
CHAPTER III

K1 AND K2 OF A RING

Let R be an associative ring with unit. In this chapter, we introduce the classical
definitions of the groupsK1(R) andK2(R). These definitions use only linear algebra
and elementary group theory, as applied to the groups GL(R) and E(R). We also
define relative groups for K1 and K2, as well as the negative K-groups K−n(R)
and the Milnor K-groups KM

n (R).
In the next chapter we will give another definition: Kn(R) = πnK(R) for all

n ≥ 0, where K(R) is a certain topological space built using the category P(R)
of finitely generated projective R-modules. We will then have to prove that these
topologically defined groups agree with the definition of K0(R) in chapter II, as
well as with the classical constructions of K1(R) and K2(R) in this chapter.

§1. The Whitehead Group K1 of a ring

Let R be an associative ring with unit. Identifying each n×n matrix g with the
larger matrix

(
g
0
0
1

)
gives an embedding of GLn(R) into GLn+1(R). The union of

the resulting sequence

GL1(R) ⊂ GL2(R) ⊂ · · · ⊂ GLn(R) ⊂ GLn+1(R) ⊂ · · ·

is called the infinite general linear group GL(R).
Recall that the commutator subgroup [G,G] of a group G is the subgroup gen-

erated by its commutators [g, h] = ghg−1h−1. It is always a normal subgroup of G,
and has a universal property: the quotient G/[G,G] is an abelian group, and every
homomorphism from G to an abelian group factors through G/[G,G].

Definition 1.1. K1(R) is the abelian group GL(R)/[GL(R), GL(R)].

The universal property of K1(R) is this: every homomorphism from GL(R)
to an abelian group must factor through the natural quotient GL(R) → K1(R).
Depending upon our situation, we will sometimes think of K1(R) as an additive
group, and sometimes as a multiplicative group.

A ring map R → S induces a natural map from GL(R) to GL(S), and hence
from K1(R) to K1(S). That is, K1 is a functor from rings to abelian groups.

Example 1.1.1 (SK1). If R happens to be commutative, the determinant of a
matrix provides a group homomorphism from GL(R) onto the group R× of units
of R. It is traditional to write SK1(R) for the kernel of the induced surjection
det:K1(R) → R×. The special linear group SLn(R) is the subgroup of GLn(R)
consisting of matrices with determinant 1, and SL(R) is their union. Since the
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2 III. K1 AND K2 OF A RING

natural inclusion of the units R× inGL(R) asGL1(R) is split by the homomorphism
det:GL(R)→ R×, we see that GL(R) is the semidirect product SL(R)⋊R×, and
there is a direct sum decomposition: K1(R) = R× ⊕ SK1(R).

Example 1.1.2. If F is a field, then K1(F ) = F×. We will see this be-
low (see Lemma 1.2.2 and 1.3.1 below), but it is more fun to deduce this from
an 1899 theorem of L. E. J.Dickson, that SLn(F ) is the commutator subgroup of
both GLn(F ) and SLn(F ), with only two exceptions: GL2(F2) = SL2(F2) ∼= Σ3,
which has order 6, and GL2(F3), which has center {±I} and quotient PGL2(F3) =
GL2(F3)/{±I} isomorphic to Σ4.

Example 1.1.3. If R is the product R′ × R′′ of two rings, then K1(R) =
K1(R

′)⊕K1(R
′′). Indeed, GL(R) is the product GL(R′)×GL(R′′), and the com-

mutator subgroup decomposes accordingly.

Example 1.1.4. For all n, the Morita equivalence between R and S = Mn(R)
(see II.2.7.2) produces an isomorphism between Mmn(R) = EndR(R

m ⊗ Rn) and
Mm(Mn(R)) = EndS(S

m). It is easy to see that the resulting isomorphism of
units GLmn(R) ∼= GLm(Mn(R)) is compatible with stablization in m, giving an
isomorphism GL(R) ∼= GL(Mn(R)). Hence K1(R) ∼= K1(Mn(R)).

We will show that the commutator subgroup of GL(R) is the subgroup E(R)
generated by “elementary” matrices. These are defined as follows.

Definition 1.2. If i 6= j are distinct positive integers and r ∈ R then the
elementary matrix eij(r) is the matrix in GL(R) which has 1 in every diagonal
spot, has r in the (i, j)-spot, and is zero elsewhere.
En(R) denotes the subgroup of GLn(R) generated by all elementary matrices

eij(r) with 1 ≤ i, j ≤ n, and the union E(R) of the En(R) is the subgroup of GL(R)
generated by all elementary matrices.

Example 1.2.1. A signed permutation matrix is one which permutes the stan-
dard basis {ei} up to sign, i.e., it permutes the set {±e1, . . . ,±en}. The following
signed permutation matrix belongs to E2(R):

w̄12 = e12(1)e21(−1)e12(1) =
(

0 1
−1 0

)
.

By changing the subscripts, we see that the signed permutation matrices w̄ij belong
to En(R) for n ≥ i, j. Since the products w̄jkw̄ij correspond to cyclic permutations
of 3 basis elements, every matrix corresponding to an even permutation of basis
elements belongs to En(R). Moreover, if g ∈ GLn(R) then we see by Ex. I.1.11

that E2n(R) contains the matrix
(
g
0

0
g−1

)
.

1.2.2. If we interpret matrices as linear operators on column vectors, then eij(r)
is the elementary row operation of adding r times row j to row i, and En(R) is
the subset of all matrices in GLn(R) which may be reduced to the identity matrix
using only these row operations. The quotient set GLn(R)/En(R) measures the
obstruction to such a reduction.

If F is a field this obstruction is F×, and is measured by the determinant. That
is, En(F ) = SLn(F ) for all n ≥ 1. Indeed, standard linear algebra shows that every
matrix of determinant 1 is a product of elementary matrices.
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Remark 1.2.3 (Surjections). If I is an ideal of R, each homomorphism
En(R) → En(R/I) is onto, because the generators eij(r) of En(R) map onto the
generators eij(r̄) of En(R/I). In contrast, the maps GLn(R) → GLn(R/I) are
usually not onto unless I is a radical ideal (Ex. I.1.12(iv)). Indeed, the obstruction
is measured by the group K0(I) = K0(R, I); see Proposition 2.3 below.

Division rings 1.2.4. The same linear algebra that we invoked for fields shows
that if D is a division ring (a “skew field”) then every invertible matrix may be
reduced to a diagonal matrix diag(r, 1, ..., 1), and that En(D) is a normal subgroup
of GLn(D). Thus each GLn(D)/En(D) is a quotient group of the nonabelian group
D×. Dieudonné proved in 1943 that in fact GLn(D)/En(D) = D×/[D×, D×] for
all n > 1 (except for n = 2 when D = F2). In particular, K1(D) = GLn(D)/En(D)
for all n ≥ 3. A proof of this result is sketched in Exercise 1.2 below.

If D is a d-dimensional division algebra over its center F (which must be a field),
then d = n2 for some integer n, and n is called the Schur index of D. Indeed, there
are (many) field extensions E of F such that D⊗F E ∼=Mn(E); such a field is called
a splitting field for D. For example, any maximal subfield E ⊂ D has [E : F ] = n
and is a splitting field.

For any splitting field E, the inclusion of D in Mn(E), and Mr(D) in Mnr(E),

induces maps D× ⊂ GLn(E)
det−−→ E× and GLr(D) → GLnr(E)

det−−→ E× whose
image lies in the subgroup F× of E×. (If E/F is Galois, the image is fixed by the
Galois group Gal(E/F ) and hence lies in F×.) The induced maps D× → F× and
GLr(D)→ F× are called the reduced norms Nred for D, and are independent of E.
For example, if D = H is the quaternions then F = R, and Nred(t+ ix+ jy+kz) =
t2 + x2 + y2 + z2. It is easy to check here that Nred induces K1(H) ∼= R×

+ ⊂ R×.
Now if A is any central simple F -algebra then A ∼= Mr(D) for some D, and

Mm(A) ∼= Mmr(D). The induced maps Nred : GLm(A) ∼= GLmr(D) → F× are
sometimes called the reduced norm for A, and the kernel of this map is written as
SLm(A). We define SK1(A) to be the kernel of the induced map

Nred:K1(A) ∼= K1(D)→ K1(F ) = F×.

In 1950 S. Wang showed that SK1(D) = 1 if F is a number field. For every real
embedding σ : F →֒ R, D ⊗F R is a matrix algebra over R, C or H; it is called
unramified in case H occurs. The Hasse-Schilling-Maass norm theorem describes
the image of the reduced norm, and hence K1(D):

K1(D)
≃−−−→
Nred

{x ∈ F× : σ(x) > 0 in R for all ramified σ}.

Wang also showed that SK1(D) = 1 if the Schur index of D is squarefree. In 1976
V. Platanov produced the first examples of a D with SK1(D) 6= 1, by constructing
a map from SK1(D) to a subquotient of the Brauer group Br(F ). We will see in
1.7.2 below that the group SK1(D) has exponent n.

Remark 1.2.5. There is no a priori reason to believe that the subgroups En(R)
are normal, except in special cases. For example, we shall show in Ex. 1.3 that if R
has stable range d+1 then En(R) is a normal subgroup of GLn(R) for all n ≥ d+2.
Vaserstein proved [V69] that K1(R) = GLn(R)/En(R) for all n ≥ d+ 2.
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If R is commutative, we can do better: En(R) is a normal subgroup of GLn(R)
for all n ≥ 3. This theorem was proven by A. Suslin in [Su77]; we give Suslin’s
proof in Ex. 1.9. Suslin also gave examples of Dedekind domains for which E2(R)
is not normal in GL2(R) in [Su76]. For noncommutative rings, the En(R) are only
known to be normal for large n, and only then when the ring R has finite stable
range in the sense of Ex. I.1.5; see Ex. 1.3 below.

Commutators 1.3. Here are some easy-to-check formulas for multiplying ele-
mentary matrices. Fixing the indices, we have eij(r)eij(s) = eij(r+s), and eij(−r)
is the inverse of eij(r). The commutator of two elementary matrices is easy to
compute and simple to describe (unless j = k and i = ℓ):

(1.3.1) [eij(r), ekℓ(s)] =





1 if j 6= k and i 6= ℓ

eiℓ(rs) if j = k and i 6= ℓ

ekj(−sr) if j 6= k and i = ℓ.

Recall that a group is called perfect if G = [G,G]. If a subgroupH of G is perfect,
then H ⊆ [G,G]. The group E(R) is perfect, as are most of its finite versions:

Lemma 1.3.2. If n ≥ 3 then En(R) is a perfect group.

Proof. If i, j, k are distinct then eij(r) = [eik(r), ekj(1)].

We know from Example 1.1.2 that E2(R) is not always perfect; in fact E2(F2)
and E2(F3) are solvable groups.

Rather than become enmeshed in technical issues, it is useful to “stabilize” by
increasing the size of the matrices we consider. One technical benefit of stability is
given in Ex. 1.4. The following stability result was proven by J.H.C. Whitehead in
the 1950 paper [Wh50], and in some sense is the origin of K-theory.

Whitehead’s Lemma 1.3.3. E(R) is the commutator subgroup of GL(R).
Hence K1(R) = GL(R)/E(R).

Proof. The commutator subgroup contains E(R) by Lemma 1.3.2. Conversely,
every commutator in GLn(R) can be expressed as a product in GL2n(R):

(1.3.4) [g, h] =

(
g 0
0 g−1

)(
h 0
0 h−1

)(
(hg)−1 0

0 hg

)
.

But we saw in Example 1.2.1 that each of these terms is in E2n(R).

Example 1.3.5. If F is a field then K1(F ) = F×, because we have already
seen that E(R) = SL(R). Similarly, if R is a Euclidean domain such as Z or F [t]
then it is easy to show that SK1(R) = 0 and hence K1(R) = R×; see Ex. 1.5. In
particular, K1(Z) = Z× = {±1} and K1(F [t]) = F×.

To get a feeling for the non-commutative situation, suppose that D is a division
ring. Diedonné’s calculation of GLn(D)/En(D) (described in 1.2.4 and Ex. 1.2)
gives an isomorphism K1(D) ∼= D×/[D×, D×].
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Example 1.3.6. If F is a finite field extension of Q (a number field) and R is
an integrally closed subring of F , then Bass, Milnor and Serre proved in [BMS, 4.3]
that SK1(R) = 0, so that K1(R) ∼= R×. We mention that if R is finitely generated
over Z then, by the Dirichlet Unit Theorem, K1(R) = R× is a finitely generated
abelian group isomorphic to µ(F )⊕ Zs−1, where µ(F ) denotes the cyclic group of
all roots of unity in F and s is the number of “places at infinity” for R.

Example 1.3.7. (Vaserstein) If r, s ∈ R are such that 1 + rs is a unit, then
so is 1 + sr because (1 + sr)(1 − s(1 + rs)−1r) = 1. The subgroup W (R) of R×

generated by the (1+ rs)(1+ sr)−1 belongs to E2(R) by Ex. 1.1. For R =M2(F2),
W (R) = R× ∼= Σ3 and K1(R) = 0 but R× 6= [R×, R×]. The units of the subring T
of upper triangular matrices in M2(F2) is even abelian (T× ∼= Z/2), but K1(T ) = 0
since

(
1
0

1
1

)
= (1 + rs)(1 + sr)−1 for r =

(
1
0

0
0

)
and s =

(
0
0

1
0

)
.

Vaserstein has shown [V04] thatW (R) = [R×, R×] if Λ = R/rad(R) is a product
of matrix rings, none of which is M2(F2), and at most one of the factors in Λ is F2.
In particular, W (R) = [R×, R×] for every local ring R. (See Ex. 1.1.)

Lemma 1.4. If R is a semilocal ring then the natural inclusion of R× = GL1(R)
into GL(R) induces an isomorphism K1(R) ∼= R×/W (R),

If R is a commutative semilocal ring, then

SK1(R) = 0 and K1(R) = R×.

Proof. By Example 1.1.1 (1.3.7 and Ex. 1.2 in the noncommutative case), it
suffices to prove that R× maps onto K1(R). This will follow by induction on n
once we show that GLn(R) = En(R)GLn−1(R). Let J denote the Jacobson radical
of R, so that R/J is a finite product of matrix algebras over division rings. By
examples 1.1.3, 1.1.4 and 1.2.4, (R/J)× maps onto K1(R/J); in fact by Exercise
1.3 we know that every ḡ ∈ GLn(R/J) is a product ēḡ1, where ē ∈ En(R/J) and
ḡ1 ∈ GL1(R/J).

Given g ∈ GLn(R), its reduction ḡ in GLn(R/J) may be decomposed as above:
ḡ = ēḡ1. By Remark 1.2.3, we can lift ē to an element e ∈ En(R). The matrix
e−1g is congruent to the diagonal matrix ḡ1 modulo J , so its diagonal entries are
all units and its off-diagonal entries lie in J . Using elementary row operations
eij(r) with r ∈ J , it is an easy matter to reduce e−1g to a diagonal matrix, say to
D = diag(r1, ..., rn). By Ex. I.1.11, the matrix diag(1, ..., 1, rn, r

−1
n ) is in En(R).

Multiplying D by this matrix yields a matrix in GLn−1(R), finishing the induction
and the proof.

Commutative Banach Algebras

Let R be a commutative Banach algebra over the real or complex numbers. For
example, R could be the ring RX of continuous real-valued functions of a compact
space X. As subspaces of the metric space of n × n matrices over R, the groups
SLn(R) and GLn(R) are topological groups.

Proposition 1.5. En(R) is the path component of the identity matrix in the
special linear group SLn(R), n ≥ 2. Hence we may identify the group SK1(R) with
the group π0SL(R) of path components of the topological space SL(R).
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Proof. To see that En(R) is path-connected, fix an element g =
∏
eiαjα(rα).

The formula t 7→∏
eiαjα(rαt), 0 ≤ t ≤ 1 defines a path in En(R) from the identity

to g. To prove that En(R) is open subset of SLn(R) (and hence a path-component),
it suffices to prove that En(R) contains Un−1, the set of matrices 1+(rij) in SLn(R)
with ||rij || < 1

n−1 for all i, j. We will actually show that each matrix in Un−1 can

be expressed naturally as a product of n2 + 5n − 6 elementary matrices, each of
which depends continuously upon the entries rij ∈ R.

Set u = 1 + r11. Since n−2
n−1 < ||u||, u has an inverse v with ||v|| < n−1

n−2 .

Subtracting vr1j times the first column from the jth we obtain a matrix 1 + r′ij
whose first row is (u, 0, ..., 0) and

||r′ij || <
1

n− 1
+
n− 1

n− 2

(
1

n− 1

)2

=
1

n− 2
.

We can continue to clear out entries in this way so that after n(n− 1) elementary
operations we have reduced the matrix to diagonal form.

By Ex. I.1.10, any diagonal matrix
(
u
0

0
u−1

)
is the product of 6 elementary ma-

trices. By induction, it follows that any diagonal n × n matrix of determinant 1
can be written naturally as a product of 6(n− 1) elementary matrices.

Let V denote the path component of 1 in the topological group R×, i.e., the
kernel of R× → π0R

×. By Ex. 1.12, V is a quotient of the additive group R.

Corollary 1.5.1. If R is a commutative Banach algebra, there is a natural
surjection from K1(R) onto π0GL(R) = π0(R

×) × π0SL(R). The kernel of this
map is the divisible subgroup V of R×.

Example 1.5.2. If R = R then K1(R) = R× maps onto π0GL(R) = {±1}, and
the kernel is the uniquely divisible multiplicative group V = (0,∞). If R = C then
V = C×, because K1(C) = C× but π0GL(C) = 0.

Example 1.5.3. Let X be a compact space with a nondegenerate basepoint.
Then SK1(R

X) is the group π0SL(R
X) = [X,SL(R)] = [X,SO] of homotopy

classes of maps from X to the infinite special orthogonal group SO. By Ex. II.3.11
we have π0GL(R

X) = [X,O] = KO−1(X), and there is a short exact sequence

0→ RX
exp−−→ K1(R

X)→ KO−1(X)→ 0.

Similarly, SK1(C
X) is the group π0SL(C

X) = [X,SL(C)] = [X,SU ] of ho-
motopy classes of maps from X to the infinite special unitary group SU . Since
π0GL(C

X) = [X,U ] = KU−1(X) by II.3.5.1 and Ex. II.3.11, there is a natural
surjection from K1(C

X) onto KU−1(X), and the kernel V is the divisible group of
all contractible maps X → C×.

Example 1.5.4. When X is the circle S1 we have SK1(R
S1

) = [S1, SO] =

π1SO = Z/2. On the other hand, we have π0SL2(R
S1

) = π1SL2(R) = π1SO2 = Z,

generated by the matrix A =
(

cos θ
− sin θ

sin θ
cos θ

)
. Since π1SO2(R) → π1SO is onto, the

matrix A represents the nonzero element of SK1(R
S1

).

The ring R = R[x, y]/(x2 + y2 − 1) may be embedded in the ring RS
1

by x 7→
cos(θ), y 7→ sin(θ). Since the matrix

(
x
−y

y
x

)
maps to A, it represents a nontrivial
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element of SK1(R). In fact it is not difficult to show that SK1(R) ∼= Z/2 using
Mennicke symbols (Ex. 1.10).

K1 and projective modules

Now let P be a finitely generated projective R-module. Choosing an isomorphism
P ⊕ Q ∼= Rn gives a group homomorphism from Aut(P ) to GLn(R). (Send α to
α⊕ 1Q.)

Lemma 1.6. The homomorphism from Aut(P ) to GL(R) =
⋃
GLn(R) is well-

defined up to inner automorphism of GL(R). Hence there is a well-defined homo-
morphism Aut(P )→ K1(R).

Proof. First suppose that Q and n are fixed. Two different isomorphisms
between P ⊕Q and Rn must differ by an automorphism of Rn, i.e., by an element
g ∈ GLn(R). Thus if α ∈ Aut(P ) maps to the matrices A and B, respectively,
we must have A = gBg−1. Next we observe that there is no harm in stabilizing,
i.e., replacing Q by Q ⊕ Rm and P ⊕ Q ∼= Rn by P ⊕ (Q ⊕ Rm) ∼= Rn+m. This
is because GLn(R) → GL(R) factors through GLn+m(R). Finally, suppose given
a second isomorphism P ⊕ Q′ ∼= Rm. Since Q ⊕ Rm ∼= Rn ⊕ Q′, we may stabilize
both Q and Q′ to make them isomorphic, and invoke the above argument.

Corollary 1.6.1. If R and S are rings, there is a natural external product
operation K0(R)⊗K1(S)→ K1(R⊗ S).

If R is commutative and S is an R-algebra, there is a natural product operation
K0(R)⊗K1(S)→ K1(S), making K1(S) into a module over the ring K0(R).

Proof. For each finitely generated projective R-module P and each m, Lemma
1.6 provides a homomorphism Aut(P ⊗ Sm)→ K1(R⊗ S). For each β ∈ GLm(S),
let [P ] ·β denote the image of the automorphism 1P ⊗β of P ⊗Sm under this map.
Fixing β and m, the isomorphism (P ⊕P ′)⊗Sm ∼= (P ⊗Sm)⊕ (P ′⊗Sm) yields the
identity [P ⊕P ′] ·β = [P ] ·β+[P ′] ·β in K1(R⊗S). Hence P 7→ [P ] ·β is an additive
function of P ∈ P(R), so (by definition) it factors through K0(R). Now fix P ; the
map GLm(S) → K1(R ⊗ S) given by β 7→ [P ] · β is compatible with stabilization
in m. Thus it factors through a map GL(S) → K1(R ⊗ S), and through a map
K1(S)→ K1(R⊗ S). This shows that the product is well-defined and bilinear.

When R is commutative, K0(R) is a ring by II, §2. If S is an R-algebra, there is
a ring map R⊗S → S. Composing the external product with K1(R⊗S)→ K1(S)
yields a natural product operation K0(R)⊗K1(S)→ K1(S). The verification that
[P ⊗R Q] · β = [P ] · ([Q] · β) is routine.

Here is a homological interpretation of K1(R). Recall that the first homology
H1(G;Z) of any group G is naturally isomorphic to G/[G,G]. (See [WHomo, 6.1.11]
for a proof.) For G = GL(R) this yields

(1.6.2) K1(R) = H1(GL(R);Z) = lim
n→∞

H1(GLn(R);Z).

By Lemma 1.6, we also have well-defined compositions

H1(Aut(P );Z)→ H1(GLn(R);Z)→ K1(R),

which are independent of the choice of isomorphism P ⊕Q ∼= Rn.



8 III. K1 AND K2 OF A RING

Here is another description of K1(R) in terms of the category P(R) of finitely
generated projective R-modules. Consider the translation category tP of P(R):
its objects are isomorphism classes of finitely generated projective modules, and
the morphisms between P and P ′ are the isomorphism classes of Q such that
P ⊕Q ∼= P ′. This is a filtering category [WHomo, 2.6.13], and P 7→ H1(Aut(P );Z)
is a well-defined functor from tP to abelian groups. Hence we can take the filtered
direct limit of this functor. Since the free modules are cofinal in tP, we see from
(1.6.2) that we have

Corollary 1.6.3 (Bass). K1(R) ∼= lim−→P∈tPH1(Aut(P );Z).

Recall from II.2.7 that if two rings R and S are Morita equivalent then the
categories P(R) and P(S) are equivalent. By Corollary 1.6.3 we have the following:

Proposition 1.6.4 (Morita invariance of K1). The group K1(R) depends
only upon the category P(R). That is, if R and S are Morita equivalent rings then
K1(R) ∼= K1(S). In particular, the isomorphism of 1.1.4 arises in this way:

K1(R) ∼= K1(Mn(R)).

Transfer maps

Let f :R → S be a ring homomorphism. We will see later on that a transfer
homomorphism f∗:K1(S) → K1(R) is defined whenever S has a finite R-module
resolution by finitely generated projective R-modules. This construction requires
a definition of K1 for an exact category such as H(R), and is analogous to the
transfer map in II(7.9.1) for K0. Without this machinery, we can still construct
the transfer map when S is finitely generated projective as an R-module, using the
forgetful functor P(S)→ P(R); this is the analogue of the method used for the K0

transfer map in example II.2.8.1.

Lemma 1.7. Any additive functor T : P(S) → P(R) induces a natural homo-
morphism K1(T ):K1(S)→ K1(R), and T1⊕T2 induces the sum K1(T1)+K1(T2).

Proof. The functor T induces an evident functor tP(S) → tP(R). If P is a
finitely generated projective S-module, T also induces a homomorphism AutS(P )→
AutR(TP ) and hence H1(AutS(P );Z)→ H1(AutR(TP );Z). As P varies, these as-
semble to give a natural transformation of functors from the translation category
tP(S) to abelian groups. Since K1(S) = lim−→P∈P(S)H1(AutS(P );Z) by Corollary

1.6.3, taking the direct limit over tP(S) yields the desired map

K1(S)→ lim−→
P∈P(S)

H1(AutR(P );Z)→ lim−→
Q∈P(R)

H1(AutR(Q);Z) = K1(R).

Corollary 1.7.1. Suppose that S is finitely generated projective as an R-
module. Then the forgetful functor P(S)→ P(R) induces a natural transfer homo-
morphism f∗:K1(S)→ K1(R). If R is commutative, the composite

K1(R)
f∗

−→ K1(S)
f∗−→ K1(R)

is multiplication by [S] ∈ K0(R).
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Proof. When T is the forgetful map, so that K1(S) → K1(R) is the transfer
map f∗, we compute the composite f∗f

∗, by computing its effect upon an element
α ∈ GLn(R). The matrix f∗(α) = 1S⊗Rα lies in GLn(S). To apply f∗ we consider
1S ⊗R α as an element of the group AutR(S

n) = AutR(S ⊗R Rn), which we then
map into GL(R). But this is just the product [S] · α of 1.6.1.

When j : F → E is a finite field extension, it is easy to see from 1.1.2 that the
transfer map j∗ : E× → F× is the classical norm map. For this reason, the transfer
map is sometimes called the norm map.

Example 1.7.2. Let D be a division algebra of dimension d = n2 over its center
F , and recall from 1.2.4 that SK1(D) is the kernel of the reduced norm Nred. We
will show that SK1(D) has exponent n by showing that i∗Nred : K1(D)→ K1(D)
is multiplication by n.

To see this, choose a maximal subfield E with inclusions F
j−→ E

σ−→ D. By
the definition of Nred, composing it with j∗ : F× ⊂ E× yields the transfer map
σ∗ : K1(D) → K1(E). Therefore, i∗Nred = σ∗j∗Nred = σ∗σ∗. Hence it suffices to
show that σ∗σ∗ : K1(D)→ K1(D) is multiplication by n. By 1.7, σ∗σ∗ is induced
by the additive self-map T :M 7→M ⊗D (D ⊗E D) of P(D). Since D ⊗E D ∼= Dn

as a D-bimodule, T (M) ∼=Mn and the assertion follows from 1.7.
The transfer map i∗ : K1(D)→ K1(F ) associated to i : F ⊂ D is induced from

the classical norm map ND/F : D× ⊂ GLd(F ) → F×. In fact, the norm map is n

times the reduced norm Nred : D× → F× of 1.2.4; see Ex. 1.16 below. Moreover,
the composition i∗i∗ : K1(D) → K1(D) is multiplication by d since it corresponds
to the additive self-map M 7→ M ⊗D (D ⊗F D) of P(D), and D ⊗F D ∼= Dd as a
D-bimodule (see II.2.8.1).

Corollary 1.7.3. K1(R) = 0 for every flasque ring R.

Proof. Recall from II.2.1.3 that a ring R is flasque if there is an additive self-
functor T (P 7→ P ⊗R M) on P(R) together with a natural transformation θP :
P ⊕T (P ) ∼= T (P ). By 1.7, the induced self-map on K1(R) satisfies x+T (x) = T (x)
(and hence x = 0) for all x ∈ K1(R).

Here is an application of 1.7 that anticipates the higher K-theory groups with
coefficients in chapter IV.

Definition 1.7.4. For each natural number m, we define K1(R;Z/m) to be the
relative group K0(·m) of II.2.10, where ·m is the endo-functor of P(R) sending P
to Pm = P ⊗R Rm. Since the Pm are cofinal, we see by Ex. II.2.15 and Ex. 1.14,
that it fits into a universal coefficient sequence:

K1(R)
m−→ K1(R)→ K1(R;Z/m)→ K0(R)

m−→ K0(R).

Example 1.8 (Whitehead group Wh1). If R is the group ring Z[G] of a
group G, the (first) Whitehead group Wh1(G) is the quotient of K1(Z[G]) by the
subgroup generated by ±1 and the elements of G, considered as elements of GL1. If
G is abelian, then Z[G] is a commutative ring and ±G is a subgroup of K1(Z[G]), so
by 1.3.4 we have Wh1(G) = (Z[G]×)/±G⊕SK1(Z[G]). If G is finite then Wh1(G)
is a finitely generated group whose rank is r − q, where r and q are the number of
simple factors in R[G] and Q[G], respectively. This and other calculations related
to Wh1(G) may be found in R. Oliver’s excellent sourcebook [Oliver].
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The groupWh1(G) arose in Whitehead’s 1950 study [Wh50] of simple homotopy
types. Two finite CW complexes have the same simple homotopy type if they are
connected by a finite sequence of “elementary expansions and collapses.” Given
a homotopy equivalence f :K → L of complexes with fundamental group G, the
torsion of f is an element τ(f) ∈Wh1(G). Whitehead proved that τ(f) = 0 if and
only if f is a simple homotopy equivalence, and that every element of Wh1(G) is
the torsion of some f . An excellent source for the geometry behind this is [Cohen].

Example 1.9 (The s-Cobordism Theorem). Here is another area of geo-
metric topology in which Whitehead torsion has played a crucial role, piecewise-
linear (“PL”) topology. We say that a triple (W,M,M ′) of compact PL man-
ifolds is an h-cobordism if the boundary of W is the disjoint union of M and
M ′, and both inclusions M ⊂ W , M ′ ⊂ W are homotopy equivalences. In
this case we can define the torsion τ of M ⊂ W , as an element of Wh1(G),
G = π1M . The s-cobordism theorem states that if M is fixed with dim(M) ≥ 5
then (W,M,M ′) ∼= (M × [0, 1],M × 0,M × 1) if and only if τ = 0. Moreover, every
element of Wh1(G) arises as the torsion of some h-cobordism (W,M,M ′).

Here is an application. Suppose given an h-cobordism (W,M,M ′), and let N be
the union of W , the cone on M and the cone on M ′. Then N is PL homeomorphic
to the suspension ΣM of M if and only if (W,M,M ′) ∼= (M × [0, 1],M × 0,M × 1)
if and only if τ = 0.

This gives a counterexample to the “Hauptvermutung” that two homeomorphic
complexes would be PL homeomorphic. Indeed, if (W,M,M ′) is an h-cobordism
with nonzero torsion, then N and ΣM cannot be PL homeomorphic, yet the theory
of “engulfing” implies that they must be homeomorphic manifolds.

Another application, due to Smale, is the Generalized Poincaré Conjecture. Let
N be an n-dimensional PL manifold of the homotopy type of the sphere Sn, n ≥ 5.
Then N is PL homeomorphic to Sn. To see this, let W be obtained by removing
two small disjoint n-discs D1, D2 from N . The boundary of these discs is the
boundary of W , and (W,Sn−1, Sn−1) is an h-cobordism. Its torsion must be zero
since π1(S

n−1) = 0 and Wh1(0) = 0. Hence W is Sn−1 × [0, 1], and this implies
that N =W ∪D1 ∪D2 is Sn.

EXERCISES

1.1 If r, s, t ∈ R are such that (1+ rs)t = 1, show that (1+ rs)(1+ sr)−1 ∈ E2(R).
Hint: Start by calculating e12(r + rsr)e21(st+ s)e12(−r)e21(−s).

If r is a unit of R, or if r, s ∈ rad(R), show that (1 + rs)(1 + sr)−1 ∈ [R×, R×].
Conclude that if R is a local ring then W (R) = [R×, R×]. Hint: If r, s ∈ rad(R),
then t = 1 + s− sr is a unit; compute [t−1 + r, t] and (1 + rs)(1 + r).

1.2 Semilocal rings. Let R be a noncommutative semilocal ring (Ex. II.2.6). Show
that there exists a unique “determinant” map from GLn(R) onto the abelian group
R×/W (R) of Lemma 1.4 with the following properties: (i) det(e) = 1 for every
elementary matrix e, and (ii) If ρ = diag(r, 1, ..., 1) and g ∈ GLn(R) then det(ρ·g) =
r · det(g). Then show that det is a group homomorphism: det(gh) = det(g) det(h).
Conclude that K1(R) ∼= R×/W (R).

1.3 Suppose that a ring R has stable range sr(R) = d+ 1 in the sense of Ex. I.1.5.
(For example, R could be a d-dimensional commutative noetherian ring.) This
condition describes the action of Ed+2(R) on unimodular rows in Rd+2.
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(a) Show that GLn(R) = GLd+1(R)En(R) for all n > d + 1, and deduce that
GLd+1(R) maps onto K1(R).

(b) Show that En(R) is a normal subgroup of GLn(R) for all n ≥ d+ 2. Hint:
Conjugate enj(r) by g ∈ GLd+2(R).

1.4 Let R be the polynomial ring F [x, y] over a field F . P.M. Cohn proved that the

matrix g =

(
1 + xy x2

−y2 1− xy

)
is not in E2(R). Show that g ∈ E3(R) ∩GL2(R).

1.5 Let R be a Euclidean domain, such as Z or the polynomial ring F [t] over a
field. Show that En(R) = SLn(R) for all n, and hence that SK1(R) = 0.

1.6 Here is another interpretation of the group law for K1. For each m,n, let ⊕mn
denote the group homomorphism GLm(R)×GLn(R)→ GLm+n(R) sending (α, β)

to the block diagonal matrix
(
α 0
0 β

)
. Show that inK1(R) we have [α⊕mnβ] = [α][β].

1.7 Let E = EndR(R
∞) be the ring of infinite row-finite matrices over R of Ex. I.1.7.

Show that K1(E) = 0. Hint: If α ∈ GLn(E), form the block diagonal matrix
α∞ = diag(α, α, . . . ) in Aut(V ) ∼= GL(E), where V is an infinite sum of copies of
(R∞)n, and show that α⊕ α∞ is conjugate to α∞.

1.8 In this exercise we show that the center of E(R) is trivial. First show that any
matrix in GLn(R) commuting with En(R) must be a diagonal matrix diag(r, ..., r)
with r in the center of R. Conclude that no element in En−1(R) is in the center of
En(R), and pass to the limit as n→∞.

1.9 In this exercise we suppose that R is a commutative ring, and give Suslin’s
proof that En(R) is a normal subgroup of GLn(R) when n ≥ 3. Let v =

∑n
i=1 viei

be a column vector, and let u,w be row vectors such that u · v = 1 and w · v = 0.
(a) Show that w =

∑
i<j rij(vjei − viej), where rij = wiuj − wjui.

(b) Conclude that the matrix In + (v · w) is in En(R) if n ≥ 3.
(c) If g ∈ GLn(R) and i < j, let v be the ith column of g and w the jth row of

g−1, so that w · v = 0. Show that geij(r)g
−1 = In + (v · rw) for all r ∈ R. By

(b), this proves that En(R) is normal.

1.10 Mennicke symbols. Let (r, s) be a unimodular row over a commutative ring R.
We define the Mennicke symbol

[
s
r

]
to be the class in SK1(R) of the matrix

(
r
t
s
u

)
,

where t, u ∈ R satisfy ru− st = 1. Show that this Mennicke symbol is independent

of the choice of t and u, that
[
r
s

]
=

[
s
r

]
,
[
s
r

][
s′

r

]
=

[
ss′

r

]
and

[
s
r

]
=

[
s+xr
r

]
.

If R is noetherian of dimension 1, or more generally has sr(R) ≤ 2, then we
know by Ex. 1.3 that GL2(R) maps onto K1(R), and hence SK1(R) is generated
by Mennicke symbols.

1.11 Transfer. Suppose that R is a Dedekind domain and p is a prime ideal of
R. Show that there is a map π∗ from K1(R/p) = (R/p)× to SK1(R) sending
s̄ ∈ (R/p)× to the Mennicke symbol

[
s
r

]
, where s ∈ R maps to s̄ and r ∈ R is an

element of p − p2 relatively prime to s. Another construction of the transfer map
π∗ will be given in chapter V.

1.12 If R is a commutative Banach algebra, let exp(R) denote the image of the
exponential map R→ R×. Show that exp(R) is the path component of 1 in R×.

1.13 If H is a normal subgroup of a group G, then G acts upon H and hence
its homology H∗(H;Z) by conjugation. Since H always acts trivially upon its
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homology [WHomo, 6.7.8]), the group G/H acts uponH∗(H;Z). TakingH = E(R)
and G = GL(R), use Example 1.2.1 to show that GL(R) and K1(R) act trivially
upon the homology of E(R).

1.14 (Swan) Let T : P(R)→ P(S) be an additive functor, such as the base change
f∗ associated to a ring map f : R → S. In II.2.10 we constructed a relative group
K0(T ). Since K0(T ) is abelian, we can concatenate the K1 map of lemma 1.7 to
(II.2.10.2) to get a sequence which is exact at K0(T ) and (if T is cofinal) at K0(R):

K1(R)
T−→ K1(S)→ K0(T )→ K0(R)

T−→ K0(S).

In this exercise, we show that the sequence is also exact at K1(S).
(a) We say that (P, α,Q) ∼ (P ′, α′, Q′) if there are N,N ′ ∈ P(R) and a commu-

tator γ in AutS T (Q⊕N) so that (P ⊕N, γ(α⊕ 1), Q⊕N) is isomorphic to
(P ′ ⊕N ′, α′ ⊕ 1, Q′ ⊕N ′) in P(T ). Show that ∼ is an equivalence relation.

(b) Show that the equivalence classes under ∼ form an abelian group under ⊕.
(c) If (P, α,Q) ∼ (P ′, α′, Q′), show that [(P, α,Q)] ∼= [(P ′, α′, Q′)] in K0(T ).
(d) If [(P, α,Q)] ∼= [(P ′, α′, Q′)] in K0(T ), show that (P, α,Q) ∼ (P ′, α′, Q′).

Hint: Show that the relations for K0(T ) hold in the group of (b). To do so,
write P ∼= P ′⊕P ′′ and Q ∼= Q′⊕Q′′ in the exact sequence II(2.10.1) in P(T ).

(e) Use (d) to show that if α ∈ AutS T (R
n) and [(Rn, α,Rn)] = 0 in K0(T ) then

(after increasing n) there is an isomorphism (p, q) : (Rn, α,Rn) ∼= (Rn, γ, Rn)
in P(T ). Conclude that [α] is the image of [q−1p] ∈ K1(R), proving exactness
of the sequence at K1(S).

1.15 Suspension rings. Let R be any ring. Recall from Ex. I.1.8 that the cone ring
C(R) is the ring of row-and-column-finite matrices over R. The finite matrices in
C(R) form a 2-sided idealM(R), and the quotient S(R) = C(R)/M(R) is called the
suspension ring of R. Use exercise 1.14 and 1.7.3, together with II.2.1.3 and II.2.7.2
to show that K1S(R) ∼= K0(R).

1.16 Let D be a division algebra of dimension d = n2 over its center F . Show that
the norm (or transfer) map K1(D) → K1(F ) is n times the reduced norm Nred

of 1.2.4. Hint: Choose a maximal subfield E and show that the map K1(D) →
K1(E) induced by the norm is induced by the additive map M 7→M ⊗D (D⊗F E)
from P(D) to P(D). Then show that D ⊗F E ∼= Dn as a D-E bimodule.

1.17 Let D be a division algebra, finite dimensional over its center F , and let E be
any finite extension of F which is a splitting field of D, i.e., E ⊗F D ∼=Mn(E).

(a) Show that the following three maps θE : K1(E)→ K1(D) agree.

(i) K1(E) ∼= K1(Mn(E)) = K1(E ⊗F D)
transfer−−−−−→ K1(D);

(ii) K1(E)→ K1(Mr(D)) ∼= K1(D), where E ⊂Mr(D);
(iii) K1(T ), where T : P(E) → P(D) is T (M) = M ⊗E V for a simple

E ⊗F D-module V .
(b) If j : E → L is a finite field map over F , show that θE = θLj∗.
(c) If σ ∈ Aut(E/F ), then θE = θEσ.

1.18 If A is any finite-dimensional semisimple algebra over a field with center C,
construct a reduced norm A× → C× and define SLn(A) to be the kernel of the
reduced norm GLn(A) → C×. Show that the kernel SK1(A) of the induced map
K1(A)→ C× is isomorphic to SLn(A)/En(A) for all n ≥ 3.
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§2. Relative K1

Let I be an ideal in a ring R. We write GL(I) for the kernel of the natural map
GL(R)→ GL(R/I); the notation reflects the fact that GL(I) is independent of R
(see Ex. I.1.10). In addition, we define E(R, I) to be the smallest normal subgroup
of E(R) containing the elementary matrices eij(x) with x ∈ I. More generally, for
each n we define En(R, I) to be the normal subgroup of En(R) generated by the
matrices eij(x) with x ∈ I and 1 ≤ i 6= j ≤ n. Clearly E(R, I) is the union of the
subgroups En(R, I).

Relative Whitehead Lemma 2.1. E(R, I) is a normal subgroup of GL(I),
and contains the commutator subgroup of GL(I).

Proof. For any matrix g = 1 + α ∈ GLn(I), the identity

(
g 0
0 g−1

)
=

(
1 1
0 1

)(
1 0
α 1

)(
1 −1
0 1

)(
1 g−1α
0 1

)(
1 0
−gα 1

)
.

shows that the matrix
(
g
0

0
g−1

)
is in E2n(R, I). (The product of the first 3 matrices

is in E2n(R, I).) Hence if h ∈ En(R, I) then the conjugate

(
ghg−1 0

0 1

)
=

(
g 0
0 g−1

)(
h 0
0 1

)(
g−1 0
0 g

)

is in E(R, I). Finally, if g, h ∈ GLn(I) then [g, h] is in E2n(R, I) by equation (1.3.4).

Definition 2.2. The relative group K1(R, I) is defined to be the quotient
GL(I)/E(R, I). By the Relative Whitehead Lemma, it is an abelian group.

The inclusion of GL(I) in GL(R) induces a map K1(R, I) → K1(R). More
generally, if R→ S is a ring map sending I into an ideal I ′ of S, the natural maps
GL(I)→ GL(I ′) and E(R)→ E(S) induce a map K1(R, I)→ K1(S, I

′).

Remark 2.2.1. Suppose that R → S is a ring map sending an ideal I of R
isomorphically onto an ideal of S. The induced map K1(R, I) → K1(S, I) must
be a surjection, as both groups are quotients of GL(I). However, Swan discovered
that they need not be isomorphic; a simple example is given in Ex. 2.3 below.

Vaserstein proved in [V76, 14.2] that K1(R, I) is independent of R if and only if
I = I2. One direction is easy (Ex. 2.10): if I = I2 then the commutator subgroup
of GL(I) is perfect, and equal to E(R, I). Thus K1(R, I) = GL(I)/[GL(I), GL(I)],
a group which is independent of R. (Cf. Ex. 2.6 when R is commutative.)

Proposition 2.3. There is an exact sequence

K1(R, I)→ K1(R)→ K1(R/I)
∂−→ K0(I)→ K0(R)→ K0(R/I).

Proof. By Ex. II.2.3 there is an exact sequence

1→ GL(I)→ GL(R)→ GL(R/I)
∂−→ K0(I)→ K0(R)→ K0(R/I).
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Since the K1 groups are quotients of the GL groups, and E(R) maps onto E(R/I),
this gives exactness except at K1(R). Suppose g ∈ GL(R) maps to zero under
GL(R) → K1(R) → K1(R/I). Then the reduction ḡ of g mod I is in E(R/I).
Since E(R) maps onto E(R/I), there is a matrix e ∈ E(R) mapping to ḡ, i.e.,
ge−1 is in the kernel GL(I) of GL(R) → GL(R/I). Hence the class of ge−1 in
K1(R, I) is defined, and maps to the class of g in K1(R). This proves exactness at
the remaining spot.

The relative group SK1(R, I)

If R happens to be commutative, the determinant map K1(R)→ R× of Example
1.1.1 induces a relative determinant map det:K1(R, I)→ GL1(I), since the deter-
minant of a matrix in GL(I) is congruent to 1 modulo I. It is traditional to write
SK1(R, I) for the kernel of det, so the canonical map GL1(I)→ K1(R, I) induces
a direct sum decomposition K1(R, I) = GL1(I) ⊕ SK1(R, I) compatible with the
decomposition K1(R) = R× ⊕ SK1(R) of Example 1.1.1. Here are two important
cases in which SK1(R, I) vanishes:

Lemma 2.4. Let I be a radical ideal in R. Then:

(1) K1(R, I) is a quotient of the multiplicative group 1 + I = GL1(I).
(2) If R is a commutative ring, then SK1(R, I) = 0 and K1(R, I) = 1 + I.

Proof. As in the proof of Lemma 1.4, it suffices to show that GLn(I) =
En(R, I)GLn−1(I) for n ≥ 2. If (xij) is a matrix in GLn(I) then xnn is a unit
of R, and for i < n the entries xin, xni are in I. Multiplying by the diagonal matrix
diag(1, . . . , 1, xnn, x

−1
nn), we may assume that xnn = 1. Now multiplying on the left

by the matrices ein(−xin) and on the right by eni(−xni) reduces the matrix to one
in GLn−1(I).

The next theorem (and its variant) extends the calculation mentioned in Exam-
ple 1.3.6 above. We cite them from [BMS, 4.3], mentioning only that their proof
involves calculations with Mennicke symbols (see Ex. 1.10 and 2.5) for finitely gen-
erated R, i.e., Dedekind rings of arithmetic type.

Bass-Milnor-Serre Theorem 2.5. Let R be an integrally closed subring of a
number field F , and I an ideal of R. Then

(1) If F has any embedding into R then SK1(R, I) = 0.
(2) If F is “totally imaginary” (has no embedding into R), then SK1(R, I) ∼= Cn

is a finite cyclic group whose order n divides the order w1 of the group
of roots of unity in R. The exponent ordp n of p in the integer n is the
minimum over all prime ideals p of R containing I of the integer

inf

{
ordp w1, sup{0,

[
ordp(I)

ordp(p)
− 1

p− 1

]}

Variant 2.5.1. Let R be the coordinate ring of a smooth affine curve over a
finite field. Then SK1(R) = 0.

The Mayer-Vietoris Exact Sequence
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Suppose we are given a ring map f :R→ S and an ideal I of R mapped isomor-
phically into an ideal of S. Then we have a Milnor square of rings, as in I.2:

R
f−→ S

y
y

R/I
f̄−→ S/I

Theorem 2.6 (Mayer-Vietoris). Given a Milnor square as above, there is
an exact sequence

K1(R)
∆−→ K1(S)⊕K1(R/I)→K1(S/I)

∂−→ K0(R)
∆−→ K0(S)⊕K0(R/I)

±−→ K0(S/I).

Proof. By Theorem II.2.9 we have an exact sequence

GL(S/I)
∂−→ K0(R)

∆−→ K0(S)⊕K0(R/I)
±−→ K0(S/I).

Since K0(R) is abelian, we may replace GL(S/I) by K1(S/I) in this sequence. This
gives the sequence of the Theorem, and exactness at all the K0 places. Also by
II.2.9, the image of ∂:K1(S/I)→ K0(R) is the double coset space

GL(S)\GL(S/I)/GL(R/I).

Note that E(S) → E(S/I) is onto. Therefore the kernel of ∂ is the subgroup of
K1(S/I) generated by the images of GL(S) and GL(R/I), and the sequence is exact
at K1(S/I). To prove exactness at the final spot, suppose given ḡ ∈ GLn(R/I),
h ∈ GLn(S) and an elementary matrix ē ∈ E(S/I) such that f̄(ḡ)ē ≡ h (mod I).
Lifting ē to an e ∈ En(S) (by Remark 1.2.3) yields f̄(ḡ) ≡ he−1 (mod I). Since
R is the pullback of S and R/I, there is a g ∈ GLn(R), equivalent to ḡ modulo I,
such that f(g) = he−1. This establishes exactness at the final spot.

EXERCISES

2.1 Suppose we are given a Milnor square in which R and S are commutative rings.
Using the Units-Pic sequence (I.3.10), conclude that there are exact sequences

SK1(R, I)→ SK1(R)→ SK1(R/I)
∂−→ SK0(I)→ SK0(R)→ SK0(R/I),

SK1(R)→ SK1(S)⊕SK1(R/I)
∂−→ SK0(R)→ SK0(S)⊕SK0(R/I)→ SK0(S/I).

2.2 Rim Squares. Let Cp be a cyclic group of prime order p with generator t, and

let ζ = e2πi/p. The ring Z[ζ] is the integral closure of Z in the number field Q(ζ).
Let f :ZCp → Z[ζ] be the ring surjection sending t to ζ, and let I denote the kernel
of the augmentation ZCp → Z.
(a) Show that I is isomorphic to the ideal of Z[ζ] generated by ζ − 1, so that we

have a Milnor square with the rings ZCp, Z[ζ], Z and Fp.
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(b) Show that for each k = 1, ..., p−1 the element (ζk−1)/(ζ−1) = 1+ · · ·+ζk−1

is a unit of Z[ζ], mapping onto k ∈ F×
p .

These elements are often called cyclotomic units, and generate a subgroup of finite
index in Z[ζ]×. If p ≥ 3, the Dirichlet Unit Theorem says that the units of Z[ζ]
split as the direct sum of the finite group {±ζk} of order 2p (p 6= 2) and a free
abelian group of rank (p− 3)/2.
(c) Conclude that if p > 3 then both K1(ZCp) and Wh1(Cp) are nonzero. In

fact, SK1(ZCp) = 0.

2.3 Failure of Excision for K1. Here is Swan’s simple example to show thatK1(R, I)
depends upon R. Let F be a field and let R be the algebra of all upper triangular

matrices r =

(
x y
0 z

)
in M2(F ). Let I be the ideal of all such matrices with x =

z = 0, and let R0 be the commutative subalgebra F ⊕ I. Show that K1(R0, I) ∼= F
but that K1(R, I) = 0. Hint: Calculate e21(r)e12(y)e21(−r).
2.4 (Vaserstein) If I is an ideal of R, and x ∈ I and r ∈ R are such that (1 + rx)
is a unit, modify Ex. 1.1 to show that (1 + rx)(1 + xr)−1 is in E2(R, I).

If I is a radical ideal and W =W (R, I) denotes the subgroup of units generated
by the (1 + rx)(1 + xr)−1, use Lemma 2.4 to conclude that (1 + I)/W maps onto
K1(R, I). Vaserstein proved in [V69] that K1(R, I) ∼= (1 + I)/W for every radical
ideal.

2.5 Mennicke symbols. If I is an ideal of a commutative ring R, r ∈ (1 + I) and
s ∈ I, we define the Mennicke symbol

[
s
r

]
to be the class in SK1(R, I) of the

matrix
(
r
t
s
u

)
, where t ∈ I and u ∈ (1 + I) satisfy ru − st = 1. Show that this

Mennicke symbol is independent of the choice of t and u, with
[
s
r

][
s
r′

]
=

[
s
rr′

]
,[

s
r

][
s′

r

]
=

[
ss′

r

]
. (Hint: Use Ex. 1.10.) Finally, show that if t ∈ I then

[
s

r

]
=

[
s+ rt

r

]
=

[
s

r + st

]
.

2.6 The obstruction to excision. Let R → S be a map of commutative rings,
sending an ideal I of R isomorphically onto an ideal of S. Given x ∈ I and s ∈ S,
let ψ(x, s) denote the Mennicke symbol

[
x

1−sx

]
in SK1(R, I).

(a) Verify that ψ(x, s) vanishes in SK1(S, I).
(b) Prove that ψ is bilinear, and that ψ(x, s) = 1 if either x ∈ I2 or s ∈ R. Thus

ψ induces a map from (I/I2)⊗ (S/R) to SK1(R, I).
(c) Prove that the Leibniz rule holds: ψ(x, ss′) = ψ(sx, s′)ψ(s′x, s).

For every map R → S, the S-module ΩS/R of relative Kähler differentials is pre-
sented with generators ds, s ∈ S, subject to the following relations: d(s + s′) =
ds+ ds′, d(ss′) = s ds′ + s′ ds, and if r ∈ R then dr = 0. (See [WHomo].)
(d) (Vorst) Show that ΩS/R ⊗S I/I2 is the quotient of (S/R) ⊗ (I/I2) by the

subgroup generated by the elements s⊗s′x+s′⊗sx−ss′⊗x. Then conclude
that ψ induces a map ΩS/R ⊗S I/I2 → SK1(R, I).

Swan proved in [Swan71] that the resulting sequence is exact:

ΩS/R ⊗S I/I2
ψ−→ SK1(R, I)→ SK1(S, I)→ 1.
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2.7 Suppose that the ring map R → R/I is split by a map R/I → R. Show that
K1(R) ∼= K1(R/I)⊕K1(R, I). The corresponding decomposition of K0(R) follows
from the ideal sequence 2.3, or from the definition of K0(I), since R ∼= R/I⊕ I; see
Ex. II.2.4.

2.8 Suppose that pr = 0 in R for some prime p. Show that K1(R, pR) is a p-group.
Conclude that the kernel of the surjection K1(R)→ K1(R/pR) is also a p-group.

2.9 If I is a nilpotent ideal in a Q-algebra R, or even a complete radical ideal, show
that K1(R, I) ∼= I/[R, I], where [R, I] is the subgroup spanned by all elements
[r, x] = rx − xr, r ∈ R and x ∈ I. In particular, this proves that K1(R, I) is
uniquely divisible. Hint: If [R, I] = 0, ln : 1 + I → I is a bijection. If not, use
Ex. 2.4 and the Campbell-Hausdorff formula.

2.10 Suppose that I is an ideal satisfying I = I2. Show that [GL(I), GL(I)] is a
perfect group. Conclude that E(R, I) = [GL(I), GL(I)] and hence that K1(R, I)
is independent of R. Hint: Use the commutator formulas (1.3.1).
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§3. The Fundamental Theorems for K1 and K0

The Fundamental Theorem for K1 is a calculation of K1(R[t, t
−1]), and describes

one of the many relationships between K1 and K0. The core of this calculation
depends upon the construction of an exact sequence (see 3.2 below and II.7.8.1):

K1(R[t])→ K1(R[t, t
−1])

∂−→ K0H{tn}(R[t])→ 0

We will construct a localization sequence connecting K1 and K0 in somewhat
greater generality first. Recall from chapter II, Theorem 9.8 that for any multi-
plicatively closed set S of central elements in a ring R there is an exact sequence
K0(R on S) → K0(R) → K0(S

−1R), where K0(R on S) denotes K0 of the Wald-

hausen category ChbSP(R). If S consists of nonzerodivisors, K0(R on S) also equals
K0HS(R) by Ex. II.9.13; see Corollary II.7.7.4.

Our first goal is to extend this sequence to the left using K1, and we begin by
constructing the boundary map ∂.

Let α be an endomorphism of Rn. We say that α is an S-isomorphism if
S−1 ker(α) = S−1coker(α) = 0, or equivalently, α/1 ∈ GLn(S−1R). Write cone(α)

for the mapping cone of α, which is the chain complex Rn
−α−−→ Rn concentrated in

degrees 0 and 1; see [WHomo, 1.5.1]. It is clear that α is an S-isomorphism if and

only if cone(α) ∈ ChbSP(R).

Lemma 3.1. Let S be a multiplicatively closed set of central elements in a ring
R. Then there is a group homomorphism

K1(S
−1R)

∂−→ K0(R on S)

sending each S-isomorphism α to the class [cone(α)] of the mapping cone of α. In
particular, each s ∈ S is an endomorphism of R so ∂(s) is the class of the chain

complex cone(s) : R
−s−−→ R.

Before proving this lemma, we give one important special case. When S consists
of nonzerodivisors, every S-isomorphism α must be an injection, and coker(α) is
a module of projective dimension one, i.e., an object of HS(R). Moreover, under

the isomorphism K0ChbSP(R) ∼= K0HS(R) of Ex. II.9.13, the class of cone(α) in

K0ChbSP(R) corresponds to the element [coker(α)] ∈ K0HS(R). Thus we immedi-
ately have:

Corollary 3.1.1. If S consists of nonzerodivisors then there is a homomor-

phism K1(S
−1R)

∂−→ K0HS(R) sending each S-isomorphism α to [coker(α)], and
sending s ∈ S to [R/sR].

Proof of 3.1. If β ∈ End(Rm) is also an S-isomorphism, then the diagram

0 ֌ Rn
=
։ Rn

↓ ↓ (1, β) ↓ β
Rn

(10)
֌ Rn ⊕Rn

(01)
։ Rn

αβ ↓ ↓
(
αβ
−α

)
↓

Rn
=
֌ Rn ։ 0
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is a short exact sequence in ChbSP(R), where we regard the columns as chain
complexes. Since the middle column of the diagram is quasi-isomorphic to its

subcomplex 0→ 0⊕Rn −α−−→ Rn, we get the relation

[
cone(α)

]
−

[
cone(αβ)

]
=

[
cone(β)[−1]

]
= −

[
cone(β)

]
,

or [
cone(α)

]
+
[
cone(β)

]
=

[
cone(αβ)

]
(3.1.2)

in K0ChbSP(R). In particular, if β is the diagonal matrix diag(t, ..., t) then cone(β)
is the direct sum of n copies of cone(t), so we have

[
cone(αt)

]
=

[
cone(α)

]
+ n

[
cone(t)

]
. (3.1.3)

Every g ∈ GLn(S−1R) can be represented as α/s for some S-isomorphism α and
some s ∈ S, and we define ∂(g) = ∂(α/s) to be the element

[
cone(α)

]
−n

[
cone(s)

]

of K0ChbSP(R). By (3.1.3) we have ∂(α/s) = ∂(αt/st), which implies that ∂(g) is
independent of the choice of α and s. By (3.1.2) this implies that ∂ is a well-defined

homomorphism from each GLn(S
−1R) to K0ChbSP(R). Finally, the maps ∂ are

compatible with the inclusions GLn ⊂ GLn+1, because

∂

(
α/s

0

0

1

)
= ∂

((
α

0

0

1

)
/s

)
=

[
cone

(
α

0

0

s

)]
− (n+ 1)

[
cone(s)

]

=
[
cone(α)

]
+

[
cone(s)

]
− (n+ 1)

[
cone(s)

]
= ∂(α/s).

Hence ∂ extends to GL(S−1R), and hence must factor through the universal map
to K1(S

−1R).

Key Example 3.1.4. For the Fundamental Theorem, we shall need the fol-
lowing special case of this construction. Let T be the multiplicative set {tn} in
the polynomial ring R[t]. Then the map ∂ goes from K1(R[t, t

−1]) to K0HT (R[t]).
If ν is a nilpotent endomorphism of Rn then t − ν is a T -isomorphism, because
its inverse is the polynomial t−1(1 + νt−1 + ν2t−2 + . . . ). If (Rn, ν) denotes the
R[t]-module Rn on which t acts as ν,

∂(t− ν) =
[
R[t]n/(t− ν)

]
=

[
(Rn, ν)

]
,

∂(1− νt−1) = ∂(t− ν)− ∂(t · idn) =
[
(Rn, ν)

]
− n

[
(R, 0)

]
.

We can also compose ∂ with the product K0(R)⊗K1(Z[t, t
−1])

·−→ K1(R[t, t
−1])

of Corollary 1.6.1. Given a finitely generated projective R-module P , the product
[P ] · t is the image of t · idP [t,t−1] under the map Aut(P [t, t−1])→ K1(R[t, t

−1]) of
Lemma 1.6. To compute ∂([P ] · t), choose Q such that P ⊕ Q ∼= Rn. Since the
cokernel of t · idP [t]:P [t]→ P [t] is the R[t]-module (P, 0), we have an exact sequence
of R[t]-modules:

0→ R[t]n
t·idP [t]⊕1·idQ[t]−−−−−−−−−−→ R[t]n → (P, 0)→ 0.

Therefore we have the formula ∂([P ] · t) =
[
(P, 0)

]
.
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Lemma 3.1.5. K0ChbSP(R) is generated by the classes [Q·] of chain complexes
concentrated in degrees 0 and 1, i.e., by complexes Q· of the form Q1 → Q0.

The kernel of K0ChbSP(R) → K0(R) is generated by the complexes Rn
α−→ Rn

associated to S-isomorphisms, i.e., by the classes ∂(α) =
[
cone(α)

]
.

Proof. By the Shifting Lemma II.9.2.1, K0 is generated by bounded complexes
of the form 0 → Pn → · · · → P0 → 0. If n ≥ 2, choose a free R-module F = RN

mapping onto H0(P·). By assumption, we have sH0(P·) = 0 for some s ∈ S. By
the projective lifting property, there are maps f0, f1 making the diagram

F
s−→ F −→ F/sF −→ 0

f1

y f0

y
y

P1 −→ P0 −→ H0(P ) −→ 0

commute. Thus if Q· denotes the complex F
s−→ F we have a chain map Q·

f−→
P· inducing a surjection on H0. The mapping cone of f fits into a cofibration
sequence P· ֌ cone(f) ։ Q·[−1] in ChbSP(R), so we have [P·] = [Q·] + [cone(f)]
in K0(R on S). Moreover, H0(cone(f)) = 0, so there is a decomposition P1 ⊕ F ∼=
P0 ⊕ P ′

1 so that the mapping cone is the direct sum of an exact complex P0

∼=−→ P0

and a complex P ′
· of the form 0→ Pn → · · · → P3 → P2 ⊕ F → P ′

1 → 0. Since P ′
·

has length n− 1, induction on n implies that [cone(f)] = [P ′
· ] is a sum of terms of

the form [Q1 → Q0].

Hence every element of K0 has the form x = [P1
α−→ P0] − [Q1

β−→ Q0]. Choose

s ∈ S so that sβ−1 is represented by an S-isomorphism Q0
γ−→ Q1; adding γ to

both terms of x, as well as the appropriate zero term Q′ =−→ Q′, we may assume
that Q1 = Q0 = Rn, i.e., that the second term of x is the mapping cone of some
S-isomorphism β ∈ End(Rn). With this reduction, the map to K0(R) sends x to
[P1] − [P0]. If this vanishes, then P1 and P0 are stably isomorphic. Adding the

appropriate P ′ =−→ P ′ makes P1 = P0 = Rm for some m, and writes x in the form

x = cone(α)− cone(β) = ∂(α)− ∂(β).

Theorem 3.2. Let S be a multiplicatively closed set of central elements in a
ring R. Then the map ∂ of Lemma 3.1 fits into an exact sequence

K1(R)→ K1(S
−1R)

∂−→ K0(R on S)→ K0(R)→ K0(S
−1R).

Proof. We have proven exactness at K0(R) in Theorem II.9.8, and the compo-
sition of any two consecutive maps is zero by inspection. Exactness at K0(R on S)
was proven in Lemma 3.1.5. Hence it suffices to establish exactness at K1(S

−1R).
For reasons of exposition, we shall give the proof when S consists of nonze-

rodivisors, relegating the general proof (which is similar but more technical) to
Exercise 3.5. The point of this simplification is that we can work with the exact
category HS(R). In particular, for every S-isomorphism α the class of the module
coker(α) is simpler to manipulate than the class of the mapping cone.
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Recall from the proof of Lemma 3.1 that every element of GLn(S
−1R) can be

represented as α/s for some S-isomorphism α ∈ End(Rn) and some s ∈ S, and that
∂(α/s) is defined to be

[
coker(α)

]
− [Rn/sRn]. If ∂(α/s) = 0, then from Ex. II.7.2

there are short exact sequences in HS(R)

0→ C ′ → C1 → C ′′ → 0, 0→ C ′ → C2 → C ′′ → 0

such that coker(α)⊕C1
∼= (Rn/sRn)⊕C2. By Ex. 3.4 we may add terms to C ′, C ′′ to

assume that C ′ = coker(α′) and C ′′ = coker(α′′) for appropriate S-isomorphisms of
some Rm. By the Horseshoe Lemma ([WHomo, 2.2.8]) we can construct two exact
sequences of projective resolutions

0 0 0
y

y
y

0 −→ Rm −→ R2m −→ Rm −→ 0

α′

y αi

y α′′

y

0 −→ Rm −→ R2m −→ Rm −→ 0
y

y
y

0 −→ C ′ −→ Ci −→ C ′′ −→ 0
y

y
y

0 0 0.

Inverting S makes each αi an isomorphism conjugate to
(
α′

0
0
α′′

)
. Thus inK1(S

−1R)
we have [α1] = [α′]+[α′′] = [α2]. On the other hand, the two endomorphisms α⊕α1

and s · idn⊕α2 of R2m+n have isomorphic cokernels by construction. Lemma 3.2.1
below implies that in K1(S

−1R) we have

[α/s] = [α⊕ α1]− [s · idn ⊕ α2] = g for some g ∈ GL(R).

This completes the proof of Theorem 3.2.

Lemma 3.2.1. Suppose that S consists of nonzerodivisors. If α, β ∈ EndR(R
n)

are S-isomorphisms with Rn/αRn isomorphic to Rn/βRn, then there is a g ∈
GL4n(R) such that [α] = [g][β] in K1(S

−1R).

Proof. Put M = coker(α) ⊕ coker(β), and let γ:Rn/αRn ∼= Rn/βRn be
an automorphism. By Ex. 3.3(b) with Q = R2n we can lift the automorphism(
0
γ
γ−1

0

)
of M to an automorphism γ0 of R4n. If π1 and π2 denote the projections

R4n (pr,0,0,0)−−−−−−→ coker(α), and R4n (0,pr,0,0)−−−−−−→ coker(β), respectively, then we have
γπ1 = π2γ0. This yields a commutative diagram

0 −→ R4n (α,1,1,1)−−−−−→ R4n π1−→ Rn/αRn −→ 0
yγ1 ∼=

yγ0 ∼=

yγ

0 −→ R4n (1,β,1,1)−−−−−→ R4n π2−→ Rn/βRn −→ 0
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in which γ1 is the induced map. Since γ and γ0 are isomorphisms, so is γ1. Because
γ0(α, 1, 1, 1) = (1, β, 1, 1)γ1 in GL4n(S

−1R), we have [γ0] + [α] = [β] + [γ1], or
[α] = [γ1γ

−1
0 ][β] in K1(S

−1R).

NK1 and the group Nil0

Definition 3.3 (NF ). If F is any functor from rings to abelian groups, we write
NF (R) for the cokernel of the natural map F (R)→ F (R[t]); NF is also a functor

on rings. Moreover, the ring map R[t]
t=1−−→ R provides a splitting F (R[t])→ F (R)

of the natural map, so we have a decomposition F (R[t]) ∼= F (R)⊕NF (R).
In particular, when F is Ki (i = 0, 1) we have functors NKi and a decomposition

Ki(R[t]) ∼= Ki(R)⊕NKi(R). Since the ring maps R[t]
t=r−−→ R are split surjections

for every r ∈ R, we see by Proposition 2.3 and Ex. 2.7 that for every r we also have

NK0(R) ∼= K0(R[t], (t− r)) and NK1(R) ∼= K1(R[t], (t− r)).

We will sometimes speak about NF for functors F defined on any category of
rings closed under polynomial extensions and containing the map “t = 1,” such as
k-algebras or commutative rings. For example, the functors NU and N Pic were
discussed briefly for commutative rings in chapter I, Ex. 3.17 and 3.19.

Example 3.3.1. (Chase) Suppose that A is an algebra over Z/p. Then the
group NK1(A) is a p-group. To see this, first observe that it is true for the algebras
An = Z/p[x]/(xn) by 2.4, since (1 + tf(x, t))p = 1 + tpf(xp, tp). Then observe
that by Higman’s trick (3.5.1 below) every element of NK1(A) is the image of
1− xt ∈ NK1(An) (for some n) under a map An →Mn(A), x 7→ ν.

By Ex. 2.8, NK1(A) is also a p-group for every Z/pr-algebra A.

Example 3.3.2. If A is an algebra over a field k of characeteristic zero, then
NK1(A) is a uniquely divisible abelian group. In fact, NK1(A) has the structure
of a k-vector space; see Ex. 3.7.

Definition 3.4 (F -regular rings). We say that a ring R is F -regular if
F (R) = F (R[t1, . . . , tn]) for all n. Since NF (R[t]) = NF (R)⊕N2F (R), we see by
induction on p that R is F -regular if and only if NpF (R) = 0 for all p ≥ 1.

For example, Traverso’s theorem (I.3.11) states that a commutative ring R is Pic-
regular if and only if Rred is seminormal. We also saw in I.3.12 that commutative
rings are U -regular (U=units) if and only if R is reduced.

We saw in II.6.5 that any regular ring is K0-regular. We will see in theorem 3.8
below that regular rings are also K1-regular, and we sill see in chapter Vthat they
are Km-regular for every m. Rosenberg has also shown that commutative C∗-
algebras are Km-regular for all m; see [Ro96].

Lemma 3.4.1. Let R = R0 ⊕ R1 ⊕ · · · be a graded ring. Then the kernel of
F (R)→ F (R0) embeds in NF (R) and even in the kernel of NF (R)→ NF (R0).

In particular, if NF (R) = 0 then F (R) ∼= F (R0).

Proof. Let f denote the ring map R→ R[t] defined by f(rn) = rnt
n for every

rn ∈ Rn. Since the composition of f and “t = 1” is the identity on R, F (f) is an



III. K1 AND K2 OF A RING 23

injection. Let Q denote the kernel of F (R)→ F (R0), so that F (R) = F (R0)⊕Q.
Since the composition of f and “t = 0” is the projection R → R0 → R, Q embeds
into the kernel NF (R) of the evaluation F (R[t])→ F (R) at t = 0. Similarly, since
the composition of f and R[t] → R0[t] is projection R → R0 → R0[t], Q embeds
into the kernel of NF (R)→ NF (R0).

A typical application of this result is that if R is a graded seminormal algebra
with R0 a field then Pic(R) = 0.

Application 3.4.2. It follows that NF (R) is a summand of N2F (R) and hence
NpF (R) for all p > 0. Indeed, the first part is the application of 3.4.1 to R[s], and
the second part is obtained by induction, replacing F by Np−2F .

If s ∈ S is central, the algebra map S[x] → S[x], x → sx, induces an operation
[s] : NK0(S) → NK0(S). (It is the multiplication by 1 − st ∈ W (S) in Ex. 3.7.)
Write Ss for S[1/s].

Theorem 3.4.3 (Vorst). NK0(Ss) is the “localization” of NK0(S) along [s],

i.e., NK0(Ss) ∼= lim−→(NK0(S)
[s]−→ NK0(S)

[s]−→ · · · ). In particular, if S is K0-
regular, so is Ss.

Proof. Write I for the ideal (x) of Ss[x] and set R = S + I. Then NK0(Ss) =
K0(I) by Ex. II.2.3. But R = lim−→(S[x] → S[x] → · · · ) and I is the direct limit of
xS[x]→ xS[x]→ · · · , so K0(I) = lim−→(K0(xS[x])→ · · · ) as claimed.

Corollary 3.4.4. If A is K0-regular then so is A[s, s−1].

3.5. We are going to describe the group NK1(R) in terms of nilpotent matrices.
For this, we need the following trick, which was published by Graham Higman in
1940. For clarity, if I = fA is an ideal in A we write GL(A, f) for GL(I).

Higman’s Trick 3.5.1. For every g ∈ GL(R[t], t) there is a nilpotent matrix ν
over R such that [g] = [1− νt] in K1(R[t]).

Similarly, for every g ∈ GL(R[t, t−1], t− 1) there is a nilpotent matrix ν over R
such that [g] = [1− ν(t− 1)] in K1(R[t, t

−1], t− 1).

Proof. Every invertible p× p matrix over R[t] can be written as a polynomial
g = γ0 + γ1t + γ2t

2 + · · · + γnt
n with the γi in Mp(R). If g is congruent to the

identity modulo t, then γ0 = 1. If n ≥ 2 and we write g = 1 − ht + γnt
n, then

modulo E2p(R[t], t) we have

(
g 0
0 1

)
∼

(
g γnt

n−1

0 1

)
∼

(
1− ht γnt

n−1

−t 1

)
= 1−

(
h −γntn−2

1 0

)
t.

By induction on n, [g] is represented by a matrix of the form 1− νt. The matrix ν
is nilpotent by Ex. 3.1.

Over R[t, t−1] we can use a similar argument. After multiplying by a power of
t, we may write g as a polynomial in t. Such a polynomial may be rewritten as a
polynomial

∑
γix

i in x = (t− 1). If g is congruent to the identity modulo (t− 1)
then again we have γ0 = 1. By Higman’s trick (applied to x), we may reduce g to
a matrix of the form 1− νx, and again ν must be nilpotent by Ex. 3.1.
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We will also need the category Nil(R) of II.7.4.4. Recall that the objects of this
category are pairs (P, ν), where P is a finitely generated projective R-module and
ν is a nilpotent endomorphism of P . Let T denote the multiplicative set {tn} in
R[t]. From II.7.8.4 we have

K0(R[t] on T ) ∼= K0Nil(R) ∼= K0(R)⊕Nil0(R),

where Nil0(R) is the subgroup generated by elements of the form
[
(Rn, ν)

]
−

n
[
(R, 0)

]
for some n and some nilpotent matrix ν.

Lemma 3.5.2. For every ring R, the product with t ∈ K1(Z[t, t
−1]) induces a

split injection K0(R)
·t−→ K1(R[t, t

−1]).

Proof. Since the forgetful map K0Nil(R) → K0(R) sends
[
(P, ν)

]
to [P ], the

calculation in Example 3.1.4 shows that the composition

K0(R)
·t−→ K1(R[t, t

−1])
∂−→ K0Nil(R)→ K0(R)

is the identity map. Hence the first map is a split injection.

Momentarily changing variables from t to s, we now define an additive function
τ from Nil(R) to K1(R[s]). Given an object (P, ν), let τ(P, ν) be the image of
the automorphism 1− νs of P [s] under the natural map Aut(P [s])→ K1(R[s]) of
Lemma 1.6. Given a short exact sequence

0→ (P ′, ν′)→ (P, ν)→ (P ′′, ν′′)→ 0

in Nil(R), a choice of a splitting P ∼= P ′ ⊕ P ′′ allows us to write

(1− νs) =
(
1− ν′s γs

0 1− ν′′s

)
=

(
1− ν′s 0

0 1− ν′′s

)(
1 γ′s
0 1

)

in Aut(P [s]). Hence in K1(R[s]) we have [1 − νs] = [1 − ν′s][1 − ν′′s]. Therefore
τ is an additive function, and induces a homomorphism τ :K0Nil(R) → K1(R[s]).
Since τ(P, 0) = 1 for all P and 1− νs is congruent to 1 modulo s, we see that τ is
actually a map from Nil0(R) to K1(R[s], s).

Proposition 3.5.3. Nil0(R) ∼= NK1(R), and K0Nil(R) ∼= K0(R)⊕NK1(R).

Proof. For convenience, we identify s with t−1, so that R[s, s−1] = R[t, t−1].
Applying Lemma 3.1 to R[t] and T = {1, t, t2, . . . }, we form the composition

δ : K1(R[s], s)→ K1(R[s])→K1(R[s, s
−1])

=K1(R[t, t
−1])

∂−→ K0(R on T )→ Nil0(R).(3.5.4)

Let us call this composition δ. We claim that τ is the inverse of δ. By Higman’s
Trick, every element ofK1(R[s], s) is represented by a matrix 1−νs with ν nilpotent.
In Example 3.1.4 we saw that δ(1−νs) =

[
(Rn, ν)

]
−n

[
(R, 0)

]
. By the construction

of τ we have the desired equations: τδ(1− νs) = τ
[
(Rn, ν)

]
= (1− νs) and

δτ

([
(Rn, ν)

]
− n

[
(R, 0)

])
= δ(1− νs) =

[
(Rn, ν)

]
− n

[
(R, 0)

]
.
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Corollary 3.5.5. K1(R[s])→ K1(R[s, s
−1]) is an injection for every ring R.

Proof. By Ex. 2.7, we have K1(R[s]) ∼= K1(R) ⊕K1(R[s], s). Since K1(R) is
a summand of K1(R[s, s

−1]), the isomorphism δ:K1(R[s], s) ∼= Nil0(R) of (3.5.4)
factors through K1(R[s], s)→ K1(R[s, s

−1])/K1(R). This quotient map must then
be an injection. The result follows.

The Fundamental Theorems for K1 and K0

Fundamental Theorem for K1 3.6. For every ring R, there is a split sur-

jection K1(R[t, t
−1])

∂−→ K0(R), with inverse [P ] 7→ [P ] · t. This map fits into a
naturally split exact sequence:

0→ K1(R)
∆−→ K1(R[t])⊕K1(R[t

−1])
±−→ K1(R[t, t

−1])
∂−→ K0(R)→ 0.

Consequently, we have a natural direct sum decomposition:

K1(R[t, t
−1]) ∼= K1(R)⊕K0(R)⊕NK1(R)⊕NK1(R).

Proof. Wemerely assemble the pieces of the proof from §3.5. The first assertion
is just Lemma 3.5.2. The natural maps from K1(R) into K1(R[t]), K1(R[t

−1]) and
K1(R[t, t

−1]) are injections, split by “t = 1” (as in 3.5), so the obviously exact
sequence

(3.6.1) 0→ K1(R)
∆−→ K1(R)⊕K1(R)

±−→ K1(R)→ 0

is a summand of the sequence we want to prove exact. From Proposition II.7.8.1,
Theorem 3.2 and Corollary 3.5.5, we have an exact sequence

(3.6.2) 0→ K1(R[t])→ K1(R[t, t
−1])

∂−→ K0Nil(R)→ 0.

Since K0Nil(R) ∼= K0(R) ⊕ Nil0(R), the map ∂ in (3.6.2) is split by the maps
of 3.5.2 and 3.5.3. The sequence in the Fundamental Theorem for K1 is obtained
by rearranging the terms in sequences (3.6.1) and (3.6.2).

In order to formulate the corresponding Fundamental Theorem for K0, we define
K−1(R) to be the cokernel of the map K0(R[t])⊕K0(R[t

−1])→ K0(R[t, t
−1]). We

will reprove the following result more formally in the next section.

Fundamental Theorem for K0 3.7. For every ring R, there is a naturally
split exact sequence:

0→ K0(R)
∆−→ K0(R[t])⊕K0(R[t

−1])
±−→ K0(R[t, t

−1]
∂−→ K−1(R)→ 0.

Consequently, we have a natural direct sum decomposition:

K0(R[t, t
−1] ∼= K0(R)⊕K−1(R)⊕NK0(R)⊕NK0(R).

Proof. Let s be a second indeterminate. The Fundamental Theorem for K1,
applied to the variable t, gives a natural decomposition

K1(R[s, t, t
−1]) ∼= K1(R[s])⊕NK1(R[s])⊕NK1(R[s])⊕K0(R[s]),

and similar decompositions for the other terms in the map

K1(R[s, t, t
−1])⊕K1(R[s

−1, t, t−1])→ K1(R[s, s
−1, t, t−1]).

Therefore the cokernel of this map also has a natural splitting. But the cokernel
is K0(R[t, t

−1]), as we see by applying the Fundamental Theorem for K1 to the
variable s.
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Theorem 3.8. If R is a regular ring, K1(R[t]) ∼= K1(R) and there is a natural
isomorphism K1(R[t, t

−1]) ∼= K1(R)⊕K0(R).

Proof. Consider the category Mt(R[t]) of finitely generated t-torsion R[t]-
modules; by Devissage II.6.3.3, K0Mt(R[t]) ∼= K0(R). Since R is regular, every
such module has a finite resolution by finitely generated projective R[t]-modules,
i.e., Mt(R[t]) is the same as the category Ht(R[t]) of II.7.7. By II.7.8.4,

K0Nil(R) ∼= K0Ht(R[t]) ∼= K0(R).

Hence Nil0(R) = 0. By 3.5.3, NK1(R) = 0 and K1(R[t]) ∼= K1(R). The description
of K1(R[t, t

−1]) now comes from the Fundamental Theorem 3.6.

Example 3.8.1. If R is a commutative regular ring, and A = R[x]/(xN ), it
follows from 2.4 and 3.8 that SK1(A[t]) = SK1(A) and hence (by 3.5.3 and I.3.12)
Nil0(A) ∼= NK1(A) ∼= (1 + tA[t])× = (1 + xtA[t])×. This isomorphism sends
[(P, ν)] ∈ Nil0(A) to det(1−νt) ∈ (1+ tA[t])×. By inspection, this is the restriction
of the canonical End0(A)-module map Nil0(A) → End0(A) of II.7.4.4, followed by
the inclusion End0(A) ⊂W (A) of II.7.4.3. It follows that Nil0(A) is an ideal of the
ring End0(A).

EXERCISES

3.1 Let A be a ring and a ∈ A, show that the following are equivalent: (i) a is
nilpotent; (ii) 1− at is a unit of A[t]; (iii) 1− a(t− 1) is a unit of A[t, t−1].

3.2 Let α, β:P → Q be two maps between finitely generated projective R-modules.
If S is a central multiplicatively closed set in R and S−1α, S−1β are isomorphisms,
then g = β−1α is an automorphism of S−1P . Show that ∂(g) = [cone(α)] −
[cone(β)]. In particular, if S consists of nonzerodivisors then ∂(g) = [coker(α)] −
[coker(β)].

3.3 (Bass) Prove that every moduleM in H(R) has a projective resolution P· →M
such that every automorphism α ofM lifts to an automorphism of the chain complex
P·. To do so, proceed as follows.
(a) Fix a surjection π:Q → M , and use Ex. I.1.11 to lift the automorphism

α⊕ α−1 of M ⊕M to an automorphism β of Q⊕Q.
(b) Defining e:Q⊕Q→M to be e(x, y) = π(x), show that every automorphism

of M can be lifted to an automorphism of Q⊕Q.
(c) Set P0 = Q ⊕ Q, and repeat the construction on Z0 = ker(e) to get a finite

resolution P· of M with the desired property.

3.4 Suppose that S consists of nonzerodivisors, and that M is a module in HS(R).
(a) Prove that there is a module M ′ and an S-isomorphism α ∈ End(Rm) so that

coker(α) =M ⊕M ′. Hint: Modify the proof of Lemma 3.1.5, where M is the

cokernel of a map P0
β−→ P1.

(b) Given S-isomorphisms α′, α′′ ∈ End(Rm) and a short exact sequence of S-
torsion modules 0→ coker(α′)→M → coker(α′′)→ 0, show that there is an
S-isomorphism α ∈ R2m with M ∼= coker(α).

3.5 Modify the proofs of the previous two exercises to prove Theorem 3.2 when S
contains zerodivisors.
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3.6 Noncommutative localization. By definition, a multiplicatively closed set S in
a ring R is called a right denominator set if it satisfies the following two conditions:
(i) For any s ∈ S and r ∈ R there exists an s′ ∈ S and r′ ∈ R such that sr′ = rs′;
(ii) if sr = 0 for any r ∈ R, s ∈ S then rs′ = 0 for some s′ ∈ S. This is the most
general condition under which a (right) ring of fractions S−1R exists, in which every
element of S−1R has the form r/s = rs−1, and if r/1 = 0 then some rs = 0 in R.

Prove Theorem 3.2 when S is a right denominator set consisting of nonzerdivi-
sors. To do this, proceed as follows.
(a) Show that for any finite set of elements xi in S−1R there is an s ∈ S and

ri ∈ R so that xi = ri/s for all i.
(b) Reprove II.7.7.3 and II.9.8 for denominator sets, using (a); this yields exact-

ness at K0(R).
(c) Modify the proof of Lemma 3.1 and 3.1.5 to construct the map ∂ and prove

exactness at K0HS(R).
(d) Modify the proof of Theorem 3.2 to prove exactness at K1(S

−1R).

3.7 Let A be an algebra over a commutative ring R. Recall from Ex. II.7.18
that NK1(A) = Nil0(A) is a module over the ring W (R) = 1 + tR[[t]] of Witt
vectors II.4.3. In this exercise we develop a little of the structure of W (R), which
yields information about the structure of NK1(A) and hence (by theorem 3.7) the
structure of NK0(R).
(a) If 1/p ∈ R for some prime integer p, show that W (R) is an algebra over

Z[1/p]. Conclude that NK1(A) and NK0(A) are uniquely p-divisible abelian
groups. Hint: use the fact that the coefficients in the power series expansion
for r(t) = (1 + t)1/p only involve powers of p.

(b) If Q ⊆ R, consider the exponential map
∏∞
i=1R→ W (R), sending (r1, ...) to∏∞

i=1 exp(−riti/i). This is an isomorphism of abelian groups, whose inverse
(the “ghost map”) is given by the coefficients of f 7→ −t d/dt(ln f). Show
that this is a ring isomorphism. Conclude that NK1(A) and NK0(A) have
the structure of R-modules.

(c) If n ∈ Z is nonzero, Stienstra showed that NK1(A)[1/n] ∼= NK1(A[1/n]).
Use this to show that if G is a finite group of order n then NK1(Z[G]) is
annihilated by some power of n.

3.8 If I is a nilpotent ideal in a Q-algebra A, show that NK1(A, I)→ K1(A, I) is
onto. Thus Ex. 3.7 gives another proof that K1(A, I) is divisible (Ex. 2.9).

3.9 If s ∈ S is central, show that NK1(Ss) is a localization of NK1(S). Conclude
that if S is K1-regular then S is K0-regular. Hint: Use the sequence of Ex. 2.6

3.10 (Karoubi) Let S be a multiplicatively closed set of central nonzerodivisors in
a ring A. We say that a ring homomorphism f : A→ B is an analytic isomorphism
along S if f(S) consists of central nonzerodivisors in B, and if A/sA ∼= B/sB for
every s ∈ S. (This implies that the s-adic completions of A and B are isomorphism,
whence the name.)

If f is an analytic isomorphism along S, show that M 7→ M ⊗A B defines an
equivalence of categories HS(A) ∼= HS(B). (One proof is given in V.7.5 below.)
Using Theorem 3.2 and Ex. II.9.13, this shows that we have an exact sequence

K1(S
−1A)⊕K1(B)→ K1(S

−1B)→ K0(A)→ K0(S
−1A)⊕K0(B)→ K0(S

−1B).
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Hint: For M in H1
S(A), show that TorA1 (M,B) = 0, so that H1

S(A) → H1
S(B) is

exact. Then use Lemma II.7.7.1 to show that HS(A) is the category of modules
having a finite resolution by modules in H1

S(A), and similarly for HS(B).
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§4. Negative K-theory

In the last section, we defined K−1(R) to be the cokernel of the map K0(R[t])⊕
K0(R[t

−1])→ K0(R[t, t
−1]). Of course we can keep going, and define all the nega-

tive K-groups by induction on n:

Definition 4.1. For n > 0, we inductively define K−n(R) to be the cokernel of
the map

K−n+1(R[t])⊕K−n+1(R[t
−1])→ K−n+1(R[t, t

−1]).

Clearly, eachK−n is a functor from rings to abelian groups. It follows from Theorem
II.7.8 that if R is regular noetherian then Kn(R) = 0 for all n < 0.

To describe the properties of these negative K-groups, it is convenient to cast
the Fundamental Theorems above in terms of Bass’ notion of contracted functors.
With this in mind, we make the following definitions.

Definition 4.1.1 (Contracted functors). Let F be a functor from rings
to abelian groups. For each R, we define LF (R) to be the cokernel of the map
F (R[t])⊕F (R[t−1])→ F (R[t, t−1]). We write Seq(F,R) for the following sequence,
where ∆(a) = (a, a) and ±(b, c) = b− c:

0→ F (R)
∆−→ F (R[t])⊕ F (R[t−1])

±−→ F (R[t, t−1])→ LF (R)→ 0.

We say that F is acyclic if Seq(F,R) is exact for all R. We say that F is a contracted
functor if F is acyclic and in addition there is a splitting h = ht,R of the defining
map F (R[t, t−1]) → LF (R), a splitting which is natural in both t and R. The
notation F−1 is sometimes used for LF .

By iterating this definition, we can speak about the functors NLF , L2F , etc.
For example, Definition 4.1 states that K−n = Ln(K0).

As with the definition of NF (3.3), it will occasionally be useful to define LF
etc. on a more restricted class of rings, such as commutative algebras. Suppose
that R is a category of rings such that if R is in R then so are R[t], R[t, t−1] and
the maps R→ R[t] ⇉ R[t, t−1]. Then the definitions of LF , LnF and Seq(F,R) in
4.1.1 make sense for any functor F from R to any abelian category.

Example 4.1.2 (Fundamental Theorem for K−n). The Fundamental The-
orems for K1 and K0 may be restated as the assertions that these are contracted
functors. It follows from Proposition 4.2 below that each K−n is a contracted
functor; by Definition 4.1, this means that there is a naturally split exact sequence:

0→ K−n(R)
∆−→ K−n(R[t])⊕K−n(R[t

−1])
±−→ K−n(R[t, t

−1])
∂−→ K−n−1(R)→ 0.

Example 4.1.3 (Units). Let U(R) = R× denote the group of units in a
commutative ring R. By Ex. I.3.17, U is a contracted functor with contraction
LU(R) = [Spec(R),Z]; the splitting map LU(R)→ U(R[t, t−1]) sends a continuous
function f : Spec(R) → Z to the unit tf of R[t, t−1]. From Ex. 4.2 below we see
that the functors L2U and NLU are zero. Thus we can write a simple formula for
the units of any extension R[t1, t

−1
1 , . . . , tn, t

−1
n ]. If R is reduced, so that NU(R)

vanishes (Ex. I.3.17), then we just have

U(R[t1, t
−1
1 , . . . , tn, t

−1
n ]) = U(R)×

n∐

i=1

[Spec(R),Z] · ti.



30 III. K1 AND K2 OF A RING

Example 4.1.4 (Pic). Recall from chapter I, §3 that the Picard group Pic(R)
of a commutative ring is a functor, and that N Pic(R) = 0 exactly when Rred

is seminormal. By Ex. I.3.18 the sequence Seq(Pic, R) is exact. In fact Pic is a
contracted functor with NLPic = L2 Pic = 0; see [We91]. The group LPic(R) is
the étale cohomology group H1

et(Spec(R),Z).

A morphism of contracted functors is a natural transformation η:F ⇒ F ′ be-
tween two contracted functors such that the following square commutes for all R.

LF (R)
h−−−−→ F (R[t, t−1])

(Lη)R

y
yηR[t,t−1]

LF ′(R)
h′

−−−−→ F ′(R[t, t−1])

Proposition 4.2. Let η:F ⇒ F ′ be a morphism of contracted functors. Then
both ker(η) and coker(η) are also contracted functors.

In particular, if F is contracted, then NF and LF are also contracted functors.
Moreover, there is a natural isomorphism of contracted functors NLF ∼= LNF .

Proof. If C
φ−→ D is a morphism between split exact sequences, which have

compatible spittings, then the sequences ker(φ) and coker(φ) are always split exact,
with splittings induced from the splittings of C and D. Applying this remark to
Seq(F,R) → Seq(F ′, R) shows that ker(η) and coker(η) are contracted functors:
both Seq(ker(η), R) and Seq(coker(η), R) are split exact. It also shows that

0→ ker(η)(R)→ F (R)
ηR−→ F ′(R)→ coker(η)(R)→ 0

is an exact sequence of contracted functors.
Since NF (R) is the cokernel of the morphism F (R) → F ′(R) = F (R[t]) and

LF (R) is the cokernel of the morphism ± in Seq(F,R), both NF and LF are
contracted functors. Finally, the natural isomorphism NLF (R) ∼= LNF (R) arises
from inspecting one corner of the large commutative diagram represented by

0→ Seq(F, (R[s], s))→ Seq(F,R[s])→ Seq(F,R)→ 0.

Example 4.2.1 (SK1). If R is a commutative ring, it follows from Exam-
ples 1.1.1 and 4.1.3 that det:K1(R) → U(R) is a morphism of contracted func-
tors. Hence SK1 is a contracted functor. The contracted map L det is the map

rank:K0(R)→ H0(R) = [Spec(R),Z] of II.2.3; it follows that L(SK1)(R) = K̃0(R).

From Ex. 4.2 we also have L2(SK1)(R) = LK̃0(R) = K−1(R).

We can give an elegant formula for F (R[t1, t
−1
1 , . . . , tn, t

−1
n ]), using the following

notation. If p(N,L) =
∑
mijN

iLj is any formal polynomial in N and L with
integer coefficients mij > 0, and F is a functor from rings to abelian groups, we set
p(N,L)F equal to the direct sum of mij copies of each group N iLjF (R).

Corollary 4.2.2. F (R[t1, . . . , tn]) ∼= (1 + N)nF (R) for every F . If F is a
contracted functor, then F (R[t1, t

−1
1 , . . . , tn, t

−1
n ]) ∼= (1 + 2N + L)nF (R).

Proof. The case n = 1 follows from the definitions; the general case follows by
induction. �
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For example, if L2F = 0 and R is F -regular, then (1+2N +L)nF (R) stands for
F (R) ⊕ nLF (R). In particular, the formula for units in Example 4.1.3 is just the
case F = U of 4.2.2.

Example 4.2.3. Since LjK0 = K−j , K0(R[t1, t
−1
1 , . . . , tn, t

−1
n ]) is the direct

sum of many pieces N iK−j(R), including K−n(R) and
(
n
j

)
copies of K−j(R).

From 3.4.4 we see that if R is Kn-regular for some n ≤ 0 then R is also Kn−1-
regular. In particular, if R is K0-regular then R is also Kn-regular for all n < 0.

Conjecture 4.2.4. Let R be a commutative noetherian ring of Krull dimension
d. It is conjectured that K−j(R) vanishes for all j > d, and that R is K−d-regular;
see [We80]. This is so for d = 0, 1 by exercises 4.3 and 4.4, and Example 4.3.1
below shows that the bound is best possible. It was recently shown to be true for
Q-algebras in [CHSW].

The Mayer-Vietoris sequence

Suppose that f :R→ S is a ring map, and I is an ideal of R mapped isomorphically
into an ideal of S. By Theorem 2.6 there is an exact “Mayer-Vietoris” sequence:

K1(R)
∆−→ K1(S)⊕K1(R/I)→K1(S/I)

∂−→ K0(R)
∆−→ K0(S)⊕K0(R/I)

±−→ K0(S/I).

Applying the contraction operation L to this sequence gives a sequence relating K0

to K−1, whose first three terms are identical to the last three terms of the displayed
sequence. Splicing these together yields a longer sequence. Repeatedly applying L
and splicing sequences leads to the following result.

Theorem 4.3 (Mayer-Vietoris). Suppose we are given a ring map f :R→ S
and an ideal I of R mapped isomorphically into an ideal of S. Then the Mayer-
Vietoris sequence of Theorem 2.6 continues as a long exact Mayer-Vietoris sequence
of negative K-groups.

∆−→
[
K0(S)⊕
K0(R/I)

]
±−→K0(S/I)

∂−→ K−1(R)
∆−→

[
K−1(S)⊕
K−1(R/I)

]
±−→ K−1(S/I)

∂−→ K−2(R)→

· · · → K−n+1(S/I)
∂−→ K−n(R)

∆−→
[
K−n(S)⊕
K−n(R/I)

]
±−→ K−n(S/I)

∂−→ K−n−1(R) −→ · · ·

Example 4.3.1 (B. Dayton). Fix a regular ring R, and let ∆n(R) denote
the coordinate ring R[t0, . . . , tn]/(f), f = t0 · · · tn(1 −

∑
ti) of the n-dimensional

tetrahedron over R. Using I = (1 −∑
ti)∆

n(R) and ∆n(R)/I ∼= R[t1, . . . , tn] via
t0 7→ 1− (t1 + · · ·+ tn), we have a Milnor square

∆n(R) → An
↓ ↓

R[t1, . . . , tn] → ∆n−1(R)

where An = R[t0, . . . , tn]/(t0 · · · tn). By Ex. 4.8, the negativeK-groups of An vanish
andKi(An) =Ki(R) for i = 0, 1. ThusK0(∆

n(R)) ∼=K0(R)⊕K1(∆
n−1(R))/K1(R)

for n > 0, and K−j(∆
n(R)) ∼= K1−j(∆

n−1(R)) for j > 0. These groups vanish for
j > n, with K−n(∆

n(R)) ∼= K0(R). In particular, if F is a field then ∆n(F ) is an
n-dimensional noetherian ring with K−n(∆

n(F )) ∼= Z; see Conjecture 4.2.4.
When we have introduced higher K-theory, we will see that in fact K0(∆

n(R)) ∼=
Kn(R) and K1(∆

n(R)) ∼= Kn+1(R). (See IV, Ex. 12.1.) This is just one way in
which higher K-theory appears in classical K-theory.
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Theories of Negative K-theory

Here is an alternative approach to defining negative K-theory, due to Karoubi
and Villamayor [KV71].

Definition 4.4. A theory of negative K-theory for (nonunital) rings consists of
a sequence of functions Kn (n ≤ 0) from nonunital rings to abelian groups, together
with natural boundary maps ∂ : Kn(R/I)→ Kn−1(I) for every 2-sided ideal I ⊂ R,
satisfying the following axioms.

(1) K0(R) is the Grothendieck group of chapter II;

(2) Kn(I) → Kn(R) → Kn(R/I)
∂−→ Kn−1(I) → Kn−1(R) is exact for every

I ⊂ R;
(3) If Λ is a flasque ring (II.2.1.3), then Kn(Λ) = 0 for all n ≤ 0;
(4) The inclusion R ⊂ M(R) = ∪Mm(R) induces an isomorphism Kn(R) ∼=

KnM(R) for each n ≤ 0.

Example 4.4.1. Bass’ negative K-groups (4.1) form a theory of negative K-
theory for rings. This follows from the contraction of 2.3 (see Ex. 4.5), Ex. 4.9 and
the contraction of Morita Invariance 1.6.4.

Example 4.4.2. Embedding M(R) as an ideal in a flasque ring Λ, axiom (2)
shows thatK−1R ∼= K0(Λ/M(R)). This was the approach used by Karoubi and Vil-
lamayor in [KV71] to inductively define a theory of negative K-theory; see Ex. 4.10.

Example 4.4.3. If A is a hensel local ring then K−1(A) = 0. This was proven
by Drinfeld in [Drin], using a Calkin category model for negative K-theory.

Theorem 4.5. Every theory of negative K-theory for rings is canonically iso-
morphic to the negative K-theory.

Proof. Suppose that {K ′
n} is another theory of negativeK-theory for rings. We

will show that there are natural isomorphisms hn(A) : Kn(A)→ K ′
n(A) commuting

with the boundary operators. By induction, we may assume that hn is given. Since
C(R) is flasque (II.2.1.3), and S(R) = C(R)/M(R), the axioms yield isomorphisms
∂ : KnS(R) ∼= Kn−1(R) and ∂′ : K ′

nS(R)
∼= K ′

n−1(R). We define hn−1(R) :
Kn−1(R)→ K ′

n−1(R) to be ∂′ ◦ hn(SR) ◦ ∂−1.
It remains to check that the hn commute with the boundary maps associated to

an ideal I ⊂ R. Since M(I) is an ideal in C(I), C(R) and M(R), the axioms yield
KnS(I) ∼= KnC(R)/M(I) and similarly for K ′

n. The naturality of ∂ and ∂′ relative
to M(R/I) =M(R)/M(I)→ C(R)/M(I) yield the diagram

Kn(R/I)
∼=−→ KnM(R/I) −→ KnC(R)/M(I)

∼=←− KnS(I)
∂−→ Kn−1(I)

hn(R/I)

y∼=

y∼= ∼=

y ∼=

y
yhn−1(I)

K ′
n(R/I)

∼=−→ K ′
nM(R/I) −→ K ′

nC(R)/M(I)
∼=←− K ′

nS(I)
∂′

−→ K ′
n−1(I).

Since the horizontal composites are the given maps ∂ : Kn(R/I) → Kn−1(I) and
∂′ : K ′

n(R/I)→ K ′
n−1(I), we have the desired relation: ∂′hn(R/I) ∼= hn−1(I) ∂.
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EXERCISES

4.1 Suppose that 0 → F ′ → F → F ′′ → 0 is an exact sequence of functors, with
F ′ and F ′′ contracted. Show that F is acyclic, but need not be contracted.

4.2 For a commutative ring R, let H0(R) denote the group [Spec(R),Z] of all
continuous functions from Spec(R) to Z. Show that NH0 = LH0 = 0, i.e., that
H0(R) = H0(R[t]) = H0(R[t, t

−1]).

4.3 Let R be an Artinian ring. Show that R is K0-regular, and that K−n(R) = 0
for all n > 0.

4.4 (Bass-Murthy) Let R be a 1-dimensional commutative noetherian ring with

finite normalization R̃ and conductor ideal I. Show that R is K−1-regular, and
that K−n(R) = 0 for all n ≥ 2. If h0(R) denotes the rank of the free abelian
group H0(R) = [Spec(R),Z], show that K−1(R) ∼= LPic(R) ∼= Zr, where r =

h0(R)− h0(R̃) + h0(R̃/I)− h0(R/I).
Now suppose that R is any 1-dimensional commutative noetherian ring. Even if

its normalization is not finitely generated over R, show that R is K−1-regular, and
that K−n(R) = 0 for all n ≥ 2.

4.5 (Carter) Let f : R → R′ be a ring homomorphism. In II.2.10 we defined a
group K0(f) and showed in Ex. 1.14 that it fits into an exact sequence

K1(R)
f∗

−→ K1(R
′)→ K0(f)→ K0(R)

f∗

−→ K0(R
′).

Show that A 7→ K0(f ⊗ A) defines a functor on commutative rings A, and define
K−n(f) to be LnK0(f⊗−). Show that each K−n(f) is an acyclic functor, and that
the above sequence continues into negative K-theory as:

· · · → K0(R)→ K0(R
′)

∂−→ K−1(f)→ K−1(R)→

K−1(R
′)

∂−→ K−2(f)→ K−2(R)→ · · ·

With the help of higher K-theory to define K1(f) and to construct the product
“·t”, it will follow that K0(f) and hence every K−n(f) is a contracted functor.

4.6 Let T : P(R)→ P(R′) be any cofinal additive functor. Show that the functor
K0(T ) of II.2.10 and its contractions K−n(T ) are acyclic, and that they extend the
sequence of Ex. 1.14 into a long exact sequence, as in the previous exercise.

When T is the endofunctor ·m of 1.7.4, we write K0(R;Z/m) for LK0(·m) and
K−n(R;Z/m) for Ln+1K0(·m). Show that the sequence of 1.7.4 extends to a long
exact sequence

K0(R)
m−→ K0(R)→ K0(R;Z/m)→ K−1(R)

m−→ K−1(R)→ K−1(R;Z/m)→ · · · .

4.7 Let G be a finite group of order n, and let R̃ be a “maximal order” in Q[G]. It

is well known that R̃ is a regular ring containing Z[G], and that I = nR̃ is an ideal
of Z[G]; see [Bass, p. 560]. Show that K−nZ[G] = 0 for n ≥ 2, and that K−1 has
the following resolution by free abelian groups:

0→ Z→ H0(R̃)⊕H0(Z/n[G])→ H0(R̃/nR̃)→ K−1(Z[G])→ 0.
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D. Carter has shown in [Carter] that K−1Z[G] ∼= Zr ⊕ (Z/2Z)s, where s equals the
number of simple components Mni(Di) of the semisimple ring Q[G] such that the
Schur index of D is even (see 1.2.4), but the Schur index of Dp is odd at each prime
p dividing n. In particular, if G is abelian then K−1Z[G] is torsionfree (see [Bass,
p. 695]).

4.8 Coordinate hyperplanes. Let R be a regular ring. By induction on n, show that
the graded rings An = R[t0, . . . , tn]/(t0 · · · tn) are Ki-regular for all i ≤ 1. Conclude
that K1(An) = K1(R), K0(An) = K0(R) and Ki(An) = 0 for all i < 0.

Show that the rings ∆n(R) of 4.4.3 are also K1-regular.

4.9 Let Λ be a flasque ring. Show that Λ[t, t−1] is also flasque, and conclude that
Kn(Λ) = 0 for all n ≤ 0.

4.10 (Karoubi) Recall from Ex. 1.15 that the suspension ring S(R) satisfies ∂ :
K1(S(R)) ∼= K0(R). For each n ≥ 0, set K0S

n(R) = K0(S
n(R)). Show that the

functors {K ′
n = K0S

−n} form a theory of negativeK-theory for rings, and conclude
that Kn(R) ∼= K0(S

n(R)).

4.11 (Karoubi) Let f : A → B be an analytic isomorphism along S in the sense
of Ex. 3.10. Using Ex. 4.5, show that there is an exact sequence for all n ≤ 0,
continuing the sequence of Ex. 3.10:

· · · → Kn+1(S
−1A)⊕Kn+1(B)→ Kn+1(S

−1B)→
Kn(A)→ Kn(S

−1A)⊕Kn(B)→ Kn(S
−1B)→ · · · .

4.12 (Reid) Let f = y2−x3+x2 in k[x, y] and set B = k[x, y]/(f). Using Theorem
4.3, show that K−1(B) ∼= K−1(B(x,y)) ∼= Z. Let A be the subring k +m of k[x, y],
where m = fk[X, y]; show that K−2(A) ∼= K−2(Am) ∼= Z. Writing the integrally
closed ring A as the union of finitely generated normal subrings k[f, xf, yf, ...],
conclude that there is a 2-dimensional normal ring A0, finitely generated over k,
with K−2(A0) 6= 0.

4.13 (Reid) We saw in Example 4.4.3 that K−1(A) = 0 for every hensel local ring.

In this exercise we construct a complete local 2-dimensional ring with K−2(Â) 6= 0.

Let A be the ring of Exercise 4.12, and Â its completion at the maximal ideal m.
Let Âf denote the completion of A at the ideal Af . Using Ex. 4.10, show that

K−2(A) ∼= K−2(Âf ) ∼= K−2(Â), and hence that K−2(Â) 6= 0.
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§5. K2 of a ring

The group K2 of a ring was defined by J. Milnor in 1967, following a 1962 paper
by R. Steinberg on Universal Central Extensions of Chevalley groups. Milnor’s
1971 book [Milnor] is still the best source for the fundamental theorems about it.
In this section we will give an introduction to the subject, but we will not prove
the harder theorems.

Following Steinberg, we define a group in terms of generators and relations de-
signed to imitate the behavior of the elementary matrices, as described in (1.2.1).
To avoid technical complications, we shall avoid any definition of St2(R).

Definition 5.1. For n ≥ 3 the Steinberg group Stn(R) of a ring R is the group
defined by generators xij(r), with i, j a pair of distinct integers between 1 and n
and r ∈ R, subject to the following “Steinberg relations”

(5.1.1) xij(r)xij(s) = xij(r + s)

(5.1.2) [xij(r), xkℓ(s)] =





1 if j 6= k and i 6= ℓ

xiℓ(rs) if j = k and i 6= ℓ

xkj(−sr) if j 6= k and i = ℓ.

As observed in (1.3.1), the Steinberg relations are also satisfied by the elementary
matrices eij(r) which generate the subgroup En(R) of GLn(R). Hence there is a
canonical group surjection φn:Stn(R)→ En(R) sending xij(r) to eij(r).

The Steinberg relations for n+1 include the Steinberg relations for n, so there is
an obvious map Stn(R)→ Stn+1(R). We write St(R) for lim−→Stn(R), and observe
that by stabilizing the φn induce a surjection φ:St(R)→ E(R).

Definition 5.2. The group K2(R) is the kernel of φ:St(R) → E(R). Thus
there is an exact sequence of groups

1→ K2(R)→ St(R)
φ−→ GL(R)→ K1(R)→ 1.

It will follow from Theorem 5.3 below that K2(R) is an abelian group. Moreover,
it is clear that St and K2 are both covariant functors from rings to groups, just as
GL and K1 are.

Theorem 5.2.1 (Steinberg). K2(R) is an abelian group. In fact it is precisely
the center of St(R).

Proof. If x ∈ St(R) commutes with every element of St(R), then φ(x) must
commute with all of E(R). But the center of E(R) is trivial (by Ex. 1.8) so φ(x) = 1,
i.e., x ∈ K2(R). Thus the center of St(R) is contained in K2(R).

Conversely, suppose that y ∈ St(R) satisfies φ(y) = 1. Then in E(R) we have

φ([y, p]) = φ(y)φ(p)φ(y)−1φ(p)−1 = φ(p)φ(p)−1 = 1

for every p ∈ St(R). Choose an integer n large enough that y can be expressed
as a word in the symbols xij(r) with i, j < n. For each element p = xkn(s) with
k < n and s ∈ R, the Steinberg relations imply that the commutator [y, p] is an
element of the subgroup Pn of St(R) generated by the symbols xin(r) with i < n.
On the other hand, we know by Ex. 5.2 that φ maps Pn injectively into E(R). Since
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φ([y, p]) = 1 this implies that [y, p] = 1. Hence y commutes with every generator
xkn(s) with k < n.

By symmetry, this proves that y also commutes with every generator xnk(s)
with k < n. Hence y commutes with all of Stn(R), since it commutes with every
xkl(s) = [xkn(s), xnl(1)] with k, l < n. Since n can be arbitrarily large, this proves
that y is in the center of St(R).

Example 5.2.2. The group K2(Z) is cyclic of order 2. This calculation uses the
Euclidean Algorithm to rewrite elements of St(Z), and is given in §10 of [Milnor].

In fact, Milnor proves that the symbol {−1,−1} =
{
x12(1)x21(−1)x12(1)

}4
is the

only nontrivial element of ker(φn) for all n ≥ 3. It is easy to see that {−1,−1} is
in the kernel of each φn, because the 2 × 2 matrix e12(1)e21(−1)e12(1) =

(
0
−1

1
0

)

has order 4 in GLn(Z). We will see in Example 6.2.1 below that {−1,−1} is still
nonzero in K2(R).

Tate has used the same Euclidean Algorithm type techniques to show that
K2(Z[

√
−7]) and K2(Z[

√
−15]) are also cyclic of order 2, generated by the symbol

{−1,−1}, while K2(R) = 1 for the imaginary quadratic rings R = Z[i], Z[
√
−3],

Z[
√
−2] and Z[

√
−11]. See the appendix to [BT] for details.

Example 5.2.3. For every field F we have K2(F [t]) = K2(F ). This was origi-
nally proven by R.K. Dennis and J. Sylvester using the same Euclidean Algorithm
type techniques as in the previous example. We shall not describe the details,
because we shall see in chapter V that K2(R[t]) = K2(R) for every regular ring.

Universal Central Extensions

The Steinberg group St(R) can be described in terms of universal central extensions,
and the best exposition of this is [Milnor, §5]. Properly speaking, this is a subject
in pure group theory; see [Suz, 2.9]. However, since extensions of a group G are
classified by the cohomology groupH2(G), the theory of universal central extensions
is also a part of homological algebra; see [WHomo, §6.9]. Here are the relevant
definitions.

Let G be a group and A an abelian group. A central extension of G by A is a

short exact sequence of groups 1→ A→ X
π−→ G→ 1 such that A is in the center

of X. We say that a central extension is split if it is isomorphic to an extension of

the form 1→ A→ A×G pr−→ G→ 1, where pr(a, g) = g.

If A or π is clear from the context, we may omit it from the notation. For
example, 1 → K2(R) → St(R) → E(R) → 1 is a central extension by Steinberg’s
Theorem 5.2.1, but we usually just say that St(R) is a central extension of E(R).

Two extensions X and Y of G by A are said to be equivalent if there is an
isomorphism f :X → Y which is the identity on A and which induces the identity
map on G. It is well-known that the equivalence classes of central extensions of G
by a fixed group A are in 1–1 correspondence with the elements of the cohomology
group H2(G;A); see [WHomo, §6.6].

More generally, by a homomorphism over G from X
π−→ G to another central

extension 1 → B → Y
τ−→ G → 1 we mean a group map f :X → Y such that

π = τf .
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Definition 5.3.1. A universal central extension of G is a central extension
X

π−→ G such that for every other central extension Y
τ−→ G there is a unique

homomorphism f over G from X to Y . Clearly a universal central extension is
unique up to isomorphism over G, provided it exists.

Lemma 5.3.2. If G has a universal central extension X, then both G and X
must be perfect groups.

Proof. Otherwise B = X/[X,X] is nontrivial, and there would be two homo-
morphisms over G from X to the central extension 1 → B → B × G → G → 1,
namely the maps (0, π) and (pr, π), where pr is the natural projection X → B.

Lemma 5.3.3. If X and Y are central extensions of G, and X is a perfect group,
there is at most one homomorphism over G from X to Y .

Proof. If f and f1 are two such homomorphisms, then for any x and x′ in X
we can write f1(x) = f(x)c, f1(x

′) = f(x′)c′ for elements c and c′ in the center
of Y . Therefore f1(xx

′x−1(x′)−1) = f(xx′x−1(x′)−1). Since the commutators
[x, x′] = xx′x−1(x′)−1 generate X we must have f1 = f .

Example 5.3.4. Every presentation of G gives rise to two natural central ex-
tensions as follows. A presentation corresponds to the choice of a free group F
mapping onto G, and a description of the kernel R ⊂ F . Since [R,F ] is a normal
subgroup of F , we may form the following central extensions:

1→ R/[R,F ]→F/[R,F ]→ G→ 1,

1→ (R ∩ [F, F ])/[R,F ]→[F, F ]/[R,F ]→ [G,G]→ 1.(5.3.5)

The group (R∩ [F, F ])/[R,F ] in (5.3.5) is the homology group H2(G;Z); this iden-
tity was discovered in 1941 by Hopf [WHomo, 6.8.8]. If G = [G,G], both are
extensions of G, and (5.3.5) is the universal central extension by the following
theorem.

Recognition Theorem 5.4. Every perfect group G has a universal central
extension, namely the extension (5.3.5):

1→ H2(G;Z)→ [F, F ]/[R,F ]→ G→ 1.

Let X be any central extension of G, the following are equivalent: (1) X is a
universal central extension; (2) X is perfect, and every central extension of X
splits; (3) H1(X;Z) = H2(X;Z) = 0.

Proof. Given any central extension X of G, the map F → G lifts to a map
h:F → X because F is free. Since h(R) is in the center of X, h([R,F ]) = 1. Thus h
induces a map from [F, F ]/[R,F ] to X over G. This map is unique by Lemma 5.3.3.
This proves that (5.3.5) is a universal central extension, and proves the equivalence
of (1) and (3). The implication (1)⇒ (2) is Lemma 5.3.2 and Ex. 5.7, and (2)⇒ (1)
is immediate.
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Theorem 5.5 (Kervaire, Steinberg). The Steinberg group St(R) is the uni-
versal central extension of E(R). Hence

K2(R) ∼= H2(E(R);Z).

This theorem follows immediately from the Recognition Theorem 5.4, and the
following splitting result:

Proposition 5.5.1. If n ≥ 5, every central extension Y
π−→ Stn(R) is split.

Hence Stn(R) is the universal central extension of En(R).

Proof. We first show that if j 6= k and l 6= i then every two elements y, z ∈
Y with π(y) = xij(r) and π(z) = xkl(s) must commute in Y . Pick t distinct
from i, j, k, l and choose y′, y′′ ∈ Y with π(y′) = xit(1) and π(y′′) = xtj(r). The
Steinberg relations imply that both [y′, z] and [y′′, z] are in the center of Y , and
since π(y) = π[y′, y′′] this implies that z commutes with [y′, y′′] and y.

We now choose distinct indices i, j, k, l and elements u, v, w ∈ Y with

π(u) = xij(1), π(v) = xjk(s) and π(w) = xkl(r).

If G denotes the subgroup of Y generated by u, v, w then its commutator subgroup
[G,G] is generated by elements mapping under π to xik(s), xjl(sr) or xil(sr).
From the first paragraph of this proof it follows that [u,w] = 1 and that [G,G] is
abelian. By Ex. 5.3 we have [[u, v], w] = [u, [v, w]]. Therefore if π(y) = xik(s) and
π(z) = xjl(sr) we have [y, w] = [u, z]. Taking s = 1, this identity proves that the
element

yil(r) = [u, z], where π(u) = xij(1), π(z) = xjl(r)

doesn’t depend upon the choice of j, nor upon the lifts u and z of xij(1) and xjl(r).

We claim that the elements yij(r) satisfy the Steinberg relations, so that there is a
group homomorphism Stn(R)→ Y sending xij(r) to yij(r). Such a homomorphism
will provide the desired splitting of the extension π. The first paragraph of this
proof implies that if j 6= k and l 6= i then yij(r) and ykl(s) commute. The identity
[y, w] = [u, z] above may be rewritten as

[yik(r), ykl(s)] = yil(rs) for i, k, l distinct.

The final relation yij(r)yij(s) = yij(r+s) is a routine calculation with commutators
left to the reader.

Remark 5.5.2 (Stability for K2). The kernel of Stn(R)→ En(R) is written
as K2(n,R), and there are natural maps K2(n,R)→ K2(R). If R is noetherian of
dimension d, or more generally has sr(R) = d+1, then the following stability result
holds: K2(n,R) ∼= K2(R) for all n ≥ d+3. This result evolved in the mid-1970’s as
a sequence of results by Dennis, Vaserstein, van der Kallen and Suslin-Tulenbaev.
We refer the reader to section 19C25 of Math Reviews for more details.
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Transfer maps on K2

Here is a description of K2(R) in terms of the translation category tP(R) of
finitely generated projective R-modules, analogous to the description given for K1

in Corollary 1.6.3.

Proposition 5.6 (Bass). K2(R) ∼= lim−→P∈tPH2([Aut(P ),Aut(P )];Z).

Proof. If G is a group, then G acts by conjugation upon [G,G] and hence upon
the homology H2([G,G];Z). Taking coinvariants, we obtain the functor H ′

2 from
groups to abelian groups defined by H ′

2(G) = H0(G;H2([G,G];Z)). By construc-
tion, G acts trivially upon H ′

2(G) and commutes with direct limits of groups.

Note that if G acts trivially upon H2([G,G];Z) then H
′
2(G) = H2([G,G];Z). For

example, GL(R) acts trivially upon the homology of E(R) = [GL(R), GL(R)] by
Ex. 1.13. By Theorem 5.5 this implies that H ′

2(GL(R)) = H2(E(R);Z) = K2(R).

Since morphisms in the translation category tP(R) are well-defined up to iso-
morphism, it follows that P 7→ H ′

2(Aut(P )) is a well-defined functor from tP(R)
to abelian groups. Hence we can take the filtered colimit of this functor, as we did
in 1.6.3. Since the free modules are cofinal in tP(R), the result follows from the
identification of the colimit as

lim
n→∞

H ′
2(GLn(R))

∼= H ′
2(GL(R)) = K2(R).

Corollary 5.6.1 (Morita Invariance of K2). The group K2(R) depends
only upon the category P(R). That is, if R and S are Morita equivalent rings
(see II.2.7) then K2(R) ∼= K2(S). In particular, the maps R → Mn(R) induce
isomorphisms on K2:

K2(R) ∼= K2(Mn(R)).

Corollary 5.6.2. Any additive functor T : P(S) → P(R) induces a homo-
morphism K2(T ):K2(S)→ K2(R), and T1⊕T2 induces the sum K2(T1)+K2(T2).

Proof. The proof of 1.7 goes through, replacing H1(AutP ) by H
′
2(AutP ).

Corollary 5.6.3 (Finite transfer). Let f :R→ S be a ring homomorphism
such that S is finitely generated projective as an R-module. Then the forgetful func-
tor P(S)→ P(R) induces a natural transfer homomorphism f∗:K2(S)→ K2(R).

If R is commutative, so that K2(R) is a K0(R)-module by Ex. 5.4, the com-
position f∗f

∗:K2(R) → K2(S) → K2(R) is multiplication by [S] ∈ K0(R). In
particular, if S is free of rank n, then f∗f

∗ is multiplication by n.

Proof. The composite f∗f
∗ is obtained from the self-map T (P ) = P ⊗R S of

P(S). It induces the self-map ⊗RS on tP(R) giving rise to multiplication by [S]
on K2(R) in Ex. 5.5.

We will see in chapter Vthat we can also define a transfer map K2(S)→ K2(R)
when S is a finite R-algebra of finite projective dimension over R.
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Example 5.6.4. Let D be a division algebra of dimension d = n2 over its center
F . As in Example 1.7.2, the transfer i∗ : K2(D)→ K2(F ) has a kernel of exponent
n2, since i∗i∗ is induced by the functor T (M) =M ⊗D (D⊗F D) ∼=Md and hence
is multiplication by n2.

If E is a splitting field for D, the construction of Ex. 1.17 yields a natural
map θE : K2(E) → K2(D). If n is squarefree, Merkurjev and Suslin construct
a reduced norm Nred : K2(D) → K2(F ) such that NredθE = NE/F ; see [MS]. If
K2(F ) → K2(F ) is injective, it is induced by the norm map K2(D) → K2(E), as
in 1.2.4.

Relative K2 and relative Steinberg groups

Given an ideal I in a ring R, we may construct the augmented ring R⊕ I, with
multiplication (r, x)(s, y) = (rs, ry + xs + xy). This ring is equipped with two
natural maps pr, add:R ⊕ I → R, defined by pr(r, x) = r and add(r, x) = r + x.
This “double” ring was used to define the relative group K0(I) in Ex. II.2.3.

Let St′(R, I) denote the normal subgroup of St(R⊕ I) generated by all xij(0, v)
with v ∈ I. Clearly there is a map from St′(R, I) to the subgroup E(R⊕ I, 0⊕ I)
of GL(R⊕ I) (see Lemma 2.1), and an exact sequence

1→ St′(R, I)→ St(R⊕ I) pr−→ St(R)→ 1.

The following definition is taken from [Keu78] and [Lo78], and modifies [Milnor].

Definition 5.7. The relative Steinberg group St(R, I) is defined to be the quo-
tient of St′(R, I) by the normal subgroup generated by all “cross-commutators”
[xij(0, u), xkl(v,−v)] with u, v ∈ I.

Clearly the homomorphism St(R⊕I) add−−→ St(R) sends these cross-commutators

to 1, so it induces a homomorphism St(R, I)
add−−→ St(R) whose image is the normal

subgroup generated by the xij(v), v ∈ I. By the definition of E(R, I), the surjection
St(R) → E(R) maps St(R, I) onto E(R, I). We define K2(R, I) to be the kernel
of the map St(R, I)→ E(R, I).

Theorem 5.7.1. If I is an ideal of a ring R, then the exact sequence of Propo-
sition 2.3 extends to an exact sequence

K2(R, I)→ K2(R)→ K2(R/I)→ K1(R, I)→ K1(R)→ K1(R/I)→ K0(I) · · ·

Proof. We have a commutative diagram with exact rows:

K2(R, I) −−−−→ St(R, I) −−−−→ GL(I) −−−−→ K1(R, I)y add

y into

y
y

K2(R) −−−−→ St(R) −−−−→ GL(R) −−−−→ K1(R)y onto

y
y

y

K2(R/I) −−−−→ St(R/I) −−−−→ GL(R/I) −−−−→ K1(R/I)
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The exact sequence now follows from the Snake Lemma and Ex. 5.1.

If I and J are ideals in a ring R with I ∩ J = 0, we may also consider I as an
ideal of R/J . As in §1, these rings form a Milnor square:

R −−−−→ R/J
y

y

R/I −−−−→ R/(I + J).

Theorem 5.8 (Mayer-Vietoris). If I and J are ideals of R with I ∩ J = 0,
then the Mayer-Vietoris sequence of Theorem 2.6 can be extended to K2:

K2(R)
∆−→K2(R/I)⊕K2(R/J)

±−→ K2(R/I + J)
∂−→

K1(R)
∆−→K1(R/I)⊕K1(R/J)

±−→ K1(R/I + J)
∂−→ K0(R) −→ · · ·

Proof. By Ex. 5.10, we have the following commutative diagram:

K2(R, I) −→ K2(R) −→ K2(R/I) −→ K1(R, I) −→ K1(R) −→ K1(R/I)

onto

y
y

y
∥∥∥

y
y

K2(R/J, I) −→ K2(R/J) −→ K2(
R
I+J ) −→ K1(R/J, I) −→ K1(R/J) −→ K1(

R
I+J )

By chasing this diagram, we obtain the exact Mayer-Vietoris sequence.

Commutative Banach Algebras

Let R be a commutative Banach algebra over the real or complex numbers. Just
as SK1(R) = π0SL(R) and K1(R) surjects onto π0GL(R) (by 1.5 and 1.5.1), there
is a relation between K2(R) and π1GL(R).

Proposition 5.9. Let R be a commutative Banach algebra. Then there is a
surjection from K2(R) onto π1SL(R) = π1E(R).

Proof. ([Milnor, p.59]) By Proposition 1.5, we know that En(R) is the path
component of the identity in the topological group SLn(R), so π1SL(R) = π1E(R).
Using the exponential map Mn(R) → GLn(R), we see that En(R) is locally con-

tractible, so it has a universal covering space Ẽn. The group map Ẽn → En(R) is
a central extension with kernel π1En(R). Taking the direct limit as n → ∞, we

get a central extension 1 → π1E(R) → Ẽ → E(R) → 1. By universality, there

is a unique homomorphism φ̃:St(R) → Ẽ over E(R), and hence a unique map

K2(R)→ π1E(R). Thus it suffices to show that φ̃ is onto.

The map φ̃ may be constructed explicitly as follows. Let ẽij(r) ∈ Ẽ be the end-
point of the path which starts at 1 and lifts the path t 7→ eij(tr) in E(R). We claim

that the map φ̃ sends xij(r) to ẽij(r). To see this, it suffices to show that the Stein-
berg relations (5.1) are satisfied. But the paths ẽij(tr)ẽij(ts) and [ẽij(tr), ẽkl(s)]
cover the two paths eij(tr)eij(s) and [eij(tr), ekl(s)] in E(R). Evaluating at t = 1
yields the Steinberg relations.
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By Proposition 1.5 there is a neighborhood Un of 1 in SLn(R) in which we
may express every matrix g as a product of elementary matrices eij(r), where r
depends continuously upon g. Replacing each eij(r) with ẽij(r) defines a continuous

lifting of Un to Ẽn. Therefore the image of each map φ̃:Stn(R) → Ẽn contains a

neighborhood Ũn of 1. Since any open subset of a connected group (such as Ẽn)

generates the entire group, this proves that each φ̃n is surjective. Passing to the

limit as n→∞, we see that φ̃:St(R)→ Ẽ is also surjective.

Example 5.9.1. If R = R then π1SL(R) ∼= π1SO is cyclic of order 2. It follows
that K2(R) has at least one nontrivial element. In fact, the symbol {−1,−1} of
Example 5.1.1 maps to the nonzero element of π1SO. We will see in 6.8.3 below that
the kernel of K2(R)→ π1SO is a uniquely divisible abelian group with uncountably
many elements.

Example 5.9.2. Let X be a compact space with a nondegenerate basepoint.
By Ex. II.3.11, we have KO−2(X) ∼= [X,ΩSO] = π1SL(R

X), so K2(R
X) maps

onto the group KO−2(X).
Similarly, since ΩU ≃ Z × ΩSU , we see by Ex. II.3.11 that KU−2(X) ∼=

[X,ΩU ] = [X,Z]× [X,ΩSU ]. Since π1SL(C
X) = π1(SU

X) = [X,ΩSU ] and [X,Z]
is a subgroup of CX , we can combine Proposition 5.9 with Example 1.5.3 to obtain
the exact sequence

K2(C
X)→ KU−2(X)→ CX

exp−−→ K1(C
X)→ KU−1(X)→ 0.

Steinberg symbols

If two matrices A,B ∈ E(R) commute, we can construct an element in K2(R) by
lifting their commutator to St(R). To do this, choose a, b ∈ St(R) with φ(a) = A,
φ(b) = B and define A⋆B = [a, b] ∈ K2(R). This definition is independent of the
choice of a and b because any other lift will equal ac, bc′ for central elements c, c′,
and [ac, bc′] = [a, b].

If P ∈ GL(R) then (PAP−1)⋆(PBP−1) = A⋆B. To see this, suppose that
A,B, P ∈ GLn(R) and let g ∈ St2n(R) be a lift of the block diagonal matrix
D = diag(P, P−1). Since gag−1 and gbg−1 lift PAP−1 and PBP−1 and [a, b] is
central we have the desired relation: [gag−1, gbg−1] = g[a, b]g−1 = [a, b].

The ⋆ symbol is also skew-symmetric and bilinear: (A⋆B)(B⋆A) = 1 and
(A1A2)⋆B = (A1⋆B)(A2⋆B). These relations are immediate from the commu-
tator identies [a, b][b, a] = 1 and [a1a2, b] = [a1, [a2, b]][a2, b][a1, b].

Definition 5.10. If r, s are commuting units in a ringR, we define the Steinberg
symbol {r, s} ∈ K2(R) to be

{r, s} =



r

r−1

1


⋆



s

1
s−1


 =



r

1
r−1


⋆



s

s−1

1


 .

Because the ⋆ symbols are skew-symmetric and bilinear, so are the Steinberg
symbols: {r, s}{s, r} = 1 and {r1r2, s} = {r1, s}{r2, s}.
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Example 5.10.1. For any unit r of R we set wij(r) = xij(r)xji(−r−1)xij(r)
and hij(r) = wij(r)wij(−1). In GL(R), φwij(r) is the monomial matrix with r and
−r−1 in the (i, j) and (j, i) places, while φhij(r) is the diagonal matrix with r and
r−1 in the ith and jth diagonal spots. By definition we then have:

{r, s} = [h12(r), h13(s)] = [hij(r), hik(s)].

Lemma 5.10.2. If both r and 1− r are units of R, then in K2(R) we have:

{r, 1− r} = 1 and {r,−r} = 1.

Proof. By Ex. 5.8, w12(−1) = w21(1) = x21(1)x12(−1)x21(1), w12(r)x21(1) =
x12(−r2)w12(r) and x21(1)w12(s) = w12(s)x12(−s2). If s = 1−r we can successively
use the identities r − r2 = rs, r + s = 1, s− s2 = rs and 1

r +
1
s = 1

rs to obtain:

w12(r)w12(−1)w12(s) = x12(−r2)w12(r)x12(−1) w12(s)x12(−s2)
= x12(rs)x21(−r−1)x12(0)x21(−s−1)x12(rs)

= x12(rs)x21
(−1
rs

)
x12(rs)

= w12(rs).

Multiplying by w12(−1) yields h12(r)h12(s) = h12(rs) when r + s = 1. By Ex. 5.9,
this yields the first equation {r, s} = 1. Since −r = (1 − r)/(1 − r−1), the first
equation implies the second equation:

(5.10.3) {r,−r} = {r, 1− r}{r, 1− r−1}−1 = {r−1, 1− r−1} = 1.

Remark 5.10.4. The equation {r,−r} = 1 holds more generally for every unit
r, even if 1− r is not a unit. This follows from the fact that K2(Z[r,

1
r ]) injects into

K2(Z[r,
1
r ,

1
1−r ]), a fact we shall establish in chapter V, 6.1.3. For a direct proof,

see [Milnor, 9.8].
The following useful result was proven for fields and division rings in §9 of [Mil-

nor]. It was extended to commutative semilocal rings by Dennis and Stein [DS],
and we cite it here for completeness.

Theorem 5.10.5. If R is a field, division ring, local ring, or even a semilocal
ring, then K2(R) is generated by the Steinberg symbols {r, s}.

Definition 5.11 (Dennis-Stein symbols). If r, s ∈ R commute and 1− rs is
a unit then the element

〈r, s〉 = xji
(
−s(1− rs)−1

)
xij(−r)xji(s)xij

(
(1− rs)−1r

)
hij(1− rs)−1

of St(R) belongs to K2(R), because φ〈r, s〉 = 1. By Ex. 5.11, it is independent of
the choice of i 6= j, and if r is a unit of R then 〈r, s〉 = {r, 1− rs}. If I is an ideal
of R and s ∈ I then we can even consider 〈r, s〉 as an element of K2(R, I); see 5.7.
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These elements are called Dennis-Stein symbols because they were first studied in
[DS], where the following identities were established.

(D1) 〈r, s〉〈s, r〉 = 1
(D2) 〈r, s〉〈r, t〉 = 〈r, s+ t− rst〉
(D3) 〈r, st〉 = 〈rs, t〉〈tr, s〉 (this holds in K2(R, I) if any of r, s, or t are in I.)

We warn the reader that the meaning of the symbol 〈r, s〉 changed circa 1980.
We use the modern definition of this symbol, which equals 〈−r, s〉−1 in the old
literature, including that of loc. cit. By (D3) of our definition, 〈r, 1〉=0 for all r.

The following result is essentially due to Maazen, Stienstra and van der Kallen.
However, their work preceded the correct definition of K2(R, I) so the correct his-
torical reference is [Keune].

Theorem 5.11.1. (a) Let R be a commutative local ring, or a field. Then K2(R)
may be presented as the abelian group generated by the symbols 〈r, s〉 with r, s ∈ R
such that 1− rs is a unit, subject only to the relations (D1), (D2) and (D3).

(b) Let I be a radical ideal, contained in a commutative ring R. Then K2(R, I)
may be presented as the abelian group generated by the symbols 〈r, s〉 with either
r ∈ R and s ∈ I, or else r ∈ I and s ∈ R. These generators are subject only to the
relations (D1), (D2), and the relation (D3) whenever r, s, or t is in I.

The product K1(R)⊗K1(R)→ K2(R)

Let R be a commutative ring, and suppose given two invertible matrices g ∈
GLm(R), h ∈ GLn(R). Identifying the tensor product Rm ⊗ Rn with Rm+n, then
g⊗ 1n and 1m⊗ h are commuting automorphisms of Rm⊗Rn. Hence there is a ring
homomorphism from A = Z[x, x−1, y, y−1] to E = EndR(R

m ⊗ Rn) ∼= Mm+n(R)
sending x and y to g ⊗ 1n and 1m ⊗ h. Recall that by Morita Invariance 5.6.1 the
natural map K2(R)→ K2(E) is an isomorphism.

Definition 5.12. The element {g, h} of K2(R) is defined to be the image of
the Steinberg symbol {x, y} under the homomorphism K2(A)→ K2(E) ∼= K2(R).

Note that if m = n = 1 this agrees with the definition of the usual Steinberg
symbol in 5.10, because R = E.

Lemma 5.12.1. The symbol {g, h} is independent of the choice of m and n, and
is skew-symmetric. Moreover, for each α ∈ GLm(R) we have {g, h} = {αgα−1, h}.

Proof. If we embed GLm(R) and GLn(R) in GLm′(R) and GLn′(R), respec-

tively, then we embed E into the larger ring E′ = EndR(R
m′ ⊗Rn′

), which is also
Morita equivalent to R. Since the natural maps K2(R) → K2(E) → K2(E

′) are
isomorphisms, and K2(A) → K2(E) → K2(E

′) ∼= K2(R) defines the symbol with
respect to the larger embedding, the symbol is independent of m and n.

Any linear automorphism of Rm+n induces an inner automorphism of E. Since
the composition of R→ E with such an automorphism is still R→ E, the symbol
{g, h} is unchanged by such an operation. Applying this to α ⊗ 1n, the map A →
E → E sends x and y to αgα−1⊗1n and 1m⊗ h, so {g, h} must equal {αgα−1, h}.

As another application, note that if m = n the inner automorphism of E induced
by Rm⊗Rn ∼= Rn⊗Rm sends {h, g} to the image of {y, x} under K2(A)→ K2(E).
This proves skew-symmetry, since {y, x} = {x, y}−1.



III. K1 AND K2 OF A RING 45

Theorem 5.12.2. For every commutative ring R, there is a skew-symmetric
bilinear pairing K1(R)⊗K1(R)→ K2(R) induced by the symbol {g, h}.

Proof. We first show that the symbol is bimultiplicative when g and g′ com-
mute in GLm(R). Mapping A[z, z−1] into E by z 7→ g′ ⊗ 1n allows us to deduce
{gg′, h} = {g, h}{g′, h} from the corresponding property of Steinberg symbols. If g
and g′ do not commute, the following trick establishes bimultiplicativity:

{gg′, h} =
{(

g

0

0

1

)(
1

0

0

g′

)
, h

}
=

{(
g

0

0

1

)
, h

}{(
1

0

0

g′

)
, h

}
= {g, h}{g′, h}.

If either g or h is a commutator, this implies that the symbol {g, h} vanishes in the
abelian group K2(R). Since the symbol {g, h} is compatible with stabilization, it
describes a function K1(R)×K1(R)→ K2(R) which is multiplicative in each entry:
{gg′, h} = {g, h}{g′, h}. If we write K1 and K2 additively the function is additive
in each entry, i.e., bilinear.

EXERCISES

5.1 Relative Steinberg groups. Let I be an ideal in a ring R. Show that there is an

exact sequence St(R, I)
add−−→ St(R)→ St(R/I)→ 1.

5.2 Consider the function ρn:R
n−1 → Stn(R) sending (r1, ..., rn−1) to the product

x1n(r1)x2n(r2) · · ·xn−1,n(rn−1). The Steinberg relations show that this is a group
homomorphism.

Show that ρ is an injection by showing that the composite φρ:Rn−1 → Stn(R)→
GLn(R) is an injection. Then show that the elements xij(r) with i, j < n normalize
the subgroup Pn = ρ(Rn) of Stn(R), i.e., that xij(r)Pnxij(−r) = Pn.

Use this and induction to show that the subgroup Tn of Stn(R) generated by
the xij(r) with i < j maps isomorphically onto the subgroup of lower triangular
matrices in GLn(R).

5.3 Let G be a group whose commutator group [G,G] is abelian. Prove that the
Jacobi identity holds for every u, v, w ∈ G:

[u, [v, w]][v, [w, u]][w, [u, v]] = 1.

If in addition [u,w] = 1 this implies that [[u, v], w] = [u, [v, w]].

5.4 Product with K0. Construct a product operation K0(R) ⊗ K2(A) → K2(A),
assuming that R is commutative and A is an associative R-algebra. To do this,
fix a finitely generated projective R-module P . Each isomorphism P ⊕ Q = Rn

gives rise to a homomorphism hP :GLm(A) → GLmn(A) ⊂ GL(A) sending α to
α ⊗ 1 and Em(A) to E(A). Show that hP is well-defined up to conjugation by an
element of E(A). Since conjugation acts trivially on homology, this implies that the
induced map hP ∗:H2(Em(A);Z) → H2(E(A);Z) = K2(A) is well-defined. Then
show that hP⊕Q

∗ = hP ∗ ⊕ hQ∗ and pass to the limit as m → ∞ to obtain the
required endomorphism [P ]· of K2(A).

5.5 If R is commutative and P ∈ P(R), show that Q 7→ Q⊗R P defines a functor
from the translation category tP(A) to itself for every R-algebra A, and that the
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resulting endomorphism of K2(A) = lim−→H2([Aut(Q),Aut(Q)]) is the map hP∗ of
the previous exercise. Use this description to show that the product makes K2(A)
into a module over the ring K0(R).

5.6 Projection Formula. Suppose that f :R → S is a finite map of commutative
rings, with S ∈ P(R). Show that for all r ∈ Ki(R) and s ∈ Kj(S) with i + j = 2
we have f∗(f

∗(r) · s) = r · f∗(s) in K2(R). The case i = 0 states that the transfer
f∗:K2(S)→ K2(R) is K0(R)-linear, while the case i = 1 yields the useful formula
f∗{r, s} = {r,Ns} for Steinberg symbols in K2(R), where r ∈ R×, s ∈ S× and
Ns = f∗(s) ∈ R× is the norm of s.

5.7 If Y
ρ−→ X and X

π−→ G are central extensions, show that the “composition”

Y
πρ−→ G is also a central extension. If X is a universal central extension of G,

conclude that every central extension Y
ρ−→ X splits.

5.8 Show that the following identies hold in St(R) (for i, j and k distinct).
(a) wij(r)wij(−r) = 1;
(b) wik(r)xij(s)wik(−r) = xkj(−r−1s);
(c) wij(r)xij(s)wij(−r) = xji(−r−1sr−1);
(d) wij(r)xji(s)wij(−r) = xij(−rsr);
(e) wij(r)wji(r

−1) = 1;

5.9 Use the previous exercise to show that {r, s} = hij(rs)hij(s)
−1hij(r)

−1. Hint:
Conjugate hij(s) by wik(r)wik(−1).
5.10 Excision. If I and J are ideals in a ring R with I ∩ J = 0, we may also
consider I as an ideal of R/J . Show that St(R, I) surjects onto St(R/J, I), while
the subgroups E(R, I) and E(R/J, I) of GL(I) are equal. Use the 5-lemma to
conclude that K1(R, I) ∼= K1(R/J, I) and that K2(R, I)→ K2(R/J, I) is onto.

In fact, the sequence I/I2 ⊗R⊗R J/J
2 → K2(R, I) → K2(R/J, I) → 0 is exact,

where the first map sends x⊗ y to 〈x, y〉; see [Swan71].

5.11 Dennis-Stein symbols. Let 〈r, s〉ij denote the element of St(R) given in Def-
inition 5.11. Show that this element is in K2(R). Then use Ex. 5.8 to show that
if w = wik(1)wjℓ(1)w

2
kℓ(1) (so that φ(w) is the permutation matrix sending i, j to

k, ℓ) the permutation matrix send i, j to k, ℓ then w 〈r, s〉ij w−1 = 〈r, s〉kℓ. This
shows that the Dennis-Stein symbol is independent of the choice of indices i, j.

5.12 Let A be an abelian group and F a field. Show that, for all n ≥ 5, homomor-

phisms K2(F )
c−→ A are in 1–1 correspondence with central extensions of SLn(F )

having kernel A.

5.13 If p is an odd prime, use Theorem 5.11.1 to show that K2(Z/p
n) = 1. If n ≥ 2,

show that K2(Z/2
n) ∼= K2(Z/4) ∼= {±1} on {−1,−1} = 〈−1,−2〉 = 〈2, 2〉.

Using the Mayer-Vietoris sequence 5.8, conclude that K1(R) = R× = {±1} for
the ring R = Z[x]/(x2 − p2n). Note that R/(x± pn)R = Z.

5.14 Let R be a commutative ring, and let ΩR denote the module of Kähler differ-
entials of R over Z, as in Ex. 2.6.
(a) If I is a radical ideal of R, show that there is a surjection from K2(R, I) onto

I ⊗R ΩR/I , sending 〈x, r〉 to x⊗ dr (r ∈ R, x ∈ I).
(b) If I2 = 0, show that the kernel of the map in (a) is generated by the Dennis-

Stein symbols 〈x, y〉 with x, y ∈ I.
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(c) (Van der Kallen) The dual numbers over R is the ring R[ε] with ε2 = 0. If
1
2 ∈ R, show that the map K2(R[ε], ε)→ ΩR of part (a) is an isomorphism.

(d) Let k be a field. Show that the group K2(k[[t]], t) is ℓ-divisible for every ℓ
invertible in k. If char(K) = p > 0, show that this group is not p-divisible.

5.15 Assume the fact that Z/2 is K2-regular (see 3.4 and chapter V). Show that:
(a) K2(Z/4[x]) is an elementary abelian 2-group with basis 〈2, 2〉, 〈2xn, x〉, and
〈2x2n+1, 2〉, n ≥ 0. Hint: Split the mapK2(A, 2)→ ΩA/2 ∼= Z/2[x] of Ex. 5.14

and use 0 = 〈2f, 1〉 = 〈2(f + f2), 2〉.
(b) The group K2(Z/4[x, y]) is an elementary abelian 2-group with basis 〈2, 2〉,
〈2xmyn, x〉, 〈2xmyn, y〉 (m,n ≥ 0) and 〈2xmyn, x〉 (one of m,n odd).

(c) Consider the maps ∂1 : NK2(Z/4) → K2(Z/4) and ∂2 : N2K2(Z/4) →
NK2(Z/4) induced by the maps Z/4[x]→ Z/4 sending x to 1, and Z/4[x, y]→
Z/4[x] sending y to 1 − x, respectively. Show that the following sequence is
exact: N2K2(Z/4)→ NK2(Z/4)→ K2(Z/4)→ 0.
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§6. K2 of fields

The following theorem was proven by Hideya Matsumoto in 1969. We refer the
reader to [Milnor, §12] for a self-contained proof.

Matsumoto’s Theorem 6.1. If F is a field then K2(F ) is the abelian group
generated by the set of Steinberg symbols {x, y} with x, y ∈ F×, subject only to the
relations:

(1) (Bilinearity) {xx′, y} = {x, y}{x′, y} and {x, yy′} = {x, y}{x, y′};
(2) (Steinberg Identity) {x, 1− x} = 1 for all x 6= 0, 1.

In other words, K2(F ) is the quotient of F× ⊗ F× by the subgroup gener-
ated by the elements x ⊗ (1 − x). Note that the calculation (5.10.3) implies that
{x,−x} = 1 for all x, and this implies that the Steinberg symbols are skew-
symmetric: {x, y}{y, x} = {x,−xy}{y,−xy} = {xy,−xy} = 1.

Corollary 6.1.1. K2(Fq) = 1 for every finite field Fq.

Proof. If x generates the cyclic group F×
q , we must show that the generator x⊗x

of the cyclic group F×
q ⊗F×

q vanishes in K2. If q is even, then {x, x} = {x,−x} = 1,

so we may suppose that q is odd. Since {x, x}2 = 1 by skew-symmetry, we have
{x, x} = {x, x}mn = {xm, xn} for every odd m and n. Since odd powers of x are
the same as non-squares, it suffices to find a non-square u such that 1 − u is also
a non-square. But such a u exists because u 7→ (1− u) is an involution on the set
Fq−{0, 1}, and this set consists of (q−1)/2 non-squares but only (q−3)/2 squares.

Example 6.1.2. Let F (t) be a rational function field in one variable t over F .
Then K2(F ) is a direct summand of K2F (t).

To see this, we construct a map λ:K2F (t)→ K2(F ) inverse to the natural map
K2(F ) → K2F (t). To this end, we define the leading coefficient of the rational
function f(t) = (a0t

n + · · ·+ an)/(b0t
m + · · ·+ bm) to be lead(f) = a0/b0 and set

λ({f, g}) = {lead(f), lead(g)}. To see that this defines a homomorphism K2F (t)→
K2(F ), we check the presentation in Matsumoto’s Theorem. Bilinearity is clear
from lead(f1f2) = lead(f1)lead(f2), and {lead(f), lead(1− f)} = 1 holds in K2(F )
because lead(1−f) is either 1, 1−lead(f) or −lead(f), according to whetherm > n,
m = n or m < n.

Because K2 commutes with filtered colimits, it follows that K2(F ) injects into
K2F (T ) for every purely transcendental extension F (T ) of F .

Lemma 6.1.3. For every field extension F ⊂ E, the kernel of K2(F )→ K2(E)
is a torsion subgroup.

Proof. E is an algebraic extension of some purely transcendental extension
F (X) of F , and K2(F ) injects into K2F (X) by Example 6.1.2. Thus we may
assume that E is algebraic over F . Since E is the filtered union of finite extensions,
we may even assume that E/F is a finite field extension. But in this case the result
holds because (by 5.6.3) the composite K2(F )→ K2(E)→ K2(F ) is multiplication
by the integer [E : F ].

The next result is useful for manipulations with symbols.
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Lemma 6.1.4 (Bass-Tate). If E = F (u) is a field extension of F , then every
symbol of the form {b1u− a1, b2u− a2} (ai, bi ∈ F ) is a product of symbols {ci, di}
and {ci, u− di} with ci, di ∈ F .

Proof. Bilinearity allows us to assume that b1 = b2 = 1. Set x = u − a1,
y = u− a2 and a = a2 − a1, so x = a+ y. Then 1 = a

x + y
x yields the relation 1 =

{ax ,
y
x}. Using {x, x} = {−1, x}, this expands to the desired expression: {x, y} =

{a, y}{−1, x}{a−1, x}.

Together with the Projection Formula (Ex. 5.6), this yields:

Corollary 6.1.5. If E = F (u) is a quadratic field extension of F , then K2(E)
is generated by elements coming from K2(F ), together with elements of the form
{c, u−d}. Thus the transfer map NE/F :K2(E)→ K2(F ) is completely determined

by the formulas NE/F {c, d} = {c, d}2, NE/F {c, u− d} = {c,N(u− d)} (c, d ∈ F )

Example 6.1.6. Since C is a quadratic extension of R, every element of K2(C)
is a product of symbols {r, s} and {r, eiθ} with r, s, θ ∈ R. Moreover, N{r, eiθ} = 1
in K2(R). Under the automorphism of K2(C) induced by complex conjugation, the
symbols of the first kind are fixed and the symbols of the second kind are sent to
their inverses. We will see in Theorem 6.4 below that K2(C) is uniquely divisible,
i.e., a vector space over Q, and the decomposition of K2(C) into eigenspaces for
±1 corresponds to symbols of the first and second kind.

Example 6.1.7. Let F be an algebraically closed field. By Lemma 6.1.4,K2F (t)
is generated by linear symbols of the form {a, b} and {t− a, b}. It will follow from
6.5.2 below that every element u of K2F (t) uniquely determines finitely many
elements ai ∈ F , bi ∈ F× so that u = λ(u)

∏{t− ai, bi}, where λ(u) ∈ K2(F ) was
described in Example 6.1.2.

Steinberg symbols

Definition 6.2. A Steinberg symbol on a field F with values in a multiplicative
abelian group A is a bilinear map c:F× ⊗ F× → A satisfying c(r, 1 − r) = 1.
By Matsumoto’s Theorem, these are in 1–1 correspondence with homomorphisms

K2(F )
c−→ A.

Example 6.2.1. There is a Steinberg symbol (x, y)∞ on the field R with values
in the group {±1}. Define (x, y)∞ to be: −1 if both x and y are negative, and +1
otherwise. The Steinberg identity (x, 1−x)∞ = +1 holds because x and 1−x cannot
be negative at the same time. The resulting map K2(R) → {±1} is onto because
(−1,−1)∞ = −1. This shows that the symbol {−1,−1} in K2(Z) is nontrivial, as
promised in 5.2.2, and even shows that K2(Z) is a direct summand in K2(R).

For our next two examples, recall that a local field is a field F which is complete
under a discrete valuation v, and whose residue field kv is finite. Classically, every
local field is either a finite extension of the p-adic rationals Q̂p or of Fp((t)).

Example 6.2.2 (Hilbert symbols). Let F be a local field containing 1
2 . The

Hilbert (quadratic residue) symbol on F is defined by setting cF (r, s) ∈ {±1} equal
to +1 or −1, depending on whether or not the equation rx2+sy2 = 1 has a solution
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in F . Bilinearity is classical when F is local; see [OMeara, p.164]. The Steinberg
identity is trivial, because x = y = 1 is always a solution when r + s = 1.

Of course, the definition of cF (r, s) makes sense for any field of characteristic
6= 2, but it will not always be a Steinberg symbol because it can fail to be bilinear
in r. It is a Steinberg symbol when F = R, because the Hilbert symbol cR(r, s) is
the same as the symbol (r, s)∞ of the previous example.

Example 6.2.3 (norm residue symbols). The roots of unity in a local field
F form a finite cyclic group µ, equal to the group µm of all mth roots of unity for
some integer m with 1

m ∈ F . The classical mth power norm residue symbol is a
map K2(F )→ µm defined as follows (see [S-LF] for more details).

Because F×m has finite index in F×, there is a finite “Kummer” extension K
containing the mth roots of every element of F . The Galois group GF = Gal(K/F )
is canonically isomorphic to Hom(F×, µm), with the automorphism g of K corre-
sponding to the homomorphism ζ:F× → µm sending a ∈ F× to ζ(a) = g(x)/x,

where xm = a. In addition, the cokernel of the norm map K× N−→ F× is isomorphic
to GF by the “norm residue” isomorphism of local class field theory. The composite
F× −→ F×/NK× ∼= GF ∼= Hom(F×, µm), written as x 7→ (x,−)F , is adjoint to a
nondegenerate bilinear map ( , )F :F

× ⊗ F× → µm.
The Steinberg identity (a, 1− a)F = 1 is proven by noting that (1− a) is a norm

from the intermediate field E = F (x), xm = a. Since GE ⊂ GF corresponds to
the norm map E×/NK/EK

× →֒ F×/NK/FK
×, the element g of GF = Gal(K/F )

corresponding to the map ζ(a) = (a, 1 − a)F from F× to µm must belong to GE ,
i.e., ζ must extend to a map E× → µm. But then (a, 1− a)F = ζ(a) = ζ(x)m = 1.

The name “norm residue” comes from the fact that for each x, the map y 7→
{x, y} is trivial if and only if x ∈ NK×. Since a primitive mth root of unity ζ is not
a norm from K, it follows that there is an x ∈ F such that (ζ, x)F 6= 1. Therefore
the norm residue symbol is a split surjection with inverse ζi 7→ {ζi, x}.

The role of the norm residue symbol is explained by the following structural
result, whose proof we cite from the literature.

Moore’s Theorem 6.2.4. If F is a local field, then K2(F ) is the direct sum
of a uniquely divisible abelian group U and a finite cyclic group, isomorphic under
the norm residue symbol to the group µ = µm of roots of unity in F .

Proof. We have seen that the norm residue symbol is a split surjection. A
proof that its kernel U is divisible, due to C. Moore, is given in the Appendix to
[Milnor]. The fact that U is torsionfree (hence uniquely divisible) was proven by
Tate [Tate] when char(F ) = p, and by Merkurjev [Merk] when char(F ) = 0.

Example 6.2.5 (2-adic rationals). The group K2(Q̂2) is the direct sum of
the cyclic group of order 2 generated by {−1,−1} and a uniquely divisible group.

Since x2 + y2 = −1 has no solution in F = Q̂2 we see from definition (6.2.2) that
the Hilbert symbol cF (−1,−1) = −1.

Tame symbols

Every discrete valuation v on a field F provides a Steinberg symbol. Recall that
v is a homomorphism F× → Z such that v(r+s) ≥ min{v(r), v(s)}. By convention,
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v(0) = ∞, so that the ring R of all r with v(r) ≥ 0 is a discrete valuation ring
(DVR). The units R× form the set v−1(0), and the maximal ideal of R is generated
by any π ∈ R with v(π) = 1. The residue field kv is defined to be R/(π). If u ∈ R,
we write ū for the image of u under R→ kv.

Lemma 6.3. For every discrete valuation v on F there is a Steinberg symbol

K2(F )
∂v−→ k×v , defined by

∂v({r, s}) = (−1)v(r)v(s)
(
sv(r)

rv(s)

)
.

This symbol is called the tame symbol of the valuation v. The tame symbol is onto,
because if u ∈ R× then v(u) = 0 and ∂v(π, u) = ū.

Proof. Writing r = u1π
v1 and s = u2π

v2 with u1, u2 ∈ R×, we must show that

∂v(r, s) = (−1)v1v2 ū
v1
2

ū
v2
1

is a Steinberg symbol. By inspection, ∂v(r, s) is an element

of k×v , and ∂v is bilinear. To see that ∂v(r, s) = 1 when r + s = 1 we consider
several cases. If v1 > 0 then r is in the maximal ideal, so s = 1 − r is a unit and
∂v(r, s) = s̄v1 = 1. The proof when v2 > 0 is the same, and the case v1 = v2 = 0
is trivial. If v1 < 0 then v( 1r ) > 0 and 1−r

r = −1 + 1
r is congruent to −1 (mod π).

Since v(r) = v(1− r), we have

∂v(r, 1− r) = (−1)v1
(
1− r
r

)v1
= (−1)v1(−1)v1 = 1.

Ramification 6.3.1. Suppose that E is a finite extension of F , and that w is
a valuation on E over the valuation v on F . Then there is an integer e, called the
ramification index, such that w(r) = e · v(r) for every r ∈ F . The natural map
K2(F ) → K2(E) is compatible with the tame symbols in the sense that for every
r1, r2 ∈ F× we have ∂w(r1, r2) = ∂v(r1, r2)

e
in k×w .

K2(F )
∂v−−−−→ k×vy e

yx 7→xe

K2(E)
∂w−−−−→ k×w

Let S denote the integral closure of R in E. Then S has finitely many prime
ideals p1, ..., pn lying over p, with corresponding valuations w1, ..., wn on E. We say
that S is unramified over R if the ramification indices e1, ..., en are all 1; in this
case the diagonal inclusion ∆: k×v →֒

∏
i k

×
wi

is compatible with the tame symbols
in the sense that ∆∂v(r1, r2) is the product of the ∂wi(r1, r2).

Corollary 6.3.2. If F contains the rational function field Q(t) or Fp(t1, t2),
then K2(F ) has the same cardinality as F . In particular, if F is uncountable then
so is K2(F ).

Proof. By hypothesis, F contains a transcendental element t. Choose a subset
X = {xα} of F so thatX∪{t} is a transcendence basis for F over its ground field F0,
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and set k = F0(X). Then the subfield k(t) of F has a t-adic valuation with residue
class field k. Hence K2(k(t)) contains a subgroup {t, k×} mapped isomorphically
under the tame symbol to k×. By Lemma 6.1.3, the kernel of k× → K2(k(t)) →
K2(F ) is contained in the torsion subgroup µ(k) of roots of unity in k. Thus the
cardinality of K2(F ) is bounded below by the cardinality of k×/µ(k). Since F is an
algebraic extension of k(t), and k contains either Q or Fp(t2), we have the inequality
|F | = |k| = |k×/µ(k)| ≤ |K2(F )|. The other inequality |K2(F )| ≤ |F | is immediate
from Matsumoto’s Theorem, since F is infinite.

Theorem 6.4 (Bass-Tate). When F is an algebraically closed field, K2(F ) is
a uniquely divisible abelian group.

Theorem 6.4 is an immediate consequence of proposition 6.4.1 below. To see this,
recall that an abelian group is uniquely divisible when it is uniquely p-divisible for
each prime p; a group is said to be uniquely p-divisible if it is p-divisible and has
no p-torsion.

Proposition 6.4.1 (Bass-Tate). Let p be a prime number such that each
polynomial tp−a (a ∈ F ) splits in F [t] into linear factors. Then K2(F ) is uniquely
p-divisible.

Proof. The hypothesis implies that F× is p-divisible. Since the tensor product
of p-divisible abelian groups is always uniquely p-divisible, F× ⊗ F× is uniquely
p-divisible. Let R denote the kernel of the natural surjection F× ⊗ F× → K2(F ).
By inspection (or by the Snake Lemma), K2(F ) is p-divisible and the p-torsion
subgroup of K2(F ) is isomorphic to R/pR.

Therefore it suffices to prove that R is p-divisible. Now R is generated by the
elements ψ(a) = (a)⊗(1−a) of F×⊗F× (a ∈ F−{0, 1}), so it suffices to show that
each ψ(a) is in pR. By hypothesis, there are bi ∈ F such that tp− a =

∏
(t− bi) in

F [t], so 1−a =
∏
(1− bi) and bpi = a for each i. But then we compute in F×⊗F×:

ψ(a) = (a)⊗ (1− a) =
∑

(a)⊗ (1− bi) =
∑

(bi)
p ⊗ (1− bi) = p

∑
ψ(bi).

Corollary 6.4.2. If F is a perfect field of characteristic p, then K2(F ) is
uniquely p-divisible.

The Localization Sequence for K2

The following result will be proven in chapter V, but we find it useful to quote
this result now. If p is a nonzero prime ideal of a Dedekind domain R, the local
ring Rp is a discrete valuation ring, and hence determines a tame symbol.

Localization Theorem 6.5. Let R be a Dedekind domain with field of frac-

tions F . Then the tame symbols K2(F )
∂p−→ (R/p)× associated to the prime ideals

of R fit into a long exact sequence

∐

p

K2(R/p)→ K2(R)→ K2(F )
∂=

∐
∂p−−−−−→

∐

p

(R/p)× → SK1(R)→ 1

where the coproducts are over all nonzero prime ideals p of R, and the maps from
(R/p)× = K1(R/p) to SK1(R) are the transfer maps of Ex. 1.11. The transfer
maps K2(R/p)→ K2(R) will be defined in chapter V.
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Application 6.5.1 (K2Q). If R = Z then, since K2(Z/p) = 1 and SK1(Z) = 1,

we have an exact sequence 1 → K2(Z) → K2(Q)
∂−→

∐
F×
p → 1. As noted in

Example 6.2.1, this sequence is split by the symbol (r, s)∞, so we have K2(Q) ∼=
K2(Z)⊕

∐
F×
p .

Application 6.5.2 (Function fields). If R is the polynomial ring F [t] for
some field F , we know that K2(F [t]) = K2(F ) (see 5.2.3). Moreover, the natural
map K2(F )→ K2F (t) is split by the leading coefficient symbol λ of Example 6.1.2.
Therefore we have a split exact sequence

1→ K2(F )→ K2F (t)
∂−→

∐

p

(F [t]/p)× → 1.

Weil’s Reciprocity Formula 6.5.3. Just as in the case R = Z, there is
a valuation on F (t) not arising from a prime ideal of F [t]. In this case, it is
the valuation v∞(f) = −deg(f) associated with the point at infinity, i.e., with
parameter t−1. Since the symbol (f, g)∞ vanishes on K2(F ), it must be expressable
in terms of the tame symbols ∂p(f, g) = (f, g)p. The appropriate reciprocity formula
first appeared in Weil’s 1940 paper on the Riemann Hypothesis for curves:

(f, g)∞ ·
∏

p

Np(f, g)p = 1 in F×.

In Weil’s formula “Np” denotes the usual norm map (F [t]/p)× → F×. To establish
this reciprocity formula, we observe that K2F (t)/K2F =

∐
(F [t]/p)× injects into

K2F̄ (t)/K2F̄ , where F̄ is the algebraic closure of F . Thus we may assume that F
is algebraically closed. By Example 6.1.7, K2F (t) is generated by linear symbols
of the form {a, t− b}. But (a, t− b)∞ = a and ∂t−b(a, t− b) = a−1, so the formula
is clear.

Our next structural result was discovered by Merkurjev and Suslin in 1981, and
published in their landmark paper [MS]; see [GSz, 8.4]. Recall that an automor-
phism σ of a field E induces an automorphism of K2(E) sending {x, y} to {σx, σy}.

Theorem 6.6 (Hilbert’s Theorem 90 for K2). Let E/F be a cyclic Galois
field extension of prime degree p, and let σ be a generator of Gal(E/F ). Then the
following sequence is exact, where N denotes the transfer map on K2:

K2(E)
1−σ−−→ K2(E)

N−→ K2(F ).

Merkurjev and Suslin gave this result the suggestive name “Hilbert’s Theorem
90 for K2,” because of its formal similarity to the following result, which is univer-
sally called “Hilbert’s Theorem 90 (for units)” because it was the 90th theorem in
Hibert’s classical 1897 survey of algebraic number theory, Theorie der Algebraische
Zahlkörper.

Theorem 6.6.1 (Hilbert’s Theorem 90 for units). Let E/F be a cyclic
Galois field extension, and let σ be a generator of Gal(E/F ). If 1− σ denotes the
map a 7→ a/σ(a), then the following sequence is exact:

1→ F× → E× 1−σ−−→ E× N−→ F×.
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We omit the proof of Hilbert’s Theorem 90 for K2 (and for KM
n ; see 7.8.4 below),

since the proof does not involve K-theory, contenting ourselves with two special
cases: when n = char(F ) (7.8.3) and the following special case.

Proposition 6.6.2. Let F be a field containing a primitive nth root of unity ζ,
and let E be a cyclic field extension of degree n, with σ a generator of Gal(E/F ).

Suppose in addition that the norm map E× N−→ F× is onto, and that F has no
extension fields of degree < n. Then the following sequence is exact:

K2(E)
1−σ−−→ K2(E)

N−→ K2(F )→ 1.

Proof. Since Nζ = 1, Hilbert’s Theorem 90 gives an r ∈ E with σ(r) = ζr.
Setting c = N(r) ∈ F , it is well-known and easy to see that E = F (r), rn = c.

Again by Hilbert’s Theorem 90 for units and our assumption about norms,

E× 1−σ−−→ E× N−→ F× → 1 is an exact sequence of abelian groups. Applying
the right exact functor ⊗F× retains exactness. Therefore we have a commutative
diagram with exact rows

E× ⊗ F× (1−σ)⊗1−−−−−→ E× ⊗ F× N⊗1−−−−→ F× ⊗ F× −−−−→ 1
y

y
yγ

K2(E)
1−σ−−−−→ K2(E) −−−−→ C −−−−→ 1

in which C denotes the cokernel of 1− σ.
Now every element of E is a polynomial f(r) in r of degree < n, and f(t) is a

product of linear terms bit−ai by our assumption. By Lemma 6.1.4, every element
of K2(E) is a product of symbols of the form {a, b} and {a, r − b}. Therefore the
vertical maps F× ⊗E× → K2(E) are onto in the above diagram. Hence γ is onto.

If a ∈ F× and x ∈ E× then the projection formula (Ex. 5.6) yields

N(1− σ){a, x} = N{a, x/(σx)} = {a,Nx/N(σx)} = 1.

Hence the transfer map K2(E) → K2(F ) factors through C. A diagram chase
shows that it suffices to show that γ is a Steinberg symbol, so that it factors through
K2(F ). For this we must show that for all y ∈ E we have γ(Ny ⊗ (1 −Ny)) = 1,
i.e., that {y, 1−Ny} ∈ (1− σ)K2(E).

Fix y ∈ E and set z = NE/F (y) ∈ F . Factor tn − z =
∏
fi in F [t], with the

fi irreducible, and let Fi denote the field F (xi), where fi(xi) = 0 and xni = z.
Setting t = 1, 1 − z =

∏
fi(1) =

∏
NFi/F (1 − xi). Setting Ei = E ⊗F Fi, so that

NFi/F (1 − xi) = NEi/E(1 − xi) and σ(xi) = xi, the projection formula (Ex. 5.6)
gives

{y, 1− z} =
∏

NEi/E{y, 1− xi} =
∏

NEi/E{y/xi, 1− xi}.

Thus it suffices to show that eachNEi/E{y/xi, 1−xi} is in (1−σ)K2(E). Now Ei/Fi
is a cyclic extension whose norm N = NEi/Fi

satisfies N(y/xi) = N(y)/xni = 1. By
Hilbert’s Theorem 90 for units, y/xi = vi/σvi for some vi ∈ Ei. We now compute:

NEi/E{y/xi, 1− xi} = NEi/E{vi/σvi, 1− xi} = (1− σ)NEi/E{vi, 1− xi}. �
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Here are three pretty applications of Hilbert’s Theorem 90 for K2. When F is a
perfect field, the first of these has already been proven in Proposition 6.4.1.

Theorem 6.7. If char(F ) = p 6= 0, then the group K2(F ) has no p-torsion.

Proof. Let x be an indeterminate and y = xp−x; the field extension F (x)/F (y)
is an Artin-Schrier extension, and its Galois group is generated by an automorphism
σ satisfying σ(x) = x + 1. By 6.5.2, K2(F ) is a subgroup of both K2F (x) and
K2F (y), and the projection formula shows that the norm N :K2F (x) → K2F (y)
sends u ∈ K2(F ) to u

p.
Now fix u ∈ K2(F ) satisfying up = 1; we shall prove that u = 1. By Hilbert’s

Theorem 90 for K2, u = (1− σ)v = v(σv)−1 for some v ∈ K2F (x).
Every prime ideal p of F [x] is unramified over py = p ∩ F [y], because F [x]/p is

either equal to, or an Artin-Schrier extension of, F [y]/py. By 6.3.1 and 6.5.2, we
have a commutative diagram in which the vertical maps ∂ are surjective:

K2F (y)
i∗−−−−→ K2F (x)

1−σ−−−−→ K2F (x)

∂

y ∂

y ∂

y
∐

py
(F [y]/py)

× ∆−−−−→ ∐
p
(F [x]/p)×

1−σ−−−−→ ∐
p
(F [x]/p)×

We claim that the bottom row is exact. By decomposing the row into subse-
quences invariant under σ, we see that there are two cases to consider. If a prime
p is not fixed by σ, then the fields F [x]/σip are all isomorphic to E = F [y]/py, and
for ai ∈ E× we have

(1− σ)(a0, a1, . . . , ap−1) = (a0a
−1
p−1, a1a

−1
0 , . . . , ap−1a

−1
p−2)

in
∏p−1
i=0 (F [x]/σ

ip)×. This vanishes if and only if the ai agree, in which case
(a0, . . . , ap−1) is the image of a ∈ E×. On the other hand, if σ fixes p then
F [x]/p is a cyclic Galois extension of E = F [y]/py. Therefore if a ∈ F [x]/p and
(1 − σ)a = a/(σa)−1 equals 1, then a = σ(a), i.e., a ∈ E. This establishes the
claim.

A diagram chase shows that since 1 = ∂u = ∂(1− σ)v, there is a v0 in K2F (y)
with ∂(v) = ∂(i∗v0). Since i∗ = σi∗, we have (1 − σ)i∗v0 = 1. Replacing v by
v(i∗v0)

−1, we may assume that ∂(v) = 1, i.e., that v is in the subgroup K2(F ) of
K2F (x). Therefore we have u = v(σv)−1 = 1. As u was any element of K2(F )
satisfying up = 1, K2(F ) has no p-torsion.

Example 6.7.1. If F = Fq(t), q = pr, we have K2(F ) =
∐
(Fq[t]/p)

×. Since the
units of each finite field Fq[t]/p form a cyclic group, and its order can be arbitrarily
large (yet prime to p), K2Fq(t) is a very large torsion group.

Theorem 6.8. If F contains a primitive nth root of unity ζ, then every element
of K2(F ) of exponent n has the form {ζ, x} for some x ∈ F×.

Proof. We first suppose that n is a prime number p. Let x be an indeterminate
and y = xp; the Galois group of the field extension F (x)/F (y) is generated by an
automorphism σ satisfying σ(x) = ζx. By Application 6.5.2, K2(F ) is a subgroup
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of K2F (x), and by the projection formula the norm N :K2F (x) → K2F (y) sends
u ∈ K2(F ) to u

p.
Fix u ∈ K2(F ) satisfying up = 1. By Hilbert’s Theorem 90 for K2, if u

p = 1
then u = (1− σ)v = v(σv)−1 for some v ∈ K2F (x).

Now the extension F [y] ⊂ F [x] is unramified at every prime ideal except p = (x).
As in the proof of Theorem 6.7, we have a commutative diagram whose bottom row
is exact:

K2F (y)
i∗−−−−→ K2F (x)

1−σ−−−−→ K2F (x)

∂′

y ∂′

y ∂′

y
∐

py 6=(y)(F [y]/py)
× ∆−−−−→

∐
p6=(x)(F [x]/p)

× 1−σ−−−−→
∐

p6=(x)(F [x]/p)
×

As before, we may modify v by an element from K2F (y) to arrange that ∂p(v) = 1
for all p 6= (x). For p = (x), let a ∈ F = F [x]/(x) be such that ∂(x)(v) = a and set
v′ = v{a, x}. Then ∂(x)(v′) = 1 and ∂p(v

′) = ∂p(v) = 1 for every other p. It follows

from 6.5.2 that v′ is in K2(F ). Therefore (1 − σ)v′ = 1; since v = v′{a, x}−1 this
implies that u has the asserted form:

u = (1− σ){a, x}−1 = {a, x}−1{a, ζx} = {a, ζ}.

Now we proceed inductively, supposing that n = mp and that the theorem has
been proven for m (and p). If u ∈ K2(F ) has exponent n then up has exponent m,
so there is an x ∈ F× so that up = {ζp, x}. The element u{ζp, x}−1 has exponent p,
so it equals {ζm, y} = {ζ, ym} for some y ∈ F×. Hence u = {ζ, xym}, as required.

Remark 6.8.1. Suslin also proved the following result in [Su87]. Let F be a
field containing a primitive pth root of unity ζ, and let F0 ⊂ F be the subfield
of constants. If x ∈ F×

0 and {ζ, x} = 1 in K2(F ) then {ζ, x} = 1 in K2(F0). If
{ζ, y} = 1 in K2(F ) for some y ∈ F× then y = xzp for some x ∈ F×

0 and z ∈ F×.

Application 6.8.2. We can use Theorem 6.8 to give another proof of Theo-
rem 6.4, that when F is an algebraically closed field, the group K2(F ) is uniquely
divisible. Fix a prime p. For each a ∈ F× there is an α with αp = a. Hence
{a, b} = {α, b}p, so K2(F ) is p-divisible. If p 6= char(F ) then there is no p-torsion
because {ζ, a} = {ζ, α}p = 1. Finally, if char(F ) = p, there is no p-torsion either
by Theorem 6.7.

Application 6.8.3 (K2R). Theorem 6.8 states that {−1,−1} is the only ele-
ment of order 2 in K2R. Indeed, if r is a positive real number then:

{−1, r} = {−1,
√
r}2 = 1, and {−1,−r} = {−1,−1}{−1, r} = {−1,−1}.

Note that {−1,−1} is in the image of K2(Z), which is a summand by either Exam-
ple 6.2.1 or Example 5.9.1. Recall from Example 6.1.6 that the image of K2R in the
uniquely divisible group K2C is the eigenspace K2C

+, and that the composition

K2R→ K2C
N−→ K2R is multiplication by 2, so its kernel is K2(Z). It follows that

K2R ∼= K2(Z)⊕K2C
+.
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K2 and the Brauer group

Let F be a field. Recall from II.5.4.3 that the Brauer group Br(F ) is generated
by the classes of central simple algebras with two relations: [A⊗F B] = [A] · [B] and
[Mn(F )] = 0. Here is one classical construction of elements in the Brauer group; it
is a special case of the construction of crossed product algebras.

Cyclic algebras 6.9. Let ζ be a primitive nth root of unity in F , and α, β ∈
F×. The cyclic algebra A = Aζ(α, β) is defined to be the associative algebra with
unit, which is generated by two elements x, y subject to the relations xn = α · 1,
yn = β · 1 and yx = ζxy. Thus A has dimension n2 over F , a basis being the
monomials xiyj with 0 ≤ i, j < n. The identity (x+ y)n = (α + β) · 1 is also easy
to check.

When n = 2 (so ζ = −1), cyclic algebras are called quaternion algebras. The
name comes from the fact that the usual quaternions H are the cyclic algebra
A(−1,−1) over R. Quaternion algebras arise in the Hasse invariant of quadratic
forms.

It is classical, and not hard to prove, that A is a central simple algebra over F ;
see [BA, §8.5]. Moreover, the n-fold tensor product A⊗F A⊗F · · ·⊗F A is a matrix
algebra; see [BA, Theorem 8.12]. Thus we can consider [A] ∈ Br(F ) as an element
of exponent n. We shall write n Br(F ) for the subgroup of Br(F ) consisting of all
elements x with xn = 1, so that [A] ∈ n Br(F )

For example, the following lemma shows that Aζ(1, β) must be a matrix ring
because xn = 1. Thus [Aζ(1, β)] = 1 in Br(F ).

Lemma 6.9.1. Let A be a central simple algebra of dimension n2 over a field F
containing a primitive nth root of unity ζ. If A contains an element u 6∈ F such
that un = 1, then A ∼=Mn(F ).

Proof. The subalgebra F [u] of A spanned by u is isomorphic to the commu-
tative algebra F [t]/(tn − 1). Since tn − 1 =

∏
(t − ζi), the Chinese Remainder

Theorem yields F [u] ∼= F ×F ×· · ·×F . Hence F [u] contains n idempotents ei with
eiej = 0 for i 6= j. Therefore A splits as the direct sum e1A ⊕ · · · ⊕ enA of right
ideals. By the Artin-Wedderburn theorem, if A =Md(D) then A can be the direct
sum of at most d right ideals. Hence d = n, and A must be isomorphic to Mn(F ).

Proposition 6.9.2 (The nth power norm residue symbol). If F contains
a primitive nth root of unity, there is a homomorphism K2(F ) → Br(F ) sending
{α, β} to the class of the cyclic algebra Aζ(α, β).

Since the image is a subgroup of exponent n, we shall think of the power norm
residue symbol as a map K2(F )/nK2(F )→ n Br(F ).

This homomorphism is sometimes also called the Galois symbol.

Proof. From Ex. 6.12 we see that in Br(F ) we have [Aζ(α, β)] · [Aζ(α, γ)] =
[Aζ(α, βγ)]. Thus the map F× × F× → Br(F ) sending (α, β) to [Aζ(α, β)] is
bilinear. To see that it is a Steinberg symbol we must check that A = Aζ(α, 1−α)
is isomorphic to the matrix algebra Mn(F ). Since the element x+ y of A satisfies
(x+ y)n = 1, Lemma 6.9.1 implies that A must be isomorphic to Mn(F ).

Remark 6.9.3. Merkurjev and Suslin proved in [MS] that K2(F )/mK2(F )
is isomorphic to the subgroup m Br(F ) of elements of order m in Br(F ) when
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µm ⊂ F . By Matsumoto’s Theorem, this implies that the m-torsion in the Brauer
group is generated by cyclic algebras. The general description of K2(F )/m, due to
Merkurjev-Suslin, is given in 6.10.4; see VI.3.1.1.

The Galois symbol

We can generalize the power norm residue symbol to fields not containing enough
roots of unity by introducing Galois cohomology. Here are the essential facts we
shall need; see [WHomo] or [Milne].

Sketch of Galois Cohomology 6.10. Let Fsep denote the separable closure
of a field F , and let G = GF denote the Galois group Gal(Fsep/F ). The family
of subgroups GE = Gal(Fsep/E), as E runs over all finite extensions of F , forms
a basis for a topology of G. A G-module M is called discrete if the multiplication
G×M →M is continuous.

For example, the abelian group Gm = F×
sep of units of Fsep is a discrete module,

as is the subgroup µm of all mth roots of unity. We can also make the tensor
product of two discrete modules into a discrete module, with G acting diagonally.
For example, the tensor product µ⊗2

m = µm⊗µm is also a G-discrete module. Note
that the three G-modules Z/m, µm and µ⊗2

m have the same underlying abelian
group, but are isomorphic GF -modules only when µm ⊂ F .

The G-invariant subgroup MG of a discrete G-module M is a left exact functor
on the category of discrete GF -modules. The Galois cohomology groups Hi

et(F ;M)
are defined to be its right derived functors. In particular, H0

et(F ;M) is just MG.
If E is a finite separable extension of F then GE ⊂ GF . Thus there is a forgetful

functor from GF -modules to GE-modules, inducing mapsHi
et(F ;M)→ Hi

et(E;M).
In the other direction, the induced module functor fromGE-modules toGF -modules
gives rise to cohomological transfer maps trE/F :H

i
et(E;M) → Hi

et(F ;M); see
[WHomo, 6.3.9 and 6.11.11].

Example 6.10.1 (Kummer Theory). The cohomology of the module Gm is
of fundamental importance. Of course H0

et(F,Gm) = F×. By Hilbert’s Theo-
rem 90 for units, and a little homological algebra [WHomo, 6.11.16], we also have
H1
et(F ;Gm) = 0 and H2

et(F ;Gm) ∼= Br(F ).
If m is prime to char(F ), the exact sequence of discrete modules

1→ µm → Gm
m−→ Gm → 1

is refered to as the Kummer sequence. Writing µm(F ) for the group µGm of all mth

roots of unity in F , the corresponding cohomology sequence is called the Kummer
sequence.

1→µm(F )→ F× m−→ F× → H1
et(F ;µm)→ 1

1→H2
et(F ;µm)→ Br(F )

m−→ Br(F )

This yields isomorphisms H1
et(F ;µm) ∼= F×/F×m and H2

et(F ;µm) ∼= m Br(F ). If
µm ⊂ F×, this yields a natural isomorphism H2

et(F ;µ
⊗2
m ) ∼= m Br(F )⊗ µm(F ).

There are also natural cup products in cohomology, such as the product

(6.10.2) F× ⊗ F× → H1
et(F ;µm)⊗H1

et(F ;µm)
∪−→ H2

et(F ;µ
⊗2
m )

which satisfies the following projection formula: if E/F is a finite separable exten-
sion, a ∈ F× and b ∈ E×, then trE/F (a ∪ b) = a ∪NE/F (b).
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Proposition 6.10.3 (Galois symbol). The bilinear pairing (6.10.2) induces
a Steinberg symbol K2(F )/mK2(F )→ H2

et(F ;µ
⊗2
m ) for every m prime to char(F ).

Proof. It suffices to show that a∪(1−a) vanishes for every a ∈ F−{0, 1}. Fixing
a, factor the separable polynomial tm−a =

∏
fi in F [t] with the fi irreducible, and

let Fi denote the field F (xi) with fi(xi) = 0. Setting t = 1, 1−a =
∏
iNFi/F (1−xi).

Writing H2
et additively, we have

a ∪ (1− a) =
∑

i

a ∪NFi/F (1− xi) =
∑

i

trFi/F

(
a ∪ (1− xi)

)

= m
∑

i

trFi/F

(
xi ∪ (1− xi)

)
.

Since the group H2
et(F ;µ

⊗2
m ) has exponent m, all these elements vanish, as desired.

Remark 6.10.4. Suppose that F contains a primitive mth root of unity ζ. If
we identify Z/m with µm via 1 7→ ζ, we have a natural isomorphism

m Br(F ) ∼= m Br(F )⊗ Z/m ∼= m Br(F )⊗ µm ∼= H2
et(F ;µ

⊗2
m ).

Tate showed in [Tate] that this isomorphism identifies the Galois symbol of Propo-
sition 6.10.3 with the mth power norm residue symbol of Proposition 6.9.2. The
Merkurjev-Suslin isomorphism of [MS] cited above in Remark 6.9.3 is a special case
of the more general assertion that this symbol induces an isomorphism for all fields
F of characteristic prime to m: K2(F )/mK2(F ) ∼= H2

et(F ;µ
⊗2
m ). See chapter VI,

3.1.1.

EXERCISES

6.1 Given a discrete valuation on a field F , with residue field k and parame-
ter π, show that there is a surjection λ:K2(F ) → K2(k) given by the formula
λ{uπi, vπj} = {ū, v̄}. Example 6.1.2 is a special case of this, in which π = t−1.

6.2 (Bass-Tate) If E = F (u) is a field extension of F , and e1, e2 ∈ E are monic
polynomials in u of some fixed degree d > 0, show that {e1, e2} is a product
of symbols {e1, e′2} and {e, e′′2} with e, e′2, e

′′
2 polynomials of degree < d. This

generalizes Lemma 6.1.4.

6.3 (Bass-Tate) Let k be a field and set F = k((t)).
(a) Show that K2(F ) ∼= K2(k)× k× ×K2(k[[t]], t).
(b) Show that the group K2(k[[t]], t) is torsionfree; by Ex. 5.14, it is uniquely

divisible if char(k) = 0. Hint: Use 6.7 and the proof of 6.4.1.

6.4 If F is a number field with r1 distinct embeddings F →֒ R, show that the r1
symbols (, )∞ on F define a surjection K2(F )→ {±1}r1 .
6.5 If F̄ denotes the algebraic closure of a field F , show that K2(Q̄) = K2(F̄p) = 1.

6.6 2-adic symbol on Q. Any nonzero rational number r can be written uniquely
as r = (−1)i2j5ku, where i, k ∈ {0, 1} and u is a quotient of integers congruent to

1 (mod 8). If s = (−1)i′2j′5k′u′, set (r, s)2 = (−1)ii′+jj′+kk′ . Show that this is a
Steinberg symbol on Q, with values in {±1}.
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6.7 Let ((r, s))p denote the Hilbert symbol on Q̂p (6.2.2), and (r, s)p the tame

symbol K2(Q̂p) → F×
p . Assume that p is odd, so that there is a unique surjection

ε:F×
p → {±1}. Show that ((r, s))p = ε (r, s)p for all r, s ∈ Q̂×

p .

6.8 Quadratic Reciprocity. If r, s ∈ Q×, show that (r, s)∞(r, s)2
∏
p 6=2((r, s))p = +1.

Here (r, s)2 is the 2-adic symbol of Ex. 6.6.
Hint: From 6.5.1 and Ex. 6.7, the 2-adic symbol of Ex. 6.6 must satisfy some

relation of the form
(r, s)2 = (r, s)ε∞∞

∏

p 6=2

((r, s))εpp ,

where the exponents εp are either 0 or 1. Since (−1,−1)2 = (−1,−1)∞ we have
ε∞ = 1. If p is a prime not congruent to 1 (mod 8), consider {2, p} and {−1, p}.
If p is a prime congruent to 1 (mod 8), Gauss proved that there is a prime q <

√
p

such that p is not a quadratic residue modulo q. Then ((p, q))q = −1, even though
(p, q)∞ = (p, q)2 = 1. Since we may suppose inductively that εq equals 1, this
implies that εp 6= 0.

6.9 (Suslin) Suppose that a field F is algebraically closed in a larger field E. Use
Lemma 6.1.3 and Remark 6.8.1 to show that K2(F ) injects into K2(E).

6.10 Let F be a field, and let Ω1
F = Ω1

F/Z denote the vector space of absolute

Kähler differentials (see Ex. 2.6). The nth exterior power of Ω1
F is written as ΩnF .

Show that there is a homomorphism K2(F )→ Ω2
F sending {x, y} to dx

x ∧
dy
y . This

map is not onto, because the image is in the kernel of the deRham differential
d : Ω2

F → Ω3
F .

6.11 If F is a field of transcendence degree κ over the ground field, ΩF is a vector
space of dimension κ. Now suppose that κ is an infinite cardinal number, so that
ΩnF is also a vector space of dimension κ for all n > 1. Show that the image of the
map K2(F )→ Ω2

F in the previous exercise is an abelian group of rank κ.
In particular, if F is a local field then the uniquely divisible summand U of

K2(F ) in Moore’s Theorem (6.2.4) is uncountable.

6.12 Show that Aζ(α, β) ⊗ Aζ(α, γ) ∼= Mn(A), where A = Aζ(α, βγ). Hint: Let
x′, y′ generate Aζ(α, β) and x′′, y′′ generate Aζ(α, γ), and show that x′, y = y′y′′

generate A. Then show that u = (x′)−1x′′ + y′′ has un = 1. (For another proof,
see [BA, Ex. 8.5.2].)
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§7. Milnor K-theory of fields

Fix a field F , and consider the tensor algebra of the group F×,

T (F×) = Z⊕ F× ⊕ (F× ⊗ F×)⊕ (F× ⊗ F× ⊗ F×)⊕ · · · .

To keep notation straight, we write l(x) for the element of degree one in T (F×)
corresponding to x ∈ F×.

Definition 7.1. The graded ringKM
∗ (F ) is defined to be the quotient of T (F×)

by the ideal generated by the homogeneous elements l(x)⊗ l(1− x) with x 6= 0, 1.
The Milnor K-group KM

n (F ) is defined to be the subgroup of elements of degree
n. We shall write {x1, . . . , xn} for the image of l(x1)⊗ · · · ⊗ l(xn) in KM

n (F ).
That is, KM

n (F ) is presented as the group generated by symbols {x1, . . . , xn}
subject to two defining relations: {x1, . . . , xn} is multiplicative in each xi, and
equals zero if xi + xi+1 = 1 for some i.

The name comes from the fact that the ideas in this section first arose in Milnor’s
1970 paper [M-QF]. Clearly we have KM

0 (F ) = Z, and KM
1 = F× (with the group

operation written additively). By Matsumoto’s Theorem 6.1 we also haveKM
2 (F ) =

K2(F ), the elements {x, y} being the usual Steinberg symbols, except that the group
operation in KM

2 (F ) is written additively.
Since {xi, xi+1}+{xi+1, xi} = 0 inKM

2 (F ), we see that interchanging two entries
in {x1, . . . , xn} yields the inverse. It follows that these symbols are alternating: for
any permutation π with sign (−1)π we have

{xπ1, . . . , xπn} = (−1)π{x1, . . . , xn}.

Examples 7.2. (a) If Fq is a finite field, then KM
n (Fq) = 0 for all n ≥ 2, because

KM
2 (Fq) = 0 by Cor. 6.1.1. If F has transcendence degree 1 over a finite field (a

global field of finite characteristic), Bass and Tate proved in [BT] that KM
n (F ) = 0

for all n ≥ 3.
(b) If F is algebraically closed then KM

n (F ) is uniquely divisible. Divisibility is
clear because F× is divisible. The proof that there is no p-torsion is the same as
the proof for n = 2 given in Theorem 6.4, and is relegated to Ex. 7.3.

(c) When F = R we can define a symbol KM
n (R) → {±1} by the following

formula: (x1, . . . , xn)∞ equals −1 if all the xi are negative, and equals +1 otherwise.
When n = 2 this will be the symbol defined in Example 6.2.1.

To construct it, extend Z→ Z/2 to a ring homomorphism T (R×)→ (Z/2)[t] by
sending l(x) to t if x < 0 and to 0 if x > 0. This sends the elements l(x)⊗ l(1− x)
to zero (as in 6.2.1), so it induces a graded ring homomorphism KM

∗ (R)→ (Z/2)[t].
The symbol above is just the degree n part of this map.

By induction on n, it follows that KM
n (R) is the direct sum of a cyclic group of

order 2 generated by {−1, . . . ,−1}, and a divisible subgroup. In particular, this
shows that KM

∗ (R)/2KM
∗ (R) is the polynomial ring (Z/2)[ǫ] on ǫ = l(−1). Using

the norm map we shall see later that the divisible subgroup of KM
n (R) is in fact

uniquely divisible. This gives a complete description of each KM
n (R) as an abelian

group.
(d) When F is a number field, let r1 be the number of embeddings of F into R.

Then we have a map from KM
n (F ) to the torsion subgroup (Z/2)r1 of KM

n (R)r1 .
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Bass and Tate proved in [BT] that this map is an isomorphism for all n ≥ 3:
KM
n (F ) ∼= (Z/2)r1 .

Tame symbols

Recall from Lemma 6.3 and Ex. 6.1 that every discrete valuation v on F induces

a Steinberg symbol K2(F )
∂v−→ k×v and a map K2(F )

λ−→ K2(kv). These symbols
extend to all of Milnor K-theory; the ∂v are called higher tame symbols, and the λ
are called specialization maps.

Theorem 7.3 (Higher tame symbols and Specialization). For every dis-
crete valuation v on F , there are two surjections

KM
n (F )

∂v−→ KM
n−1(kv) and KM

n (F )
λ−→ KM

n (kv)

satisfying the following conditions. Let R = {r ∈ F : v(r) ≥ 0} be the valuation
ring, and π a parameter for v. If ui ∈ R×, and ūi denotes the image of ui in
kv = R/(π) then

λ{u1πi1 , . . . , unπin} = {ū1, . . . , ūn}, ∂v{π, u2, . . . , un} = {ū2, . . . , ūn}.

In particular, ∂v:K
M
2 (F )→ k×v is the tame symbol of Lemma 6.3, and λ:K2(F )→

K2(k) is the map of Example 6.1.2 and Ex. 6.1.

Proof. (Serre) Let L denote the graded KM
∗ (kv)-algebra generated by an in-

determinate Π in L1, with the relation {Π,Π} = {−1,Π}. We claim that the group
homomorphism

d:F× → L1 = l(k×v )⊕ Z ·Π, d(uπi) = l(ū) + iΠ

satisfies the relation: for r 6= 0, 1, d(r)d(1 − r) = 0 in L2. If so, the presentation
of KM

∗ (F ) shows that d extends to a graded ring homomorphism d:KM
∗ (F ) → L.

Since Ln is the direct sum ofKM
n (kv) andK

M
n−1(kv), we get two maps: λ:KM

n (F )→
KM
n (kv) and ∂v:K

M
n (F ) → KM

n−1(kv). The verification of the relations is routine,
and left to the reader.

If 1 6= r ∈ R×, then either 1− r ∈ R× and d(r)d(1− r) = {r̄, 1− r̄} = 0, or else
v(1 − r) = i > 0 and d(r) = l(1) + 0 · Π = 0 so d(r)d(1 − r) = 0 · d(1 − r) = 0. If
v(r) > 0 then 1− r ∈ R× and the previous argument implies that d(1− r)d(r) = 0.
If r 6∈ R then 1/r ∈ R, and we see from (5.10.3) and the above that d(r)d(1− r) =
d(1/r)d(−1/r). Therefore it suffices to show that d(r)d(−r) = 0 for every r ∈ R. If
r = π this is the given relation upon L, and if r ∈ R× then d(r)d(−r) = {r,−r} = 0
by (5.10.3). Since the product in L is anticommutative, the general case r = uπi

follows from this.

Corollary 7.3.1 (Rigidity). Suppose that F is complete with respect to the
valuation v, with residue field k = kv. For every integer q prime to char(k), the
maps λ⊕ ∂v:KM

n (F )/q → KM
n (k)/q ⊕KM

n−1(k)/q are isomorphisms for every n.

Proof. Since the valuation ring R is complete, Hensel’s Lemma implies that
the group 1+πR is q-divisible. It follows that l(1+πR)·KM

n−1(F ) is also q-divisible.

But by Ex. 7.2 this is the kernel of the map d:KM
n (F )→ Ln ∼= KM

n (kv)⊕KM
n−1(kv).
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Leading Coefficients 7.3.2. As in Example 6.1.2, KM
n (F ) is a direct sum-

mand of KM
n F (t). To see this, we consider the valuation v∞(f) = −deg(f) on

F (t) of Example 6.5.3. Since t−1 is a parameter, each polynomial f = ut−i

has lead(f) = ū. The map λ:KM
n F (t) → KM

n (F ), given by λ{f1, . . . , fn} =
{lead(f1), . . . , lead(fn)}, is clearly inverse to the natural map KM

n (F )→ KM
n F (t).

Except for v∞, every discrete valuation v on F (t) which is trivial on F is the
p-adic valuation vp associated to a prime ideal p of F [t]. In this case kv is the field
F [t]/p, and we write ∂p for ∂v.

Theorem 7.4 (Milnor). There is a split exact sequence for each n, natural in
the field F , and split by the map λ:

0→ KM
n (F )→ KM

n F (t)
∂=

∐
∂p−−−−−→

∐

p

KM
n−1(F [t]/p)→ 0.

Proof. Let Ld denote the subgroup of KM
n F (t) generated by those symbols

{f1, . . . , fr} such that all the polynomials fi have degree ≤ d. By Example 7.3.2, L0

is a summand isomorphic to KM
n (F ). Since KM

n F (t) is the union of the subgroups
Ld, the theorem will follow from Lemma 7.4.2 below, using induction on d.

Let π be an irreducible polynomial of degree d and set k = kπ = F [t]/(π). Then
each element ā of k is represented by a unique polynomial a ∈ F [t] of degree < d.

Lemma 7.4.1. There is a unique homomorphism h = hπ:K
M
n−1(k) → Ld/Ld−1

carrying {ā2, . . . , ān} to the class of {π, a2, . . . , an} modulo Ld−1.

Proof. The formula gives a well-defined set map h from k× × · · · × k× to
Ld/Ld−1. To see that it is linear in ā2, suppose that ā2 = ā′2ā

′′
2 . If a2 6= a′2a

′′
2

then there is a nonzero polynomial f of degree < d with a2 = a′2a
′′
2 + fπ. Since

fπ/a2 = 1 − a′2a′′2/a2 we have {fπ/a2, a′2a′′2/a2} = 0. Multiplying by {a3, . . . , an}
gives

{π, a′2a′′2/a2, a3, . . . , an} ≡ 0 modulo Ld−1.

Similarly, h is linear in a3, . . . , an. To see that the multilinear map h factors through
KM
n−1(k), we observe that if āi + āi+1 = 1 in k then ai + ai+1 = 1 in F .

Lemma 7.4.2. The homomorphisms ∂(π) and hπ induce an isomorphism between

Ld/Ld−1 and the direct sum ⊕πKM
n−1(kπ) as π ranges over all monic irreducible

polynomials of degree d in F [t].

Proof. Since π cannot divide any polynomial of degree < d, the maps ∂(π)
vanish on Ld−1 and induce maps ∂̄(π):Ld/Ld−1 → KM

n−1(kπ). By inspection, the

composition of ⊕hπ with the direct sum of the ∂̄(π) is the identity on ⊕πKM
n−1(kπ).

Thus it suffices to show that ⊕hπ maps onto Ld/Ld−1. By Ex. 6.2, Ld is generated
by Ld−1 and symbols {π, a2, . . . , an} where π has degree d and the ai have degree
< d. But each such symbol is hπ of an element of KM

n−1(kπ), so ⊕hπ is onto.

The Transfer Map

Let v∞ be the valuation on F (t) with parameter t−1. The formulas in Theo-
rem 7.3 defining ∂∞ show that it vanishes on KM

∗ (F ). By Theorem 7.4, there are
unique homomorphisms Np:K

M
n (F [t]/p)→ KM

n (F ) so that −∂∞ =
∑

p
Np∂p.
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Definition 7.5. Let E be a finite field extension of F generated by an element
a. Then the transfer map, or norm map N = Na/F :K

M
∗ (E) → KM

∗ (F ), is the
unique map Np defined above, associated to the kernel p of the map F [t] → E
sending t to a.

We can calculate the norm of an element x ∈ KM
n (E) as Np(x) = −∂v∞(y),

where y ∈ KM
n+1F (t) is such that ∂p(y) = x and ∂p′(y) = 0 for all p′ 6= p.

If n = 0, the transfer map N :Z → Z is multiplication by the degree [E : F ] of
the field extension, while if n = 1 the map N :E× → F× is the usual norm map;
see Ex. 7.5. We will show in 7.6 below that N is independent of the choice of a ∈ E
for all n. First we make two elementary observations.

If we let N∞ denote the identity map on KM
n (F ), and sum over the set of all

discrete valuations on F (t) which are trivial on F , the definition of the Nv yields:

Weil Reciprocity Formula 7.5.1.
∑
v Nv∂v(x) = 0 for all x ∈ KM

n F (t).

Projection Formula 7.5.2. Let E = F (a). Then for x ∈ KM
∗ (F ) and y ∈

KM
∗ (E) the map N = Na/F satisfies N{x, y} = {x,N(y)}.

Proof. The inclusions of F in F (t) and F [t]/p allow us to view KM
∗ F (t) and

KM
∗ (F [t]/p) as graded modules over the ring KM

∗ (F ). It follows from Theorem 7.4
that each ∂p is a graded module homomorphism of degree −1. This remark also
applies to v∞ and ∂∞, because F (t) = F (t−1). Therefore each Np is a graded
module homomorphism of degree 0.

Taking y = 1 in KM
0 (E) = Z, so N(y) = [E : F ] by Ex. 7.5, this yields

Corollary 7.5.3. If the extension E/F has degree d, then the composition

KM
∗ (F ) → KM

∗ (E)
N−→ KM

∗ (F ) is multiplication by d. In particular, the kernel of
KM

∗ (F )→ KM
∗ (E) is annihilated by d.

Definition 7.6. Let E = F (a1, . . . , ar) be a finite field extension of F . The
transfer map NE/F :K

M
∗ (E) → KM

∗ (F ) is defined to be the composition of the
transfer maps defined in 7.5:

KM
n (E)

Nar−−→ KM
n (F (a1, . . . , ar−1))

Nar−1−−−−→ · · ·KM
n (F (a1))

Na1−−→ KM
n (F ).

The transfer map is well-defined by the following result of K. Kato.

Theorem 7.6.1 (Kato). The transfer map NE/F is independent of the choice
of elements a1, . . . , ar such that E = F (a1, . . . , ar). In particular, if F ⊂ F ′ ⊂ E
then NE/F = NF ′/FNE/F ′ .

The key trick used in the proof of this theorem is to fix a prime p and pass from F
to the union F ′ of all finite extensions of F of degree prime to p. By Corollary 7.5.3
the kernel of KM

n (F ) → KM
n (F ′) has no p-torsion, and the degree of every finite

extension of F ′ is a power of p.

Lemma 7.6.2. (Kato) If E is a normal extension of F , and [E : F ] is a prime
number p, then the map NE/F = Na/F :K

M
∗ (E) → KM

∗ (F ) does not depend upon
the choice of a such that E = F (a).
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Proof. If also E = F (b), then from Corollary 7.5.3 and Ex. 7.7 with F ′ = E
we see that δ(x) = Na/F (x) − Nb/F (x) is annihilated by p. If δ(x) 6= 0 for some

x ∈ KM
n (E) then, again by Corollary 7.5.3, δ(x) must be nonzero inKM

n (F ′), where
F ′ is the union of all finite extensions of F of degree prime to p. Again by Ex. 7.7,
we see that we may replace F by F ′ and x by its image in KM

n (EF ′). Since the
degree of every finite extension of F ′ is a power of p, the assertion for F ′ follows
from Ex. 7.6, since the Projection Formula 7.5.2 yields Na/F ′{y, x2, . . . , xn} =
{N(y), x2, . . . , xn}.

Corollary 7.6.3. If in addition F is a complete discrete valuation field with
residue field kv, and the residue field of E is kw, the following diagram commutes.

KM
n (E)

∂w−−−−→ KM
n−1(kw)

N

y
yN

KM
n (F )

∂v−−−−→ KM
n−1(kv)

Proof. Ex. 7.6 implies that for each u ∈ KM
n (E) there is a finite field extension

F ′ of F such that [F ′ : F ] is prime to p and the image of u in Kn(EF
′) is generated

by elements of the form u′ = {y, x2, . . . , xn} (y ∈ EF ′, xi ∈ F ′). By Ex. 7.7 and
Ex. 7.8 it suffices to prove that Nkw/kv∂w(u) = ∂v(NEF ′/F ′u) for every element u
of this form. But this is an easy computation.

Proposition 7.6.4 (Kato). Let E and F ′ = F (a) be extensions of F with E/F
normal of prime degree p. If E′ = E(a) denotes the composite field, the following
diagram commutes.

KM
∗ (E′)

Na/E−−−−→ KM
∗ (E)

N

y
yN

KM
∗ (F ′)

Na/F−−−−→ KM
∗ (F ).

Proof. The vertical norm maps are well-defined by Lemma 7.6.2. Let π ∈ F [t]
and π′ ∈ E[t] be the minimal polynomials of a over F and E, respectively. Given
x ∈ KM

n (E′), we have Na/E(x) = −∂∞(y), where y ∈ KM
n+1E(t) satisfies ∂π′(y) = x

and ∂w(y) = 0 if w 6= wπ′ . If v is a valuation on F (t), Ex. 7.9 gives:

∂v(NE(t)/F (t)y) =
∑

w|v

NE(w)/F (v)(∂wy) =





NE′/F ′(x) if v = vπ

NE/F (∂∞y) if v = v∞

0 else

in KM
∗ (F ′). Two applications of Definition 7.5 give the desired calculation:

Na/F (NE′/F ′x) = −∂∞(NE(t)/F (t)y) = −NE/F (∂∞y) = NE/F (Na/Fx).

Proof of Theorem 7.6.1. As in the proof of Lemma 7.6.2, we see from Corol-
lary 7.5.3 and Ex. 7.7 with F ′ = E that the indeterminacy is annihilated by [E : F ].
Using the key trick of passing to a larger field, we may assume that the degree of
every finite extension of F is a power of a fixed prime p.
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Let us call a tower of intermediate fields F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E maximal
if [Fi : Fi−1] = p for all i. By Lemma 7.6.2, the transfer maps N :KM

∗ (Fi) →
KM

∗ (Fi−1) are independent of the choice of a such that Fi = Fi−1(a). If F ⊂ F1 ⊂ E
and F ⊂ F ′ ⊂ E are maximal towers, Proposition 7.6.4 states that NF ′/FNE/F ′ =
NF1/FNE/F1

, because if F ′ 6= F1 then E = F ′F1. It follows by induction on [E : F ]
that if F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E is a maximal tower then the composition of
the norm maps

KM
n (E)

N−→ KM
n (Fr−1)

N−→ · · ·KM
n (F1)

N−→ KM
n (F )

is independent of the choice of maximal tower.
Comparing any tower to a maximal tower, we see that it suffices to prove that if

F ⊂ F1 ⊂ F ′ is a maximal tower and F ′ = F (a) then Na/F = NF1/FNF ′/F1
. But

this is just Proposition 7.6.4 with E = F1 and E′ = F ′.

The dlog symbol and ν(n)F

For any field F , we write ΩnF for the nth exterior power of the vector space
ΩF = ΩF/Z of Kähler differentials (Ex. 2.6). The direct sum over n forms a graded-

commutative ring Ω∗
F , and the map dlog : F× → ΩF sending a to da

a extends to a
graded ring map from the tensor algebra T (F×) to Ω∗

F . By Ex. 6.10, l(a)⊗ l(1−a)
maps to zero, so it factors through the quotient ring KM

∗ (F ) of T (F×). We record
this observation for later reference.

Lemma 7.7. If F is any field, there is a graded ring homomorphism

dlog : KM
∗ (F )→ Ω∗

F , dlog{a1, . . . , an} =
da1
a1
∧ · · · ∧ dan

an
.

Now let F be a field of characteristic p 6= 0, so that d(ap) = p da = 0. In fact,
if {xi} is a p-basis of F over F p then the symbols dxi form a basis of the F -vector
space ΩF . Note that the set dΩ

n−1
F of all symbols da1∧· · ·∧dan forms an F p-vector

subspace of ΩnF .

Definition 7.7.1. If char(F ) = p 6= 0, let ν(n)F denote the kernel of the
Artin-Schrier operator ℘ : ΩnF → ΩnF /dΩ

n−1
F , which is defined by

℘

(
x
da1
a1
∧ · · · ∧ dan

an

)
= (xp − x) da1

a1
∧ · · · ∧ dan

an
.

(In the literature, ℘+ 1 is the inverse of the “Cartier” operator.)

Clearly ℘(dlog{a1, . . . , an}) = 0, so the image of the dlog map lies in ν(n)F .
The following theorem, which implies that these symbols span ν(n)F , was proven
by Kato [K82] for p = 2, and for general p by Bloch, Kato and Gabber [BK, 2.1].

Theorem 7.7.2. (Bloch-Kato-Gabber) Let F be a field of characteristic p 6= 0.
Then the dlog map induces an isomorphism KM

n (F )/pKM
n (F ) ∼= ν(n)F for every

n ≥ 0.

Using this result, Bloch and Kato also proved that the p-torsion subgroup of
KM
n (F ) is divisible [BK, 2.8]. Using this divisibility, Izhboldin found the following

generalization of theorem 6.7; see [Izh].
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Izhboldin’s Theorem 7.8. If char(F ) = p, the group KM
n (F ) has no p-torsion.

Proof. We proceed by induction on n, the case n = 2 being theorem 6.7. As
in the proof of theorem 6.7, let x be an indeterminate and y = xp − x; the field
extension F (x)/F (y) is an Artin-Schrier extension, and its Galois group is generated
by an automorphism σ satisfying σ(x) = x + 1. By theorem 7.4, we can regard
KM
n (F ) as a subgroup of both KM

n F (x) and KM
n F (y).

For all field extensions E of F (y) linearly disjoint from F (x), i.e., with no root
of tp− t−y, write E(x) for the field E⊗F (y) F (x). Let I(E) denote the set of all p-

torsion elements inKM
n E(x) of the form v−σ(v), v ∈ KM

n E(x), and let P (E) denote
the p-torsion subgroup of the kernel of the norm map Nx/E : KM

n E(x)→ KM
n (E).

Since Nσ(v) = N(v), I(E) ⊆ P (E). Both I(E) and P (E) vary naturally with E,
and are equal by proposition 7.8.2 below.

Fix u ∈ KM
n (F ) with pu = 0. The projection formula 7.5.2 shows that the

norm map KM
n F (x) → KM

n F (y) sends u to pu = 0. Hence u ∈ P (F (y)). By
proposition 7.8.2, u ∈ I(F (y)), i.e., there is a v ∈ KM

n F (x) so that u = v − σ(v) in
KM
n F (x). Now apply the leading coefficient symbol λ of 7.3.2; since λ(σv) = λ(v)

we have: u = λ(u) = λ(v)− λ(σv) = 0. This proves Izhboldin’s theorem.

Before proceeding to proposition 7.8.2, we need some facts about the group
I(E) defined in the proof of 7.8. We first claim that the transcendental extension
E ⊂ E(t) induces an isomorphism I(E) ∼= I(E(t)). Indeed, since E(x, t) is purely
transcendental over E(x), theorem 7.4 and induction on n imply that KM

n E(x)→
KM
n E(x, t) is an isomorphism on p-torsion subgroups, and the claim follows because

the leading coefficient symbol 7.3.2 commutes with σ.

We next claim that if E/E′ is a purely inseparable field extension then I(E′)→
I(E) is onto. For this we may assume that Ep ⊆ E′ ⊂ E. The composition of the
Frobenius map E → Ep with this inclusion induces the endomorphism of KM

n (E)
sending {a1, . . . , an} to {ap1, . . . , apn} = pn{a1, . . . , an}. Hence this claim follows
from the following result.

Lemma 7.8.1. The group I(E) is p-divisible.

Proof. Pick v ∈ KM
n E(x) so that u = v − σ(v) is in I(E). Now we invoke

the Bloch-Kato result, mentioned above, that the p-torsion subgroup of KM
n (L)

is divisible for every field L of characteristic p. By theorem 7.7.2, this implies
that u vanishes in KM

n E(x)/p ∼= ν(n)E(x). By Ex. 7.12 and theorem 7.7.2, the

class of v mod p comes from an element w ∈ KM
n (E), i.e., v − w = pv′ for some

v′ ∈ KM
n E(x). Then u = v − σ(v) = pv′ − pσ(v′), it follows that u′ = v′ − σ(v′) is

an element of I(E) with u = pu′.

Proposition 7.8.2. For all E containing F (y), linearly disjoint from F (x),
P (E) = I(E).

Proof. We shall show that the obstruction V (E) = P (E)/I(E) vanishes. This
group has exponent p, because if u ∈ P (E) then

pu = pu−NEL/Eu = (p− 1− σ − · · · − σp−1)u

=
(
(1− σ) + (1− σ2) + · · ·+ (1− σp−1)

)
u
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is in (1 − σ)KM
n E(x) and hence in I(E). It follows that V (E) injects into I(E′)

whenever E′/E is an extension of degree prime to p.
Now we use the “Brauer-Severi” trick; this trick will be used again in chapter V,

1.6, in connection with Severi-Brauer varieties. For each b ∈ E we let Eb denote the
field E(t1, . . . , tp−1, β) with t1, . . . , tp−1 purely transcendental over E and βp−β−
y+

∑
bitpi = 0. It is known that b is in the image of the norm map Eb(x)

× → E×
b ;

see [J37]. Since E · (Eb)p is purely transcendental over E (on β, tp2, ..., t
p
p−1), it

follows that I(E)→ I(Eb) is onto. Since Eb(x) is purely transcendental over E(x)
(why?), I(E(x)) = I(Eb(x)) and KM

n E(x) embeds in KM
n Eb(x) by theorem 7.4.

Hence KM
n (E(x))/I(E) embeds in KM

n Eb(x)/I(Eb). Since V (E) ⊂ KM
n E(x)/I(E)

by definition, we see that V (E) also embeds into V (Eb).
Now if we take the composite of all the fields Eb, b ∈ E, and then form its

maximal algebraic extension E′ of degree prime to p, it follows that V (E) embeds
into V (E′). Repeating this construction a countable number of times yields an
extension field E′′ of E such that V (E) embeds into V (E′′) and every element of
E′′ is a norm from E′′(x). Hence it suffices to prove that V (E′′) = 0. The proof
in this special case is completely parallel to the proof of proposition 6.6.2, and we
leave the details to Ex. 7.13.

This completes the proof of Izhboldin’s Theorem 7.8.

Corollary 7.8.3 (Hilbert’s Theorem 90 for KM
∗ ). Let j : F ⊂ L be a de-

gree p field extension, with char(F ) = p, and let σ be a generator of G = Gal(L/F ).
Then KM

n (F ) ∼= KM
n (L)G, and the following sequence is exact for all n > 0:

0→ KM
n (F )

j∗−→ KM
n (L)

1−σ−−→ KM
n (L)

N−→ KM
n (F ).

Proof. Since KM
n (F ) has no p-torsion, Corollary 7.5.3 implies that j∗ is an

injection. To prove exactness at the next spot, suppose that v ∈ KM
n (L) has

σ(v) = v. By Ex. 7.12 and theorem 7.7.2, the class of v mod p comes from an
element w ∈ KM

n (E), i.e., v− j∗(w) = pv′ for some v′ ∈ KM
n E(x). Hence pσ(v′) =

σ(pv′) = pv′. Since KM
n (L) has no p-torsion, σ(v′) = v′. But then pv′ equals

j∗N(v′) =
∑
σi(v′), and hence v = j∗(w)+ j∗(Nv′). In particular, this proves that

KM
n (F ) ∼= KM

n (L)G.
To prove exactness at the final spot, note that G acts on KM

n (L), and that
ker(N)/im(1 − σ) is isomorphic to the cohomology group H1(G,KM

n (L)); see
[WHomo, 6.2.2]. Now consider the exact sequence of Gal(L/F )-modules

0→ KM
n (L)

p−→ KM
n (L)

7.7.2−−−→ ν(n)L → 0.

Using Ex. 7.12, the long exact sequence for group cohomology begins

0→ KM
n (F )

p−→ KM
n (F )→ ν(n)F → H1(G,KM

n (L))
p−→ H1(G,KM

n (L)).

But KM
n (F ) maps onto ν(n)F by theorem 7.7.2, and the group H1(G,A) has ex-

ponent p for all G-modules A [WHomo, 6.5.8]. It follows that H1(G,KM
n (L)) = 0,

so ker(N) = im(1− σ), as desired.
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Remark 7.8.4. Hilbert’s Theorem 90 for KM
n , which extends Theorem 6.6,

states that for any Galois extension F ⊂ E of degree p, with σ generating Gal(E/F ),
the following sequence is exact:

KM
n (E)

1−σ−−→ KM
n (E)

NE/F−−−−→ KM
n (F ).

This is a consequence of the Norm Residue Theorem (Chapter VI, 3.1) and is due
to Voevodsky; we refer the reader to [HW, 3.2] for a proof.

Relation to the Witt ring

Let F be a field of characteristic 6= 2. Recall from §5.6 of chapter II that the
Witt ringW (F ) is the quotient of the Grothendieck group K0SBil(F ) of symmetric
inner product spaces over F by the subgroup {nH} generated by the hyperbolic
form 〈1〉 ⊕ 〈−1〉. The dimension of the underlying vector space induces an aug-
mentation K0SBil(F ) → Z, sending {nH} isomorphically onto 2Z, so it induces
an augmentation ε:W (F )→ Z/2.

We shall be interested in the augmentation ideals I = ker(ε) of W (F ) and Î of

K0SBil(F ). Since H ∩ Î = 0, we have Î ∼= I. Now I is generated by the classes
〈a〉 − 1, a ∈ F − {0, 1}. The powers In of I form a decreasing chain of ideals
W (F ) ⊃ I ⊃ I2 ⊃ · · · .

For convenience, we shall write KM
n (F )/2 for KM

n (F )/2KM
n (F ).

Theorem 7.9 (Milnor). There is a unique surjective homomorphism

sn:K
M
n (F )/2→ In/In+1

sending each product {a1, . . . , an} in KM
n (F ) to the product

∏n
i=1

(
〈ai〉− 1

)
modulo

In+1. The homomorphisms s1 and s2 are isomorphisms.

Proof. Because
(
〈a〉 − 1

)
+
(
〈b〉 − 1

)
≡ 〈ab〉 − 1 modulo I2 (II.5.6.5), the map

l(a1)×· · ·×l(an) 7→
∏(
〈ai〉−1

)
is a multilinear map from F× to In/In+1. Moreover,

if ai+ ai+1 = 1 for any i, we know from Ex. II.5.12 that
(
〈ai〉− 1

)(
〈ai+1〉− 1

)
= 0.

By the presentation of KM
∗ (F ), this gives rise to a group homomorphism from

KM
n (F ) to In/In+1. It annihilates 2KM

∗ (F ) because 〈a2〉 = 1:

2sn{a1, . . . , an} = sn{a21, a2 . . . } =
(
〈a21〉 − 1

) n∏

i=2

(
〈ai〉 − 1

)
= 0.

It is surjective because I is generated by the
(
〈a〉− 1

)
. When n = 1 the map is the

isomorphism F×/F×2 ∼= I/I2 of chapter II. We will see that s2 is an isomorphism
in Corollary 7.10.3 below, using the Hasse invariant w2.

Example 7.9.1. For the real numbers R, we have W (R) = Z and I = 2Z
on s1(−1) = 〈−1〉 − 1 = 2〈−1〉. On the other hand, we saw in Example 7.2(c)
that KM

n (R)/2 ∼= Z/2 on {−1, . . . ,−1}. In this case each sn is the isomorphism
Z/2 ∼= 2nZ/2n+1Z.

At the other extreme, if F is algebraically closed then W (F ) = Z/2. Since
KM
n (F ) is divisible, KM

n (F )/2 = 0 for all n ≥ 1. Here sn is the isomorphism 0 = 0.

Remark 7.9.2. In 1970, Milnor asked if the surjection sn:K
M
n (F )/2→ In/In+1

is an isomorphism for all n and F , char(F ) 6= 2 (on p. 332 of [M-QF]). Milnor proved
this was so for local and global fields. This result was proven for all fields and all
n by Orlov, Vishik and Voevodsky in [OVV].
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Definition 7.10 (Stiefel-Whitney invariant). The (total) Stiefel-Whitney
invariant w(M) of the symmetric inner product space M = 〈a1〉 ⊕ · · · ⊕ 〈an〉 is the
element of

∏∞
i=0K

M
i (F )/2 defined by the formula

w(M) =

n∏

i=1

(
1 + l(ai)

)
= 1 + l(a1 · · · an) + · · ·+ {a1, . . . , an}

The lemma below shows that w(M) is independent of the representation of M as
a direct sum of 1-dimensional forms. We write w(M) = 1+w1(M) +w2(M) + · · · ,
where the ith Stiefel-Whitney invariant wi(M) ∈ KM

i (F )/2 equals the ith elemen-
tary symmetric function of l(a1), . . . , l(an). For example, w1(M) = a1 · · · an ∈
F×/F×2 is just the classical “discriminant” of M defined in II.5.6.3, while the sec-
ond elementary symmetric function w2(M) =

∑
i<j{ai, aj} lies in K2(F )/2 and is

called the Hasse invariant of M ; see [M-SBF].
For M = 〈a〉 ⊕ 〈b〉 we have w1(M) = ab and w2(M) = {a, b}, with wi(M) = 0

for i ≥ 3. In particular, the hyperbolic plane H has wi(H) = 0 for all i ≥ 2.

Lemma 7.10.1. w(M) is a well-defined unit in the ring
∏∞
i=1K

M
i (F )/2. It

satisfies the Whitney sum formula

w(M ⊕N) = w(M)w(N),

so w extends to a function on K0SBil(F ). Hence each Stiefel-Whitney invariant

wi extends to a function K0SBil(F )
wi−→ KM

i (F )/2.

Proof. To show that w(M) is well defined, it suffices to consider the rank two
case. Suppose that 〈a〉 ⊕ 〈b〉 ∼= 〈α〉 ⊕ 〈β〉. Then the equation ax2 + by2 = α
must have a solution x, y in F . The case y = 0 (or x = 0) is straightforward,
since 〈α〉 = 〈ax2〉 = 〈a〉, so we may assume that x and y are nonzero. Since the
discriminant w1 is an invariant, we have ab = αβu2 for some u ∈ F , and all we
must show is that {a, b} = {α, β} in K2(F )/2. The equation 1 = ax2/α + by2/α
yields the equation

0 = {ax2/α, by2/α} ≡ {a, b}+ {α, α} − {a, α} − {b, α} ≡ {a, b} − {α, ab/α}

in K2(F )/2K2(F ). Substituting ab = αβu2, this implies that {a, b} ≡ {α, β}
modulo 2K2(F ), as desired.

Example 7.10.2. Since I ∼= Î, we may consider the wi as functions on I ⊆
W (F ). However, care must be taken as wi(M) need not equal w2(M ⊕ H). For
example, w2(M ⊕ H) = w2(M) + {w1(M),−1}. In particular, w2(H ⊕ H) =
{−1,−1} can be nontrivial. The Hasse-Witt invariant of an element x ∈ I ⊂
W (F ) is defined to be h(x) = w2(V,B), where (V,B) is an inner product space
representing x so that dim(V ) ≡ 0 mod 8.

Corollary 7.10.3. The Hasse invariant w2: Î → K2(F )/2 induces an isomor-

phism from Î2/Î3 ∼= I2/I3 to KM
2 (F )/2, inverse to the map s2 of Theorem 7.9.

Proof. By Ex. 7.11, w2 vanishes on the ideal Î3 ∼= I3, and hence defines
a function from Î2/Î3 to K2(F )/2. Since the total Stiefel-Whitney invariant of
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s2{a, b} =
(
〈a〉 − 1

)(
〈b〉 − 1

)
is 1 + {a, b}, this function provides an inverse to the

function s2 of Theorem 7.9.

If char(F ) = 2, there is an elegant formula for the filtration quotients of the Witt
ring W (F ) and the W (F )-module WQ(F ) (see II.5) due to K. Kato [K82]. Recall
from 7.7.2 that KM

n (F )/2 ∼= ν(n)F , where ν(n)F is the kernel of the operator ℘.
The case n = 0 of Kato’s result was described in Ex. II.5.13(d).

Theorem 7.10.4 (Kato [K82]). Let F be a field of characteristic 2. Then the
map sn of Theorem 7.9 induces an isomorphism KM

n (F )/2 ∼= ν(n)F ∼= In/In+1,
and there is a short exact sequence

0→ In/In+1 → ΩnF
℘−→ ΩnF /dΩ

n−1
F → In WQ(F )/In+1 WQ(F )→ 0.

The Norm Residue symbol

For the next result, we need some facts about Galois cohomology, expanding
slightly upon the facts mentioned in 6.10. Assuming that n is prime to char(F ),

there are natural cohomology cup productsHi
et(F ;M)⊗Hj

et(F ;N)
∪−→ Hi+j

et (F ;M⊗
N) which are associative in M and N . This makes the direct sum H∗

et(F ;M
⊗∗) =

⊕∞
i=0H

i
et(F ;M

⊗i) into a graded-commutative ring for every Z/n-module M over
the Galois group Gal(Fsep/F ). (By convention, M⊗0 is Z/n.) In particular, both
H∗
et(F ;Z/n) and H

∗
et(F ;µ

⊗∗
n ) are rings, and are isomorphic only when F contains

a primitive nth root of unity.

Theorem 7.11 (Norm Residue Symbols). (Bass-Tate) Fix a field F and an
integer n prime to char(F ).

(1) If F contains a primitive nth root of unity, the Kummer isomorphism from
F×/F×n to H1

et(F ;Z/n) extends uniquely to a graded ring homomorphism

hF :K
M
∗ (F )/n→ H∗(F ;Z/n).

(2) More generally, the Kummer isomorphism from F×/F×n to H1(F ;µn) ex-
tends uniquely to a graded ring homomorphism

hF :K
M
∗ (F )/n→ H∗

et(F ;µ
⊗∗
n ) = ⊕∞

i=0H
i
et(F ;µ

⊗i
n ).

The individual maps KM
i (F ) → Hi

et(F ;µ
⊗i
n ) are called the norm residue symbols,

and also higher Galois symbols.

Proof. The first assertion is just a special case of the second assertion. As in
(6.10.2), the Kummer isomorphism induces a map from the tensor algebra T (F×)
to H∗

et(F ;µ
⊗∗
n ), which in degree i is the iterated cup product

F× ⊗ · · ·F× = (F×)⊗n ∼=
(
H1
et(F ;µn)

)⊗i ∪−→ Hi
et(F ;µ

⊗i
n ).

By Proposition 6.10.3, the Steinberg identity is satisfied in H2
et(F, µ

⊗2
n ). Hence the

presentation of KM
∗ (F ) yields a ring homomorphism from KM

∗ (F ) to H∗
et(F ;µ

⊗∗
n ).

Remark 7.11.1. In his seminal paper [M-QF], Milnor studied the norm residue
symbol for KM

n (F )/2 and stated (on p.340) that, “I do not know any examples
for which the homomorphism hF fails to be bijective.” Voevodsky proved that hF
is an isomorphism for n = 2ν in his 2003 paper [V-MC]. The proof that hF is an
isomorphism for all n prime to char(F ) was proven a few years later; see VI.3.1.1.
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EXERCISES

7.1 Let v be a discrete valuation on a field F . Show that the maps λ:KM
n (F ) →

KM
n (kv) and ∂v:K

M
n (F )→ KM

n−1(kv) of Theorem 7.3 are independent of the choice

of parameter π, and that they vanish on l(u) · KM
n−1(F ) whenever u ∈ (1 + πR).

Show that the map λ also vanishes on l(π) ·KM
n−1(F ).

7.2 Continuing Exercise 7.1, show that the kernel of the map d:KM
n (F ) → Ln of

Theorem 7.3 is exactly l(1 + πR) ·KM
n−1(F ). Conclude that the kernel of the map

λ is exactly l(1 + πR) ·KM
n−1(F ) + l(π) ·KM

n−1(F ).

7.3 (Bass-Tate) Generalize Theorem 6.4 to show that for all n ≥ 2:

(a) If F is an algebraically closed field, then KM
n (F ) is uniquely divisible.

(b) If F is a perfect field of characteristic p then KM
n (F ) is uniquely p-divisible.

7.4 Let F be a local field with valuation v and finite residue field k. Show that
KM
n (F ) is divisible for all n ≥ 3. Hint: By Moore’s Theorem 6.2.4, KM

n (F ) is
ℓ-divisible unless F has a ℓth root of unity. Moreover, for every x /∈ F×ℓ there is a
y /∈ F×ℓ so that {x, y} generates K2(F )/ℓ. Given a, b, c with {b, c} 6∈ ℓK2(F ), find
a′, b′ 6∈ F×ℓ so that {b′, c} ≡ 0 and {a′, b′} ≡ {a, b} modulo ℓK2(F ), and observe
that {a, b, c} ≡ {a′, b′, c} ≡ 0.

In fact, I. Sivitskii has shown that KM
n (F ) is uniquely divisible for n ≥ 3 when

F is a local field. See [Siv]. We will give a proof of this in VI.5.1.

7.5 Let E = F (a) be a finite extension of F , and consider the transfer map N =
Na/F :K

M
n (E)→ KM

n (F ) in definition 7.5. Use Weil’s Formula (7.5.1) to show that
when n = 0 the transfer map N :Z→ Z is multiplication by [E : F ], and that when
n = 1 the transfer map N :E× → F× is the usual norm map.

7.6 Suppose that the degree of every finite extension of a field F is a power of some
fixed prime p. If E is an extension of degree p and n > 0, use Ex. 6.2 to show that
KM
n (E) is generated by elements of the form {y, x2, . . . , xn}, where y ∈ E× and

the xi are in F×.

7.7 Ramification and the transfer. Let F ′ and E = F (a) be finite field extensions of
F , and suppose that the irreducible polynomial π ∈ F [t] of a has a decomposition
π =

∏
πei in F ′[t]. Let Ei denote F

′(ai), where each ai has minimal polynomial
πi. Show that the following diagram commutes.

KM
n (E)

e1,...,er−−−−−→ ⊕KM
n (Ei)

Na/F

y
y
∑

Nai/F
′

KM
n (F ) −−−−→ KM

n (F ′)

7.8 Ramification and ∂v. Suppose that E is a finite extension of F , and that w is
a valuation on E over the valuation v on F , with ramification index e. (See 6.3.1.)
Use the formulas for ∂v and ∂w in Theorem 7.3 to show that for every x ∈ KM

n (F )
we have ∂w(x) = e · ∂v(x) in KM

n−1(kw)
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7.9 If E/F is a normal extension of prime degree p, and v is a valuation on F (t)
trivial on F , show that ∂vNE(t)/F (t) =

∑
wNE(w)/F (v)∂w, where the sum is over all

the valuations w of E(t) over v. Hint: If F (t)v and E(t)w denote the completions
of F (t) and E(t) at v and w, respectively, use Ex. 7.7 and Lemma 7.6.3 to show
that the following diagram commutes.

KM
n+1E(t) −−−−→ ⊕

wK
M
n+1E(t)w

∂−−−−→ ⊕
wK

M
n E(w)

NE(t)/F (t)

y
y
∑

w
NE(t)w/F (t)v

y
∑

w
Ne(w)/F (v)

KM
n F (t) −−−−→ KM

n F (t)w
∂−−−−→ KM

n F (v)

7.10 If v is a valuation on F , and x ∈ KM
i (F ), y ∈ KM

j (F ), show that

∂v(xy) = λ(x)∂v(y) + (−1)j∂v(x)ρ(y)

where ρ:KM
∗ (F )→ KM

∗ (kv) is a ring homomorphism characterized by the formula
ρ(l(uπi)) = l((−1)iū).
7.11 Let t = 2n−1 and set z =

∏n
i=1

(
〈ai〉 − 1

)
; this is a generator of the ideal În

in K0SBil(F ). Writing s for {a1, . . . , an,−1,−1, . . . ,−1} ∈ KM
t (F )/2, show that

the Stiefel-Whitney invariant w(z) is equal to: 1 + s if n is odd, and to (1+ s)−1 if

n is even. This shows that the invariants wi vanish on the ideal În if i < t = 2n−1,
and that wt induces a homomorphism from In/In+1 ∼= În/În+1 to KM

t (F )/2.

For example, this implies that w1 vanishes on Î2, while w2 and w3 vanish on Î3.

7.12 (Izhboldin) Let L/F be a field extension of degree p = char(F ), with Galois
group G. Show that ΩnF is isomorphic to (ΩnL)

G, and that ΩnF /dΩ
n−1
F is isomorphic

to (ΩnL/dΩ
n−1
L )G. Conclude that ν(n)F ∼= ν(n)GL .

7.13 In this exercise we complete the proof of proposition 7.8.2, and establish
a special case of 7.8.3. Suppose that E(x) is a degree p field extension of E,
char(E) = p, and that σ is a generator of Gal(E(x)/E). Suppose in addition that
the norm map E(x)× → E× is onto, and that E has no extensions of degree < p.
Modify the proof of proposition 6.6.2 to show that the following sequence is exact:

KM
n E(x)

1−σ−−→ KM
n E(x)

N−→ KM
n E → 0.

7.14 Suppose that F is a field of infinite transcendence degree κ over the ground

field. Show that the image of the dlog symbol of 7.7 lies in the kernel of ΩnF
d−→ Ωn+1

F .
Using Ex. 6.11, show that KM

n (F ) has cardinality κ for all n > 0.
If F is a local field, this and Ex. 7.4 implies that KM

n (F ) is an uncountable,
uniquely divisible abelian group.


