for all k.

If Vandiver’s conjecture holds for all ℓ, the groups K4k−2(Z) are cyclic for all k.

(We know that the groups K4k−2(Z) are cyclic for all k < 5000, by 10.3.2.)

Proof. Vandiver’s conjecture also implies that each of the “odd” summands
P [1−2k] = P [ℓ−2k] of P is cyclic; see [Wash, 10.15]. Taking the G-invariant sub-

groups of Pic(R)⊗ µ⊗2k−1
ℓ

∼= H2
et(R,µ

⊗2k
ℓ ), yields P [1−2k] ∼= H2

et(Z[1/ℓ], µ
⊗2k
ℓ ). By

Corollary 8.3, this group is the ℓ-torsion in K4k−2(Z[1/ℓ])/ℓ. �
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Remark 10.11. The elements of K2i(Z) of odd order become divisible in the
larger group K2i(Q). (The assertion that an element a is divisible in A means that
for every m there is an element b so that a = mb.) This was proven by Banaszak
and Kolster for i odd (see [Ban, Thm. 2]), and for i even by Banaszak and Gajda
[BaGj, Proof of Prop. 8]. It is an open question whether there are any divisible
elements of even order.

For example, recall from 10.3 that K22(Z) = Z/691 and K30(Z) ∼= Z/3617.
Banaszak observed [Ban] that these groups are divisible in K22(Q) and K30(Q),
i.e., that the inclusions K22(Z) ⊂ K22(Q) and K30(Z) ⊂ K30(Q) do not split.

Let tj (resp., sj) be generators of the summand of Pic(R)/ℓ (resp. K1(R;Z/ℓ))

isomorphic to µ⊗−j
ℓ . The following result follows easily from Examples 8.5 and

10.4.1, using the proof of 10.6, 10.9 and 10.10. It was originally proven in [Mit].

Theorem 10.12. If ℓ is an irregular prime for which Vandiver’s conjecture
holds, then K∗ = K∗(Z;Z/ℓ) is a free module over Z/ℓ[βℓ−1] on 1, v ∈ K2ℓ−3,
the (ℓ − 3)/2 generators yk ∈ K4k+1 described in Theorem 10.6, together with the
generators tjβ

j ∈ K2j and sjβ
j ∈ K2j+1 (j = 3, 5, ..., (ℓ− 8)).

EXERCISES

10.1 Let ℓ be an irregular prime and suppose that Kn(Z) has no ℓ-torsion for some
positive n ≡ 0 (mod 4). Show that K4k(Z) has no ℓ-torsion for every k satisfying
n ≡ 4k (mod 2ℓ− 2).

10.2 Show that Kn(Z) has nonzero 37-torsion for all positive n ≡ 62 (mod 72),
and that Kn(Z) has nonzero 103-torsion for all positive n ≡ 46 (mod 204).

10.3 Give a careful proof of Theorem 10.12, by using Examples 8.5 and 10.4.1 for
Z[ζℓ, 1/ℓ] to modify the proof of Theorem 10.6.

10.4 The Bockstein operation b : Kn(R;Z/ℓ) → Kn+1(R;Z/ℓ) is the boundary
map in the long exact sequence associated to the coefficient sequence 0 → Z/ℓ →
Z/ℓ2 → Z/ℓ → 0. Show that when R = Z the Bockstein sends v to βℓ−1, tj to sj
and tjβ

j to sjβ
j in Theorems 10.6 and 10.12.


