CHAPTER 1

PROJECTIVE MODULES AND VECTOR BUNDLES

The basic objects studied in algebraic K-theory are projective modules over a
ring, and vector bundles over schemes. In this first chapter we introduce the cast
of characters. Much of this information is standard, but collected here for ease of
reference in later chapters.

Here are a few running conventions we will use. The word ring will always mean
an associative ring with 1 (1 # 0). If R is a ring, the word R-module will mean
right R-module unless explicitly stated otherwise.

§1. Free modules, GL, and stably free modules

If R is a field, or a division ring, then R-modules are called vector spaces. Clas-
sical results in linear algebra state that every vector space has a basis, and that
the rank (or dimension) of a vector space is independent of the choice of basis.
However, much of this fails for arbitrary rings.

As with vector spaces, a basis of an R-module M is a subset {e;};cs such that
every element of M can be expressed in a unique way as a finite sum ) e;r; with
r; € R. We say that a module M is free if it has a basis. If M has a fixed ordered
basis we call M a based free module, and define the rank of the based free module
M to be the cardinality of its given basis. Homomorphisms between based free
modules are naturally identified with matrices over R.

The canonical example of a based free module is R™ with the usual basis; it
consists of n-tuples of elements of R, or “column vectors” of length n.

Unfortunately, there are rings for which R"® = R"*™' t # 0. We make the
following definition to avoid this pathology, referring the curious reader to the
exercises for more details. (If s is an infinite cardinal number, let R(*) denote a
free module on a basis of cardinality &; every basis of R(*) has cardinality . In
particular R(*) cannot be isomorphic to R™ for finite n. See ch.2, 5.5 of [Cohn65].)

DEFINITION 1.1 (IBP). We say that a ring R satisfies the (right) invariant basis
property (or IBP) if R™ and R™ are not isomorphic for m # n. In this case, the
rank of a free R-module M is an invariant, independent of the choice of basis of M.

Most of the rings we will consider satisfy the invariant basis property. For exam-
ple, commutative rings satisfy the invariant basis property, and so do group rings
Z[G]. This is because a ring R must satisfy the IBP if there exists a ring map
f:R — F from R to a field or division ring F. (If R is commutative we may take
F = R/m, where m is any maximal ideal of R.) To see this, note that any basis of
M maps to a basis of the vector space V = M ®pg F'; since dim V' is independent of
the choice of basis, any two bases of M must have the same cardinality.
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2 I. PROJECTIVE MODULES AND VECTOR BUNDLES

Our choice to use right modules dictates that we write R-module homomor-
phisms on the left. In particular, homomorphisms R™ — R™ may be thought of as
m X n matrices with entries in R, acting on the column vectors in R™ by matrix
multiplication. We write M, (R) for the ring of n x n matrices, and write GL,,(R)
for the group of invertible n x n matrices, i.e., the automorphisms of R"™. We will
usually write R* for the group GL;(R) of units in R.

EXAMPLE 1.1.1. Any finite-dimensional algebra R over a field (or division ring)
F must satisfy the IBP, because the rank of a free R-module M is an invariant:

rank(M) = dimp(M)/dimp(R).

For a simple artinian ring R we can say even more. Classical Artin-Wedderburn
theory states that R = M,,(F') for some n and F', and that every right R-module M
is a direct sum of copies of the (projective) R-module V' consisting of row vectors
over F' of length n. Moreover, the number of copies of V' is an invariant of M,
called its length; the length is also dimg (M) /n since dimp (V) = n. In this case we
also have rank(M) = length(M)/n = dimp(M)/n>.

There are noncommutative rings which do not satisfy the IBP, i.e., which have
R™ = R™ for some m # n. Rank is not an invariant of a free module over these
rings. One example is the infinite matrix ring Endz(F°°) of endomorphisms of an
infinite-dimensional vector space over a field F. Another is the cone ring C'(R)
associated to a ring R. (See the exercises.)

Unimodular rows and stably free modules

DEFINITION 1.2. An R-module P is called stably free (of rank n—m) if P@R™ =
R" for some m and n. (If R satisfies the IBP then the rank of a stably free module
is easily seen to be independent of the choice of m and n.) Conversely, the kernel
of any surjective m x n matrix o: R® — R™ is a stably free module, because a lift
of a basis for R™ yields a decomposition P & R™ = R".

This raises a question: when are stably free modules free? Over some rings
every stably free module is free (fields, Z and the matrix rings M,,(F') of Example
1.1.1 are classical cases), but in general this is not so even if R is commutative; see
example 1.2.2 below.

1.2.1. The most important special case, at least for inductive purposes, is when
m=1,1.e., P®R= R". In this case ¢ is a row vector, and we call o a unimodular
row. It is not hard to see that the following conditions on a sequence o = (r1,...,75,)
of elements in R are equivalent for each n:

e 0 is a unimodular row;

e R" = P@® R, where P = ker(o) and the projection R — R is o;

e R=rR+ -+ r,R;

ol=7ri51+ --+1r,s, for some s; € R.

If R® =2 P & R with P free, then a basis of P would yield a new basis for R"
and hence an invertible matrix g whose first row is the unimodular row o: R — R
corresponding to P. This gives us a general criterion: P is a free module if and

only if the corresponding unimodular row may be completed to an invertible matrix.
(The invertible matrix is in GL,(R) if R satisfies the IBP).
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When R is commutative, every unimodular row of length 2 may be completed.
Indeed, if r1s1 + ross = 1, then the desired matrix is:

™ r2
—S2 81

Hence R? = R @ P implies that P = R. In §3 we will obtain a stronger result:
every stably free module of rank 1 is free. The fact that R is commutative is crucial;
in Ex. 1.6 we give an example of a unimodular row of length 2 which cannot be
completed over D[z,y], D a division ring.

ExXAMPLE 1.2.2. Here is an example of a unimodular row o of length 3 which
cannot be completed to an element of GL3(R). Hence P = ker(o) is a rank 2 stably
free module P which is not free, yet P ® R = R3. Let o be the unimodular row
o = (z,y,2) over the commutative ring R = R[xz,y, 2]/(x? + y*> + 22 = 1). Every
element (f, g, h) of R? yields a vector field in 3-space (R?), and o is the vector field
pointing radially outward. Therefore an element in P yields a vector field in 3-space
tangent to the 2-sphere S2. If P were free, a basis of P would yield two tangent
vector fields on S? which are linearly independent at every point of S? (because
together with o they span the tangent space of 3-space at every point). It is well
known that this is impossible: you can’t comb the hair on a coconut. Hence P
cannot be free.

The following theorem describes a “stable range” in which stably free modules
are free (see 2.3 for a stronger version). A proof may be found in [Bass, V.3.5],
using the “stable range” condition (5,,) of Ex. 1.5 below. Example 1.2.2 shows that
this range is sharp.

BAss CANCELLATION THEOREM FOR STABLY FREE MODULES 1.3. Let R be
a commutative noetherian ring of Krull dimension d. Then every stably free R-
module of rank > d is a free module. Equivalently, every unimodular row of length
n > d+ 2 may be completed to an invertible matriz.

The study of stably free modules has a rich history, and we cannot do it justice
here. An excellent source for further information is the book [Lam)].

EXERCISES

1.1 Semisimple rings. A nonzero R-module M is called simple if it has no submod-
ules other than 0 and M, and semisimple if it is the direct sum of simple modules. A
ring R is called semisimple if R is a semisimple R-module. If R is semisimple, show
that R is a direct sum of a finite (say n) number of simple modules. Then use the
Jordan-Holder Theorem, part of which states that the length of a semisimple mod-
ule is an invariant, to show that every stably free module is free. In particular, this
shows that semisimple rings satisfy the IBP. Hint: Observe that length= n - rank
is an invariant of free R-modules.

1.2 (P.M. Cohn) Consider the following conditions on a ring R:

(I) R satisfies the invariant basis property (IBP);

(IT) For all m and n, if R™ = R™ @ P then m > n;

(III) For all n, if R™ = R™ @& P then P = 0.
If R # 0, show that (III) = (II) = (I). For examples of rings satisfying (I) but not
(IT), resp. (II) but not (III), see [Cohn66].
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1.3 Show that (III) and the following matrix conditions are equivalent:

(a) For all n, every surjection R — R is an isomorphism;

(b) For all n, and f,g € M, (R), if fg = 1,,, then gf = 1,, and g € GL,(R).
Then show that commutative rings satisfy (b), hence (III).

1.4 Show that right noetherian rings satisfy condition (b) of the previous exercise.
Hence they satisfy (III), and have the right invariant basis property.

1.5 Stable Range Conditions. We say that a ring R satisfies condition (S,,) if for
every unimodular row (rg, 71, ...,7,) in R*! there is a unimodular row (r},...,7/)
in R"™ with r, = r; — rot; for some ¢y, ...,t, in R. The stable range of R, sr(R), is
defined to be the smallest n such that R satisfies condition (S,). (Warning: our
(Sy) is the stable range condition SR, 11 of [Bass].)

(a) (Vaserstein) Show that (S,,) holds for all n > sr(R).

(b) If sr(R) = n, show that all stably free projective modules of rank > n are free.
Bass’ Cancellation Theorem [Bass, V.3.5], which is used to prove 1.3 and 2.3
below, actually states that sr(R) < d+1 if R is a d-dimensional commutative
noetherian ring, or more generally if Max(R) is a finite union of spaces of
dimension < d.

(c) Show that sr(R) =1 for every artinian ring R. Conclude that all stably free
projective R-modules are free over artinian rings.

(d) Show that if I is an ideal of R then sr(R) > sr(R/I).

(e) (Veldkamp) If sr(R) = n for some n, show that R satisfies the invariant basis
property (IBP). Hint: Consider an isomorphism B: RN = RN*" and apply

(S,) to convert B into a matrix of the form (g)

1.6 (Ojanguren-Sridharan) Let D be a division ring which is not a field. Choose
a, B € D such that aff — fa # 0, and show that o = (x + a,y + () is a unimodular
row over R = D[z, y]. Let P = ker(o) be the associated rank 1 stably free module;
P @® R = R%. Prove that P is not a free D|x,y]-module, using these steps:
(i) If P =2 R™, show that n = 1. Thus we may suppose that P = R with 1 € R
corresponding to a vector [}] with r, s € R.

(ii) Show that P contains a vector [ﬁ with f = c12 + coy + c3zy + 4y and
g = dix + d23J + d3$y + d4$2, (Ci, d; € D)

(iii) Show that P cannot contain any vector [g ] with f and ¢ linear polynomials
in z and y. Conclude that the vector in (i) must be quadratic, and may be
taken to be of the form given in (ii).

(iv) Show that P contains a vector [5] with f = yo+my+y?, g = do+d1x—ay—zy

and vy = Bu~!Bu # 0. This contradicts (iii), so we cannot have P = R.

1.7 Direct sum rings. A ring R (with unit) is called a direct sum ring if there is an
R-module isomorphism R = R2. This implies that R = R™ for every finite n. Any
homomorphism R — S makes S into a direct sum ring, so many direct sum rings
exist. In this exercise and the next, we give some examples of direct sum rings.
For any ring R, let R = R®0) be a fixed free R-module on a countably in-
finite basis. Then R®® is naturally a left module over the endomorphism ring
E = Endgr(R>), and we identify E with the ring of infinite column-finite matrices.
If R =V; &V, as a left R-module, show that £ = I; & I, for the right ideals
I ={f € E: f(R®) CV;}. Conversely, if E = I & I» as a right module, show
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that R>™ =V; @ Va, where V; = I; - R*. Conclude that E is a direct sum ring, and
that I & J = F implies that I & E = FE for every right ideal I of E.

1.8 Cone Ring. For any ring R, the endomorphism ring End g (R*°) of the previous
exercise contains a smaller ring, namely the subring C'(R) consisting of row-and-
column finite matrices. The ring C(R) is called the cone ring of R. Show that
C(R) is a direct sum ring.

1.9 To see why our notion of stably free module involves only finitely generated
free modules, let R* be the infinitely generated free module of exercise 1.7. Prove
that if P@® R™ =2 R*> then P = R*°. Hint: The image of R™ is contained in some
R™ C R*. Writing R* =2 R" & F and Q = PN R", show that P = (Q & F and
F = F & R™. This trick is a version of the Eilenberg Swindle 2.8 below.

1.10 FEzxcision for GL,. If I is a ring without unit, let Z @ I be the canonical
augmented ring with underlying abelian group Z @ I. Let GL,(I) denote the
kernel of the map GL,(Z® I) — GL,(Z), and let M, (I) denote the matrices with
entries in I. If g € GL,,(I) then clearly g — 1,, € M, (I).
(i) Characterize the set of all x € M, (I) such that 1,, + x € GL, ().
(ii) If I is an ideal in a ring R, show that GL,(I) is the kernel of GL,(R) —
GL,(R/I), and so is independent of the choice of R.
(iii) If © = (=;) is any nilpotent matrix in M, (I), such as a strictly upper trian-
gular matrix, show that 1,, + = € GL, ().

1.11 (Whitehead) If g € GL,,(R), verify the following identity in GLa,(R) :

(0 )= D D60 )

Conclude that if S — R is a ring surjection then there is a matrix h € GLa,(S)
mapping to the block diagonal matrix with entries g, ¢! displayed above.

1.12 Radical Ideals. A 2-sided ideal I in R is called a radical ideal if 1+ z is a unit
of R for every x € I, i.e., if (Vx € I)(Jy € I)(x +y + zy = 0). Every ring has a
largest radical ideal, called the Jacobson radical of R; it is the intersection of the
maximal left ideals of R.
(i) Show that every nil ideal is a radical ideal. (A nil ideal is an ideal in which
every element is nilpotent.)
(ii) A ring R is local if it has a unique maximal 2-sided ideal m, and every element
of R —mis a unit. If R is local, show that R/m is a field or division ring.
(iii) If I is a radical ideal of R, show that M, (I) is a radical ideal of M, (R)
for every n. Hint: Use elementary row operations to diagonalize any matrix
which is congruent to 1,, modulo 1.
(iv) If I is a radical ideal, show that GL,(R) — GL,,(R/I) is surjective for each
n. That is, there is a short exact sequence of groups:

1—-GL,(I)— GL,(R) - GL,(R/I) — 1.

(v) If I is a radical ideal, show that sr(R) = sr(R/I), where sr is the stable range
of Exercise 1.5. Conclude that sr(R) = 1 for every local ring R.



6 I. PROJECTIVE MODULES AND VECTOR BUNDLES

1.13 A von Neumann reqular ring is a ring R such that for every r € R there is an
x € R such that r = rxr. It is called unit-reqular if for every r € R there is a unit
x € R such that r = rzr. If R is von Neumann regular, show that:

(a) for every r € R, R=rR® (1 —rx)R. Hint: (rx)? = rx.

(b) R is unit-regular <= R has stable range 1 (in the sense of Exercise 1.5);

(¢) If R is unit-regular then R satisfies condition (III) of Exercise 1.2. (The
converse does not hold; see Example 5.10 of [Gdearl].)

A rank function on R is a set map p: R — [0, 1] such that: (i) p(0) = 0 and p(1) = 1;
(i) p(x) > 0 if @ # 0; (ili) p(zy) < p(z), p(y); and (iv) ple + f) = p(e) + p(f) if
e, [ are orthogonal idempotents in A. Goodearl and Handelman proved (18.4 of
[Gdearl]) that if R is a simple von Neumann ring then:

(III) holds <= R has a rank function.

(d) Let F be a field or division ring. Show that the matrix ring M, (F) is unit-
regular, and that p,(g) = rank(g)/n is a rank function on M,,(F'). Then show
that the ring Endp(F°°) is von Neumann regular but not unit-regular.

(e) Consider the union R of the matrix rings M, (F'), where we embed M, (F)
in Mg, 10 (F) = My (F) ® Myy1(F) as My, ® 1. Show that R is a simple
von Neumann regular ring, and that the union of the p,, of (c) gives a rank
function p: R — [0, 1] with image Q N [0, 1].

(f) Show that a commutative ring R is von Neumann regular if and only if it is
reduced and has Krull dimension 0. These rings are called absolutely flat rings
by Bourbaki, since every R-module is flat. Use Exercise 1.12 to conclude that
every commutative 0-dimensional ring has stable range 1 (and is unit-regular).

§2. Projective modules

DEFINITION 2.1. An R-module P is called projective if there exists a module @)
so that the direct sum P & @ is free. This is equivalent to saying that P satisfies
the projective lifting property: For every surjection s: M — N of R-modules and
every map g: P — N there exists a map f: P — M so that g = sf.

P

Iy lyg
M 3 N — 0

To see that these are equivalent, first observe that free modules satisfy this lifting
property; in this case f is determined by lifting the image of a basis. To see that
all projective modules satisfy the lifting property, extend g to a map from a free
module P to N and lift that. Conversely, suppose that P satisfies the projective
lifting property. Choose a surjection 7: F — P with F' a free module; the lifting
property splits m, yielding F' = P @ ker(m).

If P is a projective module, then P is generated by n elements if and only if
there is a decomposition P & @Q = R™. Indeed, the generators give a surjection
m: R" — P, and the lifting property yields the decomposition.

We will focus most of our attention on the category P(R) of finitely generated
projective R-modules; the morphisms are the R-module maps. Since the direct sum
of projectives is projective, P(R) is an additive category. We may regard P as a
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covariant functor on rings, since if R — S is a ring map then up to coherence there
is an additive functor P(R) — P(S) sending P to P ®p S. (Formally, there is an
additive functor P'(R) — P(S) and an equivalence P'(R) — P(R); see Ex.2.16.)

HoMm AND ®. If P is a projective R-module, then it is well-known that P @ —
is an exact functor on the category of (left) R-modules, and that Hompg(P, —) is an
exact functor on the category of (right) R-modules. (See [WHomo], for example.)
That is, any exact sequence 0 - L — M — N — 0 of R-modules yields exact
sequences

0PRXL—->PRM—-PRN—=0

and
0 — Hom(P, L) — Hom(P, M) — Hom(P, N) — 0.

ExAMPLES 2.1.1. Of course free modules and stably free modules are projective.

(1) If F'is a field (or a division ring) then every F-module (vector space) is free,
but this is not so for all rings.

(2) Consider the matrix ring R = M,,(F'), n > 1. The R-module V' of Example
1.1.1 is projective but not free, because length(V) =1 < n = length(R).

(3) Componentwise free modules. Another type of projective module arises for
rings of the form R = R; X Ry; both P = Ry x 0 and Q = 0 x Ry are
projective but cannot be free because the element e = (0,1) € R satisfies
Pe = 0 yet R"e # 0. We say that a module M is componentwise free
if there is a decomposition R = R; X --- X R, and integers n; such that
M = RY* x ---x Rl*. It is easy to see that all componentwise free modules
are projective.

(4) Topological Examples. Other examples of nonfree projective modules come
from topology, and will be discussed more in section 4 below. Consider the
ring R = C°(X) of continuous functions X — R on a compact topological
space X. If n: B — X is a vector bundle then by Ex. 4.8 the set I'(E) =
{s:X — E : ns = 1x} of continuous sections of 1 forms a projective
R-module. For example, if T™ is the trivial bundle R™ x X — X then
['(T™) = R™. 1 claim that if E is a nontrivial vector bundle then I'(E)
cannot be a free R-module. To see this, observe that if I'(E') were free then
the sections {si,...,s,} in a basis would define a bundle map f:7" — E
such that I'(T™) = I'(E). Since the kernel and cokernel bundles of f have
no nonzero sections they must vanish, and f is an isomorphism.

When X is compact, the category P(R) of finitely generated projective
C°(X)-modules is actually equivalent to the category of vector bundles over
X; this result is called Swan’s Theorem. (See Ex. 4.9 for a proof.)

IDEMPOTENTS 2.1.2. An element e of a ring R is called idempotent if e? = e.
If e € R is idempotent then P = eR is projective because R = eR @ (1 — e)R.
Conversely, given any decomposition R = P & @, there are unique elements e € P,
f € @ such that 1 = e+ f in R. By inspection, e and f = 1 — e are idempotent,
and ef = fe = 0. Thus idempotent elements of R are in 1-1 correspondence with
decompositions R = P & Q.
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If e # 0,1 and R is commutative then P = eR cannot be free, because P(1—e) =
0 but R(1 —e) # 0. The same is true for noetherian rings by Ex.1.4, but obviously
cannot be true for rings such that R =2 R & R; see Ex.1.2 (III).

Every finitely generated projective R-module arises from an idempotent element
in a matrix ring M, (R). To see this, note that if P& @ = R™ then the projection-
inclusion R™ — P — R™ is an idempotent element e of M, (R). By inspection, the
image e(R") of e is P. The study of projective modules via idempotent elements
can be useful, especially for rings of operators on a Banach space. (See [R096].)

If R is a Principal Ideal Domain (PID), such as Z or F[x], F a field, then all
projective R-modules are free. This follows from the Structure Theorem for modules
over a PID (even for infinitely generated projectives).

Not many other classes of rings have all (finitely generated) projective modules
free. A famous theorem of Quillen and Suslin states that if R is a polynomial
ring (or a Laurent polynomial ring) over a field or a PID then all projective R-
modules are free; a good reference for this is Lam’s book [Lam]. In particular, if
G is a free abelian group then the group ring Z[G] is the Laurent polynomial ring
Zlr,z71, ... 2, 271], and has all projectives free. In contrast, if G is a nonabelian
torsion-free nilpotent group, Artamanov proved in [Art] that there are always pro-
jective Z[G]-modules P which are stably free but not free: P & Z[G] = (Z[G])?.

It is an open problem to determine whether all projective Z[G]-modules are
stably free when G is a finitely presented torsion-free group. Some partial results
and other examples are given in [Lam].

For our purposes, local rings form the most important class of rings with all
projectives free. A ring R is called a local ring if R has a unique maximal (2-sided)
ideal m, and every element of R — m is a unit; R/m is either a field or a division
ring by Ex. 1.12.

LEMMA 2.2. If R is a local ring, then every finitely generated projective R-
module P is free. In fact P = RP, where p = dimp / (P/mP).

PROOF. We first observe that every element u € R invertible in R/m is a unit
of R, i.e., uv = vu = 1 for some v. Indeed, by multiplying by a representative for
the inverse of u € R/m we may assume that © € 1 +m. Since m is the Jacobson
radical of R, any element of 1 +m must be a unit of R.

Suppose that P @ @ = R™. As vector spaces over ' = R/m, P/mP = FP and
Q/mQ = F1 for some p and ¢q. Since FP & F1 = F" p+ q = n. Choose elements
{e1,...,ep} of P and {e},...,e;} of @ mapping to bases of P/mP and Q/m@. The
e; and e; determine a homomorphism RP & R? — P & () = R", which may be
represented by a square matrix (r;;) € M, (R) whose reduction (7;;) € M, (F)
is invertible. But every such matrix (r;;) is invertible over R by Exercise 1.12.
Therefore {e1, ..., ep, €], ...,e;} is a basis for P @ @, and from this it follows that P
is free on basis {e1,...,€ep}.

REMARK 2.2.1. Even infinitely generated projective R-modules are free when
R is local. See [Kap58].
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COROLLARY 2.2.2. If p is a prime ideal of a commutative ring R and P is
a finitely generated projective R-module, then the localization P, is isomorphic to
(Rp)™ for some n > 0. Moreover, there is an s € R — p such that the localization
of P away from s is free:

In particular, Py = (Ry)™ for every other prime ideal ' of R not containing s.

PrOOF. If P® Q = R™ then P, @ Q, = (Rp)™, so P, is a finitely generated
projective Ry-module. Since R, is a local ring, P, is free by 2.2. Now every
element of P, is of the form p/s for some p € P and s € R — p. By clearing
denominators, we may find an R-module homomorphism f: R™ — P which becomes
an isomorphism upon localizing at p. As coker(f) is a finitely generated R-module
which vanishes upon localization, it is annihilated by some s € R—p. For this s, the
map f[1]: (R[1])" — P[1] is onto. Since P[1] is projective, (R[2])" is isomorphic
to the direct sum of P[1] and a finitely generated R[1]-module M with M, = 0.
Since M is annihilated by some t € R — p we have

) (RS P

Suppose that there is a ring homomorphism f: R — F from R to a field or a
division ring F'. If M is any R-module (projective or not) then the rank of M at f
is the integer dimp(M ®p F'). However, the rank depends upon f, as the example
R=FxF, M = F x0shows. When R is commutative, every such homomorphism
factors through the field k(p) = R,/pR, for some prime ideal p of R, so we may
consider rank(M) as a function on the set Spec(R) of prime ideals in R.

Recall that the set Spec(R) of prime ideals of R has the natural structure of a
topological space in which the basic open sets are

D(s) = {p € Spec(R) : s ¢ p} = Spec(R[%]) for s € R.

DEFINITION 2.2.3 (RANK). Let R be a commutative ring. The rank of a finitely
generated R-module M at a prime ideal p of R is rank, (M) = dimy,,) M ®r k(p).
Since M, /pM, = k(p)*22k» (M) yank, (M) is the minimal number of generators of
M,

If P is a finitely generated projective R-module then rank(P):p — rank,(P) is a
continuous function from the topological space Spec(R) to the discrete topological
space N C Z, as we see from Corollary 2.2.2. In this way, we shall view rank(P) as
an element of the two sets [Spec(R),N] and [Spec(R),Z] of continuous maps from
Spec(R) to N and to Z, respectively.

We say that P has constant rank n if n = rank,(P) is independent of p. If
Spec(R) is topologically connected, every continuous function Spec(R) — N must
be constant, so every finitely generated projective R-module has constant rank.
For example, suppose that R is an integral domain with field of fractions F'; then
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Spec(R) is connected, and every finitely generated projective R-module P has con-
stant rank: rank(P) = dimp(P ®pg F'). Conversely, if a projective P has constant
rank, then it is finitely generated; see Ex.2.13 and 2.14.

If a module M is not projective, rank(M) need not be a continuous function on
Spec(R), as the example R = Z, M = 7Z/p shows.

COMPONENTWISE FREE MODULES 2.2.4. Every continuous f:Spec(R) — N in-
duces a decomposition of Spec(R) into the disjoint union of closed subspaces f~1(n).
In fact, f takes only finitely many values (say ni,...,n.), and it is possible to write
R as Ry X -++ X R, such that f~!(n;) is homeomorphic to Spec(R;). (See Ex. 2.4.)
Given such a function f, form the componentwise free R-module:

RF =R x - - x R

Clearly R/ has constant rank n; at every prime in Spec(R;) and rank(R/) = f.
For n > max{n;}, Rf @ R"~/ = R", so R/ is a finitely generated projective R-
module. Hence continuous functions Spec(R) — N are in 1-1 correspondence with
componentwise free modules.

The following variation allows us to focus on projective modules of constant rank
in many arguments. Suppose that P is a finitely generated projective R-module, so
that rank(P) is a continuous function. Let R = Ry x --- x R, be the corresponding
decomposition of R. Then each component P, = P ®r R; of P is a projective R;-
module of constant rank and there is an R-module isomorphism P = P; X --- X P,.

The next theorem allows us to further restrict our attention to projective modules
of rank < dim(R). Its proof may be found in [Bass, IV]. We say that two R-modules
M, M’ are stably isomorphic if M & R™ = M’ & R™ for some m > 0.

BAsS-SERRE CANCELLATION THEOREM 2.3. Let R be a commutative noether-
tan ring of Krull dimension d, and let P be a projective R-module of constant rank
n > d.

(a) (Serre) P =2 Py ® R"™¢ for some projective R-module Py of constant rank d.
(b) (Bass) If P is stably isomorphic to P’ then P = P’.
(c) (Bass) For all M, M', if P® M is stably isomorphic to M’ then P& M = M’'.

REMARK 2.3.1. If P is a projective module whose rank is not constant, then
P = Py x---x P, for some decomposition R = Ry x --- X R.. (See Ex. 2.4.) In this
case, we can apply the results in 2.3 to each P; individually. The reader is invited
to phrase 2.3 in this generality.

LocaLLy FREE MODULES 2.4. Let R be commutative. An R-module M is
called locally free if for every prime ideal p of R there is an s € R — p so that
M [%] is a free module. We saw in Corollary 2.2.2 that finitely generated projective
R-modules are locally free. In fact, the following are equivalent:

(1) M is a finitely generated projective R-module;

(2) M is a locally free R-module of finite rank (i.e., rank, (M) < oo for all
prime ideals p);

(3) M is a finitely presented R-module, and for every prime ideal p of R:

M, is a free R,-module.
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PROOF. The implication (2) = (3) follows from the theory of faithfully flat
descent; a proof is in [[]II§5.2, Thm. 1]B-AC. Nowadays we would say that M
is coherent (locally finitely presented), hence finitely presented; cf. [Hart, II}, [B-
AC,07(1.4.3) ]. To see that (3) = (1), note that finite presentation gives an exact
sequence

R™ — R™ = M — 0.

We claim that the map ¢*: Hompg (M, R™) — Homp(M, M) is onto. To see this, re-
call that being onto is a local property; locally e is Hom(M,,, R})) — Hom(M,, M,).
This is a split surjection because M), is projective and ey: Ry — M, is a split sur-
jection. If s: M — R™ is such that £*(s) = es is idys, then s makes M a direct
summand of R™, and M is a finitely generated projective module.

OPEN PATCHING DATA 2.5. It is sometimes useful to be able to build projective
modules by patching free modules. The following data suffices. Suppose that
81, .., 8¢ € R form a unimodular row, i.e., R + --- + s.R = R. Then Spec(R)
is covered by the open sets D(s;) = Spec(R[sli]). Suppose we are given g;; €
GLn(R[ﬁsj]) with ¢g;; = 1 and g¢;;9;5 = gix in GLn(R[sisljsk]) for every 1,7, k.
Then

" for all 4,75}

S

- 1., : 1
P={(xy,...,x.) € H(R[S—]) : gij(z;) = z; in R|
i=1 v
is a finitely generated projective R-module by 2.4, because each P [Si] is isomorphic
to R[1]™.

MILNOR SQUARES 2.6. Another type of patching arises from an ideal I in R

and a ring map f: R — S such that I is mapped isomorphically onto an ideal of S,
which we also call I. In this case R is the “pullback” of S and R/I :

R=1{(r,s) € (R/I) x S: f(F) = s modulo I};

the square
R L s
R/T L5 s/1

is called a Milnor square, because their importance for patching was emphasized
by J. Milnor in [Milnor].

One special kind of Milnor square is the conductor square. This arises when R is
commutative and S is a finite extension of R with the same total ring of fractions.
(S is often the integral closure of R). The ideal I is chosen to be the conductor
ideal, i.e., the largest ideal of S contained in R, which is just I = {z € R : xS C
R} = anng(S/R). If S is reduced then I cannot lie in any minimal prime of R or
S, so the rings R/I and S/I have lower Krull dimension.

Given a Milnor square, we can construct an R-module M = (M, g, Ms) from the
following “descent data”: an S-module M7, an R/I-module M5 and a S/I-module



12 I. PROJECTIVE MODULES AND VECTOR BUNDLES

isomorphism g: My ®p,; S/I = My /IM;. In fact M is the kernel of the R-module
map _
My x My — My /IMy,  (mq,mg) — m; — g(f(msz)).

We call M the R-module obtained by patching M, and M, together along g.

An important special case is when we patch S™ and (R/I)™ together along a
matrix g € GL,(S/I). For example, R is obtained by patching S and R/ together
along g = 1. We will return to this point when we study K;(R) and Ky(R).

Here is Milnor’s result.

MILNOR PATCHING THEOREM 2.7. In a Milnor square,

(1) If P is obtained by patching together a finitely generated projective S-module
Py and a finitely generated projective R/I-module Py, then P is a finitely
generated projective R-module;

(2) P®rS=P and P/IP = Py

) Every finitely generated projective R-module arises in this way;

(4) If P is obtained by patching free modules along g € GL,(S/I), and Q is
obtained by patching free modules along g~*, then P ® Q = R*".

We shall prove part (3) here; the rest of the proof will be described in Exercise
2.8. If M is any R-module, the Milnor square gives a natural map from M to the
R-module M’ obtained by patching My = M®pgS and My = M®g(R/I) = M/IM
along the canonical isomorphism

(M/IM) ®@p/r (S/I) = M ®gr (S/I)= (M ®r S)/I(M ®r S).
Tensoring M with 0 - R — (R/I) ® S — S/I — 0 yields an exact sequence
Torf*(M,S/I) - M — M' — 0,

so in general M’ is just a quotient of M. However, if M is projective, the Tor-
term is zero and M = M’'. Thus every projective R-module may be obtained by
patching, as (3) asserts.

REMARK 2.7.1. Other examples of patching may be found in [Landsbg].

EILENBERG SWINDLE 2.8. The following “swindle,” discovered by Eilenberg,
explains why we restrict our attention to finitely generated projective modules. Let
R be an infinitely generated free module. If P & @) = R™, then

POPR*2P3(QaP)®(QaP)d - 2(PHQ)d(PHQ)®--- = R,

Moreover R = R @ R, and if P® R"™ = R*™ then P = R* (see Ex. 1.9). Here
are a few more facts about infinitely generated projective modules:

e (Bass) If R is noetherian, every infinitely generated projective module P is
free, unless there is an ideal I such that P/IP has fewer generators than P;

e (Kaplansky) Every infinitely generated projective module is the direct sum of
countably generated projective modules;

e (Kaplansky) There are infinitely generated projectives P whose rank is finite
but rank(P) is not continuous on Spec(R). (See Ex. 2.15.)
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EXERCISES

2.1 Radical ideals. Let I be a radical ideal in R (Exercise 1.12). If Py, P, are finitely
generated projective R-modules such that P;/IP, = Py /IP,, show that P, & P.
Hint: Modify the proof of 2.2, observing that Hom(P,Q) — Hom(P/I,Q/I) is
onto.

2.2 Idempotent lifting. Let I be a nilpotent ideal, or more generally an ideal that is
complete in the sense that every Cauchy sequence >~ | x,, with z,, € I" converges
to a unique element of I. Show that there is a bijection between the isomorphism
classes of finitely generated projective R-modules and the isomorphism classes of
finitely generated projective R/I-modules. To do this, use Ex. 2.1 and proceed in
two stages:

(i) Show that every idempotent € € R/I is the image of an idempotent e € R,
and that any other idempotent lift is ueu™! for some u € 1+ I. Hint: it suffices to
suppose that I? = 0 (consider the tower of rings R/I™). If r is a lift of €, consider
elements of the form e = r + rar + (1 — r)y(1 — r) and (1 + ze)e(1 + ze) L.

(ii) By applying (i) to M, (R), show that every finitely generated projective
R/I-module is of the form P/IP for some finitely generated projective R-module
P.

2.3 Let e,e; be idempotents in M, (R) defining projective modules P and P;. If
e1 = geg~ ! for some g € GL,(R), show that P = P;. Conversely, if P = P; show
that for some g € GLay,(R):

€1 0 o e O -1
(5 0)=s(i 0)o
2.4 Rank. If R is a commutative ring and f: Spec(R) — Z is a continuous function,
show that we can write R = Ry X - - - X R, in such a way that Spec(R) is the disjoint
union of the Spec(R;), and f is constant on each of the components Spec(R;) of R.
To do this, proceed as follows.

(i) Show that Spec(R) is quasi-compact and conclude that f takes on only finitely
many values, say ni,...,n.. Each V; = f~!(n;) is a closed and open subset of
Spec(R) because Z is discrete.

(ii) It suffices to suppose that R is reduced, i.e., has no non-zero nilpotent
elements. To see this, let 9 be the ideal of all nilpotent elements in R, so R/M is
reduced. Since Spec(R) = Spec(R/M), we may apply idempotent lifting (Ex. 2.2).

(iii) Let I; be the ideal defining V;, i.e., I; = N{p : p € V;}. If R is reduced, show
that Iy +--- + I. = R and that for every i # 5 I; N I; = &. Conclude using the
Chinese Remainder Theorem, which says that R = [[ R;.

2.5 Show that the following are equivalent for every commutative ring R:

(1) Spec(R) is topologically connected
(2) Every finitely generated projective R-module has constant rank
(3) R has no idempotent elements except 0 and 1.

2.6 Dual Module. If P is a projective R-module, show that P=Hompg (P, R) (its dual

module) is a projective R°P-module, where R°P is R with multiplication reversed.
Now suppose that R is commutative, so that R = R°P. Show that rank(P) =

rank(P) as functions from Spec(R) to Z. The image 7p of P ® P — R is called
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the trace of P; show that 732 = 7p, and that for p € Spec(R), P, # 0 if and only if
™ € p.

2.7 Tensor Product. Let P and () be projective modules over a commutative ring
R. Show that the tensor product P ®pr @ is also a projective R-module, and is
finitely generated if P and @ are. Finally, show that

rank(P ®p Q) = rank(P) - rank(Q).

2.8 Milnor Patching. In this exercise we prove the Milnor Patching Theorem 2.7,
that any R-module obtained by patching finitely generated projective modules over
S and R/I in a Milnor square is a finitely generated projective R-module. Prove
the following:
(i) If g € GL,,(S/I) is the image of a matrix in either GL,,(S) or GL,(R/I), the
patched module P = (S™, g, (R/I)"™) is a free R-module.

(i) Show that (Pi,g, P2) & (Qu.h Q2) = (P& Qu, (§17) . P2 ® Qa).

(iii) If g € GL,(S/I), let M be the module obtained by patching S?" and (R/I)?"
together along the matrix (g 991) € GL2,(S/I). Use Ex. 1.11 to prove
that M = R?". This establishes Theorem 2.7, part (4).

(iv) Given PLpQ1 = S™, Po,® Q2 = (R/I)™ and isomorphisms Py /IP; = P,®S/1,
Q1/IQ1 = Q2®S/I,let P and @ be the R-modules obtained by patching the
P; and Q; together. By (ii), P @ @ is obtained by patching S™ and (R/I)"
together along some g € GL,,(S/I). Use (iii) to show that P and @ are finitely
generated projective.

(V) prl@Ql ~ §™ and PQEBQQ = (R/I)n, and g: P1/1P1 = P2®S/I, show that
(Q1 9 S™)®S/1 is isomorphic to (R/I™®Q2)®S/I. By (iv), this proves that
(P, g, P) is finitely generated projective, establishing part (1) of Theorem
2.7.

(vi) Prove part (2) of Theorem 2.7 by analyzing the above steps.

2.9 Consider a Milnor square (2.6). Let Py, Q1 be finitely generated projective S-
modules, and P», Q2 be finitely generated projective R/I-modules such that there
are isomorphisms ¢: Po ® S/I = P, /IP; and h: Q2 ® S/I = Q1/1Q;.
(i) If f:Q2® S/I = P,/IP, show that (Py,g, P2) ® (Q1, h,Q2) is isomorphic to
(Q1,9fth, ) @ (P1, f,Q2). Hint: Use Ex. 2.8 and the decomposition

g 0\ _ [gf7*h O h=tf 0
0 h) 0 f 0 f~th )"
(ii) Conclude that (S™, g, R/I™) & (S™, h, R/I™) = (S™, gh, R/I™) & R™.

2.10 Suppose P, (@ are modules over a commutative ring R such that P ® Q) = R"
for some n # 0. Show that P and @ are finitely generated projective R-modules.
Hint: Find a generating set {p; ®¢;|i = 1,...,m} for P® Q; the p; ® ¢; ® pi, generate
P ®Q ® P. Show that {p;} define a split surjection R™ — P.
2.11 Let M be a finitely generated module over a commutative ring R. Show that
the following are equivalent for every n:

1) M is a finitely generated projective module of constant rank n
g
(2) My = Ry for every prime ideal p of R.
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Conclude that in Lemma 2.4 we may add:

(4) M is finitely generated, M, is free for every prime ideal p of R, and rank(M)
is a continuous function on Spec(R).

2.12 If f: R — S is a homomorphism of commutative rings, there is a continuous
map f*:Spec(S) — Spec(R) sending p to f~1(p). If P is a finitely generated
projective R-module, show that rank(P®pS) is the composition of f* and rank(P).
In particular, show that if P has constant rank n, then so does P ®p S.

2.13 If P is a projective module of constant rank 1, show that P is finitely generated.
Hint: Show that the trace Tp = R, and write 1 =Y f;(x;).

2.14 If P is a projective module of constant rank r, show that P is finitely generated.
Hint: Use Ex.2.13 to show that A"(P) is finitely generated.

2.15 (Kaplansky) Here is an example of an infinitely generated projective mod-
ule whose rank is not continuous. Let R be the ring of continuous functions
f:10,1] — R on the unit interval and I the ideal of all functions f which van-
ish on some neighborhood [0,¢) of 0. Show that I is a projective R-module, yet
rank(I): Spec(R) — {0, 1} is not continuous, so [ is neither finitely generated nor
free. We remark that every finitely generated projective R-module is free; this fol-
lows from Swan’s Theorem, since every vector bundle on [0, 1] is trivial (by 4.6.1
below).

Hint: Show that the functions f,, = max{0,¢ — 1} generate I, and construct a
splitting to the map R> — I. To see that rank([) is not continuous, consider the
rank of I at the primes m; = {f € R: f(t)=0},0<¢ < 1.

2.16 Kleisli rectification. Fix a small category of rings R. By a big projective R-
module we will mean the choice of a finitely generated projective S-module Pg for
each morphism R — S in R, equipped with an isomorphism Ps®gsT — Pr for every
S — T over R such that: (i) to the identity of each S we associate the identity of Pg,
and (ii) to each commutative triangle of algebras we have a commutative triangle
of modules. Let P’(R) denote the category of big projective R-modules. Show that
the forgetful functor P'(R) — P(R) is an equivalence, and that R — P'(R) is a
contravariant functor from R to exact categories. In particular, P'(R) — P(S) is
an additive functor for each R — S.

§3. The Picard Group of a commutative ring

An algebraic line bundle L over a commutative ring R is just a finitely generated
projective R-module of constant rank 1. The name comes from the fact that if R
is the ring of continuous functions on a compact space X, then a topological line
bundle (vector bundle which is locally R x X — X) corresponds to an algebraic
line bundle by Swan’s Theorem (see example 2.1.1(4) or Ex. 4.9 below).

The tensor product L ®r M = M ®p L of line bundles is again a line bundle (by
Ex. 2.7), and L ®r R = L for all L. Thus up to isomorphism the tensor product is
a commutative associative operation on line bundles, with identity element R.

LEMMA 3.1. If L is a line bundle, then the dual module L = Homp(L, R) is also
a line bundle, and L @ L = R.

PROOF. Since rank(L) = rank(L) = 1 by Ex. 2.6, L is a line bundle. Consider
the evaluation map L ® g L — R sending f ® x to f(x). If L = R, this map is
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clearly an isomorphism. Therefore for every prime ideal p the localization

is an isomorphism. Since being an isomorphism is a local property of an R-module
homomorphism, the evaluation map must be an isomorphism.

DEFINITION. the Picard group Pic(R) of a commutative ring R is the set of
isomorphism classes of line bundles over R. As we have seen, the tensor product
®@pr endows Pic(R) with the structure of an abelian group, the identity element
being [R] and the inverse being L~! = L.

PropPOSITION 3.2. Pic is a functor from commutative rings to abelian groups.
That is, if R — S is a ring homomorphism then Pic(R) — Pic(S) is a homomor-
phism sending L to L Qg S.

PRrROOF. If L is a line bundle over R, then L ®p S is a line bundle over S (see
Ex. 2.12), so ® gS maps Pic(R) to Pic(S). The natural isomorphism (L ®r M) ®pr
S=(L®rS)®s (M ®gS), valid for all R-modules L and M, shows that @S is
a group homomorphism.

LEMMA 3.3. If L is a line bundle, then Endg(L) = R.

PRrROOF. Multiplication by elements in R yields a map from R to Endg(L). As
it is locally an isomorphism, it must be an isomorphism.

Determinant line bundle of a projective module

If M is any module over a commutative ring R and k > 0, the k" exterior power
AFM is the quotient of the k-fold tensor product M ® --- ® M by the submodule
generated by terms m; ® --- ® my, with m; = m; for some 7 # j. By convention,
AYM = R and A'M = M. Here are some classical facts; see [B-AC, ch. 2].

(i) A*(R") is the free module of rank () generated by terms e;, A---Ae;, with
1<iy <+ <ik <n. In particular, A"(R") 2 Ron ey A--- Aep.
(ii) If R — S is a ring map, there is a natural isomorphism (A*M) ®p S =
A¥(M ®g S), the first A* being taken over R and the second being taken over
S. In particular, rank(A* M) = (ran]i( M) as functions from Spec(R) to N.
(iii) (Sum Formula) There is a natural isomorphism

k

NP @ Q) = PNP) @ (ANQ).

=0

If P is a projective module of constant rank n, then A*P is a finitely generated
projective module of constant rank (Z’), because AFP is locally free: if P[%] =
(R[L])™ then (A*P)[1] = (R[%])(Z) In particular, A" P is a line bundle, and AKP =
0 for k£ > n. We write det(P) for A"P, and call it the determinant line bundle of
P.

If the rank of a projective module P is not constant, we define the determinant
line bundle det(P) componentwise, using the following recipe. From §2 we find a
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decomposition R = Ry X --- X R. so that P = P; x---x P, and each P; has constant
rank n; as an R;-module. We then define det(P) to be (A" Py) X -+ x (A" P,);
clearly det(P) is a line bundle on R. If P has constant rank n, this agrees with our
above definition: det(P) = A™P.

As the name suggests, the determinant line bundle is related to the usual de-
terminant of a matrix. An n X n matrix g is just an endomorphism of R", so it
induces an endomorphism A"g of A" R™ = R. By inspection, A"g is multiplication
by det(g).

Using the determinant line bundle, we can also take the determinant of an endo-
morphism g of a finitely generated projective R-module P. By the naturality of A",
¢ induces an endomorphism det(g) of det(P). By Lemma 3.3, det(g) is an element
of R, acting by multiplication; we call det(g) the determinant of the endomorphism
g.

Here is an application of the determinant construction. Let L,L’ be stably
isomorphic line bundles. That is, P = L & R™ = L' & R" for some n. The Sum
Formula (iii) shows that det(P) = L, and det(P) = L', so L = L'. Taking L' = R,
this shows that R is the only stably free line bundle. It also gives the following
slight improvement upon the Cancellation Theorem 2.3 for 1-dimensional rings:

PROPOSITION 3.4. Let R be a commutative noetherian 1-dimensional ring. Then
all finitely generated projective R-modules are completely classified by their rank and
determinant. In particular, every finitely generated projective R-module P of rank
> 1 is isomorphic to L & R/, where L = det(P) and f = rank(P) — 1.

Invertible Ideals

When R is a commutative integral domain (=domain), we can give a particularly
nice interpretation of Pic(R), using the following concepts. Let F' be the field
of fractions of R; a fractional ideal is a nonzero R-submodule I of F' such that
I C fR for some f € F. If I and J are fractional ideals then their product
I1J ={> xy; : x; € I,y; € J} is also a fractional ideal, and the set Frac(R) of
fractional ideals becomes an abelian monoid with identity element R. A fractional
ideal I is called invertible if IJ = R for some other fractional ideal J; invertible
ideals are sometimes called Cartier divisors. The set of invertible ideals is therefore
an abelian group, and one writes Cart(R) or Pic(R, F') for this group.

If f € F*, the fractional ideal div(f) = fR is invertible because (fR)(f 'R) =
R; invertible ideals of this form are called principal divisors. Since (fR)(gR) =
(fg)R, the function div: F* — Cart(R) is a group homomorphism.

This all fits into the following overall picture (see Ex. 3.7 for a generalization).

ProOPOSITION 3.5. If R is a commutative integral domain, every invertible ideal
1$ a line bundle, and every line bundle is isomorphic to an invertible ideal. If I and
J are fractional ideals, and I is invertible, then I ®r J = IJ. Finally, there is an
exact sequence of abelian groups:

1 R = F* % Cart(R) — Pic(R) — 0.

Proor. If I and J are invertible ideals such that I.J C R, then we can interpret
elements of J as homomorphisms I — R. If IJ = R then we can find z; € I and
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y; € J so that x1y1 + -+ + 2y, = 1. The {x;} assemble to give a map R" — [
and the {y;} assemble to give a map I — R™. The composite I — R™ — I is the
identity, because it sends r € I to > x;y;r = r. Thus [ is a summand of R", i.e.,
I is a finitely generated projective module. As R is an integral domain and I C F',
rank([/) is the constant dimp (I ® F) = dimp(F) = 1. Hence [ is a line bundle.
This construction gives a set map Cart(R) — Pic(R); to show that it is a group
homomorphism, it suffices to show that I ®g J =2 IJ for invertible ideals. Suppose
that I is a submodule of F' which is also a line bundle over R. As I is projective,
I ®p — is an exact functor. Thus if J is an R-submodule of F' then I ®p J is a
submodule of I ®r F. The map I ®r F' — F given by multiplication in F' is an
isomorphism because I is locally free and F is a field. Therefore the composite

I®rJ CI®RrF F

sends > x; ®y; to Y x;y;. Hence I ®p J is isomorphic to its image I.J C F. This
proves the third assertion.

The kernel of Cart(R) — Pic(R) is the set of invertible ideals I having an
isomorphism I = R. If f € I corresponds to 1 € R under such an isomorphism
then I = fR = div(f). This proves exactness of the sequence at Cart(R).

Clearly the units R* of R inject into F'*. If f € F'* then fR = R if and only if
f € R and f is in no proper ideal, i.e., if and only if f € R*. This proves exactness
at R* and F'*.

Finally, we have to show that every line bundle L is isomorphic to an invertible
ideal of R. Since rank(L) = 1, there is an isomorphism L ®p F' = F. This gives
an injection L 2 L®r R C L ®r FF = F, i.e., an isomorphism of L with an R-
submodule I of F. Since L is finitely generated, I is a fractional ideal. Choosing
an isomorphism L 2 J, Lemma 3.1 yields

RYL@rL=I®pJ>1J
Hence IJ = fR for some f € F'*, and I(f~!J) = R, so I is invertible.

multiply
—_—

Dedekind domains

Historically, the most important applications of the Picard group have been for
Dedekind domains. A Dedekind domain is a commutative integral domain which is
noetherian, integrally closed and has Krull dimension 1.

There are many equivalent definitions of Dedekind domain in the literature. Here
is another: an integral domain R is Dedekind if and only if every fractional ideal
of R is invertible. In a Dedekind domain every nonzero ideal (and fractional ideal)
can be written uniquely as a product of prime ideals p7* - - - p'~. Therefore Cart(R)
is the free abelian group on the set of (nonzero) prime ideals of R, and Pic(R) is
the set of isomorphism classes of (actual) ideals of R.

Another property of Dedekind domains is that every finitely generated torsionfree
R-module M is projective. To prove this fact we use induction on ranky(M) =
dimp(M ® F'), the case rankg(M) = 0 being trivial. Set ranko(M) = n + 1. As
M is torsionfree, it is a submodule of M ® F = F"*! The image of M under any
nonzero coordinate projection F*"*t! — F is a fractional ideal Iy. As Iy is invertible,
the projective lifting property for Iy shows that M = M’ @ Iy with rankq(M') = n.
By induction, M = Iy & --- @ I, is a sum of ideals. By Propositions 3.4 and 3.5,
M = 1@ R for the invertible ideal I = det(M) = Iy - - L,.
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EXAMPLES. Here are some particularly interesting classes of Dedekind domains.
e A principal ideal domain (or PID) is a domain R in which every ideal is rR
for some r € R. Clearly, these are just the Dedekind domains with Pic(R) = 0.
Examples of PID’s include Z and polynomial rings k[z]| over a field k.
e A discrete valuation domain (or DVR) is a local Dedekind domain. By Lemma
2.2, a DVR is a PID R with a unique maximal ideal M = 7 R. Fixing m, it isn’t
hard to see that every ideal of R is of the form m'R for some i > 0. Consequently
every fractional ideal of R can be written as m'R for a unique i € Z. By Proposition
3.5, F* = R* x {r'}. There is a (discrete) valuation v on the field of fractions
F :v(f) is that integer i such that fR = 7'R.

Examples of DVR’s include the p-adic integers Z,, the power series ring k[[z]]
over a field k, and localizations Z,) of Z.

e Let F' be a number field, i.e., a finite field extension of Q. An algebraic integer
of F' is an element which is integral over Z, i.e., a root of a monic polynomial
2" +a "+ - - +a, with integer coefficients (a; € Z). The set O of all algebraic
integers of F' is a ring—it is the integral closure of Z in F'. A famous result in ring
theory asserts that Op is a Dedekind domain with field of fractions F'. It follows
that Op is a lattice in F, i.e., a free abelian group of rank dimq(F).

In Number Theory, Pic(Op) is called the ideal class group of the number field
F. A fundamental theorem states that Pic(Op) is always a finite group, but the
precise structure of the ideal class group is only known for special number fields
of small dimension. For example, if £, = e?™/P then Z[&p) is the ring of algebraic
integers of Q(§,), and the class group is zero if and only if p < 19; Pic(Z[£23]) is
Z/3. More details may be found in books on number theory, such as [BSh].

e If C is a smooth affine curve over a field k, then the coordinate ring R of C' is a
Dedekind domain. One way to construct a smooth affine curve is to start with a
smooth projective curve C. If {po,...,p,} is any nonempty set of points on C, the
Riemann-Roch theorem implies that C' = C' — {py, ..., p,} is a smooth affine curve.

If k is algebraically closed, Pic(R) is a divisible abelian group. Indeed, the
points of the Jacobian variety J(C) form a divisible abelian group, and Pic(R) is
the quotient of J(C) by the subgroup generated by the classes of the prime ideals
of R corresponding to p1, ..., pn-

This is best seen when k = C, because smooth projective curves over C are the
same as compact Riemann surfaces. If C is a compact Riemann surface of genus g,
then as an abelian group the points of the Jacobian J(C) form the divisible group
(R/Z)?9. In particular, when C' = C — {po} then Pic(R) = J(C) = (R/Z)%9.

For example, R = Clz,y]/(y* — x(x — 1)(z — B)) is a Dedekind domain with
Pic(R) = (R/Z)? if 3 # 0,1. Indeed, R is the coordinate ring of a smooth affine
curve C' obtained by removing one point from an elliptic curve (= a projective curve

of genus g = 1).

The Weil Divisor Class group

Let R be an integrally closed domain (= normal domain) with field of fractions F.
If R is a noetherian normal domain, it is well-known that:
(i) Ry is a discrete valuation ring (DVR) for all height 1 prime ideals p;
(ii) R = NR,, the intersection being over all height 1 primes p of R, each R, being
a subring of F;
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(iii) Every r # 0 in R is contained in only finitely many height 1 primes p.
An integral domain R satisfying (i), (ii) and (iii) is called a Krull domain.

Krull domains are integrally closed because every DVR R, is integrally closed.
For a Krull domain R, the group D(R) of Weil divisors is the free abelian group on
the height 1 prime ideals of R. An effective Weil divisor is a divisor D = > n;[p;]
with all the n; > 0.

We remark that effective divisors correspond to “divisorial” ideals of R, D cor-

responding to the intersection ﬁp(-m)

, . of the symbolic powers of the p;.

If p is a height 1 prime of R, the p-adic valuation v, () of an invertible ideal I
is defined to be that integer v such that I, = p”R,. By (iii), v,(I) # 0 for only
finitely many p, so v(I) = Y vp(I)[p] is a well-defined element of D(R). By 3.5,

this gives a group homomorphism:
v:  Cart(R) — D(R).

If I is invertible, v(I) is effective if and only if I C R. To see this, observe that
v(I) is effective <= I, C R, for all p <= I C NI, € NR, = R. It follows that
v is an injection, because if both v(I) and v(I~!) are effective then I and I~! are
ideals with product R; this can only happen if [ = R.

The divisor class group CI(R) of R is defined to be the quotient of D(R) by
the subgroup of all v(fR), f € F*. This yields a map Pic(R) — CI(R) which is

evidently an injection. Summarizing, we have proven:

PROPOSITION 3.6. Let R be a Krull domain. Then Pic(R) is a subgroup of the
class group CI(R), and there is a commutative diagram with exact rows:

E:

1—- R* — F* & Cat(R) — Pic(R) —0
I= = Nv N
l1—- R* — F~* D(R) — CIR) —0.
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REMARK 3.6.1. The Picard group and the divisor class group of a Krull domain
R are invariant under polynomial and Laurent polynomial extensions. That is,
Pic(R) = Pic(R[t]) = Pic(R[t,t71]) and CI(R) = CI(R[t]) = CI(R[t,t"]). Most of
this assertion is proven in [B-AC, ch.7,§1]; the Pic[t, ¢~ !] part is proven in [BM, 5.10].

Recall that an integral domain R is called factorial, or a Unique Factorization
Domain (UFD) if every nonzero element r € R is either a unit or a product of prime
elements. (This implies that the product is unique up to order and primes differing
by a unit). It is not hard to see that UFD’s are Krull domains; the following
interpretation in terms of the class group is taken from [Matsu, §20].

THEOREM 3.7. Let R be a Krull domain. Then R is a UFD <= CIl(R) = 0.

DEFINITION. A noetherian ring R is called regular if every R-module M has a
finite resolution 0 —» P, — -+ — Py — M — 0 with the P; projective. Every
localization S~!R of a regular ring R is also a regular ring, because S~!R-modules
are also R-modules, and a localization of an R-resolution is an S~!R-resolution.

Now suppose that (R, m) is a regular local ring. It is well-known [Matsu, §14,
19] that R is a noetherian, integrally closed domain (hence Krull), and that if
s € m —m? then sR is a prime ideal.
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THEOREM 3.8. FEvery reqular local ring is a UFD.

PRrROOF. We proceed by induction on dim(R). If dim(R) = 0 then R is a field; if
dim(R) = 1 then R is a DVR, hence a UFD. Otherwise, choose s € m — m?. Since
sR is prime, Ex. 3.8(b) yields CI(R) = CI(R[%]). Hence it suffices to show that
S = R[%] is a UFD. Let B be a height 1 prime of S; we have to show that ‘I3 is a
principal ideal. For every prime ideal Q of S, Sq is a regular local ring of smaller
dimension than R, so by induction Sq is a UFD. Hence B¢ is principal: xSq for
some x € S. By 2.4, 3 is projective, hence invertible. Let p be the prime ideal of
R such that 9 = p[1] and choose an R-resolution 0 — P,, — --- — Py — p — 0 of
p by finitely generated projective R-modules P;. Since R is local, the P; are free.
Since P is projective, the localized sequence 0 — P[] = -+ = P[] = P — 0
splits. Letting E (resp. F) denote the direct sum of the odd (resp. even) P;[1], we
have P b F = F'. Since stably free line bundles are free, P is free. That is, P = x5
for some x € P, as desired.

COROLLARY 3.8.1. If R is a regular domain, then Cart(R) = D(R), and hence
Pic(R) = CI(R).

PrROOF. We have to show that every height 1 prime ideal ¥ of R is invertible.
For every prime ideal p of R we have P, = R, in the UFD R,. By 2.4 and 3.5, B
is an invertible ideal.

REMARK 3.8.2. A ring is called locally factorial if R, is factorial for every prime
ideal p of R. For example, regular rings are locally factorial by 3.8. The proof of
Cor. 3.8.1 shows that if R is a locally factorial Krull domain then Pic(R) = CI(R).

Non-normal rings

The above discussion should make it clear that the Picard group of a normal domain
is a classical object, even if it is hard to compute in practice. If R isn’t normal, we
can get a handle on Pic(R) using the techniques of the rest of this section.

For example, the next lemma allows us to restrict attention to reduced noether-
ian rings with finite normalization, because the quotient R..q of any commutative
ring R by its nilradical (the ideal of nilpotent elements) is a reduced ring, and ev-
ery commutative ring is the filtered union of its finitely generated subrings—rings
having these properties.

If A is a small indexing category, every functor R : A — Rings has a colimit
colimye 4 R,. We say that A is filtered if for every a, 8 there are maps a@ — v + (3,
and if for any two parallel arrows a@ = [ there is a § — « so that the composites
a — 7y agree; in this case we write lim R, for colim R, and call it the filtered direct
limit. (See [WHomo, 2.6.13].)

LEMMA 3.9. (1) Pic(R) = Pic(Ryeq)-
(2) Pic commutes with filtered direct limits of rings. In particular, if R is the
filtered union of subrings R, then Pic(R) = lim Pic(R,).

PrROOF. Part (1) is an instance of idempotent lifting (Ex. 2.2). To prove (2),
recall from 2.5 that a line bundle L over R may be given by patching data: a

unimodular row (s, ..., S.) and units g;; over the R[%] If R is the filtered direct
iSj



22 I. PROJECTIVE MODULES AND VECTOR BUNDLES

limit of rings R, this finite amount of data defines a line bundle L, over one of
the R, and we have L = L, ®pg,, R. If L, and L/, become isomorphic over R, the
isomorphism is defined over some Rg, i.e., L and L’ become isomorphic over Rg.

If R is reduced noetherian, its normalization S is a finite product of normal
domains S;. We would like to describe Pic(R) in terms of the more classical group
Pic(S) = []Pic(S;), using the conductor square of 2.6. For this it is convenient
to assume that S is finite over R, an assumption which is always true for rings of
finite type over a field.

More generally, suppose that we are given a Milnor square (2.6):

R L s
L
RrR/I L s/I.

Given a unit 8 of S/I, the Milnor Patching Theorem 2.7 constructs a finitely
generated projective R-module Lg = (5,5, R/I) with Lg®r S = S and Lg/ILg =
R/I. In fact Lg is a line bundle, because rank(Lg) = 1; every map from R to a
field factors through either R/I or S (for every prime ideal p of R either I C p or
R, = S,). By Ex. 2.9, L, ® Lg = L.g ® R; applying A? yields L, ®pr Lg = Lag.
Hence the formula 0(5) = [Lg] yields a group homomorphism

9: (S/I)* — Pic(R).

THEOREM 3.10 (UNITS-PIC SEQUENCE). Given a Milnor square, the following
sequence is exact. Here A denotes the diagonal map and £ denotes the difference
map sending (s,7) to 5f(7)~", resp. (L',L) to L' ®5 S/I @p;y L™'.

1 R* 8 8%x (R/1)* 5 (S/I)* 3 Pic(R) 3 Pic(S) x Pic(R/I) S Pic(S/I)

PROOF. Since R is the pullback of S and R/I, exactness at the first two places
is clear. Milnor Patching 2.7 immediately yields exactness at the last two places,
leaving only the question of exactness at (S/I)*. Given s € S* and 7 € (R/I)*,
set B = 4(s,7) = 5f(F)"!, where 5 denotes the reduction of s modulo I. By
inspection, A = (s,7) € Lg C S x R/I, and every element of Lg is a multiple of
A. It follows that Lg = R. Conversely, suppose given g € (S/I)* with Lg = R. If
A = (s,7) is a generator of Lg we claim that s and 7 are units, which implies that
B = 5f(7)~! and finishes the proof. If s’ € S maps to 8 € S/I then (s',1) € Lg;
since (s,1) = (zs,x7) for some x € R this implies that 7 € (R/I)*. If t € S maps
to f(r)"!37! € S/I then st = 1 modulo I. Now I C sR because I x 0 C Lg, so
st = 1+ sz for some x € R. But then s(t —x) =1, so s € S* as claimed.

EXAMPLE 3.10.1. (Cusp). Let k be a field and let R be k[z,y]/(z3 = 3?), the
coordinate ring of the cusp in the plane. Setting = t?, y = ¢> makes R isomorphic
to the subring k[t?,t3] of S = k[t]. The conductor ideal from S to R is [ = 25, so
we get a conductor square with R/I = k and S/I = k[t]/(t?). Now Pic(k[t]) = 0 and
(S/I)* = k* xk with a € k corresponding to (1+at) € (S/I)*. Hence Pic(R) = k.
A little algebra shows that a nonzero o € k corresponds to the invertible prime ideal
p = (1 —a?z,z — ay)R corresponding to the point (z,y) = (a~2,a~3) on the cusp.
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EXAMPLE 3.10.2. (Node). Let R be k[x,y]/(y* = 22 + 23), the coordinate ring
of the node in the plane over a field k with char(k) # 2. Setting z = t* — 1 and
y = tr makes R isomorphic to a subring of S = k[t] with conductor ideal I = zS.
We get a conductor square with R/I = k and S/I = k x k. Since (S/I)* = k* x k*
we see that Pic(R) = k*. A little algebra shows that o € k* corresponds to the

invertible prime ideal p corresponding to the point (z,y) = ((ad‘_o‘l)% 48; (f;r)i)) on

the node corresponding to t = (H—O‘>

11—«

Seminormal rings

A reduced commutative ring R is called seminormal if whenever x,y € R satisfy
23 = 32 there is an s € R with s? = z, s> = y. If R is an integral domain, there is an
equivalent definition: R is seminormal if every s in the field of fractions satisfying
s?,s% € R belongs to R. Normal domains are clearly seminormal; the node (3.10.2)
is not normal (t? = 1+ z), but it is seminormal (see Ex. 3.13). Arbitrary products
of seminormal rings are also seminormal, because s may be found slotwise. The
cusp (3.10.1) is the universal example of a reduced ring which is not seminormal.
Our interest in seminormal rings lies in the following theorem, first proven by C.
Traverso for geometric rings and extended by several authors. For normal domains,

it follows from Remark 3.6.1 above. Our formulation is taken from [Swan80].

THEOREM 3.11. (Traverso) The following are equivalent for a commutative ring:

(1) Ryed is seminormal;
(2) Pic(R) = Pic(R]t]);
(3) Pic(R) = Pic(R|[t1, ..., tn]) for all n.

REMARK 3.11.1. If R is seminormal, it follows that R[t] is also seminormal.
By Ex. 3.11, R[t,t7!] and the local rings R, are also seminormal. However, the
Pic[t,t~'] analogue of Theorem 3.11 fails. For example, if R is the node (3.10.2)
then Pic(R[t,t™!]) = Pic(R) x Z. For more details, see [We91].

To prove Traverso’s theorem, we shall need the following standard result about
units of polynomial rings.

LEMMA 3.12. Let R be a commutative ring with nilradical . If ro +rit+---+
rat™ is a unit of R[t] then ro € R* and ry, ...,y are nilpotent. Consequently, if

NU(R) denotes the subgroup 1+ tON[t] of R[t]* then:

(1) R[t]* = R* x NU(R);

(2) If R is reduced then R* = R[t]*;

(3) Suppose that R is an algebra over a field k. If char(k) = p, NU(R) is a
p-group. If char(k) = 0, NU(R) is a uniquely divisible abelian group (= a
Q-module).

PrROOF OF TRAVERSO’S THEOREM. We refer the reader to Swan’s paper for
the proof that (1) implies (2) and (3). By Lemma 3.9, we may suppose that R is
reduced but not seminormal. Choose z,y € R with 23 = 2 such that no s € R
satisfies s? = z,s® = y. Then the reduced ring S = R[s]/(s%> —x, 8% — ) 1eq is strictly
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larger than R. Since I = xS is an ideal of both R and S, we have Milnor squares

R L s Rt] L sp
Vo4 ad L
R/II L sy/1 Rr/IE) L s/,

The Units-Pic sequence 3.10 of the first square is a direct summand of the Units-Pic
sequence for the second square. Using Lemma 3.12, we obtain the exact quotient
sequence

0 — NU(R/I) — NU(S/T) -2 P;Efg)])

By construction, s ¢ R and § ¢ R/I. Hence O(1 + st) is a nonzero element of
the quotient Pic(R[t])/ Pic(R). Therefore if R isn’t seminormal we have Pic(R) #
Pic(R[t]), which is the (3) = (2) = (1) half of Traverso’s theorem.

EXERCISES

In these exercises, R is always a commutative ring.

3.1 Show that the following are equivalent for every R-module L:

(a) There is a R-module M such that L ® M = R.

(b) L is an algebraic line bundle.

(c) L is a finitely generated R-module and L, = R,, for every prime ideal p of R.
Hint: Use Exercises 2.10 and 2.11.

3.2 Show that the tensor product P ®pr ) of two line bundles may be described
using “Open Patching” 2.5 as follows. Find sq,...,s, € R forming a unimodular
row, such that P (resp. () is obtained by patching the R[Si] by units g;; (resp.
hi;) in R[Sl_lsj]x. Then P ®p @ is obtained by patching the R[é] using the units
fij = Gijhij)-

3.3 Let P be a locally free R-module, obtained by patching free modules of rank n
by gij € GL,(R[=-]). Show that det(P) is the line bundle obtained by patching
free modules of rank 1 by the units det(g;;) € (R[-1-])*.

3.4 Let P and @ be finitely generated projective modules of constant ranks m and
n respectively. Show that there is a natural isomorphism (det P)®" ® (det Q)®™ —
det(P ® Q). Hint: Send (p11 A+ @ APmn) @ (11 A+ @ -+ A Gmn) to (p11 ®
q11) N A (Pmn @ Gmn)- Then show that this map is locally an isomorphism.

3.5 If an ideal I C R is a projective R-module and J C R is any other ideal, show
that I ®pg J is isomorphic to the ideal I.J of R.

3.6 Ezcision for Pic. If I is a commutative ring without unit, let Pic(I) denote the
kernel of the canonical map Pic(Z & I) — Pic(Z). Write I* for the group GL4 (1)
of Ex. 1.10. Show that if I is an ideal of R then there is an exact sequence:

1 I* = R* — (R/I)* 3 Pic(I) — Pic(R) — Pic(R/I).

3.7 (Roberts-Singh) This exercise generalizes Proposition 3.5. Let R C S be an
inclusion of commutative rings. An R-submodule I of S is called an wnvertible
R-ideal of S if I.J = R for some other R-submodule J of S.
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(i) If I € S is an invertible R-ideal of S, show that [ is finitely generated over
R, and that I.S = S.

(ii) Show that the invertible R-ideals of S form an abelian group Pic(R, S) under
multiplication.

(iii) Show that every invertible R-ideal of S is a line bundle over R. Hint: use
Ex. 3.5 to compute its rank. Conversely, if [ is a line bundle over R contained
in S and IS = S, then [ is an R-ideal.

(iv) Show that there is a natural exact sequence:

1 - R* = 5% 2% Pic(R, S) — Pic(R) — Pic(S).

3.8 Relative Class groups. Suppose that R is a Krull domain and that Rg = S™'R
for some multiplicatively closed set S in R. Let D(R, Rs) denote the free abelian
group on the height 1 primes p of R such that p NS # ¢. Since D(Rg) is free on
the remaining height 1 primes of R, D(R) = D(R, Rs) ® D(Rg).
(a) Show that the group Pic(R, Rg) of Ex. 3.7 is a subgroup of D(R, Rg), and
that there is an exact sequence compatible with Ex. 3.7

1—R* - R - D(R,Rg) — CI(R) = Cl(Rs) — 0.

(b) Suppose that sR is a prime ideal of R. Prove that (R[1])* = R* x Z" and
that CI(R) = CI(R[%]).

(c) Suppose that every height 1 prime p of R with pN.S # ¢ is an invertible ideal.
Show that Pic(R, Rs) = D(R, Rs) and that Pic(R) — Pic(Rg) is onto. (This
always happens if R is a regular ring, or if the local rings Rj; are unique
factorization domains for every maximal ideal M of R with M NS # (.)

3.9 Suppose that we are given a Milnor square with R C S. If § € (S/I)* is the
image of a nonzerodivisor s € S, show that —9(s) € Pic(R) is the class of the ideal

(sS) N R.

3.10 Let R be a 1-dimensional noetherian ring with finite normalization S, and let
I be the conductor ideal from S to R. Show that for every maximal ideal p of R,
p is a line bundle <= I Z p. Using Ex. 3.9, show that these p generate Pic(R).

3.11 If R is seminormal, show that every localization S~!'R is seminormal.

3.12 Seminormality is a local property. Show that the following are equivalent:
(a) R is seminormal;
(b) Ry is seminormal for every maximal ideal m of R;
(c) Ry is seminormal for every prime ideal p of R.

3.13 If R is a pullback of a diagram of seminormal rings, show that R is seminormal.
This shows that the node (3.10.2) is seminormal.

3.14 Normal rings. A ring R is called normal if each local ring R, is an integrally
closed domain. If R and R’ are normal rings, so is the product R x R’. Show
that normal domains are normal rings, and that every reduced 0-dimensional ring
is normal. Then show that every normal ring is seminormal.

3.15 Seminormalization. Show that every reduced commutative ring R has an
extension R C TR with T R seminormal, satisfying the following universal property:
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if S is seminormal, then every ring map R — S has a unique extension TR — S.
The extension * R is unique up to isomorphism, and is called the seminormalization
of R. Hint: First show that it suffices to construct the seminormalization of a
noetherian ring R whose normalization S is finite. In that case, construct the
seminormalization as a subring of S, using the observation that if 23 = 32 for

z,y € R, there is an s € S with 52 =z, s3 = v.

3.16 An extension R C R’ is called subintegral if Spec(R’) — Spec(R) is a bijection,
and the residue fields k(p) = R,/pR, and Ry, /pR, are isomorphic. Show that the
seminormalization R C TR of the previous exercise is a subintegral extension.

3.17 Let R be a commutative ring with nilradical 1.
(a) Show that the subgroup 1+ D[t,t~1] of R[t,t~1]* is the product of the three
groups 1 + M, NyU(R) = 1+ tN[t], and N,-1U(R) = 1+t~ 1Mt~ 1].
(b) Show that there is a homomorphism ¢: [Spec(R),Z] — R[t,t~1]* sending f to
the unit ¢/ of R[t,t~!] which is t" on the factor R; of R where f = n. Here
R; is given by 2.2.4 and Ex. 2.4.
(c) Show that there is a natural decomposition

R[t,t7'* =2 R* x N;U(R) x N;-1U(R) x [Spec(R),Z],
or equivalently, that there is a split exact sequence:
1 = R* = R[t]* x R[t™']* = R[t,t~']* — [Spec(R),Z] — 0.
3.18 Show that the following sequence is exact:
1 — Pic(R) — Pic(R[t]) x Pic(R[t™']) — Pic(R[t,t™]).

Hint: If R is finitely generated, construct a diagram whose rows are Units-Pic
sequences 3.10, and whose first column is the naturally split sequence of Ex. 3.17.

3.19 (NPic) Let NPic(R) denote the cokernel of the natural map Pic(R) — Pic(R]t]).
Show that Pic(R[t]) = Pic(R) x NPic(R), and that NPic(R) = 0 if and only if Ryeq
is a seminormal ring. If R is an algebra over a field k, prove that:

(a) If char(k) = p > 0 then NPic(R) is a p-group;

(b) If char(k) = 0 then NPic(R) is a uniquely divisible abelian group.
To do this, first reduce to the case when R is finitely generated, and proceed by
induction on dim(R) using conductor squares.

§4. Topological Vector Bundles and Chern Classes

Because so much of the theory of projective modules is based on analogy with
the theory of topological vector bundles, it is instructive to review the main aspects
of the structure of vector bundles. Details and further information may be found
in [MSt], [Atiyah] or [Huse]. We will work with vector spaces over F =R, C or H.

Let X be a topological space. A family of vector spaces over X is a topological
space F, together with a continuous map n: E — X and a finite dimensional vector
space structure (over R, C or H) on each fiber E, = n~!(z), z € X. We require
the vector space structure on E, to be compatible with the topology on E. (This
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means scaling F' x £ — E and the addition map E x x F — E are continuous.) By
a homomorphism from one family n: E — X to another family ¢: F' — X we mean
a continuous map f: £ — F with n = ¢ f, such that each induced map f,: £, — F,
is a linear map of vector spaces. There is an evident category of families of vector
spaces over X and their homomorphisms.

For example, if V' is an n-dimensional vector space, the projection from T" =
X xV to X forms a “constant” family of vector spaces. We call such a family, and
any family isomorphic to it, a trivial vector bundle over X.

If Y C X, we write E|Y for the restriction n71(Y) of E to Y; the restriction
n|Y:E|Y — Y of nmakes F|Y into a family of vector spaces over Y. More generally,
if f:Y — X is any continuous map then we can construct an induced family
f*(n): f*E — Y as follows. The space f*FE is the subspace of Y x E consisting
of all pairs (y,e) such that f(y) = n(e), and f*E — Y is the restriction of the
projection map. Since the fiber of f*E at y € Y is Ey(,), f*E is a family of vector
spaces over Y.

A wvector bundle over X is a family of vector spaces 1: E — X such that every
point z € X has a neighborhood U such that n|U: E|U — U is trivial. A vector
bundle is also called a locally trivial family of vector spaces.

The most historically important example of a vector bundle is the tangent bundle
TX — X of a smooth manifold X. Another famous example is the Mobius bundle
E over S'; E is the open Mobius strip and E, = R for each x € S*.

Suppose that f: X — Y is continuous. If £ — Y is a vector bundle, then the
induced family f*E — X is a vector bundle on X. To see this, note that if F is
trivial over a neighborhood U of f(z) then f*FE is trivial over f=(U).

The symbol VB(X) denotes the category of vector bundles and homomorphisms
over X. If clarification is needed, we write VBgr(X), VB¢ (X) or VBy(X). The in-
duced bundle construction gives rise to an additive functor f* : VB(X) — VB(Y).

The Whitney sum E @& F of two vector bundles n: ¥ — X and ¢: F — X is
the family of all the vector spaces F, @ F,, topologized as a subspace of E x F.
Since E and F' are locally trivial, so is F @ F'; hence E @ F' is a vector bundle. By
inspection, the Whitney sum is the product in the category VB(X). Since there is
a natural notion of the sum f + g of two homomorphisms f, g: E — F, this makes
VB(X) into an additive category with Whitney sum the direct sum operation.

A sub-bundle of a vector bundle n: E — X is a subspace F of F which is a vector
bundle under the induced structure. That is, each fiber F), is a vector subspace of
E, and the family F' — X is locally trivial. The quotient bundle E/F is the union
of all the vector spaces E,/F,, given the quotient topology. Since F' is locally a
Whitney direct summand in E, we see that F/F is locally trivial, hence a vector
bundle. This gives a “short exact sequence” of vector bundles in VB(X):

0—-F—FE—FE/F—D0.

A vector bundle F — X is said to be of finite type if there is a finite covering
Ui, ..., U, of X such that each each E|U; is a trivial bundle. Every bundle over a
compact space X must be of finite type; the same is true if X is a finite-dimensional
CW complex [Huse, §3.5], or more generally if there is an integer n such that every
open cover of X has a refinement V such that no point of X is contained in more
that n elements of V. We will see in Exercise 4.15 that the canonical line bundle
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on infinite dimensional projective space P> is an example of a vector bundle which
is not of finite type.

RIEMANNIAN METRICS. Let E — X be a real vector bundle. A Riemannian
metric on E is a family of inner products §,: F, x E, — R, x € X, which varies
continuously with z (in the sense that § is a continuous function on the Whitney
sum F @ F). The notion of Hermitian metric on a complex (or quaternionic) vector
bundle is defined similarly. A fundamental result [Huse, 3.5.5 and 3.9.5] states that
every vector bundle over a paracompact space X has a Riemannian (or Hermitian)
metric; see Ex. 4.17 for the quaternionic case.

Dimension of vector bundles

If FE is a vector bundle over X then dim(F,) is a locally constant function on X
with valuesin N = {0, 1, ... }. Hence dim(FE) is a continuous function from X to the
discrete topological space N; it is the analogue of the rank of a projective module.
An n-dimensional vector bundle is a bundle E such that dim(E) = n is constant;
1-dimensional vector bundles are frequently called line bundles. The Mobius bundle
is an example of a nontrivial line bundle.

A vector bundle F is called componentwise trivial if we can write X as a disjoint
union of (closed and open) components X; in such a way that each F|X; is trivial.
Isomorphism classes of componentwise trivial bundles are in 1-1 correspondence
with the set [X,N] of all continuous maps from X to N. To see this, note that
any continuous map f: X — N induces a decomposition of X into components
X; = f~1(i). Given such an f, let T/ denote the disjoint union

T/ =] Xi x F, F=R,Cor H.

1€N

The projection T/ — IIX; = X makes T/ into a componentwise trivial vector
bundle with dim(77) = f. Conversely, if E is componentwise trivial, then £ =
T4m(E)  Note that T/ @ T9 = T/+9. Thus if f is bounded then by choosing
g =n— f we can make T/ into a summand of the trivial bundle 7.

The following result, which we cite from [Huse, 3.5.8 and 3.9.6], illustrates some
of the similarities between VB(X) and the category of finitely generated projective
modules. It is proven using a Riemannian (or Hermitian) metric on E: F;- is the
subspace of E, perpendicular to F,. (A topological space is paracompact if it is
Hausdorff and every open cover has a partition of unity subordinate to it.)

SUBBUNDLE THEOREM 4.1. Let E — X be a vector bundle on a paracompact
topological space X. Then:

(1) If F is a sub-bundle of E, there is a sub-bundle F+ such that E =< F & F*.

(2) E has finite type if and only if E is isomorphic to a sub-bundle of a trivial
bundle. That is, if and only if there is another bundle F' such that E ® F
1s trivial.

COROLLARY 4.1.1. Suppose that X is compact, or that X is a finite-dimensional
CW complex. Then every vector bundle over X is a Whitney direct summand of a
trivial bundle.
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ExXaAMPLE 4.1.2. If X is a smooth d-dimensional manifold, its tangent bundle
TX — X is a d-dimensional real vector bundle. Embedding X in R" allows us to
form the normal bundle NX — X; N, X is the orthogonal complement of 7, X in
R". Clearly TX & NX is the trivial n-dimensional vector bundle X x R" — X
over X.

ExAMPLE 4.1.3. Consider the canonical line bundle E; on projective n-space;
a point x of P" corresponds to a line L, in n + 1-space, and the fiber of E; at x is
just L,. In fact, E is a subbundle of the trivial bundle 77!, Letting F, be the
n-dimensional hyperplane perpendicular to L, the family of vector spaces I’ forms
a vector bundle such that By @ F = T,

EXAMPLE 4.1.4. (Global sections) A global section of a vector bundle n: E — X
is a continuous map s: X — E such that ns = 1x. It is nowhere zero if s(x) # 0
for all x € X. Every global section s determines a map from the trivial line bundle
T! to E; if s is nowhere zero then the image is a line subbundle of E. If X is
paracompact the Subbundle Theorem determines a splitting £ = F @ T,

Patching vector bundles

4.2. One technique for creating vector bundles uses transition functions. The idea
is to patch together a collection of vector bundles which are defined on subspaces
of X. A related technique is the clutching construction discussed in 4.7 below.
Let n: E — X be an n-dimensional vector bundle on X over the field F' (F is R,
C or H). Since F is locally trivial, we can find an open covering {U;} of X, and
isomorphisms h; : U; x F™ = E|U;. If U; NU; # @, the isomorphism

hthy s (U;NU;) x F™ = g|U;NU; = (U; NU;) x F"

sends (z,v) € (U;NU;) x F™ to (x, gi;(x)(v)) for some g;;(x) € GL,(F).

Conversely, suppose we are given maps g;;: U; NU; — GL,,(F) such that g;; =1
and g;;9;k = gir on U; NU; N Ug. On the disjoint union of the U; x F", form the
equivalence relation ~ which is generated by the relation that (x,v) € U; x F™ and
(x,9ij(x)(v)) € Uy x F™ are equivalent for every x € U; N U;. Let E denote the
quotient space ([[U; x F™)/ ~. It is not hard to see that there is an induced map
n: F — X making F into a vector bundle over X.

We call E the vector bundle obtained by patching via the transition functions
gij; this patching construction is the geometric motivation for open patching of
projective modules in 2.5.

CONSTRUCTION 4.2.1. (Tensor product). Let E and F' be real or complex vector
bundles over X. There is a vector bundle ' ® F' over X whose fiber over z € X is
the vector space tensor product E, ® F,, and dim(F ® F) = dim(E) dim(F').

To construct F ® F, we first suppose that F and F' are trivial bundles, i.e.,
F=XxVand FF = X xW for vector spaces V', W. In this case we let E® F be the
trivial bundle X x (V ® W). In the general case, we proceed as follows. Restricting
to a component of X on which dim(F) and dim(F') are constant, we may assume
that £ and F have constant ranks m and n respectively. Choose a covering {U;} and
transition maps g;;, g;; defining E and F by patching. Identifying M,,(F)® M,,(F)
with M, (F') gives a map GL,,(F) X GL,(F) — GLpyn(F), and the elements
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Gij ®g§j give transition maps for E® F from U; NU; to GLy, (F). The last assertion
comes from the classical vector space formula dim(F, ® F,) = dim(E,) dim(F;).

CONSTRUCTION 4.2.2. (Determinant bundle). For every n-dimensional real or
complex vector bundle F, there is an associated “determinant” line bundle det(FE) =
A"E whose fibers are the 1-dimensional vector spaces A"(E;). In fact, det(F) is
a line bundle obtained by patching, the transition functions for det(FE) being the
determinants det(g;;) of the transition functions g;; of E. More generally, if E is
any vector bundle then this construction may be performed componentwise to form
a line bundle det(E) = AY™(E)E. As in §3, if L is a line bundle and E = L @ T7,
then det(EF) = L, so E uniquely determines L. Taking FE trivial, this shows that
nontrivial line bundles cannot be stably trivial.

ORTHOGONAL, UNITARY AND SYMPLECTIC STRUCTURE GROUPS 4.2.3. We say
that an n-dimensional vector bundle £ — X has structure group O,,, U, or Sp,, if
the transition functions g;; map U;NU; to the subgroup O,, of GL,,(R) the subgroup
U, of GL,,(C) or the subgroup Sp,, of GL,,(H). If X is paracompact, this can always
be arranged, because then F has a (Riemannian or Hermitian) metric. Indeed, it
is easy to continuously modify the isomorphisms h;:U; x F" — E|U; so that on
each fiber the map F™ = F, is an isometry. But then the fiber isomorphisms
gij(z) are isometries, and so belong to O,,, Uy, or Sp,,. Using the same continuous
modification trick, any vector bundle isomorphism between vector bundles with a
metric gives rise to a metric-preserving isomorphism. If X is paracompact, this
implies that VB,,(X) is also the set of equivalence classes of vector bundles with
structure group O, U,, or Sp,.

The following pair of results forms the historical motivation for the Bass-Serre
Cancellation Theorem 2.3. Their proofs may be found in [Huse, 8.1].

REAL CANCELLATION THEOREM 4.3. Suppose X is a d-dimensional CW com-
plex, and that n: E — X s an n-dimensional real vector bundle with n > d. Then
(i) E= Ey®T"? for some d-dimensional vector bundle E
(i4) If F is another bundle and E® Tk =2 F @ T*, then E = F.

COROLLARY 4.3.1. Qwer a 1-dimensional CW complex, every real vector bundle
E of rank > 1 is isomorphic to L & T, where L = det(E) and f = dim(FE) — 1.

CoMPLEX CANCELLATION THEOREM 4.4. Suppose X s a d-dimensional CW
complex, and that n: E — X is a complex vector bundle with dim(E) > d/2.
(i) E= Ey® Tk for some vector bundle Ey of dimension < d/2
(ii) If F is another bundle and E T =< F & T*, then E = F.

COROLLARY 4.4.1. Let X be a CW complex of dimension < 3. Every complex
vector bundle E of rank > 1 is isomorphic to L & T, where L = det(E) and
f=dim(F) — 1.

There is also a cancellation theorem for a quaternionic vector bundle E with
dim(F) > d/4, d = dim(X). If d < 3 it implies that all quaternionic vector bundles
are trivial; the splitting F = L ® T occurs when d < 7.

Vector bundles are somewhat more tractable than projective modules, as the
following result shows. Its proof may be found in [Huse, 3.4.7].
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HoMoOTOPY INVARIANCE THEOREM 4.5. If f,g:Y — X are homotopic maps
and Y is paracompact, then f*E = g*FE for every vector bundle E over X.

COROLLARY 4.6. If X and Y are homotopy equivalent paracompact spaces,
there is a 1-1 correspondence between isomorphism classes of vector bundles on
X andY.

APPLICATION 4.6.1. If Y is a contractible paracompact space then every vector
bundle over Y is trivial.

CLUTCHING CONSTRUCTION 4.7. Here is an analogue for vector bundles of Mil-
nor Patching 2.7 for projective modules. Suppose that X is a paracompact space,
expressed as the union of two closed subspaces X; and X5, with X;NXs = A. Given
vector bundles F; — X; and an isomorphism g¢: F1|A — F5|A, we form a vector
bundle F¥' = E; Uy E over X as follows. As a topological space E is the quotient of
the disjoint union (E; [[ E2) by the equivalence relation identifying e; € F4|A with
g(e1) € E3]A. Clearly the natural projection n: E'— X makes E a family of vector
spaces, and E|X; = FE;. Moreover, E is locally trivial over X (see [Atiyah, p. 21];
paracompactness is needed to extend g off of A). The isomorphism g: F1|A = Es|A
is called the clutching map of the construction. As with Milnor patching, every vec-
tor bundle over X arises by this clutching construction. A new feature, however, is
homotopy invariance: if f,g are homotopic clutching isomorphisms FE;|A = Es|A,
then Ey Uy Ey and Ey U, Ey are isomorphic vector bundles over X.

PROPOSITION 4.8. Let SX denote the suspension of a paracompact space X. A
choice of basepoint for X yields a 1-1 correspondence between the set VB, (SX) of
isomorphism classes of n-dimensional (resp., real, complex or quaternionic) vector
bundles over SX and the respective set of based homotopy classes of maps

(X, On)s, [(X,Uplx or [X,Spnl«

from X to the orthogonal group O,,, unitary group U, or symplectic group Sp.,.

SKETCH OF PROOF. SX is the union of two contractible cones C; and Cy whose
intersection is X. As every vector bundle on the cones C; is trivial, every vector
bundle on SX is obtained from an isomorphism of trivial bundles over X via the
clutching construction. Such an isomorphism is given by a homotopy class of maps
from X to GL,, or equivalently to the appropriate deformation retract (O, U, or
Sprn) of GL,. The indeterminacy in the resulting map from [X, GL,] to classes of
vector bundles is eliminated by insisting that the basepoint of X map to 1 € GL,,.

Vector Bundles on Spheres

Proposition 4.8 allows us to use homotopy theory to determine the vector bundles
on the sphere S%, because S is the suspension of S?~!. Hence n-dimensional (real,
complex or symplectic) bundles on S¢ are in 1-1 correspondence with elements
of 1q-1(0y), m4—1(Uy) and m4_1(Spn), respectively. For example, every real or
complex line bundle over S? is trivial if d > 3, because the appropriate homotopy
groups of O; = SY and U; = S! vanish. This is not true for Sp; = S3; for example
there are infinitely many symplectic line bundles on S* because m3Sp; = Z. The
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classical calculation of the homotopy groups of O, U, and Sp,, (see [Huse, 7.12])
yields the following facts:

(4.9.1) On S?, there are |mo(O,)| = 2 real vector bundles of dimension n for all
n > 1. The nontrivial line bundle on S! is the Mobius bundle. The Whitney sum
of the Mobius bundle with trivial bundles yields all the other nontrivial bundles.
Since |mo(U,)| = 1 for all n, every complex vector bundle on S! is trivial.

(4.9.2) On S?, the situation is more complicated. Since 71(O1) = 0 there are no
nontrivial real line bundles on S2. There are infinitely many 2-dimensional real
vector bundles on S? (indexed by the degree d of their clutching mapss), because
71(02) = Z. However, there is only one nontrivial n-dimensional real vector bundle
for each n > 3, because m1(0,,) = Z/2. A real 2-dimensional bundle E is stably
trivial (and E @ T =2 T3) if and only if the degree d is even. The tangent bundle of
S? has degree d = 2.

There are infinitely many complex line bundles Ly on S2, indexed by the degree
d (in 71 (U71) = Z) of their clutching maps. The Complex Cancellation theorem (4.4)
states that every other complex vector bundle on S? is isomorphic to a Whitney
sum Ly @ T"™, and that all the Ly @& T™ are distinct.

(4.9.3) Every vector bundle on S3 is trivial. This is a consequence of the classical
result that 72 (G) = 0 for every compact Lie group G, such as G = O,,, U, or Sp,.

(4.9.4) As noted above, every real or complex line bundle on S* is trivial. S* carries
infinitely many distinct n-dimensional vector bundles for n > 5 over R, for n > 2
over C, and for n > 1 over H because m3(0,) = Z for n > 5, n3(U,,) = Z for
n > 2 and 73(Sp,) = Z for n > 1. In the intermediate range, we have m3(02) = 0,
73(03) = Z and 73(04) = Z @ Z. Every 5-dimensional real bundle comes from a
unique 3-dimensional bundle but every 4-dimensional real bundle on S* is stably
isomorphic to infinitely many other distinct 4-dimensional vector bundles.

(4.9.5) There are no 2-dimensional real vector bundles on S for d > 3, because the
appropriate homotopy groups of Oy = S! x Z /2 vanish. This vanishing phenomenon
doesn’t persist though; if d > 5 the 2-dimensional complex bundles, as well as the 3-
dimensional real bundles on S¢, correspond to elements of 74_1(03) = 7q_1(Us) =
74—1(S3). This is a finite group which is rarely trivial.

Classifying Vector Bundles

One feature present in the theory of vector bundles, yet absent in the theory of
projective modules, is the classification of vector bundles using Grassmannians.

If V is any finite-dimensional vector space, the set Grass,, (V') of all n-dimensional
linear subspaces of V' is a smooth manifold, called the Grassmann manifold of n-
planes in V. If V'.C W, then Grass, (V) is naturally a submanifold of Grass,, (W).
The infinite Grassmannian Grass,, is the union of the Grass, (V') as V ranges over
all finite-dimensional subspaces of a fixed infinite-dimensional vector space (R,
C> or H*); thus Grass,, is an infinite-dimensional CW complex (see [MSt]). For
example, if n = 1 then Grass; is either RP*™, CP*>° or HIP*°, depending on whether
the vector spaces are over R, C or H.

There is a canonical n-dimensional vector bundle E,, (V) over each Grass,(V),
whose fibre over each = € Grass, (V') is the linear subspace of V' corresponding to
x. To topologize this family of vector spaces, and see that it is a vector bundle, we
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define E,, (V') to be the sub-bundle of the trivial bundle Grass, (V) xV — Grass, (V)
having the prescribed fibers. For n = 1 this is just the canonical line bundle on
projective space described in Example 4.1.3.

The union (as V' varies) of the E, (V) yields an n-dimensional vector bundle

FE,, — Grass,, called the n-dimensional classifying bundle because of the following
theorem (see [Huse, 3.7.2]).

CLASSIFICATION THEOREM 4.10. Let X be a paracompact space. Then the set
VB, (X) of isomorphism classes of n-dimensional vector bundles over X is in 1-1
correspondence with the set [ X, Grass,| of homotopy classes of maps X — Grass,,:

VB,,(X) = [X, Grass,].

In more detail, every n-dimensional vector bundle n: E — X is isomorphic to
f*(Ey,) for some map f: X — Grass,,, and E determines f up to homotopy.

REMARK 4.10.1. (Classifying Spaces) The Classification Theorem 4.10 states
that the contravariant functor VB,, is “representable” by the infinite Grassmannian
Grass,,. Because X is paracompact we may assume (by 4.2.3) that all vector bundles
have structure group O,, U, or Sp,, respectively. For this reason, the infinite
Grassmannian Grass,, is called the classifying space of O,,, U, or Sp, (depending
on the choice of R, C or H). It is the custom to write BO,,, BU,, and BSp,, for the
Grassmannians Grass,, (or any spaces homotopy equivalent to it) over R, C and H,
respectively.

In fact, there are homotopy equivalences Q(BG) ~ G for any Lie group G. If
G is Oy, U, or Sp,, we can deduce this from 4.8 and 4.10: for any paracompact
space X we have [X,G], = VB, (SX) = [SX, BG] = [X,Q(BG)].. Taking X to
be G and Q(BG) yields the homotopy equivalences.

It is well-known that there are canonical isomorphisms [X, RP>] = H(X;Z/2)
and [X,CP>] = H?(X;Z) respectively. Therefore the case n = 1 may be reformu-
lated as follows over R and C.

CLASSIFICATION THEOREM FOR LINE BUNDLES 4.11. If X s paracompact,
there are natural isomorphisms:

wy : VBy g(X) = {real line bundles on X} = H'(X;7Z/2)

c1: VB c(X) = {complex line bundles on X} = H*(X;Z).

REMARK 4.11.1. Since H'(X) and H?(X) are abelian groups, it follows that
the set VB;(X) of isomorphism classes of line bundles is an abelian group. We
can understand this group structure in a more elementary way, as follows. The
tensor product ¥ ® F' of line bundles is again a line bundle by 4.2.1, and ® is the
product in the group VB;(X). The inverse of F in this group is the dual bundle
E of Ex. 4.3, because £ ® E is a trivial line bundle (see Ex. 4.4).
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RIEMANN SURFACES 4.11.2. Here is a complete classification of complex vector
bundles on a Riemann surface X. Recall that a Riemann surface is a compact
2-dimensional oriented manifold; the orientation gives a canonical isomorphism
H?*(X;7Z) = 7. If L is a complex line bundle, the degree of L is that integer d such
that ¢;(£) = d. By Theorem 4.11, there is a unique complex line bundle O(d) of
each degree on X. By Corollary 4.4.1, every complex vector bundle of rank r on X
is isomorphic to O(d) & T"~! for some d. Therefore complex vector bundles on a
Riemann surface are completely classified by their rank and degree.

For example, the tangent bundle Tx of a Riemann surface X has the structure
of a complex line bundle, because every Riemann surface has the structure of a
1-dimensional complex manifold. The Riemann-Roch Theorem states that Tx has
degree 2—2g, where g is the genus of X. (Riemann surfaces are completely classified
by their genus g > 0, a Riemann surface of genus g being a surface with g “handles.”)

In contrast, there are 229 distinct real line bundles on X, because H'(X;Z/2) =
(Z/2)%9. The Real Cancellation Theorem 4.3 shows that every real vector bundle is
the sum of a trivial bundle and a bundle of dimension < 2, but there are infinitely
many 2-dimensional bundles over X . For example, the complex line bundles O(d) all
give distinct oriented 2-dimensional real vector bundles on X'; they are distinguished
by an invariant called the Euler class (see [MSt]).

Characteristic Classes

By Theorem 4.11, the determinant line bundle det(E) of a vector bundle E yields
a cohomology class: if F is a real vector bundle, it is the first Stiefel-Whitney class
wi(E) in HY(X;Z/2); if E is a complex vector bundle, it is the first Chern class
c1(E) in H*(X;Z). These classes fit into a more general theory of characteristic
classes, which are constructed and described in the book [MSt]. Here is an axiomatic
description of these classes.

AXIOMS FOR STIEFEL- WHITNEY CLASSES 4.12. The Stiefel-Whitney classes of
a real vector bundle E over X are elements w;(E) € H*(X;Z/2), which satisfy the
following axioms. By convention wg(E) = 1.
(SW1) (Dimension) If i > dim(E) then w;(E) = 0.
(SW2) (Naturality) If f:Y — X is continuous then f*: H (X;Z/2) — H(Y;Z/2)
sends w;(E) to w;(f*E). If E and E’ are isomorphic bundles then w;(E) = w;(E’).
(SW3) (Whitney sum formula) If £ and F' are bundles, then in the graded coho-
mology ring H*(X;7Z/2) we have:

W(EOF) =) wi(E)wn—i(F) = wn(E) + wp_1(E)wi (F) + - + wn (F).

(SW4) (Normalization) For the canonical line bundle E; over RP™, w(E7) is the
unique nonzero element of H!(RP*;Z/2) = 7Z/2.

Axioms (SW2) and (SW4), together with the Classification Theorem 4.10, show
that w; classifies real line bundles in the sense that it gives the isomorphism
VB (X) & H'(X;Z/2) of Theorem 4.11. The fact that wi(E) = wi(det F) is
a consequence of the “Splitting Principle” for vector bundles, and is left to the
exercises.
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Since trivial bundles are induced from the map X — {x}, it follows from (SW1)
and (SW2) that w;(T™) = 0 for every trivial bundle 7™ (and i # 0). The same
is true for componentwise trivial bundles; see Ex. 4.2. From (SW3) it follows that
wi(E ®T") = w;(E) for every bundle E and every trivial bundle 7™.

The total Stiefel-Whitney class w(E) of E is defined to be the formal sum
w(E)=1+w(E)+ - +wi(E)+---

in the complete cohomology ring H*(X;Z/2) = [[, H (X;Z/2), which consists of
all formal infinite series ap+ai+--- with a; € H*(X;Z/2). With this formalism, the
Whitney sum formula becomes a product formula: w(E & F) = w(E)w(F). Now
the collection U of all formal sums 14 a; + --- in H*(X;Z/2) forms an abelian
group under multiplication (the group of units of H*(X;7Z/2) if X is connected).
Therefore if E® F is trivial we can compute w(F') via the formula w(F) = w(E)~*.

For example, consider the canonical line bundle E;(R™) over RP". By axiom
(SW4) we have w(E;) = 1+ in the ring H*(RP";Z/2) = Fa[z]/(z™*1). We saw in
Example 4.1.3 that there is an n-dimensional vector bundle F with F@ E; = T,
Using the Whitney Sum formula (SW3), we compute that w(F) =14z +---+z".
Thus w;(F) = 2* for i <n and w;(F) = 0 for i > n.

Stiefel-Whitney classes were named for E. Stiefel and H. Whitney, who discovered
the w; independently in 1935, and used them to study the tangent bundle of a
smooth manifold.

AX10MS FOR CHERN CLASSES 4.13. If E is a complex vector bundle over X,
the Chern classes of E are certain elements ¢;(E) € H*(X;Z), with ¢o(E) = 1.
They satisfy the following axioms. Note that the natural inclusion of §2 2 CP' in
CP* induces a canonical isomorphism H?(CP*;Z) = H?(S%*7Z) = Z.

(C1) (Dimension) If i > dim(E) then ¢;(E) =0
(C2) (Naturality) If f: Y — X is continuous then f*: H?(X;Z) — H?!(Y;Z) sends
¢i(E) to ¢;(f*E). If E = E' then ¢;(F) = ¢;(E').
(C3) (Whitney sum formula) If F and F' are bundles then

cn(E®F) = ¢i(E)en—i(F) = cn(E) + cn1(E)er(F) + -+ + cn(F).
(C4) (Normalization) For the canonical line bundle E; over CP>, ¢y (Fy) is the
canonical generator z of H*(CP>;Z) & Z.

Axioms (C2) and (C4) and the Classification Theorem 4.10 imply that the first

Y

Chern class ¢; classifies complex line bundles; it gives the isomorphism VB (X) =
H?(X;Z) of Theorem 4.11. The identity c;(F) = c1(det E) is left to the exercises.

The total Chern class ¢(E) of E is defined to be the formal sum
c(BE)y=14+c1(E)+ -4 c(E)+---

in the complete cohomology ring H*(X;Z) = [[, H(X;Z). With this formalism,
the Whitney sum formula becomes ¢(E @ F') = ¢(E)c(F). As with Stiefel-Whitney
classes, axioms (C1) and (C2) imply that for a trivial bundle 7™ we have ¢;(T™) = 0
(i # 0), and axiom (C3) implies that for all E

c(E®T") = ¢;(E).
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For example, consider the canonical line bundle E;(C™) over CP". By axiom
(C4), ¢(E1) = 1+ x in the truncated polynomial ring H*(CP";Z) = Z[z]/(z"T1).
We saw in Example 4.1.3 that there is a canonical n-dimensional vector bundle F
with FF & E; = T™"!. Using the Whitney Sum Formula (C3), we compute that
c(F) =Y (=1)'a’. Thus ¢;(F) = (—1)%z* for all i < n.

Chern classes are named for S.-S. Chern, who discovered them in 1946 while
studying L. Pontrjagin’s 1942 construction of cohomology classes p;(E) € HY(X;Z)
associated to a real vector bundle E. In fact, p;(E) is (—1)%c2;(E®C), where E®C
is the complexification of E (see Ex. 4.5). However, the Whitney sum formula for
Pontrjagin classes only holds up to elements of order 2 in H*"(X;7Z); see Ex. 4.13.

EXERCISES

4.1 Let n: £ — X and ¢: FF — X be two vector bundles, and form the induced
bundle n*F over E. Show that the Whitney sum EF & F — X is n*F', considered
as a bundle over X by the map n*F — E — X.

4.2 Show that all of the uncountably many vector bundles on the discrete space
X = N are componentwise trivial. Let TN — N be the bundle with dim(7TY) = n
for all n. Show that every componentwise trivial vector bundle T/ — Y over every
space Y is isomorphic to f*TN. Use this to show that the Stiefel-Whitney and
Chern classes vanish for componentwise trivial vector bundles.

4.3 If E and F' are vector bundles over X, show that there are vector bundles
Hom(E, F), E and A*E over X whose fibers are, respectively: Hom(E,, F,), the
dual space (E,) and the exterior power A¥(E,). Then show that there are natural
isomorphisms (E® F)~2 E® F, E® F =2 Hom(E,F), \'E =2 E and

NESF)2AN"Ea (NTERF) o o NERANTF)o-- -0 AFF

4.4 Show that the global sections of the bundle Hom(E, F) of Ex. 4.3 are in 1-1
correspondence with vector bundle maps £ — F. (Cf. 4.1.4.) If E is a line bundle,
show that the vector bundle £ ® E = Hom(E, E) is trivial.

4.5 Complexification. Let E — X be a real vector bundle. Show that there is a
complex vector bundle EF¢c — X with fibers E, ®g C and that there is a natural
isomorphism (F & F)¢ = (Ec) @ (Fg). Then show that Ec — X, considered as a
real vector bundle, is isomorphic to the Whitney sum F & E.

4.6 Complex conjugate bundle. If FF — X is a complex vector bundle on a para-
compact space, given by transition functions g;;, let F denote the complex vector
bundle obtained by using the complex conjugates g;; for transition functions; F is
called the complex conjugate bundle of F. Show that F' and F are isomorphic as
real vector bundles, and that the complexification Fr — X of Ex. 4.5 is isomorphic
to the Whitney sum F @ F. If F = E¢ for some real bundle E, show that F = F.
Finally, show that for every complex line bundle L on X we have L = L.
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4.7 Use the formula L = L of Ex. 4.6 to show that ¢, (E) = —¢,(E) in H*(X;Z)
for every complex vector bundle F on a paracompact space.

4.8 Global sections. If n: E'— X is a vector bundle, let I'(E) denote the set of all
global sections of F (see 4.1.4). Show that I'(E) is a module over the ring C°(X)
of continuous functions on X (taking values in R or C). If E is an n-dimensional
trivial bundle, show that I'(E) is a free C°(X)-module of rank n.

Conclude that if X is paracompact then I'(E) is a locally free C°(X)-module
in the sense of 2.4, and that I'(F) is a finitely generated projective module if X is
compact or if E is of finite type. This is the easy half of Swan’s theorem; the rest
is given in the next exercise.

4.9 Swan’s Theorem. Let X be a compact Hausdorff space, and write R for C°(X).
Show that the functor I' of the previous exercise is a functor from VB(X) to the
category P(R) of finitely generated projective modules, and that the homomor-
phisms

I': Homygx)(E, F) — HomP(R)(F(E),F(F)) (%)

are isomorphisms. This proves Swan’s Theorem, that I' is an equivalence of cate-
gories VB(X) ~ P(CY(X)). Hint: First show that (x) holds when E and F are
trivial bundles, and then use Corollary 4.1.1.

4.10 Projective and Flag bundles. If E — X is a vector bundle, consider the
subspace Eg = F — X of E, where X lies in F as the zero section. The units R*
(or C*) act fiberwise on Ej, and the quotient space P(E) obtained by dividing out
by this action is called the projective bundle associated to E. If p: P(E) — X is the
projection, the fibers p_l(:z:) are projective spaces.

(a) Show that there is a line sub-bundle L of p*E over P(E). Use the Subbundle

Theorem to conclude that p*E =~ E’ @ L.

Now suppose that £ — X is an n-dimensional vector bundle, and let F(E) be the
flag space f:TF(E) — X obtained by iterating the construction

-+ = P(E") - P(E) - P(E) = X.

(b) Show that f*E — F(FE) is a direct sum L; @ --- @ L,, of line bundles.

4.11 If E is a direct sum Ly & - -+ & L,, of line bundles, show that det(EF) = L; ®
++® Ly. Then use the Whitney Sum formula to show that wq(F) = w;(det(E)),
resp. ¢1(E) = c1(det(E)). Prove that every w;(E), resp. ¢;(E) is the i’ elementary
symmetric function of the n cohomology classes {w(L;)}, resp. {c1(L;)}-

4.12 Splitting Principle. Write H'(X) for H'(X;Z/2) or H*(X;Z), depending on
whether our base field is R or C, and let p : F(E) — X be the flag bundle of a vector
bundle E over X (see Ex. 4.10). Prove that p*: H(X) — H*(F(FE)) is an injection.
Then use Ex. 4.11 to show that the characteristic classes w;(FE) or ¢;(F) in H(X)
may be calculated inside H*(F(E)). Hint: For a trivial bundle this follows easily
from the Kiinneth formula for H*(X x F).

4.13 Pontrjagin classes. In this exercise we assume the results of Ex. 4.6 on the
conjugate bundle F' of a complex bundle F. Use the Splitting Principle to show

that ¢;(F) = (—1)%c;(F). Then prove the following:
(i) The Pontrjagin classes p, (F') of F' (considered as a real bundle) are
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pn(F) = cn(F +2Z Yien—i(F)enii(F) + (—1)"2c2,(F).

(ii) If FF = E® C for some real bundle F, the odd Chern classes ¢ (F), cs(F), ...
all have order 2 in H*(X;Z).
(iii) The Whitney sum formula for Pontrjagin classes holds modulo 2:

pn(E® E") sz )Pn—i(E") has order 2 in H*"(X;7Z).

4.14 Disk with double origin. The classification theorems 4.10 and 4.11 can fail
for locally compact spaces which aren’t Hausdorff. To see this, let D denote the
closed unit disk in R%2. The disk with double origin is the non-Hausdorff space X
obtained from the disjoint union of two copies of D by identifying together the
common subsets D — {0}. For all n > 1, show that [X, BU,| = [X, BO,] = 0, yet:
VB, c(X)2Z =~ H?*(X;Z); VBog(X) 2 Z; and VB, g(X) X 7Z/2 for n > 3.

4.15 Show that the canonical line bundles F; over RP* and CP°° do not have finite
type. Hint: Use characteristic classes and the Subbundle Theorem, or 11.3.7.2.

4.16 Consider the suspension SX of a paracompact space X. Show that every
vector bundle E over SX has finite type. Hint: If dim(FE) = n, use 4.8 and
Ex. 1.11 to construct a bundle E’ such that £ @ E' = T2,

4.17 Let V be a complex vector space. A quaternionic structure map on V' is a com-
plex conjugate-linear automorphism j satisfying j2 = —1. A (complex) Hermitian
metric 5 on V' is said to be quaternionic if 5(jv, jw) = B(v, w).

(a) Show that structure maps on V are in 1-1 correspondence with underlying
H-vector space structures on V' in which j € H acts as j.

(b) Given a structure map and a complex Hermitian metric § on V, show that
the Hermitian metric %(B (v,w) + B(jv, jw)) is quaternionic. Conclude that
every quaternionic vector bundle over a paracompact space has a quaternionic
Hermitian metric.

(¢) If V is a vector space over H, show that its dual V = Homc(V,C) is also a
vector space over H. If E is a quaternionic vector bundle, show that there
is a quaternionic vector bundle E whose fibers are E,. Hint: If V is a right
H-module, first construct V as a left H-module using Ex. 2.6 and then use
H = H°P to make it a right module.

4.18 Let E be a quaternionic vector bundle, and uF its underlying real vector
bundle. If F' is any real bundle, show that H™ ®g R” = H™" endows the real
bundle ©vF ® F with the natural structure of a quaternionic vector bundle, which
we write as E ® F. Then show that (F® F1) ® F» 2 E® (F1 ® Fs).

4.19 If E and F' are quaternionic vector bundles over X, show that there are real
vector bundles E ®y F' and Homy(F, F'), whose fibers are, respectively: FE, @y F,
and Hompy(F,, F,,). Then show that Homyg(F, F) 2 E ®y F.
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§5. Algebraic Vector Bundles

Modern Algebraic Geometry studies sheaves of modules over schemes. This gener-
alizes modules over commutative rings, and has many features in common with the
topological vector bundles that we considered in the last section. In this section we
discuss the main aspects of the structure of algebraic vector bundles.

We will assume the reader has some rudimentary knowledge of the language of
schemes, in order to get to the main points quickly. Here is a glossary of the basic
concepts; details for most things may be found in [Hart|, but the ultimate source
is [EGA].

A ringed space (X, Ox) is a topological space X equipped with a sheaf of rings
Ox; it is a locally ringed space if each Ox (U) is a commutative ring, and if for every
r € X the stalk ring Ox , = lim, ., Ox(U) is a local ring. By definition, an affine
scheme is a locally ringed space isomorphic to (Spec(R), R) for some commutative
ring R (where R is the canonical structure sheaf), and a scheme is a ringed space
(X,Ox) which can be covered by open sets U; such that each (U;, Ox|U;) is an
affine scheme.

An Ox-module is a sheaf F on X such that (i) for each open U C X the set F(U)
is an Ox (U)-module, and (ii) if V' C U then the restriction map F(U) — F(V) is
compatible with the module structures. A morphism F — G of Ox-modules is a
sheaf map such that each F(U) — G(U) is Ox(U)-linear. The category Ox-mod
of all Ox-modules is an abelian category.

A global section of an Ox-module F is an element e; of F(X). We say that
F is generated by global sections if there is a set {e;};c; of global sections of F
whose restrictions e;| generate F(U) as an Ox (U)-module for every open U C X.
We can reinterpret these definitions as follows. Giving a global section e of F is
equivalent to giving a morphism Ox — F of Ox-modules, and to say that F is
generated by the global sections {e;} is equivalent to saying that the corresponding
morphism @;c; Ox — F is a surjection.

FREE MODULES. We say that F is a free Ox -module if it is isomorphic to a direct
sum of copies of Ox. A set {e;} C F(X) is called a basis of F if the restrictions e;|s
form a basis of each F(U), i.e., if the e; provide an explicit isomorphism &0y = F.

The rank of a free Ox-module F is not well-defined over all ringed spaces. For
example, if X is a 1-point space then Ox is just a ring R and an O x-module is just
an R-module, so our remarks in §1 about the invariant basis property (IBP) apply.
There is no difficulty in defining the rank of a free Ox-module when (X, Ox) is
a scheme, or a locally ringed space, or even more generally when any of the rings
Ox (U) satisfy the IBP. We shall avoid these difficulties by assuming henceforth
that (X, Ox) is a locally ringed space.

We say that an Ox-module F is locally free if X can be covered by open sets U
for which F|y is a free Opy-module. The rank of a locally free module F is defined
at each point = of X: rank,(F) is the rank of the free Oy-module F|y, where U
is a neighborhood of x on which F|y is free. Since the function x — rank,(F) is
locally constant, rank(F) is a continuous function on X. In particular, if X is a
connected space then every locally free module has constant rank.

DEFINITION 5.1 (VECTOR BUNDLES). A wvector bundle over a ringed space X is
a locally free Ox-module whose rank is finite at every point. We will write VB(X)
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or VB(X,Ox) for the category of vector bundles on (X, Ox); the morphisms in
VB(X) are just morphisms of Ox-modules. Since the direct sum of locally free
modules is locally free, VB(X) is an additive category.

A line bundle L is a locally free module of constant rank 1. A line bundle is also
called an invertible sheaf because as we shall see in 5.3 there is another sheaf £’
such that £L® L' = Ox.

These notions are the analogues for ringed spaces of finitely generated projective
modules and algebraic line bundles, as can be seen from the discussion in 2.4 and
§3. However, the analogy breaks down if X is not locally ringed; in effect locally
projective modules need not be locally free.

ExaMpPLE 5.1.1. (Topological spaces). Fix a topological space X. Then X;,, =
(X, Oop) is a locally ringed space, where Oy, is the sheaf of (R or C-valued)
continuous functions on X: Oyp(U) = COU) for all U C X. The following
constructions give an equivalence between the category VB(Xy,),) of vector bundles
over the ringed space X,, and the category VB(X) of (real or complex) topological
vector bundles over X in the sense of §4. Thus our notation is consistent with the
notation of §4.

If n: E — X is a topological vector bundle, then the sheaf £ of continuous sections
of E is defined by E(U) = {s:U — E : ns = 1y }. By Ex. 4.8 we know that £ is a
locally free O¢,p-module. Conversely, given a locally free O¢,p,-module &€, choose a
cover {U;} and bases for the free O,,-modules E£|U;; the base change isomorphisms
over the U; N U; are elements g;; of GL,(C°(U; N Uj)). Interpreting the g;; as
maps U; NU; = GL, (C), they become transition functions for a topological vector
bundle £ — X in the sense of 4.2.

EXAMPLE 5.1.2 (AFFINE SCHEMES) Suppose X = Spec(R). Every R-module
M yields an O x-module M and R = O x. Hence every free O x-module arises as M
for a free R-module M. The Ox-module F = P associated to a finitely generated
projective R-module P is locally free by 2.4, and the two rank functions agree:
rank(P) = rank(F). Conversely, if F is locally free Ox-module, it can be made
trivial on a covering by open sets of the form U; = D(s;), i.e., there are free modules
M; such that F|y, = M;. The isomorphisms between the restrlctlons of M; and M
to U; N U; amount to open patching data defining a projective R-module P as in
2.5. In fact it is not hard to see that F = P. Thus vector bundles on Spec(R) are
in 1-1 correspondence with finitely generated projective R-modules. And it is no
accident that the notion of an algebraic line bundle over a ring R in §3 corresponds
exactly to the notion of a line bundle over the ringed space (Spec(R), R).

More is true: the categories VB(X) and P(R) are equivalent when X = Spec(R).
To see this, recall that an Ox-module is called quasicoherent if it is isomorphic to
some M ([Hart, I1.5.4]). The above correspondence shows that every vector bundle
is quasicoherent. It turns out that the category Ox-mod..n of quasicoherent O x-
modules is equivalent to the category R-mod of all R-modules (see [Hart, I1.5.5]).
Since the subcategories VB(Spec R) and P(R) correspond, they are equivalent.

DEFINITION (COHERENT MODULES). Suppose that X is any scheme. We say

that a sheaf of Ox-modules F is quasicoherent if X may be covered by affine opens
U; = Spec(R;) such that each F|U; is M; for an R;-module M;. (If X is affine, this
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agrees with the definition of quasicoherent in Example 5.1.2 by [Hart, 11.5.4].) We
say that F is coherent if moreover each M; is a finitely presented R;-module.

The category of quasicoherent O x-modules is abelian; if X is noetherian then
so is the category of coherent Ox-modules.

If X is affine then F = M is coherent if and only if M is a finitely presented R-
module by [EGA, I(1.4.3)]. In particular, if R is noetherian then “coherent” is just
a synonym for “finitely generated.” If X is a noetherian scheme, our definition of
coherent module agrees with [Hart] and [EGA]. For general schemes, our definition
is slightly stronger than in [Hart], and slightly weaker than in [EGA, 0;(5.3.1)]; Ox
is always coherent in our sense, but not in the sense of [EGA].

The equivalent conditions for locally free modules in 2.4 translate into:

LEMMA 5.1.3. For every scheme X and Ox-module F, the following conditions
are equivalent:

1) F is a vector bundle (i.e., is locally free of finite rank);
2) F is quasicoherent and the stalks F, are free Ox z-modules of finite rank;
) F is coherent and the stalks F, are free Ox z-modules;

) For every affine open U = Spec(R) in X, Fly is a finitely generated pro-
jective R-module.

(
(
(3
(4

ExamMpPLE 5.1.4. (Analytic spaces). Analytic spaces form another family of
locally ringed spaces. To define them, one proceeds as follows. On the topological
space C", the subsheaf O,,, of Oy, consisting of analytic functions makes (C", Og,)
into a locally ringed space. A basic analytic setin an open subset U of C" is the zero
locus V' of a finite number of holomorphic functions, made into a locally ringed space
(V, Ov,an) as follows. If Zy is the subsheaf of Oy 4, consisting of functions vanishing
on V, the quotient sheaf Oy 4y, = Oy an/Zv is supported on V, and is a subsheaf
of the sheaf Oy 1,,. By definition, a (reduced) analytic space Xun = (X, Oqp) is a
ringed space which is locally isomorphic to a basic analytic set. A good reference
for (reduced) analytic spaces is [GA]; the original source is Serre’s [GAGA].

Let X,, be an analytic space. For clarity, a vector bundle over X,, (in the
sense of Definition 5.1) is sometimes called an analytic vector bundle. Since finitely
generated O, (U)-modules are finitely presented, there is also good a notion of
coherence on an analytic space: an O,,-module F is called coherent if it is locally
finitely presented in the sense that in a neighborhood U of any point it is presented
as a cokernel:

Uan = Ol an — Flu — 0.

One special class of analytic spaces is the class of Stein spaces. It is known that
analytic vector bundles are the same as topological vector bundles over a Stein
space. For example, any analytic subspace of C™ is a Stein space. See [GR].

Morphisms of ringed spaces

Here are two basic ways to construct new ringed spaces and morphisms:
(1) If A is a sheaf of Ox-algebras, (X,.A) is a ringed space;
(2) If f:Y — X is a continuous map and (Y, Oy ) is a ringed space, the direct
image sheaf f,Qy is a sheaf of rings on X, so (X, f.Oy) is a ringed space.
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A morphism of ringed spaces f:(Y,Oy) — (X, Ox) is a continuous map f:Y — X
together with a map f#:Ox — f.Oy of sheaves of rings on X. In case (1) there is a
morphism i: (X, A) — (X, Ox); in case (2) the morphism is (Y, Oy ) — (X, f.Oy);
in general, every morphism factors as (Y, Oy) — (X, f.Oy) — (X, Ox).

A morphism of ringed spaces f: X — Y between two locally ringed spaces is a
morphism of locally ringed spaces if in addition for each point y € Y the map of
stalk rings Ox ¢(,) — Oy, sends the maximal ideal my(,) into the maximal ideal
my. A morphism of schemes is a morphism of locally ringed spaces f:Y — X
between schemes.

If F is an Oy-module, then the direct image sheaf f.F is an f,Oy-module, and
hence also an Ox-module. Thus f, is a functor from Oy-modules to O x-modules,
making O x-mod covariant in X. If F is a vector bundle over Y then f.F is a vector
bundle over (X, f.Oy). However, f.F will not be a vector bundle over (X,Ox)
unless f.Oy is a locally free Ox-module of finite rank, which rarely occurs.

If f:Y — X is a proper morphism between noetherian schemes then Serre’s
“Theorem B” states that if F is a coherent Oy-module then the direct image f.F
is a coherent Ox-module. (See [EGA, I11(3.2.2)] or [Hart, II1.5.2 and I1.5.19].)

EXAMPLE 5.2.1 (PROJECTIVE SCHEMES). When Y is a projective scheme over
a field k, the structural map m: Y — Spec(k) is proper. In this case the direct image
m.F = H°(Y, F) is a finite-dimensional vector space over k. Indeed, every coherent
k-module is finitely generated. Not surprisingly, dim; HO(Y, F) gives an important
invariant for coherent modules (and vector bundles) over projective schemes.

The functor f, has a left adjoint f* (from Ox-modules to Oy-modules):
HOHl(QY (f*gv 'F) = HomOX (57 f*f)

for every Ox-module £ and Oy-module F. The explicit construction is given in
[Hart, I1.5], and shows that f* sends free Ox-modules to free Oy-modules, with
f*Ox 2 Oy. If i:U C X is the inclusion of an open subset then i*E is just £|U; it
follows that if £]U is free then (f*&)|f~1(U) is free. Thus f* sends locally free O x-
modules to locally free Oy-modules, and yields a functor f*: VB(X) — VB(Y),
making VB(X) contravariant in the ringed space X.

EXAMPLE 5.2.2. If R and S are commutative rings then ring maps f#*: R — S
are in 1-1 correspondence with morphisms f: Spec(S) — Spec(R) of ringed spaces.
The direct image functor f, corresponds to the forgetful functor from S-modules
to R-modules, and the functor f* corresponds to the functor ® g S from R-modules
to S-modules.

ASSOCIATED ANALYTIC AND TOPOLOGICAL BUNDLES 5.2.3. Suppose that X is
a scheme of finite type over C, such as a subvariety of P¢: or A = Spec(Clz1, ..., ,)).
The closed points X (C) of X have the natural structure of an analytic space; in
particular it is a locally compact topological space. Indeed, X(C) is covered by
open sets U(C) homeomorphic to analytic subspaces of A"(C), and A"(C) = C™.
Note that if X is a projective variety then X (C) is compact, because it is a closed
subspace of the compact space P"(C) = CP".

Considering X (C) as topological and analytic ringed spaces as in Examples
5.1.1 and 5.1.4, the evident continuous map 7: X (C) — X induces morphisms of
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ringed spaces X (C)¢op — X(C)qn — X. This yields functors from VB(X, Ox) to
VB(X(C)an), and from VB(X,,) to VB(X(C)4p) = VB (X(C)). Thus every
vector bundle £ over the scheme X has an associated analytic vector bundle &,,,
as well as an associated complex vector bundle 7%& over X (C). In particular, every
vector bundle £ on X has topological Chern classes ¢;(€) = ¢;(7*E) in the group
H?*(X(C); 7).

The main theorem of [GAGA] is that if X is a projective algebraic variety over
C then there is an equivalence between the categories of coherent modules over X
and over X,,. In particular, the categories of vector bundles VB(X) and VB(X,,,)
are equivalent.

A similar situation arises if X is a scheme of finite type over R. Let X (R) denote
the closed points of X with residue field R; it too is a locally compact space. We
consider X (R) as a ringed space, using R-valued functions as in Example 5.1.1.
There is a morphism of ringed spaces 7: X(R) — X, and the functor 7* sends
VB(X) to VBr(X(R)). That is, every vector bundle F over X has an associated
real vector bundle 7*F over X (R); in particular, every vector bundle F over X has
Stiefel-Whitney classes w;(F) = w;(7*F) € H'(X(R); Z/2).

PATCHING AND OPERATIONS 5.3. Just as we built up projective modules by
patching in 2.5, we can obtain a locally free sheaf F by patching (or glueing)
locally free sheaves F; of Opy,-modules via isomorphisms g;; between F;|U; N U;
and F;|U; N Uj, as long as g;; = 1 and g;;9,1 = g for all ¢, 7, k.

The patching process allows us to take any natural operation on free modules
and extend it to locally free modules. For example, if Ox is commutative we can
construct tensor products F ® G, Hom-modules Hom(F,G), dual modules F and
exterior powers A'F using P ®g Q, Homg(P,Q), P and A'P. If F and G are
vector bundles, then so are F ® G, Hom(F,G), F and A'F. All of the natural
isomorphisms such as F ® G = Hom(F,G) hold for locally free modules, because a
sheaf map is an isomorphism if it is locally an isomorphism.

The Picard group and determinant bundles

If (X, Ox) is a commutative ringed space, the set Pic(X) of isomorphism classes
of line bundles forms a group, called the Picard group of X. To see this, we modify
the proof in §3: the dual £ of a line bundle £ is again a line bundle and L& L = Ox
because by Lemma 3.1 this is true locally. Note that if X is Spec(R), we recover
the definition of §3: Pic(Spec(R)) = Pic(R).

If F is locally free of rank n, then det(F) = A™(F) is a line bundle. Operating
componentwise as in §3, every locally free Ox-module F has an associated deter-
minant line bundle det(F). The natural map det(F) ® det(G) — det(F & G) is an
isomorphism because this is true locally by the Sum Formula in §3 (see Ex. 5.4 for
a generalization). Thus det is a useful invariant of a locally free Ox-module. We
will discuss Pic(X) in terms of divisors at the end of this section.

Projective schemes

If X is a projective variety, maps between vector bundles are most easily described
using graded modules. Following [Hart, I1.2]] this trick works more generally if X is
Proj(S) for a commutative graded ring S = So®S1&- - -. By definition, the scheme
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Proj(S) is the union of the affine open sets Dy (f) = Spec S(y), where f € S, (n > 1)
and S(s is the degree 0 subring of the Z-graded ring S[%] To cover Proj(95), it
suffices to use D, (f) for a family of f’s generating the ideal S = S1® Sy @ -+ of
S. For example, projective n-space over R is Py = Proj(R[Xy, ..., X,]); it is covered
by the D (X;) and if z; = X;/X; then D, (X;) = Spec(R[z1, ..., Ty]).

If M = ®;czM; is a graded S-module, there is an associated O x-module M on
X = Proj(S). The restriction of M to D, (f) is the sheaf associated to My, the
S(y-module which constitutes the degree 0 submodule of M [%], more details of

the construction of M are given in [Hart, I1.5.11]. Clearly S = Ox. The functor
M — M is exact, and has the property that M = 0 whenever M; = 0 for large i.

EXAMPLE 5.3.1 (TwisTING LINE BUNDLES). The most important example of
this construction is when M is S(n), the module S regraded so that the degree
i part is S, the associated sheaf S(n) is written as Ox(n). If f € S; then
S(n)s) = S(y), so if S is generated by Si as an Sp-algebra then Ox(n) is a line
bundle on X = Proj(S); it is called the n'" twisting line bundle. If F is any
Ox-module, we write F(n) for F ® Ox(n), and call it “F twisted n times.”

We will usually assume that S is generated by S; as an Sp-algebra, so that the
Ox(n) are line bundles. This hypothesis ensures that every quasicoherent Ox-
module has the form M for some M ([Hart, I1.5.15]). It also ensures that the
canonical maps M ®o, N — (M ®g N) are isomorphisms, so if F = M then F(n)
is the O x-module associated to M (n) = M ®g.S(n). Since S(m)®S(n) = S(m+n)
we have the formula

Ox(m) & Ox(n) = Ox(m —l—n).

Thus there is a homomorphism from Z to Pic(X) sending n to Ox(n). Operating
componentwise, the same formula yields a homomorphism [X,Z] — Pic(X).

Here is another application of twisting line bundles. An element x € M,, gives
rise to a graded map S(—n) — M and hence a sheaf map Ox(—n) — M. Taking
the direct sum over a generating set for M, we see that for every quasicoherent
Ox-module F there is a surjection from a locally free module $Ox (—n;) onto F.
In contrast, there is a surjection from a free Ox-module onto F if and only if F
can be generated by global sections, which is not always the case.

If P is a graded finitely generated projective S-module, the @ x-module P is a
vector bundle over Proj(S). To see this, suppose the generators of P lie in degrees
ni,...,ny and set F = S(—nq1) @ --- @ S(—n,). The kernel @ of the surjection
F — P is a graded S-module, and that the projective lifting property implies that
P®Q = F. Hence P®Q is the direct sum F of the line bundles O x(—n;), proving
that P is a vector bundle.

EXAMPLE 5.4 (NO VECTOR BUNDLES ARE PROJECTIVE). Consider the projec-
tive line Py = Proj(S), S = R[z,y]. Associated to the “Koszul” exact sequence of
graded S-modules

0582 snes-1)“Ys R0 (5.4.1)
is the short exact sequence of vector bundles over Pp:

0— Op1(—2) = Op1(—1) ® Op1(—1) = Op1 — 0. (5.4.2)
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The sequence (5.4.2) cannot split, because there are no nonzero maps from Op: to
Op1(—1) (see Ex. 5.2). This shows that the projective lifting property of §2 fails for
the free module Op1. In fact, the projective lifting property fails for every vector
bundle over ]P’}%; the category of Opi-modules has no “projective objects.” This
failure is the single biggest difference between the study of projective modules over
rings and vector bundles over schemes.

The strict analogue of the Cancellation Theorem 2.3 does not hold for projective
schemes. To see this, we cite the following result from [Atiy56]. A vector bundle is
called indecomposable if it cannot be written as the sum of two proper sub-bundles.
For example, every line bundle is indecomposable.

KRULL-SCHMIDT THEOREM 5.5 (ATIYAH). Let X be a projective scheme over
a field k. Then the Krull-Schmidt theorem holds for vector bundles over X. That
is, every vector bundle over X can be written uniquely (up to reordering) as a direct
sum of indecomposable vector bundles.

In particular, the direct sums of line bundles Ox(ny) ® -+ @ Ox(n,) are all
distinct whenever dim(X) # 0, because then all the Ox (n;) are distinct.

ExaMpPLE 5.5.1. If X is a smooth projective curve over C, then the associated
topological space X (C) is a Riemann surface. We saw in 4.11.2 that every topolog-
ical line bundle on X (C) is completely determined by its topological degree, and
that every topological vector bundle is completely determined by its rank and de-
gree. Now it is not hard to show that the twisting line bundle Ox(d) has degree
d. Hence every topological vector bundle £ of rank r and degree d is isomorphic
to the direct sum Ox (d) @ T"~1. Moreover, the topological degree of a line bundle
agrees with the usual algebraic degree one encounters in Algebraic Geometry.

The Krull-Schmidt Theorem shows that for each r > 2 and d € 7Z there are
infinitely many vector bundles over X with rank r and degree d. Indeed, there
are infinitely many ways to choose integers dy,...,d, so that > d; = d, and these
choices yield the vector bundles Ox (d1) @ - - - ® Ox(d,), which are all distinct with
rank r and degree d.

For X = PP}, the only indecomposable vector bundles are the line bundles O(n).
This is a theorem of A. Grothendieck, proven in [Groth57]. Using the Krull-Schmidt
Theorem, we obtain the following classification.

THEOREM 5.6 (CLASSIFICATION OF VECTOR BUNDLES OVER P}). Let k be an
algebraically closed field. Every vector bundle F over X = IE",lc s a direct sum of
the line bundles Ox(n) in a unique way. That is, F determines a finite decreasing
family of integers ny > - -+ > n,. such that

F = Ox(nl) b---D Ox(nr).

The classification over other spaces is much more complicated than it is for
P!. The following example is taken from [Atiy57]. Atiyah’s result holds over any
algebraically closed field k, but we shall state it for £ = C because we have not yet
introduced the notion on the degree of a line bundle. (Using the Riemann-Roch
theorem, we could define the degree of a line bundle £ over an elliptic curve as the
integer dim H°(X, L(n)) — n for n >> 0.)
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CLASSIFICATION OF VECTOR BUNDLES OVER ELLIPTIC CURVES 5.7. Let X be
a smooth elliptic curve over C. Every vector bundle £ over X has two integer
invariants: its rank, and its degree, which we saw in 5.5.1 is just the Chern class
c1(E) € H*(X(C);Z) = Z of the associated topological vector bundle over the
Riemann surface X (C) of genus 1, defined in 5.2.3. Let VBfffdd(X ) denote the set
of isomorphism classes of indecomposable vector bundles over X having rank r and
degree d. Then for all » > 1 and d € Z:

(1) All the vector bundles in the set VBfﬁf (X) yield the same topological vector
bundle E over X (C). This follows from Example 5.5.1.

(2) There is a natural identification of each VBfffdd(X ) with the set X(C); in
particular, there are uncountably many indecomposable vector bundles of
rank r and degree d.

(3) Tensoring with the twisting bundle Ox(d) induces a bijection between
VBL/(X) and VB! (X).

(4) The rth exterior power A” maps VBi’fj (X) onto VBfog (X). This map is a
bijection if and only if r and d are relatively prime. If (r,d) = h then for
each line bundle £ of degree d there are h? vector bundles £ with rank r
and determinant L.

CONSTRUCTION 5.8 (PROJECTIVE BUNDLES). If £ is an vector bundle over a
scheme X, we can form a projective space bundle P(E), which is a scheme equipped
with a map m:P(£) — X and a canonical line bundle O(1). To do this, we first
construct P(£) when X is affine, and then glue the resulting schemes together.

If M is any module over a commutative ring R, the i*"* symmetric product
Sym®M is the quotient of the i-fold tensor product M ® --- ® M by the permuta-
tion action of the symmetric group, identifying m; ® --- ® m; with mgq) ® -+ ®
Mmg(;) for every permutation o. The obvious concatenation product (Sym*M) ®@pr
(Sym? M) — Sym**J M makes Sym (M) = ®Sym*(M) into a graded commutative
R-algebra, called the symmetric algebra of M. As an example, note that if M = R"
then Sym(M) is the polynomial ring R[x1,...,2,]. This construction is natural in
R: if R — S is a ring homomorphism, then Sym(M) ®r S = Sym(M ®@g S).

If FE is a finitely generated projective R-module, let P(FE) denote the scheme
Proj(Sym(FE)). This scheme comes equipped with a map m:P(E) — Spec(R) and a
canonical line bundle O(1); the scheme P(F) with this data is called the projective
space bundle associated to E. If E = R™, then P(F) is just the projective space
IP)"}{_l. In general, the fact that F is locally free implies that Spec(R) is covered by
open sets D(s) = Spec(R[1]) on which E is free. If E[1] is free of rank n then the

restriction of P(E) to D(s) is
1 ool n—
IP’(E[;]) = PmJ(R[g][g;l, o n]) = P

Hence P(F) is locally just a projective space over Spec(R). The vector bundles
O(1) and 7*E on P(E) are the sheaves associated to the graded S-modules S(1)
and E®pg S, where S is Sym(FE). The concatenation E ® Sym’(E) — Sym'*i(E)
yields an exact sequence of graded modules,

0—>F - F®rS—S(1)— R(-1)—=0 (5.8.1)



I. PROJECTIVE MODULES AND VECTOR BUNDLES 47

hence a natural short exact sequence of P(E)-modules
0= & —71E— 0O(1) = 0. (5.8.2)

Since 7*E and O(1) are locally free, & is locally free and rank(&;) = rank(E) — 1.
For example, if £ = R? then P(E) is Py and & is O(—1) because (5.8.1) is the
sequence (5.4.1) tensored with S(1). That is, (5.8.2) is just:

0=-0(-1) =080 = O(+1) = 0.

Having constructed P(E) over affine schemes, we now suppose that £ is a vector
bundle over any scheme X. We can cover X by affine open sets U and construct
the projective bundles P(E|U) over each U. By naturality of the construction of
P(EJU), the restrictions of P(E|U) and P(E]V') to UNV may be identified with each
other. Thus we can glue the P(£|U) together to obtain a projective space bundle
P(&) over X; a patching process similar to that in 5.3 yields a canonical line bundle
O(1) over P(€).

By naturality of £ ®@g Sym(E) — Sym(E)(1), we have a natural short exact
sequence of vector bundles on P(€), which is locally the sequence (5.8.2):

0—=-& - 78— 0() = 0. (5.8.3)

Let p denote the projective space bundle P(£;) — P(€) and let £ denote the kernel
of p*€1 — O(1). Then (7wp)*E has a filtration & C p*& C (pmr)*E with filtration
quotients O(1) and p*O(1). This yields a projective space bundle P(&) — P(&;).
Aslong as &; has rank > 2 we can iterate this construction, forming a new projective
space bundle P(&;) and a vector bundle &1. If rank& = r, £._1 will be a line
bundle. We write F(€) for P(£,_2), and call it the flag bundle of £. We may
summarize the results of this construction as follows.

THEOREM 5.9 (SPLITTING PRINCIPLE). Given a vector bundle € of rank r on
a scheme X, there exists a morphism f:F(E) — X such that f*E has a filtration

[FE=E D2 D---D&E =0

by sub-vector bundles whose successive quotients £;/E; | are all line bundles.

Cohomological classification of vector bundles

The formation of vector bundles via the patching process in 5.3 may be cod-
ified into a classification of rank n vector bundles via a Cech cohomology set
H'(X,GL,(Ox)) which is associated to the sheaf of groups G = GL, (Ox). This
cohomology set is defined more generally for any sheaf of groups G as follows. A
Cech 1-cocycle for an open cover U = {U;} of X is a family of elements gij in
G(U; NU;) such that g;; = 1 and g9 = gir for all 4,5, k. Two 1-cocycles {g;;}
and {h;;} are said to be equivalent if there are f; € G(U;) such that h;; = figq;jfj_l.
The equivalence classes of 1-cocycles form the set H'(U,G). If V is a refinement
of a cover U, there is a set map from H'(U,G) to H*(V,G). The cohomology set
H'(X,G) is defined to be the direct limit of the H'(U,G) as U ranges over the
system of all open covers of X.

We saw in 5.3 that every rank n vector bundle arises from patching, using a
1-cocycle for G = GL,(Ox). It isn’t hard to see that equivalent cocycles give
isomorphic vector bundles. From this, we deduce the following result.



48 I. PROJECTIVE MODULES AND VECTOR BUNDLES

CLASSIFICATION THEOREM 5.10. For every ringed space X, the set VB, (X)

of isomorphism classes ofvvector bundles of rank n over X is in 1-1 correspondence
with the cohomology set HY (X, GL, (Ox)):

VB, (X) = HY(X,GL,(0x)).

When G is an abelian sheaf of groups, such as Oy = GL1(Ox), it is known that
the Cech set H'(X,G) agrees with the usual sheaf cohomology group H'(X,G) (see
Ex. I11.4.4 of [Hart]). In particular, each H'(X,G) is an abelian group. A little
work, detailed in [EGA, 0;7(5.6.3)]) establishes:

COROLLARY 5.10.1. For every locally ringed space X the isomorphism of The-
orem 5.10 is a group isomorphism:

Pic(X) = H'(X,0%).

As an application, suppose that X is the union of two open sets V] and V5. Write
U(X) for the group H°(X,0%) = O%(X) of global units on X. The cohomology
Mayer-Vietoris sequence translates to the following exact sequence.

15 UX) = UMW) x U(Va) = U(ViNVa) -2 (5.10.)
-2, Pic(X) — Pic(V4) x Pic(Va) — Pic(V; N Va).

To illustrate how this sequence works, consider the standard covering of IP’}Q by
Spec(R[t]) and Spec(R[t™1]). Their intersection is Spec(R[t,t7!]). Comparing
(5.10.2) with the sequences of Ex. 3.17 and Ex. 3.18 yields

THEOREM 5.11. For any commutative ring R,
U(PR) =U(R)=R* and Pic(Py) = Pic(R) x [Spec(R), Z).

As in 5.3.1, the continuous function n: Spec(R) — Z corresponds to the line bundle
O(n) on Py obtained by patching R[t] and R[t™] together via t" € R[t, t~1]*.

Here is an application of Corollary 5.10.1 to nonreduced schemes. Suppose that
7 is a sheaf of nilpotent ideals, and let X, denote the ringed space (X,Ox/Z).
Writing Z* for the sheaf GL1(Z) of Ex. 1.10, we have an exact sequence of sheaves
of abelian groups:

X X
1-T" - 05 = O, — L.

The resulting long exact cohomology sequence starts with global units:

U(X) = U(Xo) = H'(X,T*) = Pic(X) — Pic(Xo) — H*(X,2%)---. (5.11.1)

Thus Pic(X) — Pic(Xp) may not be an isomorphism, as it is in the affine case
(Lemma 3.9).

Invertible ideal sheaves

Suppose that X is an integral scheme, i.e., that each Ox (U) is an integral domain.
The function field k(X)) of X is the common quotient field of the integral domains
Ox(U). Following the discussion in §3, we use K to denote the constant sheaf
U +— k(X) and consider Ox-submodules of . Those that lie in some fOx we
call fractional; a fractional ideal Z is called invertible if ZJ = Ox for some J. As
in Proposition 3.5, invertible ideals are line bundles and Z ® J = Z.J. The set
Cart(X) of invertible ideals in K is therefore an abelian group.
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ProOPOSITION 5.12. If X is an integral scheme, there is an exact sequence

1 =>U(X) = k(X)) — Cart(X) — Pic(X) — 1. (5.12.1)

PROOF. The proof of 3.5 goes through to prove everything except that every line
bundle £ on X is isomorphic to an invertible ideal. On any affine open set U we
have (L& K)|U = K|U, a constant sheaf on U. This implies that L& = K, because
over an irreducible scheme like X any locally constant sheaf must be constant. Thus
the natural inclusion of £ in £ ® K expresses £ as an Ox-submodule of I, and the
rest of the proof of 3.5 goes through.

Here is another way to understand Cart(X). Let * denote the constant sheaf
of units of K; it contains the sheaf O%. Associated to the exact sequence

1505y 2K =K /0% =1

is a long exact cohomology sequence. Since X is irreducible and K* is constant,
we have HO(X,K*) = k(X)* and H'(X,K*) = 0. Since U(X) = H°(X,0%) we
get the exact sequence

1= U(X) = k(X)* = H°(X,K*/O%) — Pic(X) — 1. (5.12.2)

Motivated by this sequence, we use the term Cartier divisor for a global section of
the sheaf £*/O%. A Cartier divisor can be described by giving an open cover {U;}
of X and f; € k(X)* such that f;/f; is in O% (U; NUj) for each i and j.

LEMMA 5.13. Qwver every integral scheme X, there is a 1-1 correspondence be-
tween Cartier divisors on X and invertible ideal sheaves. Under this identification
the sequences (5.12.1) and (5.12.2) are the same.

ProoOF. If Z C K is an invertible ideal, there is a cover {U;} on which it is
trivial, i.e., Z|U; = Oyp,. Choosing f; € Z(U;) C k(X) generating Z|U; gives a
Cartier divisor. This gives a set map Cart(X) — H°(X,K*/0O%); it is easily seen
to be a group homomorphism compatible with the map from k(X)*, and with the
map to Pic(X) = H'(X,0%). This gives a map between the sequences (5.12.1)
and (5.12.2); the 5-lemma implies that Cart(X) = H°(X,K*/O%).

VARIATION 5.13.1. Let D be a Cartier divisor, represented by {(U;, f;)}. His-
torically, the invertible ideal sheaf associated to D is the subsheaf £(D) of K defined
by letting £(D)|U; be the submodule of k(X) generated by f; '. Since fi/f; is a
unit on U; N Uj, these patch to yield an invertible ideal. If 7 is invertible and
D is the Cartier divisor attached to Z by (5.13), then £(D) is Z=!. Under the
correspondence D <« L(D) the sequences (5.12.1) and (5.12.2) differ by a minus
sign.

For example if X = P}, let D be the Cartier divisor given by t" on Spec(R][t])
and 1 on Spec(R[t™1]). The correspondence of Lemma 5.13 sends D to O(n), but
L(D) = O(—n).
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Weil divisors

There is a notion of Weil divisor corresponding to that for rings (see 3.6). We say
that a scheme X is normal if all the local rings Ox , are normal domains (if X is
affine this is the definition of Ex. 3.14), and Krull if it is integral, separated and
has an affine cover {Spec(R;)} with the R; Krull domains. For example, if X is
noetherian, integral and separated, then X is Krull if and only if it is normal.

A prime divisor on X is a closed integral subscheme Y of codimension 1; this
is the analogue of a height 1 prime ideal. A Weil divisor is an element of the
free abelian group D(X) on the set of prime divisors of X; we call a Weil divisor
D =>"n;Y; effective if all the n; > 0.

Let k(X) be the function field of X. Every prime divisor Y yields a discrete
valuation on k(X), because the local ring Ox , at the generic point y of Y is a DVR.
Conversely, each discrete valuation on k(X) determines a unique prime divisor on
X, because X is separated [Hart, Ex. II(4.5)]. Having made these observations,
the discussion in §3 applies to yield group homomorphisms v: k(X)* — D(X) and
v:Cart(X) — D(X). We define the divisor class group CI(X) to be the quotient
of D(X) by the subgroup of all Weil divisors v(f), f € k(X)*. The proof of
Proposition 3.6 establishes the following result.

PROPOSITION 5.14. Let X be Krull. Then Pic(X) is a subgroup of the divisor
class group Cl1(X), and there is a commutative diagram with exzact rows:

1— UX) — k(X)* — Cart(X) — Pic(X) —1
d + Nnv N
1—- UX) - kX)* — DX) — Cl(X) —1

A scheme X is called regular (resp. locally factorial) if the local rings Ox , are
all regular local rings (resp. UFD’s). By 3.8, regular schemes are locally factorial.
Suppose that X is locally factorial and Krull. If Zy is the ideal of a prime divisor
Y and U = Spec(R) is an affine open subset of X, Zy|U is invertible by Corollary
3.8.1. Since v(Zy) =Y, this proves that v : Cart(X) — D(X) is onto. Inspecting
the diagram of Proposition 5.14, we have:

PROPOSITION 5.15. Let X be an integral, separated and locally factorial scheme.
Then
Cart(X) = D(X) and Pic(X) = Cl(X).

ExAMPLE 5.15.1. ([Hart, I1(6.4)]). If X is the projective space P} over a field
k, then Pic(P}) = Cl(P}) = Z. By Theorem 5.11, Pic(P") is generated by O(1).
The class group CI(P") is generated by the class of a hyperplane H, whose corre-
sponding ideal sheaf Zp is isomorphic to O(1). If Y is a hypersurface defined by a
homogeneous polynomial of degree d, we say deg(Y) =d; Y ~ dH in D(P").

The degree of a Weil divisor D = Y n;Y; is defined to be > n;deg(Y;); the
degree function D(P") — Z induces the isomorphism CI(P") = Z. We remark that
when k = C the degree of a Weil divisor agrees with the topological degree of the
associated line bundle in H?(CP";Z) = Z, defined by the first Chern class as in
Example 4.11.2.



I. PROJECTIVE MODULES AND VECTOR BUNDLES 51

BrowinGg Up 5.15.2. Let X be a smooth variety over an algebraically closed
field, and let Y be a smooth subvariety of codimension > 2. If the ideal sheaf of
Y is Z, then Z/I? is a vector bundle on Y. The blowmg up of X along Y is a
nonsingular variety X, containing a prime divisor Y = P(Z/I?), together with a
map 7: X — X such that 7=1(Y) =Y and X — Y = X — Y (see [Hart, IL.7]). For
example, the blowing up of a smooth surface X at a point z is a smooth surface
X, and the smooth curve Y 2 P! is called the exceptional divisor.

The maps 7*: Pic(X) — Pic(X) and Z — Pic(X) sending n to n[Y] give rise to
an isomorphism (see [Hart, Ex. I1.8.5 or V.3.2]):

Pic(X) = Pic(X) @ Z.

EXAMPLE 5.15.3. Consider the rational ruled surface S in P x P?, defined by
X;Y; = X;Y; (i, = 1,2), and the smooth quadric surface @ in P?, defined by
xy = zw. Now S is obtained by blowing up ]P’i at a point [Hart, V.2.11.5], while
( is obtained from IP’% by first blowing up two points, and then blowing down the
line between them [Hart, Ex. V.4.1]. Thus Pic(S) = CI(S) and Pic(Q) = Cl(Q)
are both isomorphic to Z x Z. For both surfaces, divisors are classified by a pair
(a,b) of integers (see [Hart, 11.6.6.1]).

EXAMPLE 5.16. Let X be a smooth projective curve over an algebraically closed
field k. In this case a Weil divisor is a formal sum of closed points on X: D =
> n;x;. The degree of D is defined to be > mn;; a point has degree 1. Since the
divisor of a function has degree 0 [Hart, II(6.4)], the degree induces a surjective
homomorphism Pic(X) — Z. Writing Pic’(X) for the kernel, the choice of a
basepoint co € X determines a splitting Pic(X) 2 Z@®Pic’(X). The group Pic’(X)
is divisible and has the same cardinality as k; its torsion subgroup is (Q/Z)% if
char(k) = 0. If k is perfect of characteristic p > 0, the torsion subgroup lies between
(Q/Z[%])QQ and (Q/Z)?9. These facts are established in [MmAB, II].

If X has genus 0, then X = P* and Pic’(X) = 0. If X has genus 1, the map
T+  — 0o gives a canonical bijection X (k) = Pic?(X). In general, if X has genus
g there is an abelian variety J(X) of dimension g, called the Jacobian variety of X
[Hart, IV.4.10] such that the closed points of J(X) are in 1-1 correspondence with
the elements of Pic’(X). The Jacobian variety is a generalization of the Picard
variety of Exercise 5.9 below.

EXAMPLE 5.17. Let X be a smooth projective curve over a finite field FF = F,.
As observed in [Hart, 4.10.4], the elements of the kernel Pic’(X) of the degree map
Pic(X) — Z are in 1-1 correspondence with the set J(X)(F) of closed points of the
Jacobian variety J(X) whose coordinates belong to F. Since J(X) is contained in
some projective space, the set J(X)(F) is finite. Thus Pic(X) is the direct sum of
Z and a finite group. We may assume that H°(X,Ox) = F, so that U(X) = F*.

Now let S be any nonempty set of closed points of X and consider the affine
curve X — S; the coordinate ring R of X — S is called the ring of S-integers in the
function field F(X). Comparing the sequences of Proposition 5.14 for X and X — S
yields the exact sequence

(5.17.1) 1 - F* = R — Z° — Pic(X) — Pic(R) — 0.
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(See Ex. 5.12.) The image of the map Z° — Pic(X) is the subgroup generated by
the lines bundles associated to the points of S via the identification of Weil divisors
with Cartier divisors given by Proposition 5.15 (compare with Ex. 3.8.)

When S = {s} is a single point, the map Z — Pic(X) deg, 7. is multiplication
by the degree of the field extension [F(s) : F|, so Pic(R) is a finite group: it is an
extension of Pic’(X) by a cyclic group of order [k(s) : F]. (See Ex.5.12(b).) From
the exact sequence, we see that R* = F*. By induction on |S], it follows easily
from (5.17.1) that Pic(R) is finite and R* = F* @ Z51-1,

HisTORICAL NOTE 5.18. The term “Picard group” (of a scheme or commutative
ring), and the notation Pic(X), was introduced by Grothendieck around 1960. Of
course the construction itself was familiar to the topologists of the early 1950’s,
and the connection to invertible ideals was clear from to framework of Serre’s 1954
paper “Faisceaux algébriques cohérents,” [S-FAC], but had not been given a name.

Grothendieck’s choice of terminology followed André Weil’s usage of the term
Picard variety in his 1950 paper Variétés Abéliennes. Weil says that, “accidentally
enough,” his choice coincided with the introduction by Castelnuovo in 1905 of the
“Picard variety associated with continuous systems of curves” on a surface X (Sugli
integrali semplici appartenenti ad una superficie irregolare, Rend. Accad. dei Lincei,
vol XIV, 1905). In turn, Castelnuovo named it in honor of Picard’s paper Sur la
théorie des groupes et des surfaces algébriques (Rend. Circolo Mat. Palermo, IX,
1895), which studied the number of integrals of the first kind attached to algebraic
surfaces. (I am grateful to Serre and Pedrini for the historical information.)

EXERCISES

5.1 Give an example of a ringed space (X, Ox) such that the rank of Ox(X) is
well-defined, but such that the rank of Ox(U) is not well-defined for any proper
open U C X.

5.2 Show that the global sections of the vector bundle Hom(€, F) are in 1-1 cor-
respondence with vector bundle maps & — F. Conclude that there is a non-zero
map O(m) — O(n) over P} only if m < n.

5.3 Projection Formula. If f:(X,0x) — (Y, Oy) is a morphism of ringed spaces,
F is an Ox-module and £ is a locally free Oy-module of finite rank, show that
there is a natural isomorphism f.(F ®o, f*E) = fu(F) Qo £.

5.4 Let 0 > & - F — G — 0 be an exact sequence of locally free sheaves. Show
that each A" F has a finite filtration

ANMF=F'D>F'>...>F" =0

with successive quotients F?/Ft! =~ (AE) @ (A"7'G). In particular, show that
det(F) = det(€) ® det(G).

5.5 Let S be a graded ring generated by S; and set X = Proj(S). Show that
Ox(n) = Ox(—n) and Hom(Ox(m),Ox(n)) = Ox(n —m).
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5.6 Serre’s “Theorem A.” Suppose that X is Proj(S) for a graded ring S which is
finitely generated as an Sp-algebra by S;. Recall from 5.3.1 (or [Hart, I11.5.15]) that
every quasicoherent Ox-module F is isomorphic to M for some graded S-module
M. In fact, we can take M, to be H°(X, F(n)).
(a) If M is generated by My and the M, with i < 0, show that the sheaf M is
generated by global sections. Hint: consider My & My & - - -.
(b) By (a), Ox(n) is generated by global sections if n > 0. Is the converse true?
(¢) If M is a finitely generated S-module, show that M (n) is generated by global
sections for all large n (i.e., for all n > ng for some ny).
(d) If F is a coherent Ox-module, show that F(n) is generated by global sections
for all large n. This result is known as Serre’s “Theorem A,” and it implies
that Ox (1) is an ample line bundle in the sense of [EGA, I1(4.5.5)].

5.7 Let X be a d-dimensional quasi-projective variety, i.e., a locally closed integral
subscheme of some P}, where k is an algebraically closed field.

(a) Suppose that & is a vector bundle generated by global sections. If rank(&) > d,
Bertini’s Theorem implies that £ has a global section s such that s, ¢ m,&,
for each © € X. Establish the analogue of the Serre Cancellation Theorem
2.3(a), that there is a short exact sequence of vector bundles

05 0x SE—F—N0.

(b) Now suppose that X is a curve. Show that every vector bundle £ is a successive
extension of invertible sheaves in the sense that there is a filtration of &£

E=ED&E D---DE&.=0.

by sub-bundles such that each &;/&; 41 is a line bundle. Hint: by Ex. 5.6(d),
E(n) is generated by global sections for large n.

5.8 Complex analytic spaces. Recall from Example 5.1.4 that a complexr analytic
space is a ringed space (X,Ox) which is locally isomorphic to a basic analytic
subset of C".
(a) Use Example 5.2.3 to show that every analytic vector bundle on C™ is free,
i.e., OF, for some r. What about C" — 07
(b) Let X be the complex affine node defined by the equation y? = 23 — 22. We
saw in 3.10.2 that Pic(X) = C*. Use (4.9.1) to show that Pic(X(C)g,) = 0.
(c) (Serre) Let X be the scheme Spec(C|x, y]) — {0}, 0 being the origin. Using the
affine cover of X by D(z) and D(y), show that Pic(X) = 0 but Pic(X,,,) # 0.

5.9 Picard Variety. Let X be a scheme over C and X,,, = X(C),, the associated
complex analytic space of Example 5.1.4. There is an exact sequence of sheaves of
abelian groups on the topological space X (C) underlying X,,:

274

0—+7Z = Ox ﬂogm—m, (%)

where Z is the constant sheaf on X (C).
(a) Show that the Chern class c¢1: Pic(Xgp) — H2(X(C)top; Z) of Example 5.2.3

is naturally isomorphic to the composite map

Pic(Xan) & H (Xan, 0%, ) = HY(X(C)iop; 0%, ) 5 HA(X(C)top; Z)

n
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coming from Corollary 5.10.1, the map X,,, = X (C)y,p of Example 5.1.4, and
the boundary map of (k).
Now suppose that X is projective. The image of Pic(X) 2 Pic(X,,) in H*(X(C);Z)
is called the Néron-Severi group NS(X) and the kernel of Pic(X) — NS(X)
is written as Pic’(X). Since H?(X(C);Z) is a finitely generated abelian group,
so is NS(X). It turns out that H'(X(C),0x,, ) = C" for some n, and that
HY(X(C);Z) =2 7Z*" is a lattice in H' (X, Ox,, ).
(b) Show that Pic’(X) is isomorphic to H'(X,Ox)/H"(X(C);Z). Thus Pic’(X)
is a complex analytic torus; in fact it is the set of closed points of an abelian
variety, called the Picard variety of X.

5.10 If F and F' are finitely generated projective R-modules, show that their pro-
jective bundles P(E) and P(F') are isomorphic as schemes over R if and only if
E = F ®g L for some line bundle L on R.

5.11 Let X be a Krull scheme and Z an irreducible closed subset with complement
U. Define a map p: Cl(X) — CI(U) of class groups by sending the Weil divisor
> n;Y; to Y ni(Y; NU), ignoring terms n;Y; for which Y; N U = ¢. (Cf. Ex. 3.8.)
(a) If Z has codimension > 2, show that p: CI(X) = CI(U).
(b) If Z has codimension 1, show that there is an exact sequence

5.12 Let X be a smooth curve over a field k, and let S be a finite nonempty set of
closed points in X. By Riemann-Roch, the complement U = X — § is affine; set
R = H°U,O) so that U = Spec(R).

(a) Using Propositions 5.12 and 5.14, show that there is an exact sequence

1 — H(X,0%) = R* = Z° — Pic(X) — Pic(R) — 0.

(b) If X is a smooth projective curve over k and s € X is a closed point, show

that the map Z L, Pic(X) = CI(X) in (a) is injective. (It is the map of
Ex.5.11(b).) If k(x) = k, conclude that Pic(X) = Pic(U) x Z. What happens
if k(x) # k7



