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Introduction

Let k be a field and ℓ a prime number different from char(k). The étale cohomol-
ogy ring ⊕Hn

ét(k, µ
⊗n
ℓ ) is the Galois cohomology of the group µℓ of ℓ

th roots of
unity and its twists µ⊗n

ℓ . In degree 0 it is H0
ét(k,Z/ℓ)

∼= Z/ℓ, and in degree 1 it

is given by the Kummer isomorphism k×/ℓ
∼−→ H1

ét(k, µℓ). If k contains µℓ then
H2

ét(k, µ
⊗2
ℓ ) ∼= µℓ⊗Brℓ(k); Tate realized that in the general case we should have

H2
ét(k, µ

⊗2
ℓ ) ∼= K2(k)/ℓ, and this was proven by Suslin and Merkurjev [MS82];

this identification evolved from the classical ℓth power norm residue symbol of
Hilbert’s 9th Problem. The higher cohomology groups Hn

ét(k, µ
⊗n
ℓ ) have seemed

difficult to describe in general.
The Kummer isomorphism induces a ring homomorphism from ∧∗(k×), the

exterior algebra of the abelian group k×, to the étale cohomology ring, and Tate
observed that the cup product [a]∪ [1− a] vanishes in H2

ét(k, µ
⊗2
ℓ ). Inspired by

this, Milnor defined a graded ring KM
∗ (k), called the Milnor K-theory of k, as

the quotient of ∧∗(k×) by the ideal generated by elements of the form {a, 1−a},
a ∈ k − {0, 1}. By construction, there is a canonical ring homomorphism

KM
∗ (k)/ℓ −→ ⊕n Hn

ét(k, µ
⊗n
ℓ ),

called the norm residue homomorphism to reflect its origins in Hilbert’s Prob-
lem. The main theorem of this book is that the norm residue homomorphism
is an isomorphism:

Theorem (Theorem A). For all fields k containing 1/ℓ, and all n, the norm
residue is an isomorphism.

As a consequence, we obtain a presentation of the étale cohomology ring in
terms of generators (the [a] in H1

ét) and relations (the {a, 1− a} in H2
ét).

The proof of Theorem A was completed by Voevodsky in the 2010–11 papers
[Voe10c] and [Voe11], but depends on the work of many other people. See the
Historical notes at the end of Chapter 1 for details.

For any smooth variety X over k, we can form the bigraded motivic coho-
mology ring H∗,∗(X,Z/ℓ) and there is a ring homomorphism which in bidegree
(p, q) is Hp,q(X,Z/ℓ) → Hp

ét(X,µ
⊗q
ℓ ). When X = Spec(k), the diagonal entry

Hp,p(k,Z) is isomorphic to KM
p (k), and Hp,p(k,Z/ℓ) ∼= KM

p (k)/ℓ. Theorem A
is a special case of the following more sweeping result, which we also prove.

1



Theorem (Theorem B). Let X be a smooth variety over a field containing 1/ℓ.
Then the map Hp,q(X,Z/ℓ)→ Hp

ét(X,µ
⊗q
ℓ ) is an isomorphism for all p ≤ q.

Theorem B has a homological mirror in the derived category of Nis-
nevich sheaves. To formulate it, let π∗ denote the direct image functor
from étale sheaves to Nisnevich sheaves on the category Sm/k of smooth
schemes over k, and recall that Hn

ét(X,µ
⊗q
ℓ ) is the Nisnevich hypercohomology

Hn
nis(X,Rπ∗µ

⊗q
ℓ ). The map Hp,q(X,Z/ℓ)→Hp

ét(X,µ
⊗q
ℓ ) is just the cohomol-

ogy on X of a natural map Z/ℓ(q)→Rπ∗µ
⊗q
ℓ in the derived category. It factors

through the good truncation at q of Rπ∗µ
⊗q
ℓ , and we have

Theorem (Theorem C). For all q, the map Z/ℓ(q) → τ≤qRπ∗µ
⊗q
ℓ is an iso-

morphism in the derived category of Nisnevich sheaves on the category of smooth
simplicial schemes over k.

As noted above, it is easy to see that Theorem C implies Theorem B, which
in turn implies Theorem A. We will see in Chapter 2 that all three theorems
are equivalent. This equivalence is due to Suslin and Voevodsky [SV00a].

The history of these theorems is quite interesting. In the late 1960’s, Milnor
and Tate verified that the norm residue homomorphism is always an isomor-
phism for local and global fields, fields for which the only issue for n > 2 is
torsion for ℓ = 2. Inspired by these calculations, Milnor stated in [Mil70] that

Bass and Tate also consider the more general [norm residue] homo-
morphism [for ℓ odd] ... but we will only be interested in the case
ℓ = 2. I do not know of any examples for which the [norm residue]
homomorphism fails to be bijective.”

In the 1982 papers [Me81, MS82], Merkurjev and Suslin showed that the norm
residue homomorphism is an isomorphism for n = 2 and all ℓ. By the mid-1990s,
Milnor’s statement for ℓ = 2 had became known as the Milnor conjecture.

The parallel conjecture when ℓ is odd, dubbed the Bloch–Kato conjecture in
[SV00a], was first clearly formulated by Kazuya Kato in [Kat80, p.608]:

Concerning this homomorphism, the experts perhaps have the fol-
lowing Conjecture in mind (cf. [Mil70, §6]).
Conjecture. The [norm residue] homomorphism is bijective for any
field k and any integer ℓ which is invertible in k.

The version stated by Spencer Bloch was: “I wonder whether the whole coho-
mology algebra ⊕Hr(F, µ⊗r

ℓν ) might not be generated by H1?” [Blo80, p. 5.12]

We now turn to the rise of motivic cohomology. In the early 1980’s, S.
Lichtenbaum [Lic84, §3] and A.Beilinson [Bĕı87, 5.10.D] formulated a set of
conjectures describing the (then-hypothetical) complexes of sheaves Z(n) and
properties they should enjoy. These complexes were later constructed by Vo-
evodsky and others, and their cohomology is the motivic cohomology developed

June 27, 2018 - Page 2 of 281



in [Voe00b]. Among these properties is the assertion BL(n) that Theorems B and
C hold for n = q; this has often been referred to as the Beilinson–Lichtenbaum
conjecture. Another is the assertion H90(n) that Hn+1

ét (k,Z(n)) should vanish;
In 1994, Suslin and Voevodsky showed that the Bloch–Kato conjecture was

equivalent to the Beilinson–Lichtenbaum conjecture, and to H90(n). Their proof
required resolution of singularities over k, a restriction that was later removed
in [GL01] and [Sus03]. Our Chapter 2 provides a shorter proof of these equiva-
lences. This shows that Theorems A, B and C are equivalent.

For ℓ = 2, the proof of Theorems A, B and C was announced by Voevodsky
in 1996, and published in the 2003 paper [Voe03a].

A proof of the Bloch–Kato conjecture (Theorem A) was announced by Vo-
evodsky in 1998, assuming the existence of what we now call a Rost variety
(see Definition 1.24 below). Rost produced such a variety that same year, in
[Ros98a], but the complete proof that Rost’s variety had the properties required
by Voevodsky did not appear until much later ([SJ06], [Ros06] and [HW09]).
The proof of Theorem A appeared in the 2003 preprint [Voe03b] — modulo
the assumption that Rost varieties exist and two other assertions. One of these
assertions, concerning the motivic cohomology operations on H∗,∗(X,Z/ℓ), was
incorrect; happily, it was found to be avoidable [Wei09]. The full proof of Theo-
rem A was published by Voevodsky in the 2010–11 papers [Voe10c] and [Voe11].

In this book we shall prove Theorems A, B and C for all ℓ, following the
lines of [Voe11]. We will also establish the appropriate replacement assertions
concerning the motivic cohomology groups H∗,∗(X,Z).

Prerequisite material

Our proof will use the machinery of motivic cohomology. In order to keep the
book’s length reasonable (and preserve our sanity), we need to assume a certain
amount of material. Primarily, this means:

1. the material on the pointed motivic homotopy category of spaces, due to
Morel–Voevodsky and found in [MV99]. See Sections 12.7–12.9 below.

2. the construction of reduced power operations P i in [Voe03c]. See Section
13.3.

3. the theory of presheaves with transfers, as presented in [MVW]. (The
original source for this material is Voevodsky’s paper [Voe00b].)

4. the main facts about algebraic cobordism, due to Levine and Morel and
found in the book [LM07]. We have summarized the facts we need about
algebraic cobordism, especially the degree formulas, in Chapter 8.

As should be clear from this list, the material we assume does not arise in a
vacuum. These topics imply for example that the reader is at least comfortable
with the basic notions of Algebraic Geometry, including étale cohomology, and
basic notions in homotopy theory, including model categories (for Chapter 12).
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Chapter 1

An overview of the proof

The purpose of this chapter is to give the main steps in the proof of Theorems A
and B (stated on page 2) that for each n the norm residue homomorphism

KM
n (k)/ℓ −→ Hn

ét(k, µ
⊗n
ℓ ), (1.1)

is an isomorphism, and Hp,n(X,µ⊗n
ℓ ) ∼= Hp

ét(X,µ
⊗n
ℓ ) for p ≤ n. We proceed by

induction on n. It turns out that in order to prove Theorems A, B and C, we
must simultaneously prove several equivalent (but more technical) assertions,
H90(n) and BL(n), which are defined in 1.5 and 1.28.

1.1 First reductions

We fix a prime ℓ and a positive integer n. In this section we reduce Theorems A
and B to H90(n), an assertion (defined in 1.5) about the étale cohomology of
the ℓ-local motivic complex Z(ℓ)(n). We begin with a series of reductions, the
first of which is a special case of the transfer argument.

The transfer argument 1.2. Let F be a covariant functor on the category of
fields which are algebraic over some base field, taking values in Z/ℓ-modules
and commuting with direct limits. We suppose that F is also contravariant for
finite field extensions k′/k, and that the evident composite from F (k) to itself is
multiplication by [k′ :k]. The contravariant maps are commonly called transfer
maps. If [k′ : k] is prime to ℓ, the transfer hypothesis implies that F (k) injects as
a summand of F (k′). More generally, F (k) injects into F (k′) for any algebraic
extension k′ consisting of elements whose degree is prime to ℓ. Thus to prove
that F (k) = 0 it suffices to show that F (k′) = 0 for the field k′.

Both k 7→ KM
n (k)/ℓ and k 7→ Hn

ét(k, µ
⊗n
ℓ ) satisfy these hypotheses, and so do

the kernel and cokernel of the norm residue map (1.1), because the norm residue
commutes with these transfers. Thus if the norm residue is an isomorphism for
k′ it is an isomorphism for k, by the transfer argument applied to the kernel
and cokernel of (1.1). For this reason, we may assume that k contains all ℓth

roots of unity, that k is a perfect field, and even that k has no field extensions
of degree prime to ℓ.
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Overview

The second reduction allows us to assume that we are working in character-
istic zero, where for example the resolution of singularities is available.

Lemma 1.3. If (1.1) is an isomorphism for all fields of characteristic 0, then
it is an isomorphism for all fields of characteristic 6= ℓ.

Proof. 1 Let R be the ring of Witt vectors over k and K its field of fractions.
By the standard transfer argument 1.2, we may assume that k is a perfect field,
so that R is a discrete valuation ring. In this case, the specialization maps “sp”
are defined and compatible with the norm residue maps in the sense that

KM
n (K)/ℓ > Hn

ét(K,µ
⊗n
ℓ )

KM
n (k)/ℓ

sp
∨

> Hn
ét(k, µ

⊗n
ℓ )

sp
∨

commutes (see [Wei13, III.7.3]). Both specialization maps are known to be split
surjections. Since char(K) = 0, the result follows.

Our third reduction translates the problem into the language of motivic
cohomology, as the condition H90(n) of Definition 1.5.

The (integral) motivic cohomology of a smooth variety X is written as
Hn,i(X,Z) or Hn(X,Z(i)); it is defined to be the Zariski hypercohomology
on X of Z(i); see [MVW, 3.4]. Here Z(i) is a cochain complex of étale sheaves
which is constructed for example in [MVW, 3.1]. By definition, Z(i) = 0 for
i < 0 and Z(0) = Z, so Hn(X,Z(i)) = 0 for i < 0 and even i = 0 when n 6= 0.
There are pairings Z(i)⊗ Z(j)→ Z(i+ j) making H∗(X,Z(∗)) into a bigraded
ring. When k is a field, we often write H∗(k,Z(∗)) for H∗(Spec k,Z(∗)).

There is a quasi-isomorphism Z(1)
≃−→ O×[−1]; see [MVW, 4.1]. This yields

an isomorphism H1(X,Z(1)) ∼= O×
X . When X = Spec(k) for a field k, the

Steinberg relation holds in H2(X,Z(2)): if a 6= 0, 1 then a ∪ (1 − a) = 0.
The presentation of KM

∗ (k) implies that we have a morphism of graded rings
KM

∗ (k) → H∗(k,Z(∗)) sending {a1, ..., an} to a1 ∪ · · · ∪ an. It is a theorem
of Totaro and Nesterenko–Suslin that KM

n (k) ∼= Hn(Spec k,Z(n)) for each n;
proofs are given in [NS89], [Tot92] and [MVW, Thm. 5.1].

We can of course vary the coefficients in this construction. Given any
abelian group A, we may consider Hn(X,A(i)), where A(i) denotes A ⊗ Z(i);
H∗(X,A(∗)) is a ring if A is. Because Zariski cohomology commutes with

direct limits, we have Hn(X,Z(i)) ⊗ Q
≃−→ Hn(X,Q(i)) and Hn(X,Z(i)) ⊗

Z(ℓ)
≃−→ Hn(X,Z(ℓ)(i)). Because Hn+1

zar (Spec k,Z(n)) = 0 [MVW, 3.6], this
implies that we have

KM
n (k)/ℓ ∼= Hn

zar(Spec k,Z/ℓ(n)). (1.4)

1Taken from [Voe96, 5.2]
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Since each A(i) is a complex of étale sheaves, we can also speak about
the étale motivic cohomology H∗

ét(X,A(i)). There is a motivic-to-étale map
H∗(X,A(i)) → H∗

ét(X,A(i)); it is just the change-of-topology map H∗
zar →

H∗
ét. For A = Z/ℓ we have isomorphisms Hn

ét(X,Z/ℓ(i))
∼= Hn

ét(X,µ
⊗i
ℓ ) for all

n, i ≥ 0; see [MVW, 10.2]. We also have Hn
ét(k,Z(i))(ℓ) = Hn

ét(k,Z(ℓ)(i)) and
Hn

ét(k,Z(i))⊗Q = Hn
ét(k,Q(i)).

The condition H90(n)

Definition 1.5. Fix n and ℓ. We say that H90(n) holds if Hn+1
ét (k,Z(ℓ)(n)) = 0

for any field k with 1/ℓ ∈ k. Note that H90(0) holds as H1
ét(k,Z) = 0, and that

H90(n) implicitly depends on the prime ℓ.

The name ‘H90(n)’ comes from the observation that H90(1) is equivalent to
the localization at ℓ of the classical Hilbert’s Theorem 90:

H2
ét(k,Z(1))

∼= H2
ét(k,Gm[−1]) = H1

ét(k,Gm) = 0.

We now connect H90(n) to KM
n (k).

Lemma 1.6. For all n > i, Hn
ét(k,Z(i)) is a torsion group, and its ℓ-

torsion subgroup is Hn
ét(k,Z(ℓ)(i)). When 1/ℓ ∈ k and n ≥ i + 1 we have

Hn+1
ét (k,Z(ℓ)(i)) ∼= Hn

ét(k,Q/Z(ℓ)(i)), while there is an exact sequence

KM
n (k)⊗Q/Z(ℓ) → Hn

ét(k,Q/Z(ℓ)(n))→ Hn+1
ét (k,Z(ℓ)(n))→ 0.

Proof. We have Hn
ét(k,Q(i)) ∼= Hn(k,Q(i)) for all n by [MVW, 14.23]. If n > i,

Hn(k,Q(i)) vanishes (by [MVW, 3.6]) and hence Hn
ét(k,Z(i)) is a torsion group.

Its ℓ-torsion subgroup is Hn
ét(k,Z(i))(ℓ) = Hn

ét(k,Z(ℓ)(i)). Set D(i) = Q/Z(ℓ)(i).
The étale cohomology sequence for the exact sequence 0→ Z(ℓ)(i)→ Q(i)→
D(i)→ 0 yields the second assertion (for n ≥ i + 1), and (taking n = i) yields
the commutative diagram:

Hn(k,Z(ℓ)(n)) > Hn(k,Q(n)) > Hn(k,D(n)) > 0

Hn
ét(k,Z(ℓ)(n))

∨

> Hn
ét(k,Q(n))

∼=
∨

> Hn
ét(k,D(n))

∨ onto
> Hn+1

ét (k,Z(ℓ)(n)).

The bottom right map is onto because Hn+1
ét (k,Q(i)) = 0. Since Hn(k,D(n)) ∼=

KM
n (k)⊗Q/Z(ℓ), a diagram chase yields the exact sequence.

The example Br(k)(ℓ) = H2
ét(k,Q/Z(ℓ)(1)) ∼= H3

ét(k,Z(ℓ)(1)) shows that the
higher étale cohomology of Z(n) and Z(ℓ)(n) need not vanish.

Theorem 1.7. Fix n and ℓ. If KM
n (k)/ℓ

≃−→ Hn
ét(k, µ

⊗n
ℓ ) holds for every field

k containing 1/ℓ, then H90(n) holds.

Of course, the weaker characteristic 0 hypothesis suffices by Lemma 1.3.
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Proof. Recall that KM
n (k) ∼= Hn

zar(Spec k,Z(n)). The change of topologies map
Hn

zar → Hn
ét yields a commutative diagram:

KM
n (k)

ℓ
> KM

n (k) > KM
n (k)/ℓ > 0

Hn
ét(k,Z(n))

∨ ℓ
> Hn

ét(k,Z(n))
∨

> Hn
ét(k, µ

⊗n
ℓ )

Norm residue
∨

> Hn+1
ét (k,Z(n))

ℓ
>

The right vertical map is the Norm residue homomorphism, because the left
vertical maps are multiplicative, and H1

ét(k,Z(1)) = k×. If the norm residue
is a surjection, then Hn+1

ét (k,Z(n)) has no ℓ-torsion. But it is a torsion group,
and its ℓ-primary subgroup is Hn+1

ét (k,Z(ℓ)(n)) by Lemma 1.6. As this must be
zero for all k, H90(n) holds.

The converse of Theorem 1.7 is true, and will be proven in Chapter 2 as
Theorem 2.38 and Corollary 2.42. For reference, we state it here. Note that
parts a) and b) are the conclusions of Theorems A and B (stated on page 2).

Theorem 1.8. Fix n and ℓ. Suppose that H90(n) holds. If k is any field
containing 1/ℓ, then:
a) The norm residue KM

n (k)/ℓ→ Hn
ét(k, µ

⊗n
ℓ ) is an isomorphism;

b) For every smooth X over k and all p ≤ n, the motivic-to-étale map
Hp(X,Z/ℓ(n))→ Hp

ét(X,µ
⊗n
ℓ ) is an isomorphism.

1.2 The quick proof

With these reductions behind us, we can now present the proof that the norm
residue is an isomorphism. In order to keep the exposition short, we defer
definitions and proofs to later sections.

We will proceed by induction on n, assuming H90(n-1) holds. By Theorems
1.7 and 1.8, this is equivalent to assuming that KM

n−1(k)/ℓ
∼= Hn−1

ét (k, µ⊗n−1
ℓ )

for all fields k containing 1/ℓ.

Definition 1.9. We say that a field k containing 1/ℓ is ℓ-special if k has no
finite field extensions of degree prime to ℓ. This is equivalent to the assertion
that every finite extension is a composite of cyclic extensions of degree ℓ, and
hence that the absolute Galois group of k is a pro-ℓ-group.

If k is a field containing 1/ℓ, any maximal prime-to-ℓ algebraic extension is
ℓ-special. These extensions correspond to the Sylow ℓ-subgroups of the absolute
Galois group of k.

The following theorem first appeared as [Voe03a, 5.9]; it will be proven in
Section 3.1 below, as Theorem 3.11.
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Theorem 1.10. Suppose that H90(n-1) holds. If k is an ℓ-special field and
KM
n (k)/ℓ = 0, then Hn

ét(k, µ
⊗n
ℓ ) = 0 and hence Hn+1

ét (k,Z(ℓ)(n)) = 0.

The main part of this book is devoted to proving the following deep theorem.

Theorem 1.11. Suppose that H90(n-1) holds. Then for every field k of char-
acteristic 0 and every nonzero symbol a = {a1, . . . , an} in KM

n (k)/ℓ there is a
smooth projective variety Xa whose function field Ka = k(Xa) satisfies:

(a) a vanishes in KM
n (Ka)/ℓ; and

(b) the map Hn+1
ét (k,Z(ℓ)(n))→ Hn+1

ét (Ka,Z(ℓ)(n)) is an injection.

Outline of proof. (See Figure 1.2.) The varieties Xa we use to prove Theorem
1.11 are called Rost varieties for a ; they are defined in Section 1.3 (see 1.24).
Part of the definition is that any Rost variety satisfies condition (a). The proof
that a Rost variety exists for every a, which is due to Markus Rost, is postponed
until Part II of this book, and is given in Chapter 11 (Theorem 11.2).

The proof that Rost varieties satisfy condition (b) of Theorem 1.11 will be
given in Chapter 4 below (in Theorem 4.20). The proof requires the motive of
the Rost variety to have a special summand called a Rost motive; the definition
of Rost motives is given in Section 4.3 (see 4.11).

The remaining difficult step in the proof of Theorem 1.11, due to Voevodsky,
is to show that there is always a Rost variety for a which has a Rost motive. We
give the proof of this in Chapter 5, using the simplicial scheme X which is defined
in 1.32 below. The input to the proof is a cohomology class µ ∈ H2b+1,b(X,Z); µ
will be constructed in Chapter 3, starting from a; see Corollary 3.16. The class µ
is used to construct a motivic cohomology operation φ and Chapter 6 is devoted
to showing that φ coincides with the operation βP b (b = (ℓn−1−1)/(ℓ−1)); see
Theorem 6.34. The proof requires facts about motivic cohomology operations
which are developed in Part III.

The quick proof

Assuming Theorems 1.8, 1.10 and 1.11, we can now prove Theorems A and B
of the Introduction. This argument originally appeared on p. 97 of [Voe03a].

Theorem 1.12. If H90(n-1) holds, then H90(n) holds. By Theorem 1.8, this
implies that for every field k containing 1/ℓ:
a) The norm residue KM

n (k)/ℓ→ Hn
ét(k, µ

⊗n
ℓ ) is an isomorphism;

b) For every smooth X over k and all p ≤ n, the motivic-to-étale map
Hp(X,Z/ℓ(n))→ Hp

ét(X,µ
⊗n
ℓ ) is an isomorphism.

Since H90(1) holds, it follows by induction on n that H90(n) holds for every
n. Note that Theorem A is 1.12(a) and Theorem B is 1.12(b).
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Induction hypothesis: BL(n − 1)

Reductions: k is ℓ-special and
of characteristic 0. (Section 1.1)

Norm Principle.
(Theorem 11.1)

Norm Varieties exist. (Theorem 10.17)

Chain Lemma.
(Theorem 9.1)

Degree formulas.
(Chapter 8)

Rost Varieties exist. (Theorem 11.2)

Rost Motives exist.
(Chapters 3 & 5)

Motivic Cohomol-
ogy Operations.

(Chapters 13 - 15)

Motives over
simplicial schemes.

(Chapter 6)
Theorem 1.11.
(Chapter 4)

H90(n) (Theorem 1.12)

Hilbert 90
for KM

n−1

(Theorem 3.2)

BL(n)
(Theorem 2.38)

Figure 1.2: Dependency chart of Main Theorem 1.11
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Proof of Theorem 1.12. Fix k, and an algebraically closed overfield Ω of infinite
transcendence degree > |k| over k. We first use transfinite recursion to produce
an ℓ-special field k′ (k ⊂ k′ ⊂ Ω) such that KM

n (k)/ℓ → KM
n (k′)/ℓ is zero and

Hn+1
ét (k,Z(ℓ)(n)) embeds into Hn+1

ét (k′,Z(ℓ)(n)).
Well-order the symbols in KM

n (k): {aλ}λ<κ. Fix λ<κ; inductively, there is
an intermediate field kλ such that aµ vanishes in KM

n (kλ)/ℓ for all µ< λ and

Hn+1
ét (k,Z(ℓ)(n)) embeds into Hn+1

ét (kλ,Z(ℓ)(n)). If aλ vanishes in KM
n (kλ)/ℓ,

set kλ+1 = kλ. Otherwise, Theorem 1.11 states that there is a variety Xλ over
kλ whose function field K = kλ(Xλ) splits aλ, and such that Hn+1

ét (kλ,Z(ℓ)(n))

embeds into Hn+1
ét (K,Z(ℓ)(n)); set kλ+1 = K. If λ is a limit ordinal, set

kλ = ∪µ<λkµ. Finally, let k′ be a maximal prime-to-ℓ algebraic extension of
kκ. Then Hn+1

ét (k,Z(ℓ)(n)) embeds into Hn+1
ét (kκ,Z(ℓ)(n)), which embeds in

Hn+1
ét (k′,Z(ℓ)(n)) by the usual transfer argument 1.2. By construction, k′ splits

every symbol in KM
n (k).

Iterating this construction, we obtain an ascending sequence of field ex-
tensions k(m); let L denote the union of the k(m). Then L is ℓ-special and
KM
n (L)/ℓ = 0 by construction, so Hn+1

ét (L,Z(ℓ)(n)) = 0 by Theorem 1.10. Since

Hn+1
ét (k,Z(ℓ)(n)) embeds into Hn+1

ét (L,Z(ℓ)(n)), we have Hn+1
ét (k,Z(ℓ)(n)) = 0.

Since this holds for any k, H90(n) holds.

In the remainder of this chapter, we introduce the ideas and basic tools we
will use in the rest of the book.

1.3 Norm varieties and Rost varieties

In this section we give the definition of norm varieties and Rost varieties; see
Definitions 1.13 and 1.24. These varieties are the focus of the main theorem
1.11, and will be shown to exist in Chapters 10 and 11 in Part II.

We begin with the notions of a splitting variety and a norm variety for a
symbol a ∈ KM

n (k)/ℓ. Norm varieties will be the focus of Chapter 10.

Definition 1.13. Let a be a symbol in KM
n (k)/ℓ. A field F over k is said to

split a, and be a splitting field for a, if a = 0 in KM
n (F )/ℓ. A variety X over k

is called a splitting variety for a if its function field splits a (i.e., if a vanishes
in KM

n (k(X))/ℓ).
A splitting variety X is called an ℓ-generic splitting variety if any splitting

field F has a finite extension E of degree prime to ℓ with X(E) 6= ∅.
A norm variety for a nonzero symbol a in KM

n (k)/ℓ is a smooth projective
ℓ-generic splitting variety of dimension ℓn−1 − 1.

We will show in Theorem 10.17 that norm varieties always exist for all n
when char(k) = 0. When n = 1, the 0-dimensional variety X = Spec k( ℓ

√
a) is

a norm variety for a because KM
n (k)/ℓ = k×/k×ℓ. When n = 2, Severi–Brauer

varieties are norm varieties by Proposition 1.25.
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Remark 1.13.1. (Specialization) Let Y be a reduced subscheme of X, not con-
tained in the singular locus of X. If X is a splitting variety for a then so is Y .
When X is a smooth splitting variety, such as a norm variety for a, this implies
that a is split by every field E with X(E) 6= ∅.

To see this, pick a closed nonsingular point x lying on Y . By specialization
[Wei13, III.7.3], there is a map KM

n (k(X))→ KM
n (k(Y )) sending the class of a

on k(X) to the class of a on k(Y ).

Severi–Brauer varieties

Recall that the set of minimal left ideals of the matrix algebra Mℓ(k) corre-
spond to the k-points of the projective space Pℓ−1

k ; if I is a minimal left ideal
corresponding to a line L of kℓ then the rows of matrices in I all lie on L.

Now fix a symbol a = {a1, a2} and a primitive ℓth root of unity in k, ζ. Let
A = A(a) denote the central simple algebra k{x, y}/(xℓ= a1, y

ℓ= a2, xy = ζyx).
It is well known that there is a smooth projective variety X of dimension ℓ−1,
defined over k, such that for every field F over k, X(F ) is the set of (nonzero)
minimal ideals of A⊗kF : X(F ) 6= ∅ if and only if A⊗kF ∼=Mℓ(F ). The variety
X is called the Severi–Brauer variety of A.

Here is one way to construct the Severi–Brauer variety X. If E = k( ℓ
√
a1 )

then A⊗kE ∼=Mℓ(E); the Galois group of E/k acts on the set of minimal ideals
of A⊗k E and hence on Pℓ−1

E and X ×k E is Pℓ−1
E with this Galois action. Now

apply Galois descent. This method originated in [Ser63]; see [KMRT98].

Definition 1.14. If k contains a primitive ℓth root of unity, ζ, the Severi–Brauer
variety X associated to a symbol a = {a1, a2} is defined to be the Severi–Brauer
variety of A = A(a). (The variety is independent of the choice of ζ.) If k does
not contain a primitive ℓth root of unity, we will mean the Severi–Brauer variety
for {a1, a2} defined over k(ζ).

If ζ ∈ F , there is a canonical map KM
2 (F )/ℓ −→ ℓBr(k), sending {a1, a2} to

its associated central simple algebra A. The Merkurjev–Suslin Theorem [MS82]
states that this is an isomorphism. Since A ⊗k k(X) is a matrix algebra by
construction, the Merkurjev–Suslin theorem implies that k(X) splits a. Here is
a more elementary proof.

Lemma 1.15. Every symbol a = {a1, a2} is split by its Severi–Brauer variety.

Proof. (Merkurjev) Fix α = ℓ
√
a1 and set E = k(α). Recall from [Wei82] (or

11.12 below) that the Weil restrictions of A1 along E and k are isomorphic to
the affine spaces Aℓ and A1 over k, and the Weil restriction of the norm map
NE/k is a map N : Aℓ → A1. Then the Severi–Brauer variety X is birationally

equivalent to the subvariety of Aℓ defined by N(X0, . . . , Xℓ−1) = a2.
In the function field k(X), we set xi = Xi/X0 and c = N(1, x1, . . . , xℓ−1), so

that cXℓ
0 = a2. Then k(X) = k(x1, . . . , xℓ−1)(β), β

ℓ = a2/c. By construction,
the element y = 1 +

∑
xiα

i of E(X) = E(x1, . . . ) has Ny = c = a2/β
ℓ so in

KM
2 (k(X))/ℓ we have

{a1, a2} = {a1, a2/βℓ} = {a1, Ny} = N{αℓ, y} = N(0) = 0.
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Thus the field k(X) splits the symbol a.

Corollary 1.16. The Severi–Brauer variety X of a symbol a = {a1, a2} is a
norm variety for a.

Proof. Since any norm variety for k(ζ) is also a norm variety for k, and a field
F splits a iff F (ζ) splits a, we may assume that k contains a primitive ℓth root
of unity. Thus X exists and is a smooth projective variety of dimension ℓ−1.
By Lemma 1.15, k(X) splits the symbol. Finally, suppose that a field F/k splits
a. Then the associated central simple algebra is trivial (A⊗k F ∼=Mℓ(F )) and
hence X(F ) 6= ∅.

The characteristic number sd(X)

The definition of a Rost variety also involves the notion of a νi-variety, which
is defined using the classical characteristic number sd(X).

LetX be a smooth projective variety of dimension d > 0. Recall from [MS74,
§16] that there is a characteristic class sd : K0(X)→ CHd(X) corresponding to
the symmetric polynomial

∑
tdj in the Chern roots tj of a bundle; the character-

istic number is the degree of the characteristic class. We shall write sd(X) for
the characteristic number of the tangent bundle TX , i.e., sd(X) = deg(sd(TX)).
When d = ℓν − 1, we know that sd(X) ≡ 0 (mod ℓ); see [MS74, 16.6 and 16-E]
and [Sto68, pp. 128–9] or [Ada74, II.7].

Definition 1.17. A νi-variety over a field k is a smooth projective variety X
of dimension d = ℓi − 1, with sd(X) 6≡ 0 (mod ℓ2).

Remark. In topology, a smooth complex variety X of dimension d = ℓi − 1 for
which sd(X) ≡ ±ℓ (mod ℓ2) is called a Milnor manifold. In complex cobor-
dism theory, the bordism classes of Milnor manifolds in MUd are among the
generators of the complex cobordism ring MU∗ of stably complex manifolds.

Examples 1.18. (1) It is well known that sd(P
d) = d + 1; see [MS74, 16.6].

Setting d = ℓ − 1, we see that Pℓ−1 (and any form of it) is a ν1-variety. In
particular, the Severi–Brauer variety of a symbol {a1, a2} is a ν1-variety, since
it is a form of Pℓ−1.

(2) A smooth hypersurface X of degree ℓ in Pd+1 has sd(X) = ℓ(d+ 2− ℓd)
by [MS74, 16-D], so if d = ℓi − 1 we see that X is a νi-variety and X(C) is a
Milnor manifold.

(3) We will see in Proposition 10.14 that if char(k) = 0, any norm variety
for a symbol {a1, . . . , an} (n ≥ 2) is a νn−1-variety.
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Borel–Moore homology

The Borel–Moore homology group HBM
−1,−1(X) of a scheme X is defined

as HomDM(Z,M c(X)(1)[1]) if char(k) = 0 (resp., HomDM(Z[1/p],Z[1/p] ⊗
M c(X)(1)[1]) if char(k) = p > 0 and k is perfect); see [MVW, 16.20]. Here
M c(X) is the the motive of X with compact supports. HBM

−1,−1(X) is a co-
variant functor in X for proper maps, and contravariant for finite flat maps,
because M c(X) has these properties; see [MVW, 16.13]. When X is projective,
the natural map from M(X) = Ztr(X) to M c(X) is an isomorphism in DM,
so the Borel–Moore homology group agrees with the usual motivic homology
group H−1,−1(X,R), which is defined as HomDM(R,Rtr(X)(1)[1]), where R is
Z (resp., Z[1/p]); see [MVW, 14.17].

Proposition 1.19. Let X be a smooth variety over a perfect field k. Then
HBM

−1,−1(X) is the group generated by symbols [x, α], where x is a closed point of
X and α ∈ k(x)×, modulo the relations
(i) [x, α][x, α′] = [x, αα′] and
(ii) for every point y of X such that dim({y}) = 1, the image of the tame symbol
K2(k(y))→ ⊕k(x)× is zero.

That is, we have an exact sequence

⊕
y
KM

2 (k(y))
tame

>
⊕

x
k(x)×

⊕
[x,−]

> HBM
−1,−1(X)→ 0.

Proof. Let A denote the abelian group presented in the Proposition, and set
d = dim(X). Note that A is uniquely p-divisible when k is a perfect field of
characteristic p > 0, because each k(x)× is uniquely p-divisible, and the group
KM

2 (k(y)) is also uniquely p-divisible by Lemma 1.20 below.
We first show that A is isomorphic to H2d+1,d+1(X,Z). To this end, consider

the hypercohomology spectral sequence Ep,q2 = Hp(X,Hq) ⇒ Hp+q,d+1(X,Z),
where Hq denotes the Zariski sheaf associated to the presheaf Hq,d+1(−,Z).
Since Hq,d+1 = 0 for q > d + 1, the terms Ep,q2 are zero unless p ≤ d and
q ≤ d+ 1. From this we deduce that H2d+1,d+1(X,Z) ∼= Hd(X,Hd+1).

For each n, Hn is a homotopy invariant Zariski sheaf, by [MVW, 24.1].
Moreover, it has a canonical flasque “Gersten” resolution on each smooth X,
given in [MVW, 24.11]), whose cth term is the coproduct of the skyscraper
sheaves Hn−c,d+1−c(k(z)) for which z has codimension c in X. Taking n = d+1,
and recalling that KM

n
∼= Hn,n on fields, we see that the skyscraper sheaves in

the (d− 1)st and dth terms take values in KM
2 (k(y)) and KM

1 (k(x)). Moreover,
by [Wei13, V.9.2 and V(6.6.1)], the map KM

2 (k(y)) → KM
1 (k(x)) is the tame

symbol if x ∈ {y}, and zero otherwise. As Hd(X,Hd+1) is obtained by taking
global sections of the Gersten resolution and then cohomology, we see that it is
isomorphic to A.

Now suppose that char(k) = 0. Using motivic duality with d = dim(X), (see
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[MVW, 16.24] or [FV00, 7.1]), the proof is finished by the duality calculation:

HBM
−1,−1(X,Z) =Hom(Z,M c(X)(1)[1])

=Hom(Z(d)[2d],M c(X)(d+ 1)[2d+ 1])

=HomDM(M(X),Z(d+ 1)[2d+ 1]) = H2d+1,d+1(X).

(1.19a)

Now suppose that char(k) > 0. Since H2d+1,d+1(X,Z) ∼= A is uniquely
divisible, the duality calculation (1.19a) goes through with Z replaced by Z[1/p],
using the characteristic p version of motivic duality (see [Kel13, 5.5.14]).

Lemma 1.20. (Bloch–Kato–Gabber) If F is a field of transcendence degree 1
over a perfect field k of characteristic p, KM

2 (F ) is uniquely p-divisible.

Proof. For any field F of characteristic p, the group K2(F ) has no p-torsion (see
[Wei13, III.6.7]), and the d log map K2(F )/p → Ω2

F is an injection with image
ν(2); see [Wei13, III.7.7.2]. Since k is perfect, Ω1

k = 0 and Ω1
F is 1–dimensional,

so Ω2
F = 0 and hence K2(F )/p = 0.

The motivic homology functor HBM
−1,−1(X) has other names in the litera-

ture. It is isomorphic to the K-cohomology groups Hd(X,Kd+1) [Qui73] and
Hd(X,KMd+1), where d = dim(X), and to Rost’s Chow group with coefficients
A0(X,K1) [Ros96]. Since we will only be concerned with smooth projective
varieties X and integral coefficients, we will omit the superscript ‘BM’ and the
coefficients and just write H−1,−1(X).

Example 1.21. (i) H−1,−1(SpecE) = E× for every field E over k. This is
immediate from the presentation in 1.19.
(ii) If E is a finite extension of k, the proper pushforward from E× =
H−1,−1(SpecE) to k× = H−1,−1(Spec k) is just the norm map NE/k.
(iii) For any proper variety X over k, the pushforward map

NX/k : H−1,−1(X)→ H−1,−1(Spec k) = k×

is induced by the composites Spec k(x) → X → Spec k, x ∈ X. By (ii), we see
that NX/k sends [x, α] to the norm Nk(x)/k(α).

Definition 1.22. When X is proper, the projections X ×X → X are proper
and we may define the reduced group H−1,−1(X) to be the coequalizer of
H−1,−1(X×X) ⇒ H−1,−1(X), i.e., the quotient of H−1,−1(X) by the difference
of the two projections.

Example 1.23. When E = k( ℓ
√
a) is a cyclic field extension of k, with Galois

group generated by σ, then H−1,−1(SpecE) is the cokernel of E× 1−σ−→ E×, and
Hilbert’s Theorem 90 induces an exact sequence

0→ H−1,−1(SpecE)
NE/k−→ k×

a∪−→ Br(E/k)→ 0.

Note that Br(E/k) is a subgroup of KM
2 (k)/ℓ when µℓ ⊂ k×. We will generalize

this in Proposition 7.7 below, using KM
n+1(k)/ℓ.
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Rost varieties

Definition 1.24. A Rost variety for a sequence a = (a1, . . . , an) of units of k
is a νn−1-variety X satisfying:

(a) X is a splitting variety for a, i.e., a vanishes in KM
n (k(X))/ℓ;

(b) For each integer i, 1 ≤ i < n, there is a νi-variety mapping to X;

(c) The map N : H−1,−1(X)→ k× is an injection.

When n = 1, Spec(k( ℓ
√
a )) is a Rost variety for a. When n = 2, Proposition

1.25 below shows that Severi–Brauer varieties of dimension ℓ−1 are Rost vari-
eties. In Chapter 11 we will show that Rost varieties exist over ℓ-special fields
for all n, ℓ and a, at least when char(k) = 0. More specifically, Theorem 11.2
shows that norm varieties for a are Rost varieties for a.

Proposition 1.25. The Severi–Brauer variety X of a symbol a = {a1, a2} is a
Rost variety for a.

Proof. By Lemma 1.15, X splits a; by Example 1.18(1), X is a ν1-variety.
Finally, Quillen proved that H−1,−1(X) = H1(X,K2) is isomorphic to K1(A),
and it is classical that K1(A) is the image of A× → k×; see [Wan50, p. 327].

1.4 The Beilinson–Lichtenbaum conditions

Our approach to Theorems A and B (for n) will use their equivalence with
a more general condition, which we call the Beilinson–Lichtenbaum condition
BL(n). In this section, we define BL(n) (in 1.28); in Section 2.1 we show that
it implies the corresponding condition BL(p) for all p < n.

Consider the morphism of sites π : (Sm/k)ét → (Sm/k)zar, where π∗ is
restriction and π∗ sends a Zariski sheaf F to its associated étale sheaf Fét.
The total direct image Rπ∗ sends an étale sheaf (or complex of sheaves) F to
a Zariski complex such that H∗

zar(X,Rπ∗F) = H∗
ét(X,F). In particular, the

Zariski cohomology of Rπ∗µ
⊗n
ℓ agrees with the étale cohomology of µ⊗n

ℓ .
Recall [Wei94, 1.2.7] that the good truncation τ≤nC of a cochain complex C

is the universal subcomplex which has the same cohomology as C in degrees ≤ n
but is acyclic in higher degrees. Applying this to Rπ∗F leads to the following
useful complexes.

Definition 1.26. The cochain complexes of Zariski sheaves L(n) and L/ℓν(n)
are defined to be

L(n) = τ≤nRπ∗[Z(ℓ)(n)] and L/ℓν(n) = τ≤nRπ∗[Z/ℓ
ν(n)].

We know by [MVW, 10.3] that for each n (and all ν) there is a quasi-isomorphism
of complexes of étale sheaves µ⊗n

ℓν
∼→ Z/ℓν(n). When X is a Zariski local scheme

this implies that Hn(X,L(n)) is : Hn
ét(X,Z(ℓ)(n)) for p ≤ n; and zero for p > n,

while Hn(X,L/ℓν(n)) is : Hp
ét(X,µ

⊗n
ℓν ) for p ≤ n; and zero for p > n.
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Now Z(ℓ)(n) and the Z/ℓν(n) are étale sheaves with transfers, so their canon-
ical flasque resolutions E• are complexes of étale sheaves with transfers by
[MVW, 6.20]. The restriction π∗E

• to the Zariski site inherits the transfer
structure, so the truncations L(n) and L/ℓν(n) are complexes of Zariski sheaves
with transfers.

The adjunction 1 → Rπ∗π
∗ gives a natural map of Zariski complexes

Z/ℓν(n)→ Rπ∗[Z/ℓ
ν(n)]. Since the complexes Z(n) and Z/ℓν(n) are zero above

degree n by construction ([MVW, 3.1]), we may apply τ≤n to obtain morphisms
of sheaves on Sm/k:

Z(ℓ)(n)
α̃n−→ L(n), Z/ℓν(n)

αn−→ L/ℓν(n). (1.27)

Definition 1.28. We will say that BL(n) holds if the map Z/ℓ(n)
αn→ L/ℓ(n)

is a quasi-isomorphism for any field k containing 1/ℓ. This is equivalent to the
seemingly stronger but analogous assertion with coefficients Z/ℓν ; see 1.29(a).

Beilinson and Lichtenbaum had conjectured that BL(n) holds for all n,
whence the name; see [Lic84, §3] and [Bĕı87, 5.10.D].

Lemma 1.29. If BL(n) holds then:

(a) αn : Z/ℓν(n)
∼−→ τ≤nRπ∗µ

⊗n
ℓν is a quasi-isomorphism for all ν ≥ 1;

(b) Q/Z(ℓ)(n)
∼−→ τ≤nRπ∗[Q/Z(ℓ)(n)] is a quasi-isomorphism;

(c) α̃n : Z(ℓ)(n)
∼−→ L(n) = τ≤nRπ∗[Z(ℓ)(n)] is also a quasi-isomorphism.

(d) KM
n (k)(ℓ) → Hn

ét(k,Z(ℓ)(n)) is an isomorphism for all k containing 1/ℓ.

Proof. The statement for Z/ℓν coefficients follows by induction on ν using the
morphism of distinguished triangles:

Z/ℓ(n)[−1] > Z/ℓν−1(n) > Z/ℓν(n) > Z/ℓ(n) > Z/ℓν−1(n)[1]

L/ℓ(n)[−1]

∼=
∨

> L/ℓν−1(n)

∼=
∨

> L/ℓν(n)

αn
∨

> L/ℓ(n)

∼=
∨

> L/ℓν−1(n)[1].

∼=
∨

Taking the direct limit over ν in part (a) yields part (b).
Since α̃n is also an isomorphism for Q coefficients by [MVW, 14.23], the

coefficient sequence for 0 → Z(ℓ)(n) → Q(n) → Q/Z(ℓ)(n) → 0 shows that

Z(ℓ)(n)
∼−→ L(n) is also a quasi-isomorphism. Part (d) is immediate from (c)

and KM
n (k)(ℓ) ∼= Hn

zar(k,Z(n))(ℓ) = Hn
zar(k,Z(ℓ)(n)).

The main result in chapter 2 is that BL(n) is equivalent to H90(n) and hence
Theorem A, that KM

n (k)/ℓ ∼= Hn
ét(k, µ

⊗n
ℓ ). The fact that H90(n) implies BL(n)

is proven in Theorem 2.38. Here is the easier converse, that BL(n) implies
H90(n).

Lemma 1.30. If BL(n) holds then H90(n) holds.
In addition, if BL(n) holds then for any field k containing 1/ℓ :

(a) KM
n (k)/ℓ ∼= Hn(k,Z/ℓ(n)) ∼= Hn

ét(k, µ
⊗n
ℓ ).

(b) For all p ≤ n, Hp(k,Z/ℓ(n)) ∼= Hp
ét(k, µ

⊗n
ℓ ).
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Proof. Applying Hp(k,−) to αn yields (b). Setting p = n in (b) proves (a),
because KM

n (k)/ℓ ∼= Hn(k,Z/ℓ(n)). By Theorem 1.7, (a) implies H90(n).

Corollary 1.31. 2 If BL(n) holds then for every smooth simplicial scheme X•
the map Hp,n(X•,Z/ℓ) → Hp

ét(X•, µ
⊗n
ℓ ) is an isomorphism for all p ≤ n. It is

an injection when p = n+ 1.

Proof. First, suppose that X is a smooth scheme. A comparison of the hyperco-
homology spectral sequences Hp(X,Hq) ⇒ Hp+q(X) for coefficient complexes
L/ℓ(n) and Rπ∗[Z/ℓ(n)] shows that αn : Hp,n(X,Z/ℓ) → Hp

ét(X,µ
⊗n
ℓ ) is an

isomorphism for p ≤ n and an injection for p = n+ 1.
For X•, the assertion follows from a comparison of the spectral sequences

Ep,q2 = Hq(Xp)⇒ Hp+q(X•) for the Zariski and étale topologies, and the result
for each smooth scheme Xp.

1.5 Simplicial schemes

In this section, we construct a certain simplicial scheme X which will play a
crucial role in our constructions, and introduce some features of its cohomology.

It is well known that the hypercohomology of a simplicial scheme X• agrees
with the group of morphisms in the derived category of sheaves of abelian groups,
from the representable simplicial sheaf Z[X•] (regarded as a complex of sheaves
via the Dold–Kan correspondence) to the coefficient sheaf complex. Applying
this to the coefficient complex A(q), we obtain the original definition of the
motivic cohomology of X•: H

p,q(X•, A)=H
p
zar(X•, A(q)); see [MVW, 3.4].

For our purposes, it is more useful to work in the triangulated category DM,
which is a quotient of the derived category of Nisnevich sheaves with transfers,
or its triangulated subcategory DMeff

nis, where we have

Hp,q(X•, A) ∼= HomDMeff
nis
(Ztr(X•), A(q)[p]) = HomDM(Ztr(X•), A(q)[p]).

See [MVW, 14.17]. Similarly, the étale motivic cohomology H∗
ét(X•, A(q)) is the

étale hypercohomology of the étale sheafA(q)ét underlying A(q), and agrees with
Hom

DM
−
ét
(Ztr(X•), A(q)[p]); see [MVW, 10.1, 10.7].

We begin with a simplicial set construction. Associated to any nonempty
set S there is a contractible simplicial set Č(S) : n 7→ Sn+1; the face maps are
projections (omit a term) and the degeneracy maps are diagonal maps (duplicate
a term). In fact, Č(S) is the 0-coskeleton of S; see Lemma 12.6. More generally,
for any set T , the projection T × Č(S) → T is a homotopy equivalence; it
is known as the canonical cotriple resolution of T associated to the cotriple
⊥(T ) = T × S; see [Wei94, 8.6.8].

2Taken from [Voe03a, 6.9]. It is needed for Lemma 3.13.
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Definition 1.32. Let X be a (nonempty) smooth scheme over k. We write
X = Č(X) for the simplicial scheme Xn = Xn+1, whose face maps are given by
projection:

X ⇔ X ×X ←−
←−
←− X3

⇔
⇔

X4 · · · .
That is, X is the 0-coskeleton of X.

We may regard X and X×Y as simplicial representable presheaves on Sm/k;
for any smooth U , X(U) = Č(X(U)). Thus if X(Y ) = Hom(Y,X) 6= ∅ then
the projection (X× Y )(U)→ Y (U) is a homotopy equivalence for all U by the
cotriple remarks above. In particular, X(k) is either contractible or ∅, according
to whether or not X has a k-rational point.

Remark 1.32.1. Amap of simplicial presheaves is called a global weak equivalence
if its evaluation on each U is a weak equivalence of simplicial sets. It follows
that X→ Spec(k) is a global weak equivalence if and only if X has a k-rational
point, and more generally that the projection X × Y → Y is a global weak
equivalence if and only if Hom(Y,X) 6= ∅.

We will frequently use the following standard fact. We let R denote Z if
char(k) = 0, and Z[1/ char(k)] if k is a perfect field of positive characteristic.

Lemma 1.33. For all smooth Y and p>q, HomDM(R,Rtr(Y )(q)[p]) = 0.

Proof. By definition [MVW, 3.1], Rtr(Y )(q)[q] is a chain complex C∗(Y ×G∧q
m )

of sheaves which is zero in positive cohomological degrees. By [MVW, 14.16],

Hom(R,Rtr(Y )(q)[p]) ∼= Hp−q
zar (k,Rtr(Y )(q)[q]) = Hp−qRtr(Y )(q)[q](k).

Lemma 1.34. For every smooth X, H−1,−1(X) ∼= H−1,−1(X).

Proof. For all p and n > 1, Lemma 1.33 yields HomDM(R,RtrX
p(1)[n]) = 0.

Therefore every row below q = −1 in the spectral sequence

E1
pq = Hom(R[q], RtrX

p+1(1))⇒ Hom(R,RtrX(1)[p− q]) = Hq−p,−1(X)

is zero. The homology at (p, q) = (0,−1) yields the exact sequence

0 < H−1,−1(X) < H−1,−1(X) < H−1,−1(X ×X).

Since H−1,−1(X) is the cokernel of the right map, the result follows.

Lemma 1.35. 3 For every smooth X, H0,0(X, R) = R and Hp,0(X, R) = 0 for
p > 0; H0,1(X,Z) = H2,1(X,Z) = 0 and H1,1(X;Z) ∼= H1,1(Spec k;Z) ∼= k×.

Proof. The spectral sequence Ep,q1 = Hq(Xp+1;R)⇒ Hp+q,0(X;R) degenerates
at E2 for X smooth, being zero for q > 0, and the R-module cochain complex
of the contractible simplicial set Č(π0(X)) for q = 0.

The spectral sequence Ep,q1 = Hq(Xp+1;Z(1)) ⇒ Hp+q,1(X;Z) degenerates
at E2, all rows vanishing except for q = 1 and q = 2, because Z(1) ∼= O×[−1];

3H0,0(X) and H0,1(X) are used in 4.5 and 4.15 below.
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see [MVW, 4.2]. We compare this with the spectral sequence converging to
Hp+q

ét (X;Gm); Hq
zar(Y,O×) → Hq

ét(Y,Gm) is an isomorphism for q = 0, 1 (and

an injection for q = 2). Hence we have Hq,1(X) = Hq,1
ét (X) for q ≤ 2, and

Hq,1
ét (X) ∼= Hq,1

ét (k) = Hq−1
ét (k,Gm) by Lemma 1.37.

Recall that if f : X• → Y• is a morphism of simplicial objects in any category
with coproducts and a final object, the cone of f is also a simplicial object. It
is defined in [Del74, 6.3.1].

Definition 1.36. The suspension ΣX• of a simplicial scheme X• is the cone of
(X•)+ → Spec(k)+. The reduced suspension Σ̃X• of any simplicial scheme X•
is the pointed pair (ΣX•, point), where ‘point’ is the image of Spec(k) in ΣX•.

If X• is pointed then Hp,q(Σ̃X•) = H̃p,q(ΣX•), but this makes little sense
when X• has no k-points. The pointed pair is chosen to avoid this problem. By
construction there is a long exact sequence on cohomology:

· · · → Hp−1,q(X•)→ Hp,q(Σ̃X•)→ Hp,q(Spec k)→ Hp,q(X•)→ · · · .
In particular, if X• is pointed then we have the suspension isomorphism σs :

H̃p−1,q(X•) → Hp,q(Σ̃X•). If p > q then Hp,q(X•)
≃−→ Hp+1,q(Σ̃X•), because

in this range Hp,q(Spec k) = 0.

Lemma 1.37. 4 If X has a point x with [k(x) : k] = e then for each (p, q)

the group Hp(Σ̃X,Z(q)) has exponent e. Hence the kernel and cokernel of each
Hp(k,Z(q))→ Hp(X,Z(q)) has exponent e.

The maps Hp,q
ét (k,Z)

∼−→ Hp,q
ét (X,Z) are isomorphisms for all (p, q). There-

fore H∗,∗
ét (Σ̃X,Z) = 0 and H∗,∗

ét (Σ̃X,Z/ℓ) = 0.

Proof. Set F (Y ) = Hp(Σ̃X × Y,Z(q)); this is a presheaf with transfers which
vanishes on Spec(k(x)). As with any presheaf with transfers, the composition
F (k)→ F (k(x))→ F (k) is multiplication by e. It follows that e · F (k) = 0.

Now any nonemptyX has a point x with k(x)/k étale, and Xx=X×Spec k(x)
is an étale cover of X. Since the map from Xx to the étale cover x of Spec(k)
is a global weak equivalence, the second assertion follows from a comparison of
the descent spectral sequences for the covers of X and Spec k.

As in topology, the integral Bockstein β̃ : Hp,q(Y,Z/ℓ) → Hp+1,q(Y,Z)
is the boundary map in the cohomology sequence for the coefficient sequence

0 → Z(q)
ℓ→ Z(q) → Z/ℓ(q) → 0; the usual Bockstein β : Hp,q(Y,Z/ℓ) →

Hp+1,q(Y,Z/ℓ) is the boundary map for 0→ Z(q)
ℓ→ Z/ℓ2(q) → Z/ℓ(q)→ 0.

Both are natural in Y ; see 1.42(3) and Section 13.1 below for more information.

Corollary 1.38. Suppose that X has a point of degree ℓ. Then the motivic
cohomology groups H∗,∗(Σ̃X,Z) have exponent ℓ, and we have exact sequences:

0→ Hp,q(Σ̃X,Z)→ Hp,q(Σ̃X,Z/ℓ)
β̃−→ Hp+1,q(Σ̃X,Z)→ 0,

Hp−1,q(Σ̃X,Z/ℓ)
β−→ Hp,q(Σ̃X,Z/ℓ)

β−→ Hp+1,q(Σ̃X,Z/ℓ).

4Based on Lemmas 9.3 and 7.3 of [Voe03a], respectively.
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Corollary 1.39. If BL(n-1) holds and X is smooth then Hp,n−1(Σ̃X,Z/ℓ) = 0

for all p ≤ n, and Hp,q(Spec k,Z/ℓ)
∼=−→ Hp,q(X,Z/ℓ) for all p ≤ q < n.

Proof. As Hp,n−1
ét (Σ̃X,Z/ℓ) = 0 by Lemma 1.37, the first assertion follows from

1.31. The second assertion follows from the cohomology sequence in Definition
1.36, and Lemma 1.30.

Example 1.40. Assume that BL(n-1) holds, and that X has a point of degree

ℓ. Then Hn,n−1(Σ̃X,Z/ℓ) = 0 by 1.39. From the first sequence in 1.38, and nat-

urality of β̃, we see that Hn+1,n−1(Σ̃X,Z) = 0 and hence the integral Bockstein

Hn+1,n−1(Σ̃X,Z/ℓ)
β̃−→ Hn+2,n−1(Σ̃X,Z)

is injective. It follows that the integral Bockstein β̃ : Hn,n−1(X,Z/ℓ) →
Hn+1,n−1(X,Z) is an injection because, as noted in 1.36, Hn,n−1(X,Z/ℓ) ∼=
Hn+1,n−1(Σ̃X,Z/ℓ) and Hn+1,n−1(X,Z) ∼= Hn+2,n−1(Σ̃X,Z).

1.6 Motivic cohomology operations

Cohomology operations are another fundamental tool we shall need, both in
Section 3.4 (to construct the element µ of Corollary 3.16), and in chapter 5
(to show that Rost motives exist). We refer the reader to Chapter 13 for more
discussion.

Recall that for each coefficient group A, and all p, q ≥ 0, the motivic coho-
mology groups Hp,q(−, A) = Hp(−, A(q)) are contravariant functors from the
category ∆opSm/k of smooth simplicial schemes over k to abelian groups. For
each set of integers n, i, p, q and every two groups A and B, a cohomology op-
eration φ from Hn,i(−, A) to Hp,q(−, B) is just a natural transformation. The
bidegree of φ is (p− n, q − i).

There is a twist isomorphism σt : H
n,i(X,A)

∼−→ Hn+1,i+1(X+ ∧Gm, A) of
bidegree (1, 1) in motivic cohomology; see [Voe03c, 2.4] or [MVW, 16.25].

Definition 1.41. A family of operations φ(n,i) : H
n,i(−, A)→ Hn+p,i+q(−, B)

with a fixed bidegree (p, q) is said to be bi-stable if it commutes with the sus-
pension and twist isomorphisms, σs and σt.

Examples 1.42. There are several kinds of bi-stable operations.

1. Any homomorphism A → B induces a bi-stable operation of bidegree
(0, 0), the change of coefficients map H∗,∗(−, A)→ H∗,∗(−, B).

2. If R is a ring and A is an R-module then multiplication by λ ∈ Hp,q(k,R)
is a bi-stable operation of bidegree (p, q) from H∗,∗(−, A) to itself.

3. The integral Bockstein β̃ : Hn,i(X,Z/ℓ)→ Hn+1,i(X,Z) and its reduction
modulo ℓ, the usual Bockstein β : Hn,i(X,Z/ℓ) → Hn+1,i(X,Z/ℓ) are
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both bi-stable operations. They are the boundary maps in the long exact
cohomology sequence associated to the coefficient sequences

0→ Z(q)
ℓ→ Z(q)→ Z/ℓ(q)→ 0, and

0→ Z/ℓ(q)
ℓ→ Z/ℓ2(q)→ Z/ℓ(q)→ 0.

4. In [Voe03c, p. 33], Voevodsky constructed the reduced power operations

P i : Hp,q(X,Z/ℓ)→ Hp+2i(ℓ−1),q+i(ℓ−1)(X,Z/ℓ).

and proved that they are bi-stable. If ℓ = 2 it is traditional to write Sq2i

for P i and Sq2i+1 for βP i.

We may compose bi-stable operations if the coefficient groups match: φ′ ◦φ is a
bi-stable operation whose bidegree is bidegree(φ′)+bidegree(φ). It follows that
the stable cohomology operations with A = B = R form a bigraded ring, and
that H∗,∗(k,R) is a subring.

Definition 1.43. [Milnor Operations] There is a family of motivic operations
Qi on H

∗,∗(X,Z/ℓ) constructed in [Voe03c, §13], called the Milnor operations.
The bidegree of Qi is (2ℓ

i − 1, ℓi − 1), Q0 is the Bockstein β, Q1 is P 1β − βP 1,
and the other Qi are defined inductively.

If ℓ > 2 the inductive formula is Qi+1 = [P ℓ
i

, Qi]. If ℓ = 2 the inductive for-

mula is Qi = [β, P ri ]; this differs from [P 2i−1

, Qi] by correction terms involving
[−1] ∈ k×/k×2 = H1,1(k,Z/2). See Section 13.4 in Part III.

We list a few properties of these operations here, referring the reader to
Section 13.4 below for a fuller discussion. The Qi satisfy Q

2
i = 0 and QiQj =

−QjQi, are KM
∗ (k)-linear and generate an exterior algebra under composition.

The following theorem concerns the vanishing of a motivic analogue of the
classical Margolis homology; see Section 13.6 in Part III. It was established for
i = 0 in 1.38, and will be proven for all i in Theorem 13.24. This exact sequence
will be used in Propositions 3.15 and 3.17 to show that the Qi are injections in
an appropriate range.

Theorem 1.44. If X is a Rost variety for (a1, ..., an), the following sequence
is exact for all i < n and all (p, q).

Hp−2ℓi+1,q−ℓi+1
(
Σ̃X,Z/ℓ

)
Qi−→ Hp,q

(
Σ̃X,Z/ℓ

)
Qi−→ Hp+2ℓi−1,q+ℓi−1

(
Σ̃X,Z/ℓ

)

Remark. In Theorem 1.44, it suffices that for each i < n there is a νi-variety Xi

and a map Xi → X. This is the formulation given in Theorem 13.24
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1.7 Historical notes

As mentioned in the Introduction, the question of whether the norm residue
is always an isomorphism was first raised by Milnor in his 1970 paper [Mil70]
defining what we now call “Milnor K-theory.” For local and global fields, Tate
had already checked that it was true for n = 2 (i.e., for K2) and all primes ℓ
(published in [Tat76]), and Milnor checked in his paper that it was true for all
n > 2 (where the groups have exponent 2.) Kato verified that the norm residue
was an isomorphism for fields arising in higher class field theory, and stated the
question as a conjecture in [Kat80]. Bloch also asked about it in [Blo80, p. 5.12].

Originally, norm residue homomorphism referred to the symbol (a, b)k of a
central simple algebra in the group µℓ(k) of a local field, arising in Hilbert’s
9th problem. Later it was realized that the symbol should take values in the
Brauer group, or more precisely µℓ⊗Brℓ(k), and that this map factored through
K2(k)/ℓ; see [Mil71, 15.5]. The use of this term for the map from KM

∗ (F )/m to
H2

ét(F, µ
⊗2
ℓ ) seems to have originated in Suslin’s 1986 ICM talk [Sus87, 4.2].

The question was completely settled for n = 2 by Merkurjev and Suslin in
the 1982 paper [MS82]. Their key geometric idea was the use of Severi–Brauer
varieties, which we now recognize as the Rost varieties for n = 2. The case
n = 3 for ℓ = 2 was settled independently by Rost and Merkurjev–Suslin in the
late 1980’s. In 1990, Rost studied Pfister quadrics (Rost varieties for ℓ = 2) and
constructed what we now call its Rost motive; see [Ros90] and [Voe03a, 4.3].

In 1994, Suslin and Voevodsky noticed that this conjecture about the norm
residue being an isomorphism would imply a circle of conjectures due to Beilin-
son [Bĕı87] and Lichtenbaum [Lic84] regarding the (then hypothetical) com-
plexes of sheaves Z(n); the preprint was posted in 1995 and an expanded version
was eventually published in [SV00a]. This is the basis of our Chapter 2.

In 1996, Voevodsky announced the proof of Milnor’s conjecture for ℓ = 2,
using work of Rost on the motive of a Pfister quadric. The 1996 preprint [Voe96]
was expanded into [Voe03a] and [Voe03c], which appeared in 2003.

In 1998, Voevodsky announced the proof of the Bloch–Kato conjecture, i.e.,
Milnor’s conjecture for ℓ > 2, assuming the existence of what we call Rost
varieties (1.24). Details of this program appeared in the 2003 preprint [Voe03b],
and the complete proof was published in 2011 [Voe11].

Later in 1998, Rost announced the construction of norm varieties; the con-
struction was released in the preprints [Ros98a] and [Ros98b], but did not con-
tain the full proof that his norm varieties were “Rost varieties,” i.e., satisfied
the properties (1.24) required by Voevodsky’s program. Most of those details
appeared in [SJ06]; Rost’s informal notes [Ros06] provided other details, and
the final details were published in [HW09].

The combination of Rost’s construction and Voevodsky’s work combines to
verify not only the Bloch–Kato conjecture (proving Theorem A) but also proving
Theorems B and C, which are stated in the Overview of this book.

The material in Section 1.5 is taken from the Appendix of [Voe03a].
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Chapter 2

Relation to
Beilinson–Lichtenbaum

Recall from 1.26 that L/ℓ(n) is the good truncation complex τ≤nRπ∗(µ
⊗n
ℓ ),

where π is the change of topology morphism (Sm/k)ét → (Sm/k)zar. We say
that “BL(n) holds” if the map αn : Z/ℓ(n)→ L/ℓ(n) is a quasi-isomorphism for
any field k containing 1/ℓ.

In this chapter, we show how the Beilinson–Lichtenbaum condition (that
BL(n) holds) is equivalent to the assertion that the norm residue is an isomor-
phism, and also to the property that H90(n) holds, a fact that is important to
make the inductive step in the proofs of Theorems A, B and C work. Most of
this material is taken from [SV00a], which assumes resolution of singularities,
and from [Sus03], which is based upon [GL01] and removes this assumption.
The content of this chapter is captured in the following diagram of implications:

BL(n)
1.30

>
<

2.37
BK(n)

1.7
>

<
2.38

H90(n)

BL(n− 1)

2.9
∨

BK(n− 1)

2.12
∨

H90(n− 1)

2.11
∨

Figure 2.1: Scheme of the proof

The preparatory vertical implications are demonstrated in sections 2.1 and
2.2. The crucial ingredient in showing that the left vertical implication holds
is an analysis of the contractions of the motivic complex Z/ℓ(n) (see Example
2.4(2)) and the complex L/ℓ(n) (see Corollary 2.7)). The middle and right ver-
tical implications are consequences of 2.10, which shows that the Gysin triangle
associated to an open subset of A1−{0} splits. The implications from left to
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right are proved in chapter 1. The remainder of this chapter is taken up with
the proofs of the implications from right to left; the idea is to use a dimension
shift argument relying on an analysis of an appropriately defined cohomology of
the boundary of an algebraic simplex, combined with the vertical implications
proved in the first two sections to set up an inductive proof of BL(n) from its
special cases BK(n) and H90(n).

2.1 BL(n) implies BL(n-1)

In this section, we prove the useful reduction that if the Bloch–Lichtenbaum
condition BL(n) holds then so does BL(n-1); see Theorem 2.9. For the proof,
we will need the following construction.

If F is a homotopy invariant presheaf, we define the presheaf F−1 to be
X 7→ F (X × (A1−{0}))/F (X), as in [MVW]. If F is the presheaf underlying a
homotopy invariant sheaf with transfers F , then F−1(U) = H0(U,F−1). More
generally, Hp(U,F)−1

∼= Hp(U,F−1); see [MVW, 24.8].
This generalizes to complexes using RHom, the internal Hom complex in

DMeff
nis which is constructed in [MVW, 14.12],

Definition 2.1. Let F be a bounded above complex of sheaves with transfers,
with homotopy invariant cohomology. Then F−1 denotes RHom(L,F)[1], where
L is Z(1)[2] ∼= Ztr(A

1−{0})/Z[1] ∼= Ztr(P
1)/Z; see [MVW, 15.2]. That is,

F−1(X) is the complex RHom(Ztr(X × (A1−{0})),F) /RHom(Ztr(X),F) or,
equivalently, RHom(Ztr(X × P1),F [1])/RHom(Ztr(X),F [1]).

Lemma 2.2. Let F be a bounded above complex of homotopy invariant sheaves
with transfers. Then for smooth X, Hp(X,F)−1

∼= Hp(X,F−1).

Proof. Because Hp(X× (A1−{0}),F) ∼= Hp(X,F)⊕Hom(Ztr(X)(1)[1],F [p]),

Hp(X,F)−1
∼= Hom(Ztr(X)(1)[2],F [p+ 1]) ∼= Hp+1(X ⊗ L,F)
∼= Hom(Ztr(X), RHom(L,F)[p+ 1]) ∼= Hp(X,F−1). (2.2.1)

Here we have used the adjunction Hom(K ⊗M,F) ∼= Hom(K,RHom(M,F))
of [MVW, 14.12], which is valid for any geometric motive M .

Lemma 2.3. There is a natural map δ : F [−1]→ F(1)−1 in DMeff
nis. Applying

Hom(Ztr(X)[−p],−) yields natural maps Hp−1(X,F)→ Hp(X,F(1)−1).

Proof. Since F(1)−1[1] = RHom(L,F(1)[2]) = RHom(L,F⊗L), and Hom(F⊗
L,G) ≃ Hom(F , RHom(L,G)) [MVW, 14.12] we have a canonical isomorphism:

Hom(F ⊗ L,F ⊗ L)
≃−→ Hom(F , RHom(L,F ⊗ L)) ∼= Hom(F ,F(1)−1[1]).

The natural map δ is the image of the identity map on F ⊗ L.
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Examples 2.4. (1) If A is a constant sheaf, A−1=0: H∗(X×P1, A)∼=H∗(X,A).

(2) When n > 0, the map δ of 2.3 induces an isomorphism Z(n−1)[−1] ≃→ Z(n)−1,
and isomorphisms Hp(X,Z(n))−1

∼= Hp−1(X,Z(n−1)); this is a consequence of
the Localization Theorem, and is established in [MVW, 23.1]. By the 5-lemma,

we also have δ : Z/ℓ(n−1)[−1] ≃→ Z/ℓ(n)−1.

(3) The map δ induces an isomorphism Rπ∗(µ
⊗n−1
ℓ )[−1] ≃→ Rπ∗(µ

⊗n
ℓ )−1, and

Hp
ét(X × P1, µ⊗n

ℓ ) ∼= Hp
ét(X,µ

⊗n
ℓ )⊕Hp−2

ét (X,µ⊗n−1
ℓ ); see [MVW, 23.3].

(4) By iteration, F−c = RHom(Lc,F)[c]. Thus from (1) and (2) we get

Z(n)−c ∼=
{
Z(n− c)[−c], c ≤ n ;
0, c > n.

Replacing Z by Z/ℓν yields a parallel formula for Z/ℓν(n)−c.

Let Hp(F) denote the pth cohomology sheaf of F .

Lemma 2.5. The pth cohomology sheaf of the complex F−1 is

Hp(F−1)(X) = Hp(F)(X × (A1−{0}))/Hp(F)(X).

Proof. Set H = Hp(−,F); it is a homotopy invariant presheaf with transfers
by [MVW, 13.3, 13.8], with associated sheaf H = Hp(F). By Lemma 2.2,
Hp(−,F−1) ∼= H−1, so Hp(F−1) is the sheafification (H−1)nis of H−1. But by
[MVW, 23.5], (H−1)nis is the sheaf H−1(X) = H(X × (A1−{0}))/H(X).

Recall that τ≤nF denotes the good truncation of a cochain complex F at
level n. By construction, Hp(τ≤nF) is Hp(F) if p ≤ n, and 0 otherwise.

Proposition 2.6. (τ≤nF)−1
≃−→ τ≤n(F−1) is a quasi-isomorphism.

Proof. By Lemma 2.5, the pth cohomology sheaf of (τ≤nF)−1 is

X 7→
{
Hp(F)(X×(A1−{0}))/Hp(F)(X), p ≤ n
0, p > n

=

{
Hp(F−1)(X), p ≤ n
0, p > n.

Hence the natural map (τ≤nF)−1 → F−1 factors through τ≤n(F−1), and
Hp((τ≤nF)−1)→ Hp(τ≤n(F−1)) is an isomorphism for all p.

Corollary 2.7. The map δ : L/ℓ(n− 1)[−1] ≃−→ L/ℓ(n)−1 is an isomorphism.
In particular, for smooth X we have

Hp−1(X,L/ℓ(n− 1)) ∼= Hp(X,L/ℓ(n)−1) ∼= Hp(X,L/ℓ(n))−1.

Proof. Since L/ℓ(n) = τ≤nRπ∗(µ
⊗n
ℓ ), the first assertion is immediate from 2.6

and Example 2.4(3). The second assertion follows from this and Lemma 2.2.

June 27, 2018 - Page 28 of 281



Beilinson–Lichtenbaum

Proposition 2.8. For smooth X, we have a commutative diagram

Hp−1(X,Z/ℓ(n− 1))
≃
δ
> Hp(X,Z/ℓ(n)−1)

Hp−1(X,L/ℓ(n− 1))

αn−1
∨ ≃

δ
> Hp(X,L/ℓ(n)−1)

αn
∨

Hp−1
ét (X,µ⊗n−1

ℓ )

∨ ≃
δ
> Hp

ét(X, (µ
⊗n
ℓ )−1).

∨

Proof. By Lemma 2.3, Hp(X, δ) = Hom(Ztr(X)[−p], δ) is a natural transforma-

tion. Applying it to Z/ℓ(n)
α→ L/ℓ→ Rπ∗µ

⊗n
ℓ yields the commutative diagram.

The rows are isomorphisms by 2.4(2), 2.7 and 2.4(3).

Theorem 2.9. 1 If BL(n) holds then BL(n-1) holds.

Proof. Consider the diagram of Proposition 2.8. If BL(n) holds then for every
local X the top right vertical is an isomorphism in the diagram, and hence
the top left vertical is an isomorphism, i.e., αn−1 is a quasi-isomorphism on the
stalks of X. It follows that αn−1 is a quasi-isomorphism, i.e., BL(n-1) holds.

2.2 H90(n) implies H90(n-1)

The fact that H90(n) implies H90(n-1) will be used in Theorem 2.37 to show
that Hp,n(k,Z/ℓ) → Hp

ét(k, µ
⊗n
ℓ ) is an isomorphism for all p ≤ n. Since the

proof is elementary, we give it here.
By a motivic complex we shall mean a cochain complex of Zariski sheaves

with transfers, having homotopy invariant cohomology. One source of motivic
complexes comes from the total direct image Rπ∗ associated to the morphism
of sites π : (Sm/k)ét → (Sm/k)zar. If F is an étale sheaf with transfers, having
homotopy invariant cohomology, then Rπ∗(F) is a motivic complex by [MVW,
6.20], and H∗

zar(X,Rπ∗F) = H∗
ét(X,F).

Lemma 2.10. For all dense open U ⊆ (A1−{0}) the localization triangle

⊕x 6∈UM(x)(1)[1]→M(U)→M(Spec k)→
is split exact in DM, where the sum is over all closed points of A1 not in U
(see [MVW, 15.15]). Hence for every motivic complex C we have a split exact
localization sequence, with the splitting natural in U and C:

0→ Hn(k, C)→ Hn(U, C) ∂−→ ⊕x 6∈U Hn−1(x, C(−1))→ 0.

Taking the direct limit over all U yields the split exact sequence

0→ Hn(k, C)→ Hn(k(t), C) ∂−→ ⊕x∈A1 Hn−1(x, C(−1))→ 0.

1Theorem 2.9 is used in 2.24 and 3.15
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Proof. The group of finite correspondences from Spec k to X is the same as the
group of zero-cycles on X; see [MVW, 1.10]. As U is dense in A1, it contains a
zero-cycle of degree 1, yielding a finite correspondence Spec k → U of degree 1.
Passing to motives via M(X) = Ztr(X), we get a morphism M(Spec k) →
M(U) whose composition with M(U) → M(A1) is the canonical isomorphism

M(Spec k)
∼=→M(A1). This splits the mapM(U)→M(Spec k), as required.

Remark 2.10.1. There is a notational ambiguity with H∗,∗(k(t), A), since it
could be computed relative to Sm/k(t) or as the direct limit of the H∗,∗(U,A)
relative to Sm/k, as in Lemma 2.10. Happily, the two coincide by [MVW, 3.9].

Example 2.11. Applying Lemma 2.10 to the motivic complex C = Z(n) yields
the split exact sequence

0→ KM
n (k)→ KM

n (k(t))
∂−→ ⊕x∈A1 KM

n−1(k(x))→ 0

of [Mil70, 2.3]. Applying 2.10 to the motivic complexes Z(ℓ)(n) and Rπ∗µ
⊗n
ℓ

yields the corresponding sequences for Hn
ét(k,Z(ℓ)) and Hn

ét(k, µ
⊗n
ℓ ). Finally,

applying 2.10 to Rπ∗Z(n)ét yields the split exact sequence

0→ Hn+1
ét (k,Z(n))→ Hn+1

ét (k(t),Z(n))
∂−→ ⊕x∈A1 Hn

ét(k(x),Z(n− 1))→ 0.

The next result shows that if KM
n (F )/ℓ

∼−→ Hn
ét(F, µ

⊗n
ℓ ) for all fields F over

k then KM
n−1(k)/ℓ

∼−→ Hn−1
ét (k, µ⊗n−1

ℓ ). It will be used in Theorem 2.37.

Corollary 2.12. If H90(n) holds then H90(n-1) also holds.
If KM

n (k(t))/ℓ → Hn
ét(k(t), µ

⊗n
ℓ ) is an isomorphism (resp., onto) then so is

KM
n−1(k)/ℓ → Hn−1

ét (k, µ⊗n−1
ℓ ).

Proof. By Example 2.11, Hn
ét(k,Z(ℓ)(n−1)) is a summand ofHn+1

ét (k(t),Z(ℓ)(n)),
whence the first assertion. For the second, we know by Example 2.11 that there
is a commutative diagram

KM
n (k(t))/ℓ

∂
> KM

n−1(k)/ℓ

Hn
ét(k(t), µ

⊗n
ℓ )

∼=
∨

∂
> Hn−1

ét (k, µ⊗n−1
ℓ )

∨

By Example 2.11, both horizontal arrows are split surjections, and the split-
tings are compatible. If we assume the left vertical is an isomorphism (resp., a
surjection), then so is the right vertical morphism.
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2.3 Cohomology of singular varieties

Recall that the schemes ∆m = Spec(k[t0, . . . , tm]/(1−∑
ti) fit together to form

a cosimplicial scheme ∆•, where the ith coface map ∂i : ∆
m−1 → ∆m is given

by setting ti = 0, and codegeneracies are given by sending ti to ti + ti+1. The
m+ 1 images of the point ∆0 in ∆m are called its vertices.

In order to shift cohomological indices, we shall modify the topologist’s
sphere trick, replacing Sm−1 with ∂∆m, the closed subvariety of ∆m defined
as the union of all of its maximal proper faces ∂i∆

m−1. Our first task is to
define the cohomology of a singular algebraic variety, such as ∂∆m, with coeffi-
cients in a sheaf defined only on Sm/k.

Definition 2.13. For each scheme X over k, let Z[X] denote the Nisnevich
sheaf associated to the presheaf U 7→ Z[HomSch/k(U,X)] on Sch/k, and let
ZSm[X] denote the restriction of Z[X] to Sm/k.

If X is a scheme of finite type over a field k, and F is any complex of
Nisnevich sheaves on Sm/k, we define the cohomology groups Hp(XSm,F) to
be HomD(Sm/k)(ZSm[X],F [p]).

If X is smooth, ZSm[X] is the free abelian group sheaf generated by a repre-
sentable sheaf, and our definition agrees with the usual definition of (Nisnevich)
sheaf hypercohomology. However, if X is singular and F is the restriction of a
complex F ′ defined on all schemes then H∗(XSm,F) will not in general equal
H∗(X,F ′). For example, if OSm is the restriction of O to Sm/k and X is the
affine cusp then H0(XSm,OSm) = k[x] while H0(X,O) = k[x2, x3]. If k admits
resolution of singularities and F is a homotopy invariant complex of sheaves
with transfers, the cohomology Hp(XSm,F) agrees with the cdh cohomology of
X with coefficients in F ′ by [MVW, 13.27].

Note that ZSm[Xred] = ZSm[X], so that H∗(XSm,F) = H∗((Xred)Sm,F).
If X = X1 ∪X2 is the union of closed subschemes we have an exact sequence of
sheaves

0→ ZSm[X1 ∩X2]→ ZSm[X1]× ZSm[X2]→ ZSm[X]→ 0;

applying RHom(−,F), it follows that the cohomology groups H∗(−Sm,F) sat-
isfy Mayer–Vietoris for closed covers. The generalization of Mayer–Vietoris to
larger closed covers is the Čech spectral sequence.

Example 2.14. Suppose we are given a scheme which is the union X = ∪Xi

of finitely many closed subschemes Xi. Then there is a quasi-isomorphism from
the Čech complex

ZSm[Č{Xi}] : 0→ ZSm[∩Xi]→ · · · → ⊕i<jZSm[Xi ∩Xj ]→ ⊕iZSm[Xi]→ 0

to ZSm[∪Xi]. Thus H
∗(XSm,F) is the cohomology of RHom(ZSm[Č{Xi}],F)

for each complex of sheaves F on Sm/k, and we can compute it using the
associated Čech spectral sequence

Ep,q1 = Čp({Xi}, Hq(−Sm,F)) =
∏

i0<···<ip

Hq((∩Xir )Sm,F)⇒ Hp+q(XSm,F).
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The rows are the Čech complexes Č({Xi};H) = H(Č{Xi}) for the presheaves
H = Hq(−Sm,F). Because the spectral sequence is bounded in p, it is conver-
gent even if F is an unbounded complex. If the Xi and all intersections ∩Xir

are smooth, then the Ep,q1 terms are the sheaf hypercohomology Hp
nis(X,F).

As an application, we consider ∂∆m, the union of the maximal face sub-
schemes Xi = ∂i∆

m of ∆m. If F is a complex on Sm/k with homotopy in-
variant cohomology then the Čech spectral sequence for ∂∆m collapses at E2,
because each Hq(∩XirSm,F) is Hq(k,F) when ∩Xir 6= ∅, Ep.q1 = 0 for p ≥ m,
and the rows of E1 compute the homology of the (m−1)-sphere with constant
coefficients Hq(k,F). This yields the natural isomorphism2

Hp(∂∆m
Sm,F)

≃−→ Hp(k,F)⊕Hp+1−m(k,F). (2.15)

We may repeat the above discussion for the étale topology, using the observa-
tion that Z[X] is already an étale sheaf, and writing ZSm[X] for the restriction of
this étale sheaf to (Sm/k)ét by abuse of notation. As in Example 2.14, we have a
quasi-isomorphism ZSm[Č{Xi}]→ ZSm[∪Xi] of étale sheaves and isomorphisms
Hp

ét((∪Xi)Sm,FSm) ∼= Homét(ZSm[Č{Xi}],FSm[p]) for every complex FSm of
étale sheaves on Sm/k. For locally constant torsion complexes F defined on
Sch/k, such as µ⊗n

ℓ , the usual étale cohomology of F is compatible with the
cohomology of the restriction FSm of F to Sm, at least in the following sense.

Lemma 2.16. Suppose X = ∪Xi is a finite union of closed subschemes Xi. Let
F be a complex with locally constant torsion étale cohomology sheaves on Sch/k,
whose torsion is prime to char(k). Then there is a natural quasi-isomorphism:

RHomSchét
(Z[X],F) ≃−→ RHomSchét

(Z[Č{Xi}],F).

Proof. It suffices to consider the case X = X1 ∪X2, as the general case follows
by induction. Let p : X → Spec(k) denote the structure map so that Rp∗F =
RHomSch(Z[X],F). If ιi : Xi → X is the inclusion,Rιi∗F = ιi∗F by proper base
change [Mil80, VI.2.5], and Rp∗Rι

i
∗F is quasi-isomorphic to RHom(Z[Xi],F).

Applying Rp∗ to the triangle F → ⊕ιi∗(F)→ ι12∗ (F) yields the triangle

RHomét(Z[X],F)→ ⊕2
i=1RHomét(Z[Xi],F)→ RHomét(Z[X12],F).

Since RHomét(Z[Č{Xi}],F) also fits into this triangle, the result follows.

We now consider the change-of-topology morphism π : Smét → Smnis. If F
is a complex of étale sheaves on Sch/k, and FSm is its restriction to (Sm/k)ét,
the total direct image Rπ∗FSm is a complex of Nisnevich sheaves on (Sm/k)nis.
We can take the cohomology of Rπ∗FSm in the sense of Definition 2.13.

Proposition 2.17. Suppose X = ∪Xi is a finite union of smooth closed sub-
schemes Xi, and that all finite intersections of the Xi are smooth. Let F be a

2The shifting trick (2.15) is based on Lemma 9.2 of [SV00a].
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complex with locally constant torsion étale cohomology sheaves on Sch/k, whose
torsion is prime to char(k). Then

H∗
ét(X,F)

≃−→ H∗
ét(XSm,FSm)

≃−→ H∗
nis(XSm, Rπ∗FSm)

Proof. By Lemma 2.16, Hp
ét(X,F) is isomorphic to HomSchét

(Z[Č{Xi}],F [p]).
Since the Xi and their intersections are smooth, this is the same as

HomSmét
(Z[Č{Xi}],FSm[p]) = HomSmnis

(Z[Č{Xi}], Rπ∗(FSm)[p]).

Now Z[Č{Xi}] ≃ ZSm[X], by Example 2.14. Therefore the left side is
Hp

ét(XSm,FSm), and the right side is the same as Hp
nis(XSm, Rπ∗FSm) =

HomSmnis
(ZSm[X], Rπ∗FSm[p]).

Corollary 2.18. For X = ∪Xi as in Proposition 2.17 and any p ≤ n we have
natural isomorphisms

Hp(XSm, L/ℓ(n)) ∼= Hp
ét(X,µ

⊗n
ℓ ).

Proof. It is enough to show that Hp(XSm, τ
≤nF) ∼= Hp(XSm,F) for every

complex F of Nisnevich sheaves, as the corollary is just the special case F =
Rπ∗(µ

⊗n
ℓ ). Without loss of generality, we can replace τ>nF by a complex E

of injective sheaves, zero in degrees ≤ n, to assume that Hp(XSm, τ
>nF) =

Hom(ZSm[X], E [p]). Since Ep = 0 we have Hp(XSm, τ
>nF) = 0 and the result

follows.

Remark 2.18.1. Results 2.16–2.18 hold more generally for every X in Sch/k.
In particular, Hp(XSm, L/ℓ(n)) ∼= Hp

ét(X,µ
⊗n
ℓ ) for every X in Sch/k and every

p ≤ n. This was proven by Suslin in [Sus03, §7], using alterations and the fact,
proven in [SV96, §10], that étale cohomology agrees with cohomology for the
h-topology on Sch/k.

If F is a complex of presheaves, we may regard the usual Čech complex
Č({Xi};F) as a double complex; by the Čech cohomology H∗ Č({Xi};F) we
mean the cohomology of the total complex.

Proposition 2.19. 3 Suppose that W is a smooth semilocal scheme, and that
{Xi} are smooth closed subschemes of W with all intersections smooth. If F
is a complex of sheaves with transfers on Sm/k, having homotopy invariant
cohomology, then the canonical map is an isomorphism:

Hq((∪Xi)Sm,F)→ Hq Č({Xi};F).

Proof. If F → E is a fibrant replacement, Hq((∪Xi)Sm,F) is isomorphic to the
cohomology of the total complex of Č({Xi}, E)), and the proposition asserts
that Č({Xi},F) → Č({Xi}, E) is a quasi-isomorphism. By the comparison
theorem for the spectral sequence of a double complex, it suffices to show that
F(S)→ E(S) is a quasi-isomorphism for each intersection S of the Xi.

3Proposition 2.19 is based on Proposition 1.11 of [Sus03]
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The homotopy invariant presheaf Hq(−,F) on Sm/k is a presheaf with
transfers by [MVW, 13.4]. The associated sheaf Hq is also homotopy in-
variant by [MVW, 22.1–2], and has transfers by [MVW, 22.15]. If S is
any smooth semilocal scheme then the hypercohomology spectral sequence for
H∗(S,F) degenerates: Ep,q2 = Hp(S,Hq) = 0 for p > 0 by [MVW, 24.5],
and H0(S,Hq) = Hq(F(S)). Thus E0,q

2 = Hq(F(S)) → Hq(S,F) is a quasi-
isomorphism, as desired.

2.4 Cohomology with supports

In this section we show that if one assumes BL(n-1) then the cohomology with
supports of Z/ℓν(n) and L/ℓν(n) agree.

If Z is a closed subspace of a smooth scheme X, Z[X − Z] is a subsheaf of
Z[X] and we set ZZ [X] = Z[X]/Z[X −Z]. The cohomology of F with supports
on Z is Hp

Z(X,F) = HomD(Sm/k)(ZZ [X],F [p]). If Z ⊂ Y ⊂ X then there is an
exact sequence of sheaves,

0→ ZY−Z [X − Z]→ ZY [X]→ ZZ [X]→ 0, (2.20)

and a long exact sequence for the cohomology of F with supports, natural in
F .

Let D(Cor/k) denote the derived category of sheaves with transfers. Since
forgetting transfers is an exact functor to sheaves, it induces a triangulated
functor D(Cor/k) → D(Sm/k). Regarding DMeff

nis as a full triangulated sub-
category of D(Cor/k) by [MVW, 14.11], every triangle in DMeff

nis induces a
triangle in D(Sm/k). Here is an application of this technique.

Lemma 2.21. Let (X,Z) be a smooth pair with codimension c, and suppose that
F is a complex of sheaves with transfers, with homotopy invariant cohomology.
Then there is a canonical isomorphism

Hp−c(Z,F−c)→ Hp
Z(X,F).

Proof. We may assume that F is bounded below, since replacing F by a trun-
cation τ≤NF for large N does not change the cohomology groups in question.
There is a Gysin triangle C∗Ztr(X − Z) → C∗Ztr(X) → C∗Ztr(Z) ⊗tr L

c in
DMeff

nis; see [MVW, 15.15]. The maps Z[X] → C∗Ztr(X) allow us to compare
the triangle defining ZZ [X] to the induced Gysin triangle in D = D(Sm/k),
yielding a canonical map ZZ [X] → C∗Ztr(Z) ⊗ Lc. Applying Hom(−,F [p])
yields a morphism of long exact sequences. Since

HomDMeff
nis
(C∗Ztr(X),F [p]) ≃−→ HomD(Z[X],F [p]) = Hp(X,F)

is an isomorphism by [MVW, 13.4 and 13.5], and there is a similar isomorphism
for X−Z, the 5-lemma shows that the canonical map yields an isomorphism

HomDMeff
nis
(C∗Ztr(Z)⊗ Lc,F [p]) ≃−→ HomD(ZZ(X),F [p]) = Hp

Z(X,F).
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Replacing F by F−c, this isomorphism fits into a natural composition

Hp−c(Z,F−c) ∼=HomDMeff
nis
(C∗Ztr(Z), RHom(Lc,F)[p])

∼=HomDMeff
nis
(C∗Ztr(Z)⊗ Lc,F [p]) ≃−→ Hp

Z(X,F).

The first map uses the isomorphism F−c
∼= RHom(Lc,F)[c] of Example 2.4(4),

and the second map is the adjunction.

Example 2.22. Combining 2.21 with the formula for Z/ℓν(n)−c in Example
2.4(4), we have natural isomorphisms:

Hp
Z(X,Z/ℓ

ν(n)) ∼=
{
Hp−2c(Z,Z/ℓν(n− c)), c ≤ n;
0, c > n.

Combining 2.21 with Corollary 2.7, we have natural isomorphisms:

Hp
Z(X,L/ℓ

ν(n)) ∼=
{
Hp−2c(Z,L/ℓν(n− c)), c ≤ n;
0, c > n.

Example 2.23. Combining 2.21 with Example 2.4(3), we obtain the standard
result that Hp

Z(Xét,Z/ℓ
ν(n)) is isomorphic to Hp−2c(Zét,Z/ℓ

ν(n−c)) for n ≥ c,
and zero if n < c.

We now consider the map αn : Z/ℓν(n)→ L/ℓν(n) of (1.27).

Theorem 2.24. Suppose that BL(n-1) holds. If (X,Z) is a smooth pair with
codimX Z > 0 then αn induces isomorphisms on motivic cohomology with sup-
ports:

H∗
Z(X,Z/ℓ

ν(n))
≃−→ H∗

Z(X,L/ℓ
ν(n)).

Proof. By 2.22 and 2.23, we can identify the map in the theorem with the
map αn−c : H∗−2c(Z,Z/ℓν(n−c)) → H∗−2c(Z,L/ℓν(n−c)). But αn−c is an
isomorphism, because BL(n-1) implies BL(n-c) by Theorem 2.9, Z is smooth,
and therefore Z/ℓν(n−c) ≃ L/ℓν(n−c) by Lemma 1.29.

Now assume that X is smooth over k, but Z is not necessarily smooth.

Corollary 2.25. If X is smooth and BL(n-1) holds, then αn induces an iso-
morphism for every closed subscheme Z with codimX Z > 0 and every ν:

H∗
Z(X,Z/ℓ

ν(n))
≃−→ H∗

Z(X,L/ℓ
ν(n)).

Proof. Because ℓ is prime to the characteristic of k, a transfer argument 1.2
shows that we may assume that k is a perfect field. We may also assume that
Z = Zred. Thus if Z

′ denotes the singular locus of Z then Z−Z ′ is smooth and
not empty.
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We proceed by induction on dim(Z). From (2.20) we see that we have a
morphism of long exact sequences for coefficients A = Z/ℓν(n) andB = L/ℓν(n):

· > H∗
Z′(X,A) > H∗

Z(X,A) > H∗
Z−Z′(X − Z ′, A) > H∗+1

Z′ (X,A)

·

∼=
∨

> H∗
Z′(X,B)

∼=
∨

> H∗
Z(X,B)

∨

> H∗
Z−Z′(X − Z ′, B)

∼=
∨

> H∗+1
Z′ (X,B).

∼=
∨

The second and fifth verticals are isomorphisms by induction. The first and
fourth verticals are isomorphisms by Theorem 2.24, because (X−Z ′, Z−Z ′) is
a smooth pair. The 5-lemma implies that the third vertical map is an isomor-
phism.

We can extend Theorem 2.24 to singular X using the following definition.

Definition 2.26. If Z is a closed subscheme of any scheme X, ZSm[X − Z]
is a subsheaf of ZSm[X]. We set ZZ [X] = ZSm[X]/ZSm[X − Z] and de-
fine Hp

Z(XSm,F) to be HomD(Sm/k)(ZZ [X],F [p]). If X is smooth, then
Hp
Z(XSm,F) is the usual group Hp

Z(X,F). By construction, and Definition
2.13, there is a long exact sequence

∂−→Hn
Z(XSm,F)→ Hn(XSm,F)→ Hn((X−Z)Sm,F) ∂−→Hn+1

Z (XSm,F)→ .

If X = X1∪X2 is the union of closed subschemes, and Zi = Z∩Xi, there is a
long exact sequence 0→ ZZ1∩Z2

[X1∩X2]→ ZZ1
[X1]⊕ZZ2

[X2]→ ZZ [X]→ 0.
Hence cohomology with supports satisfies Mayer–Vietoris for closed covers.

Recall that ∂∆m denotes Spec(k[t0, . . . , tm]/(
∏
ti, 1−

∑
ti), the union of all

maximal faces ∂i(∆
m−1) of the m-simplex. The (codimension p) faces are the

intersections F = ∩∂ir∆, i0 < · · · < ip; each face is smooth. The vertices of
∂∆m are its codimension m−1 faces; they are the points where one ti is 1 and
all other tj are zero. The next result is taken from [Sus03, 7.8] and [SV00a, 8.5].

Theorem 2.27. Let Z be any closed subscheme of ∂∆m missing the vertices.
If BL(n-1) holds, then

H∗
Z(∂∆

m
Sm,Z/ℓ

ν(n))
≃−→ H∗

Z(∂∆
m
Sm, L/ℓ

ν(n)).

Proof. (Suslin) By Mayer–Vietoris, the cohomology with supports of the cover
{∂i∆m} fits into Čech spectral sequences for F = Z/ℓν(n) and F = L/ℓν(n),

Ep,q1 (F) =
∏

faces F
codim(F )=p

Hq
Z∩F (F,F)⇒ Hp+q

Z (∂∆m
Sm,F),

and E∗(αn) is a natural morphism between the spectral sequences. Because Z
misses the vertices of each face, and the faces are smooth, Corollary 2.25 shows

that it is an isomorphism on the E1-page: Ep,q1 (Z/ℓν(n))
≃→ Ep,q1 (L/ℓν(n)).

Hence E∞(αn) is an isomorphism on the abutments, as asserted.
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2.5 Rationally contractible presheaves

A presheaf F on Sm/k is called contractible if there is a presheaf morphism
s : F → C1F = F(− × A1) so that i∗0s = 0 and i∗1s = idF , where i0, i1 : X →
X × A1 send x to (x, 0) and (x, 1), respectively.

The standard example of a contractible presheaf is ZSm[Am]/ZSm[0] (see
Definition 2.13); s is induced by sX : ZSm[Am](X)→ ZSm[Am](X×A1) sending
f : X → Am to the morphism sf : X × A1 → Am, (x, t) 7→ tf(x). In fact, if
v is any k-point of Am then ZSm[Am]/ZSm[v] is also contractible; one uses the
linear translation τsf : (x, t) 7→ tf(x) + v(1− t).

In a similar fashion, Ztr(A
m)/Ztr(0) is contractible; the contraction sX

sends a finite correspondence Z (from X to Am) to the finite correspon-
dence {(x, t, tv) : (x, v) ∈ Z} from X × A1 to Am. As before, the presheaf
Ztr(A

m)/Ztr(v) is also contractible for any k-point v of Am; one uses τsf .
It is enough for our purposes to have contractions which are only defined

“rationally,” i.e., that there is a neighborhood U of X × {0, 1} in X × A1 and
maps sX : F(X) → F(U) such that i∗0s = 0 and i∗1s = idF . In order to make
this functorial, we define C̃1F(X) to be the direct limit of the F(U), taken over
all neighborhoods U of X × {0, 1} in X × A1. This definition is natural in X,
so C̃1F is a presheaf on Sm/k. By construction, evaluation at {0, 1} yields
presheaf maps i∗0, i

∗
1 : C̃1F → F .

Definition 2.28. A presheaf F on Sm/k is called rationally contractible if there
is a presheaf morphism s : F → C̃1F so that i∗0s = 0 and i∗1s = idF .

Example 2.29. Any contractible presheaf is rationally contractible. In par-
ticular, ZSm[Am]/ZSm[0] and Ztr(A

m)/Ztr(0) are rationally contractible, and
so are ZSm[Am]/ZSm[v] and Ztr(A

m)/Ztr(v) for any k-point v, by the above
remarks.

If V is any open subscheme of Am containing the point v, the presheaves
ZSm[V ]/ZSm[v] and Ztr(V )/Ztr(v) are also rationally contractible. Indeed, the

composition if of a map (or correspondence) X
f→ V with V

i→ Am is a map
(or correspondence), and sX(if) : X × A1 → Am sends some neighborhood U
of X × {0, 1} into V ; f 7→ sX(if)|U defines the required morphism F → C̃1F
for these F . (This example is based on [SV00a, 9.6].)

These remarks apply to V = A1−{0}, V m and vm = (1, . . . , 1) to show
that Ztr(Gm) = Ztr(V )/Ztr(1) and Ztr(V

m)/Ztr(vm) are rationally contractible.
Since summands of rationally contractible presheaves are also rationally con-
tractible, they also apply to the smash product Ztr(G

∧m
m ), defined in [MVW,

2.12–13] as a direct summand of Ztr(V
m)/Ztr(vm) complementary to the m co-

ordinate inclusions of Ztr(V
m−1)/Ztr(vm−1). It follows that each Ztr(G

∧m
m ) is

rationally contractible.

We will need to evaluate rationally contractible sheaves on the following
semilocal version of ∆•. For each m, let ∆m

sl denote the semilocal scheme of ∆m

at its vertices. The coface and codegeneracies of ∆• restrict to maps between
the semilocal schemes, and make ∆•sl into a cosimplicial semilocal scheme.

June 27, 2018 - Page 37 of 281



Beilinson–Lichtenbaum

Proposition 2.30. ([Sus03, 2.5]) If F is rationally contractible, the chain com-
plex of abelian groups associated to F(∆•sl) is acyclic.

Proof. Let S denote the semilocal scheme of ∆m × ∆1 at the vertices v × 0,
v × 1, where v runs over the vertices of ∆m. Then F(S) = colimF(U) is
C̃1F(∆m

sl ) by construction so we have a map s : F(∆m
sl ) → F(S). Mimicking

the usual simplicial decomposition of ∆m × ∆1, we have m + 1 morphisms
ψi : ∆

m+1 → ∆m×∆1; ψi takes the initial i+1 vertices v to v×0 (0 ≤ v ≤ i+1)
and the remaining vertices v to (v − 1) × 1. Localizing, these maps induce
morphisms ∆m+1

sl → S and homomorphisms ψ∗
i : F(S) → F(∆m+1

sl ). Then
the chain contraction σ of F(∆•sl) is given by the standard formula σ(u) =∑

(−1)iψ∗
i (s(u)).

Corollary 2.31. 4 If F is rationally contractible, the augmented Čech complex
F(∆m

sl )→ Č({∂i∆m
sl };F) is acyclic, except at F(∆m

sl ).

Of course, the homology at F(∆m
sl ) is the kernel of F(∆m

sl )→
∏F(∂i∆m

sl ).

Proof. Reindex the augmented complex so that F(∆m
sl ) is in homological degree

m, and
∏F(v) is in degree 0. It was proven in [FS02, 1.2] that this augmented

complex is canonically quasi-isomorphic to the brutal truncation at homological
level m of the chain complex associated to the simplicial abelian group F(∆•sl).
As F(∆•sl) is acyclic by Proposition 2.30, its brutal truncation is acyclic except
at the truncation degree m.

Recall that CmF denotes the presheaf F(−×∆m).

Lemma 2.32. 4 If F is rationally contractible, so is CmF .

Proof. We may assume by induction that Cm−1F is rationally contractible with
section sm−1. Using the face ∂0 : ∆m−1 → ∆m and degeneracy s0, every
element of CmF(X) may be written uniquely as a sum s∗0(f)+ z for an element
f of Cm−1F(X) and an element z such that ∂∗0 (z) = 0. There is a similar
decomposition of C̃1(CmF), so we may view h = sm−1(f) as an element of
C̃1(CmF)(X) with i∗0(h) = 0 and i∗1(h) = f . Let µ : Am ×A1 → Am denote the
multiplication (v, t) 7→ tv. Identifying ∆m with Am = Spec(k[t0, ..., tm−1]), the
map

µ∗ : F(X ×∆m)→ F(X ×∆m × A1) = C1(CmF)(X)→ C̃1(CmF)(X)

sends z to an element such that ∂0(µ
∗z) = 0, i∗0(µ

∗z) = 0 and i∗1(µ
∗z) = z. We

define sm : CmF → C̃1(CmF) by (s∗0f + z) 7→ sm−1(f) + µ∗(z).

Theorem 2.33. 4 If F is a rationally contractible presheaf, the Čech complex
Č({∂i∆m

sl };C∗F) is acyclic in positive degrees.

4Our 2.31, 2.32 and 2.33 are taken from 2.6, 2.4 and 2.7 of [Sus03], respectively.
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Proof. The Čech complex is the total complex of a bounded fourth-quadrant
double complex whose −qth row is Č({∂i∆m

sl };CqF), with
∏
i CqF(∂i∆m

sl ) in
the (0,−q) spot. Since each CqF is rationally contractible by 2.32, the rows are
acyclic in degrees p > 0 by 2.31. The result follows from the spectral sequence
of a double complex, since Ep,q2 is zero unless p = 0 and q ≤ 0.

Proposition 2.34. If F is a rationally contractible sheaf with transfers, then

Hp((∂∆m
sl )Sm, C∗F) = 0 for p > 0.

Proof. C∗F is a complex of sheaves with homotopy invariant cohomology, so
by Proposition 2.19 the map Hq((∂∆m

sl )Sm, C∗F) → Hq Č({∂i∆m
sl };C∗F) is

an isomorphism. As the right side vanishes for q > 0 by 2.33, our statement
follows.

Corollary 2.35. Hp((∂∆m
sl )Sm,Z(n))=H

p((∂∆m
sl )Sm,Z/ℓ

ν(n))=0 for p>n.

Proof. Ztr(G
∧n
m ) is rationally contractible by 2.29, and C∗Ztr(G

∧n
m ) = Z(n)[n].

By 2.34, Hp((∂∆m
sl )Sm,Z(n))=Hp−n((∂∆m

sl )Sm, C∗Ztr(G
∧n
m )) vanishes for p>

n. This implies that the second group vanishes by the coefficient sequence.

2.6 Bloch–Kato implies Beilinson–Lichtenbaum

Recall from 1.26 that L/ℓ(n) denotes τ≤nRπ∗Z/ℓ(n)ét and that there is a nat-
ural morphism αn : Z/ℓ(n) → L/ℓ(n). The condition BL(n) is that αn is a
quasi-isomorphism of sheaves on Sm/k for any field k containing 1/ℓ, i.e., that

αn induces isomorphisms Hp(S,Z/ℓ(n))
≃−→ Hp(S,L/ℓ(n)) = Hp

ét(S, µ
⊗n
ℓ ) for

every smooth local scheme S over k and every p ≤ n.
One of the fundamental properties of a homotopy invariant presheaf with

transfers F is that F (V ) → F (S) is an injection for any dense open V of a
smooth semilocal scheme S; see [MVW, 11.1]. This property plays a key role in
our next result, which is based on Lemma 7.9 of [Sus03].

Lemma 2.36. Assume that Hn(k,Z/ℓ(n)) → Hn
ét(k, L/ℓ(n)) is onto for all

fields k with 1/ℓ ∈ k. Then α∗
n : Hn(SSm,Z/ℓ(n)) → Hn(SSm, L/ℓ(n)) is

a surjection for every semilocal scheme S which is a finite union of smooth
semilocal schemes, all of whose finite intersections are smooth.

Proof. Fix k and let C denote the presheaf cokernel of α∗
n. By assumption,

C(Spec E) = 0 for every field E over k. SinceHn(−,Z/ℓ(n)) andHn(−, L/ℓ(n))
are homotopy invariant presheaves with transfers on Sm/k, so is the cokernel
C of α∗

n. Hence C(S) = 0 for every smooth and semilocal S by [MVW, 11.1].
If S is not smooth, we use a trick due to Hoobler. The hypothesis on S

implies that we can write S as Spec(R/I) for a smooth semilocal algebra R;
let RhI denote the henselization of R along I. By Gabber’s rigidity theorem,
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Hn
ét(R

h
I , µ

⊗n
ℓ ) ∼= Hn

ét(S, µ
⊗n
ℓ ). Now RhI is the direct limit of étale extensions R′

of R, each of which is semilocal, so the lemma follows from the diagram

lim−→Hn(R′,Z/ℓ(n))
∼=
> Hn(RhI ,Z/ℓ(n)) > Hn(SSm,Z/ℓ(n))

lim−→Hn
ét(R

′, µ⊗n
ℓ )

onto
∨ ∼=

> Hn
ét(R

h
I , µ

⊗n
ℓ )

∼=
> Hn

ét(S, µ
⊗n
ℓ ),

∨

using the observation that Hn(SSm, L/ℓ(n)) ∼= Hn
ét(S, µ

⊗n
ℓ ) by Corollary 2.18.

Remark 2.36.1. The proof of Lemma 2.36 goes through if the coefficients Z/ℓ(n)
are replaced by Z/ℓν(n) or even Q/Z(ℓ)(n).

Theorem 2.37. Assume that Hn(k,Z/ℓ(n)) −→ Hn
ét(k, µ

⊗n
ℓ ) is onto for all

fields k with 1/ℓ ∈ k. Then for every field k with 1/ℓ ∈ k:
(a) BL(n) holds, i.e., αn : Z/ℓ(n) → L/ℓ(n) is a quasi-isomorphism of

complexes of sheaves on Sm/kzar.
(b) For all p ≤ n, we have an isomorphism:

Hp(αn) : H
p(k,Z/ℓ(n))→ Hp(k, L/ℓ(n)) ∼= Hp

ét(k, µ
⊗n
ℓ ).

Proof. Since the hypothesis holds for n − 1 by Corollary 2.12, we may use
induction on n to prove that (a) and (b) hold. Recall that ∂∆m

sl is obtained
from ∂∆m by removing Z, the union of all closed subschemes Zα missing the
vertices of ∂∆m. WriteH∗

Z(∂∆
m) for the direct limit of theH∗

Zα
(∂∆m

Sm
). By the

definition of cohomology with supports (2.26), we have a commutative diagram,
with Hp,n(X) in the first row denoting Hp(XSm,Z/ℓ(n)) and Hp,n

L (X) in the
second row denoting Hp(XSm, L/ℓ(n)).

Hn,n
Z (∂∆m) > Hn,n(∂∆m) > Hn,n(∂∆m

sl ) > · onto
> Hn+1,n(∂∆m)

Hn,n
Z,L(∂∆

m)

∼=
∨

> Hn,n
L (∂∆m)

∨

> Hn,n
L (∂∆m

sl )

onto
∨

> ·

∼=
∨

> Hn+1,n
L (∂∆m).

∨

The first and fourth vertical maps are isomorphisms by Theorem 2.27, because
BL(n-1) holds by induction. The third vertical is a surjection by Lemma 2.36
applied to S = ∂∆m

sl . It follows that the second vertical is a surjection. Taking
m = n + 1 − p, it follows from (2.15) that Hp(k,Z/ℓ(n)) → Hp(k, L/ℓ(n)) is
also a surjection.

By 2.35, we have Hn+1((∂∆m
sl )Sm;Z/ℓ(n)) = 0, so the final top horizontal

map is onto. A diagram chase shows that the final vertical is an injection. Taking
m = n + 2 − p, it follows from (2.15) that Hp(k,Z/ℓ(n)) → Hp(k, L/ℓ(n)) is
also an injection. This establishes (b).

For (a), we note that: (i) the cohomology presheaves Hp
zar(−,Z/ℓ(n)),

Hp(−,Rπ∗Z/ℓ(n)) and hence Hp
zar(−, L/ℓ(n)) are homotopy invariant by
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[MVW, 2.19] and [MVW, 9.24, 9.33], respectively; and (ii) αn induces isomor-
phisms on cohomology Hp(E,Z/ℓ(n)) ∼= Hp(E,L/ℓ(n)) for every field E over
k, by (b). Proposition 13.7 of [MVW] says that, because (i) and (ii) hold, αn is
a quasi-isomorphism.

2.7 Condition H90(n) implies BL(n)

In this section, we prove that H90(n) implies BL(n), and hence the conclusion
of Theorems A and B, as promised in Theorem 1.8 and Lemma 1.30. Recall
from Definition 1.5 that “H90(n) holds” means that Hn+1

ét (k,Z(ℓ)(n)) = 0 for
all fields k with 1/ℓ ∈ k.

By Lemma 1.6 there is an exact sequence

KM
n (k)⊗Q/Z(ℓ)

αn−→ Hn
ét(k,Q/Z(ℓ)(n))→ Hn+1

ét (k,Z(ℓ)(n))→ 0.

Thus Hn+1
ét (k,Z(ℓ)(n)) = 0 holds if and only if the map Hn(k,Q/Z(ℓ)(n)) →

Hn
ét(k,Q/Z(ℓ)(n)) is onto.

Theorem 2.38. Assume that H90(n) holds. Then BL(n) holds. In particular,
for every field k with 1/ℓ ∈ k, and all p ≤ n, the map Hp(αn) is an isomorphism.

Hp(αn) : H
p(k,Z/ℓ(n))→ Hp(k, L/ℓ(n)) ∼= Hp

ét(k, µ
⊗n
ℓ )

Proof. The assertion that Hp(αn) is an isomorphism for all fields implies BL(n),
that αn is a quasi-isomorphism of sheaves, by [MVW, 13.7], because Z/ℓ(n) and
L/ℓ(n) have homotopy invariant cohomology presheaves.

Write L/ℓ∞(n) for the truncation τ≤nRπ∗Q/Z(ℓ)(n)ét. Then for every
semilocal scheme S which is a finite union of smooth semilocal schemes, the

map Hn(S,Q/Z(ℓ)(n))
α∗n−→ Hn(S,L/ℓ∞(n)) is a surjection by 2.36.1. Therefore

the proof of Theorem 2.37(b) goes through with coefficients Q/Z(ℓ)(n) to prove
that

Hp(αn) : H
p(k,Q/Z(ℓ)(n))→ Hp(k, L/ℓ∞(n)) (2.38.1)

is an isomorphism for every field k with 1/ℓ ∈ k, and all p ≤ n. The theorem
now follows from the 5-lemma applied to the long exact cohomology sequence

for the coefficients 0→ Z/ℓ(n)→ Q/Z(ℓ)(n)
ℓ→ Q/Z(ℓ)(n)→ 0.

We conclude this section with a proof of Theorem 1.8, that H90(n)implies
the Beilinson–Lichtenbaum conjecture for n. We will also need the following
definition in Section 4.4.

Definition 2.39. Let T (n) denote the truncation τ≤n+1Rπ∗(Z(ℓ)(n)ét) of the
Nisnevich cochain complex representing étale motivic cohomology. We define
K(n) to be the cone of the canonical map Z(ℓ)(n)→ T (n), so that

Z(ℓ)(n)→ T (n)→ K(n)→
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is a triangle. From the remarks before 2.10, K(n) and T (n) are motivic com-
plexes.

We have Hn+1(Y•, T (n)) ∼= Hn+1
ét (Y•,Z(ℓ)(n)) for every smooth simplicial

Y•, because H
p(Y•, τ

>n+1C) = 0 for p ≤ n+ 1 and any complex C.

Lemma 2.40. If H90(n) holds, the Zariski sheaf associated to Hn+1
ét (−,Z(ℓ)(n))

is zero.

Proof. Hn+1
ét (−,Z(ℓ)(n)) is a presheaf with transfers by [MVW, 6.21]. It is

homotopy invariant by the 5-lemma, because the presheaves Hp
ét(−,Q/Z(ℓ)(n))

and Hp
ét(−,Q(n)) are homotopy invariant for all p; see [MVW, 9.24, 9.33, 14.26].

By [MVW, 11.2], it suffices to show that Hn+1
ét (E,Z(ℓ)(n)) = 0 for every field

E; this is exactly the assumption that H90(n) holds.

Theorem 2.41. 5 Assume that H90(n) holds. Then Z(ℓ)(n)→ T (n) is a quasi-
isomorphism.

Proof. It suffices to show that the cohomology sheaves are isomorphic, i.e.,
that Hp(X,Z(ℓ)(n)) → Hp(X,T (n)) is an isomorphism for every p and every
smooth hensel local X; this is trivial for p > n + 1. For p = n + 1, it holds
because both terms are zero by Lemma 2.40. For p ≤ n, we need to show
that Hp(X,Z(ℓ)(n))→ Hp(X,T (n)) ∼= Hp

ét(X,Z(ℓ)(n)) is an isomorphism. The
cohomology sequence

Hp(X,Z(ℓ)(n)) > Hp(X,Q(n)) > Hp(X,Q/Z(ℓ)(n)) > Hp+1(X,Z(ℓ)(n))

Hp
ét(X,Z(ℓ)(n))

∨

> Hp
ét(X,Q(n))

=
∨

> Hp
ét(X,Q/Z(ℓ)(n))

BL(n)
∨

> Hp+1
ét (X,Z(ℓ)(n))

∨

shows that it suffices to show that Hp(X,Q/Z(ℓ)(n)) → Hp
ét(X,Q/Z(ℓ)(n)) is

an isomorphism for all p ≤ n. This is just equation (2.38.1).

Corollary 2.42. 5 Assume that H90(n) holds. Then for any simplicial scheme
X we have Hp,q(X,Z/ℓν)→ Hp

ét(X,Z/ℓ
ν(q)) is an isomorphism for p ≤ q ≤ n.

That is, property H90(n) implies Theorem B in the Introduction. Corollary
2.42 is the converse of Theorem 1.7.

Proof. Recall from 1.26 and 2.39 that L(n) and T (n) denote the Nisnevich
complexes τ≤nRπ∗Zℓ(n)ét and τ≤n+1Rπ∗Zℓ(n)ét, respectively. Tensoring the
quasi-isomorphism Z(ℓ)(n)

∼−→ T (n) with Z/ℓν yields a quasi-isomorphism

Z/ℓν(n)
∼−→ τ≤n

(
T (n)⊗L Z/ℓν

) ∼−→ L(n)⊗ Z/ℓν = L/ℓν(n).

5Theorem 2.41 and Cor. 2.42 are Theorem 6.6 and Cor. 6.9 of [Voe03a], using Cor. 1.31.
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2.8 Historical notes

In the early 1980’s, S. Lichtenbaum [Lic84, §3] and A. Beilinson [Bĕı87, 5.10.D]
formulated a set of conjectures describing the then-hypothetical complexes of
sheaves Z(n) and properties they should enjoy. Among these properties are the
assertions 1.5 and 1.28 that BL(n) and H90(n) hold.

The idea that the Beilinson–Lichtenbaum conjectures are closely related to
the Bloch–Kato conjecture was worked out by Suslin and Voevodsky in July
1994, during a conference in Villa Madruzzo in Trento, Italy. The equivalence
of BL(n) with the Bloch–Kato conjecture first appeared in preprint form in
1995; the published version [SV00a] is a greatly expanded version. This result,
together with the fact that H90(n) implies the Bloch–Kato conjecture, was used
in Voevodsky’s 1996 preprint [Voe96] to prove Milnor’s conjecture; a reworked
version of this proof appeared in print as [Voe03a].

The original Suslin–Voevodsky proof that BL(n) was equivalent to the
Bloch–Kato conjecture required resolution of singularities. Subsequent modi-
fications due to Geisser–Levine [GL01, 1.1] and Suslin [Sus03] have allowed us
to remove this assumption. A key role is played by the notion of a rationally
contractible presheaf; although this briefly appeared in [SV00a, 9.5], our presen-
tation follows Suslin’s treatment in [Sus03]. Our Section 2.6 is based on Section
7 of [SV00a]. What appears in this chapter is an even further streamlined ver-
sion, using the construction of F−1 (2.1) and the Cancellation Theorem (in the
proof of Lemma 2.21).
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Chapter 3

Hilbert 90 for KM
n

In this chapter, we formulate a norm-trace relation for the Milnor K-theory and
étale cohomology of a cyclic Galois extension, which we call Hilbert 90 for KM

n .
In Theorem 3.2, we prove that it follows from the condition BL(n).

In section 3.2, condition BL(n) is used to establish a related exact sequence
in Galois cohomology (Theorem 3.6). Section 3.3 proves Theorem 3.11 (stated
as Theorem 1.10 in Chapter 1), establishing that condition BL(n-1) implies the
particular case of condition H90(n) for ℓ-special fields k such that KM

n (k) is
ℓ-divisible. This case constitutes the first part of the inductive step in the proof
of Theorem A; the remainder of this monograph explains how to reduce the
general case to this particular one.

Section 3.4 uses Theorem 3.2 (for KM
n−1) to construct nonzero cohomology

elements δ ∈ Hn,n−1(X,Z/ℓ) and µ ∈ H2b+1,b(X,Z/ℓ), where b = d/(ℓ − 1)
and X is the simplicial scheme associated to a Rost variety X of dimension
d = ℓn−1−1 associated to an n-symbol. This will be used in section 5.4 to show
that Rost motives exist.

3.1 Hilbert 90 for KM
n

Let E/k be a cyclic Galois extension of degree ℓ and Galois group G = 〈σ〉. The
classical Hilbert Theorem 90 says that H1(G,E×) = 0, i.e., that the sequence

E× 1−σ−→ E×
NE/k−→ k× is exact; see [Wei94, 6.4.8]. Here is the generalization from

KM
1 (k) = k× to KM

n (k).

Definition 3.1. We say that a field k satisfies Hilbert 90 for KM
n if for every

Galois extension E/k of degree ℓ and Galois group G = 〈σ〉, the sequence

KM
n (E)

1−σ−→ KM
n (E)

NE/k−→ KM
n (k) is exact.

This sequence is always exact modulo ℓ-torsion, and the cokernel of NE/k is
ℓ-torsion. This is because (a) the usual transfer argument 1.2 implies that the
map KM

n (k) → KM
n (E)G is an isomorphism modulo ℓ-torsion, split by NE/k,

and (b) AG→AG is also an isomorphism modulo ℓ-torsion for any G-module A.
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Recall from 1.28 that BL(n) holds if Z/ℓ(n)
αn→ L/ℓ(n) is a quasi-isomorphism

for any field k containing 1/ℓ.

Theorem 3.2. If BL(n) holds, then any field k of characteristic 6= ℓ satisfies
Hilbert 90 for KM

n . That is, for every Galois extension E/k of degree ℓ, with
cyclic Galois group G = 〈σ〉, the following sequence is exact:

KM
n (E)

1− σ
> KM

n (E)
NE/k

> KM
n (k).

Proof. (Merkurjev) Since the sequence is exact up to ℓ-torsion, we may localize
at ℓ. Since BL(n) implies that KM

n (k)(ℓ) ∼= Hn
ét(k,Z(ℓ)) by Lemma 1.29(d), we

are reduced to establishing exactness of the corresponding cohomology sequence.
Writing Z(ℓ)[G](n) for the induced representation Z[G] ⊗ Z(ℓ)(n), Shapiro’s

Lemma [Wei94, 6.3.2, 6.3.4] implies that Hn
ét(E,Z(ℓ)(n)) ∼= Hn

ét(k,Z(ℓ)[G](n)),
and that the composition with the augmentation map Hn

ét(k,Z(ℓ)[G](n)) →
Hn

ét(k,Z(ℓ)(n)) is the transfer map. Let I denote the augmentation ideal of
the group ring Z[G]; it is generated by 1 − σ and fits into an exact sequence

0→ Z
N−→ Z[G]

1−σ−→ I → 0. Tensoring with Z(ℓ)(n) and taking cohomology, we
have an exact sequence

Hn
ét(k,Z(ℓ)[G](n))

1−σ−→ Hn
ét(k, I(ℓ)(n))→ Hn+1

ét (k,Z(ℓ)(n)).

Since BL(n) holds, so does H90(n), by Lemma 1.30. That is, the term on the
right vanishes, and therefore the left map is onto.

Tensoring 0→ I → Z[G]→ Z→ 0 with Z(ℓ)(n) and taking cohomology, we
have the exact sequence forming the bottom row of the commutative diagram:

KM
n (E)(ℓ)∼=Hn

ét(k,Z(ℓ)[G](n))
1− σ

> KM
n (E)(ℓ)

NE/k
> KM

n (k)(ℓ)

Hn
ét(k, I(ℓ)(n))

onto 1− σ
∨

> Hn
ét(k,Z(ℓ)[G](n))

∼=
∨ tr

> Hn
ét(k,Z(ℓ)(n)).

∼=
∨

The theorem now follows from a diagram chase.

Recall (1.9) that a field k is called ℓ-special if 1/ℓ ∈ k and k has no finite field
extensions of degree prime to ℓ. The next result will be used in Theorem 3.11.

Proposition 3.3. ([Voe03a, 5.6]) Suppose that k is ℓ-special and that every
finite extension of k satisfies Hilbert 90 for KM

n−1. Then for every degree ℓ field
extension E/k such that NE/k : KM

n−1(E) → KM
n−1(k) is onto, the Hilbert 90

sequence for KM
n is also exact:

KM
n (E)

1−σ−→ KM
n (E)

NE/k−→ KM
n (k)→ 0.
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Proof. Given a = {a2, . . . , an} ∈ KM
n−1(k), choose b ∈ KM

n−1(E) with NE/k(b) =
a. Since NE/k({a1, b}) = {a1, N(b)} = {a1, . . . , an}, it follows that the norm
NE/k : K

M
n (E)→ KM

n (k) is onto.
Define φ(a1, a) to be the chosen element {a1, b} of KM

n (E). By Hilbert 90
for KM

n−1, a different choice of b differs by an element (1 − σ)(c), and alters
φ(a1, a) by (1− σ){a1, c}. Thus φ and NE/k determine well-defined maps

(k×)⊗KM
n−1(k)

φ−→ KM
n (E)/(1− σ) N̄E/k

> KM
n (k)

with N̄E/kφ(a1⊗a) = {a1, a}. By Lemma 3.4, KM
n (E) is generated by symbols

{a1, b} with a1 ∈ k× and b ∈ KM
n−1(E). Since {a1, b} = φ(a1⊗N(b)), φ is onto.

We claim that φ factors through KM
n (k), which is the quotient of k× ⊗

KM
n−1(k) by the subgroup J generated by symbols η = a1⊗a with a1 = 1−a2 and

a = {a2, ..., an}. Since N̄E/kφ̄ is the identity on KM
n (k), and φ̄ is a surjection,

it will follow that N̄E/k is an injection, as desired.
Fix η in J and set α = ℓ

√
a1. If α ∈ E then NE/k(1 − α) = a2 and φ(η) =

{αℓ, 1−α, a3, . . . } = 0. Otherwise, we pick b ∈ KM
n−1(E) with NE/k(b) = a and

note that the image b|E(α) of b in K
M
n−1(E(α)) satisfies

NE(α)/k(α)(b|E(α)) = NE/k(b)|k(α) = a|k(α) = NE(α)/k(α)({1− α, a3, . . . }).

Because the extension E(α)/k(α) satisfies Hilbert 90 forKM
n−1, we have b|E(α) =

{1−α, a3, . . . }+(1−σ)c in KM
n−1(E(α)) for some c. Thus φ(η) = {a1, b} equals

NE(α)/E({α, b}) = NE(α)/E({α, 1− α, a3 . . . }) + (1− σ)NE(α)/E{α, c},

which is zero in KM
n (E)/(1− σ), as claimed.

Lemma 3.4. If k is ℓ-special and [E : k] = ℓ, then KM
n (E) is generated by

symbols of the form {x, a2 . . . , an} with x ∈ E× and the ai ∈ k×.

Proof. (Tate) By induction, we may assume that n = 2. If E = k(u) then every
element of E is a polynomial in u of degree < ℓ, and is a product of linear terms
since k is ℓ-special. Terms {x, y} in which one factor is in k× have the desired
form, so it suffices to consider the linear symbols {x, y}, where x = u− a1 and
y = u− a2. Since {x, x} = {−1, x} we may assume that a = a2 − a1 is nonzero.
Since 1 = (a/x) + (y/x) we have

0 = {(a/x), (y/x)} = {a, (y/x)}−{x, (y/x)} = {a, y}−{a, x}−{x, y}+{−1, x},

which shows that {x, y} has the desired form.

We conclude this section with the analogue of Hilbert 90 for KM
n /ℓ. Suppose

that k satisfies Hilbert 90 for KM
n (3.1). Then we have an exact sequence

KM
n (k)/ℓ⊕KM

n (E)/ℓ
(incl∗, 1− σ)

> KM
n (E)/ℓ

NE/k
> KM

n (k)/ℓ.
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To see this, consider the image x̄ ∈ KM
n (E)/ℓ of some x ∈ KM

n (E). IfNE/k(x̄) =
0 in KM

n (k)/ℓ, then NE/k(x) = ℓy for some y ∈ KM
n (k); then by Hilbert 90,

x− y = (1− σ)z for some z ∈ KM
n (E).

Provided that BL(n) holds, this yields an exact sequence in Galois cohomol-
ogy:

Hn
ét(k, µ

⊗n
ℓ ) > Hn

ét(E, µ
⊗n
ℓ )/(1− σ) N

> Hn
ét(k, µ

⊗n
ℓ ). (3.5)

3.2 A Galois cohomology sequence

Recall that the nonzero elements of H1
ét(k,Z/ℓ) = Hom(Gal(k̄/k),Z/ℓ) classify

the Galois extensions E/k with [E : k] = ℓ. If k contains the ℓth roots of unity
then E = k( ℓ

√
a) for some a and [E] ∈ H1

ét(k,Z/ℓ) corresponds to [a] under the
Kummer isomorphism H1

ét(k,Z/ℓ)
∼= k×/k×ℓ.

Theorem 3.6. 1 Assume that BL(n) holds, and that k contains the ℓth roots of
unity. If E/k is a cyclic Galois field extension of degree ℓ then the cup product
with [E] ∈ H1

ét(k,Z/ℓ) fits into an exact sequence

Hn
ét(E,Z/ℓ)

N−→ Hn
ét(k,Z/ℓ)

∪[E]−→ Hn+1
ét (k,Z/ℓ)→ Hn+1

ét (E,Z/ℓ).

Example 3.7. When ℓ = 2, the exact sequence of Theorem 3.6 is part of the
cohomology long exact sequence associated to 0→ Z/2 → Z/2[G]→ Z/2→ 0:

Hn
ét(E,Z/2)

N−→ Hn
ét(k,Z/2)

∂2−→ Hn+1
ét (k,Z/2)→ Hn+1

ét (E,Z/2).

Indeed, an elementary cochain calculation shows that the map ∂2 is the cup
product with [E]. Thus we can and shall assume that ℓ > 2.

When ℓ > 2, the sequence of 3.6 does not extend to the left, even for n = 1.

The proof of Theorem 3.6 will be given at the end of this section. For the
proof, it is convenient to introduce the following notation. Let Fℓ = Z/ℓ[G],
with G = Gal(E/k) and hence Gal(k̄/k) acting via the coinduced structure:
Fℓ = coindG1 (Z/ℓ). By Shapiro’s Lemma, the Galois cohomology H∗

ét(k, Fℓ) is
H∗

ét(E,Z/ℓ) and the map N : H∗
ét(E,Z/ℓ) → H∗

ét(k,Z/ℓ) is induced by the
quotient map Fℓ → Z/ℓ.

There is a G-module filtration 0 ⊂ Z/ℓ = F1 ⊂ F2 ⊂ · · · ⊂ Fℓ−1 ⊂ Fℓ, where
Fi is the kernel of (1 − σ)i : Fℓ → Fℓ and Fi/Fi−1

∼= Z/ℓ. For i > j there is
a canonical surjection Fi → Fj sending c to (1 − σ)i−jc, with kernel Fi−j . For
each i ≤ ℓ we write γi for the exact sequence γi : 0 → Fi−1 → Fi → Z/ℓ → 0.

We will write η for the exact sequence 0→ Z/ℓ→ Fℓ
s→ Fℓ−1 → 0.

Since the cohomology H1(G,−) is defined to be Ext1Z[G](Z/ℓ,−), the G-

module extensions γi define elements [γi] of H
1(G,Fi−1). The restriction map

res : H1(G,Fi−1)→ H1
ét(k, Fi−1) sends [γi] to an element [γi]ét of H

1
ét(k, Fℓ−1).

Using i : Z/ℓ = F1 →֒ Fℓ−1, we can compare [γℓ]ét to a multiple of i∗[γ2]ét.

1When k is ℓ-special, this is proven in [Voe03a, 5.2]
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Lemma 3.8. For some c ∈ Z/ℓ, the element [γℓ]ét − i∗(c [ζ]ét) is in the image
of the canonical map H1

ét(k, Fℓ)→ H1
ét(k, Fℓ−1), induced by s : Fℓ → Fℓ−1.

Proof. The boundary map ∂γ : Hn(G,Z/ℓ)→ Hn+1(G,Z/ℓ) associated to γ2 is
the cup product with ∂γ(1) = [γ2]. Under the boundary map

∂η : H1(G,Fℓ−1)→ H2(G,Z/ℓ) ∼= Ext2G(Z/ℓ,Z/ℓ)

associated to the sequence η : 0 → Z/ℓ → Fℓ
s−→ Fℓ−1 → 0, [γℓ] maps to the

class α of the extension

α : 0→ Z/ℓ→ Fℓ
σ−1

> Fℓ → Z/ℓ→ 0.

Since H∗(G,Z/ℓ) ∼= Z/ℓ[u, v]/(u2) with Bockstein β(u) = v, and both [γ2] and
α are nonzero, it follows that

∂η([γℓ]) = α = cβ([γ2]) for a nonzero c ∈ Z/ℓ. (3.8a)

The morphism γ2 → η of exact sequences yields the commutative diagram:

H1
ét(k,Z/ℓ)

∂γ
> H2

ét(k,Z/ℓ)

H1
ét(k, Fℓ)

s∗
> H1

ét(k, Fℓ−1)

i∗∨
∂η
> H2

ét(k,Z/ℓ)

www (3.8b)

we see that for every u ∈ H1
ét(k,Z/ℓ),

∂η(i∗u) = ∂γ(u) = [γ2]ét ∪ u. (3.8c)

Similarly, the choice of a root of unity ζ determines an isomorphism Z/ℓ ∼=
µℓ, and the Bockstein β : Hn

ét(k,Z/ℓ) → Hn+1
ét (k,Z/ℓ) (the boundary map

associated to 1→ µℓ → µℓ2 → µℓ → 1) is the cup product with β(1) = [ζ]ét. In
particular,

β([γ2]ét) = [γ2]ét ∪ [ζ]ét. (3.8d)

Combining (3.8a) and (3.8d) yields ∂η([γℓ]ét) = c[γ2]ét ∪ [ζ]ét. By (3.8c)
with u = [ζ]ét, we have ∂η(c i∗[ζ]ét) = c[γ2]ét ∪ [ζ]ét. It follows from (3.8b) that
[γℓ]ét − c i∗[ζ]ét comes from an element of H1

ét(k, Fℓ).

Lemma 3.9. Assume that BL(n) holds, and k contains µℓ. Then the canonical
map (i, s) : Z/ℓ⊕ Fℓ → Fℓ−1, (y, z) 7→ y + (1− σ)z, induces a surjection

Hn
ét(k,Z/ℓ)⊕Hn

ét(k, Fℓ)→ Hn
ét(k, Fℓ−1).

Proof. By (3.5), we see that if x ∈ Hn
ét(E,Z/ℓ) = Hn

ét(k, Fℓ) has N(x) = 0 then
x = yE+(1−σ)z for some z ∈ Hn

ét(k, Fℓ) and some image yE of a y ∈ Hn
ét(k,Z/ℓ).

Now the composite Fℓ → Fℓ−1 → Fℓ is the cup product with 1− σ, so from the
exact cohomology sequence of γℓ,

Hn−1
ét (k,Z/ℓ)

∂−→ Hn
ét(k, Fℓ−1)→ Hn

ét(k, Fℓ)
N−→ Hn

ét(k,Z/ℓ),
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we see that every element of Hn
ét(k, Fℓ−1) is equivalent modulo the image of

Hn
ét(k,Z/ℓ) ⊕ Hn

ét(k, Fℓ) to an element ∂(t) for some t ∈ Hn−1(k,Z/ℓ). Since
∂(t) is the cup product of t with the canonical element [γℓ]ét in the image of

H0(k,Z/ℓ)
∂→ H1(k, Fℓ−1), it suffices to observe that, according to Lemma 3.8,

[γℓ]ét is a multiple of i∗[ζ]ét plus the image of an element in H1
ét(k, Fℓ).

Proposition 3.10. 2 Suppose that BL(n) holds, µℓ ⊂ k× and that 1 < i ≤ ℓ.
Then the canonical maps Z/ℓ⊕ Fi → Fi−1 induce a surjection

Hn
ét(k,Z/ℓ)⊕Hn

ét(k, Fi)→ Hn
ét(k, Fi−1).

Proof. The case i = ℓ is established in Lemma 3.9, so we may suppose that
i < ℓ. Consider the diagram with exact rows, induced by γi+1 → γi:

Hn−1
ét (k,Z/ℓ) > Hn

ét(k, Fi) > Hn(k, Fi+1)

Hn−1
ét (k,Z/ℓ)

www
δ
> Hn

ét(k, Fi−1)
∨

> Hn
ét(k, Fi)

N
>

1− σ
>

Hn
ét(k,Z/ℓ).

Hn
ét(k,Z/ℓ)

∧

A diagram chase shows that the conclusion of Proposition 3.10 for i < ℓ is
equivalent to the assertion that the following sequence is exact:

Hn
ét(k,Z/ℓ)→ Hn

ét(k, Fi)/(1− σ)
N−→ Hn

ét(k,Z/ℓ). (3.10a)

We will prove that (3.10a) is exact by downward induction on i. It is exact
when i = ℓ, because it agrees with (3.5), which we saw is exact when BL(n)
holds. Thus we may assume that i < ℓ and that (3.10a) is exact for i + 1, or
equivalently, that Proposition 3.10 holds for i+ 1.

Hence we can write any element ofHn
ét(k, Fi) as xi+ȳ for x ∈ Hn

ét(k,Z/ℓ) and
y ∈ Hn

ét(k, Fi+1), where xi and ȳ represent the images of x and y in Hn
ét(k, Fi).

To check that (3.10a) is exact, we suppose that N(xi + ȳ) = 0 in Hn
ét(k,Z/ℓ).

Because i > 1, the composition Z/ℓ→ Fi → Z/ℓ is zero; since N is induced by
the natural map Fi → Z/ℓ, we have N(xi) = 0, so y ∈ Hn

ét(k, Fi+1) maps to zero
in Hn

ét(k,Z/ℓ). By exactness of (3.10a) for i+1 we can write y = (1−σ)t+x′ for
x′ in the image of Hn

ét(k,Z/ℓ) and t ∈ Hn
ét(k, Fi+1). Since Z/ℓ → Fi+1 → Fi is

zero, ȳ is the image of (1−σ)t in Hn
ét(k, Fi). Since the G-module map Fi+1 → Fi

induces a G-map on cohomology, we see that ȳ = (1−σ)t̄. This proves exactness
of (3.10a) for i, which implies that Proposition 3.10 holds for i.

Proof of Theorem 3.6. Recall from Example 3.7 that we may assume that ℓ > 2.

Let η denote the exact sequence 0→ Z/ℓ→ Fi
1−σ−→ Fi−1 → 0. The morphisms

2Taken from [Voe03a, 5.4b]
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γi → γ2 → η yield a commutative diagram with exact rows for each i ≤ ℓ:

Hn
ét(k, Fi−1) > Hn

ét(k, Fi)
N
> Hn

ét(k,Z/ℓ)

3.10

Hn
ét(k,Z/ℓ)

∨

> Hn
ét(k, F2)

∨ N
> Hn

ét(k,Z/ℓ)

www
∪ [E]

> Hn+1
ét (k,Z/ℓ) > Hn+1

ét (k, F2)

3.10

Hn
ét(k, Fi)

∨

> Hn
ét(k, Fi−1)

∨ δ
> Hn+1

ét (k,Z/ℓ)

www
> Hn+1

ét (k, Fi)

∨

In the two squares marked ‘3.10’, the lower right group is the sum of the images
of the indicated maps, by Proposition 3.10. A chase on the above diagram shows
that we have an exact sequence for each i:

Hn
ét(k, Fi)

N−→ Hn
ét(k,Z/ℓ)

∪ [E]−→ Hn+1
ét (k,Z/ℓ)→ Hn+1

ét (k, Fi).

Exactness of this sequence for i = ℓ is the desired conclusion of Theorem 3.6.

3.3 Hilbert 90 for ℓ-special fields

By Theorem 3.2, BL(n-1) implies that every field of characteristic 6= ℓ satisfies
Hilbert 90 for KM

n−1. Our next theorem was used in section 1.2 (as Theorem
1.10) to prove that the norm residue map is an isomorphism.

Theorem 3.11. 3 Suppose that k is ℓ-special, KM
n (k)/ℓ = 0 and BL(n-1) holds.

(a) Hn
ét(k,Z/ℓ) = 0, and

(b) Hn+1
ét (k,Z(ℓ)(n)) = 0.

In addition, for every finite field extension E/k:

(c) KM
n−1(E)

N−→ KM
n−1(k) is onto;

(d) KM
n (E)/ℓ = 0;

Proof. We first prove (c) and (d). Since k is ℓ-special, we may assume that
[E : k] = ℓ. In this case, E = k( ℓ

√
a) for some a ∈ k. Consider the commutative

diagram

KM
n−1(E)

N
> KM

n−1(k)
∪[a]

> KM
n (k)/ℓ

Hn−1
ét (E,Z/ℓ)

onto
∨

N
> Hn−1

ét (k,Z/ℓ)

onto
∨ ∪[a]

> Hn
ét(k,Z/ℓ).

∨

Since BL(n-1) holds, Theorem 3.6 implies that the bottom row is exact; the left
two vertical maps are onto by Lemma 1.30. The upper right term vanishes by
assumption, and the kernel ℓKM

n−1(k) of the middle vertical map is contained in
the image of KM

n−1(E), so a diagram chase shows that (c) holds.

3Parts (c) and (d) are taken from [Voe03a, 5.7 and 5.8]
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By (c), the hypotheses of Proposition 3.3 are satisfied, yielding a right exact
sequence

KM
n (E)

1−σ−→ KM
n (E)

N−→ KM
n (k).

Reducing it modulo ℓ shows that (1 − σ) is a surjection from KM
n (E)/ℓ onto

itself. But (1−σ)ℓ is zero on any Gal(E/k)-module of exponent ℓ, so KM
n (E)/ℓ

must be zero. Thus (d) holds.
For (a), suppose that x ∈ Hn

ét(k,Z/ℓ) is nonzero. Since x vanishes over the
algebraic closure k̄ of k, it vanishes over some finite field extension E; pick E
minimal so that xE = 0 in Hn

ét(E,Z/ℓ). Because Gal(E/k) is a finite ℓ-group, it
has a subgroup H of order ℓ, corresponding to an intermediate subfield k′ with
[E : k′] = ℓ. By the minimality of E, x remains nonzero in Hn

ét(k
′,Z/ℓ).

Since E = k′( ℓ
√
a) is a cyclic Galois extension of k′, Theorem 3.6 yields the

exact sequence

Hn−1
ét (k′,Z/ℓ)

∪[a]−→ Hn
ét(k

′,Z/ℓ)→ Hn
ét(E,Z/ℓ),

Since BL(n-1) implies that KM
n−1(k

′)/ℓ ∼= Hn−1
ét (k′,Z/ℓ), and x vanishes in

Hn
ét(E,Z/ℓ), there is an element y of KM

n−1(k
′) such that the norm residue

KM
n (k′)/ℓ → Hn

ét(k
′,Z/ℓ) sends {y, a} to x. Since KM

n (k′)/ℓ = 0 by (d), it
follows that {y, a} = 0, contradicting the assumption that x 6= 0 in Hn

ét(k
′,Z/ℓ).

(b) We observed in Lemma 1.6 that Hn+1
ét (k,Z(ℓ)(n)) is an ℓ-torsion group.

The coefficient sequence for Z(ℓ)(n)
ℓ→ Z(ℓ)(n) shows that (a) implies (b).

3.4 Cohomology elements

Using the cohomology operations Qi, we will show that any nonzero element
a = {a1, . . . , an} of KM

n (k)/ℓ gives rise to nonzero elements δ ∈ Hn,n−1(X,Z/ℓ)
and µ ∈ H2b+1,b(X,Z), where X is the simplicial scheme associated to a Rost
variety X (see 1.24), and b = (ℓn−1 − 1)/(ℓ− 1).

We first show that the norm residue map is non-zero on symbols. To prove
this, we will use the étale cohomology calculation contained in Theorem 3.6.

Lemma 3.12. Suppose that BL(n-1) holds, and that k satisfies Hilbert 90 for
KM
n−1. If {a1, . . . , an} is a nonzero symbol in KM

n (k)/ℓ, its image in Hn
ét(k, µ

⊗n
ℓ )

is nonzero.

Proof. By the standard transfer argument 1.2, we may assume k has no prime-
to-ℓ extensions. For E = k(γ), γ = ℓ

√
an, we have a commutative diagram

KM
n−1(E)/ℓ

norm
> KM

n−1(k)/ℓ
∪an

> KM
n (k)/ℓ

Hn−1
ét (E,Z/ℓ)

∼=
∨

norm
> Hn−1

ét (k,Z/ℓ)

∼=
∨ ∪[an]

> Hn
ét(k,Z/ℓ)

∨

> Hn
ét(E,Z/ℓ)
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in which the marked vertical maps are isomorphisms by BL(n-1) and 1.29(d),
and the bottom row is exact by Theorem 3.6. If {a1, . . . , an−1} ∪ {an} =
{a1, . . . , an} vanishes in Hn

ét(k,Z/ℓ) then {a1, . . . , an−1} is the norm of some
s ∈ KM

n−1(E)/ℓ. But then {a1, . . . , an} is the norm of {s, an} = {s, γ}ℓ = 0 and
hence is zero.

Lemma 3.13. Assume that BL(n-1) holds. If a smooth variety X splits a
nonzero a ∈ KM

n (k)/ℓ, then a lifts to a unique nonzero δ in Hn(X,Z/ℓ(n− 1)).

Proof. (See [Voe11, 6.5].) Set A = Z/ℓ(n−1), so Aét
∼= µ⊗n−1

ℓ . By the standard
transfer argument 1.2, we may assume that k contains µℓ, so that Aét

∼= µ⊗n
ℓ as

well. Write C for the cone of A→ Rπ∗(Aét).
Now the hypercohomology spectral sequence for any smooth simplicial

scheme S• is Hp
nis(S•,Hq) ⇒ Hp+q

nis (S•, C), where Hq denotes the Nisnevich
sheaf associated to Hq

nis(−, C). By BL(n-1) we have C ∼= τ≥nRπ∗(Aét),
so Hq is 0 for q < n, and the Nisnevich sheaf associated to Hq

ét(−, C) if
q ≥ n. Hence the spectral sequence degenerates to yield Hn−1

nis (S•, C) = 0

and Hn
nis(S•, C)

≃−→ H0(S•,Hn). Thus for S• = X we have the exact sequence
forming the top row of the diagram:

δ > a > 0

0 = Hn−1
nis (X, C) > Hn

nis(X, A) > Hn
ét(X, A) > H0

nis(X,Hn)

Hn
ét(k,A)

∼= 1.37
∧

> Hn
ét(k(X), A).

into
∨

We claim that the right vertical is an injection. It is defined as the composi-
tion H0(X,Hn) → H0(X,Hn) → H0(k(X),Hn) = Hn

ét(k(X), A). The first of
these maps is an injection because for any simplicial scheme S• and any sheaf
F , H0(S•,F) embeds in H0(S0,F). Since the sheaf F = Hn is a homotopy
invariant Nisnevich sheaf with transfers by [MVW, 6.17 and 22.3], H0(X,Hn)
embeds in Hn

ét(k(X), A) by [MVW, 11.1]. This establishes the claim.
The image of a in Hn

ét(k, µ
⊗n
ℓ ) is nonzero by Lemma 3.12 (and 3.2), and

vanishes in Hn
ét(k(X), µ⊗n

ℓ ) by hypothesis. It follows that a lifts to a nonzero δ
in Hn

nis(X, A); δ is unique because Hn−1
nis (X, C) = 0.

Lemma 3.14. Suppose for some i ≥ 1 that (a, b) and (c, d) in Z2 satisfy

(a, b) + 2(2ℓi−1− 1, ℓi−1− 1) = (c, d) + (2ℓi − 1, ℓi − 1).

If (a, b) is in the plane region Ω = {(x, y) : x− 1 ≤ y < n} then so is (c, d).

Proof. For ℓ = 2 we have (c− a, d− a) = (−1,−1). As a function of ℓ, d− b is
decreasing for ℓ ≥ 2i/(i+ 1), and c− a = 2(d− b) + 1.

Recall from Definition 1.36 and Corollary 1.38 that the group Hp,q(X,Z) has
exponent ℓ when p > q, and hence injects into Hp,q(X,Z/ℓ). In fact, Hp,q(X,Z)
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is the kernel of the Bockstein β : Hp,q(X,Z/ℓ) → Hp+1,q(X,Z/ℓ). Now βQi =
−Qiβ by Lemmas 13.11 and 13.13, so each operation Qi on H

p,q(X,Z/ℓ) sends
Hp,q(X,Z) to the subgroup Hr,s(X,Z) of Hr,s(X,Z/ℓ), where r = p + 2ℓi − 1
and s = q + ℓi − 1).

Proposition 3.15. Assume that BL(n-1) holds, and X is a Rost variety. The
cohomology operations Q0 = β, Q = Qn−2 · · ·Q0 and Qn−1Q are injections on
Hn,n−1(X,Z/ℓ).

Hn,n−1(X,Z/ℓ)
Qn−2 · · ·Q1Q0

> H2b+1,b(X,Z/ℓ)
Qn−1

> H2bℓ+2,bℓ(X,Z/ℓ).

The maps Qn−2 · · ·Q1 and Qn−1 · · ·Q1 restrict to injections

Hn+1,n−1(X,Z)
Qn−2 · · ·Q1

> H2b+1,b(X,Z)
Qn−1

> H2bℓ+2,bℓ(X,Z),

where b = (ℓn−1 − 1)/(ℓ− 1) = 1 + ℓ+ · · ·+ ℓn−2.

Figure 3.1: The composition Q2Q1Q0 is an injection on Hn+1,n(Σ̃X)

✁
✁
✁
✁
✁
✁
✁
✁✁

(n,n−1) •

Hn+1,n−1(Σ̃X)
❆
❆
❆
❆❯

✲ ✲Q0✑
✑✑✸

✑
✑
✑✑✸

Q1

Hp,q = 0

here

Ω

✚
✚
✚

✚✚❃

✚
✚
✚
✚
✚

✚
✚✚❃

Q2

Q2=0

p = 1 pn+ 1

q

Proof. We use the isomorphism Hp,q(X,Z/ℓ) ∼= Hp+1,q(Σ̃X,Z/ℓ) = 0 for p > q,

where Σ̃X is the reduced suspension of X, pointed out in Definition 1.36. By
1.38, the integral groups have exponent ℓ, and each Qi sends them to inte-
gral groups, so it suffices to show that each Qi . . . Q1 is injective on the group
Hn+1,n−1(X,Z/ℓ) ∼= Hn+2,n−1(Σ̃X,Z/ℓ).

We proceed by induction on i; the case Q0 was established in 1.40, so assume
i > 0. Figure 3.1 shows the case i = 2. Because BL(n-1) implies BL(q) for all
q < n by Theorem 2.9, Corollary 1.39 implies that

Hp,q
(
Σ̃X,Z/ℓ

)
= 0 when (p, q) is in the region Ω = {(p, q) : p− 1 ≤ q < n}.
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Define (p, q) so that Qi−1 . . . Q1 takes Hn+2,n−1(Σ̃X,Z/ℓ) to Hp,q(Σ̃X,Z/ℓ).
Since X is a Rost variety, there is a νi-variety Xi and a map Xi → X. By
Theorem 1.44 (proven in Part III as Theorem 13.24) we have exact sequences

Ha,b(Σ̃X,Z/ℓ)
Qi−1−→ H∗,∗(Σ̃X,Z/ℓ)

Qi−1−→ Hp,q(Σ̃X,Z/ℓ)

Hc,d(Σ̃X,Z/ℓ)
Qi−→ Hp,q(Σ̃X,Z/ℓ)

Qi−→ Hr,s(Σ̃X,Z/ℓ).
(3.15a)

By induction, (a, b) is in the region Ω; by Lemma 3.14, so is (c, d) — and

therefore Hc,d(Σ̃X) = 0. This implies that Qi is injective on H
p,q(Σ̃X,Z/ℓ).

Recall from Lemma 3.13 that the symbol a determines a nonzero element
δ in Hn,n−1(X,Z/ℓ). Applying the cohomology operation Q = Qn−2 · · ·Q0 of
3.15 yields an element µ of H2b+1,b(X,Z). We will use the element µ in Chapter
5 to construct a Rost motive (defined in 4.11).

Corollary 3.16. Both µ = Q(δ) ∈ H2b+1,b(X,Z) and Qn−1(µ) are nonzero.

Proof. The operations Q : Hn,n−1(X,Z/ℓ) → H2b+1,b(X,Z) and Qn−1Q are
injective by Proposition 3.15.

Proposition 3.17. Assume that BL(n-1) holds, and X is a Rost variety. Then
Qn−1 · · ·Q1 is an injection from Hn+1,n(X,Z) to H2bℓ+2,bℓ+1(X,Z).

Proof. This is similar to the proof of Proposition 3.15, using the vanishing of
Ha,b(Σ̃X,Z/ℓ) in the region Ω granted by BL(n-1) and Corollary 1.39. We omit
the coefficients Z/ℓ for clarity. For Q1 we have the exact sequence

Ha,b(Σ̃X)
Q1−→ Hn+2,n(Σ̃X)

Q1−→ Hp,q(Σ̃X)

with (a, b) = (n+3−2ℓ, n+1−ℓ) in the region Ω. It follows that Q1 is injective

on Hn+1,n(X) ∼= Hn+2,n(Σ̃X). Inductively, if Qi−1 · · ·Q1 takes Hn+2,n(Σ̃X)

to Hp,q(Σ̃X) then from Lemma 3.14 applied to (a, b) and (c, d) in the exact

sequences (3.15a), we see that (c, d) ∈ Ω; this implies that Hc,d(Σ̃X) = 0 and

hence that Qi is injective on Hp,q(Σ̃X). It follows that Qi · · ·Q1 is injective on

Hn+1,n(X) ∼= Hn+2,n(Σ̃X) for all i = 1, . . . , n− 1.

3.5 Historical notes

The Hilbert 90 condition for KM
n takes its name from the fact that the case

n = 1 is essentially Hilbert’s original Theorem 90. For n = 2, it was proven in
1982 by Merkurjev–Suslin [MS82]. For n = 3 (and ℓ = 2), it was proven in 1990
by Merkurjev–Suslin in [MeS90]. The central role of the Hilbert 90 condition
for KM

n was recognized in the 1996 preprint [Voe96]; the material in this section
is based upon Sections 5 and 6 of the 2003 paper [Voe03a].
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Chapter 4

Rost motives and H90

In this chapter we introduce the notion of a Rost motive, which is a summand
of the motive of a Rost variety X (see 4.11); the proof that Rost motives exist is
deferred to chapter 5. The highlight of this chapter is Theorem 4.20: assuming
that Rost motives exist and H90(n-1) holds, then Hn+1

ét (k,Z(n)) injects into
Hn+1

ét (k(X),Z(n)). By Theorem 1.12, this implies that H90(n) holds and — as
we saw in Theorem 1.11 — this will imply the Bloch–Kato conjecture for n.

While there may be many Rost varieties associated to a given symbol, there
is essentially only one Rost motive (for a proof, see [KM13, Theorem 4.1]). The
Rost motive captures the part of the cohomology of a Rost variety X which is
essential for the proof of Theorem 4.20.

Since a Rost motive is a special kind of symmetric Chow motive, we begin
by recalling what this means in section 4.1. The next section, 4.2, introduces
the notion of X-duality. This duality plays an important role in the axioms
defining Rost motives, which are introduced in section 4.3, as well as a role
in the construction of the Rost motive in chapter 5. Finally, in section 4.4,
we assume that Rost motives exist and prove the key Theorem 4.20, which we
mentioned above.

4.1 Chow motives

In this section, we briefly recall the construction of Grothendieck’s (contravari-
ant) category of Chow motives over k, following [Man68]. Recall that CHj(X)
denotes the group of algebraic cycles of codimension j on a variety X, modulo
rational equivalence.

We first form the category M of Chow correspondences (of degree 0). The
objects of M are smooth projective varieties over k; morphisms from X to
Y are elements of CHdimX(X × Y ) and are referred to as correspondences.
Composition of correspondences f ∈ Hom(X1, X2) and g ∈ Hom(X2, X3) is
defined using pullback, intersection and pushforward of cycles: if pij denotes
the projection from X1 ×X2 ×X3 onto Xi ×Xj then f ◦ g = p13∗ (p∗12f · p∗23g).
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The category of smooth projective varieties over k (and morphisms of vari-
eties) embeds contravariantly intoM, once we identify a morphism of varieties
f : Y → X with the class of its graph Γf in CHdimX(X × Y ) = HomM(X,Y ).

The categoryM is additive, with ⊕ being disjoint union, and has an internal
tensor product: on objects, X ⊗ Y is the product X × Y of varieties X and Y .

One defect of the categoryM is that the composition of the structure map
X → Spec(k) and the inclusion of a k-point in X is a correspondence e on X
which is idempotent, meaning that e2 = e, yet there is no corresponding factor
e(X) of X inM. For example, the endomorphisms of the projective line inM
form the semisimple algebra HomM(P1,P1) ∼= Z × Z, yet P1 is irreducible. To

fix this defect, we pass to the idempotent completion M̂ ofM.
Given any category C, the idempotent completion Ĉ is defined as follows. The

objects of Ĉ are pairs (C, e) consisting of an object C of C and an idempotent
endomorphism e; morphisms from (C, e) to (C ′, e′) are just maps φ : C → C ′

in C with e′φ = φe. It is easy to see that C is a full subcategory of Ĉ, and that
every idempotent map in Ĉ factors as a projection and an inclusion. When C is
additive, so is Ĉ and (C, e) × (C, 1 − e) = (C, 1) = C; when C has an internal

tensor product, so does Ĉ.
Objects in the category M̂ are called effective Chow motives. We define the

Lefschetz motive L to be the unique factor of P1 in M̂ so that e gives a direct sum
decomposition P1 = Spec(k) ⊕ L in M̂. In M̂ we also have a decomposition
Pn ∼= Spec(k) ⊕ L ⊕ L2 ⊕ · · · ⊕ Ln, where Li denotes L ⊗ · · · ⊗ L (i times).
This category contains the other graded pieces of the ring CH∗(X), because
CHi(X) ∼= HomM̂(Li, X). There is a natural isomorphism

CHdimX+i−j(X × Y ) ∼= HomM(X ⊗ Li, Y ⊗ Lj).

Finally, Grothendieck’s category Chow of Chow motives is obtained from
the category M̂ of effective Chow motives by formally inverting the Lefschetz
motive L with respect to ⊗. That is, we add objects M ⊗ Li for negative
values of i, for each effective motive M , so that every object of Chow has the
form (X, e)⊗Li for some smooth projective variety X over k, some idempotent
element e of CHdimX(X,X), and some integer i. It is traditional to write
(X, e, i) for (X, e)⊗Li. Morphisms from (X, e, i) to (Y, f, j) are elements of the
subgroup fAe of the group A = CHdim(X)+i−j(X × Y ).

Definition 4.1. Given any cycle φ in X × Y , its transpose is the cycle φt in
Y × X obtained by interchanging the two factors X and Y . The formula for
composition of correspondences shows that (φ1 ◦ φ2)t = φt2 ◦ φt1.

The transposeM t of an effective Chow motive (X, e) is defined to be (X, et).
This makes sense because if e is an idempotent element of CHdim(X)(X ×X),
then so is its transpose et. We will say that a Chow motive (X, e) is symmetric
if it is isomorphic to its transpose (X, et) by the canonical inclusion-projection
map (X, e)→ X → (X, et).

The category Chow is a rigid tensor category, with dual X∗ = X ⊗ L−dX

(where dX=dim X) and L∗= L−1; Hom(X,Y ) =X∗ ⊗ Y is the internal Hom.
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The dual φ∗ of a Chow morphism φ : X → Y is the transpose cycle φt, regarded
as a morphism φ∗ : Y ⊗ L−dY → X ⊗ L−dX via the identification

HomChow(Y ⊗ L−dY , X ⊗ L−dX ) = CHdim(X)(Y ×X).

If φ is a Chow morphism from X ⊗Li to Y ⊗Lj , so that the codimension of
φ is dim(X)+ i− j, then we shall commonly regard the transpose φt as a Chow
morphism from Y ⊗ Lδ−j to X ⊗ L−i where δ = dim(X) − dim(Y ). Formally,
we have φt = φ∗ ⊗ Ldim(X).

Example 4.2. As a special case, if dim(X) = d and M = (X, e) is a Chow

motive with projection X
p→ M , then the map pt : M t → X defining the

transpose is the composition

M t =M∗ ⊗ Ld
p∗ ⊗ Ld

> X∗ ⊗ Ld ∼= X.

By [MVW, 20.1], HomChow(X,Y ) ∼= HomDM(M(Y ),M(X)), and this gives
a fully faithful contravariant embedding of Chow into DMgm. The Lefschetz
motive L is identified with L = Z(1)[2] under this embedding.

In the motivic category DMgm, where M(X)∗⊗Ldim(X) ∼=M(X), the dual
of φ :M(Y )→M(X) is the map φ∗ :M(X)∗ →M(Y )∗, and the above remarks
show that φt = φ∗ ⊗ Ldim(X) as a map from M(X) to M(Y )⊗ Lδ.

4.2 X-Duality

Fix a scheme X and a commutative ring R. Forming the simplicial scheme X =
Č(X) as in Definition 1.32, the remarks there show that there is a simplicial weak
equivalence X × X ≃ X. Hence Rtr(X) ⊗ Rtr(X) ∼= Rtr(X) in the triangulated
category DM of motives with coefficients in R; see [MVW, 14.1].

It is useful to introduce the notation ε for the motive of Rtr(X), so we have
ε⊗ ε ∼= ε in DM. For any motive M , we write εM for the motive Rtr(X)⊗M ,
and let DMε

gm denote the full triangulated subcategory of DM generated by
the objects εM with M in DMgm. The objects of DMε

gm may be thought of
as geometric motives over the simplicial scheme X, by Proposition 6.23 below.
In this section we show that DMε

gm is a rigid tensor category, and refer to its
notion of duality as X-duality.

Example 4.3. We noted after Definition 1.32 that X×X ≃ X, so εRtr(X) ∼=
Rtr(X), and εM ∼=M for Chow motives of the formM = (X, e). More generally,
whenever Hom(Y,X) 6= ∅ we have X× Y ≃ Y and hence εRtr(Y ) ∼= Rtr(Y ).

If X has a k-rational point, X → Spec(k) is a global weak equivalence and
hence the augmentation Rtr(X)→ R = Rtr(Spec k) is an isomorphism in DM;
see Remark 1.32.1. In this case ε ∼= R in DM, and DMε

gm
∼= DMgm.

Since ε(εM) ∼= εM for all M in DM, the triangulated functor M 7→ εM
is idempotent up to isomorphism. Hence the full subcategories εDMeff

nis, εDM
and DMε

gm on the objects εM are all tensor triangulated subcategories.
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Lemma 4.4. For any effective motives L,N the natural map εN → N induces
isomorphisms Hom(εL, εN) ∼= Hom(εL,N).

Proof. Recall from 1.36 that there is a triangle Rtr(X)→ R→ Rtr(ΣX), where
ΣX is the suspension of X. Applying ε, we have εRtr(ΣX) = 0. For every
f : εL→ Rtr(ΣX)⊗N , the commutative diagram

ε(εL)
ε(f)

> εRtr(ΣX)⊗N = 0

εL

∼=
∨ f

> Rtr(ΣX)⊗N.
∨

shows that f = 0. Hence Hom(εL,Rtr(ΣX)⊗N) = 0. Applying Hom(εL,−) to
the triangle εN → N → Rtr(ΣX)⊗N yields the result.

Corollary 4.5. We have EndDM(Rtr(X)) = R. For all p, q

HomDM(Rtr(X), εR(q)[p]) ∼= Hp,q(X, R).

Proof. By Lemma 4.4, End(Rtr(X)) = Hom(Rtr(X), εR) = Hom(Rtr(X), R),
and H0,0(X, R) = R by Lemma 1.35. Similarly, Hom(Rtr(X), εR(q)[p]) =
Hom(Rtr(X), R(q)[p]) = Hp,q(X, R).

For any geometric motive M , the functor εN 7→ εRHom(M, εN) from
εDMeff

nis to itself is right adjoint to εL 7→ εL ⊗ M ∼= εL ⊗ εM ; see [MVW,
14.12]. It follows that whenever εM ∼= εM ′ we have εRHom(M, εN) ∼=
εRHom(M ′, εN), and that the object εM of DMε

gm determines a well-defined

functor RHom ε(εM,−) on εDMeff
nis sending εN to εRHom(M, εN).

Lemma 4.6. For effective motives L,M,N with M geometric, the natural map
εN → N induces isomorphisms

Hom(εL, εRHom(M, εN)) ∼= Hom(εL, εRHom(M,N)).

Thus εRHom(M, εN) ∼= εRHom(M,N). If N is geometric this is in DMε
gm.

Proof. Replacing εL = ε ⊗ L by εL ⊗M ∼= ε ⊗ (L ⊗M), Lemma 4.4 implies
that the natural map from Hom(εL ⊗M, εN) ∼= Hom(εL,RHom(M, εN)) to
Hom(εL ⊗M,N) ∼= Hom(εL,RHom(M,N)) is an isomorphism. The second
assertion follows from this in a standard way, taking L to be RHom(M, εN)
and RHom(M,N). The final assertion follows from the observation in [MVW,
20.3] that RHom(M,N) is a geometric motive.

If M = Rtr(Y ) is the motive of a smooth Y and d = dim(Y ) we define

(εM)† = RHom ε(εM, εLd)⊗ L−d = εRHom(M, εLd)⊗ L−d.

By Lemma 4.4 and [MVW, 20.6], this is isomorphic to ε(M∗). We may now
mimick the development of [MVW, §20] to prove the following proposition.
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Proposition 4.7. The tensor category DMε
gm is rigid. More precisely:

1. For every M in DMgm, (εM)† ∼= ε(M∗), and hence (εM)† is in DMε
gm;

In particular, ε† ∼= ε, because R∗ ∼= R.

2. (−)† extends to a contravariant triangulated endo-functor on DMε
gm. We

call M† the X-dual of M .

3. There is a natural isomorphism M ∼= (M†)† in DMε
gm.

4. There are natural isomorphisms (for L,M,N in DMε
gm)

Hom(L⊗M,N) ∼= Hom(L,M† ⊗N).

5. The internal Hom functor on DMε
gm is Homε(M,N) =M† ⊗N .

Not every object of DMε
gm will be of the form εL for some geometric motive L,

such as the motive A as the following example shows.

Example 4.8. Suppose that A→ εM
µ−→ εN → is a triangle in DMε

gm with

M,N geometric motives. By Proposition 4.7(2), there is an object A† in DMε
gm

fitting into a triangle:

εN∗ µ†−→ εM∗ → A† → εN∗[1].

If M and N are invertible in DMgm, it is easy to see that µ is self-dual in the
sense that it equals the composite

εM ∼= εM ⊗ εN∗ ⊗ εN 1M ⊗ µ† ⊗ 1N
> εM ⊗ εM∗ ⊗ εN ∼= εN.

It follows that A satisfies a twisted duality: A ∼= εM ⊗A† ⊗ εN [−1]. A special

case, which will arise in Chapter 5, is a triangle A→ Rtr(X)
µ−→ Rtr(X)(q)[p]→

associated to an element µ of Hp,q(X). In this case we have A ∼= A†(q)[p− 1].
When µ is not in the image of HomDM(M,N), A cannot have the form εL

for any geometric motive L. For example, suppose thatM = N = R = Spec(k),
so that εR = ε; if E/k is a Galois field extension with group G and X = Spec E
then HomDM(X,X) = R[G] by [MVW, 1.11], so we may take µ to be any
element of R[G] not in R.

Remark 4.9. (Tate objects) Following [Voe10b], we let DT ε denote the small-
est thick subcategory of DMeff

nis generated by the objects εR(q), q ≥ 0. This
category has “slice filtrations;” DT ε≥n is the thick subcategory generated by the
εR(q) with q ≥ n, and s≥n(M) = RHom(Ln,M)⊗ Ln is a triangulated reflec-
tion functor from DT ε to DT ε≥n. This will be used in Section 5.2. We refer the

reader to Section 6.4 for a fuller discussion of the slice filtration. 1

Similarly, the thick subcategory DT ε≤n generated by the εR(q) with q ≤ n
has a reflection functor s≤n, and the slice functor sn = s≥ns≤n takes values in

1The notation sn, used here for the slice filtration, is not related to the notation sn(X) for
the characteristic numbers of X in Definition 1.17 and Chapter 8.
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DT εn = DT ε≥n∩DT ε≤n. Each DT εn is equivalent to DT ε0 by the functor ⊗Ln, and
DT ε0 may be characterized as the abelian category of locally constant presheaves
with transfers on Sm/X.

Finally, the direct sum ⊕sn : DT ε → ⊕DT εn is a conservative functor which
is multiplicative in the sense that sn(M ⊗N) = ⊕p+q=nsp(M)⊗ sq(N); this is
proven in a more general context in Lemmas 6.17 and 6.18.

4.3 Rost motives

We now return to the category DM. Fix a subring R of Q containing 1/(ℓ−1)!,
such as the local ring Z(ℓ). Let X be a Rost variety, and form X as in Definition

1.32 so that we have a canonical map Rtr(X)→ Rtr(X)
ǫ−→ R. Let M = (X, e)

be a Chow motive with coefficients in R (see Section 4.1); M is a summand of
Rtr(X), and we write y or yM for the structure map y :M → Rtr(X)→ Rtr(X).
Note that the composition ǫy :M → R is the universal map, and that εM ∼=M
by 4.3.

By Proposition 4.7, M† ∼= M∗ and the X-dual of y is y† = Rtr(X) ⊗ (ǫy)∗

(see 4.7). Recall from Example 4.2 that M t ∼=M∗ ⊗ Ld, where d = dimX. We
define the twisted dual yD of y to be the composite

Rtr(X)⊗ Ld
y† ⊗ 1Ld

> M† ⊗ Ld ∼=M∗ ⊗ Ld ∼=M t. (4.10)

Definition 4.11. A Rost motive for a (with coefficients R) is a motive M ,
arising as a direct summand of the motive of a Rost variety X for a, which
satisfies:

(i) M = (X, e) is a symmetric Chow motive;

(ii) The projection X → R factors X → (X, e)→ R, i.e., is zero on (X, 1−e);

(iii) There is a motive D related to the structure map y :M → Rtr(X) and its
twisted dual yD by two distinguished triangles

D ⊗ Lb → M
y−→ Rtr(X)→ , (4.11a)

Rtr(X)⊗ Ld
yD−→ M → D → . (4.11b)

(Recall that b = d/(ℓ− 1) = 1 + ℓ+ · · ·+ ℓn−2.)

Remark 4.11.1. By Example 4.3, εM ∼= M and εD ∼= D. By (4.11a), D must

be isomorphic to Rtr(X)⊗ M̃ ⊗ L−b, where M̃ is the geometric motive defined

as the fiber of the structure map M → R. Note that D† = Rtr(X)⊗ M̃∗ ⊗ Lb.
Triangle (4.11b) is equivalent to the X-duality assertion that D†⊗Ld−b ∼= D.

To see this, observe that by Example 4.2 and 4.7(1), the X-dual of (4.11a) is

Rtr(X)⊗ Ld
yD−→ M → D† ⊗ Ld−b → .
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Remark 4.11.2. Markus Rost has proposed a construction of M in [Ros06]. He
shows that the element µ of Corollary 3.16 determines an equivalence class of
symmetric Chow motives M = (X, e) for any Rost variety X. We do not know
if Rost’s M satisfies the triangle condition (4.11b).

In Chapter 5, we will prove the following theorem, with coefficient ring R
either Z[1/(ℓ− 1)!] or Z(ℓ).

Theorem 4.12. For every Rost variety X there is a Rost motive (X, e).

Examples 4.13. (a) If n = 2, the Rost variety itself is a Rost motive: M = X

Since b = 1 we have D = Rtr(X)⊗M̃ . The condition (4.11b) is that D†⊗L ∼= D,
and is implicit in [MS82].

(b) If ℓ = 2, and X is a Pfister quadric, Rost showed in [Ros90] that there is
a symmetric Chow motive (X, e) such that over any field F which has a point
x ∈ X(F ) the motive (X, e) is given by the correspondence X×x+x×X. This
is property 4.11(i); the proof that (X, e) also satisfies property 4.11(ii) is given
in [Ros98c]. Property 4.11(iii) is proven in [Voe03a].

Lemma 4.14. When n ≥ 2, the structure map H−1,−1(M)→ H−1,−1(k) ∼= k×

is injective for every Rost motive M .

Proof. By definition 1.24, the map H−1,−1(X)
N−→ k× is an injection for any

Rost variety, and X → X induces H−1,−1(X) ∼= H−1,−1(X) by Lemma 1.34.
Thus it suffices to show that the structure map y : H−1,−1(M)→ H−1,−1(X) is
an injection. By triangle (4.11a), we have an exact sequence

H−1,−1(D ⊗ Lb)→ H−1,−1(M)→ H−1,−1(X),

so it suffices to observe that H−1,−1(D⊗Lb) = Hom(R,D⊗Lb(1)[1]) vanishes.
This follows from triangle (4.11b) and the vanishing (granted by Lemma 1.33)
of both Hom(R,M(b+ 1)[2b+ 1]) and Hom(R,Rtr(X)⊗ Lb+d[1]).

Lemma 4.15. When n ≥ 2, H2d+1,d+1(D,R) = 0.

Proof. Set (p, q) = (2d + 1, d + 1), so that Hp−1,q(X ⊗ Ld, R) ∼= H0,1(X, R).
From (4.11b) we get an exact sequence

H0,1(X, R)→ Hp,q(D,R)→ Hp,q(M,R)
yD−→ Hp,q(X⊗ Ld, R).

The first group is zero by Lemma 1.35. Hence Hp,q(D,R) is the kernel of
yD. Since Hp,q(M,R) = Hom(M∗ ⊗ Ld,Ld(1)[1]) ∼= Hom(M∗, R(1)[1]), every
element of Hp,q(M,R) is u∗⊗Ld for the dual u∗ of a map u : R(−1)[−1]→M .
We may regard u as an element of H−1,−1(M) = Hom(R,M(1)[1]). Since the

given structural map H−1,−1(M)
y−→ H−1,−1(X) ⊆ H−1,−1(k) is an injection

by 4.14, yu 6= 0 whenever u∗ 6= 0. The X-dual of yu is the composition u∗y† :
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Rtr(X) → M∗ → Rtr(X)(1)[1] → R(1)[1]. Tensoring with Ld yields a nonzero
element of Hp,q(X⊗ Ld, R); by the definition of yD it is represented by:

X⊗ Ld
yD

> M t u
∗ ⊗ Ld

> R(1)[1]⊗ Ld = R(d+ 1)[2d+ 1].

Thus (u∗ ⊗ Ld) ◦ yD is nonzero whenever u∗ 6= 0, as desired.

4.4 Rost motives imply Hilbert 90

In this section, we will assume that a Rost variety X and a Rost motive M =
(X, e) exists for a, and that BL(n-1) holds. Given this, we will show that
the map Hn+1

ét (k,Z(ℓ)(n))→ Hn+1
ét (k(X),Z(ℓ)(n)) is an injection (see Theorem

4.20). For this, we need Propositions 3.15 and 3.17 about the Margolis homology
of cohomology operationsQi —which in turn depend upon Theorem 1.44, which
will be established in Part III.

We will assume in this section that n ≥ 2. Recall that b = (ℓn−1−1)/(ℓ−1).

Lemma 4.16. The map Hp−2b,q−b(D,A) ∼= Hp,q(D⊗Lb, A)
s−→ Hp+1,q(X, A)

of triangle (4.11a) is an isomorphism if p > q + d, for any Z(ℓ)-module A.

Proof. The map s is from the cohomology sequence arising from triangle (4.11a):

Hp,q(M,A)→ Hp,q(D ⊗ Lb, A)
s−→ Hp+1,q(X, A)

y−→ Hp+1,q(M,A).

The second term is isomorphic to Hp−2b,q−b(D,A) by Cancellation (see
[Voe10a]). Whenever p > q + d, Hp,q(X,A) is zero by the Vanishing Theorem
[MVW, 3.6]. Since Hp,q(M,A) is a summand of Hp,q(X,A), it also vanishes in
this range.

Corollary 4.17. H2bℓ+2,bℓ+1(X,Z(ℓ)) = 0.

Proof. Since bℓ = b + d, H2bℓ+2,bℓ+1(X,Z(ℓ)) ∼= H2d+1,d+1(D,Z(ℓ)) by Lemma
4.16. This group vanishes by Lemma 4.15.

Proposition 4.18. Assume that BL(n-1) holds. Then Hn+1,n(X,Z(ℓ)) = 0.

Proof. By Proposition 3.17, which requires BL(n-1), the cohomology operation
Qn−1 · · ·Q1 is an injection from Hn+1,n(X,Z(ℓ)) into H

2bℓ+2,bℓ+1(X,Z(ℓ)). The
latter group is zero by Corollary 4.17.

If F is any homotopy invariant presheaf with transfers, the contraction F−1

was defined in 2.1 so that F
(
Y × (A1−{0})

)
= F (Y )⊕ F−1(Y ) for all Y .

Recall from Definition 2.39 that T (n) denotes τ≤n+1Rπ∗(Z(ℓ)(n)ét) and
K(n) denotes the cone of the canonical map Z(ℓ)(n)→ T (n).

Lemma 4.19. If BL(n-1) holds, then for every smooth Y and every integer q:

Hq(Y × (A1−{0}),K(n)) ∼= Hq(Y,K(n)), and Hq(Y ⊗ L,K(n)) = 0.
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Proof. (See [Voe03a, 6.12]) We have to show that H∗(Y,K(n))−1 = 0; see
(2.2.1). By the definition of K(n), this is equivalent to showing that the
map H∗(Y,Z(ℓ)(n))−1 → H∗(Y, T (n))−1 is an isomorphism. By Lemma 2.2,
H∗(−,F)−1

∼= H∗(−,F−1) for F either Z(ℓ)(n) or T (n), and Z(ℓ)(n)−1
∼=

Z(ℓ)(n−1)[−1] by Example 2.4(4). By functoriality,

π∗Z(ℓ)(n)−1
∼= π∗Z(ℓ)(n−1)[−1].

Applying τ≤n+1Rπ∗ yields T (n)−1
∼= T (n − 1)[−1]. We are reduced to seeing

that the map Z(ℓ)(n− 1)→ T (n− 1) is a quasi-isomorphism. By [MVW, 13.7],
it suffices to show it is a quasi-isomorphism at every field E over k, i.e., that

Hp(E,Z(ℓ)(n− 1)) −→ Hp(E, T (n− 1)) =

{
Hp

ét(E,Z(ℓ)(n− 1)), p ≤ n
0, p > n.

is an isomorphism for all p. This is trivial for p > n. The assumption that
BL(n-1) implies the case p = n (that H90(n-1) holds) by Lemma 1.30, and the
case p < n, by Lemma 1.29(c).

Remark 4.19.1. It follows from Lemma 4.19 that H∗(Y,K(n)) is a birational
invariant. Voevodsky proves this in [Voe03a, Lemma 6.13].

Theorem 4.20. Assume that X is a Rost variety over k and that a Rost motive
(X, e) exists. If BL(n-1) holds, then Hn+1

ét (k,Z(ℓ)(n)) → Hn+1
ét (k(X),Z(ℓ)(n))

is an injection.

Proof. Set E = k(X), and recall that K(n) is the cone of Z(ℓ)(n) → T (n).
Since X → Spec(k) factors through X, Spec(E) → Spec(k) factors through a
map Spec(E)→ X. This map induces a commutative diagram with exact rows,
in which the lower left group Hn+1(E,Z(ℓ)(n)) vanishes by [MVW, 3.6]:

0
4.18
= Hn+1

nis (X,Z(ℓ)(n)) > Hn+1
nis (X, T (n)) > Hn+1

nis (X,K(n))

0 = Hn+1
nis (E,Z(ℓ)(n))

∨

> Hn+1
nis (E, T (n))

∨

> Hn+1
nis (E,K(n)).

∨

Since Hn+1(E, T (n)) ∼= Hn+1
ét (E,Z(ℓ)(n)) and (using Lemma 1.37)

Hn+1(X, T (n)) ∼= Hn+1
ét (X,Z(ℓ)(n)) ∼= Hn+1

ét (k,Z(ℓ)(n)),

we may identify the map Hn+1
ét (k,Z(ℓ)(n)) → Hn+1

ét (k(X),Z(ℓ)(n)) with the
middle vertical arrow. To prove that it is an injection, we will show that the
right vertical is an injection. The right vertical factors as

Hn+1(X,K(n))
y∗−→ Hn+1(M,K(n)) ⊂ Hn+1(X,K(n))

∼=−→ Hn+1(E,K(n)).

In this factorization, Hn+1(M,K(n)) is a summand of Hn+1(X,K(n)), and we
argue thatHq(X,K(n))→ Hq(E,K(n)) is an isomorphism for all q. By [MVW,
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13.8], the presheaves Hq = Hq(−,K(n)) are homotopy invariant, so by [MVW,
22.1,22.15] the associated Zariski sheaves Hq are homotopy invariant presheaves
with transfers. By Lemma 4.19, we haveHq−1 = 0. Then [MVW, 24.11] says that
each Hq is a constant Zariski sheaf on X. Therefore Hq(X,K(n)) = H0(X,Hq)
equals Hq(E,K(n)) for all integers q.

It suffices to show that the map y∗ : Hn+1(X,K(n)) → Hn+1(M,K(n)),
induced by y : M → X is an injection. By (4.11a) it suffices to show that
Hn(D ⊗ Lb,K(n)) vanishes. By (4.11b) we have an exact sequence

Hn−1(X⊗ Lb+d,K(n))→ Hn(D ⊗ Lb,K(n))→ Hn(M ⊗ Lb,K(n)). (4.20.1)

We are reduced to showing the outside terms vanish in (4.20.1). By Lemma 4.19,
Hn(X⊗Lb,K(n)) = 0; asM is a summand ofX by 4.11(i), Hn(M⊗Lb,K(n)) =
0 in (4.20.1). Lemma 4.19 also implies that (for any m > 1) the spectral
sequence E1

pq = Hq(Xp⊗Lm,K(n))⇒ Hp+1(X⊗Lm,K(n)) collapses, yielding
Hn−1(X⊗ Lm,K(n)) = 0. Thus the left term in (4.20.1) also vanishes.

4.5 Historical notes

The proof of the Norm Residue Isomorphism Theorem for ℓ = 2 (the Milnor
Conjecture) invoked a theorem of Rost that the Pfister quadric Qa had a direct
summand M = (Qa, e) with maps ψ∗ : Ld → M related to the structure map
ψ∗ : M → Z (see [Voe03a, 4.3]). Voevodsky showed in [Voe03a, 4.4] that this
data fits into a triangle

M(X)⊗ Ld →M →M(X)→ .

This is the triangle (4.11a) with D =M(X); triangle (4.11b) holds by X-duality
4.7. Note that M is a twisted form of Z ⊕ Ld, because the triangle splits with
XE
∼= ZE over any extension field E for which Qa(E) 6= ∅; see [Voe03a, 4.3].
This material was further developed in Voevodsky’s 2003 preprint [Voe03b].

Rost observed in [Ros06] that the existence of these triangles could be used
to give another proof of [Voe03b, Lemma 6.13] (see [Voe11, (5.3–5)] for the
published version). This led to the axiomatic approach to the notion of a Rost
motive, developed in [Wei08]. Most of the material in this chapter is taken from
[Wei08].
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Chapter 5

Existence of Rost motives

In this chapter, we fix a Rost variety X for a sequence a of n units in a field
k with 1/ℓ ∈ k. Under the inductive assumption that BL(n-1) holds, we will
construct a Rost motive M = (X, e) with coefficients Z(ℓ); see Theorem 5.18.
Later on, in Chapter 11, we will show that a Rost variety always exists when k
is ℓ-special of characteristic 0. As we saw in Theorem 4.20, the existence of X
and M suffices to prove Theorem 1.11, which in turn proves Theorem 1.12 and
hence Theorems A and B, the main theorems of this book.

Recall that b = d/(ℓ−1) = 1+ℓ+· · ·+ℓn−2 and that X denotes the simplicial
Čech variety (or 0-coskeleton) associated to X in Definition 1.32. According to
Definition 4.11, a motive M is a Rost motive associated to X if there is a map
λ : Rtr(X)→M such that the following three axioms are satisfied:

(i) λ expresses M as a symmetric Chow motive of the form (X, e).
(ii) The projection Rtr(X)→ R factors through λ.

(iii) there is a motive D, related to the structure map M
y→ Rtr(X) and the

twisted dual yD of (4.10) by two distinguished triangles:

D ⊗ Lb →M
y−→ Rtr(X)→ ; Rtr(X)⊗ Ld

yD−→ M → D → .

Given any cohomology class z of H2b+1,b(X,Z(ℓ)), it is not hard to construct
a motive M satisfying axioms (ii) and (iii); see Propositions 5.7 and 5.9. In
order to establish axiom (i), making M a Rost motive, we need to assume that
z is suitable in the sense of Definition 5.13. As pointed out in Example 5.13.1,
the element µ = Q(δ) of Corollary 3.16 is suitable in this sense. The assumption
that BL(n-1) holds is used to show that δ exists and that µ is nonzero. This
proves that Rost motives exist whenever Rost varieties exist.

The proof that axiom (i) holds requires one result which we have postponed
to Chapter 6: the proof that the function φV defined in 5.10 agrees with the
cohomology operation βP b (Proposition 5.16 uses Corollary 6.34). This uses a
recognition criterion for the cohomology operation βP b which we have placed
in Part III (in Theorem 15.38) because its proof requires advanced motivic
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homotopy techniques. Some other facts about the cohomology operations Qi
which are used in Section 5.4 are given in Chapter 13 of Part III.

5.1 A candidate for the Rost motive

Let R be any ring, X any smooth scheme of dimension d = ℓn−1 − 1, and let X
denote the simplicial scheme associated to X in Definition 1.32.

We may interpret any z ∈ H2b+1,b(X, R) as a morphism Rtr(X) → Lb[1] in
DMeff

nis(k,R). Since Hom(Rtr(X), N) ∼= Hom(Rtr(X), εN) by Lemma 4.4, z lifts
to a morphism Rtr(X) → Rtr(X) ⊗ Lb[1]. Up to a non-canonical isomorphism,
the morphism z determines a motive A and maps x, y in DMε

gm, fitting into a
triangle

Rtr(X)⊗ Lb
x−→ A

y−→ Rtr(X)
z−→ Rtr(X)⊗ Lb[1]. (5.1)

By Example 4.8, we have A ∼= A†⊗Lb. Setting yD = y†⊗Lb, the tensor product
of the X-dual of (5.1) with Lb is the triangle:

Rtr(X)⊗ Lb
yD
> A† ⊗ Lb

x† ⊗ Lb
> Rtr(X)

z†[1]
> Rtr(X)⊗ Lb. (5.2)

Lemma 5.3. There is a map λ1 : Rtr(X) → A such that the structure map
ι : Rtr(X)→ Rtr(X) factors in DM as:

Rtr(X)
λ1−→ A

y−→ Rtr(X).

Proof. The group Hom(Rtr(X),Lb[1]) ∼= H2b+1,b(X,R) is zero by the Vanishing
Theorem [MVW, 19.3]. Applying HomDM(Rtr(X),−) to (5.1) yields the exact
sequence

Hom(Rtr(X), A)
y−→ Hom(Rtr(X), Rtr(X))

z−→ Hom(Rtr(X),Lb[1]) = 0.

Hence ι ∈ Hom(Rtr(X), Rtr(X)) is y ◦ λ1 for some λ1 ∈ Hom(Rtr(X), A).

We now present our candidates for Rost motives.

Example 5.4. When ℓ = 2 and X is a Rost variety for a, M = A is a Rost mo-
tive for a (with R = Z(2)), where λ is the map λ1 : Rtr(X)→ A of Lemma 5.3.
To see this, note that axiom (ii) is satisfied by Lemma 5.3, and axiom (iii) is satis-
fied by the triangles (5.1) and (5.2), since b = d. The hard part to verify is axiom
(i), that λ1 expresses A as a symmetric Chow motive (X, e). This will follow

from Theorem 5.18, where we prove that the composition A
λD
1−→ Rtr(X)

λ1−→ A

is an isomorphism. Here λD1 = λ†1 ⊗ Ld is the twisted dual of λ1 in the sense of
(4.10).

For ℓ > 2, when b 6= d, we will show that the (ℓ−1)st symmetric power of A,
Sℓ−1(A), is a Rost motive for a with coefficients R = Z(ℓ).

Recall that the symmetric power Si(N) of a motive N is defined whenever
i! is invertible in the coefficient ring R. Indeed, the group ring R[Σi] of the
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symmetric group Σi contains the symmetrizing idempotent ei =
∑
σ∈Σi

σ/i!

and we define Si(N) to be the summand ei(N
⊗i) of N⊗i, where R[Σi] acts on

N⊗i in the evident way.

Definition 5.5. Given a nonzero z ∈ H2b+1,b(X,Z(ℓ)), we define M = Sℓ−1(A)

and D = Sℓ−2(A), where A = A(z) is given by (5.1).

The goal of the rest of this chapter is to prove that M is a Rost motive for
suitable z. Axioms (ii) and (iii) of 4.11 are verified for ℓ > 2 in the next section
(Propositions 5.7 and 5.9), and axiom (i) is verified in Section 5.4.

5.2 Axioms (ii) and (iii)

Fix a ring R containing 1/(ℓ− 1)! and a smooth scheme X. In this section, we
show that the motive M = Sℓ−1(A) of Definition 5.5 satisfies axioms (ii) and
(iii) of 4.11. It is useful to work in slightly greater generality in this section,
so we fix an element z ∈ H2p+1,q(X, R), where p, q ≥ 0 are arbitrary integers.
Axioms (ii) and (iii) will follow from Propositions 5.9 and 5.7 in the special case
p = q = b.

For axiom (iii), recall that X denotes the simplicial scheme associated to
X, as defined in 1.32. Setting T = R(q)[2p], we may interpret an element
z ∈ H2p+1,q(X, R) as a morphism Rtr(X) → T [1] in DMeff

nis. Since Rtr(X) ≃
Rtr(X)⊗Rtr(X), it follows from Lemma 4.4 that z lifts to a morphism Rtr(X)→
Rtr(X) ⊗ T [1]. As in (5.1), z determines a motive A (well-defined up to non-
canonical isomorphism) and maps x, y which fit into a triangle

Rtr(X)⊗ T x−→ A
y−→ Rtr(X)

z−→ Rtr(X)⊗ T [1]. (5.6)

Remark 5.6.1. From equation (5.6), we can read off the slice filtration on A,
as described in Remark 4.9. There are only two layers: the top slice, s0(A) =
Rtr(X), and the bottom slice, sq(A) = Rtr(X)⊗ T .

As in Definition 5.5, our hypothesis that (ℓ − 1)! is invertible in R implies
that SiA = ei(A

⊗i) is defined for i < ℓ. The inclusion Σi−1 ⊂ Σi allows us to
talk about the idempotent ei−1⊗ 1 of R[Σi], and (ei−1⊗ 1)A⊗i = Si−1(A)⊗A.
Since ei(ei−1⊗1) = ei, there is a corestriction map Si−1(A)⊗A→ Si(A). There
is also a transfer map tr : Si(A)→ Si−1(A)⊗A, induced by the endomorphism

a1 ⊗ · · · ⊗ ai 7−→
∑

j
(· · · ⊗ âj ⊗ · · · )⊗ aj

of A⊗i. Now Si(A) ∼= Rtr(X)⊗Si(A). Composing tr with 1⊗ y, and 1⊗x with
corestriction yields maps

u = (1⊗y)◦tr : Si(A)→ Si−1(A) and v = cores◦(1⊗x) : Si−1(A)⊗T → Si(A).

Since the ith symmetric power of T = R(q)[2p] is T i (see [MVW, 15.7]), we have
Si(Rtr(X) ⊗ T ) ∼= Rtr(X) ⊗ Si(T ) ∼= Rtr(X) ⊗ T i. Thus Six maps Rtr(X) ⊗ T i
to SiA.
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Proposition 5.7. If 0 < i < ℓ and 1/(ℓ − 1)! ∈ R, then there exist unique
morphisms r and s so that (Six, u, r) and (v, Siy, s) are distinguished triangles:

(a) Rtr(X)⊗ T i Six−→ Si(A)
u−→ Si−1(A)

r−→ Rtr(X)⊗ T i[1].

(b) Si−1(A)⊗ T v−→ Si(A)
Siy−→ Rtr(X)

s−→ Si−1(A)⊗ T [1].
Moreover, u identifies Si−1(A) with the slice quotient s<qi(S

iA), v identifies
Si−1(A) ⊗ T with the slice filtration s>0(S

iA) and Siy identifies Rtr(X) with was s<0(SiA)

s0(S
iA).

Proof. (Cf. [Voe11, 3.1].) By multiplicativity (4.9), the slice sn(A
⊗i) of A⊗i is

the sum of the sn1
(A)⊗· · ·⊗sni

(A) with
∑
ni = n. Since the symmetric group

acts on everything here, the slice sn(S
iA) is the symmetric part of this, viz.,

R(qj)[2pj] if n = qj for 0 ≤ j ≤ i and zero otherwise. The same is true for the
slices of Si−1A, except that sqiS

i−1A = 0. Since Rtr(X)⊗T i is concentrated in
slice filtration qi, we see that Six is an isomorphism onto sqi(S

iA).
By inspection of the formula for the transfer, and hence for the map u, we

see that the morphism sqj(u) is multiplication by i− j; this is an isomorphism
for j < i. The existence and uniqueness of r now follows from Lemma 5.8 below.

Similarly, Siy is an isomorphism of s0(A) onto Rtr(X), and sqj(v) is an
isomorphism for j > 0 because by multiplicativity (4.9):

sqj
(
Si−1(A)⊗R(q)[2p]

)
= sq(j−1)(S

i−1A)⊗R(q)[2p]

The existence and uniqueness of s now follows from Lemma 5.8 below.

The following result is due to Voevodsky [Voe10b, Lem. 5.18].

Lemma 5.8. Let A
a−→ B

b−→ C be a sequence in DT ε and n ≥ 0 such that
A ∈ DT ε≥n and C ∈ DT ε<n. If si(a) is an isomorphism for all i ≥ n and si(b)
is an isomorphism for all i < n, then there is a unique morphism c : C → A[1]

such that A
a−→ B

b−→ C
c−→ A[1] is a distinguished triangle, and identifies A

and C with s≥nB and s<nB, respectively.

Proof. Choose a distinguished triangle A
a−→ B → C ′ → A[1]. The composition

ba is zero for weight reasons. Hence b factors through a morphism φ : C ′ → C.
The hypotheses imply that si(φ) is an isomorphism for all i; as the slice functor
is conservative (Remark 4.9), this implies that φ is an isomorphism. Letting c
be the composite of φ−1 and C ′ → A[1] yields the triangle (a, b, c).

If (a, b, c′) is a second triangle on (A,B,C) then there is an f : C → C so
that (1, 1, f) is a morphism from the first to the second triangle. Since s<n(b)
is an isomorphism, it follows that f = s<n(f) is the identity of C and hence
that c = c′. The final assertion follows since s≥nC = 0 and s<nA = 0 by
conservativity of the slice functors (see 4.9).

Now set p = q = b. For any z, the distinguished triangles of axiom (iii) exist
with D = Sℓ−2A, by Proposition 5.7. Next, we show that M = Sℓ−1A also
satisfies axiom (ii).
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Proposition 5.9. If 1/(ℓ−1)! ∈ R, there are maps λ : Rtr(X)→ Sℓ−1(A) such
that the inclusion ι : Rtr(X)→ Rtr(X) factors in DM as:

Rtr(X)
λ
> Sℓ−1(A)

Sℓ−1y
> Rtr(X).

In fact1, ι factors as Rtr(X)
λ−→ Sℓ−1(A)

u→ · · · u→ S2(A)
u→ A

y→ Rtr(X).

Proof. We saw in Lemma 5.3 that ι factors through a map λ1 : Rtr(X)→ A. By
induction on i < ℓ, ι factors through a map λi−1 : Rtr(X)→ Si−1(A). Applying
HomDM(Rtr(X),−) to the triangle 5.7(a) yields exact sequences

Hom(Rtr(X), Si(A))
u→ Hom(Rtr(X), Si−1(A))

r→ Hom(Rtr(X),X⊗ T i[1]).

The group on the right is H2pi+1,qi(X,Z), which is zero for p = q (see [MVW,
19.3]), so λi−1 lifts to a map λi : Rtr(X) → Si(A) with λi−1 = uλi. By the
construction of u, yui = Siy : Si(A)→ Rtr(X).

We end this section by defining a function φV from H2p+1,q(X, R) to
H2pℓ+2,qℓ(X, R) for every p, q ≥ 0; we will use φV in Section 5.4 when
p = q = b = d/(ℓ − 1). Later, in Chapter 6, we will extend φV to a coho-
mology operation H2p+1,q(−, R)→ H2pℓ+2,qℓ(−, R).
Definition 5.10. Suppose that 1/(ℓ− 1)! ∈ R. Then the function

φV : H2p+1,q(X, R)→ H2pℓ+2,qℓ(X, R)

is defined as follows. Given z ∈ H2p+1,q(X, R), form A as in (5.6), and r, s as
in Proposition 5.7. The composition of s and r ⊗ 1 yields a map (for i = ℓ− 1)

φV (z) : Rtr(X)
s−→ Sℓ−2(A)⊗ T [1] r⊗1−→ Rtr(X)⊗ T ℓ[2]→ T ℓ[2]

i.e., an element of H2pℓ+2,qℓ(X, R).

Remark 5.10.1. Since the construction of A and (5.6) is natural in X and z,
so are the triangles in Proposition 5.7. It follows that if f : Y → X is a
morphism of smooth schemes then f∗(φV (z)) = φV (f∗z). This shows that
the φV of Definition 5.10 is natural in the pair (X, z). The proof that it is the
restriction of a natural transformation, i.e., a cohomology operation in the sense
of Definition 13.1, is given in Proposition 6.28 and Remark 6.27.1 of Chapter 6.

5.3 End(M) is a local ring

When R = Z(ℓ) and X is smooth, any z ∈ H2p+1,q(X, R) determines a motive
A by the triangle (5.6). In this section we show that if z is nonzero modulo ℓ
then the endomorphism rings End(SiA) are local rings for i < ℓ. We will need
this in the proof of Theorem 5.18.

1Compare with (5.6) and 5.11 of [Voe11].
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Lemma 5.11. If R = Z(ℓ) and z is nonzero modulo ℓ, then End(A) is a local

ring, and its maximal ideal is the kernel of End(A)
s0−→ Z(ℓ) → Z/ℓ.

Proof. Recall that there are natural isomorphisms End(Rtr(X)) ∼= Z(ℓ) and
End(Rtr(X) ⊗ T ) ∼= Z(ℓ) by Corollary 4.5, where T = R(q)[2p]. Hence any
endomorphism h of A determines numbers c0 = s0(h) ∈ Z(ℓ) and c1 = sq(h)
in End(Rtr(X) ⊗ T ) ∼= Z(ℓ) and a morphism of triangles (where, by abuse of
notation, we write X for Rtr(X)):

X[−1] > X⊗ T x
> A

y
> X

z
> •

X[−1]

c0
∨

> X⊗ T

c1
∨ x

> A

h
∨ y

> X

c0
∨ z

> • .

c1
∨

Since z is nonzero modulo ℓ, and zc0 = c1z, we see that c0 ≡ c1 (mod ℓ). Let
J be the kernel of End(A)→ Z/ℓ; if h ∈ 1+ J then c0 ≡ c1 ≡ 1 (mod ℓ), and h
is an isomorphism by the 5-lemma. It follows that End(A) is a local ring.

Recall from Proposition 5.7 that the top slice of SiA is s0(S
iA) = Rtr(X).

Since s0 is a functor, this gives a natural ring homomorphism s0 : End(SiA)→
End(Rtr(X)) = Z(ℓ).

Proposition 5.12. When R = Z(ℓ), z is nonzero modulo ℓ and 1 ≤ i < ℓ,
the ring End(SiA) is a local ring; its maximal ideal is the kernel of the natural

surjection End(SiA)
s0−→ Z(ℓ) → Z/ℓ.

Thus a map h ∈ End(SiA) is an isomorphism if and only if c = s0(h) ∈ Z(ℓ)

is not congruent to zero modulo ℓ.2

Proof. Again, we use the slice filtration (see 4.9) and induction on i, the case
i = 1 being Lemma 5.11. By Proposition 5.7(a), the endomorphism h induces
an endomorphism h′ = s<qi(h) on S

i−1A, and End(SiA)→ Z(ℓ) factors through
End(Si−1A) → Z(ℓ). By Proposition 5.7(b), h induces an endomorphism s>0h
on s>0(S

iA), which is identified with Si−1(A)⊗T via v. Moreover, the isomor-
phism End(Si−1A ⊗ T ) ∼= End(Si−1A) identifies s>0h with an endomorphism
h′′ of Si−1A and the slice sq : End(S

i−1A⊗ T )→ End(T ) ∼= Z(ℓ) of h with the
augmentation s0(h

′′) of h′′.
Therefore if s0(h) ≡ 1 (mod ℓ) the map h′ is an isomorphism by induction,

and sqj(h) is an isomorphism for every j < i. In particular, the augmentation
sq(h) and hence the augmentation of h′′ is an isomorphism. Since End(Si−1A)
is a local ring by induction, it follows that the slices sqj(h) are isomorphisms
for every j > 1. Because the slice functor is conservative (Remark 4.9), h is an
isomorphism. Since every h of augmentation 1 is an isomorphism, End(SiA) is
a local ring.

Remark 5.12.1. As in the proof of Lemma 5.11, it is easy to show by induction
that the slices of an endomorphism h have degrees which are all congruent
modulo ℓ.

2Compare with [Voe11, 15.10]
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5.4 Existence of a Rost motive

In this section, we will show that if z is chosen suitably in the sense of Definition
5.13 and R = Z(ℓ), then λ : Rtr(X)→M splits in such a way thatM = Sℓ−1(A)
is a symmetric Chow motive of the form (X, e). This verifies the final axiom
4.11(i), proving that M is a Rost motive whenever X is a Rost variety.

In this section, X is a smooth projective variety of dimension d = ℓn−1 − 1,
b = (ℓn−1 − 1)/(ℓ − 1), and X is the 0-coskeleton of X (see 1.32). We will use
the motivic cohomology operations Qi on H

∗,∗(−,Z/ℓ) described in 1.43. One
result, Corollary 6.34, is postponed to Chapter 6 in order to not interrupt the
flow of this section.

Definition 5.13. We say that z ∈ H2b+1,b(X,Z(ℓ)) is suitable if its mod–ℓ
reduction z̄ satisfies Qn−1(z̄) 6= 0 and Qi(z̄) = 0 for 0 ≤ i ≤ n− 2.

An element of the form z = β̃Q1 · · ·Qn−2(δ) is suitable if and only if
Qn−1(z̄) 6= 0, where β̃ is the integral Bockstein 1.42(3), since its mod-ℓ re-
duction is z̄ = Q0 · · ·Qn−2(δ). The fact that Qi(z̄) = 0 for i ≤ n − 2 follows
from the fact that the Qi anticommute and Q2

i = 0; see [Mil58, 4a] (which is
recorded in Lemma 13.11 below).

Example 5.13.1. Suppose that BL(n-1) holds. If X splits a and δ is the lift
of a given by Lemma 3.13, then the element µ = β̃Q1 · · ·Qn−2(δ) is suitable,
because Qn−1(µ) 6= 0 by Corollary 3.16.

The mod-ℓ reduction z̄ of any suitable z in H2b+1,b(X,Z(ℓ)) satisfies the
hypotheses of the following lemma.

Lemma 5.14. Let z̄ ∈ H2b+1,b(X,Z/ℓ) be such that Qi(z̄) = 0 for 0 ≤ i ≤ n−2.
Then βP b(z̄) = (−1)n−1Qn−1(z̄).

Proof. Recall that b = (ℓn−1 − 1)/(ℓ− 1). If ℓ 6= 2 then by 13.12 we have

βP b(z̄) =
∑n−1

i=0
(−1)iP b−(ℓi−1)/(ℓ−1)Qi(z̄).

If ℓ = 2 we have the same formula, by induction applied to Corollary 13.14. By
hypothesis, all terms on the right vanish except the term for i = n− 1, which is
(−1)n−1Qn−1(z̄) because P

0x = x by Axiom 13.6.1.

Our next proposition uses the fundamental class τ of X. To define it, recall
that by motivic duality ([MVW, 20.11]) we have Rtr(X) ∼= Rtr(X)∗⊗Ld. Hence

Hom(Ld, Rtr(X)) ∼= Hom(Ld, Rtr(X)∗ ⊗ Ld) ∼= Hom(Rtr(X), R) ∼= H0(X,R).

Note that motivic duality holds when char(k) = p and 1/p ∈ R, even if k does
not admit resolution of singularities, by [Kel13, 5.5.14].

Definition 5.15. The fundamental class τ : Ld → Rtr(X) is defined to be the
map corresponding to 1 ∈ H0(X,R). Since Rtr(X) ⊗ Rtr(X) ∼= Rtr(X), the
class τ determines a map from Rtr(X)⊗ Ld to Rtr(X).
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We now use Corollary 6.34, that φV = βP b when R = Z/ℓ.

Proposition 5.16. 3 Let z ∈ H2b+1,b(X, R), R = Z/ℓ, be such that Qn−1(z) 6=0
and Qi(z) = 0 for 0 ≤ i ≤ n− 2. If sd(X) 6≡ 0 (mod ℓ2), the composition

Rtr(X)⊗ Ld
τ−→ Rtr(X)

λ−→ Sℓ−1(A)

is non-zero, where λ is given by Proposition 5.9.

Proof. By Proposition 5.9, the structure map of Rtr(X) factors as Sℓ−1y ◦ λ.
Since sd(X) 6≡ 0 (mod ℓ2), the Motivic Degree Theorem 13.25 states that λτ :
X⊗Ld → Sℓ−1(A) is nonzero, provided there is a nonzero α ∈ Hbℓ+2,bℓ(X,Z/ℓ)
such that Qn−1(α) = 0 and (Sℓ−1y)∗(α) = 0 in Hbℓ+2,bℓ(Sℓ−1(A),Z/ℓ).

By assumption, the element α = (−1)n−1Qn−1(z) of Hbℓ+2,bℓ(X,Z/ℓ) is
nonzero, and Qn−1(α) = 0 because Q2

n−1 = 0. We are reduced to showing that
(Sℓ−1y)∗(α) = 0.

By Lemma 5.14, α = βP b(z); by Corollary 6.34, φV (z) = βP b(z). By the
definition of φV in 5.10, (Sℓ−1y)∗φV (z) is the composite (r⊗ 1) ◦ s ◦Sℓ−1y, and
is zero because s ◦ Sℓ−1y = 0 by 5.7(b).

Regarding z : Rtr(X)→ Rtr(X)⊗ Lb[1] as a map between Tate objects, it is
self-dual (by Example 4.8, zD = z†⊗Lb under the identification of Rtr(X) with
Rtr(X)

†). It follows that A ∼= A†⊗Lb. Since Si(M†) ∼= (SiM)† for every M we
also have Si(A) ∼= Si(A)† ⊗ Lbi. (See Proposition 4.7(2).)

Definition 5.17. Assume that 1/(ℓ − 1)! ∈ R. For the map λ of Proposition
5.9, we write λD for the dual map

λD : Sℓ−1(A) ∼= Sℓ−1(A)† ⊗ Ld
λ† ⊗ Ld

> Rtr(X)† ⊗ Ld ∼= Rtr(X).

Theorem 5.18. Set R = Z(ℓ). Suppose that z ∈ H2b+1,b(X,Z(ℓ)) is suitable
in the sense of Definition 5.13. If sd(X) 6≡ 0 (mod ℓ2), then: the composition
λ◦λD is an isomorphism on Sℓ−1(A); there is a unit c ∈ R so that λ τ = c·Sℓ−1x;
and the following diagram commutes:

Sℓ−1(A)
λ ◦ λD
≃

> Sℓ−1(A)

Rtr(X)

Sℓ−1y
∨ c

≃
> Rtr(X).

Sℓ−1y
∨

In particular, Sℓ−1(A) is a direct summand of Rtr(X), i.e., a Chow motive.

3Compare to Proposition 5.12 of [Voe11].
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Proof. By Proposition 5.7, Sℓ−1y is the natural projection onto the top slice,
Rtr(X). We saw in Corollary 4.5 that End(Rtr(X)) = R, so the diagram always
commutes when c ∈ R is the top slice of λ◦λD. By Proposition 5.12, End(M) is
a local ring and the top slice End(M)→ R is a local homomorphism. Thus c is a
unit ofR if and only if u = λ◦λD is an isomorphism, in which case e = λD◦u−1◦λ
is an idempotent element of End(Rtr(X)) and Sℓ−1(A) = eRtr(X) is a direct
summand of Rtr(X). Therefore it suffices to prove that c 6≡ 0 (mod ℓ).

Let us abbreviate Rtr(X) by X. By 4.5 and 4.7, Hom(X⊗ Lr,X) = 0 for all
r > 0. Using the exact sequences of 5.7(b),

Hom(X⊗ Lr, Si−1A⊗ Lb)
v→ Hom(X⊗ Lr, SiA)

Siy−→ Hom(X⊗ Lr,X) = 0,

it follows by induction on i ≥ 0, i < ℓ, that Hom(X ⊗ Lr, SiA) = 0 for r > qi.
From triangle 5.7(a) we have an exact sequence

Hom(X⊗Ld,X⊗Ld) S
ℓ−1x

> Hom(X⊗ Ld, Sℓ−1A)
u
> Hom(X⊗ Ld, Sℓ−2A) = 0.

∃ C 7→ λ τ 6≡ 0 (mod ℓ).

Since d > (ℓ − 2)b, the last term is zero. Hence the composite λτ lifts to an
element C of R ∼= Hom(X⊗ Ld,X⊗ Ld). Since λτ 6≡ 0 (mod ℓ) by 5.16, C 6≡ 0
(mod ℓ). That is, (Sℓ−1x) ◦ C = λτ .

Dualizing λτ = (Sℓ−1x)C yields the left square in the following diagram,
since Sℓ−1y is dual to Sℓ−1x and ι is dual to τ : X⊗ Ld → Rtr(X), so ι ◦ λD is
dual to λτ .

Sℓ−1(A)
λD
> Rtr(X)

λ
> Sℓ−1(A)

X

Sℓ−1y
∨ C

> X.

ι
∨ Sℓ−1y

<

The right triangle commutes by Proposition 5.9. Thus C is the top slice of
λ ◦ λD, i.e., C = c.

Corollary 5.19. If z ∈ H2b+1,b(X,Z(ℓ)) is suitable and sd(X) 6≡ 0 (mod ℓ2),

then M = Sℓ−1(A) is a symmetric Chow motive.

Proof. Setting e = c−1λD ◦ λ, Theorem 5.18 shows that Sℓ−1(A) ∼= (X, e) is a
Chow motive. By Example 4.2, its transpose (X, et) is defined by

λt = λ∗ ⊗ Ld : Sℓ−1(A) ∼= Sℓ−1(A)∗ ⊗ Ld → X.

Via Hom(Sℓ−1(A), Rtr(X)) ∼= Hom(Sℓ−1(A), Rtr(X)), we may identify λD and
λt. Since e = c−1λt◦λ, we have e = et. That is, Sℓ−1(A) = (X, e) is a symmetric
Chow motive in the sense of Definition 4.1.
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Corollary 5.20. Suppose that R = Z(ℓ), and X is a Rost variety for a. When

z = µ, the maps λ and λt make the direct summand M = Sℓ−1(A) of Rtr(X)
into a symmetric Chow motive, i.e., the following composition is an isomor-
phism:

M ∼=M∗ ⊗ Ld
λt

−→ Rtr(X)∗ ⊗ Ld ∼= Rtr(X)
λ−→ M.

Hence M is a Rost motive for a.

Proof. By Example 5.13.1, µ satisfies the hypothesis of Theorem 5.18. The
corollary is just a restatement of Theorem 5.18 in the form of property 4.11(i).
Since we have already seen that properties 4.11(ii-iii) hold for M , by 5.7 and
5.9, M is a Rost motive for a, as claimed.

5.5 Historical notes

When ℓ = 2, the Pfister quadric X associated to a is a Rost variety, and it
was Rost who constructed a symmetric Chow motive M = (X, e) in this case,
around 1990; see [Ros90] and [Ros98c]. This is the eponymous Rost motive.

Voevodsky’s 1996 proof of the Milnor Conjecture (the case ℓ = 2) centered
around the observation that Rost’s motive fits into the motivic triangle (5.1) in
[Voe03a, Thm. 4.4].

Voevodsky’s 2003 preprint [Voe03b], announced in 1998, contained the con-
struction of the Rost motive as presented in this chapter, as well as our next
chapter which proves that the φV we define in 5.10 is a cohomology opera-
tion. We will prove in Part III below that φV equals βP b; the original proof in
the 2003 preprint [Voe03b] had a gap which was patched in 2007, and finally
published in [Voe11]. We have followed the presentation in [Wei09].
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Chapter 6

Motives over S

The purpose of this chapter is to show that the operation φV of Definition 5.10
extends to a cohomology operation over k, and that it satisfies the recognition
criterion of Theorem 15.38, so that φV must be βP b (see Corollary 6.34).

Our construction of the cohomology operation utilizes the machinery of mo-
tives over a simplicial noetherian scheme, which is presented in Sections 6.1–6.3,
and the slice filtration in Section 6.4.

This chapter is independent of Chapter 5, but does use the duality material
of Chapter 4 (Section 4.2) and the symmetric powers Si(N) of a motive N ,
defined just before 5.5.

6.1 Motives over a scheme

In this section, we summarize the basic theory of motives over a scheme S,
following [MVW] and [SV00b]. Other approaches to this theory are given in
[Ayo07] and [CD13].

If S is a noetherian scheme, there is a tensor triangulated category
DMeff

nis(S). It may be constructed by replacing Spec(k) by S, using the finite
correspondences described in Appendix 1A of [MVW], and also in [SV00b].

In more detail, we begin with the category Sm/S of smooth schemes over
S. An elementary correspondence W from X to Y is an irreducible closed sub-
set of X ×S Y whose associated integral scheme is finite and surjective over a
component of X. Elements of the free abelian group generated by the elemen-
tary correspondences from X to Y are called cycles; a cycle is called a finite
correspondence if it is a “universally integral relative cycle.” (See loc. cit.) If S
is regular, every cycle is a finite correspondence; see [SV00b, 3.3.15, 3.4.8].

The set CorS(X,Y ) of all finite correspondences from X to Y is a subgroup
of the group of all cycles. These sets form the morphisms of an additive cate-
gory CorS whose objects are the smooth schemes over S; composition of finite
correspondences is explained in [MVW, 1A.11].

Presheaves with transfers over S (with coefficients in a fixed ring R) are
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just additive contravariant functors from CorS to R-modules. They form the
objects of an abelian category PST(S), morphisms being natural transforma-
tions. If Y is a smooth scheme over S, we write Rtr(Y/S) for the associated
representable presheaf with transfers. As in Lecture 8 of [MVW], the Rtr(Y/S)
are projective objects (and every projective is a direct summand of a direct sum
of representables) so we can use resolutions to construct a right exact tensor
product ⊗tr on PST(S) with unit Rtr(S/S) determined by the formula

Rtr(X/S)⊗tr Rtr(Y/S) = Rtr(X ×S Y/S),

as well as a total tensor product ⊗tr
L

on the derived category D−(PST(S))
making it into a tensor triangulated category.

Sheafifying for the Nisnevich topology is compatible with ⊗tr
L
, and makes

the associated derived category D−
nis of Nisnevich sheaves with transfers over

S into a tensor triangulated category, as in [MVW, 14.2]. Form the smallest
thick subcategory E of D−, closed under direct sums and containing the cone
of every projection Rtr(X × A1)→ Rtr(X); maps whose cone is in E are called
A1-weak equivalences. The triangulated category DMeff

nis(S) is defined to be
the localization of D−

nis at the class of A1-weak equivalences, or equivalently,

the Verdier quotient D−
nis/E . By the argument of [MVW, 9.6], DMeff

nis(S) is a
tensor triangulated category.

If f : S → T is a morphism of schemes, the pullback Sm/T → Sm/S induces
a pullback CorT → CorS and therefore adjoint functors

PST(T )
f∗
>

<
f∗

PST(S). (6.1)

By inspection, f∗F (U) = F (U ×T S) is exact and induces a functor between the
derived categories. The inverse image functor f∗ is right exact and (strongly)
monoidal in the sense that f∗(F ⊗tr G) ∼= f∗(F ) ⊗tr f∗(G). If Y is in Sm/T
then f∗Rtr(Y/T ) ∼= Rtr(Y ×T S/S) because for each X in Sm/S we have
CorS(X,Y ×T S) ∼= CorT (X,Y ). Using projective resolutions, f∗ has a total
left derived functor Lf∗ which is left adjoint to f∗.

Remark 6.2. If f : S → T is smooth, then f∗ : PST(T ) → PST(S) is exact,
with (f∗G)(X) = G(X). This is because we may regard any X in Sm/S as
smooth over T . It follows that f∗ has a left adjoint f#, satisfying f#Rtr(X/S) =
Rtr(X/T ). This formula determines the right exact functor f# because every
object has a projective resolution.

6.2 Motives over a simplicial scheme

If S• is a simplicial noetherian scheme, there is also a tensor triangulated cat-
egory DMeff

nis(S•) of motives over S•. In order to construct it, we make a few
judicious modifications to the template of Section 6.1; further details may be
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found in [Voe10b]. This theory will be used in order to construct the cohomology
operations φi and φ

V in Sections 6.6 and 6.7.
We first form the category Sm/S•. The class of objects of Sm/S• is the

disjoint union of the objects of the Sm/Si; a morphism from X → Si to Y → Sj
is a compatible pair of morphisms (X → Y, Si → Sj). Thus Sm/S• is fibered
over the simplicial category. We will not need to introduce a category CorS• .

Definition 6.3. A presheaf with transfers over S• (with coefficients in R) is a
collection {Fi}i≥0 of presheaves with transfers Fi over Si together with bonding
maps α∗(Fj) → Fi in PST(Sj) for every simplicial map α : [j] → [i] (where
α : Si → Sj is the simplicial structure map), natural in α and such that α∗ is
the identity map when α is.

We write R (or RS•) for the distinguished presheaf with transfers with
Fi = Rtr(Si/Si). For Y in Sm/Si, we write Rtr(Y, j) for the representable
presheaf with transfers over S• corresponding to Y , i.e., X 7→ HomSm/S•(X,Y ).

As before, PST(S•) is an abelian category with enough projectives, projec-
tive objects being the same thing as summands of direct sums of representable
presheaves with transfers. It is also a symmetric monoidal category with the
termwise tensor product {Fi}⊗tr {Gi} = {Fi⊗tr

Si
Gi} of Section 6.1; the unit is

R.
We will say that a presheaf with transfers {Fi} is termwise projective if each

Fi is a projective object in PST(Si). Clearly R is termwise projective, and each
representable object Rtr(Y, i) is termwise projective because

Rtr(Y, i)j = ⊕ϕ:[i]→[j]Rtr(Sj ×ϕ Y ).

Lemma 6.4. If F
∼−→ F ′ is a quasi-isomorphism of complexes of termwise

projectives in PST(S•), then the map F⊗trG→ F ′⊗trG is a quasi-isomorphism
for every G in PST(S•).

Proof. By hypothesis, each Fi
∼−→ F ′

i is a quasi-isomorphism of projective ob-
jects in PST(Si), so Fi ⊗tr

Si
Gi ≃ F ′

i ⊗tr
Si
Gi.

Again following [MVW, Lect. 8], D−(PST(S•)) is a tensor triangulated cat-
egory whose total tensor product ⊗tr

L
is formed using projective resolutions,

or even termwise projective resolutions. In particular, R is the unit object for
⊗tr

L
. Sheafifying makes the triangulated category D−

nis of Nisnevich sheaves with
transfers into a tensor triangulated category.

The unit R is not representable in general. To form a projective resolution
of R, we begin with the canonical map Rtr(S0, 0)

ǫ−→ R. Consider the sim-
plicial object in PST(S•) which is Rtr(Si, i) in degree i, and let Λ∗ denote the
associated normalized chain complex: · · · → Rtr(S1, 1)→ Rtr(S0, 0)→ 0.

Lemma 6.5. Λ∗
ǫ−→ R is a projective resolution.

Proof. By construction, each Λi is projective. Evaluating Λ∗ at Si ∈ Sm/Si
yields the normalized chain complex associated to the simplicial abelian group
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R[∆i], and evaluating at X in Sm/Si yields the complex associated to
R[∆i]⊗RH0(X,R). Since the R-module augmentation R[∆i]

∼−→ R is a simpli-

cial equivalence, Λ∗(X)
ǫ−→ R(X) is a quasi-isomorphism for all X. This shows

that Λ∗ → R is a projective resolution.

Let E(S•) denote the smallest thick subcategory of D−
nis, closed under direct

sums and containing every Rtr(X × A1, i) → Rtr(X, i); maps whose cone is in
E are called A1-weak equivalences.

Definition 6.6. ([Voe10b, 4.2]) The triangulated categoryDMeff
nis(S•) is defined

to be the localization of D−
nis at the class of A1-weak equivalences, i.e., as the

Verdier quotient D−
nis/E . Again by [MVW, 9.6], it is a tensor triangulated

category.

Functoriality in S• follows the pattern of (6.1). If f : S• → T• is a morphism
of simplicial schemes, the direct image f∗ : PST(S•) → PST(T•) is defined
by (f∗F )(U/Ti) = F (U ×Ti

Si) and is exact, so it passes to a functor f∗ :
D−(PST(S•)) → D−(PST(T•)). There is also an inverse image functor f∗

fitting into an adjunction like (6.1); f∗ is monoidal because its components are,
by the discussion after (6.1). If Yi is in Sm/Ti, then f

∗Rtr(Y, i) ∼= Rtr(Y ×Ti
Si).

In particular, f∗(RT•)
∼= RS• . As in the non-simplicial case, there is a total

left derived functor Lf∗ : D−(PST(T•)) → D−(PST(S•)) which is adjoint to
f∗, defined using projective resolutions. Since f∗ preserves projectives, we have
canonical isomorphisms in D−(PST(S•)) of the form

Lf∗(K ⊗tr
L L)

∼−→ Lf∗(K)⊗tr
L Lf∗(L). (6.7)

6.3 Motives over a smooth simplicial scheme

In this section we assume that S• is a smooth simplicial scheme over a perfect
field k, with maps ci : Si → Spec(k) forming the structure map c : S• → Spec(k).
If M is a presheaf with transfers over k, the pullback c∗(M) is {c∗i (M)}, and
c∗(R) =R. By Remark 6.2, c∗ is exact and has a left adjoint c# :PST(S•)→
PST(k).

Because c∗ is exact, c# is determined by the formula c#Rtr(Y, i) = Rtr(Y ).
Since c# commutes with direct sums, it takes E(S•) to E(Spec k). Therefore
its total left derived functor Lc# (defined via projective resolutions) induces a

functor Lc# : DMeff
nis(S•)→ DMeff

nis(k), left adjoint to c
∗ = Lc∗.

Lemma 6.8. If S• is a smooth simplicial scheme over k, then

Lc#(c
∗F ) ∼= Rtr(S•)⊗tr

L F

for all F in DMeff
nis(k). In particular, Lc#(R) ∼= Rtr(S•).

Proof. It suffices to consider the case when F = Rtr(X) for X in Sm/k. By
Lemma 6.4, the tensor product of c∗F with the quasi-isomorphism Λ∗

∼−→ R
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of 6.5 is a quasi-isomorphism Λ∗ ⊗ c∗F ∼−→ c∗F . It is a projective resolution
because each Rtr(Si, i)⊗ c∗F ∼= Rtr(Si ×X, i) is a projective object. It follows
that Lc#(c

∗F ) = c#[Λ∗⊗ c∗F ] is the chain complex Rtr(S•)⊗trRtr(X) sending
i to c#Rtr(Si ×X, i) = Rtr(Si ×X), with the evident differentials.

Corollary 6.9. For all F,G in DMeff
nis(k):

HomDM(S•)(c
∗F, c∗G) ∼= HomDM(k)(Rtr(S•)⊗tr

L F,G).

Proof. Both sides are HomDM(k)(Lc#(c
∗F ), G), by adjunction and 6.8.

For each p and q ≥ 0, we write R(q)[p] for c∗(R(q)[p]) and call them the Tate
objects. Their role in motivic cohomology is illustrated by our next proposition.

Proposition 6.10. If S• is a smooth simplicial scheme over k, then for all p, q:

HomDM(S•)(R,R(q)[p]) ∼= Hp,q(S•, R).

Proof. Take F = R and G = R(q)[p] in Corollary 6.9 and apply Hp,q(S•, R) =
HomDM(k)(Rtr(S•), R(q)[p])).

Definition 6.11. Let DMeff
gm = DMeff

gm(S•) denote the triangulated subcate-

gory of DMeff
nis(S•) generated by the objects c∗M with M in DMeff

gm(k). The

formula (6.7) shows that DMeff
gm is a tensor subcategory of DMeff

nis(S•).

The goal of the rest of this section is to provide the tensor category DMeff
gm

with an internal Hom, i.e., a right adjoint Hom to the tensor which is bi-
distributive for⊗tr

L
(Lemma 6.13), and then extend this to a rigid tensor category

DMgm(S•), i.e., one with an internal Hom, equipped with a dual such that
A→ (A∗)∗ is an isomorphism for every A (Theorem 6.14).

For K in DMeff
gm, write K(q) for K ⊗tr

L
R(q).

Theorem 6.12 (Cancellation). For all K and L in DMeff
gm(S•), the canonical

map is an isomorphism:

HomDM(S•)(K,L)
≃−→ HomDM(S•)(K(1), L(1))

Proof. It suffices to consider K = c∗M , L = c∗N , as these generate DMeff
gm. By

Corollary 6.9, the map in question is identified with

HomDM(k)(Rtr(S•)⊗M,N) −→ HomDM(k)(Rtr(S•)⊗M(1), N(1)),

which is an isomorphism by [Voe10a].

We may form the category DMgm(S•) by formally inverting the Tate twist

functor K 7→ K(1) in DMeff
gm; every object K has the form M(−r) for an

effective M . By Cancellation 6.12, DMeff
gm embeds as a full tensor subcategory

of DMgm(S•), and HomDM(S•)(K,L)
∼−→ HomDM(S•)(K(r), L(r)) for all r.

Recall from [MVW, 14.12] that if M is an effective geometric motive over k
then −⊗tr

L
M has a right adjoint RHomk(M,−) on DMeff

nis(k). If N is another
effective geometric motive then RHomk(M,N) is also effective geometric.
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Lemma 6.13. For any objects c∗M in DMeff
gm(S•) and c∗N in DMeff

nis(S•),

Hom(M,N) = c∗RHomk(M,N) is an internal Hom object in DMeff
nis(S•) from

c∗M to c∗N , and is independent (up to canonical isomorphism) of the choice of
M and N .

It follows that DMeff
gm(S•) has an internal Hom functor, and that the object

RHomS•
(R(n),K) exists for all K in DMeff

gm(S•).

Proof. Writing ⊗ for ⊗tr
L
, Corollary 6.9 yields

HomDM(S•)(c
∗L⊗ c∗M, c∗N) ∼=HomDM(k)(Rtr(S•)⊗ L⊗M,N)

∼=HomDM(k)(Rtr(S•)⊗ L,RHomk(M,N))
∼=HomDM(S•)(c

∗L, c∗RHomk(M,N)).

This shows that c∗RHomk(M,N) is an internal Hom object; the canonical map

c∗RHomk(M,N)⊗ c∗M e−→ c∗N is obtained by taking L = RHomk(M,N).
If c∗M ∼= c∗M ′ and c∗N ∼= c∗N ′ then taking L = RHom(M ′, N ′) yields

a canonical map c∗RHom(M ′, N ′) → c∗RHom(M,N); the usual argument
shows that it is an isomorphism. Thus −⊗ c∗M has a right adjoint c∗N 7→
c∗RHomk(M,N) in DMeff

nis(S•).

Recall [MVW, 20.4] that the dual M∗ = RHomk(M,R) of a geometric
motive over k is again a geometric motive and that (M∗)∗ ∼= M . We may now
borrow the construction in [MVW, 20.6]: any geometric motive over S• has the
form K =M(−r) for an effective geometric motive M and we want M(−r)∗ to
be M∗(r). Thus we define the dual to be RHomk(K(r),R(i))(r − i) for large
i, an object which is independent of i and r by Cancellation 6.12. Since

(M(−r)∗)∗ ∼=M∗(r)∗ ∼=M∗∗(−r) ∼=M(−r),

this shows that the dual satisfies K ∼= (K∗)∗.
We may now copy the rest of the development in [MVW, §20] to prove that

M∗ is a geometric motive over S•, M ∼=M∗∗ and Hom(M,N) ∼=M∗⊗N . This
proves:

Theorem 6.14. The tensor category DMgm(S•) is rigid, with internal Hom
Hom(K,L) ∼= K∗ ⊗ L.

6.4 The slice filtration

In this section we fix a smooth S• and write DMeff
gm for DMeff

gm(S•). For n ≥ 0,

let DMgm(n) denote the full subcategory of DMeff
gm on the objects of the form

M(n) with M in DMeff
gm. The slice filtration of DMeff

gm is the sequence of
subcategories

· · · ⊂ DMgm(n+ 1) ⊂ DMgm(n) ⊂ · · · ⊂ DMgm(0) = DMeff
gm.
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Lemma 6.15. DMgm(n) is a coreflective subcategory of DMeff
gm; the functor

s≥nM = RHom(R(n),M)(n).

is right adjoint for the inclusion DMgm(n) ⊂ DMeff
gm.

Proof. It is clear that s≥n is a triangulated functor from DMeff
gm to DMgm(n).

For M,N in DMeff
gm,

Hom(M(n), N) =Hom(M ⊗tr R(n), N)
∼=Hom(M,RHom(R(n), N))

≃−→ Hom(M(n), RHom(R(n), N)(n))

=Hom(M(n), s≥nN).

Thus s≥n is right adjoint to the inclusion. By the Cancellation Theorem 6.12,

s≥n(M(n))
≃−→ RHom(R,M)(n) ∼= M(n) for all M , so s≥n is a coreflection

functor.

Definition 6.16. We let s<nM denote the mapping cone of the adjunction
counit ε : s≥nM → M . It is unique up to canonical isomorphism, and fits into
a distinguished triangle:

s≥nM
ε−→ M → s<nM → .

We let snM denote the mapping cone for the adjunction ε : s≥n+1M → s≥nM
associated to DMgm(n + 1) ⊂ DMgm(n). It is also unique up to canonical
isomorphism, and fits into a distinguished triangle:

s≥n+1M
ε−→ s≥nM → snM → .

The sn are called the slice functors over S•.

Remark 6.16.1. The slice filtration extends to an (exhaustive) slice filtration
on DMgm(S•). The existence of this extension is straightforward from the
observation that, by Lemma 6.15, there is a well defined coreflection s≥0 :

DMgm(S•)→ DMeff
gm(S•).

We write DT≥0 = DT≥0(S•) for the thick subcategory of DMeff
nis(S•) gener-

ated by the Tate objects R(q)[p] with q ≥ 0.

Lemma 6.17. The slice functor is conservative on DT≥0. That is, an object
A is zero if and only if every sn(A) is zero.

Proof. ([Voe10b, 5.14]) If sn(A) = 0 then s≥n+1(A) ∼= s≥n(A). Since s≥0(A) =
A, we see by induction on n ≥ 0 that if every si(A) = 0 then s≥n(A) ∼= A for
all n. On the other hand, an induction on the number of triangles needed to
define A in terms of Tate objects shows that some s≥n(A) is zero. The lemma
follows.
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For all i, j ≥ 0 the tensor product on DMeff
gm restricts to a natural transfor-

mation ηi,j : s≥i(M)⊗ s≥j(N)→ s≥i+j(M ⊗N), defined as the right adjoint of
the map s≥i(M) ⊗ s≥j(N) → (M ⊗N). As these are compatible, they induce
natural transformations θi,j : si(M)⊗ sj(N)→ si+j(M ⊗N).

Lemma 6.18. The slice functor is multiplicative on DT≥0 in the sense that the
θi,j induce an isomorphism

sn(M ⊗N) =
⊕

p+q=n

sp(M)⊗ sq(N).

Proof. If M = R(q)[p] and N = R(q′)[p′], θq,q′ is the canonical isomorphism
R(q)[p] ⊗R(q′)[p′] ∼= R(q + q′)[p + p′], and all other θi,j are the isomorphism
0 ∼= 0. By the 5-lemma, the subcategory of (M,N) in DT≥0 ×DT≥0 for which
Lemma 6.18 holds is closed under extensions. Since it contains the generators,
and is closed under shifts and summands, it must be all of DT≥0 ×DT≥0.

Lemma 6.19. Let A
a−→ B

b−→ C be a sequence in DT≥0, and n ≥ 0 such that
A ∈ DT≥n and C ∈ DT<n. If si(a) is an isomorphism for all i ≥ n and si(b)
is an isomorphism for all i < n, then there is a unique morphism c : C → A[1]

such that A
a−→ B

b−→ C
c−→ A[1] is a distinguished triangle, which identifies

A and C with s≥nB and s<nB, respectively.

The proof that we gave for Lemma 5.8 goes through verbatim to prove 6.19.

Proof. Choose a distinguished triangle A
a−→ B → C ′ → A[1]. The composition

ba is zero for weight reasons. Hence b factors through a morphism φ : C ′ → C.
The hypotheses imply that si(φ) is an isomorphism for all i; as the slice functor
is conservative (Lemma 6.17), this implies that φ is an isomorphism. Letting c
be the composite of φ−1 and C ′ → A[1] yields the triangle (a, b, c).

If (a, b, c′) is a second triangle on (A,B,C) then there is an f : C → C so
that (1, 1, f) is a morphism from the first to the second triangle. Since s<n(b)
is an isomorphism, it follows that f = s<n(f) is the identity and hence that
c = c′. The final assertion follows since s≥nC = 0 and s<nA = 0 by 6.17.

6.5 Embedded schemes

In Section 4.2 we considered the simplicial scheme X of Definition 1.32 associ-
ated to a smooth scheme X over k, and the subcategory DMε

gm of DMeff
nis(k)

generated by the objects Rtr(X) ⊗M for M in DMgm(k). In this section we
generalize from X to embedded schemes; see Proposition 6.23. Our exposition
is based on Section 6 of [Voe10b].

Definition 6.20. ([Voe10b, 6.1]) A smooth simplicial scheme S• over k is called

an embedded scheme if the natural map c⊗1 : Rtr(S•)⊗Rtr(S•)
≃−→Rtr(S•) is an

isomorphism. The most important example of an embedded simplicial scheme
is the simplicial scheme X of 1.32 associated to a smooth scheme X over k.
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Remark 6.20.1. The term ’embedded’ is suggested by the following observation.
Let us say that a morphism of schemes π : S → T is an embedding if the
projections S ×T S → S are isomorphisms, or equivalently, if it is topologically
an injection, and OT,π(s) → OS,s is a surjection for every s ∈ S. Then S
(considered as a constant simplicial scheme) is an embedded scheme over T .

In Proposition 6.23 we will see that DMε
gm is equivalent to the full subcat-

egory DMeff
gm(X) of DM(X) introduced in Section 6.3 above.

Recall from Section 6.3 that the structure map c : S• → Spec(k) induces an
adjunction (Lc#, c

∗) between DMeff
nis(S•) and DMeff

nis(k). The unit and counit of

the adjunction are the natural transformations ηN : N → c∗Lc#N inDMeff
nis(S•)

and εM : Lc#c
∗M →M in DMeff

nis(k).

Lemma 6.21. The natural transformation c∗εM : c∗Lc#(c
∗M) → c∗M is an

isomorphism when S• is an embedded scheme.

Proof. As with any adjunction, the composite (c∗ε)ηc∗M is the identity on c∗M ,
so it is sufficient to show that the other composite ηc∗M ◦ c∗εM is the identity
map on c∗Lc#(c

∗M). The latter two maps are adjoint to the maps

Lc#c
∗εM : (Lc#c

∗)2 → Lc#c
∗, and εLc#c∗ : (Lc#c

∗)2 → Lc#c
∗,

respectively. Using the identification Lc#(c
∗M) ∼= Rtr(S•)⊗tr

L
M of Lemma 6.8,

these two maps may be identified with the two projections

M ⊗Rtr(S•)⊗Rtr(S•) ∼=M ⊗Rtr(S• × S•) ⇒M ⊗Rtr(S•).

Because S• is embedded, these two projections are isomorphisms and have the
diagonal as their common inverse, so they must be equal. Since Lc#c

∗εM =
εLc#c∗ , their adjoints are equal: 1 = ηc∗M ◦ c∗εM . Hence c∗εM is an isomor-
phism, as required.

Corollary 6.22. For any objectsM,N of DMeff
nis(k), there is a natural bijection

Homk(Lc#c
∗M,Lc#c

∗N) ∼= HomS•(c
∗M, c∗Lc#c

∗N)
c∗ε−→ HomS•(c

∗M, c∗N).

Proof. The first map is the adjunction isomorphism for the adjoint pair
(Lc#, c

∗), and the second map is an isomorphism by Lemma 6.21.

Let DMeff
S• denote the full triangulated subcategory of DMeff

nis(S•) generated

by objects of the form c∗(M) for M in DMeff
nis(k). It contains the subcategory

DMeff
gm(S•), defined in 6.11, which is generated by objects of the form c∗(M)

for M in DMeff
gm(k).

Proposition 6.23. The functor Lc# : DMeff
nis(S•) → DMeff

nis(k) induces an

equivalence between DMeff
S• and the full subcategory of DMeff

nis(k) consisting of

objects M such that c⊗M : Rtr(S•)⊗M ≃−→ M is an isomorphism.
The subcategory DMeff

gm(S•) is equivalent to the full subcategory of DMeff
nis(k)

consisting of objects Rtr(S•)⊗M withM in DMeff
gm(k). In particular, DMeff

gm(X)
is equivalent to DMε

gm.
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Proof. Corollary 6.22 implies that Lc# induces an isomorphism on Hom-sets, so

it is a full embedding on DMeff
S• . By Lemma 6.8, the image consists of objects

Lc#(c
∗M) ∼= Rtr(S•)⊗M . Since S• is an embedded scheme we have Rtr(S•)⊗

M ∼= Rtr(S•)⊗Rtr(S•)⊗M , so N ∼= Lc#(c
∗M) if and only if Rtr(S•)⊗N ≃−→ N

is an isomorphism.

The equivalence of Proposition 6.23 also preserves tensor products.

Lemma 6.24. If S• is embedded, the functor Lc# preserves tensor products in

the sense that there is a canonical isomorphism for M,N in DMeff
S• .

Lc#(M ⊗N)
≃−→ Lc#(M)⊗ Lc#(N).

Proof. Since c∗ commutes with tensor products by (6.7), we have a canonical
map

M ⊗N η ⊗ η
> c∗Lc#(M)⊗ c∗Lc#(N) ∼= c∗ (Lc#(M)⊗ Lc#(N)) .

The adjoint map is a map Lc#(M ⊗N) −→ Lc#(M)⊗ Lc#(N) defined for all

M,N in DMeff
nis(S•).

Let E denote the subcategory of DMS• ×DMS• consisting of pairs (M,N)
for which this adjoint map is an isomorphism. Since the map is bi-triangulated,
E is a localizing subcategory. Therefore it suffices to show that E contains pairs
(M,N) = (c∗Rtr(X), c∗Rtr(Y )) for X and Y smooth over k. Since Lc#M ∼=
Rtr(S•)⊗Rtr(X) and Lc#N ∼= Rtr(S•)⊗Rtr(Y ) by Lemma 6.8, the map of the
lemma coincides with the map

Lc#(M ⊗N) ∼=Rtr(S•)⊗Rtr(X)⊗Rtr(Y )

→Rtr(S•)⊗Rtr(S•)⊗Rtr(X)⊗Rtr(Y )
∼=Rtr(S•)⊗Rtr(X)⊗Rtr(S•)⊗Rtr(Y ) = Lc#(M)⊗ Lc#(N)

induced by the diagonal S• → S• × S•. Since S• is embedded, this map is an
isomorphism, as required.

6.6 The operations φi

We are now able to construct the cohomology operations φi = φp,qi . We first
define φi(z) for any z ∈ H2p+1,q(S•, R), where S• is any smooth simplicial
scheme over k, R contains 1/(ℓ− 1)! and p, q ≥ 0 are arbitrary.

It is convenient to work in DMgm(S•) and set T = R(q)[2p]. By Proposition
6.10 we may interpret z as a morphism R→ R(q)[2p+1] = T [1] in DMgm(S•).
Define A, x and y in DMgm(S•) by the triangle

T
x−→ A

y−→ R
z−→ T [1]. (6.25)
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Recall that the motive Si(A) is defined for i < ℓ as the symmetric part
ei(A

⊗i) of the R[Σi]-module A⊗i, where ei =
∑
σ∈Σi

σ/i!. Since Σi−1 ⊂ Σi, we

also have ei−1 ∈ R[Σi] and Si−1(A)⊗ A = ei−1(A
⊗i). Because eiei−1 = ei, we

get a corestriction map cores : Si−1(A) ⊗ A → Si(A). There is also a transfer
map tr : Si(A)→ Si−1(A)⊗A, induced by the endomorphism

a1 ⊗ · · · ⊗ ai 7−→ Σ(· · · ⊗ âj ⊗ · · · )⊗ aj

of A⊗i. Composing tr with 1⊗ y yields a map u : Si(A)→ Si−1(A); composing
1⊗ x with corestriction yields a map v : Si−1(A)⊗ T → Si(A).

The following result generalizes Proposition 5.7 from X to S•, and has almost
the same proof. It is taken from [Voe11, 3.1].

Proposition 6.26. If 0 < i < ℓ and 1/(ℓ − 1)! ∈ R, then there exist unique
morphisms r and s so that (Six, u, r) and (v, Siy, s) are distinguished triangles:

(a) T i
Six−→ Si(A)

u−→ Si−1(A)
r−→ T i[1].

(b) Si−1(A)⊗ T v−→ Si(A)
Siy−→ R

s−→ Si−1(A)⊗ T [1].

Moreover, u identifies T i and Si−1(A) with sqi(A) and s<qi (S
iA), respectively,

and v identifies Si−1(A)⊗ T and R with s>0 (S
iA) and s0(S

iA), respectively.

Proof. By multiplicativity (Lemma 6.18), the slice sn(A
⊗i) of A⊗i is the sum

of the sn1
(A)⊗ · · · ⊗ sni

(A) with
∑
nj = n. Since the symmetric group acts on

everything here, the slice sn(S
iA) is the symmetric part of this, viz., R(qj)[2pj]

if n = qj for 0 ≤ j ≤ i and zero otherwise.
By inspection, Six induces an isomorphism T i ∼= sqi(S

iA), and each mor-
phism sqj(u) is multiplication by i− j, which is an isomorphism for 0 ≤ j < i.
The existence and uniqueness of r now follows from Lemma 6.19.

Similarly, y is the top slice transformation, as s0(A) ∼= R. Thus Siy induces
s0(S

iA) ∼= R, and sqj(v) is an isomorphism for j > 0 because by multiplicativity
(6.18):

sqj
[
Si−1(A)⊗ T

]
= sq(j−1)(S

i−1A)⊗ T.
The existence and uniqueness of s now follows from Lemma 6.19.

Definition 6.27. Let S• be a smooth simplicial scheme. The functions

φi : H
2p+1,q(S•, R)→ H2p(i+1)+2,q(i+1)(S•, R)

are defined for each i = 1, . . . , ℓ− 1 as follows. Given z, the composition of the
maps s and r ⊗ 1 of Proposition 6.26 yields a map

φi(z) : R
s−→ Si−1(A)⊗T [1] r⊗1−→ T i[1]⊗T [1] ∼= T i+1[2] = R(q(i+1))[2p(i+1)+2],

i.e., an element of H2p(i+1)+2,q(i+1)(S•, R).
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Remark 6.27.1. When S• is an embedded scheme, the above construction of
φi(z) can be performed in the subcategory DMeff

S• of DMeff
nis(k), by Proposition

6.23 and Lemma 6.24. This was carried out in Section 5.2 for the simplicial Čech
variety X associated to a smooth X in Definition 1.32. (Compare Propositions
5.7 and 6.26.) Thus Definitions 5.10 and 6.27 of φV (z) = φℓ−1 agree for z in
H2p+1,q(X, R).

Proposition 6.28. The functions H2p+1,q(S•, R)
φi−→ H2p(i+1)+2,q(i+1)(S•, R)

assemble to form a cohomology operation φi=φ
p,q
i for each p, q and i, 0 < i < ℓ.

Proof. Given a map f : S′
• → S• and an element z, triangle (6.25) induces a

triangle f∗(T )→ f∗(A)→ f∗(R)
f∗z−→ f∗(T )[1]. By functoriality in S•, f

∗ maps
R and T for S• to R and T for S′

•. Thus the construction of (6.25) and A is
natural in z. Since f∗ is strongly monoidal, we see that u, v, r and s are natural,
and we also have f∗(φi(z)) = φi(f

∗(z)).

Example 6.28.1. When i = 1, it is immediate from the definition that r = s =
z and hence φ1(z) = z2. This is zero unless ℓ = 2, because z has odd degree.

Another case when it is easy to describe φi is when p = q = 0 and R = Z/ℓ.
In this case each φi = φ0,0i goes from H1,0(−,Z/ℓ) to H2,0(−,Z/ℓ) and we have:

Proposition 6.29. The operations φi : H
1,0(−,Z/ℓ) → H2,0(−,Z/ℓ) are zero

for i < ℓ− 1, and the Bockstein β for i = ℓ− 1.

To set up the proof, let G denote the group Z/ℓ, and let R denote the
ring Z/ℓ. Recall that in topology the classical Eilenberg–MacLane space
BG = K(G, 1) represents cohomology in the sense that H1

top(X,R) = [X,BG].
There is a canonical element α1 ∈ H1

top(BG,R), corresponding to the identity of
BG, and the Yoneda Lemma yields a 1–1 correspondence between cohomology
operations ψ : H1

top(−, R) → Hp
top(−, R) and elements of Hp

top(BG,R), given
by ψ 7→ ψ(α1).

In motivic cohomology, we have the simplicial classifying space B•(G), which
is the simplicial set BG regarded as a simplicial scheme; it is a disjoint union of
ℓi+1 copies of Spec(k) in simplicial degree i, and the simplicial structure comes
from the group structure of G. Then H1,0(−,Z/ℓ) is represented by B•(G)
in the motivic homotopy category; see [MV99, p. 130]. Again by the Yoneda
Lemma, there is a 1–1 correspondence between motivic cohomology operations
ψ : H1,0(−,Z/ℓ) → Hp,q(−,Z/ℓ) and elements of Hp,q(B•G,Z/ℓ), given by
ψ 7→ ψ(α1), where α1 is the canonical element of H1,0(B•G,Z/ℓ).

Proof. To compare φℓ−1(α1) and β(α1), we use Yoneda extensions and the iden-
tification in Lemma 13.3 of Hp,0(B•G,Z/ℓ) with

Hp
top(BG,Z/ℓ) = Extp

Z[G](Z,Z/ℓ)
∼= Extp

Z/ℓ[G](Z/ℓ,Z/ℓ).

Recall from Section 3.2 that the regular representation has an Z/ℓ[G]-module
filtration Z/ℓ = F1 ⊂ F2 ⊂ · · ·Fℓ = Z/ℓ[G], where dimZ/ℓ Fi = i. The canonical
element α1 corresponds to the extension 0→ Z/ℓ→ F2 → Z/ℓ→ 0.
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To compute φi(α1), we represent α1 by the distinguished triangle

Z/ℓ→ F2 → Z/ℓ
α0−→ Z/ℓ[1]

in D(Z/ℓ[G]). The symmetric power Si(F2) is isomorphic to Fi+1, and S
ℓ−1(F2)

is the regular representation Z/ℓ[G] of G over Z/ℓ. Hence the triangles
(6.26)(a,b) are

Z/ℓ→ Fi+1
u→ Fi

r→ Z/ℓ[1] and Fi
v→ Fi+1 → Z/ℓ

s→ Fi[1];

thus r and s represent the Z/ℓ[G]-module extensions 0→ Z/ℓ→ Fi+1 → Fi → 0
and 0 → Fi → Fi+1 → Z/ℓ → 0, respectively. Since v ◦ u : Fi+1 → Fi+1 is
multiplication by (σ − 1), where σ is a chosen generator of G, the composition
of these extensions is the Z/ℓ[G]-module Yoneda extension representing φi(α1).
In particular, φℓ−1(α1) is represented by the Yoneda extension

0→ Z/ℓ→ Z/ℓ[G]
σ−1−→ Z/ℓ[G]

ǫ→ Z/ℓ→ 0.

If i < ℓ− 1, the following diagram shows that φi(α1) = 0:

Z/ℓ > Z/ℓ[G]
σ − 1

> Z/ℓ[G]
ε

> Z/ℓ

Z/ℓ

0
∨

> Fi+1

∨ σ − 1
> Fi+1

∨ ε
> Z/ℓ.

wwwww

To compare φℓ−1(α1) to β(α1), we need to use the natural isomorphism
Ext∗Z/ℓ[G](Z/ℓ,Z/ℓ)

∼= Ext∗Z[G](Z,Z/ℓ) (see [Wei94, Ex. 6.2]). As an extension of
Z[G]-modules, α1 is represented by the extension

0→ Z/ℓ
σ−1−→ Z[G]/I2 → Z→ 0,

where I is the augmentation ideal and Z/ℓ ∼= I/I2. Since the integral Bockstein

β̃ is represented by the extension 0 → Z
ℓ−→ Z → Z/ℓ → 0, the composition

β̃(α1) ∈ Ext2Z[G](Z,Z) is represented by the Z[G]-module Yoneda extension in
the bottom row (and hence the top row) of the following commutative diagram.

Z
N

> Z[G]
σ − 1

> Z[G]
ε

> Z

Z
∨ ℓ

> Z

ε
∨ σ − 1

> Z[G]/I2
∨

ε
> Z

wwwww

It follows that β(α1) is represented by the Z[G]-module Yoneda extension

0→ Z/ℓ
N−→ Z[G]/ℓN · Z σ−1−→ Z[G]

ε−→ Z→ 0.

Under the natural isomorphism Ext2Z/ℓ[G](Z/ℓ,Z/ℓ)
∼= Ext2Z[G](Z,Z/ℓ), this cor-

responds to the Yoneda extension given above for φℓ−1(α1).
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6.7 The operation φV

Consider the map φV = φℓ−1 from H2p+1,q(S•, R) to H2pℓ+2,qℓ(S•, R) con-
structed in the last section (Definition 6.27). In this section, we show that φV

agrees with the Steenrod operation βP b when p = q = b. For notational sim-
plicity, we shall write R for Z/ℓ in this section. Recall that the presheaf R is
defined in 6.3, and that 0 < i < ℓ.

Theorem 6.30. Given morphisms R
γ−→ R(r)[2s] and R

σ−→ R(p)[2q + 1],
for p, r > 0 and q, s ≥ 0, we have

φi(γσ) = γi+1φi(σ).

Proof. ([Voe11, 3.4]) For simplicity of notation we will write T0 for R(r)[2s]
and T1 for R(p)[2q + 1]. Let Mγ and Mσ be the fibers of γ and σ, i.e., the
objects defined (up to an isomorphism) by the distinguished triangles

T0[−1]→Mγ → R
γ−→ T0, T1[−1] xσ→ Mσ

yσ→ R
σ−→ T1.

Step 1: Let α denote R ∼= R ⊗ R
γ⊗σ−→ T0 ⊗ T1, and Mα the fiber of α. We

can represent α in two ways as a composition: (γ ⊗ idT1
) ◦ σ and (idT0

⊗ σ) ◦ γ.
The octahedral axiom applied to these compositions yields two distinguished
triangles:

Mσ
f−→ Mα −→ Mγ ⊗ T1 →Mσ[1],

Mγ −→ Mα
g−→ T0 ⊗Mσ →Mγ [1].

such that yαf = yσ and γ yα = (T0⊗ yσ)g. Thus the vertical arrows in diagram
(6.30a) form morphisms of triangles.

T1[−1]
xσ

> Mσ
yσ

> R
σ

> T1

T0 ⊗ T1[−1]

γ ⊗ T1[−1]
∨ xα

> Mα

f
∨ yα

> R

wwwwwww
α

> T0 ⊗ T1

γ ⊗ T1
∨

T0 ⊗ T1[−1]

wwwwww
> T0 ⊗Mσ

g
∨ T0 ⊗ yσ

> T0

γ
∨ T0 ⊗ σ

> T0 ⊗ T1

wwwwww

(6.30a)

Because (γ ⊗Mσ, γ, γ ⊗ T1) is also a morphism of triangles between the top
and bottom rows of (6.30a), the difference between gf and γ⊗Mσ is the image
of a map d : Mσ → T0 ⊗ T1[−1]. We may modify f by the image of d under

T0 ⊗ T1[−1] xα−→ Mα to assume that g ◦ f = γ ⊗Mσ.
Applying the slice functor s0 to the top middle square of (6.30a), we see

that s0(Mσ) ∼= s0(Mα) ∼= R and s0(f) = 1. Applying the bottom slice functor
sp+r to the lower left square in (6.30a), and using Proposition 6.18, we see that
sp+r(g) = 1.
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Step 2: Consider the following commutative diagram, in which the left square
is Si−1(f)[1] tensored with the upper left square in (6.30a) and the right square
commutes by naturality of the corestriction map Si−1(A) ⊗ A → Si(A) with
respect to f (see 6.26(b)).

Si−1(Mσ)⊗ T1
1⊗ xσ[1]

> Si−1(Mσ)⊗Mσ[1]
cores

> Si(Mσ)[1]

Si−1(Mα)⊗ T0 ⊗ T1

Sif ⊗ γ ⊗ 1
∨

1⊗ xα[1]
> Si−1(Mα)⊗Mα[1]

Si−1f ⊗ f
∨

cores
> Si(Mα)[1]

Sif [1]
∨

The horizontal composites in this diagram are the maps v[1] = cores(1⊗x[1]) of
the triangles 6.26(b) for σ and α. It follows that there is a morphism c : R→ R
completing the large outer square above into a morphism between the triangles
of 6.26(b) for σ and α.

Si(Mσ)
Siyσ

> R
sσ

> Si−1(Mσ)⊗ T1
v[1]

> Si(Mσ)[1]

Si(Mα)

Si(f)
∨

Siyα
> R

∃c (= 1)
∨ sα

> Si−1(Mα)⊗ T0 ⊗ T1

Si−1f ⊗ γ ⊗ T1
∨

v[1]
> Si(Mα)[1]

Si(f)[1]
∨

Applying the slice functor s0 to the left square, we conclude from 6.26(a) that
c = s0(S

if) = 1. In particular,

sα =
(
Si−1f ⊗ γ ⊗ T1

)
◦ sσ. (6.30b)

Step 3: Similarly, we have a commutative diagram in which the left square
commutes by naturality of the transfer, and the right square is just Si−1g ten-
sored with the bottom middle square in (6.30a):

Si(Mα)
tr

> Si−1(Mα)⊗Mα
1⊗ yα

> Si−1(Mα)

T i0 ⊗ Si(Mσ)

Sig
∨

tr
> (T i−1

0 ⊗ Si−1(Mσ))⊗ (T0 ⊗Mσ)

Si−1g ⊗ g
∨

1⊗ yσ
> T i0 ⊗ Si−1(Mσ).

Si−1g ⊗ γ
∨

The horizontal composites in this diagram are the maps uα and 1 ⊗ uσ of the
triangles 6.26(a) for α and σ. It follows that there is a morphism c : T i0⊗T i1[1]→
T i0⊗T i1[1] completing the large outer square above into a morphism of triangles,
from the triangle 6.26(a) for α to the tensor product of T i0 with the triangle
6.26(a) for σ:

Si(Mα)
uα

> Si−1(Mα)
rα

> T i0 ⊗ T i1[1] > Si(Mα)[1]

T i0 ⊗ Si(Mσ)

Si(g)
∨

1⊗ uσ
> T i0 ⊗ Si−1(Mσ)

Si−1(g)⊗ γ
∨

1⊗ rσ
> T i0 ⊗ T i1[1]

∃c (= 1)
∨

> T i0 ⊗ Si(Mσ)[1].

Si(g)[1]
∨
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Applying the bottom slice functor, we conclude from the commutativity of the
right square and sip+ir(T

i
0 ⊗ A) = sip(A)[2si] that c = sip+ir(S

ig) = 1. Thus
the middle square yields

rα =
(
T i0 ⊗ rσ

)
◦ (Si−1g ⊗ γ). (6.30c)

Step 4: By Definition 6.27, φi(σ) = (rσ⊗T1)◦sσ, where rσ and sσ are given
in 6.26, and φi(α) = (rα ⊗ T ) ◦ sα, where sα and rα are given in (6.30b) and
(6.30c) and T = T0 ⊗ T1. Thus φi(α) is the composition

(1⊗ rσ⊗T )(Si−1g⊗γ⊗T1)◦ (Si−1f ⊗γ⊗T1)◦sσ = (1⊗ rσ⊗T )◦ (ρ⊗T1)◦sσ,

where ρ is the composite

Si−1(Mσ)
Si−1f ⊗ γ

> Si−1(Mα)⊗ T0
Si−1g ⊗ γ

> Si−1(Mσ)⊗ T i+1
0 .

Because g ◦ f = γ ⊗Mσ we have

Si−1(g) ◦ Si−1(f) = Si−1(g ◦ f) = Si−1Mσ ⊗ Si−1(γ) = Si−1Mσ ⊗ γi−1.

Thus ρ = Si−1Mσ ⊗ γi+1. Combining ρ, rσ and sσ, we get the desired identity
φi(α) = γi+1φi(σ).

Recall from [Voe03a, 2.4] that if S1
s is the simplicial circle and ΣS• denotes

the simplicial suspension S• ∧ S1
s of a pointed simplicial space S• then there is

a suspension isomorphism Σ : H̃2p,q(S•, R)
≃−→ H̃2p+1,q(ΣS•, R) sending γ to

γ ∪ σs, where σs ∈ H1,0(S1
s , R)

∼= H∗
top(S

1, R) is the fundamental class of S1.

Proposition 6.31. The operations φi = φp,qi satisfy:

(a) φi(cz) = ci+1φi(z) for c ∈ Z;

(b) φi(Σγ) = 0 in H̃2p(i+1)+2,q(i+1)(ΣS•, R) for all γ ∈ H̃2p,q(S•, R).

Proof. Part (a) is the case c = γ of Theorem 6.30. Part (b) is the case where
z = σs ∈ H1,0(S1

s , R), because by Theorem 6.30 we have

φi(σs ∪ γ) = φi(σs) ∪ γi+1,

and this is zero because φi(σs) is an element of H2,0(S1
s ) = 0.

The group H∗,0(S•, R) is just the topological cohomology H∗
top(π0(S•), R);

see Lemma 13.3. Under this identification, we show that φℓ−1 is classical.

Corollary 6.32. φℓ−1 : H2p+1,0(−, R)→ H2pℓ+2,0(−, R) is the classical Steen-
rod operation βP ptop (which is Sq2p+1

top if ℓ = 2).
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Proof. Since φℓ−1 vanishes on suspensions, it must be cβP ptop for some c ∈ R
by Example 13.4.1. To see that φℓ−1 = βP ptop, it suffices to find one element x
such that φℓ−1(x) is nonzero and equal to βP ptop(x).

For this, we recall from the proof of Proposition 6.29 that there is a
smooth simplicial scheme B•(G) and an element α1 of H1,0(B•(G), R) with
γ = φℓ−1(α1) = β(α1) nonzero. For x = γp · α1, Theorem 6.30 yields

φℓ−1(x) = γpℓ · β(α1) = γpℓ+1.

By [Ste62, V.5.3], this is a nonzero element of H∗
top(BG,R). On the other hand,

if ℓ = 2 then γ = α2
1 and x = α2p+1

1 , so Sq2p+1
top (x) = α4p+2

1 = γ2p+1, while if

ℓ 6= 2 the Cartan formula yields P ptop(x) = P ptop(γ
p)α1 = γpℓα1 and hence

βP ptop(x) = γpℓβ(α1) = γpℓ+1.

We now establish a motivic analogue of the classical assertion in Corollary
6.32, using a similar proof. For this we need the following theorem, which will
be proven in Chapter 15, as Theorem 15.38.

Theorem 6.33. Let φ : H2n+1,n(−,Z) → H2nℓ+2,nℓ(−,Z/ℓ) be a cohomology
operation such that for all X and all x ∈ H2n+1,n(X,Z):

1. φ(bx) = bφ(x) for b ∈ Z;

2. If x = Σy for y ∈ H2n,n(X,Z) then φ(x) = 0.

Then φ is a multiple of the mod-ℓ reduction of βPn.

Corollary 6.34. When R = Z/ℓ and p=q=b, the operation φV = φℓ−1 is the
motivic cohomology operation

βP b : H2b+1,b(−,Z/ℓ)→ H2bℓ+2,bℓ(−,Z/ℓ).

Proof. By Propositions 6.28 and 6.31, φV satisfies the hypotheses of Theorem
6.33, which says that in this case φV is a Z/ℓ-multiple of βP b.

To determine which multiple, consider the canonical line element u ∈
H2,1(PN , R) for N > bℓ. Then x = ubα1 is an element of H2b+1,b(PN ×B•(G))
and by combining Propositions 6.31(a) and 6.29 we obtain φV (x) = ubℓβ(α1).
By the projective bundle formula [MVW, 15.12], multiplication by us is an in-
jection from Hi,0(B•(G), R) into H2s+i,s(B•(G) × PN , R) for all s ≤ N . It
follows that φV (x) 6= 0.

When ℓ = 2, the only Z/2-multiples of Sq2b+1 are Sq2b+1 and 0. Since
φV 6= 0, we have φV = Sq2b+1. Now suppose that ℓ 6= 2. To compute βP b(x),
we refer to the properties of the motivic operations P i, listed below in Axioms
13.6. Because P b(ub) = ubℓ, the Cartan formula yields

βP b(x) = β
(
ubℓα1

)
= ubℓβ(α1).

Since βP b(x) = φV (x), we must have φV = βP b.
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6.8 Historical notes

Sections 6.1–6.5 are taken from the 2010 paper [Voe10b], based upon a preprint
written in 2003. The idea of working with motives over S originated much
earlier, in the 1994 preprint of [SV00b]. Sections 6.6–6.7 are taken from the
2011 paper [Voe11]; this material first appeared in the 2003 preprint [Voe03b].

Cohomology operations in motivic cohomology have their origins in the 1996
preprint [Voe96], and appeared in [Voe03c] and [Voe03a]. The construction of
the cohomology operations φi first appeared in the 2003 preprint [Voe03b], as
did the identification of φV with βP b up to a constant c (the fact that c = 1 is
taken from [Wei09]). The power of simplicial schemes to mimick simplicial sets
in manipulating cohomology operations is amply illustrated by the constructions
in Section 6.6.
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Chapter 7

The motivic group HBM
−1,−1

In this short chapter, we develop some more of the properties of the Borel–Moore
homology groups HBM

−1,−1(X) which we shall need in Part II.

The Borel–Moore homology group HBM
−1,−1(X) = HBM

−1,−1(X,Z) is defined
as HomDM(Z,M c(X)(1)[1]), and was briefly discussed in Section 1.3. It is
contravariant in X for finite flat maps [MVW, 16.1] [SV00b, 3.6], and has a
functorial pushforward for proper maps. If X is smooth and proper (in charac-
teristic 0), HBM

−1,−1(X) agrees with H2d+1,d+1(X,Z) [MVW, 16.24], and has a
nice presentation (Proposition 1.19), which we will explore in Section 7.1.

If k is a field, we saw in Example 1.21 that HBM
−1,−1(Spec k)

∼= k×. Thus if X

is proper over k there is a pushforward N : HBM
−1,−1(X) → HBM

−1,−1(k)
∼= k×; it

factors through the quotient H−1,−1(X) of HBM
−1,−1(X) by the difference of the

two projections from HBM
−1,−1(X ×X).

The main result in this chapter is Proposition 7.7: if X is a norm variety for
a and k is ℓ-special then the image of HBM

−1,−1(X)→ k× is the group of units b

such that a∪ b vanishes in KM
n+1(k)/ℓ. We will see later, in the Norm Principle

11.1, that each of these units is a norm from a degree ℓ extension of k. This
will be used in Theorem 10.17 to prove that norm varieties exist, and again in
Theorem 11.2 to prove that norm varieties are Rost varieties.

7.1 Properties of H−1,−1

If x is a closed point on X then the proper map x→ X induces a map k(x)× →
HBM

−1,−1(X); we write [x, α] for the image of α ∈ k(x)× in HBM
−1,−1(X). As noted

in Example 1.21, N : HBM
−1,−1(X)→ k× sends [x, α] to the norm of α, Nk(x)/k(α).

When X is smooth, we saw in Proposition 1.19 that HBM
−1,−1(X) is generated by

the symbols [x, α]. This is true even when X is singular:

Lemma 7.1. For any reduced scheme X over a perfect field k, HBM
−1,−1(X) is

generated by symbols [x, α], where x is a closed point of X and α ∈ k(x)×.
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Proof. We proceed by induction on dim(X), the case dim(X) = 0 being given
by Proposition 1.19. Let Z be the singular locus of X and U the complement.
Then we have an exact localization sequence

HBM
−1,−1(Z) −→ HBM

−1,−1(X) −→ HBM
−1,−1(U)

by [Voe00b, 4.1.5] or [MVW, 16.20] when char(k) = 0, and by [Kel13, 5.5.5]
when char(k) > 0. Since U is smooth and dim(Z) < dim(X), the left and
right groups are generated by [x, α] with x a closed point in Z (resp., U) and
α ∈ k(x)×. As these may be regarded as elements of HBM

−1,−1(X), the result
follows.

Here are some elementary facts about the reduced group H−1,−1(X), which
first appeared in [SJ06, 1.5–7].

If E is a finite field extension of k(x) for some closed point x ∈ X then the
proper map Spec(E)→ x→ X induces a map

E× = HBM
−1,−1(SpecE)→ HBM

−1,−1(x)→ HBM
−1,−1(X).

By inspection, the composite sends α ∈ E× to the class of [x,NE/k(x)α].
More generally, if f : Y → X is proper and y = Spec(E) is a closed point of

Y , then the pushforward f∗ sends [y, α] to [f(x), NE/k(x)α].

To illustrate the advantage of passing to H−1,−1, consider a cyclic field
extension E/k. Then H−1,−1(SpecE) is the quotient of HBM

−1,−1(SpecE) = E×

by the relation x ∼ σ(x), where σ generates Gal(E/k), and H−1,−1(SpecE)
injects into k× because Hilbert’s Theorem 90 gives an exact sequence

0→ H−1,−1(SpecE)
N−→ k× → Br(E/k)→ 0.

If f : Y → X is a finite flat map of degree d, there is a natural pullback
f∗ : HBM

−1,−1(X)→ HBM
−1,−1(Y ), and an induced map H−1,−1(X)→ H−1,−1(Y ).

The composition f∗f
∗ is multiplication by d. This follows for example from the

fact that M c(X)
f∗−→ M c(Y )

f∗−→ M c(X) is multiplication by d.
Given a closed point Spec(E) → X × X, the projections to X send it to

points xi = Spec(Ei) of X, for intermediate subfields E1, E2 such that E =
E1E2; every closed point of X × X has this form for suitable x1, x2 ∈ X.
It follows that H−1,−1(X) is the quotient of HBM

−1,−1(X) by the relations that
[x1, NE/E1

α] ∼ [x2, NE/E2
α] for α ∈ E×.

Lemma 7.2. Suppose that x1, x2 ∈ X are closed points, and α ∈ k(x1)×.

1. If σ : k(x1)
∼→ k(x2) then [x1, α] ∼ [x2, σ(α)] in H−1,−1(X).

2. If there is a field embedding k(x2) →֒ k(x1), then in H−1,−1(X) we have:

[x1, α] = [x2, Nk(x1)/k(x2)α].

3. If X(k) 6= ∅ and X is proper over k, then N : H−1,−1(X) ∼= k×.

June 27, 2018 - Page 94 of 281



Motivic homology H−1,−1

4. If X has a closed point x with [k(x) : k] = m, and X is proper over k,
then the kernel and cokernel of N : H−1,−1(X)→ k× have exponent m.

Proof. The first two parts follow from the above remarks by taking the push-
forward of α ∈ k(x1)× along the proper map Spec k(x1) → (x1, x2) → X ×X.
If X has a k-point x2, then (2) implies that every element of H−1,−1(X) is
equivalent to one of the form [x2, α]; since H−1,−1(x2) → H−1,−1(X) → k× is
an isomorphism, we obtain part (3). Finally, in the situation of part (4) the
cokernel of N is a quotient of the cokernel of Nk(x)/k : k(x)× → k×, which has
exponent m, and the kernel of N is contained in the kernel of the finite flat
pullback f∗ : H−1,−1(X) → H−1,−1(Xk(x)) = k(x)×, which has exponent m
because f∗f

∗ = m.

Lemma 7.3. Let f : Y → X be a finite flat morphism over k of degree prime
to ℓ. If F is an ℓ-special field over k, Y (F )→ X(F ) is onto.

Proof. Suppose that Spec(F ) → X is an F -point with image x ∈ X. Since
the degree of Y ×X Spec(F ) → Spec(F ) is deg(f) it is prime to ℓ. Since F is
ℓ-special, the map splits, yielding an F -point of Y .

Lemma 7.4. Let f : Y → X be a finite flat morphism of degree prime to ℓ over

an ℓ-special field k. Then f∗ : H
BM

−1,−1(Y ) → H
BM

−1,−1(X) is onto, and f∗f∗ is
multiplication by deg(f).

If X and Y are proper over k, then f∗ is an isomorphism.

Proof. For each closed x ∈ X, k(x) is ℓ-special, so there is a y ∈ Y with
f(y) = x and k(x) = k(y) by Lemma 7.3. Since we have f∗([y, α]) = [x, α]
for all α ∈ k(x)×, the map f∗ is onto. To see that f∗f∗ = deg(f), consider
a generator [y, β] of HBM

−1,−1(Y ) and set x = f(y), F = k(x). By Lemma
7.3, there is a y′ ∈ Y with f(y) = f(y′) and k(y′) = F . By Lemma 7.2(2),
[y, β] = [y′, Nk(y)/Fβ]. Replacing y by y′, we may assume that k(y) = F .

Suppose that f−1(x) consists of points y = y1, . . . , yr counted with multi-

plicities, so
∑

[k(yi) : F ] = degf . Then in H
BM

−1,−1(Y ), again by 7.2(2),

f∗f∗([y, β]) = f∗([x, β]) =
∑

[yi, β] = [y,
∏

Nk(yi)/F (β)].

Since
∏
Nk(yi)/F (β) =

∏
β[k(yi):F ] = βdeg(f), f∗f∗([y, β]) = deg(f)[y, β].

Finally, if X and Y are proper over k then the pushforwards NX/k and NY/k
are defined, and NY/k = NX/k ◦ f∗. By Lemma 7.2(4) and the fact that k is
ℓ-special, the kernel of NY/k and hence the kernel of f∗ has exponent a power
of ℓ. Hence the kernel of f∗ is zero, since it also has exponent deg(f) = f∗f∗,
which is prime to ℓ.

Theorem 7.5. Let f :W → X be a dominant morphism of projective varieties
over the ℓ-special field k of characteristic 0. Suppose that dim(W ) = dim(X)
and the degree of f is prime to ℓ. Then:

(a) For every ℓ-special field F over k, the image of W (F )→ X(F ) contains
every F -point of X lying in the smooth locus of X.
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(b) The map f∗ : HBM
−1,−1(W )→ HBM

−1,−1(X) is a surjection.

(c) If W and X are smooth projective then f∗ : H−1,−1(W ) → H−1,−1(X)
is an isomorphism.

Proof. (a) We first note an easy case: if X1 is the blow-up of X along a smooth
center, then every F -point in the smooth locus of X is in the image of X1(F )→
X(F ) by construction. By induction, if Xn → X is obtained by a sequence of
n blow-ups along smooth centers, then the image of Xn(F ) → X(F ) contains
the smooth points of X(F ).

In the general case, the Raynaud–Gruson platification theorem [RG71] says
that there is a blow-up b : X ′ → X so that the proper pullback f ′ : W ′ → X ′

is flat. Because f is proper, so is f ′; since f is generically finite, it follows that
f ′ is finite. Since deg(f ′) = deg(f) is prime to ℓ, W ′(F ) → X ′(F ) is onto by
Lemma 7.3. Thus it suffices to show that if x : Spec(F ) → X is in the smooth
locus of X then x is in the image of X ′(F )→ X(F ).

W ′ > W

Xn
g

> X ′

finite

flat f ′
∨ b

> X.

f
∨

Consider the rational map X > X ′ inverse to the birational map b : X ′ →
X. To eliminate the indeterminacy of this map, we can find a smooth Xn, a
map π : Xn → X obtained by a sequence of blow-ups along smooth centers,
and a morphism g : Xn → X ′ extending the rational map. Moreover, π = bg.
By the easy case noted above, x = π(xn) for some F -point xn ∈ Xn(F ). Hence
the F -point x′ = g(xn) satisfies b(x

′) = π(xn) = x. This proves part (a).
(b) Let j : U →֒ X be a dense open subset, smooth over k, such that f is

finite and flat over U . Since every closed point in X can be connected by a chain
of curves to a closed point in U , HBM

−1,−1(X) is generated by elements [x, α] with

x ∈ U . Similarly, HBM
−1,−1(W ) is generated by [w, β] with w ∈ f−1(U). The

surjectivity of f∗ is now immediate: by (a), any x ∈ U can be lifted to a point
w of W with k(x) = k(w), and f∗([w,α]) = [x, α] for each α ∈ k(x)×.

(c) To show that f∗ is injective, we use the fact that the pullback f∗ :
HBM

−1,−1(X)→ HBM
−1,−1(W ) is defined. This is because the map H2d+1,d+1(X) ∼=

H−1,−1(X) → HBM
−1,−1(X), induced by M(X) → M c(X), is an isomorphism

when X is a smooth projective variety (see [MVW, 16.24] or [FV00, p. 186]):

HBM
−1,−1(X) <

≃
H2d+1,d+1(X)

f∗
> H2d+1,d+1(W )

≃
> HBM

−1,−1(W ).

If w is in f−1(U), with x = f(w), the calculation in Lemma 7.4 shows that

f∗f∗([w, β]) = (degf)[w, β] in H
BM

−1,−1(W ). Hence if z =
∑
ni[wi, βi] satisfies

f∗(z) = 0 then (degf)z = 0 in H
BM

−1,−1(W ). Since k is ℓ-special, X has a closed
point x with [k(x) : k] = ℓν for some ν > 0. By Lemma 7.2(4), ker(f∗) is also
annihilated by ℓν . Since ℓνz = (degf)z = 0, we have z = 0. This shows that f∗
is injective.
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We conclude this section by relating the pushforward HBM
−1,−1(X) → k×

to the fundamental class Ld
τ−→ Rtr(X), where X is smooth and proper of

dimension d and L = R(1)[2] as usual. Recall from Definition 5.15 that τ is

the map dual to the structure map Rtr(X)
π−→ R. Therefore composing with

τ yields a motivic duality map from Hn,i(X,R) = Hom(Rtr(X), R(i)[n]) to
Hom(Ld, R(i)[n]), which is Hn−2d,i−d(Spec k,R) when n ≥ 2d and i ≥ d.

Lemma 7.6. If char(k) = 0 and X
π−→ Spec(k) is smooth and proper of

dimension d then, for all p and q, the motivic duality maps for X and k fit into
a commutative diagram:

H2d+p,d+q(X,R)
τ
> Hp,q(k,R)

H−p,−q(X,R)

∼=
∨ π∗

> H−p,−q(k,R).

∼=
∨

In particular, the fundamental class τ : H2d+1,d+1(X) → H1,1(k) ∼= k× is
identified by motivic duality with N : H−1,−1(X)→ k×.

Proof. Recall that H2d+p,d+q(X,R) ∼= Hom(Rtr(X),Ld(q)[p]). By motivic du-
ality [MVW, 16.24], an element f of this group corresponds to the element of
H−p,−q(X,R) ∼= Hom(R(−q)[−p], Rtr(X)) represented by the dual map

R(−q)[−p] ∼= Ld ⊗ Ld(q)[p]∗
1⊗f∗

> Ld ⊗Rtr(X)∗ ∼= Rtr(X).

On the other hand, the element f ◦ τ of Hp,q(k,R) = Hom(Ld,Ld(q)[p]) corre-
sponds to the element 1⊗ τ∗f∗ of H−p,−q(k,R) represented by the dual map

R(−q)[−p] ∼= Ld ⊗ Ld(q)[p]∗
1⊗f∗−→ Ld ⊗Rtr(X)∗

1⊗τ∗−→ Ld ⊗ L−d ∼= R.

Since 1⊗ τ∗ is the canonical projection Rtr(X)
π−→ R, 1⊗ τ∗f∗ is the image of

1⊗ f∗ under π∗.

7.2 The case of norm varieties

Recall from Definition 1.13 that a norm variety for a symbol a in KM
n (k)/ℓ is

a smooth projective variety X of dimension ℓn−1 − 1 such that a vanishes in
KM
n (k(X))/ℓ, and which is ℓ-generic in the sense that any splitting field F of a

has a finite extension E of degree prime to ℓ with X(E) 6= ∅.
In this section, we assume that there is a norm variety X for the sym-

bol a = {a1, . . . , an}, and show that the image of the pushforward map
N : H−1,−1(X) → k× is the group of units β of k such that {a1, ..., an, β}
vanishes in KM

n+1(k)/ℓ. This will be used in Section 10.4 to construct a norm
variety for {a1, ..., an, an+1}, by induction on n.
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Proposition 7.7. Let a = {a1, . . . , an} ∈ KM
n (k)/ℓ be a non-trivial symbol.

Assume that BL(n-1) holds, that k is ℓ-special and that X is a norm variety for
a. Then the following sequence is exact:

HBM
−1,−1(X)

N
> k×

a ∪ (−)
> KM

n+1(k)/ℓ.

Proof. We first show that the composition is trivial. It suffices to consider the
image of a generator [x, β]. SinceX is a smooth splitting variety for a, a vanishes
in KM

n (k(X))/ℓ and also in KM
n (k(x))/ℓ (by specialization; see Remark 1.13.1).

By the projection formula, {a,N(β)} = Nk(x)/k{a, β} = 0.
Since F = k( ℓ

√
a1) splits a, X is an ℓ-generic splitting variety and F is ℓ-

special, we conclude that X has an F -point x. Since N([x, b]) = bℓ for b ∈ k, the
image of N contains k×ℓ. Since H−1,−1(X,Z)/ℓ ∼= H−1,−1(X,Z/ℓ), this shows
that it suffices to show that the following sequence is exact:

H−1,−1(X,Z/ℓ)→ k×/k×ℓ → Hn+1
ét (k, µ⊗n+1

ℓ ).

We claim that this sequence forms the top row of a large commutative diagram:

H−1,−1(X,Z/ℓ)
N

> k×/k×ℓ
a∪

> Hn+1
ét (k, µ⊗n+1

ℓ )

H2d+1,d+1(X,Z/ℓ)

∼=

∧

τ
> H1,1(k,Z/ℓ)

∼=

∧

δ∪
> Hn+1,n(X,Z/ℓ)

injection

∧

H2d+1,d+1(M,Z/ℓ)

λ

∧

c · Sℓ−1x
> H1,1(X,Z/ℓ)

∼=

∧

±s∗ ◦ r∗
> H2bℓ+3,bℓ+1(X,Z/ℓ).

Qn−1 · · ·Q0

∨

Qn−1µ∪

>

We first describe the top half of this diagram. The map labelled τ is composition
with the fundamental class τ : Ld → Rtr(X), defined in 5.15 and dual to the
structure map π : Rtr(X)→ R; the upper left square commutes by Lemma 7.6.

Recall that d = ℓn−1 − 1 and b = d/(ℓ − 1). Since BL(n-1) holds, Lemma
3.13 states that a ∈ Hn

ét(k, µ
⊗n
ℓ ) is the image of an element δ under the injection

Hn,n−1(X,Z/ℓ) →֒ Hn
ét(k, µ

⊗n
ℓ ). Thus the upper right square commutes, and

the upper right vertical is an injection. (The middle vertical isomorphisms
H1,1(X,Z/ℓ) ∼= H1,1(k,Z/ℓ) ∼= k×/k×ℓ come from Lemma 1.35.)

In Section 5.2 we used the element µ = Qn−2 · · ·Q0(δ) to construct a motive
A and its symmetric powers D = Sℓ−2(A) and M = Sℓ−1(A), fitting into the
triangles defining a Rost motive (see Proposition 5.7). Part of the cohomology
exact sequence of the first of these triangles is

H2d+1,d+1(M,Z/ℓ)
Sℓ−1x

> H1,1(X,Z/ℓ)
r∗
> H2d+2,d+1(D,Z/ℓ).
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We also have an isomorphism s∗ : H2d+2,d+1(D,Z/ℓ) → H2bℓ+3,bℓ+1(X,Z/ℓ),
by Lemma 4.16. The map λ : Rtr(X) → M is defined in Proposition 5.9, and
the lower left square commutes (for some unit c) by Theorem 5.18. This also
establishes exactness of the bottom row in the large diagram.

It remains to show that the triangles in the lower right square commute.
Given this, the exactness of the bottom row formally implies that the top row
is exact, proving the proposition.

Because the operations Qi are K
M
∗ (k)-linear by 13.15 we have

Qn−1 · · ·Q0(δ ∪ β) = Qn−1 · · ·Q0(δ) ∪ β = Qn−1(µ) ∪ β

for every unit β ∈ k×. Thus the upper right triangle in the lower right
square commutes. Note that the elements µ of H2b+1,b(X,Z) and Qn−1(µ)
of H2bℓ+2,bℓ+1(X,Z) are both nonzero by Corollary 3.16.

Referring to Definition 5.10, we see that the composition s∗ ◦ r∗ in the
above diagram is multiplication by the element φV (µ) of H2bℓ+2,bℓ(X,Z/ℓ). We
showed in Corollary 6.34 (which uses Theorem 15.38) that φV agrees with βP b.
In addition, since µ is annihilated by the Qi with i ≤ n− 2 we have βP b(µ) =
(−1)n−1Qn−1(µ) by Lemma 5.14. This shows that the bottom triangle in the
lower right square also commutes. This competes the proof.

7.3 Historical notes

The group we refer to as H−1,−1(X) first surfaced in the early 1970’s as the
K-cohomology group Hd(X,Kd+1) (d = dim(X)), computed via the Gersten
resolution of the sheaf Kd+1. For curves, the groups H1(X,K2) were an im-
portant tool in understanding K1(X), especially in the work of Bloch. How-
ever, the K-cohomology groups Hd(X,Kd+1) for d > 1 did not attract much
attention until Rost’s 1988 paper [Ros88] where A0(X,K1) was defined and
N : A0(X,K1) → k× was shown to be injective for certain quadric hypersur-
faces X. Rost’s 1996 paper [Ros96] considered A0(X,K1) in the context of cycle
modules. This thread was picked up by Déglise in [Dég03], who connected it
with motives (and homotopy invariant sheaves with transfers).

The observation that this group was also the Borel–Moore motivic homology
group H−1,−1(X) was established in [SJ06, 1.1], and most of Section 7.1 is taken
from [SJ06]. Proposition 7.7, which is due to Voevodsky, appeared first for ℓ = 2
as Theorem 2.1 in the 1996 preprint version of [OVV07], and later (for all ℓ) in
the appendix to [SJ06].
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Part II

The goal of Part II is to show that Rost varieties exist. Recall that Rost
varieties for a symbol a = {a1, ..., an} were defined in Section 1.3; a Rost variety
X must have dimension d = ℓn−1 − 1, its function field must split the sym-
bol, it must satisfy some conditions about characteristic classes, and a certain
homology group H̄−1,−1(X) must inject into the group k× of units of the field.

The strategy is to define a related notion, that of a norm variety for a, show
that norm varieties exist and then show that norm varieties are Rost varieties.
The existence of norm varieties will be established in Chapter 10, using Rost’s
Chain Lemma 9.1; the fact that they are Rost varieties will be given in Chapter
11.

We remind the reader that we are proceeding by induction on n, so that
we shall assume that BL(n− 1) holds, and use the material from Part I which
depends upon it. We will also invoke some results about cohomology operations
from Part III.

To streamline the presentation, we begin with some preliminary chapters. In
Chapter 8, we use algebraic cobordism to establish some degree formulas (due
to Rost) that we shall need. In Chapter 9, we shall establish the Chain Lemma.

June 27, 2018 - Page 101 of 281



Chapter 8

Degree formulas

Let δ be a function from a class of smooth projective varieties over a field k to
some abelian group. A degree formula for δ is a formula relating δ(X), δ(Y )
and deg(f) for any generically finite map f : X → Y in this class. The formula
is usually δ(Y ) = deg(f)δ(X).

In this chapter, we recall three degree formulas (8.7, 8.9 and 8.12) involving
the algebraic cobordism ring Ω∗(k) over a field k of characteristic 0, in a form due
to Levine and Morel [LM07]. These are used in Theorem 10.12 and Proposition
10.14 to prove that any norm variety over k is a νn−1-variety. In particular, this
is the case for the norm variety we construct in Theorem 11.24.

Using a standard result (8.16) for the complex bordism ring MU∗, which
uses a gluing argument of equivariant bordism theory, we establish Rost’s DN
Theorem (8.18) for degrees, and define the invariant η(X/S) of a pseudo-Galois
cover, which are used in the proof of the Norm Principle 11.27 (the initialism
‘DN’ is for ‘Degree’ and ‘Norm Principle’).

8.1 Algebraic cobordism

If k is a field, the algebraic cobordism ring Ω∗(k) is a positively graded Z-algebra.
Although its definition in [LM07, 2.4.10] is a bit lengthy, we shall only need a
few facts about it. These facts are summarized in this section.

The ring Ω∗(k) is generated as a group by the classes [X] ∈ ΩdimX(k) of
smooth projective k-varieties X. The unit of the ring is 1 = [Spec k] and the
product is determined by [X][Y ] = [X × Y ]. As a functor, Ω∗(k) is covariant in
k; if k ⊂ k′, Ω∗(k)→ Ω∗(k

′) sends [X] to [X ×k Spec k′]; by convention, if X is
a disjoint union of varieties Xi we write [X] for

∑
[Xi].

The Lazard ring L∗ is the polynomial ring Z[c1, c2, . . . ]. We grade it by
placing cn in degree n; it is the coefficient ring of the universal formal group
law. By definition [LM07, 2.4.10], Ω∗(k) has a canonical formal group law, so
there is a canonical graded ring homomorphism L∗ → Ω∗(k).

When k = C, there is a canonical map Ωn(C)→MU2n sending the class of

102



Degree formulas

a smooth projective X to the class of the complex manifold X(C); see [LM07,
4.3.1]. By Quillen’s theorem [Ada74, II.8], the cobordism ring MU2∗ has a for-
mal group law, and the universal map L∗ → MU2∗ is an isomorphism. This
isomorphism factors through the map Ωn(C)→MU2n, which is also an isomor-
phism; see [LM07, 4.3.7].

Now suppose that k is any field of characteristic 0. Then the canonical maps
Ln → Ωn(k) are also isomorphisms by [LM07, 4.3.7]. By universality of L∗, we
have graded ring isomorphisms:

L∗

∼=
> MU2∗

Ω∗(k) <
∼=

∼=
<

Ω∗(Q)

∼=
∨ ∼=

> Ω∗(C).

∼=
∧

(8.1)

Example 8.1.1. Ω0(k) ∼= Z, and if k′/k is a finite separable field extension of
degree e then [Spec(k′)] = e in Ω0(k). If char(k) = 0, this is immediate from
the fact that Spec(k′ ⊗k k̄) ∼= ⊔e1 Spec(k̄), together with the observation that

the isomorphism Ω0(k)
∼=→ Ω0(k̄) of (8.1) takes [Spec(k′)] to [Spec(k′ ⊗k k̄)] =

e[Spec(k̄)] = e. If char(k) > 0, the isomorphism Ω0(k) ∼= Z is established in
[LM07, 2.3.4], using geometric relations for Ω∗(k) that we have not mentioned.

The homology theory Ω∗

Except for section 8.2, we shall not need any other facts about Ω∗(k). For
that result, we shall need to know that Ω∗(k) extends to a functor Ω∗ which
assigns a graded Ω∗(k)-module Ω∗(X) to every k-variety X, and that each group

Ωn(X) is generated by classes [Y
f→ X] where Y is a smooth n-dimensional

variety over k and f is projective; see [LM07, 2.5.11]. For each proper map

p : X ′ → X, there is a pushforward map p∗ sending [Y
f→ X ′] to [Y

pf−→ X]; p∗
is not a ring homomorphism. In fact, Ω∗ is an “oriented Borel–Moore functor”
in the sense of [LM07, 2.1.2, 2.4.10], but we shall not need the full strength of
this definition.

Example 8.2. The pushforwards Z = Ω0(k(x)) → Ω0(X) asociated to closed
points x ∈ X induce a map from the group of zero-cycles on X onto Ω0(X). By
[LM07, 4.5.1], it induces an isomorphism CH0(X) ∼= Ω0(X).

For each open j : U ⊂ X, the restriction [f ] 7→ [f |U ] defines a pullback
map j∗, making Ω∗ into a presheaf of Ω∗(k)-modules on each X. Moreover, if
char(k) = 0 then for each open j : U →֒ X with closed complement i : Z → X
the sequence

Ω∗(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0 (8.3)

is exact; see [LM07, 3.2.7].
If X is a d-dimensional k-variety, and F = k(X), the pullback maps sending

[Y → X] to [YF ] induce a natural homomorphism Ωn+d(X) → Ωn(F ). With
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this as motivation, we write Ωn(k(X)/k) for the stalk of the presheaf Ωn+d at
the generic point of X, i.e., the colimit of the groups Ωd+n(U), taken over the
poset of all open U in X. This is a birational invariant of X, and hence depends
only on the field F = k(X). The pullback maps sending [Y → U ] to [YF ] induce
a natural factorization Ωn+d(X)→ Ωn(F/k)→ Ωn(F ), and Ωn(F/k)→ Ωn(F )
is an isomorphism if char(k) = 0; see [LM07, 4.4.2].

Definition 8.4 (Degree map). ([LM07, 4.4.4]) If char(k) = 0 and dim(X) = d,
the degree homomorphism is the natural composition

degX : Ωn+d(X)→ Ωn(k(X)/k) ∼= Ωn(k(X)) ∼= Ωn(k).

It is not hard to see that degX([X]) = 1 in Ω0(k) and that if α ∈ Ω∗(X) has
degX(α) = 0 then there is an open U ⊂ X such that α vanishes in Ω∗(U).

Example 8.4.1. If Y
f→ X is a map of finite degree, then degX([Y

f→ X]) =
deg(f) in Ω0(k(X)) ∼= Z. This follows from Example 8.1.1 because the fiber
Yk(X) over the generic point of X is Spec k(Y ), and [k(Y ) : k(X)] = deg(f).

8.2 The General Degree Formula

In this section, we prove the General Degree Formula 8.7. Our formulation
is taken from [LM07, Theorem 4.4.15]. We begin with a useful calculation,
modified from [LM07, 4.4.7].

Theorem 8.5. Suppose that X is a smooth k-variety, with char(k) = 0. Then
Ω∗(X) is generated as a graded Ω∗(k)-module by [X] and the subgroups Ωi(X)
with i < dimX.

Proof. We proceed by induction on d = dim(X), the case d = 0 being the
observation that for each finite field extension k ⊂ k′ the ring isomorphism

Ω∗(k)
∼=−→ Ω(k′) of (8.1) sends [Spec k] to [Spec k′].

Consider a class [Y
f→X] in Ωn+d(X) with n≥0, and set λ = degX([Y

f→X]).

Then λ is an element of Ωn(k), and α = [Y
f→ X]− λ · [X] is in Ωn+d(X). By

construction, degX(α) = 0. Thus there is a dense open U of X such that α
vanishes in Ωn+d(U). We see from (8.3) that α = i∗β for some β ∈ Ω∗(Z),
Z = X − U . By induction, β =

∑
ci[Z

′
i → Z] where the ci ∈ Ω∗(k) and the

Z ′
i are smooth over k of dimension at most dimZ < dim(X). Applying the

pushforward, i∗β is in the Ω∗(k)-submodule of Ω∗(X) generated by the Ωi(X)

with i < dimX, and [Y
f→ X] = λ · [X] + i∗β.

Corollary 8.5.1. Suppose that X is any k-variety, with char(k) = 0, and that

X̃
p→ X is a resolution of singularities. Then Ω∗(X) is generated as a graded

Ω∗(k)-module by [X̃
p→ X] and the subgroups Ωi(X) with i < dimX.
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Proof. There is a dense open U of X over which p is an isomorphism. Let
Z ⊂ X and Z̃ ⊂ X̃ denote the respective closed complements of U . The
corollary follows immediately from the following diagram, whose rows are exact
by (8.3), and Theorem 8.5.

Ω∗(Z̃) > Ω∗(X̃) > Ω∗(U) > 0

Ω∗(Z)

p∗
∨

> Ω∗(X)

p∗
∨

> Ω∗(U)

wwwww
> 0

Definition 8.6. For each projective X, let I(X) denote the ideal of Ω∗(k)
generated by the classes [Z] of smooth projective varieties Z such that dim(Z) <
dim(X) and there is a k-morphism Z → X.

That is, I(X) is the subgroup of Ω∗(k) generated by the classes [Z ×W ] =
[Z] · [W ], where W and Z are smooth projective varieties, dim(Z) < dim(X)
and there is a k-morphism Z → X.

Remark 8.6.1. Applying the pushforward p∗ : Ω∗(X)→ Ω∗(k) to Theorem 8.5,
we see that for smooth projective X the ideal p∗Ω∗(X) of Ω∗(k) is generated by
the ideal I(X) of Definition 8.6 and the element [X].

Theorem 8.7 (General Degree Formula). Let f : Y → X be a morphism of
smooth projective k-varieties, with dim(X) = dim(Y ) and char(k) = 0. Then

[Y ]− deg(f)[X] ∈ I(X).

Proof. First suppose that Y
f→ X is not dominant, so that deg(f) = 0 and

f(Y ) = Z for some subvariety Z of X. By Corollary 8.5.1, [Y → Z] is in the
Ω∗(k)-linear span of the Ωi(Z) for i ≤ dim(Z). As Z ⊂ X, [Y ] ∈ Ω∗(k) is in
I(X). Since [Y ]− 0[X] is in I(X), the formula holds in this case.

Now suppose that Y
f→ X is dominant, hence of finite degree. In this case,

the degree map Ωd(X)→ Ω0(k(X)) ∼= Z sends [Y
f→ X] to deg(f), by Example

8.4.1. Therefore the element α = [Y
f→ X] − deg(f)[X] of Ωd(X) vanishes

under the degree map Ωd(X) → Ω0(k(X)). Thus (as in the proof of Theorem
8.5) there is a dense open U ⊂ X such that α vanishes in Ωd(U). By (8.3),
α = i∗β for some β ∈ Ω∗(Z), Z = X \ U . Hence the pushforward p∗α equals
the pushforward (p i)∗β under Ω∗(Z) → Ω∗(k). By Theorem 8.5, (p i)∗β is in
the ideal I(X), so we are done.

Corollary 8.8. Let f : X ′ → X be a morphism of smooth projective k-varieties
of the same dimension, with char(k) = 0. If the degree of f is prime to ℓ then
I(X ′)(ℓ) = I(X)(ℓ) as ideals of Ω∗(k)⊗ Z(ℓ).

Proof. By definition I(X ′) ⊆ I(X). We will show by induction on dim(Y ) that
if Y → X is a projective k-morphism with Y smooth and dim(Y ) < dim(X)
then [Y ] ∈ I(X ′)(ℓ). If dim(Y ) = 0, i.e., Y is a closed point x of X, then [x] is
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an element of Ω0(k) ∩ I(X). Since ℓ ∤ deg(f), there is a closed point x′ of X ′

over x with e = [k(x′) : k(x)] prime to ℓ, and [x′] ∈ I(X ′). Since [x′] = e[x] by
Example 8.1.1, we have [x] = [x′]/e in Ω0(k)(ℓ) = Z(ℓ).

Choose an irreducible component Y ′ of Y ×XX ′ such that e = [k(Y ′) : k(Y )]
is prime to ℓ, and let Ỹ be a resolution of singularities of Y ′. By Theorem 8.7,
[Ỹ ]− e[Y ] is in I(Y ). Since [Ỹ ] ∈ I(X ′) and I(Y ) ⊆ I(X ′)(ℓ) by the inductive
hypothesis, we see that e[Y ] and hence [Y ] is in I(X ′)(ℓ).

8.3 Other degree formulas

Other important degree formulas arise by applying suitable homomorphisms
from Ωd(k) to abelian groups. We enumerate a few, proving those we shall
need.

The characteristic number sd(X) of a smooth d-dimensional projective va-
riety X provides an illustration of this method; it is used in Propositions 10.14
and 10.15 as part of the proof that norm varieties are Rost varieties.

Recall from Section 1.3 that the number sd(X) is defined to be the degree
of the characteristic class sd(TX) ∈ CHd(X). It is shown in [LM07, 4.4.19]
that X 7→ sd(X) is an algebraic cobordism invariant, i.e., it factors through a
homomorphism sd : Ωd(k)→ Z satisfying sd([X]) = sd(X).

Theorem 8.9 (Rost’s Degree Formula for sd). Let f :W → X be a morphism
of smooth projective varieties of dimension d = ℓν − 1, over a field of char-
acteristic 0. Suppose that the degree of every 0-cycle on X is divisible by ℓ.
Then

sd(W ) ≡ deg(f)sd(X) (mod ℓ2).

Proof. (See [Ros02], [LM07, Thm. 4.4.23].) Consider the element a = [W ] −
deg(f)[X] in Ωd(k). Since sd is additive, sd(a) = sd(W ) − deg(f)sd(X). Since
a ∈ I(X) by Theorem 8.7, it suffices to show that sd vanishes modulo ℓ2 on
Id(X), the degree d part of I(X). By Definition 8.6, Id(X) is generated as a
group by the classes [Y × Z], where Z → X is a map with dim(Z) < d and
dim(Y ) + dim(Z) = d.

It is a general fact that when dim(Y ), dim(Z) > 0 we have sdimY+dimZ(Y ×
Z) = 0. For stably complex manifolds this is [MS74, 16.3 and 16.5]; for algebraic
varieties this is [LM07, (4.8), p. 132]. In the case at hand, when dim(Z) < d,
we have sd(Y × Z) = 0 unless dim(Z) = 0. When dim(Z) = 0, i.e., Z is a
0-cycle, we have ℓ|deg(Z) by assumption. In this case, dim(Y ) = d = ℓν−1 − 1,
and we saw in Section 1.3 that ℓ|sd(Y ). Hence ℓ2|deg(Z)sd(Y ) = sd(Y ×Z), as
desired.

Remark 8.9.1. The characteristic numbers sd in [MS74] and in this book are
written as Sd in [LM07]; the class called sd(X) in [LM07] is our class sd(X)/ℓ.
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A second class of examples, including the Levine–Morel “higher degree for-
mula” (Theorem 8.12 below), comes from graded ring homomorphisms

ψ = ψℓ,n : L∗ → Fℓ[v]

with v = vn in degree d = ℓn − 1, associated to ℓ-typical formal group laws
of height n. Note that ψ(x) = 0 for x ∈ Ωi(k) unless d | i, and that ψ takes
Ωrd(k) ∼= Lrd to the 1-dimensional vector space generated by vr.

Construction 8.10. Here is a sketch of the construction of ψ; useful references
for this material are Appendix A2 of Ravenel’s book [Rav86] and [Lan73]. There
is a universal ℓ-typical formal group law, which we fix; it is represented by a
ring homomorphism from L∗ to Z(ℓ)[v1, v2, ...], with vi in degree ℓi − 1. More
restrictively, we may consider ℓ-typical formal group laws of height n; a universal
such law is represented by the quotient homomorphism ψ = ψℓ,n : L∗ → Fℓ[vn],
obtained by going modulo ℓ and killing all the vi for i 6= n.

The following definition of the numbers td,r(X) is taken from [LM07, 4.4].

Definition 8.11. Fix a graded ring homomorphism ψ : L∗ → Fℓ[v] corre-
sponding to an ℓ-typical formal group laws of height n, as above. For r > 0, the
homomorphism

td,r : Ωrd(k) ∼= Lrd → Fℓ

is defined by ψ(x) = td,r(x)v
r for x ∈ Ωrd(k). That is, td,r(x) is the coefficient

of vrn in ψ(x). If X is a smooth projective variety over k, of dimension rd, then
X determines a class [X] in Ωrd(k), and we write td,r(X) for td,r([X]).

Note that a different choice of ψ corresponds to an automorphism of Fℓ[v],
so the number td,r depends upon the choice of formal group law above, but only
up to a unit of Fℓ.

Here is the Levine–Morel “higher degree formula” (cf. [LM07, Thm. 4.4.23].)
We fix an n and set d = ℓn − 1, ψ = ψℓ,n.

Theorem 8.12 (Higher Degree Formula). Let X be a smooth projective variety
of dimension rd over a field k of characteristic 0 which admits a sequence of
surjective morphisms with X(i) smooth and dimX(i) = d · i:

X = X(r) → X(r−1) → · · · → X(0) = Spec(k).

Suppose moreover that ℓ divides the degree of every zero-cycle on each of the
X(i)×X(i−1)k(X(i−1)). Then ψ(I(X)) = 0.

In particular, if W is also smooth projective of dimension rd then for every
morphism f :W → X we have ψ([W ]) = deg(f) · ψ([X]), i.e.,

td,r(W ) = deg(f) · td,r(X).
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Proof. Since [W ] − deg(f)[X] is in I(X) by Theorem 8.7, it suffices to show
that ψ(I(X)) = 0. We will show that ψ(I(X(i))) = 0 by induction on i.

We first show that ψ(I(X(1))) = 0. By assumption, if z is a closed point
of X(1) then the degree of z is divisible by ℓ; since [z] = [k(z) : k] in Ω0(k)
by Example 8.4.1, we have ψ([z]) = 0. Next, note that if d does not divide
dim(Z), then ψ([Z]) = 0 as Fℓ[v] is zero in degree dim(Z). Since dimX(1) = d,
ψ([Z]) = 0 for every generator [Z] of I(X(1)).

In the general case, consider a generator [Z] of the ideal I(X(i)), defined by
a k-morphism f : Z → X(i) with dim(Z) < d i. If d ∤ dim(Z) then ψ([Z]) = 0
for degree reasons. If dim(Z) < d(i − 1) then [Z] ∈ I(X(i−1)) via the obvious
composition fi : Z → X(i−1), and ψ([Z]) = 0 by induction. Thus we may
assume that dim(Z) = d(i− 1) = dim(X(i−1)). By the General Degree Formula
8.7, [Z] − deg(fi)[X

(i−1)] is in I(X(i−1)). Since ψ(I(X(i−1))) = 0, we get
ψ([Z]) = deg(fi)ψ([X

(i−1)]). Thus in order to show that ψ([Z]) = 0, it suffices
to show that deg(fi) ≡ 0 (mod ℓ).

If fi is not dominant, then deg(fi) = 0 by definition. On the other hand,
if fi is dominant, then the generic point of Z maps to a closed point η of
X(i) ×X(i−1) k(X(i−1)). By the 0-cycles hypothesis of this theorem, ℓ divides
deg(η) = deg(fi).

Example 8.12.1. Here is a typical application. Suppose that td,r(W ) 6= 0 in
Fℓ. Then the degree of any dominant map f :W → X must be prime to ℓ.

Here are some properties of the numbers td,r that we shall need below, in
Corollary 8.17 and Theorem 8.18. Recall from Section 1.3 (or [MS74, 16.6/16.E]
and [Sto68, p. 130]) that if d = ℓn − 1 then ℓ divides the characteristic number
sd(X), so that sd(X)/ℓ is an integer.

Lemma 8.13. Let X/k be a smooth projective variety of dimension rd, and let
k ⊆ C be an embedding.

1. There is a u ∈ F×
ℓ such that td,1(x) ≡ u sd(x)/ℓ (mod ℓ) for all x ∈ Ωd(k).

2. If X =
∏r
i=1Xi and dim(Xi) = d, then td,r(X) =

∏r
i=1 td,1(Xi).

3. td,r(X) depends only on the class of the manifold X(C) in the complex
bordism ring MU∗.

Proof. Part (1) is [LM07, Proposition 4.4.22(3)]. Part (2) is immediate from
the graded multiplicative structure on Ω∗(k): since [X] =

∏
[Xi], ψ([X]) =∏

ψ([Xi]) =
∏
td,1(Xi)v. Finally, part (3) is a consequence of the fact that the

natural homomorphism Ω∗(k)→MU2∗ is an isomorphism (since both rings are
canonically isomorphic to the Lazard ring L∗).
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8.4 An equivariant degree formula

In this section we consider G-varieties, where G = µnℓ , and use the Higher Degree
Formula 8.12 to prove the DN Theorem 8.18. This theorem shows that (for a
certain class of G-varieties X) the degrees of maps W → X must be prime to ℓ
for a class of varieties W . At its heart, it follows the pattern of Example 8.12.1.

We will need the following standard consequence of equivariant bordism
theory of complex manifolds, which is usually attributed to Conner and Floyd.
Let ψ : L∗ → Fℓ[vn] be as in Definition 8.11, with v = vn in degree d = ℓn − 1.

Lemma 8.14. Suppose that the abelian ℓ-group G = (Z/ℓ)n acts without fixed
points on a stably complex manifold M , preserving the stably complex structure.
Then ψ([M ]) = 0 in Fℓ[vn].

Proof. Let I(n) denote the ideal in MU∗ generated by {ℓ, [M1] . . . , [Mn−1]},
where each Mi is a complex manifold with dimC(Mi) = ℓi − 1 which generates
MU2ℓi−2 modulo decomposable elements (a “Milnor manifold”). By [tD70]
[Flo71], I(n) is the ideal of bordism classes represented by smooth G-manifolds
without fixed points. Since M has no fixed points, [M ] is in I(n).

Since ℓ is the only generator of I(n) whose dimension is a multiple of d =
ℓn − 1, the map ψ : MU2∗ → Fℓ[vn] is zero on every generator and hence on
I(n). It follows that ψ([M ]) = 0.

Definition 8.15. For any group G, we say that two stably complex G-manifolds
are G-fixed point equivalent if FixGX and FixGY are 0-dimensional, and there
is a bijection FixGX → FixGY under which the families of tangent spaces at
the fixed points are isomorphic as G-representations.

We say that two G-varieties X and Y over k are G-fixed point equivalent
if FixGX and FixGY are 0-dimensional, lie in the smooth locus of X and Y ,
and there is a separable extension K of k and a bijection FixGXK → FixG YK
under which the families of tangent spaces at the fixed points are isomorphic as
G-representations over K.

Theorem 8.16. Let G be (Z/ℓ)n and let X and Y be compact complex G-
manifolds which are G-fixed point equivalent. Then ψ([X]) = ψ([Y ]) in Fℓ[vn],
i.e., td,r(X) = td,r(Y ) for all r > 0.

X Y

M = X ∪ −Y

Proof. Remove equivariantly isomorphic small balls about the fixed points of
X and Y , and let M = X ∪ −Y denote the result of joining the rest of X and
Y , using the opposite (stably complex) orientation on Y , as in the figure. This
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construction is posssible because X and Y are G-fixed point equivalent. Then
M has a canonical stably complex structure, G acts on M with no fixed points,
and [X]− [Y ] = [M ] inMU∗; see [Sto68, II]. By Lemma 8.14, ψ([X])−ψ([Y ]) =
ψ([M ]) = 0. By Definition 8.11, the final assertion follows automatically.

Theorem 8.16 applies to complex G-varieties, via realization, and even to
G-varieties over a field k with an embedding into C. By Lemma 8.13(1), we
conclude:

Corollary 8.17. For d-dimensional X and Y as in Theorem 8.16, we have
sd(X) ≡ 0 (mod ℓ2) iff sd(Y ) ≡ 0 (mod ℓ2).

We can now establish the “DN” degree theorem. It will be used in Chapter
11 to verify the Norm Principle.

To motivate it, suppose we are given varieties X and Y , a finite field ex-
tension k(Y ) ⊂ F and an F -point of X, Spec(F ) → X. Up to birational
equivalence, this data determines a smooth variety W with k(W ) = F together
with a dominant map g : W → Y and a map f : W → X compatible with the
data in the sense of the following diagram:

Spec(F ) > W

Spec(k(Y ))

finite

∨

> Y

dominant g

∨

X.

f

>

Indeed, the data determines a smooth variety W ′ up to birational equiva-
lence together with a dominant rational map Y < W ′ and a rational map
W ′ > X; we may replace W ′ by a blow-up W to eliminate the points of
indeterminacy and obtain the desired morphisms f :W → X, g :W → Y, with
deg(g) = [F : k(Y )].

Theorem 8.18 (DN Theorem). Let u1, ..., ur be r symbols in KM
n+1(k)/ℓ and

let X1, ..., Xr be smooth projective G-varieties, each of dimension d = ℓn − 1
such that for each i:

1. k(Xi) splits ui;
2. ui is non-zero over k(X1 × · · · ×Xi−1); and
3. sd(Xi) 6≡ 0 (mod ℓ2).

Set X =
∏r

1Xi and let Y be a smooth projective G-variety which is G-fixed
point equivalent to the disjoint union of m copies of X, where ℓ ∤ m.

If g : W → Y is a dominant map of degree prime to ℓ, then any map
f :W → X is dominant and of degree prime to ℓ.

Proof. We will apply the Higher Degree Formula 8.12 to W
f−→ X and the

sequence of projections between the X(i) =
∏i
j=1Xj , 1 ≤ i ≤ r. We must first

check that the zero-cycle hypothesis of Theorem 8.12 is satisfied. For a fixed i,
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it is convenient to set Fi = k(X1 × · · · ×Xi−1) and X
′ = X(i) ×X(i−1) Fi. The

hypotheses (1–2) of the DN Theorem say that the symbol ui is nonzero over Fi
but splits over the generic point of X ′; by specialization (see Remark 1.13.1), ui
splits over all closed points of X ′. This implies that ℓ divides the degree of any
closed point η of X ′, by the following transfer argument 1.2: the composition
KM

∗ (k)/ℓ → KM
∗ (k(η))/ℓ → KM

∗ (k)/ℓ is multiplication by deg(η) = [k(η) : k];
since it sends the nonzero element ui to 0, ℓ | deg(η). Hence Theorem 8.12
applies and we have ψ([W ]) = deg(f)ψ([X]).

Now ψ(I(X)) = 0 by Theorem 8.12, and I(W ) ⊆ I(X) since W → Spec(k)
factors through X, so ψ(I(W )) = 0. We now localize at ℓ; since deg(g) is prime
to ℓ, Corollary 8.8 implies that I(Y )(ℓ) = I(W )(ℓ) as ideals of the localization
Ω∗(k)(ℓ). Since the map ψ : Ω∗(k) → Fℓ[v] factors through Ω∗(k)(ℓ), ψ is zero
on I(Y )(ℓ).

Applying the General Degree Formula 8.7 to g, we conclude that ψ([W ]) =
deg(g)ψ([Y ]), so that deg(f)ψ([X]) = ψ([W ]) = deg(g)ψ([Y ]), i.e.,

deg(f) td,r(X) = deg(g) td,r(Y ).

On the other hand, since Y is G-fixed point equivalent tom copies of X, we have
m · td,r(X) = td,r(Y ) by Theorem 8.16. Condition (3) of the DN Theorem and
Lemma 8.13(1,2) imply that td,1(Xi) 6= 0 for all i and hence that td,r(X) 6= 0.
It follows that deg(f) = mdeg(g) 6= 0 in Z/ℓ, as required.

8.5 The η-invariant

In this section we define an invariant η(X/S) in Z/ℓ for pseudo-Galois covers
(morphisms which are generically Galois), and provide a degree formula for
η(X/S) which will be needed in Chapter 11. Although η can be formulated in
terms of an invariant in Ω0(k) ∼= Z, it is simpler to define it directly. We assume
in this section that k is a field containing 1/ℓ and µℓ.

Definition 8.19. Let p : X → S be a finite surjective map of varieties over k.
We say that p is a pseudo-Galois cover if k(X)/k(S) is a Galois field extension
with group G = Gal(k(X)/k(S)), and the action of G on the field k(X) extends
to an action of G on X. Note that p is étale over an open subvariety U of S.

Examples 8.20. (1) A Galois covering is a finite étale map X → S of
varieties such that k(X)/k(S) is a Galois field extension and the action of
G = Gal(k(X)/k(S)) on k(X) extends to an action of G on X. Equivalently,
X ×S X is isomorphic to the disjoint union X × G = ⊔g∈GX of copies of X.
(See [SGA71, V(2.8)].)

(2) If µℓ ⊂ k, G = µℓ acts on A1 = Spec(k[t]); ζ ∈ µℓ sends t to ζt. Then
A1 is pseudo-Galois over S = Spec(k[tℓ]) but is not étale over the origin.

(3) If a finite group G acts on a variety X, the geometric quotient X/G
has function field k(X)G, and X → X/G is pseudo-Galois. If X → S is any
pseudo-Galois cover with group G, the canonical map X/G → S is birational.
If in addition S is normal then X/G ∼= S, by Zariski’s Main Theorem.
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We will now assume thatX
p→ S is a pseudo-Galois cover with groupG = Z/ℓ

and that µℓ ⊂ k. Choosing an isomorphism G
≃−→ µℓ, the Galois group G acts

on A1 (as in Example 8.20(2)), and we can form A1×GX. If U ⊂ S is the (open)
locus where X is étale over S, then L = A1 ×G (p−1U) is a line bundle over U .
If in addition U is smooth, we may form the divisor class c1(L) in CH

1(U) and
the zero-cycle z = c1(L)

dim(U) in CH0(U).

Lemma 8.21. If U is a smooth open subvariety of a projective variety S, and
every closed point s in the complement of U has [k(s) : k] ≡ 0 (mod ℓ), the
degree CH0(S)→ Z induces a map degU : CH0(U)→ Z/ℓ.

Suppose that f : S′ → S is a projective morphism with dim(S′) = dim(S),
and U ′ ⊆ f−1(U) ⊂ S′ is such that every point s′ in the complement S′ \ U ′ of
U ′ has [k(s′) : k] ≡ 0 (mod ℓ). If U is smooth and fU : U ′ → U then for every
0-cycle z on U ,

degU ′(f
∗
Uz) = (degf)degU (z) in Z/ℓ.

Proof. There is an exact sequence CH0(S \ U) → CH0(S) → CH0(U) → 0.
Since deg : CH0(S) → Z sends [s] to [k(s) : k], the image of CH0(S \ U) is
contained in ℓZ, whence the first assertion.

For the second assertion, note that we may replace U ′ by f−1(U) since ℓ
divides the degree of every point in f−1(U) \ U ′. In this case, the restriction
fU : U ′ → U is proper, and the projection formula yields

degU ′(f
∗
Uz) = degU (f∗f

∗
Uz) = (degf)degU (z).

Definition 8.22. Suppose that p : X → S is a pseudo-Galois cover with group
G = Z/ℓ, with S projective. We say that η(X/S) is defined if there is a smooth
open U ⊂ S such that p is étale over U , and ℓ divides [k(s) : k] for every closed
s ∈ S \ U .

In this case, we define the invariant η(X/S) in Z/ℓ to be the degree of
z = c1(L)

dim(U) in Z/ℓ, i.e., η(X/S) = deg(z). This is well defined in Z/ℓ and
independent of the choice of U by the case S′ = S of Lemma 8.21.

Remark 8.22.1. We could have defined η(X/S) in terms of algebraic cobordism.
Suppose given a pseudo-Galois cover X → S with d = dim(X). Then [U ] is an
element of Ωd(U), and the standard cycle [U,L, . . . , L] is an element of Ω0(U),
in the sense of [LM07, 2.1.6, 2.4.10].

If char(k) = 0, we have CH0(S) ∼= Ω0(S) by Example 8.1.1. This extends to
a morphism θ : Ω∗(U) → CH∗(U) of oriented Borel–Moore homology theories
[LM07, 4.5.1]. By [LM07, 2.1.8], θ([U,L, . . . , L]) = c1(L)

d. Now take the degree.

The next lemma shows that η(X/S) is essentially a birational invariant.

Lemma 8.23. Suppose that X/S is a pseudo-Galois cover with group G = Z/ℓ.
If f̄ : S′ → S is a birational morphism, and X ′ is the normalization of X ×S S′

in the field k(X), then X ′/S′ is pseudo-Galois.
Suppose in addition that S and S′ are projective, S′ is smooth and η(X/S)

is defined (8.22). Then η(X ′/S′) is defined, and equals η(X/S).
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Proof. The group G acts on X ′ because it is the normalization of the G-variety
X×SS′, so X ′ → S′ is pseudo-Galois and f̄ : S′ → S lifts to a map f : X ′ → X.

To see that η(X ′/S′) is defined, let U be a smooth open in S such that
[k(s) : k] ≡ 0 (mod ℓ) for all s ∈ S \ U , and set U ′ = f̄−1(U). Since S′ is
smooth, so is U ′. If s′ ∈ S′ \ U ′ then s = f̄(s′) 6∈ U and hence [k(s′) : k] ≡ 0
(mod ℓ). Consider the open subscheme V = X ×S U of X; since V → U is
étale, the pullback V ′ = V ×U U ′ is étale over U ′ and hence smooth. Since X ′

is normal, it follows that the open subscheme X ′ ×S′ U ′ of X ′ is isomorphic to
V ′ and hence that η(X ′/S′) is defined.

Finally, the equality η(X/S) = η(X ′/S′) is a special case of the calculation
in Lemma 8.24 below. Note that X ′/G → S′ is an isomorphism by Example
8.20(3), since S′ smooth.

Lemma 8.24. Suppose that X
p→ S is pseudo-Galois with group G, and that

f : X ′ → X is a G-equivariant morphism of projective varieties of dimension d.
Set S′ = X ′/G. If η(X/S) and η(X ′/S′) are both defined then

η(X ′/S′) = deg(f)η(X/S).

Proof. Since f is equivariant, it induces a morphism f̄ : X ′/G → X/G → S.
Let U ⊂ S be such that X is étale over U , and [k(s) : k] ≡ 0 (mod ℓ) for every
s ∈ S \ U . Setting U ′ = f̄−1(U), we have the G-equivariant diagram:

p′
−1

(U ′)
f
> p−1(U)

U ′

p′

∨ f̄
> U.

p
∨

Since the vertical maps are Galois covers, it is easy to check that this is a
pullback diagram. Thus the line bundle L′ on U ′ is the pullback f̄∗L of the line
bundle L on U , and f̄∗ : CH0(U)→ CH0(U

′) sends z = c1(L)
d to z′ = c1(L

′)d.
Since deg : CH0(S

′)→ Z factors through f̄∗, Lemma 8.21 yields

η(X ′/S′) = degU ′(z
′) = degU (f̄∗f̄

∗z) = deg(f̄)degU (z) = deg(f̄)η(X/S).

Corollary 8.24.1. Let X/S be a pseudo-Galois cover with group G = Z/ℓ, and
set S′ = X/G. Then η(X/S) = η(X/S′).

Proof. The cover X/S′ is pseudo-Galois by Example 8.20(3). Let U ⊂ S be an
open associated to η(X/S). Since X|U → U is a Galois cover, X/G → S is an
isomorphism over U . It follows immediately that η(X/S′) is defined, so Lemma
8.24 applies (with f : X → X the identity).

Theorem 8.25. Suppose that char(k) = 0 and that X/S and X ′/S′ are two
pseudo-Galois covers with group G = Z/ℓ. Suppose in addition that X and
X ′ are projective of the same dimension, and that η(X/S) and η(X ′/S′) are
defined. Then for any G-equivariant rational map f : X ′ > X,

η(X ′/S′) = deg(f) · η(X/S).
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Proof. By definition, f induces a G-map from a G-invariant open U ′ in X ′

to X. Hence f induces a unique map U ′/G → X/G, i.e., a rational map
X ′/G > X/G and hence (by Example 8.20(3)) a unique rational map f̄ :
S′ > S compatible with f . Clearly, deg(f̄) = deg(f).

There is a birational map S̃ → S′ with S̃ smooth projective, which eliminates
the points of indeterminacy of the rational map f̄ in the sense that f̄ extends
to the morphism S̃ → S. Let X̃ denote the normalization of X ′ ×S′ S̃ in
k(X ′); by Lemma 8.23, η(X̃/S̃) is defined and equals η(X ′/S′). By Lemma

8.24, η(X̃/S̃) = deg(f) · η(X/S), and the result follows.

8.6 Historical notes

The notion of framed bordism was introduced by Pontryagin in the 1938 paper
[Pon38], in order to study homotopy groups. Bordism for real (and oriented)
manifolds was introduced by René Thom [Tho54] in 1954. It was promoted
to a generalized cohomology theory (cobordism) by Atiyah [Ati61a] in 1961.
The extension to stably complex structures (with coefficient ring MU∗) was
introduced by Milnor and Novikov (see [Mil60]) and made into a generalized
cohomology theory in [Las63]. The development up to 1968 is summarized in
[Sto68]; Quillen’s identification of MU∗ with the Lazard ring L∗ followed soon
after, and all of the cobordism-theoretic versions of the results in this chapter
were known by 1975 (see [Ada74]). This includes Lemma 8.13, Lemma 8.14 and
Theorem 8.16 (birational invariance of sd(X)/ℓ).

The applications to zero-cycles on varieties in this chapter first appeared in
Rost’s 1998 preprint [Ros98b], where the passage to stably complex manifolds
and the complex cobordism ring MU∗ played an important role. With the
appearance of the algebraic cobordism ring Ω∗(k) in 2001 (published as the
book [LM07] in 2007), it became possible to recast many of these results in a
cleaner algebraic way. The proofs in [LM07] only use resolution of singularities
(and weak factorization), which holds in characteristic 0.

The definition of a pseudo-Galois covering originated in the 1996 paper
[SV96] in connection with qfh sheaves. The invariant η(X/S) of Definition
8.22 is due to Rost, and first appeared in [SJ06].

This chapter is based upon the lectures of Markus Rost at the Institute for
Advanced Study in Spring 2005, and [SJ06]. Section 8.5 is based on Section 3
of [SJ06]. The name ‘DN Theorem’ (Degree Theorem for the Norm Principle)
is due to Rost.
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Chapter 9

Rost’s chain lemma.

In this chapter we state and prove Rost’s Chain Lemma (Theorem 9.1). The
proof (due to Markus Rost) does not use the inductive assumption of Part I
that BL(n-1) holds. The Chain Lemma is used in Chapter 10 to construct norm
varieties.

Throughout this chapter, ℓ is a fixed prime, and k is a field containing 1/ℓ
and all ℓ-th roots of unity. We fix an integer n ≥ 2 and an n-tuple (a1, ..., an)
of units in k, such that the symbol a = {a1, ..., an} is nontrivial in the Milnor
K-group KM

n (k)/ℓ.
Here is the statement of the Chain Lemma, which we prove in §9.5 below; the
special case n = 2 is proven in Section 9.2. The notion of an ℓ-form on a locally
free sheaf over S is introduced in Section 9.1; Definition 9.4 shows how ℓ-forms
may be used to define elements of KM

n (k(S))/ℓ.

Theorem 9.1 (Rost’s Chain Lemma). Let a = {a1, ..., an} be a nontrivial
symbol in KM

n (k)/ℓ, where k is a field containing 1/ℓ. Then there exists a
smooth projective cellular variety S/k and a collection of invertible sheaves J =
J1, J

′
1, . . . , Jn−1, J

′
n−1 on S equipped with nonzero ℓ-forms

γ = γ1, γ
′
1, . . . , γn−1, γ

′
n−1

satisfying the following conditions.
1. dim S = ℓ(ℓn−1 − 1) = ℓn − ℓ;
2. {a1, . . . , an} = {a1, . . . , an−2, γn−1, γ

′
n−1} ∈ KM

n (k(S))/ℓ,
{a1, . . . , ai−1, γi} = {a1, . . . , ai−2, γi−1, γ

′
i−1} ∈ KM

i (k(S))/ℓ for 2≤ i <n.
In particular, {a1, . . . , an}={γ, γ′1, . . . , γ′n−1}∈KM

n (k(S))/ℓ;

3. γ /∈ Γ(S, J)⊗(−ℓ);
4. for any i and any s ∈ V (γi) ∪ V (γ′i), the field k(s) splits {a1, . . . , an};
5. for any i and any s ∈ V (γi) ∪ V (γ′i), ℓ divides [k(s) : k];
6. the degree of c1(J)

dim S is relatively prime to ℓ.

Note that parts (3) and (5) are immediate from parts (2) and (4).
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9.1 Forms on vector bundles

We begin with a review of some well-known facts about ℓ-forms.
If V is a vector space over a field k, an ℓ-form on V is a symmetric ℓ-linear

function on V , i.e., a k-linear map φ : Symℓ(V ) → k. It determines an ℓ-
ary form, i.e., a function ϕ : V → k satisfying ϕ(λv) = λℓϕ(v), by ϕ(v) =
φ(v, v, . . . , v). If ℓ! is invertible in k, ℓ-forms are in 1–1 correspondence with
ℓ-ary forms.

When dim(V ) = 1, there is little difference between ℓ-forms and ℓ-ary forms.
If V = k then every ℓ-form φ may be written as φ(λ1, . . . , λℓ) = a

∏
λi for

some a ∈ k, and φ is determined by its associated ℓ-ary form, ϕ(λ) = aλℓ. If
dim(V ) = 1, the choice of an isomorphism f : V → k determines a form f∗ϕ on
V . Up to isometry, non-zero 1-dimensional ℓ-forms are in 1–1 correspondence
with elements of k×/k×ℓ, because the isomorphism v 7→ sf(v) determines the
form sℓf∗ϕ. Therefore an n-tuple of forms ϕi on a 1-dimensional V determines
a well-defined element of KM

n (k)/ℓ which we write as {ϕ1, . . . , ϕn}.

Definition 9.2. Given an ℓ-ary form ϕ on a 1-dimensional vector space V , the
Kummer algebra A = Aϕ(V ) is the quotient of the symmetric algebra Sym∗(V )
by the relation uℓ = ϕ(u) for u ∈ V . If u is a nonzero element of V and
a = ϕ(u) ∈ k then A ∼= k[u]/(uℓ − a). If a 6∈ k×ℓ then A is the field k( ℓ

√
a); if

a ∈ kℓ−{0} then A ∼=
∏
k.

Of course the notion of an ℓ-form on a projective module over a commutative
ring makes sense, but it is a special case of ℓ-forms on locally free modules
(algebraic vector bundles), which we now define.

Definition 9.3. If E is a locally free OX -module over a scheme X then an
ℓ-form on E is a symmetric ℓ-linear function on E , i.e., an OX -linear map φ :
Symℓ(E) → OX . If E is invertible, we will sometimes identify the ℓ-form with
the diagonal ℓ-ary form ϕ = φ ◦∆ : E → OX ; locally, if v is a section generating
E then the form is ϕ(tv) = a tℓ, where a = ϕ(v).

Remark 9.3.1. The geometric vector bundle over a scheme X whose sheaf of
sections is E is V = Spec(Sym∗(E )̌), where Eˇ is the dual OX -module of E . We
will sometimes describe ℓ-forms in terms of V.

The projective space bundle associated to E is π : P(E) = Proj(S∗) → X,
S∗ = Sym∗(E )̌. The tautological sheaf O(−1) on P(E) is the sheaf of sections
of the line bundle L = Spec(Sym∗O(1)). The multiplication S∗ ⊗ Eˇ→ S∗(1)
in the symmetric algebra induces a surjection of locally free sheaves π∗(E )̌ →
O(1) and hence an injection O(−1)→ π∗(E); this yields a canonical morphism
L→ π∗(V) of the associated geometric vector bundles.

We will use the following notational shorthand. For a scheme Z, a point z
on some Z-scheme and a locally free sheaf E on Z we write E|z for the fiber of
E at z, i.e., the k(z)-vector space z∗(E) for z → Z. If ϕ is an ℓ-ary form on an
invertible sheaf L, 0 6= u ∈ L|z and a = ϕ|z(u), then ϕ|z : (L|z) → k(z) is the
ℓ-ary form ϕ|z(tu) = atℓ. By V (ϕ) we mean {z ∈ Z : ϕ|z = 0}.
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The notation {γ, . . . , γ′n−1} in the Chain Lemma 9.1 is a special case of the
notation in the following definition.

Definition 9.4. Given invertible sheaves H1, . . . , Hn on X, ℓ-forms αi on Hi,
and a point x ∈ X at which each form αi|x is nonzero, we write {α1, . . . , αn}|x
for the element {α1|x, . . . , αn|x} of KM

n (k(x))/ℓ described before 9.2: if ui is a
generator of Hi|x and αi|x(ui) = ai then {α1, . . . , αn}|x = {a1, . . . , an}.

We record the following useful consequence of this construction. Recall that
if (R,m) is a regular local ring with quotient field F , any regular sequence r1, ...
generating m determines a specialization mapKM

∗ (F )→ KM
∗ (R/m); if a1, ... are

units of R, this specializations sends {a1, ...} to {ā1, ...}. (See Remark 1.13.1.)

Lemma 9.5. Suppose that the ℓ-forms αi are all nonzero at the generic point
η of a smooth X. The set U of points x in X on which each αi|x 6= 0 is open,
and for every x ∈ U , the symbol {α1|x, . . . , αn|x} in KM

n (k(x))/ℓ is obtained by
specialization from the symbol in KM

n (k(X))/ℓ.

Definition 9.6. Any ℓ-form ψ : Symℓ(E) → OX on E induces a canonical
ℓ-form ǫ on the tautological sheaf O(−1) on P(E):

ǫ : O(−ℓ) = Symℓ(O(−1))→ Symℓ(π∗E) = π∗Symℓ(E) ψ−→ π∗OX = OP(E).

Example 9.7. Given an invertible sheaf L on X, and an ℓ-ary form ϕ on L,
the sheaf V = O ⊕ L has the ℓ-ary form ψ(t, u) = tℓ−ϕ(u). Then P(V )→X is
a P1-bundle, and its tautological sheaf O(−1) has the ℓ-form ǫ described in 9.6.

Over a point in P(V ) of the form ∞ = (0 : u), the ℓ-form on O(−1)|∞ is
ǫ(0, λu) = −λℓϕ(u). If q = (1 : u) is any other point on P(V ) then the 1-
dimensional subspace O(−1)|q of the vector space V |q is generated by v = (1, u)
and the ℓ-form ǫ|q on O(−1)|q is determined by ǫ(v) = ψ(1, u) = 1 − ϕ(u) in
the sense that ǫ(λ v) = λℓ(1− ϕ(u)).

One application of these ideas is the formation of the sheaf of Kummer
algebras associated to an ℓ-form.

Definition 9.8. If L is an invertible sheaf on X, equipped with an ℓ-ary form
ϕ, the Kummer algebra Aϕ(L) is the sheaf A(L) =

⊕ℓ−1
i=0 L

⊗i regarded as a
sheaf of algebras in the following way: locally, if u is a section generating L
then A(L) ∼= O[u]/(uℓ − ϕ(u)). If x ∈ X and a = ϕ|x(u) is nonzero then the
k(x)-algebra A|x is the Kummer algebra k(x)( ℓ

√
a), defined in 9.2; it is a field if

a 6∈ k(x)×ℓ and ∏
k(x) otherwise.

Since the norm on Aϕ(L) is given by a homogeneous polynomial of degree

ℓ, we may regard the norm as a map from SymℓAϕ(L) to O.
Using the well-known isomorphism Symn(A1) ∼= An, it is easy to check

that if L is an invertible sheaf on X then the (ℓ−1)st symmetric power of the
projective line bundle P(O ⊕ L) over X is Symℓ−1

X P(O ⊕ L) = P(A(L)), where
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A(L) = ⊕ℓ−1
i=0 L

⊗i. The canonical ℓ-form ǫ on the tautological sheaf O(−1) on
the projective bundle P = P(A(L)), given in 9.6, is the natural ℓ-form:

O(−1)⊗ℓ → Symℓπ∗A(L) N−→ OP,

where π : P → X is the structure map and the canonical inclusion of O(−1)
into π∗(A(L)) = ⊕ℓ−1

0 π∗L⊗i induces the first map.

Recall from 9.6 and 9.8 that φ is an ℓ-form on L, ψ = (1,−φ) is an ℓ-form
on O ⊕ L and ǫ is the canonical ℓ-form on O(−1) induced from ψ.

Lemma 9.9. Suppose that x ∈ X has φ|x 6= 0 and that 0 6= u ∈ L|x. Then
ǫ|(0:u) 6= 0. Moreover, φ(u) ∈ k(x)×ℓ iff there is a point [l] ∈ P(O ⊕ L) over x
so that ǫ|[l] = 0.

Proof. Let w = (t, su) be a point of O(−1)|x over [l] = (t : su) ∈ P(O ⊕ L)|x.
If t = 0 then ℓ = (0 : u) and ǫ(w) = −sℓφ(u), which is nonzero for s 6= 0. If
t 6= 0 then ǫ|[l] is determined by the scalar ǫ(w) = ψ(t, su) = tℓ − sℓφ(u). Thus
ǫ|[l] = 0 iff φ(u) = (t/s)ℓ.

Remark 9.9.1. Here is an alternative proof, using the Kummer algebra K =
k(x)(a), a = ℓ

√
φ(u). Since ǫ(w) = ψ(t, su) is the norm of the nonzero element

t− sa in K, the norm ǫ(w) is zero iff the Kummer algebra is split, i.e., φ(u) =
aℓ ∈ k(x)×ℓ.

9.2 The Chain Lemma when n = 2.

In this section, we prove the Chain Lemma 9.1 for a symbol {a1, a2}. To do
this, we construct certain iterated projective bundles Yr together with invertible
sheaves and ℓ-forms on them; the variety S in the Chain Lemma will be Yℓ.

We begin with a generic construction, which starts with a pair L0, L−1 of
invertible sheaves on a variety Y0 = Y−1 and produces a tower of varieties Yr,
equipped with distinguished invertible sheaves Lr. Each Yr is a product of ℓ−1
projective line bundles over Yr−1, so Yr has relative dimension r(ℓ− 1) over Y0.

Yℓ → · · · → Yr
fr−→ Yr−1

fr−1−→ Yr−2 → · · · → Y1
f1−→ Y0 = Y−1.

Definition 9.10. Given a morphism fr−1 : Yr−1 → Yr−2 and invertible sheaves
Lr−1 on Yr−1, Lr−2 on Yr−2, we form the projective line bundle P(O ⊕ Lr−1)
over Yr−1 and its tautological sheaf O(−1). We define Yr to be the product∏ℓ−1

1 P(O ⊕ Lr−1) over Yr−1. Writing fr for the projection Yr → Yr−1, and
OYr

(−1, . . . ,−1) for the external product O(−1)⊠ · · ·⊠O(−1) on Yr, we define
the invertible sheaf Lr on Yr to be Lr = (fr ◦ fr−1)

∗(Lr−2)⊗OYr
(−1, . . . ,−1).

Example 9.11 (k-tower). The k-tower is the tower obtained when we start
with Y0 = Spec(k), using the trivial invertible sheaves L−1, L0. Note that
Y1 =

∏
P1 and L1 = OY1

(−1, . . . ,−1), while Y2 is a product of projective line
bundles over

∏
P1, and L2 = OY2

(−1, . . . ,−1).
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Remark 9.11.1. In the Chain Lemma (Theorem 9.1) for n = 2 we have S = Yℓ
in the k-tower, and the invertible sheaves are J = J1 = Lℓ, J

′
1 = f∗ℓ (Lℓ−1).

Before defining the ℓ-forms γ1 and γ′1 in 9.16, we quickly establish 9.15; this

verifies part (6) of Theorem 9.1, that the degree of c1(Lℓ)
ℓ2−ℓ is prime to ℓ.

If L is an invertible sheaf over Y , and λ = c1(L), the Chow ring of P =
P(O⊕L) is CH∗(P) = CH∗(Y )[z]/(z2+λz), where z = c1(O(−1)). If π : P→ Y
then π∗(z) = −1 in CH∗(Y ). Applying this observation to the construction of
Yr out of Y = Yr−1 with λr−1 = c1(Lr−1), we have

CH∗(Yr) = CH∗(Yr−1)[zr,1, . . . , zr,ℓ−1]/({z2r,j + λr−1zr,j | j = 1, . . . , ℓ− 1}),

where zr,j is the first Chern class of the jth tautological sheaf O(−1), and the
inclusion of CH∗(Yr−1) as a subring of CH∗(Yr) is via the pullback of cycles.
In CH∗(Yr), λr = c1(Lr) equals λr−2 +

∑
zr,i. By induction on r, this yields

the following result:

Lemma 9.12. CH∗(Yr) is a free CH∗(Y0)-module. A basis consists of the
monomials

∏
z
ei,j
i,j for ei,j ∈ {0, 1}, 0 < i ≤ r and 0 < j < ℓ. As a graded

algebra, CH∗(Yr)/ℓ ∼= CH∗(Y0)/ℓ⊗R0
Rr, where R0 = Fℓ[λ0, λ−1] and

Rr = Fℓ[λ−1, λ0, . . . , λr, z1,1, . . . , zr,ℓ−1]/Ir,

Ir =

({
z2i,j+λi−1zi,j | 1 ≤ i ≤ r, 0<j<ℓ

}
,
{
λi−λi−2 −

ℓ−1∑

j=1

zi,j | 1 ≤ i ≤ r
})

.

Definition 9.13. For i = 1, . . . , ℓ, set zi =
∑ℓ−1
j=1 zi,j and ζi =

∏
zi,j . It follows

from Lemma 9.12 that λi = λi−2 + zi, z
k+1
i,j = (−1)kλki−1zi,j and

zℓi =
∑

j
zℓi,j =

∑
j
zi,jλ

ℓ−1
i−1 = ziλ

ℓ−1
i−1

in the ring Ri, and hence in CH∗(Yi)/ℓ.

By Lemma 9.12, if 1 ≤ r ≤ ℓ then multiplication by
∏
ζi ∈ CHr(ℓ−1)(Yr) is

an isomorphism CH0(Y0)/ℓ
∼−→ CH0(Yr)/ℓ. If Y0 = Spec(k) then CH0(Yr)/ℓ

is isomorphic to Fℓ, and generated by
∏
ζi.

Lemma 9.14. If y ∈ CH0(Y0), the degree of y · ζ1 · · · ζr is (−1)r(ℓ−1)deg(y).

Proof. The degree on Yr is the composition of the (fi)∗ with the degree map on
Y0. The projection formula implies that (fr)∗(ζr) = (−1)ℓ−1, and

(fr)∗(y · ζ1 · · · ζr) = (y · ζ1 · · · ζr−1) · (fr)∗(ζr) = (−1)ℓ−1y · ζ1 · · · ζr−1.

By induction on r, (f1 ◦ · · · ◦ fr)∗(y · ζ1 · · · ζr) equals (−1)r(ℓ−1)y. The result
follows.
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Proposition 9.15. For every 0-cycle y on Y0 and 1 ≤ r ≤ ℓ, λr = c1(Lr)
satisfies

y λr(ℓ−1)
r ≡ y ζ1 · · · ζr in CH0(Yr)/ℓ, and deg(yλr(ℓ−1)

r ) ≡ deg(y) (mod ℓ).

For the k-tower 9.11 (with y = 1), we have deg(λℓ
2−ℓ
ℓ ) ≡ 1 (mod ℓ).

Proof. If r = 1 this follows from yλ−1 = yλ0 = 0 in CH∗(Y0): λ1 = z1 + λ−1

and y · ζ1 ≡ y λℓ−1
1 . For r ≥ 2, we have λr = zr+λr−2 and zℓr = zrλ

ℓ−1
r−1 by 9.13.

Because ℓ− r ≥ 0, we have

λr(ℓ−1)
r =(zr + λr−2)

ℓ(r−1)+(ℓ−r) ≡ (zℓr + λℓr−2)
r−1 · (zr + λr−2)

ℓ−r mod ℓ

=(zrλ
ℓ−1
r−1 + λℓr−2)

r−1(zr + λr−2)
ℓ−r ≡ ζr λ(r−1)(ℓ−1)

r−1 + T mod ℓ,

where T ∈ CH∗(Yr−1)[zr] is a homogeneous polynomial of total degree less than
ℓ−1 in zr.

By 9.12, the coefficients of yT are elements of CH∗(Yr−1) of degree >
dim(Yr−1), so yT must be zero. Then by the inductive hypothesis,

y λr(ℓ−1)
r ≡ (−1)r−2y ζrλ

(r−1)(ℓ−1)
r−1 ≡ (−1)r−1y ζr · (ζ1 · · · ζr−1)

in CH∗(Yr)/ℓ, as claimed. The degree assertion follows from Lemma 9.14.

The ℓ-forms for n = 2

We now turn to the ℓ-forms in the Chain Lemma 9.1, using the k-tower 9.11.
We will inductively equip the invertible sheaves OYr

(−1, . . . ,−1) and Lr of 9.11
with ℓ-forms Ψr and ϕr; the γ1 and γ′1 of the Chain Lemma 9.1 will be ϕℓ and
ϕℓ−1.

When r = 0, we equip the trivial invertible sheaves L−1, L0 on Y0 = Spec(k)
with the ℓ-forms ϕ−1(t) = a2t

ℓ and ϕ0(t) = a1t
ℓ. The ℓ-form ϕr−1 on Lr−1

induces an ℓ-form ψ(t, u) = tℓ − ϕr−1(u) on O ⊕ Lr−1 and an ℓ-form ǫ(y) on
the tautological sheaf O(−1), as in Example 9.7. As observed in Example 9.7,
at the point q = (1 : x) of P(O ⊕ Lr−1) the subspace O(−1)|q is generated by
y = (1, x) and we have ǫ(y) = ψ(1, x) = 1− ϕr−1(x).

Definition 9.16. The ℓ-form Ψr on OYr
(−1, . . . ,−1) is the product form

∏
ǫ:

Ψr(y1 ⊠ · · ·⊠ yℓ−1) =
∏

ǫ(yi).

The ℓ-form ϕr on Lr = (fr−1 ◦ fr)∗(Lr−2)⊗OYr
(−1, . . . ,−1) is defined to be

ϕr = (fr−1 ◦ fr)∗(ϕr−2)⊗Ψr.

Proposition 9.17. Let x = (x1, . . . , xℓ−1) be a point of Yr with residue field
E = k(x). For −1 ≤ i ≤ r, choose generators ui and vi for the one-dimensional
E-vector spaces Li|x and OYi

(−1, . . . ,−1)|x respectively, in such a way that
ui = ui−2 ⊗ vi.
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1. If ϕi|x = 0 for some 1 ≤ i ≤ r then {a1, a2}E = 0 ∈ K2(E)/ℓ.

2. If ϕi|x 6= 0 for all i, 1 ≤ i ≤ r, then

{a1, a2}E = (−1)r{ϕr−1(ur−1), ϕr(ur)} ∈ K2(E)/ℓ.

Proof. By induction on r. Both parts are obvious if r = 0. To prove the first
part, we may assume that ϕi|x 6= 0 for 1 ≤ i ≤ r − 1, but ϕr|x = 0. We have
ur = ur−2 ⊗ vr and by the definition of ϕr, we conclude that

0 = ϕr(ur) = ϕr−2(ur−2)Ψr(vr),

whence Ψr(vr) = 0. Now the element vr 6= 0 is a tensor product of sec-
tions wj and Ψr(vr) =

∏
ǫ(wj), so ǫ(wj) = 0 for a nonzero section wj of

O(−1)|xj
. By Lemma 9.9, ϕr−1(ur−1) is an ℓth power in E. Consequently,

{ϕr−2(ur−2), ϕr−1(ur−1)}E = 0 in K2(E)/ℓ. This symbol equals ±{a1, a2}E in
K2(E)/ℓ, by (2) and induction. This finishes the proof of the first assertion.

For the second claim, we can assume by induction that

{a1, a2}E = ±{ϕr−2(ur−2), ϕr−1(ur−1)}E .

Now ϕr(ur) = ϕr−2(ur−2)Ψr(vr). Letting K = k(x)(α), α = ℓ
√
ϕr−1(ur−1), we

have NK/k(x)(t− sα) = tℓ − sℓϕr−1(ur−1) = ψ(t, sur−1), and hence

Ψr(vr) =
∏

ǫ(wj) =
∏

ψ(ti, siur−1) = NK/k(x)(v
′)

for some v′ ∈ K. But {ϕr−1(ur−1), NK/k(x)(v
′)} = 0 by Lemma 9.18 below.

We conclude that

{ϕr−2(ur−2), ϕr−1(ur−1)}E ≡ −{ϕr−1(ur−1), ϕr(ur)}E mod ℓ;

this concludes the proof of the second assertion.

Lemma 9.18. For any field k, any a ∈ k×, and any b in Ka = k[ ℓ
√
a], the

symbol {a,NKa/k(b)} is trivial in K2(k)/ℓ.

Proof. Because {a, b} = ℓ{ ℓ
√
a, b} vanishes in K2(Ka)/ℓ, we have {a,N(b)} =

N{a, b} = ℓN({ ℓ
√
a, b}) = 0.

Proof of the Chain Lemma 9.1 for n = 2. We verify the conditions for:
the variety S = Yℓ in the k-tower 9.11; the invertible sheaves J = J1 = Lℓ,
J ′
1 = f∗ℓ (Lℓ−1); and the ℓ-forms γ1 and γ′1 in 9.1, which are the forms ϕℓ and
ϕℓ−1 of 9.16. Part (1) of Theorem 9.1 is immediate from the construction of
S = Yℓ; parts (2) and (4) were proven in Proposition 9.17; parts (3) and (5)
follow from (2) and (4); and part (6) is Proposition 9.15 with y = 1.
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9.3 The symbol chain

In this section, we describe the pattern of the Chain Lemma in all weights.
Using downward induction on n, we will construct a tower

S = S1 −→ S2 −→ · · · → Sn−2 −→ Sn−1 −→ Sn = Spec(k), (9.19)

along with sheaves Ji, J
′
i on Si carrying ℓ-forms γi, γ

′
i satisfying the conditions

of the Chain Lemma 9.1. The relative dimension of Si−1 over Si will be ℓ
i−ℓi−1,

so that S = S1 will have dimension ℓn − ℓ, as required by Theorem 9.1(1), and
each function field k(Si−1) will be purely transcendental over k(Si).

The construction will use a family of functions Φr and Ψr To define them,
we start with the function Φ0(t) = tℓ and a sequence a1, a2, . . . , an of units of k.
For r ≥ 1, we inductively define functions Φr in ℓ

r variables and Ψr in ℓ
r− ℓr−1

variables, taking values in k, and prove (in 9.23) that {a1, ..., ar,Φr(x)} ≡ 0
(mod ℓ). Note that Φr and Ψr depend only upon the units a1, ..., ar. We write
xi for a sequence of ℓr variables xij (where j = (j1, . . . , jr) and 0 ≤ jt < ℓ), so
that Φr(xi) is defined for i = 0, ..., ℓ−1, and we inductively define

Ψr+1(x1, ...,xℓ−1) =
∏ℓ−1

i=1

[
1− ar+1Φr(xi)

]
, (9.20)

Φr+1(x0, ...,xℓ−1) =Φr(x0)Ψr+1(x1, ...,xℓ−1). (9.21)

We say that two rational functions are birationally equivalent if they can be
transformed into one another by an automorphism (over the base field k) of the
field of rational functions.

Example 9.22. Ψ1(x1, ..., xℓ−1) is
∏
(1−a1xℓi) and Φ1(x0, ..., xℓ−1) is x

ℓ
0

∏
(1−

a1x
ℓ
i), the norm of the element x0

∏
(1 − α1xi) in the Kummer extension

k(x)(α1), α1 = ℓ
√
a1. Thus Φ1 is birationally equivalent to symmetrizing in

the xi, followed by the norm from k[ ℓ
√
a1] to k.

More generally, Ψr(x1, ...,xℓ−1) is the product of norms of elements in Kum-
mer extensions k(x1, ...,xℓ−1)(

ℓ
√
bi) of k(x1, ...,xℓ−1).

It is useful to interpret the map Φ1 geometrically. Given a field extension
k(α) of degree ℓ over k, let Ak(α) denote the variety, isomorphic to Aℓ, whose
F -points (x0, ..., xℓ−1) correspond to elements

∑
xiα

i of F (α). In fact, Ak(α)

is the Weil restriction Rk(α)/kA
1 of the affine line over k(α); see section 11.3.

Corresponding to the norm map k(α)→ k, there is a morphism N : Ak(α) → A1.
Similarly, the function kℓ → k(α) defined by

(x0, t1, . . . , tℓ−1) 7→ x0(1− t1α+ t2α
2 − · · · ± tℓ−1α

ℓ−1)

induces a birational isomorphism Aℓ
m−→ Ak(α). Finally, let Aℓ−1 q→ Aℓ−1/Σℓ−1

∼=
Aℓ−1 be the symmetrizing map sending (x1, . . . ) to the elementary symmetric
functions (s1, . . . ). Then the following diagram commutes:

Aℓ = A1 × Aℓ−1 1× q
> A1 × Aℓ−1 m

birat.
> Ak(α) ∼= Aℓ

A1.

N
∨Φ1

>
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Remark 9.22.1. If ℓ = 2, Φ1(x0, x1) = x20(1 − a1x21) is birationally equivalent
to the norm form u2 − a1v2 for k(

√
a1)/k, and Φ2 = Φ1(x0)[1 − a2Φ1(x1)] is

birationally equivalent to the norm form 〈〈a1, a2〉〉 = (u2 − a1v2)[1 − a2(w2 −
a1t

2)] for the quaternionic algebra A−1(a1, a2).
More generally, Φn is birationally equivalent to the Pfister form

〈〈a1, ..., ar〉〉 = 〈〈a1, ..., ar−1〉〉 ⊥ an〈〈a1, ..., ar−1〉〉
and Ψr is equivalent to the restriction of the Pfister form to the subspace defined
by the equations x0 = (1, . . . , 1).

Remark 9.22.2. (Rost [Ros99]) Suppose that ℓ = 3, and that k contains a cube
root of unity, ζ. Then Φ2 is birationally equivalent to (symmetrizing, followed
by) the reduced norm of the algebra Aζ(a1, a2) and Φ3 is equivalent to the norm
form of the exceptional Jordan algebra J(a1, a2, a3). When r = 4, Rost showed
that the set of nonzero values of Φ4 is a subgroup of k×.

For the next lemma, it is useful to introduce the function field Fr over k in
the ℓr variables xj1,...,jr , 0 ≤ jt < ℓ. Note that Fr is isomorphic to the tensor
product of ℓ copies of Fr−1.

Lemma 9.23. {a1, ..., ar,Φr(x)} = {a1, ..., ar,Ψr(x)} = 0 ∈ KM
r+1(Fr)/ℓ.

If b ∈ k is a nonzero value of Φr, then {a1, ..., ar, b} = 0 ∈ KM
r+1(k)/ℓ.

Proof. By Lemma 9.18, {ar,Ψr(x)} = 0 because Ψr(x) is a product of norms of
elements of k(x)(αr) by Example 9.22. If r = 1 then {a1,Φ1(x)} = {a1, xℓ0} ≡ 0
as well. The result for Fr follows by induction, using (9.21):

{a1, ..., ar+1,Φr+1(x)} = {a1, ..., ar+1,Φr(x0)}{a1, ..., ar+1,Ψr+1(x)} = 0.

The result for b follows from the first assertion, and specialization from Fr to
k, using the regular local ring at the point c where Φr(c) = b.

The Chain Lemma is based upon the observation that certain manipulations
(or “moves”) of Milnor symbols do not change the class in KM

n (k)/ℓ. Here is
the class of moves we will model geometrically in Section 9.4; strings of these
moves will be used in Section 9.5 to prove the Chain Lemma.

Definition 9.24. A move of type Cn on a sequence a1, ..., an in k× is a trans-
formation of the kind:

Type Cn : (a1, ..., an) 7→ (a1, ..., an−2, anΨn−1(x), an−1).

Here Ψn−1 is a function of ℓn−1−ℓn−2 new variables x1 = {x1,1, ...,x1,ℓ−1}, with
each x1,j a family of ℓn−2 variables, and the function field of this move is k(x1).

A move of type Bn on a sequence a1, ..., an in k× is the result of switching
an−1 and an, and then doing ℓ moves of type Cn, applied to the sequence
a1, ..., an−2, an, an−1:

Type Bn : (a1, ..., an) 7→ (a1, ..., an−2, γn−1, γ
′
n−1).

The ith move of type Cn uses a fresh set of ℓn−1 − ℓn−2 variables xi = {xi,j},
so a move of type Bn uses ℓn − ℓn−1 new variables.
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By Lemma 9.23, {a1, ..., an} = −{a1, ..., an−2, anΨn−1(x), an−1} in the
larger group KM

n (k(x1))/ℓ. That is, each move of type Cn changes the symbol
by a sign. Therefore each move of type Bn leaves the symbol unchanged:

{a1, ..., an} = {a1, ..., an−2, γn−1, γ
′
n−1} (9.25)

in KM
n (F ′

n)/ℓ, where F
′
n = k(x1, ...,xℓ) is a function field in ℓn− ℓn−1 variables.

The functions γn−1 and γ
′
n−1 in 9.25 are the ones appearing in the Chain Lemma

9.1. In Section 9.5, we will define a variety Sn−1 with function field F ′
n. This is

the initial step in the construction of the tower (9.19).

The next step uses a set x2 of ℓn−1 − ℓn−2 more new variables
to do a move of type Bn−1 on (a1, ..., an−2, γn−1) to get the sequence
(a1, ..., an−3, γn−2, γ

′
n−2, γ

′
n−1). The field of this move is F ′

n−1 = F ′
n(x2), a

function field in ℓn − ℓn−2 variables over k. In Section 9.5, we will define a
variety Sn−2 with this function field, together with a morphism Sn−2 → Sn−1.

Next, apply a move of type Bn−2 over the field F ′
n−2 = F ′

n−1(x2), then a
move of type Bn−3, and so on, ending with a move of type B2 over the field
F ′
2 in ℓn − ℓn−2 variables over k. We have the sequence (γ1, γ

′
1, γ

′
2, ..., γ

′
n−1) in

ℓn − ℓ variables x1, ...,xℓ−1. Moreover, we see from Lemma 9.23 that

{a1, . . . , an} = {γ1, γ′1, γ′2, ..., γ′n−1} in KM
n (k)/ℓ. (9.26)

Let S be any variety containing U = Aℓ
n−ℓ as an affine open, so that k(S) =

k(x1, ...,xℓ−1), each xi is ℓ
n−1 variables xi,j and all invertible sheaves on U are

trivial.
Parts (1), (2) and hence (3) of the Chain Lemma 9.1 are immediate from

(9.25) and (9.26).
Now the only thing to do is to construct S = S1, extend the invertible

sheaves (and forms) from U to S, and prove parts (4) and (6) of 9.1.

9.4 The tower of varieties Pr and Qr

In this section, we construct a tower of varieties Pr and Qr over a fixed base
scheme S′, with ℓ-forms on invertible sheaves over them. Each Pr (resp., Qr)
will produce a model of the forms Ψr (resp., Φr) in (9.20) and (9.21). This
tower, depicted in (9.26), is defined in 9.28 below.

Pn−1 → · · · → Pr → Qr−1 → Pr−1 → · · · → Q1 → P1 → Q0 = S′ (9.26)

The passage from S′ to the variety Pn−1 is a model for the move of type Cn
defined in 9.24.

Recall that if Ej is a sheaf over Xj and πj :
∏
Xi → Xj are the projections,

the external product E1 ⊠ · · ·⊠ Em is defined to be π∗
1(E1)⊗ · · · ⊗ π∗

m(Em).
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Definition 9.27. Let X be a geometrically irreducible variety over some fixed
base S′. Given invertible sheaves K, L on X, we can form the sheaf V = O⊕L,
the P1-bundle P(V ) over X, and O(−1). Taking products over S′, set

P =
∏ℓ−1

1
P(O ⊕ L); Q = X ×S′ P.

If X has relative dimension d over S′ then P and Q have relative dimensions
(ℓ− 1)(d+ 1) and ℓd+ ℓ− 1, respectively.

On P and Q, we have the external products of the tautological sheaves:

OP (−1, . . . ,−1) = O(−1)⊠O(−1)⊠ · · ·⊠O(−1) on P,
K ⊠O(−1, . . . ,−1) on Q.

Given ℓ-forms ϕ and σ on K and L, respectively, the sheaf O(−1) has the ℓ-form
ǫ, as in Example 9.7, and the sheaves O(−1, . . . ,−1) and K ⊠ O(−1, . . . ,−1)
are equipped with the product ℓ-forms Ψ =

∏
ǫ and Φ = ϕ⊗Ψ.

Remark 9.27.1. Let x = (x1, . . . , xℓ−1) denote the generic point of Xℓ−1. The
function fields of P and Q are k(P ) = k(x)(y1, . . . , yℓ−1) and k(Q) = k(P ) ⊗
k(x0). We may represent the generic point of P in coordinate form as a (ℓ− 1)-
tuple {(1 : yi)}, where the yi generate L over xi. Then y = ⊠

ℓ−1
i=1(1, yi) is a

generator of O(−1, . . . ,−1) at the generic point, and Ψ(y) =
∏
(1−σ(yi)) by 9.7.

If v0 is a generator of K at the generic point x0 of X, then Φ(y) = ϕ(v0)Ψ(y).

Example 9.27.2. An important special case arises when we begin with two
invertible sheaves H on S′, K on X, with ℓ-forms α and ϕ. In this case, we set
L = H ⊠K and equip it with the product form σ(u ⊗ v) = α(u)ϕ(v). At the
generic point q of Q we can pick a generator u ∈ H|q and set yi = u ⊗ vi; the
forms are the forms of (9.20) and (9.21), with Φr and ar+1 replaced by ϕ and
α:

Ψ(y) =
∏(

1− α(u)ϕ(vi)
)
, Φ(y) = ϕ(v0)Ψ(y).

Remark 9.27.3. Suppose a group G acts on S′, X, K and L, and K0, L0 are
nontrivial 1-dimensional representations so that at every fixed point x of X

k(x) = k and Lx ∼= L0.

Then G acts on P (resp., Q) with 2ℓ−1 fixed points y over each fixed point
of Xℓ−1 (resp., of Xℓ), each with k(y) = k, and each fiber of O(−1, . . . ,−1)
(resp., K ⊠ O(−1, . . . ,−1)) is the representation Lj0 (resp., K0 ⊗ Lj0) for some
j (0 ≤ j < ℓ). Indeed, G acts nontrivially on each term P1 of the fiber

∏
P1, so

that the fixed points in the fiber are the points (y1, ..., yℓ−1) such that each yi
is either (0 : 1) or (1 : 0).

We now set Q0 = S′ and recursively define the tower (9.26) of Pr and Qr
over a fixed base S′, an invertible sheaf Kr on Qr and an ℓ-form Φr on Kr. We
start with invertible sheaves H1, . . . , Hr, and K0 = OS′ on S′. Each Hi has a
nonzero ℓ-form αi, and K0 has the ℓ-form Φ0(t) = tℓ.

June 27, 2018 - Page 125 of 281



Chain lemma

Definition 9.28. Given a variety Qr−1 over S′ = Q0 and an invertible sheaf
Kr−1 on Qr−1, we form the varieties Pr = P and Qr = Q using the construction
in Definition 9.27, with X=Qr−1, K=Kr−1 and L = Hr ⊠Kr−1 as in 9.27.2.
To emphasize that Pr only depends upon S′ and H1, . . . , Hr, we will sometimes
write Pr(S

′;H1, . . . , Hr). As in 9.27, Pr has the invertible sheaf O(−1, . . . ,−1),
and Qr has the invertible sheaf Kr = Kr−1 ⊠O(−1, . . . ,−1).

Constructed Input

Qr = Qr−1 × Pr Pr Qr−1

Kr = Kr−1 ⊠O(−1, . . . ,−1) Kr−1

Φr = Φr−1Ψr Ψr Φr−1

Inductively, the invertible sheaf Kr−1 on Qr−1 is equipped with an ℓ-form Φr−1.
As described in 9.27 and 9.27.2, the invertible sheaf O(−1, . . . ,−1) on Pr ac-
quires an ℓ-form Ψr from the ℓ-form αr ⊗ Φr−1 on L = Hr ⊗ Kr−1, and Kr

acquires an ℓ-form Φr = Φr−1 ⊗Ψr.

Example 9.28.1. Q1 = P1 is
∏ℓ−1

1 P1(O ⊕ H1) over S′, equipped with the
invertible sheaf K1 = O(−1, . . . ,−1). If H1 is a trivial invertible sheaf with
ℓ-form α1(t) = a1t

ℓ then Φ1 is the ℓ-form Φ1 of Example 9.22.

P2 is
∏ℓ−1

1 P1(O ⊕H2 ⊗K1) over Q
ℓ−1
1 , and K2 = K1 ⊠O(−1, . . . ,−1).

Lemma 9.29. If r > 0 then dim(Pr/S
′) = (ℓr−ℓr−1) and dim(Qr/S

′) = ℓr−1.
Proof. Set dr = dim(Qr/S

′). The lemma follows easily by induction from the
formulas dim(Pr+1/S

′) = (ℓ− 1)(dr + 1), dim(Qr+1/S
′) = ℓdr + ℓ− 1.

Choosing generators ui for Hi at the generic point s of S′, we get units ai =
αi(ui) in k(S′), and {α1, . . . αr}|s = {a1, . . . , ar}. Recall that the inductive
Definition 9.28 begins with the ℓ-form Φ0(t) = tℓ over Q0 = S′.

Lemma 9.30. For all r > 0, the ℓ-forms Ψr and Φr of 9.28 agree at the generic
points of Pr and Qr with the forms defined in (9.20) and (9.21).

Proof. This follows by induction on r, using the analysis of Example 9.27.2.
Given a point q = (q1, . . . , qℓ) of Qℓ−1

r−1 and a point {(1 : yi)} on Pr over it,

y = ⊠
ℓ−1
1 (1, yi) is a nonzero point on O(−1, . . . ,−1) and yi = 1 ⊗ vi for a

section vi of Kr−1. Since ǫ(1, yi) = 1− arΦr−1(vi) and Ψr(y) =
∏
ǫ(1, yi), the

forms Ψr agree. Similarly, if v0 is the generator of Kr−1 over the generic point
q0 then y′ = v0 ⊗ y is a generator of Kr and

Φr(y
′) = Φr−1(v0)Ψr(y),

which is also in agreement with the formula in (9.21).

Recall that K0 is the trivial invertible sheaf, and that Φ0 is the standard
ℓ-form Φ0(v) = vℓ on K0. Every point of Pr =

∏
P(O ⊕ L) has the form

w = (w1, . . . , wℓ−1), and the projection Pr →
∏
Qr−1 sends w ∈ Pr to a point

x = (x1, . . . , xℓ−1).
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Proposition 9.31. Let s ∈ S′ be a point such that α1|s, . . . , αr|s 6= 0, and let
w be a point of Pr over s.
1. If Ψr|w = 0, then {α1, . . . , αr}|w vanishes in KM

r (k(w))/ℓ.
2. If Φr|q = 0 for some q = (x0, w) ∈ Qr, then {α1, . . . , αr}|q vanishes in
KM
r (k(q))/ℓ.

Proof. Since Φr = Φr−1 ⊗ Ψr, the assumption that Ψr|w = 0 implies that
Φr|q = 0 for any x0 ∈ Qr−1 over s. Conversely, if Φr|q = 0 then either Ψr|w = 0
or Φr−1|x0

= 0. Since Φ0 6= 0, we may proceed by induction on r and assume
that Φr−1|xj

6= 0 for each j, so that Φr|q = 0 is equivalent to Ψr|w = 0.
By construction, the ℓ-form on L = Hr ⊗ Kr−1 is σ(ur ⊗ v) = arΦr−1(v),

where ur generates the vector space Hr|s, ar = αr(ur) and v is a section of
Kr−1. Since Ψr|w is the product of the forms ǫ|wj

, some ǫ|wj
= 0. Lemma

9.9 implies that arΦr−1(v) is a ℓth power in k(xj), and hence in k(w), for any
generator v of Kr−1|xj

. By Lemma 9.23, {a1, . . . , ar−1,Φr−1} = 0 and hence

{α1, . . . , αr}|w = {a1, . . . , ar} = {a1, . . . , ar−1, arΦr−1} = 0

in KM
r (k(w))/ℓ, as claimed.

We conclude this section with some identities in CH∗(Pr)/ℓ, given in 9.34.
To simplify the statements and proofs below, we write ch∗(X) for CH∗(X)/ℓ
and ch0(X) for CH0(X)/ℓ, and adopt the following notation.

Notation 9.32. Set η = c1(Hr) ∈ ch1(S′), and γ = c1(O(−1, . . . ,−1)) ∈ ch1(Pr).
Writing P for the bundle P(O⊕Hr ⊗Kr−1) over Qr−1, with tautological sheaf
OP(−1), let c ∈ ch(P) denote c1(OP(−1)) and let κ ∈ ch(Qr−1) denote c1(Kr−1).
We write cj , κj for the images of c and κ in ch(Pr) under the jth coordinate
pullbacks ch(Qr−1)→ ch(P)→ ch(Pr).

Lemma 9.33. Suppose that H1, . . . , Hr−1 are trivial. Then

(a) γℓ
r

= γℓ
r−1

ηd in ch(Pr), where d = ℓr − ℓr−1;
(b) If in addition Hr is trivial, then γd = −∏

cjκ
e
j , where e = ℓr−1 − 1.

(c) If S′ = Spec k then the zero-cycles κe ∈ ch0(Qr−1) and γd ∈ ch0(Pr)
have degrees

deg(κe) ≡ (−1)r−1 and deg(γd) ≡ −1 modulo ℓ.

Proof. First note that because Kr−1 is defined over the e-dimensional variety

Qr−1(Spec k;H1, ..., Hr−1), the element κ = c1(Kr−1) satisfies κ
ℓr−1

= 0. Thus

(η + κ)ℓ
r−1

= ηℓ
r−1

and hence (η + κ)d = ηd. Now the element c = c1(OP(−1))
satisfies the relation c2 = c(η + κ) in ch(P) and hence

cℓ
r

= cℓ
r−1

(η + κ)d = cℓ
r−1

ηd

in chℓ
r

(P). Now recall that Pr =
∏

P. Then γ =
∑
cj and (a) holds:

γℓ
r

=
∑

cℓ
r

j =
∑

cℓ
r−1

j ηd = γℓ
r−1

ηd.
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When Hr is trivial we have η = 0 and hence c2 = c κ. Setting bj = cℓ
r−1

j = cjκ
e
j ,

we have γd = γℓ
r−1(ℓ−1) = (

∑
bj)

ℓ−1. To evaluate this, we use the algebra trick
that since b2j = 0 for all j and ℓ = 0 we have (

∑
bj)

ℓ−1 = (ℓ−1)!
∏
bj = −

∏
bj .

Thus (b) holds.
For (c), note that if S′ = Spec k then η = 0 and γd is a zero-cycle on Pr. By

the projection formula for π : Pr →
∏
Qr−1, part (b) yields π∗γ

d = (−1)ℓ∏κej .
Since each Qr−1 is an iterated projective space bundle, the Projective Bundle
Formula [Har77, A11] yields ch(

∏
Qr−1) = ⊗ℓ−1

1 ch(Qr−1), and the degree of∏
κej is the product of the degrees of the κej . By induction on r, these degrees

are all the same, and nonzero, so deg(
∏
κej) ≡ 1 (mod ℓ). Hence deg(γd) ≡ −1

(mod ℓ).
It remains to establish the formula for deg(κe) by induction on r, the case

r = 0 being clear. Since the κ in ch(Qr) is c1(Kr), and the Qi are projective
space bundles, it suffices to compute that c1(Kr)

ℓr−1 = κeγd in ch(Qr) =
ch(Qr−1)⊗ ch(Pr). Since κ

e+1 = 0 and c1(Kr) = κ+ γ we have

c1(Kr)
ℓr−1

= κe+1 + γℓ
r−1

= γℓ
r−1

,

and hence c1(Kr)
d = γd. Since γd+1 = 0, this yields the desired calculation:

c1(Kr)
ℓr−1 = c1(Kr)

ec1(Kr)
d = (κ+ γ)eγd = κeγd.

Corollary 9.34. If H1, . . . , Hr−1 are trivial, there is a ring homomorphism

Fℓ[λ, z]/(z
ℓ−λℓ−1z)→ch(Pr), sending λ to ηℓ

r−1

and z to γℓ
r−1

.

9.5 Models for moves of type Cn

In this section we construct maps Sn−1 → Sn which model the ℓ moves of
type Cn defined in 9.24. Each of the moves of type Cn introduces ℓn−1 − ℓn−2

new variables, and will be modelled by a map Yr → Yr−1 of relative dimension
ℓn−1−ℓn−2, using the Pn−1 construction in 9.28 over the base S′ = Sn, starting
with Y0 = Sn. The result (Definition 9.35) will be a family of sheaves Li lying
over varieties Yi fitting into a tower of the form:

Jn−1 = Lℓ Lℓ−1 L2 L1 L0 = Jn

Sn−1 = Yℓ
fℓ−→ Yℓ−1 −→ · · · → Y2

f2−→ Y1
f1−→ Y0 = Sn.

Fix n ≥ 2, a variety Sn, and invertible sheaves H1, . . . , Hn−2, L0 = Jn
and L−1 on Sn. The first step in building the tower is to form Y1 =
Pn−1(Sn;H1, . . . , Hn−2, L0) as in 9.28, with invertible sheaf L1 = L−1 ⊠

OY1
(−1, . . . ,−1). In forming the other Yr, the base S

′ in the Pn−1 construction
9.28 will become Yr−1 and the role of L0 will be played by Lr−1. Here is the
formal definition.
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Definition 9.35. For r > 1, we define morphisms fr : Yr → Yr−1 and invertible
sheaves Lr on Yr as follows. Inductively, we are given a morphism fr−1 : Yr−1 →
Yr−2 and invertible sheaves Lr−1 on Yr−1, Lr−2 on Yr−2. Set

Yr =Pn−1(Yr−1;H1, . . . , Hn−2, Lr−1)
fr−→ Yr−1,

Lr =f
∗
r f

∗
r−1(Lr−2)⊗OYr

(−1, . . . ,−1),

where OYr
(−1, . . . ,−1) is defined in 9.27.

We define Sn−1 to be Yℓ; by Lemma 9.29, dim(Yr/Yr−1) = ℓn−1 − ℓn−2 and
hence dim(Sn−1/Sn) = ℓn − ℓn−1. Finally, we set

Jn−1 = Lℓ, J ′
n−1 = f∗ℓ (Lℓ−1).

For example, when n = 2, this tower is exactly the tower of 9.10: we have
Yr = P1(Yr−1;Lr−1) =

∏
P1(O ⊕ Lr−1).

Remark 9.35.1. The invertible sheaves Jn−1 and J ′
n−1 will be the invertible

sheaves of the Chain Lemma 9.1. The rest of the tower of Si displayed in (9.19)
will be obtained in Definition 9.37 by repeating this construction and setting
S = S1.

The ℓ-forms

We now define the ℓ-forms on the invertible sheaves Jn−1 and J ′
n−1 of Definition

9.35. Suppose that the invertible sheaves L−1 and L0 = Jn on Sn are equipped
with the ℓ-forms β0 and β−1. Initially, β0 and β−1 are αn−1 and αn. Then
Ψn−1 is an ℓ-form on OYi

(−1, . . . ,−1), depending upon β0, and we endow the
sheaf L1 in Definition 9.35 with the ℓ-form β1 = f∗(β−1) ⊗ Ψn−1; inductively,
the form βr−1 determines a form Ψn−1 and we endow the invertible sheaf Lr
with the ℓ-form

βr = f∗(βr−2)⊗Ψn−1.

Example. When n = 2, we saw that the tower 9.35 is exactly the tower of 9.10.
In addition, the ℓ-form βr = Ψ1 (depending upon βr−1) on OP1

(−1, . . . ,−1)
agrees with the ℓ-form ϕr of 9.16.

Lemma 9.36. If β0 = αn−1 and β−1 = αn, then (at the generic point s of Y1)
the ℓ-form β1 agrees with the form anΨn−1 in (9.24), while βℓ and βℓ−1 agree
with the ℓ-forms γn−1 and γ′n−1 in (9.25). Moreover, {α1, . . . , αn−2, β0, β−1}
agrees with −{α1, . . . , αn−2, βℓ, βℓ−1}.

Proof. By Lemma 9.30, the form Ψn−1|s agrees with the form Ψn−1 of (9.20);
this proves that β1|s agrees with anΨn−1. By Definition 9.24, the first move of
type Cn replaces β0, β−1 by β1, β0. Applying Lemma 9.30 ℓ times, we obtain
(9.25). The final assertion now follows from 9.26.
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9.6 Proof of the Chain Lemma

This section is devoted to proving the Chain Lemma 9.1.

Scheme of the proof 9.37. The tower (9.19) of varieties Si is obtained by
downward induction, starting with Sn = Spec(k) and sheaves H1, . . . , Hn. Con-
struction 9.35 with L0 = Hn and L−1 = Hn−1 yields Sn−1 (= Yℓ), sheaves Jn−1

and J ′
n−1 and ℓ-forms γn−1 = βℓ and γ

′
n−1 = βℓ−1. Inductively, we repeat con-

struction 9.35 for i to produce the scheme Si, the sheaves Ji and J
′
i , and ℓ-forms

on them, starting with the output Si+1 and sheaves H1, . . . , Hi−1, L0 = Ji+1

and L−1 = Hi of the previous step. Finally, we set S = S1.
Since dim(Si/Si+1) = ℓi+1− ℓi we have dim(Si/Sn) = ℓn− ℓi. In particular,

since dim(Sn) = 0 and S = S1 we have dim(S) = ℓn − ℓ. This proves part (1)
of the Chain Lemma.

By downward induction in the tower (9.19), each Ji and J
′
i carries an ℓ-form,

which we call γi and γ
′
i, respectively. By 9.36, these forms agree with the forms

γi and γ
′
i of (9.25) and (9.26). Part (2) now follows from Lemma 9.36, (9.25)

and (9.26); part (3) follows. Part (4) was proven in Proposition 9.31; part (5)
follows. Thus we have established all but part (6) of the Chain Lemma.

The rest of this section is devoted to proving the final part (6), that the
degree of the zero-cycle c1(J1)

dim S is relatively prime to ℓ. This will be achieved
in Theorem 9.43. In preparation, we need to compare the degrees of the zero-
cycles c1(Jn−1)

dimSn−1 on Sn−1 and c1(Ji)
dimSi on Si for i < n − 1. In order

to do so, we introduce the following algebra.

Definition 9.38. We define the graded Fℓ-algebras Ar and Ār = Ar/λ−1Ar
by:

Ar = Fℓ[λ−1, λ0, . . . , λr, z1, . . . , zr]/({zℓi − λℓ−1
i−1zi, λi − λi−2 − zi | i = 1, . . . r}).

The variables λi and zi all have degree 1.

Remark 9.38.1. Suppose that H1, . . . , Hn−2 are trivial. By Corollary 9.34 with

r = n − 1, there is an algebra homomorphism Aℓ
ρ→ ch(Yℓ), sending each λi

to c1(Li)
ℓn−2

and each zi to c1(OYi
(−1, . . . ,−1))ℓn−2

. When L−1 is trivial, and
hence λ−1 = c1(L−1) = 0, ρ factors through Āℓ.

Lemma 9.39. In Ār, every element u of degree 1 satisfies uℓ
2

= uℓλℓ
2−ℓ
0 .

Proof. We will show that Ār embeds into a product of graded rings of the form
Λk = Fℓ[λ0][v1, . . . , vk]/(v

ℓ
1, . . . , v

ℓ
k). In each entry, u = aλ0 + v with vℓ = 0 and

a ∈ Fℓ, so u
ℓ = aλℓ0 and uℓ

2

= aλℓ
2

0 , whence the result.
Since Ār+1 = Ār[z]/(z

ℓ−λℓ−1
r z) is flat over Ār, it embeds by induction into

a product of graded rings of the form Λ′ = Λk[z]/(z
ℓ−λℓ−1z), λ ∈ Λk. If λ 6= 0,

there is an embedding of Λ′ into
∏ℓ−1
i=0 Λk whose ith component sends z to iλ.

If λ = 0, then Λ′ ∼= Λk+1.

Remark 9.39.1. It follows that if k,m > 0 and (ℓ2−ℓ) | m then ukℓ+m = λm0 u
kℓ.
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Proposition 9.40. In Āℓ, λ
ℓN−ℓ
ℓ = λℓ

N−ℓ2

0 (
∏
zℓ−1
i +Tλ0) for all N ≥ 2, where

T is a homogeneous polynomial of degree ℓ2−ℓ−1.
Proof. By Definition 9.38, Āℓ is free over Fℓ[λ0], with a basis consisting of the
elements

∏
zmi
i (0 ≤ mi < ℓ). Thus any term of degree ℓN − ℓ is a linear

combination of F = λℓ
N−ℓ2

0

∏
zℓ−1
i and terms of the form λm0

0

∏
zmi
i where∑

mi = ℓN − ℓ2 and m0 > ℓN − ℓ2. It suffices to determine the coefficient of F

in λℓ
N−ℓ
ℓ . Since λℓ

N−ℓ
ℓ = λℓ

N−ℓ2

0 λℓ
2−ℓ
ℓ by Remark 9.39.1, it suffices to consider

N = 2, when F =
∏
zℓ−1
i .

As in the proof of Proposition 9.15, if ℓ ≥ r ≥ 2 we compute in the ring Ār
that

λr(ℓ−1)
r =(zr + λr−2)

ℓ(r−1)+(ℓ−r) = (zℓr + λℓr−2)
r−1 · (zr + λr−2)

ℓ−r

=(zrλ
ℓ−1
r−1 + λℓr−2)

r−1(zr + λr−2)
ℓ−r = zℓ−1

r λ
(r−1)(ℓ−1)
r−1 + T,

where T is a homogeneous polynomial in Ār−1[zr] of total degree <ℓ−1 in zr.

By induction on r, the coefficient of (z1 · · · zr)ℓ−1 in λ
r(ℓ−1)
r is 1 for all r.

Lemma 9.41. If Sn = Spec(k) and c = c1(Jn−1) ∈ CH1(Sn−1), then

deg(cdimSn−1) ≡ −1 (mod ℓ).

Proof. Set d = dim(Sn−1) = ℓn − ℓn−1; under the map Aℓ
ρ→ ch(Sn−1) of

9.38.1, the degree ℓ2 − ℓ part of Aℓ maps to CHd(Sn−1). Since Sn = Spec(k),
all the sheaves H1, . . . , Hn−2, Hn and L0 = Jn are trivial. This implies that
ρ factors through Āℓ and that ρ(λ0) = 0. By Proposition 9.40, the zero-cycle

cd = ρ(λℓ)
ℓ2−ℓ equals the product of the ρ(zi)

ℓ−1 = c1(OYi
(−1, . . . ,−1))d/ℓ.

Because Sn−1 = Yℓ is a product of iterated projective space bundles, CH0(Yℓ)
is the tensor product of their CH0 groups, and the degree of cd is the product of
the degrees of the c1(OYi

(−1, . . . ,−1))d/ℓ, each of which is −1 by Lemma 9.33.
It follows that deg(cd) ≡ −1 (mod ℓ).

Theorem 9.42. Fix i ≤ n − 1. If Si has dimension ℓs − ℓr and H1, . . . , Hi−2

and Hi are trivial, then the zero-cycles c1(Ji−1)
dimSi−1 ∈ CH0(Si−1) and

c1(Ji)
dimSi ∈ CH0(Si) have the same degree modulo ℓ:

deg(c1(Ji−1)
dimSi−1) ≡ deg(c1(Ji)

dimSi) (mod ℓ).

Proof. By Remark 9.38.1, there is a homomorphism Aℓ
ρ→ ch(Si−1), factoring

through Āℓ, sending λj to c1(Lj)
ℓi−2

and zj to c1(OYj
(−1, . . . ,−1))ℓi−2

.

Set N = s − i + 2 and y = λℓ
N−ℓ2

0 , so ρ(y) = c1(Ji)
dimSi ∈ ch0(Si). From

Proposition 9.40 we have λℓ
N−ℓ
ℓ ≡ y∏ zℓ−1

j , since

ρ(λℓ
N−ℓ2+1
0 ) = 0 in f∗ch(Si) ⊂ ch(Si−1).

By Lemma 9.14, the degree of this element equals the degree of y modulo ℓ.
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If we combine Lemma 9.41 and Theorem 9.42, we obtain the following result.

Theorem 9.43. For each i < n, deg(c1(Ji)
dim Si) ≡ −1 (mod ℓ).

Theorem 9.43 establishes the final part (6) of the Chain Lemma 9.1, that
the degree of c1(J1)

dim S1 is relatively prime to ℓ.

9.7 Nice G-actions

In this section, we extend the Chain Lemma 9.1 to include an action by the
group µnℓ = (µℓ)

n on S, Ji and J
′
i leaving γi and γ

′
i invariant. We will assume

that 1/ℓ ∈ k and µℓ ⊂ k×, so that we may regard µℓ as a discrete group. We
also show that the action is nice, in the following sense.

Recall that if a finite group G acts on X then the (reduced) fixed-point
subscheme FixG(X) is {x ∈ X : (∀g ∈ G)gx = x and g = 1 on k(x)}.
Definition 9.44. (Rost, cf. [Ros98b, p.2]) Let G be a finite group acting on a
k-variety X. We say that the action is nice if FixG(X) is 0-dimensional, and
consists of k-points.

When G also acts on an invertible sheaf L over X, G acts on the corre-
sponding geometric bundle L. We say that the action on L is nice if G acts
nontrivially on L|x for every fixed point x ∈ X. In this case, FixG(L) is the
zero-section of L over FixG(X).

Suppose that G acts nicely on each of several invertible sheaves Li over
X, giving a canonical representation G → ∏

Aut(Li|x) =
∏
k×. We say that

G acts nicely on {L1, . . . , Lr} if for each fixed point x ∈ X the image of the
canonical representation is

∏
Gi, with each Gi nontrivial.

Remark 9.44.1. If Xi → S are equivariant maps and the Xi are nice (i = 1, 2),
then G also acts nicely on X1×SX2. However, even if G acts nicely on invertible
sheaves Li it may not act nicely on L1 ⊠ L2, because the representation over
(x1, x2) is the product representation L1|x1

⊗ L2|x2
, and a tensor product of

non-trivial representations can be trivial.

Example 9.45. Suppose that G acts nicely on an invertible sheaf L over X.
Then the induced G-action on P = P(O ⊕ L) and its tautological sheaf O(−1)
is nice. Indeed, if x ∈ X is a fixed point then the fixed points of P|x consist of
the two k-points {[O], [L]}, and if L|x is the representation ρ then G acts on
O(−1) at these fixed points as ρ and ρ−1, respectively.

By 9.44.1, G also acts nicely on the products P =
∏

P(O ⊕ L) and Q =
X ×S′ P of Definition 9.27, but it may not act nicely on OP (−1, . . . ,−1).
Example 9.46. If an ℓ-group G acts nicely on L, it also acts nicely on the
projective space P(A) of the Kummer algebra sheaf A = A(L) of 9.8. Indeed,
an elementary calculation shows that FixGP(A) consists of the ℓ sections [Li],
0 ≤ i < ℓ over FixG(X). In each fiber, the (vertical) tangent space at each fixed
point is the representation ρ⊕ · · · ⊕ ρℓ−1. If G = µℓ, this is the reduced regular
representation (because µℓ ⊂ k×).
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Over any fixed point x ∈ X, L|x is trivial, and the cyclic group of order ℓ
acts on the sheaf A|x by Li 7→ Li+1, rotating the fixed points. This induces
G-isomorphisms between the tangent spaces at these points.

Example 9.46.1. In contrast, the action of G on Y = P(O ⊕ A) is not nice,
because FixG(Y ) is not 0-dimensional. In this case, an elementary calculation
shows that FixG(Y ) consists of the points [Li] of P(A), 0 < i < ℓ, together with
the projective line P(O ⊕ O) over every fixed point x of X. For each x, the
(vertical) tangent space at [Li] is 1⊕ρ⊕· · ·⊕ρℓ−1; if G = µℓ, this is the regular
representation.

When G = µnℓ , the following lemma allows us to assume that the action
on L|x is induced by the standard representation µℓ ⊂ k×, via a projection
G→ µℓ.

Lemma 9.47. Any nontrivial 1-dimensional representation ρ of G = µnℓ factors

as the composition of a surjection G
π−→ µℓ with the standard representation of

µℓ.

Proof. The representation ρ is an element of (Z/ℓ)n = G∗ = Hom(µnℓ ,Gm), and
π is the Pontryagin dual of the induced map Z/ℓ→ G∗ sending 1 to ρ.

The construction of the Pr and Qr in 9.28 is natural in the given invertible
sheaves H1, . . . , Hr and K0 over S′. Therefore the construction of the Yr and
Sn−1 in 9.35 is natural in the given invertible sheaves H1, ..., Hn−2, L0 and L−1.
The same is true for the construction of the Si and S = S1 in 9.37 above. Since∏n
i=1 Aut(Hi) acts on the Hi, this group (and the subgroup G = µnℓ ) will act on

the variety Sn−1, and on the invertible sheaves Jn−1 and J ′
n−1. Hence G acts

on the variety S of the Chain Lemma. We will show that it acts nicely on S.
Recall from Definition 9.28 that Pr and Qr are defined by the construction

9.27 using the invertible sheaf Lr = Hr ⊗Kr−1 over Qr−1.

Lemma 9.48. If S′ = Spec(k), then G = µrℓ acts nicely on Lr, Pr and Qr.

This implies that any subgroup of
∏r
i=1 Aut(Hi) containing µ

r
ℓ also acts nicely.

Proof. We proceed by induction on r, the case r = 1 being 9.45, so we may
assume that µr−1

ℓ acts nicely on Qr−1. By 9.44.1, it suffices to show that G = µrℓ
acts nicely on P(O ⊕ Lr), where Lr = Hr ⊗Kr−1. Since the final component
µℓ of G acts trivially on Kr−1 and Qr−1 and nontrivially on Hr, G = µr−1

ℓ ×µℓ
acts nicely on Lr. By Example 9.45, G acts nicely on P(O ⊕ Lr).

The proof of Lemma 9.48 goes through in slightly greater generality.

Corollary 9.49. Suppose that G = µnℓ acts nicely on S′ and on the invertible
sheaves {H1, . . . , Hr} over it. Then G acts nicely on Lr, Pr and Qr.

Proof. Without loss of generality, we may replace S′ by a fixed point s ∈ S′,
in which case G acts nicely on {H1, . . . , Hr} through the surjection µnℓ → µrℓ .
Now we are in the situation of Lemma 9.48.
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Example 9.49.1. Suppose that G acts nicely on Yr−1 and on the invert-
ible sheaves H1, . . . , Hn−2, Lr−1. By Corollary 9.49, G acts nicely on Yr =
Pn−1(Yr−1;H1, . . . , Hn−2, Lr−1) and on the sheaf Ln−1. Since the last factor
µℓ of G = µnℓ acts solely on Lr−2, it follows that the group µnℓ = µn−1

ℓ × µℓ
acts nicely on the family of invertible sheaves H1, . . . , Hn−2, Lr−1, and Lr =
Lr−2 ⊗O(−1, . . . ,−1) over Y .

We can now process the tower of varieties Yr defined in 9.35.

Proposition 9.50. Suppose that G = G0 × µnℓ acts nicely on Sn and (via
G → µnℓ ) on {H1, . . . , Hn−2, L0, L−1}. Then G acts nicely on each Yr, and on
its invertible sheaves {H1, . . . , Hn−2, Lr, Lr−1}.

Proof. The question being local, we may replace S′ by a fixed point s ∈ S′, and
G by µnℓ . We proceed by induction on r, the case r = 1 being Example 9.49.1,
since L1 = Hn ⊗O(−1, . . . ,−1). Inductively, suppose that G acts nicely on Yr
and on {H1, . . . , Hn−2, Lr, Lr−1}. Thus there is a factor of G isomorphic to µℓ
which acts nontrivially on Lr but acts trivially on {H1, . . . , Hn−2, Lr}. Hence
this factor acts trivially on Yr+1 = Pn−1(Yr;H1, . . . , Hn−2, Lr) and its invertible
sheaf O(−1, . . . ,−1), and nontrivially on Lr+1 = Lr−1 ⊗ O(−1, . . . ,−1). The
assertion follows.

Corollary 9.51. G = µnℓ acts nicely on S and J .

Proof. By Definition 9.35, Sn−1 = Yℓ, Jn−1 = Lℓ and J ′
n−1 = Lℓ−1. By 9.50

with r = ℓ, G acts nicely on Sn−1 and on {H1, . . . , Hn−2, Jn−1, J
′
n−1}. By

downward induction, G = µn−iℓ ×µiℓ acts nicely on Si and {H1, . . . , Hi−1, Ji, J
′
i}

for all i ≤ n. The case i = 1 is the conclusion, since (S, J) = (S1, J1).

9.8 Chain Lemma, revisited.

In this section we prove a variation of the Chain Lemma, Theorem 9.52, which
needs the extra assumption that BL(n-1) holds, and will be use to prove the
multiplication principle 11.5. To state Theorem 9.52, we need some notation.

Recall from the Chain Lemma 9.1 that the variety S is equipped with an
invertible sheaf J and an ℓ-form γ on J . As in Definition 9.8, there is a sheaf
of Kummer algebras A = ⊕ℓ−1

i=0J
i on S associated to γ; we write S( ℓ

√
γ) for the

scheme Spec(A), noting that it is finite and flat of degree ℓ over S.
The fiber of S( ℓ

√
γ) over a point s ∈ S is Spec(A|s) where As is described

in Definition 9.8: if u is a nonzero element of Js and t = γs(u) ∈ k(s) then
A|s = k(s)[u]/(uℓ− t); if t 6∈ k(s)ℓ, we write k(s)( ℓ

√
γ(s)) for the field k(s)( ℓ

√
t).

If µℓ ⊂ k×, every field extension E/k of degree ℓ is a cyclic Galois extension
of the form k( ℓ

√
t) for some t ∈ k. Theorem 9.52 says that if E splits the symbol

{a1, ..., an} then E comes from the above construction for some k-point s of S.
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Theorem 9.52. Let k be an ℓ-special field k of characteristic 0, and suppose
that BL(n-1) holds. Given a nonzero symbol a ∈ KM

n (k)/ℓ over k, let S be the
variety constructed in the Chain Lemma 9.1 for a.

For each cyclic extension E of k of degree ℓ that splits a, there exists a
k-rational point s ∈ S(k) such that E = k( ℓ

√
γ(s)).

Before proving Theorem 9.52, we state a corollary in the form that will be
used to prove the multiplication principle (Theorem 11.5).

Corollary 9.53. Let k be a ℓ-special field of characteristic 0, and suppose
that BL(n-1) holds. Given a nonzero symbol a ∈ KM

n (k)/ℓ over k, and a se-
quence E1, . . . , En of cyclic extensions of k of degree ℓ splitting a, there ex-
ist a′1, . . . , a

′
n ∈ k× such that a = {a′1, . . . , a′n} and each Ei splits the symbol

{a′1, . . . , a′i}.

Proof of Corollary 9.53. We will prove by induction on j, 1 ≤ j ≤ n, that we can
find a′1, . . . , a

′
n so that the splitting condition holds for 1 ≤ i ≤ j. By Theorem

9.52, there is a k-point s ∈ S so that E1 = k( ℓ
√
γ(s)). Since a = {γ(s), . . . } (by

the Chain Lemma 9.1), the case j = 1 follows.
Inductively, suppose that the splitting condition holds for j − 1. After rela-

belling, we may assume that Ei splits {a1, . . . , ai−1} for 2 ≤ i ≤ j. Again using
Theorem 9.52, choose a k-rational point s ∈ S such that E1 = k( ℓ

√
γ(s)); E1

splits {γ(s)}. By part (2) of the Chain Lemma 9.1, a = {γ(s), γ′1(s), ..., γ′n−1(s)}
and {a1, . . . , ai−1, γi(s)} = {γ(s), γ′1(s), . . . , γ′i−1(s)}. By induction, the latter
symbol is split by Ei for 2 ≤ i ≤ j. Setting a′1 = γ(s) and a′i = γ′i−1(s) for
i = 2, . . . , j, we see that the splitting condition holds for j.

The proof of Theorem 9.52 will use the invariant η(X/S), which is defined
in 8.22, and Theorems 7.5 and 8.25, which require characteristic 0.

Lemma 9.54. If µℓ ⊂ k and γ is nonzero at the generic point s0 of S, then
either γs0(L|s0) = k(s0)

×ℓ or else S( ℓ
√
γ) is a pseudo-Galois cover of S with

group µℓ. In this case, η(S( ℓ
√
γ)/S) is defined in Z/ℓ and equals the degree of

the zero-cycle c1(J)
dimS, which is nonzero by the Chain Lemma 9.1(6).

Proof. Let u be a nonzero element of J |s0 and consider the element t = γs0(u)
of k(s0). The fiber of S( ℓ

√
γ) over s0 is Es0 = k(s)[u]/(uℓ− t); if t 6∈ k(s0)ℓ then

Es0 is a field extension of k(s0) with Galois group µℓ. In this case, S( ℓ
√
γ) is

a variety with function field Es0 . The natural action of µℓ on any line bundle,
and in particular J , extends naturally to an action on A and hence on S( ℓ

√
γ).

Thus S( ℓ
√
γ)→ S is a pseudo-Galois cover in the sense of Definition 8.19.

If s is a closed point of S contained in V (γ) then k(s) splits a by 9.1(4) and
hence ℓ divides [k(s) : k]. Hence η = η(S( ℓ

√
γ)/S) is defined (see 8.22). Since the

invertible sheaf corresponding to this pseudo-Galois covering of S is the dual J∗

of J , η = deg(c1(J
∗)dimS). Since c1(J

∗) = −c1(J) and dim(S) = ℓn− ℓ is even,
we have η = (−1)dimSdeg c1(J)

dimS= deg c1(J)
dimS, and the result follows.
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Lemma 9.55. For every finite field extension F ′ of k(S( ℓ
√
γ)) of degree prime

to ℓ, there is a diagram of smooth projective varieties and dominant maps, where
the degree of h is prime to ℓ and F ′ is the function field of S̃( ℓ

√
γ):

S̃( ℓ
√
γ) > S̃

S( ℓ
√
γ)

h̃
∨

> S.

h
∨

If char(k) = 0 and µℓ ⊂ k then η(S̃( ℓ
√
γ)/S) = deg(h) · deg(c1(J)dimS).

Proof. Choose a Sylow ℓ-subgroup P of the Galois group of F ′/k(S), and let F
be the fixed subfield of F ′ fixed by P . Then [F ′ : F ] = ℓ and [F : k(S)] is prime
to ℓ. Let S̃F be the normal closure of S over F , with canonical map S̃F → S;
locally, the restriction of S̃F over an affine open Spec(A) ⊂ S is Spec(Ã), where
Ã is the normalization of A in F . Let S̃ be a resolution of singularities of S̃F
with projection h : S̃ → S. Finally, the ℓ-form γ on J lifts to an ℓ-form h∗γ on
h∗(J), and the finite flat map S̃( ℓ

√
γ)→ S̃ is compatible with S( ℓ

√
γ)→ S.

The final assertion comes from Theorem 8.25 and Lemma 9.54.

Remark 9.55.1. By the Chain Lemma 9.1(2), the function field of S( ℓ
√
γ) splits

a. If X is a norm variety for a, there is a finite field extension F ′ of k(S( ℓ
√
γ))

of degree prime to ℓ and an F ′-point Spec(F ′) → X. Forming S̃ as in Lemma

9.55, this F ′-point extends to a rational map φ : S̃( ℓ
√
γ) > X.

Recall that the cyclic group Cℓ = 〈σ〉 acts on Xℓ by σ(x1, ..., xℓ) =
(x2, ..., xℓ, x1), and that CℓX denotes the geometric quotient variety Xℓ/Cℓ.

Let σ be a generator of Cℓ, and let φ : S̃( ℓ
√
γ) > X be the rational map

mentioned above. Choosing an isomorphism Cℓ ∼= µℓ, the rational maps φσi

assemble to form a Cℓ-equivariant rational map g = (φ, φσ, ..., φσℓ−1) from
S̃( ℓ
√
γ) to Xℓ. Taking geometric quotients yields a rational map ḡ from S̃ to

CℓX = Xℓ/Cℓ. Thus we have the commutative diagram:

S̃( ℓ
√
γ)

g = (φ, φσ, . . . , φσℓ−1)
> Xℓ

S̃

∨
ḡ

> Cℓ(X).

∨
(9.55.2)

Proposition 9.56. If char(k) = 0 and µℓ ⊂ k, the degree of g is prime to ℓ.

Proof. By the Degree Formula 8.25,

deg(h) · η(S( ℓ
√
γ)/S) ≡ η(S̃( ℓ

√
γ)/S̃) ≡ deg(g) · η(Xℓ/CℓX).

The left side is nonzero by Lemmas 9.54 and 9.55, which implies that deg(g) is
also nonzero modulo ℓ.
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Proof of Theorem 9.52. LetX be an ℓ-generic splitting variety for a; X exists by
Theorem 10.17, because of our inductive hypothesis that BL(n-1) holds. Since
E splits a and E is ℓ-special, there is an E-point ψ : Spec(E) → X. Let σ be
a generator of the cyclic group G = Gal(E/k); each ψσi is also an E-point of
X. The sequence of these points yields a G-equivariant map p : Spec(E)→ Xℓ;
taking geometric quotients yields a diagram

Spec(E)
p = (ψ,ψσ, . . . , ψσℓ−1)

> Xℓ

Spec(k)
∨ z

> Cℓ(X).

∨

Since the diagonal copy of X in Xℓ has no k-points, and is the singular locus
of Cℓ(X), the image of z is a smooth point of Cℓ(X), lying in the unramified
locus of Xℓ → Cℓ(X). It follows that the diagram is Cartesian, i.e., that the
fiber over z consists of a single E-point, namely the image of p.

Since the map g in (9.55.2) is dominant of degree prime to ℓ (by 9.56), so
is the induced rational map ḡ : S̃ → Cℓ(X). By Theorem 7.5, we can lift the
smooth k-point z of Cℓ(X) to a k-point s̃ of S̃ and hence a k-point s of S such
that g(s̃) = z. Since γ 6= 0 in a neighborhood of every k-point of S, by the
Chain Lemma 9.1(5), the map S̃( ℓ

√
t)) → S̃ is unramified in a neighborhood

of s. Because the diagram (9.55.2) is Cartesian, the fiber of S̃( ℓ
√
t) over s̃ is a

single point with residue field E. Thus k( ℓ
√
t) = k(s̃)( ℓ

√
t) ∼= E.

9.9 Historical notes

The Chain Lemma for n = 2 and ℓ = 2 is a reformulation of the common
slot lemma for quaternionic division algebras: if the algebra (a1, a2) is split
over k(

√
c) then (a1, a2) ∼= (a1, γ) ∼= (c, γ) for some γ ∈ k. The extension to

n = 2 and ℓ = 3, formulated in terms of cyclic division algebras of degree 3
(in characteristic 6= 3), was given by Rost in [Ros99]. The Chain Lemma in its
present form, and its proof, was given by Rost in the 1998 preprint [Ros98a].

Our formulation of the Chain Lemma (Theorem 9.1) is taken from the
Suslin–Joukhovitski paper [SJ06, 5.1]. The proof of the Chain Lemma pre-
sented here is taken from [HW09] and is based upon Rost’s preprint [Ros98b],
his web site [Ros98a] and Rost’s lectures at the Institute for Advanced Study
in 1999-2000 and 2005.
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Chapter 10

Existence of norm varieties

The main goal of this chapter, achieved in Theorem 10.17, is to construct norm
varieties for symbols a = {a1, ..., an} over a field k of characteristic 0, and
start the proof (completed in Chapter 11 using the Norm Principle) that norm
varieties are Rost varieties. In turn, Rost varieties are used in Chapter 5 to
produce Rost motives, which are used in Chapter 4 to establish the H90(n)
condition used to prove our main theorem, Theorem 1.11.

Section 10.1 recalls the definition of a norm variety for a symbol a in
KM
n (k)/ℓ; if n ≥ 2 and k is ℓ-special, norm varieties are geometrically irre-

ducible. In section 10.2, we use the Chain Lemma 9.1 to produce a specific
νn−1-variety P(A), and a pencil Q of splitting varieties over A1−{0} whose
fibers Qw are fixed point equivalent to P(A). Using the bordism result 8.17, we
see that any equivariant resolution Q(a) of Qw is a νn−1-variety. In section 10.3
we use Rost’s degree formula 8.9 to show that any norm variety for a is νn−1

because Q(a) is. A norm variety for a is constructed in the final section 10.4
by induction on n, making use of the global inductive assumption that BL(n-1)
holds, and the Norm Principle 10.18, whose proof we postpone to chapter 11.

The name “norm variety” reflects the fact that these varieties are birational
to a hypersurface in a family of Kummer algebras defined by the equation
Norm(u) = an. The current meaning in Definition 10.1 has evolved over the
years; see the Historical Notes 10.5 for further details.

10.1 Properties of norm varieties

We first recall what a norm variety over a field k is. A field F over k is a splitting
field for a symbol a ∈ KM

n (k)/ℓ if a = 0 in KM
n (F )/ℓ. The following definition

was given in Chapter 1; see Definition 1.13.

Definition 10.1. An (irreducible) variety X over k is called a splitting variety
for a symbol a ∈ KM

n (k)/ℓ if its function field splits a, i.e., if a vanishes in
KM
n (k(X))/ℓ. A splitting variety X is called an ℓ-generic splitting variety if any

splitting field F has a finite extension E of degree prime to ℓ with X(E) 6= ∅.
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A norm variety for a nonzero symbol a ∈ KM
n (k)/ℓ is a smooth projective

ℓ-generic splitting variety for a of dimension ℓn−1 − 1.

Example 10.1.1. If n = 1 then Spec k( ℓ
√
a) is both a splitting variety and a

norm variety for a ∈ k×. This is because the element a of KM
1 (k)/ℓ = k×/k×ℓ

is split by a field F exactly when F contains ℓ
√
a. Similarly, if E is any finite

field extension of k( ℓ
√
a) of degree prime to ℓ, then Spec(E) is a norm variety

for a ∈ k×.
If n = 2 and N is the norm form defined by the extension k( ℓ

√
a1)/k, then

the (ℓ−1)-dimensional affine variety Y defined by N(X0, . . . , Xℓ−1) = a2 is a
geometrically irreducible splitting variety for a = {a1, a2}, as we saw in the
proof of Proposition 1.25.

If n = 2 and k contains the ℓth roots of unity, then the Severi–Brauer variety
for a = {a1, a2}, defined in 1.14, is a norm variety for the symbol a. Since
KM

2 (F )/ℓ ∼= ℓBr(F ), if F is a splitting field for a then the central simple k-
algebra A defining the Severi–Brauer variety X satisfies A ⊗k F ∼= Mℓ(F ) and
hence X(F ) 6= ∅.

Example 10.1.2. If k′ is a finite separable field extension of k, of degree prime
to ℓ, then any norm variety for a over k′ is also a norm variety for a over k.
The assumption that [k′ : k] is prime to ℓ ensures that a is a nonzero symbol in
KM
n (k′)/ℓ, and that any field F over k has a prime-to-ℓ extension F ′ over k′.
To avoid the frequent passage to extension fields associated with the ℓ-generic

splitting hypothesis, it will be useful to assume that k has no extension fields of
degree prime to ℓ, i.e., that k is an ℓ-special field (Definition 1.9): 1/ℓ ∈ k and
ℓ divides the order of every finite field extension of k.

The assumption that k′/k is separable is necessary. If k is not perfect, there
may be an inseparable extension k′ of k and a norm variety X over k′ which is
not smooth over k — and therefore cannot be a norm variety over k.

Remark 10.1.3. Let X be a splitting variety for a. Then k(x) is a splitting field
for a for every point x ∈ X, by specialization (see [Wei13, III.7.3]). It follows
that if a field F has a finite extension E of degree prime to ℓ with X(E) 6= ∅
then F is a splitting field of a. In particular, this implies that the degree of
every closed point x ∈ X is divisible by ℓ.

Recall that the field of constants of an irreducible k-varietyX is the algebraic
closure kc of k in k(X). It is well known that X is geometrically irreducible over
kc. Example 10.1.2 shows that the field of constants of a norm variety need not
be k; we now show that every norm variety is either geometrically irreducible
or arises in this way, provided that n ≥ 2.

Proposition 10.2. Let k be a field containing 1/ℓ. If X is an ℓ-generic splitting
variety for a = {a1, . . . , an}, and n ≥ 2, then [kc : k] is prime to ℓ and X is a
geometrically irreducible ℓ-generic splitting variety for a over kc.

If k is ℓ-special and n ≥ 2, every norm variety over k is geometrically irre-
ducible.
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Proof. Let Y be a geometrically irreducible splitting variety for a, i.e., such that
k(Y ) splits the symbol a. Such a variety always exists; for example, Y could be
the affine variety N = a2 of Example 10.1.1, or the Severi–Brauer variety Y of
{a1, a2} over k( ℓ

√
a1). (See Example 10.1.2.)

If X is an ℓ-generic splitting variety, there is a field extension F of k(Y ) with
[F : k(Y )] prime to ℓ, and a point in X(F ). Let kc be the field of constants of
X. Then K = k(Y )⊗k kc is a subfield of F , since Y is geometrically irreducible.

Now the degree [K : k(Y )] = [kc : k] divides [F : k(Y )], which is prime
to ℓ. This proves that [kc : k] is prime to ℓ. Since X is always geometrically
irreducible over kc, it suffices to observe that X is an ℓ-generic splitting variety
over kc, which is elementary.

Remark 10.2.1. Proposition 10.2 fails for n = 1: Spec(k( ℓ
√
a1)) is a norm variety

for a1, is not geometrically irreducible over k, and [kc : k] = ℓ.

Lemma 10.3. Let k′ be a finite field extension of k, and X a variety over k.
i) If Xk′ = X ×k k′ is a norm variety for a over k′, and [k′ : k] is prime to

ℓ, then X and Xk′ are also norm varieties for a over k.
ii) If X is a geometrically irreducible norm variety for a over k, then Xk′ is

a norm variety over k′.

Proof. For (i), suppose that Xk′ is a norm variety over k′. By Example 10.1.2,
Xk′ is a norm variety over k. Since [k′(Xk′) : k(X)] = [k′ : k] is prime to
ℓ, KM

∗ (k(X))/ℓ is a summand of KM
∗ (k(Xk′))/ℓ, so a = 0 in KM

∗ (k(X))/ℓ.
The fact that X is an ℓ-generic splitting variety follows from the fact that if
Xk′(E) 6= ∅ then X(E) 6= ∅ via the map Xk′(E)→ X(E). Since Xk′ is smooth
over k′, X is smooth over k (see [Har77, III.10.2]). Thus X is a norm variety
over k.

For (ii), we may suppose that n ≥ 2, as the case n = 1 is vacuous. Since
X is smooth projective over k, Xk′ is smooth projective over k′. As X is
geometrically irreducible over k, Xk′ is irreducible; the function field k′(Xk′)
splits a since k(X) does. Suppose that F is a splitting field of a over k′. Since
X is ℓ-generic, there is a prime-to-ℓ extension E/F and a map Spec(E) → X
over k. Since Xk′ = X ×k k′ there is a map Spec(E)→ Xk′ . which implies that
Xk′ is ℓ-generic over k′ and hence a norm variety over k′.

As pointed out after Definition 1.9, any maximal prime-to-ℓ algebraic exten-
sion k′′ of k is an ℓ-special field. This prime-to-ℓ passage from k to an ℓ-special
field k′′ preserves norm varieties, by the following argument.

If a is a nonzero symbol over k then it is also nonzero over k′′. Any norm
variety for a over k′′ is the basechange of a smooth geometrically irreducible
variety X ′ defined over a finite extension k′ of k with [k′ : k] prime to ℓ. The
argument of Lemma 10.3(i) applies to show that X ′ is a norm variety for a
over k′ and hence is a norm variety over k. Conversely, if X is a geometrically
irreducible norm variety over k then Xk′′ is a norm variety over k′′, by Lemma
10.3(ii).
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Proposition 10.4. If k is a field of characteristic 0, the property of being a
norm variety for a is a birational invariant.

Proof. Suppose that X and X ′ are smooth projective, with X a norm variety
for a, and that X > X ′ is a birational morphism. Choose a tower Xn →
· · · → X1 → X of blow-ups along smooth centers and a morphism f : Xn → X ′

resolving the indeterminacies of the birational map; such a tower exists by the
Weak Factorization Theorem (and resolution of singularities). For every field F ,
the map Xn(F )→ X(F ) is onto by construction and there is a map Xn(F )→
X ′(F ); if F is an ℓ-special splitting field for a then X(F ) and hence Xn(F ) and
X ′(F ) are not empty. This shows that X ′ is ℓ-generic, as required.

Corollary 10.5. If k is any field of characteristic 0, or if µℓ ⊂ k×, every
nonzero symbol {a1, a2} has a geometrically irreducible norm variety over k.

Proof. If µℓ ⊂ k×, the Severi–Brauer variety is a geometrically irreducible norm
variety, by Example 10.1.1. If char(k) = 0, let Y be the (geometrically irre-
ducible) affine splitting variety of Example 10.1.1 defined by N = a2. Then Y
is smooth; let Ȳ be a smooth projective completion of Y . If k′ is obtained by
adjoining an ℓth root of unity to k, then Ȳk′ is a norm variety for k′ by Propo-
sition 10.4, since Yk′ is birational to the Severi–Brauer variety (as observed in
the proof of 1.25). By Lemma 10.3(i), Ȳ is a norm variety.

10.2 Two νn−1-varieties.

Part of the definition of a Rost variety (Definition 1.24) is that it is a νn−1-
variety, and that some νi-variety maps to it for each smaller i. In Section 10.3,
we shall prove that norm varieties have these properties when k is a field of
characteristic 0. For this, we need a pair of reference νn−1-varieties, P(A) and
Q(a). In this section, we use the Chain Lemma 9.1 to produce these varieties.
We require n ≥ 2, so that S and A are defined.

Recall from Definition 1.17 that a νi-variety is a smooth projective variety X
of dimension d = ℓi − 1 with sd(X) 6≡ 0 (mod ℓ2). Here i ≥ 1 and sd(X) is the
degree of the characteristic class sd(TX) ∈ CHd(X), where TX is the tangent
bundle of X.

For example, when n = 2 we saw in Example 1.18(1) and Proposition 1.25
that the projective space Pℓ−1 is a ν1-variety (but not a norm variety), while
any Severi–Brauer variety of dimension ℓ− 1 is not only a norm variety, and a
ν1-variety, but is also a Rost variety for its underlying symbol.

Given a nontrivial symbol {a1, ..., an−1} in KM
n−1(k)/ℓ, where k contains 1/ℓ

and n ≥ 2, the Chain Lemma 9.1 states that there is a smooth projective S of
dimension ℓn−1 − ℓ, an invertible sheaf J on S and an ℓ-form γ : J⊗ℓ → OS
satisfying the properties listed in loc. cit. Let A = Aγ(J) denote the associated

Kummer algebra (defined in 9.8); it is the locally free OS-module
⊕ℓ−1

i=0 J
⊗i

equipped with a product defined by γ.

June 27, 2018 - Page 141 of 281



Norm varieties

Theorem 10.6. Let S be the variety of the Chain Lemma 9.1 for some symbol
in KM

n−1(k)/ℓ, n ≥ 2, and A = Aγ(J) the associated sheaf of Kummer algebras
over S. Then the projective bundle P(A) is a νn−1-variety.

Proof. Let π : P(A) → S be the projection. Since dim(S) = ℓn−1 − ℓ, the
dimension of P(A) is ℓn−1−1. In the Grothendieck group K0(P(A)), we have
that

[TP(A)] = π∗([TS ]) + [TP(A)/S ]

where TP(A)/S is the relative tangent bundle. The characteristic class sd is
additive, and sd(π

∗([TS ]) = 0 because the dimension of S is less than d, so
sd(P(A)) = sd(TP(A)/S). Now [TP(A)/S ] = [π∗(A) ⊗ O(1)P(A)/S ] − 1. Applying
additivity again, together with the definition of the characteristic class sd (given
before 1.17) and the decomposition ofA and hence π∗(A) into invertible sheaves,
we obtain

sd(P(A)) = deg

ℓ−1∑

i=0

c1
(
π∗J⊗i ⊗OP(A)/S(1)

)d
.

The projective bundle formula presents the Chow ring CH∗(P(A)) as:

CH∗(P(A)) = CH∗(S)[y]/

(∏ℓ−1

i=0
(y − ix)

)

where x = −c1(J) ∈ CH1(S) and y = c1(O(1)) ∈ CH1(P(A)). Then sd(P(A))
is the degree of the following element of the ring CH∗(P(A)):

s′d(P(A)) =
∑ℓ−1

i=0
(y − ix)d =

∑ℓ−1

i=0
aiy

ixd−i

for some integer coefficients ai. Since x ∈ CH1(S), we have xr = 0 for any
r > dim(S) = ℓn−1 − ℓ. It follows that s′d(P(A)) = aℓ−1y

ℓ−1xdim(S). By part
(6) of the Chain Lemma 9.1, the degree of xdim(S) = (−1)dim(S)c1(J)

dim(S) is
prime to ℓ. In addition, π∗(y

ℓ−1) = π∗(c1(O(1))ℓ−1) = [S] in CH0(S). By the
projection formula sd(P(A)) = aℓ−1deg x

dim(S). Thus to prove the theorem, it
suffices to show that aℓ−1 ≡ ℓ (mod ℓ2); this algebraic calculation is achieved
in Lemma 10.7 below.

Lemma 10.7. In the ring R = Z/ℓ2[x, y]/(
∏ℓ−1
i=0(y − ix)), the coefficient of

yℓ−1 in um =
∑ℓ−1
i=0(y − ix)ℓ

m−1 is ℓxb, with b = ℓm − ℓ.
Proof. Since um is homogeneous of degree ℓm − 1, it suffices to determine the
coefficient of yℓ−1 in um in the ring

R/(x− 1) = Z/ℓ2[y]/

(∏ℓ−1

i=0
(y − i)

)
∼=

∏ℓ−1

i=0
Z/ℓ2.

If m = 1, then u1 =
∑ℓ−1
i=0(y− i)ℓ−1 is a polynomial of degree ℓ− 1 with leading

term ℓyℓ−1. Inductively, we use the fact that for all a ∈ Z/ℓ2, we have

aℓ
2−ℓ =

{
0, if ℓ | a
1, else.
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Thus for m ≥ 2, if we set k = (ℓm−1−1)/(ℓ−1), then aℓ
m−1 = a(ℓ−1)+k(ℓ2−ℓ) =

aℓ−1 ∈ Z/ℓ2, and therefore

um =

ℓ−1∑

i=0

(y − i)ℓm−1 =

ℓ−1∑

i=0

(y − i)ℓ−1 = u1

holds in R/(x− 1); the result follows.

The second class of νn−1-varieties is defined using the norm N : A → OS .
Recall from 9.8 that N is homogeneous of degree ℓ, so it induces a morphism
N : PS(A) → OS/O×ℓ

S . Given a point s of S, the norm N : A → k(s) on the
k(s)-algebra A = A|s induces a norm N : AF → F for every field F over k(s),
where AF denotes A ⊗k F . Since N(λa) = λℓN(a) for λ ∈ F and a ∈ AF , it
induces a quotient function N : P(AF ) → F/F×ℓ, sending [a] to N(a). It also
induces a function

PS(AF ⊕ F ) \
{
[a, t] : t = 0

}
→ F, [a, t] 7→ N(a)/tℓ.

Definition 10.8. We define the variety Q over S × A1, and its fiber Qw over
w ∈ k, by the equation N(a) = tℓw:

Q =
{
([a : t], w) ∈ PS(A⊕O)× A1 | N(a) = tℓw

}
,

Qw =
{
[a : t] ∈ PS(A⊕O) | N(a) = tℓw

}
, for w ∈ k.

Since dim(S) = ℓn−1 − ℓ we have dim(Qw) = ℓn−1 − 1.

Remark 10.8.1. When w 6= 0, there is a canonical map π : Qw −→ PS(A),
sending [a : t] to [a]. This is a cover of degree ℓ over its image, since π([a :
t]) = π([a : ζt]) for all ζ ∈ µℓ. To see that π is well defined, note that over
each point of S, the point [0 : 1] of PS(A ⊕O) is disjoint from Qw, i.e., Qw is
disjoint from the section σ : S ∼= PS(O) → PS(A ⊕ O). Hence the projection
PS(A ⊕ O) − σ(S) → PS(A) from these points induces the morphism Qw →
PS(A).

PS(A) <
π

Qw > Q ⊂ > PS(A⊕O)

S
∨ w

>

>

S × A1.

∨ <

Lemma 10.9. If w 6= 0, the projective variety Qw is geometrically irreducible
and the open subscheme Qow where t 6= 0 is smooth.
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Proof. That Qow is smooth over S (and hence smooth) is an easy consequence
of the Jacobian criterion, or Remark 10.8.1.

Now extend the base to make k algebraically closed. If Qow is reducible,
then there exists an s ∈ S such that the form Ns − w is reducible over the
UFD OS,s, or equivalently, the polynomial Ns − wtℓ is reducible in R[t], where
R = OS,s[x1, ..., xℓ] and Ns ∈ R. If F = frac(R), Ns−wtℓ must factor in F [t] (as
µℓ ⊂ F×) and hence (by Gauss’ Lemma) in R[t] as

∏
(M − rit) for some linear

form M ∈ R. Setting t = 0 yields Ns = M ℓ, i.e., Ns is the ℓ-th power of the
linear formM . It follows that {a ∈ As : Ns(a) = 0}, the degeneracy locus of Ns
in As, is a proper, non-zero OS,s-submodule of As. However, this is impossible
because As = OS,s[u]/(uℓ − c), so either uℓ − c is irreducible (in which case As
is a domain and Ns(a) = 0 for a 6= 0) or else uℓ − c factors (in which case As is
a product of domains and the degeneracy locus is not a submodule).

Proposition 10.10. For any nonzero w ∈ k, the variety Qw is a splitting
variety for the symbol {a1, . . . , an−1, w}.

Proof. Let x ∈ Qw be a point, lying over the point s ∈ S. If s ∈ V (γ), then
by Theorem 9.1(4) the residue field k(x) splits {a1, . . . , an−1} and therefore
splits {a1, . . . , an−1, w}. If s is not in V (γ), then by the Chain Lemma 9.1(2)
we can assume that an−1 = γ(u) in k(s), and consider the Kummer algebra
A = F [u]/(uℓ − an−1) over F = k(x). Then x determines an F -point [a : 1]
of Qw(F ) ⊂ P(A ⊕ F ), i.e., an element a of A such that NA/F (a) = w in F .

Then we have {a1, ..., an−1}|A = {a1, ..., uℓ} = 0 over A, and (as in the proof of
Lemma 9.18) we conclude:

{a1, ..., an−1, w} = {a1, ..., an−1, Na} = N{a1, ..., an−1, a} = 0.

In order to show that Qw is a νn−1-variety, we need to consider the action
of the group G = µn−1

ℓ on Qw and P(A). For this, we recall some terminology
from Definitions 8.15 and 9.44 about the action of G on k-varieties.

Two G-varieties X and Y are said to be G-fixed point equivalent over k
if FixGX and FixGY are 0-dimensional, lie in the smooth locus of X and Y,
and there is a separable extension K of k and a bijection FixGXK → FixG YK
under which the families of tangent spaces at the fixed points are isomorphic as
G-representations over K.

We say that G acts nicely on a k-variety X if the fixed locus FixGX is a
finite set of k-points; there is also a notion of G acting nicely on a line bundle.

In the case at hand, the group G = µn−1
ℓ acts nicely on S, OS , J and A by

9.51, and acts nicely on P(A) by 9.46. It also acts on P(A⊕OS) by 9.46.1. By
inspection, G acts on Q; as the map Q → S × A1 is equivariant, each Qw is a
G-variety and the projection π : Qw → P(A) of Remark 10.8.1 is G-equivariant.

Theorem 10.11. Assume that 1/ℓ ∈ k, µℓ ⊂ k× and w 6= 0. Then G = µn−1
ℓ

acts nicely on Qw and (FixGQw) ∩ (Qw)sing = ∅. Moreover, Qw and P(A) are
G-fixed point equivalent over the field k( ℓ

√
w).
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Proof. Since the maps Qw
π−→ P(A) → S are equivariant, π maps FixGQw to

FixG P(A), and both lie over the finite set FixG S of k-rational points. Since
the tangent space TyP(A) is the product of TsS and the tangent space of the
fiber P(A|s), and similarly for Qw, it suffices to consider a G-fixed point s ∈ S.

By Proposition 9.50 and Lemma 9.47, G acts nontrivially on L = J |s via
a projection G → µℓ. By Example 9.46, G acts nicely on P(A). Thus there
is no harm in assuming that G = µℓ and that L is the standard 1-dimensional
representation.

Let y ∈ P(A) be a G-fixed point over s. By 9.45, the tangent space of P(A|s)
at y is the reduced regular representation, and y is one of [1], [L], . . . , [Lℓ−1].

We saw in Example 9.46.1 that a fixed point [ a0 : a1 : · · · : aℓ−1 : t ] of G in
P((A⊕O)|s) is either one of the points ei = [ · · · 0 : ai : 0 · · · : 0 ], which do not
lie on Qw, or a point on the projective line {[ a0 : 0 : t ]}, which lies on Qw only
when aℓ0 = w. These points are defined over the field K = k( ℓ

√
w), and Qw⊗kK

meets the projective line in the K-points [ ζ ℓ
√
w : 0 : · · · : 0 : 1 ], ζ ∈ µℓ. Each of

these ℓ points is smooth on Qw, and the tangent space (over s) is the reduced
regular representation of G.

Remark 10.11.1. Since π([ ζ ℓ
√
w : 0 : · · · : 0 : 1 ]) = [1 : 0 : · · · : 0] for all ζ ∈ µℓ,

FixGQw
π−→ FixGP(A) is not a scheme isomorphism over k( ℓ

√
w).

Now we need to invoke an equivariant cobordism result (Theorem 8.16, or
rather Corollary 8.17). For this, we need to assume that k has characteristic 0.

Theorem 10.12. Given a nonzero symbol a over a field k of characteristic 0,
let Q(a) denote a G-equivariant resolution of singularities of Qan . Then Q(a)
is a geometrically irreducible νn−1-variety.

Proof. Because k admits resolution of singularities and Qan is geometrically
irreducible by 10.9, Q(a) exists and is geometrically irreducible. It is also a
smooth projective completion of the (smooth) variety Qoan . By Theorem 10.11,
Q(a) is G-fixed point equivalent to P(A), which is a νn−1-variety by Theorem
10.6, i.e., sdP(A) 6≡ 0 (mod ℓ2). Now Corollary 8.17 implies that sdQ(a) 6≡ 0
(mod ℓ2), i.e., that Q(a) is a νn−1-variety.

10.3 Norm varieties are νn−1-varieties

In this section, we show that a norm variety is a νn−1-variety, and that a νi-
variety maps to it for smaller i, at least when k is a field of characteristic 0. The
proof will use two results which require characteristic 0: Rost’s degree formula
8.9 and Theorem 10.12.

Construction 10.13. Suppose that a projective k-variety Y splits a symbol
a, and X is a projective ℓ-generic splitting variety for a. Since a splits over the
function field k(Y ), there is a finite extension F/k(Y ) of degree prime to ℓ and
an F -point of X. We may choose a smooth projective model W for F having a
morphism f : W → Y of degree prime to ℓ, extending Spec(F ) → Spec(k(Y ),
and a morphism g :W → X extending Spec(F )→ X.
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Proposition 10.14. When k is a field of characteristic 0 and n ≥ 2, any norm
variety X for a symbol a = {a1, . . . , an} is a νn−1-variety.

Proof. Since Q(a) splits the symbol, Construction 10.13 yields a smooth pro-
jective variety W and morphisms f :W → Q(a) and g :W → X such that f is
generically finite of degree prime to ℓ.

X
g←−W f−→ Q(a)

By Proposition 10.12, sd(Q(a)) 6≡ 0 (mod ℓ2). Because Q(a) andX are splitting
varieties for a, ℓ divides the degree of every closed point of Q(a) and X, by
Remark 10.1.3. Hence we may apply Rost’s degree formula (Theorem 8.9) to
the morphisms f and g to conclude that

deg(g)sd(X) ≡ sd(W ) ≡ deg(f)sd(Q(a)) (mod ℓ2).

Since the right side of this equation is non-zero modulo ℓ2, both factors on the
left hand side are non-zero modulo ℓ2 as well. Thus X is a νn−1-variety.

Finally, we prove that the ℓ-generic splitting variety X satisfies condition
1.24(b) to be a Rost variety. (Condition 1.24(b) is sometimes stated as saying
that X is a “ν≤n−1-variety,” a notion we do not need.)

Proposition 10.15. Let k be a field of characteristic 0, and suppose that X is
a norm variety for the symbol a = {a1, . . . , an}. Then for each i with 1 < i < n,
there exists a νi−1-variety W over k and a k-morphism W → X.

Proof. Fix 1 < i < n and let Y be a smooth projective geometrically irreducible
ℓ-generic splitting variety of dimension ℓi−1−1 over k for the symbol {a1, . . . , ai}.
(At this point of our proof of the Bloch–Kato conjecture, we know that such a
variety exists by induction on n.) Clearly, a splits over the function field k(Y );
sinceX is an ℓ-generic splitting variety for a, Construction 10.13 yields a smooth
projective variety W of dimension d′ = ℓi−1 − 1 with a morphism f : W → Y
of degree prime to ℓ and a morphism g :W → X.

Because Y is a splitting variety for a non-split symbol, ℓ divides the degree
of every 0-cycle on Y . Hence Rost’s degree formula 8.9 applies to the morphism
f , yielding sd′(W ) ≡ deg(f)sd′(Y ). Since sd′(Y ) 6≡ 0 (mod ℓ2), we conclude
that sd′(W ) 6≡ 0 (mod ℓ2), i.e., that W is a νi−1-variety.

10.4 Existence of norm varieties.

In this section, we construct a norm variety for a given symbol a = {a1, . . . , an}
over a field of characteristic 0. By Example 10.1.1 and Corollary 10.5, we may
assume that n ≥ 3; part of our global inductive hypothesis is that BL(n-1) holds
and that the Norm Principle (Theorem 10.18) holds for symbols of length n−1.
We write Sm(T ) for the m-th symmetric power of a variety T .
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By induction, there is a geometrically irreducible norm variety Y (of dimen-
sion ℓn−2 − 1) for the symbol {a1, . . . , an−1}. Let p : Y × Sℓ−1(Y ) → Sℓ(Y )
be the natural morphism; it is finite and surjective of degree ℓ. Let U denote
the smooth locus of Sℓ(Y ), and let A = p∗OY×Sℓ−1(Y )|U be the induced sheaf
of finite-dimensional algebras on U , with associated geometric vector bundle
V(A)→ U ; V(A) has relative dimension ℓ over U .

Recall that the norm N : A → OU induces a morphism of the associated
vector bundles, from V(A) to V(OU ) ∼= U × A1.

Definition 10.16. Let Xo denote the hypersurface N = an in V(A). Since
dim(U) = ℓn−1 − ℓ, we have dim(Xo) = ℓn−1 − 1.

Xo ⊂ > V(A) ⊂ > V(p∗OY×Sℓ−1(Y ))

U
∨ an

> U × A1

N
∨

⊂ > SℓY × A1

N
∨

Assuming that char(k) = 0, resolution of singularities implies that the smooth
hypersurface Xo has a smooth projective completion, which we write as X(a).
Note that X(a) is only well defined up to birational equivalence.

For the next result, we recall that we are inductively assuming that BL(n-1)
holds, and that Y is a geometrically irreducible norm variety for {a1, . . . , an−1},
so that X(a) exists.

Theorem 10.17. If char(k) = 0 and n ≥ 3, the variety X(a) is a geometrically
irreducible norm variety for the symbol a.

This is the main result of this chapter; it fails for n=2 (see Example 10.20.1).
Before proving it, we state and prove several lemmas which are needed in the
proof. We will also need the following result, known as the Norm Principle,
which will be proved in chapter 11 below. We state it here because we will use
it in the proof of Theorem 10.17.

Theorem 10.18 (Norm Principle). Let k be an ℓ-special field of characteristic 0,
and n ≥ 3. If Y is a norm variety for a nonzero symbol {a1, ..., an−1} in
KM
n−1(k)/ℓ, then each unit in the image of N : H−1,−1(Y )→ k× is of the form

Nk(y)/k(α), where y ∈ Y is a closed point of degree ℓ and α ∈ k(y)×.

Lemma 10.19. Xo is smooth over U and geometrically irreducible.

Proof. That Xo is smooth over U (and hence smooth) is an easy consequence
of the Jacobian criterion. Also, U is geometrically irreducible since n ≥ 2. We
may now argue as we did in the proof of Lemma 10.9.

Suppose that Xo is not geometrically irreducible. Replacing k by its al-
gebraic closure, we may assume that Xo is reducible. That is, there is a
point u ∈ U such that Xo

u is reducible, i.e., the homogeneous polynomial
g(t) = Nu− antℓ is reducible in R[t], where R = OU,u[x1, ..., xℓ] and Nu ∈ R. If
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F = frac(R), then F [t]/(g) is not a field. Since µℓ ⊂ F×, g(t) must factor into
linear terms in F [t]. Since R is a UFD, g(t) factors as

∏
(M − rit) over R with

M ∈ R of degree 1, by Gauss’ Lemma. This implies that Nu = M ℓ, and hence
that the degeneracy locus of Nu in Au is a proper, non-zero OU,u-submodule.
However, this is impossible because Au = OU,u[x]/(xℓ − c), so either xℓ − c is
irreducible in OU,u[x] (in which case Au is a domain and Nu(a) 6= 0 for a 6= 0) or
else xℓ−c factors (in which case Au is a product of domains and the degeneracy
locus is not a submodule).

The following key lemma is taken from Lemma 2.3 of [SJ06].

Lemma 10.20. The function field F = k(Xo) splits the symbol a.

Proof. The generic point x of Xo induces an F -point u of U ⊂ Sℓ(Y ). This
corresponds to a cycle y1 + · · · + yk of YF such that

∑
[F (yi) : F ] = ℓ. Since

V(A)x ∼= AℓF , x also determines a point (λ1, . . . , λk) ∈
∏
F (yi) such that an =

N(x) =
∏
NF (yi)/F (λi).

By construction, the yi are F (yi)-points of Y . Since Y is a norm variety for
b = {a1, . . . , an−1} we have bF (yi)

= 0 in KM
n−1(F (yi))/ℓ for each i. Thus we

have the desired vanishing in KM
n (F )/ℓ, namely:

a = {b, an} =
∑

NF (yi)/F {b, λi} = 0.

Example 10.20.1. It is instructive to consider the case n = 2. In this case
Y = Spec(E), E = k( ℓ

√
a1), U = SℓY and Xo is the hypersurface N(u) = a2

in PℓU . However, U is the disjoint union of many points, so Xo is not even
connected. Over each point u ∈ U , we saw in Lemma 1.15 and Proposition 1.25
that the hypersurface N(u) = a2 in Pℓk(u) is an affine open subset of a norm

variety for a = {a1, a2} over k(u).

Lemma 10.21. Let Z a smooth irreducible variety over an ℓ-special field F . If
dim(Z) > 0 then the set Z(F ) is either empty or dense and infinite.

Proof. Let z be an F -point of Z, and let U be a dense open in Z. By Bertini’s
Theorem, there is a curve C on Z, meeting U , such that z is a smooth point
of C; if the smooth projective closure of C has infinitely many F -points then
so does C ∩ U and hence U . Thus it suffices to suppose that Z is a smooth
projective curve.

Suppose that z1, . . . , zk are distinct points in Z(F ); we need to show there
exists a rational point distinct from z1, . . . , zk. Choose a rational function f on
Z that has a pole at each of the zi, and such that the degree of the divisor (f)∞
of poles is prime to ℓ. Then the degree of the divisor of zeroes (f)0 is also prime
to ℓ and, since F is ℓ-special, the support of (f)0 contains an F -rational point
(which is obviously distinct from z1, . . . , zk).

Remark 10.21.1. There can be singular varieties Z over F with Z(F ) finite. If
Z is any projective variety with a smooth F -rational point, the proof of Lemma
10.21 goes through to show that Z(F ) is infinite.
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Proof of Theorem 10.17. The variety X(a) is smooth, projective and geomet-
rically irreducible by Lemma 10.19, and dim(X) = dim(Xo) = ℓn−1 − 1. It
is a splitting variety by Lemma 10.20. To show that it is ℓ-generic, it suffices
to show that X = X(a) has an F -point for every ℓ-special field F splitting a.
Because Xo ⊂ X, it suffices to show that Xo has an F -point.

Recall that Y is a norm variety for {a1, ..., an−1}. If F splits this symbol
then Y (F ) is non-empty. Since F is ℓ-special, Lemma 10.21 shows that Y (F )
is infinite. Choose ℓ distinct F -points y1, . . . , yℓ of Y ; their sum y1 + · · · + yℓ
determines an F -point u of the non-singular part U of Sℓ(Y ), and hence (u, (1+
· · ·+ 1, an)) is an F -point in the hypersurface Xo over U .

If F does not split {a1, . . . , an−1}, then we can apply Proposition 7.7 to
YF , which is a norm variety for {a1, . . . , an−1} over F : since {a1, . . . , an} = 0
in KM

n (F )/ℓ, an is N(β) for some β ∈ H−1,−1(YF ). Note that Proposition
7.7 assumes BL(n-1). By the Norm Principle 10.18, which applies to YF by
induction, there is a closed point y of YF of degree ℓ over F and a unit α ∈ F (y)×
such that an = N(β) = NF (y)/F (α). The degree ℓ zero-cycle y on YF determines

an F -point of U ⊂ SℓY ; see [SV96, 6.8]. Together with α ∈ Ay, y determines
an F -point of Xo. Hence, Xo(F ) is non-empty, as asserted.

Remark 10.22. If n ≥ 2 and char(k) = 0, there is a norm variety for a with
infinitely many points of degree ℓ, and in fact infinitely many E-points, where
E = k( ℓ

√
a1). When n = 2, it suffices by Example 10.1.1 to consider the affine

variety Y defined by NE/k(X0, ..., Xℓ−1) = a2. Each (t1, a2/t1, 1, ...) is an E-
point of YE ∼= SpecE[t1, .., tℓ]/(

∏
ti−a2), so Y has infinitely many E-points. For

n ≥ 3, let Y be a norm variety for {a1, ..., an−1} with infinitely many E-points,
and form Xo as in Definition 10.16. For each set y1, ..., yℓ of distinct E-points
of Y , s =

∑
yi is an E-point of SℓY and As ∼=

∏
E, so Xo

s is isomorphic to
SpecE[t1, ..., tℓ]/(

∏
ti = a2). This clearly has infinitely many E-points.

We conclude this section by constructing a geometrically irreducible norm
variety for a = {a1, ..., an} over any perfect field k of characteristic p 6= ℓ,
assuming the Norm Principle for the symbol {a1, ..., an−1}.

If k is a field of finite characteristic, de Jong proved in [dJ96, 4.1, 4.2] that
there is a finite field extension k ⊂ k1 and a variety X̄1 which is smooth and
geometrically irreducible over k1, together with a finite surjective map from X̄1

to a projective closure X̄0 of Xo, and that if k is perfect then X̄1 is étale over a
dense open subscheme of Xo. Gabber showed that we may take [k(X̄1) : k(X

o)]
and hence [k1 : k] to be prime to ℓ; see [Ill09]. If we assume that k is ℓ-special,
then k = k1, and we write X(a) for this X̄1.

Lemma 10.23. Suppose that k is a perfect field of characteristic p > 0, Y is a
norm variety for a = {a1, ..., an−1} over k, and the Norm Principle 10.18 holds
for Y . If BL(n-1) holds, then X(a) is a geometrically irreducible norm variety
for a over k.
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Proof. Since Lemmas 10.19, 10.20 and 10.21 do not use the characteristic zero
assumption, and neither does Proposition 7.7, the proof of Theorem 10.17 goes
through to show that Xo has an F -point for every ℓ-special field F over k.

Let V ⊂ Xo be a dense open subscheme over which π : X(a)→ X̄0 is étale.
If x : Spec(F ) → Xo is in V , then X(a) has an F -point over x because F is
ℓ-special, by Lemma 7.3. If not, we produce a curve C in Xo, smooth at x and
meeting the étale locus; by Lemma 10.21, C(F ) meets V , so there is an F -point
in V and hence in X(a), again by Lemma 7.3

10.5 Historical notes

The study of hypersurfaces of constant norm in algebra bundles was a natural
development in the classical study of quadratic forms. Merkurjev and Suslin
used Severi–Brauer hypersurfaces in the 1982 paper [MS82] to show that the
norm residue K2(k)/ℓ→ H2

ét(k, µ
⊗2
ℓ ) was an isomorphism. This led to an inten-

sive study of the properties of these hypersurfaces in the late 1980s, including
Rost’s 1990 preprint [Ros90].

The notion of a generic splitting variety arose out of attempts to generalize
the 1982 paper [MS82] by Merkurjev and Suslin; the Severi–Brauer variety X of
a division algebra D has the property that if F splits D then X has an F -point.
An explicit definition is given in Voevodsky’s 1996 preprint [Voe96], where it
was proven that Pfister quadrics are generic splitting varieties for ℓ = 2. (This
definition does not appear in the published version [Voe03a] but does appear
in [Ros98b] and [Voe99, 4.16].) Rost’s analysis [Ros98c] of the motive of a
hypersurface defined by a Pfister form led to Voevodsky’s proof thatKM

n (k)/2 ∼=
Hn

ét(k, µ
⊗n
2 ) in [Voe03a] (the Milnor Conjecture).

There has always been an ambiguity about what the definition of a norm
variety should be. The prototype was the variety of points in E = k[ ℓ

√
a1]

whose norm is a2; it is a splitting variety for {a1, a2} (see 1.25). The term
“norm variety” was used in the 1980s to refer to hypersurfaces of constant
norm, usually having special (unspecified) properties (see [Sus91], [Ros90]). In
the 1998 preprint [Ros98b], Rost used the term norm variety to refer to the
variety Qb of Definition 10.8. In his Fall 1999 lectures and in [Ros02], Rost
used the term norm variety to mean a smooth projective splitting variety of
dimension ℓn−1 − 1 with sd(X) 6≡ 0 (mod ℓ2). Suslin and Joukhovitski [SJ06]
deliberately left the term undefined, and the present definition originated in the
2009 paper [HW09].

Our choice (smooth projective ℓ-generic splitting variety for a) is based upon
Rost’s observation (Theorem 10.17) that the smooth projective varieties asso-
ciated to hypersurfaces of constant norm enjoy these properties.

Our presentation is based on the Suslin–Joukhovitski paper [SJ06], Rost’s
1998 preprint [Ros98b], his web site [Ros98a], and Rost’s lectures at the Institute
for Advanced Study in 1999-2000 and 2005. This includes our proof of the Norm
principle in chapter 11.
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Chapter 11

Existence of Rost varieties

In this chapter, we will prove that the norm varieties constructed in chapter 10
are indeed Rost varieties; in other words, we will prove that Rost varieties exist.
Fix a sequence a = (a1, ..., an) of units in k, and recall from Definition 1.24 that
a Rost variety for a is a νn−1-variety such that:

(a) {a1, ..., an} vanishes in KM
n (k(X))/ℓ;

(b) for each i < n there is a νi-variety mapping to X; and

(c) the following motivic homology sequence is exact:

HBM
−1,−1(X ×X)

π0∗ − π1∗
> HBM

−1,−1(X)
N
> HBM

−1,−1(k) (∼= k×).

Recall from Definition 1.22 that the reduced group H−1,−1(X) is the quotient
of HBM

−1,−1(X) by the difference of the two projections from HBM
−1,−1(X × X).

When Y is smooth and proper, we have H−1,−1(Y ) ∼= HBM
−1,−1(Y ).

One goal of this chapter is to prove the following theorem, which was already
stated in Theorem 10.18. Let us say that an element of H−1,−1(X) is a Kummer
element if it has a representative [x, α], where x ∈ X is a closed point of degree
ℓ and α ∈ k(x)×.
Theorem 11.1 (Norm Principle). Suppose that k is a ℓ-special field of char-
acteristic 0, and that X is a norm variety for some nontrivial symbol a. Then
each element of H−1,−1(X) is a Kummer element.

We will see that the Norm Principle 11.1 implies our main result:

Theorem 11.2. Let k be an ℓ-special field of characteristic 0, and let a be a
nonzero symbol. Then any norm variety for a is also a Rost variety for a.

The idea of the proof of the Norm Principle is to show (in 11.5) that the
Kummer elements of H−1,−1(X) form a subgroup, so that it suffices to consider
the generators. Now every generator of H−1,−1(X) is the image of a Kummer
element under a pushforward map H−1,−1(XE) → H−1,−1(X) for some finite
field extension E of k, so the result follows once we show (in 11.11) that these
pushforward maps preserve Kummer elements.
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11.1 The multiplication principle

In preparation for the proof of the Norm Principle, we develop some basic facts
about elements of H−1,−1(X) supported on points x with [k(x) : k] = ℓ.

Here is the case n = 2 of the Norm Principle, which we will use to prove the
multiplication principle 11.5. Recall that if k contains a primitive ℓth root of
unity then the symbol {a1, a2} determines a central division algebra.

Theorem 11.3 (Norm Principle for n = 2). Let Y be the Severi–Brauer variety
associated to a central division k-algebra D, of degree ℓ over a field k containing
1/ℓ. Then HBM

−1,−1(Y ) = H−1,−1(Y ), and for every θ ∈ HBM
−1,−1(Y ) there exists

a point y ∈ Y with [k(y) : k] = ℓ, and λ ∈ k(y)× so that θ = [y, λ].

Proof. Merkurjev and Suslin showed in [MS82, 8.7.2] that N : HBM
−1,−1(Y )→ k×

is an injection with image Nrd(D) ⊆ k×, so HBM
−1,−1(Y ) = H−1,−1(Y ). Given

θ ∈ HBM
−1,−1(Y ), its image N(θ) in k× can be written as the reduced norm

of an element λ ∈ D. The subfield E = k(λ) of D has degree ℓ because
Y (E) 6= ∅ and Y (k) = ∅. Thus there is a point y ∈ Y with k(y) = E. Since
N([y, λ]) = Nrd(λ) = N(θ) in k×, and hence [y, λ] = θ in H−1,−1(Y ).

We now suppose that k is a ℓ-special field, and that X is a norm variety for
a. Note that the kernel and cokernel of N : H−1,−1(X)→ k× are ℓ-groups, by
Lemma 7.2(4). The Norm Principle is concerned with reducing the degrees of
the field extensions k(x) used to represent elements of H−1,−1(X). For this, the
following definition is useful.

Definition 11.4. We write Ã0(k) for the subset of Kummer elements of
H−1,−1(X), i.e., those represented by [x, α] where k(x) = k or [k(x) : k] =

ℓ. If E/k is a field extension, Ã0(E) denotes the corresponding subset of
H−1,−1(XE).

Example 11.4.1. If X has a k-point x, then by 7.2(3) the norm map N is an

isomorphism Ã0(k) ∼= H−1,−1(X)
∼=−→ k×, split by α 7→ [x, α].

The following result is known as the multiplication principle. The proof
needs the hypothesis that char(k) = 0 in order to use the Corollary 9.53 to
Theorem 9.52, which in turn invokes Rost’s Degree Formula 8.25.

Theorem 11.5 (Multiplication Principle). Let X be a norm variety for a

nonzero symbol a over an ℓ-special field k of characteristic 0. Then Ã0(k) is a
subgroup of H−1,−1(X).

Proof. The set Ã0(k) is nonempty because E = k[ ℓ
√
a1] splits the sym-

bol and therefore X(E) 6= ∅. It is closed under additive inverses because

[x, α]+[x, α−1] = [x, 1] = 0. Hence it suffices to prove that Ã0(k) is closed under

addition, i.e., for each [x1, α1] and [x2, α2] in Ã0(k) the sum [x1, α1] + [x2, α2]

in H−1,−1(X) equals [x3, α3] for some [x3, α3] ∈ Ã0(k).
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Using Corollary 9.53, we may assume that a = {a1, . . . , an} where k(x1)
splits {a1} and k(x2) splits {a1, a2}. Let Y be the Severi–Brauer variety for the
algebra A(a1, a2), that is, a norm variety for {a1, a2}. Then Y has a k(x1)-point
y1 and a k(x2)-point y2. Applying Theorem 11.3 to θ = [y1, α1] + [y2, α2], we
see that the multiplication principle holds for Y : there is a closed point y3 of
degree ℓ and an α3 ∈ k(y)× such that [y1, α1]+ [y2, α2] = [y3, α3] in H−1,−1(Y ).

Moreover k(Y ) splits a so, using Construction 10.13, there is a smooth pro-

jective variety Ỹ , a morphism f : Ỹ → Y of degree prime to ℓ and a morphism
g : Ỹ → X. We can lift the yi to points (of the same name) of Ỹ with the same

residue fields, by 7.5(a). By Theorem 7.5(c), the morphism f∗ : H−1,−1(Ỹ ) →
H−1,−1(Y ) is an isomorphism. Thus [y1, α1] + [y2, α2] = [y3, α3] in H−1,−1(Ỹ ).

Now apply g∗ : H−1,−1(Ỹ ) → H−1,−1(X) to this relation; since X has no
k-points, the points x′i = g(yi) have degree ℓ over k, because [k(x′i) : k] di-
vides [k(y) : k] = ℓ. Hence k(x′i)

∼= k(yi), and the [x′i, αi] are elements of

Ã0(k) ⊆ H−1,−1(X). Since g∗[yi, αi] = [x′i, αi], Lemma 7.2(1) implies that

[x1, α1] + [x2, α2] = [x′1, α1] + [x′2, α2] = [x′3, α3].

Corollary 11.6. If k is ℓ-special and X is a norm variety, the restriction of

H−1,−1(X)
N−→ k× to Ã0(k) is an injective group homomorphism.

Proof. By the multiplication principle 11.5, Ã0(k) → k× is a group homo-

morphism. Suppose that [x, α] represents an element θ of Ã0(k) such that
N(θ) = Nk(x)/k(α) = 1. Then α = σ(β)/β for some β by the classical Hilbert
Theorem 90 [Wei94, 6.4.8], so θ = [x, σ(β)] − [x, β]. But [x, σ(β)] − [x, β] = 0
(apply 7.2(1) to σ), so θ = 0.

Let S be the variety of the Chain Lemma 9.1 for the symbol a, and A = A(J)
the associated sheaf of Kummer algebras over S (see 9.8). If s is a k-point of
S, then γ|s is an ℓ-ary form on the 1-dimensional k-vector space J |s; if w is a
nonzero element of J |s then A|s = k[u]/(uℓ− γ|s(w)). By abuse of notation, we
shall use γ(s) to denote γ|s(w) for some fixed choice of w 6= 0; the class of γ(s)
is well defined in k×/k×ℓ.

Lemma 11.7. For every k-point s of S, γ(s) 6∈ k×ℓ. Hence k[ ℓ
√
γ(s)] is a field.

Proof. By the Chain Lemma 9.1(5), γ(s) 6= 0. Similarly, γ(s) cannot be in k×ℓ,
because that would imply that a = {γ(s), ...} = 0 in KM

n (k)/ℓ, by the Chain
Lemma 9.1 and specialization from S. Hence γ(s) 6∈ k×ℓ, so A|s is a field.

Since the fiber A(A)s over s of the vector bundle A(A) is Spec(SymkA|s),
there is a natural isomorphism A(A)s(k) ∼= A|s. Thus we may identify the k-
points of A(A)s with elements of A|s, and speak of the norm N : A(A)s(k)→ k.

Proposition 11.8 (Multiplication Principle, geometric version). Let k be a ℓ-
special field of characteristic 0, and X a norm variety for a symbol a. Then the
subgroup Ã0(k) of k

× is the set of nonzero values of the map N : A(A)(k)→ k.
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Proof. Let α be a k-point of A(A) over s ∈ S(k) with N(α) 6= 0. By Lemma
11.7, we may regard α as a nonzero element of the field A|s = k[ ℓ

√
γ(s)]. Since

A|s splits a, and k is ℓ-special, there is a point x ∈ X with k(x) ∼= A|s and
[k(x) : k] = ℓ. If N(α) is nonzero in k then it is the image of [x, α] ∈ H−1,−1(X).

Conversely, Construction 11.9 below shows that every element of Ã0(k) arises
as [x, α] for some α withN(α) 6= 0, so the set of nonzero values ofN : A(A)(k)→
k is exactly the image of Ã0(k), which is a group by Theorem 11.5.

Construction 11.9. Each element [x, α] of Ã0(k) is represented by a k-point of
A(A), and also by a k-point ([α : 1], w) of the variety Q defined in 10.8. Indeed,
since k(x) splits the symbol, Theorem 9.52 states that there is a k-point s ∈ S
such that k(x) is the Kummer k-algebra A|s = k[ ℓ

√
γ(s)]. As remarked above,

we may then identify the element α of A|s with a k-point of A(A). The map
A(A)→ Q sends α to ([α : 1], w).

11.2 The Norm Principle

In this section, we will prove Theorems 11.2 and 11.1 (existence of Rost varieties
and the Norm Principle) modulo the following result, whose proof we postpone
to Section 11.5.

Theorem 11.10. Let k be an ℓ-special field of characteristic 0, and let X be a
norm variety over k for a. Suppose that E = k[ǫ] is a field extension of k with

ǫℓ ∈ k such that aE 6= 0. For each [z, α] ∈ Ã0(E), there exist a finite set of
points xi ∈ X of degree ℓ over k, ti ∈ k and bi ∈ k(xi) such that

NE(z)/E(α) =
∏

NE(xi)/E(bi + tiǫ) in k
×.

Recall from Proposition 10.2 that when k is ℓ-special and n ≥ 2, every norm
variety X over k is geometrically irreducible, and hence (by Lemma 10.3) XE is

a norm variety over E. We also know that Ã0(E) is a subgroup of H−1,−1(XE).

Theorem 11.11. If k is ℓ-special of characteristic 0 and [E : k] = ℓν then the

pushforward H−1,−1(XE) −→ H−1,−1(X) sends Ã0(E) to Ã0(k).

Proof. By Galois theory and the structure of finite ℓ-groups, there is a chain of
subfields k = E0 ⊂ E1 ⊂ · · ·Eν = E with [Ei+1 : Ei] = ℓ. Thus we may assume
that [E : k] = ℓ. By Kummer theory, there is a c ∈ k so that E = k[ǫ]/(ǫℓ − c).

If a vanishes in E then the generic splitting variety X has an E-point x,
and Theorem 11.11 is immediate from Example 11.4.1. Indeed, in this case XE

has an E-point x′ over x, every element of Ã0(E) ∼= E× has the form [x′, α],
and NE/k[x

′, α] = [x, α]. Hence we may assume that aE 6= 0. This has the
advantage that E(xi) = E ⊗k k(xi) is a field for every point xi ∈ X of degree
ℓ; otherwise, there would be a homomorphism E → E(xi) → k(xi), forcing
E ∼= k(xi) — and splitting the symbol.

June 27, 2018 - Page 154 of 281



Rost varieties

Choose θ = [z, α] ∈ Ã0(E) and let xi ∈ X, ti and bi be the data given by
Theorem 11.10. Each xi lifts to an E(xi)-point xi⊗E of XE so we may consider
the element

θ′ = θ −
∑

[xi ⊗ E, bi + tiǫ] ∈ H−1,−1(XE).

By the multiplication principle 11.5 over E, θ′ belongs to the subgroup Ã0(E).
By Theorem 11.10, its norm is

N(θ′) = NE(z)/E(α)/
∏

NE(xi)/E(bi + tiǫ) = 1.

By Corollary 11.6, θ′= 0. Hence

NE/k(θ) =
∑[

xi, NE(xi)/k(xi)(bi + tiǫ)
]

in H−1,−1(X). Since Ã0(k) is a group by 11.5, this is an element of Ã0(k).

Proof of the Norm Principle (Theorem 11.1). By the multiplication prin-

ciple 11.5, it suffices to show that every generator [z, α] ofH−1,−1(X) is in Ã0(k).
Since [k(z) : k] = ℓν for ν > 0, Galois theory and the structure of finite ℓ-groups
imply that there is a field E with k ⊆ E ⊂ k(z) and [k(z) : E] = ℓ, and that

z lifts to a point z′ of XE with k(z) ∼= k(z′). By construction, [z′, α] ∈ Ã0(E)
and H−1,−1(XE)→ H−1,−1(X) sends [z′, α] to [z, α]. By Theorem 11.11, [z, α]

is in Ã0(k), i.e., is represented by an element [x, β] with [k(x) : k] = ℓ.

Proof of Theorem 11.2. Let X be a norm variety for a = {a1, . . . , an}. Be-
cause k is a field of characteristic 0, X is a νn−1-variety by Proposition 10.14,
and for 1 < i < n there is a νi−1-variety mapping to X by Proposition 10.15.

Since k is ℓ-special, the Norm Principle implies that Ã0(k) = H−1,−1(X), so
Corollary 11.6 implies that the motivic homology sequence is exact.

11.3 Weil restriction

Because there are not many good references for Weil restriction, we pause here
to collect the basic facts that we shall need. The original references are [Wei56]
and Weil’s 1961 Lecture Notes, published as [Wei82, §1.3].
Definition 11.12. If E is a finite field extension of k, Weil restriction is the
right adjoint of the basechange functor V 7→ V × SpecE. That is, if X is
any variety defined over E, the Weil restriction ResE/kX is a variety over k of
dimension [E : k] dim(X) which is characterized by

Homk(V,ResE/kX) ∼= HomE(V × SpecE,X).

The Weil restriction exists for any quasi-projective variety by [Wei82, 1.3.1].
In particular, if F is a field containing k then the F -points are given by:
ResE/kX(F ) = X(E ⊗k F ).
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Example 11.13. For visual reasons, we shall write AE for the Weil restriction
ResE/kA

1 of the affine line. It is isomorphic to An, n = [E : k], as a k-variety,
and is characterized by AE(F ) = E ⊗k F . In particular, AE(k) = E.

Using the normal basis theorem, we can find a k-basis of E permuted by
the Galois group Γ. Thus the coordinate ring of AE is a polynomial ring
k[ω1, . . . , ωn] (the indeterminates correspond to the k-basis of E), and the func-
tion field of AE is k(ω) = k(ω1, . . . , ωn). The Galois group Γ permutes the
indeterminates ωi, and AE ∼=

∏
g∈Γ A

1. This motivates the following result.

Lemma 11.14. If X is a variety over E, and E is Galois over k with group Γ,
then ResE/k(X)× Spec(E) ∼=

∏
g∈ΓX.

Proof. If A is an E-algebra, there is a natural isomorphism A⊗kE
∼=−→ ∏

g∈ΓA.
This induces natural isomorphisms

[
ResE/k(X)× Spec(E)

]
(A) ∼= X(A⊗k E) ∼= X(

∏
Γ
A) ∼=

∏
Γ
X(A).

Since the functors of points are isomorphic, so are the schemes.

Remark 11.14.1. The original 1956 construction of Weil restriction in [Wei56]
used Lemma 11.14 and descent to construct ResE/k(X). Grothendieck gave
another construction in [Gro61, 221-19], identifying ResE/k(X) as an open sub-
scheme of the Hilbert scheme HilbX/k, assuming X is quasi-projective over k.

It is obvious that ResE/k(X1 × X2) = ResE/k(X1) × ResE/k(X2). Less
obvious (but not hard) is the fact that if Z is closed in X then ResE/k(Z) is
closed in ResE/k(X). It follows for example that the Weil restriction of A1−{0}
is the closed subvariety of AE × AE whose k-points are all pairs (a, b) ∈ E ×E
such that ab = 1.

11.4 Another splitting variety

In this section, we construct a G-variety Y , parametrized by A1, which will be
used in Section 11.5 to establish Theorem 11.10. As we saw in Section 11.2,
this is the key step in proving Theorems 11.2 and 11.1. We will show that the
general fibers of Y → A1 are G-fixed point equivalent to disjoint unions of copies
of P(A)ℓ, where A = A(J) is the sheaf of Kummer algebras for a = {a1, . . . , an}
over the variety S of the Chain Lemma (see Definition 9.8 and Theorem 9.1).

To construct Y , we fix a Kummer extension E = k[ǫ] of k, where ǫℓ ∈ k. Let
B be the rank ℓ+ 1 OS-submodule (A⊗k)⊕ (OS⊗kk ·ǫ) of AE = A⊗k E and
let NB : B → OS ⊗k E be the sheaf map over S induced by the norm on AE .

Definition 11.15. Let U be the variety P(A) ×k P(B)×(ℓ−1) over S×ℓ. We
write L for the invertible sheaf on U associated to the external product L(A)⊠
L(B)⊠(ℓ−1) of the tautological bundles over P(A) and P(B). The product of the
various norms NA and NB defines a sheaf map N : L→ OS⊗E.
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Note that dim(S) = ℓn − ℓ; since U has relative dimension ℓ2 − 1 over S×ℓ,
dim(U) = ℓn+1 − 1.

Recall that AE denotes the Weil restriction ResE/kA
1 of A1 (Example 11.13).

Definition 11.16. Let Y denote the subvariety of P(L⊕O)×AE whose F -points
are all ([α : t], w) such that N(α) = tℓw in E ⊗k F ; since dimP(L⊕O) = ℓn+1

we have dim(Y ) = ℓn+1. We write Yw for the (scheme-theoretic) fiber over a
point w ∈ AE under the projection Y → AE onto the second factor. Note that
dim(Yw) = ℓ · dim(Qw), where Qw is the variety of dimension ℓn − 1 defined in
10.8.

Notation 11.17. Here is a description of the k-points of Yw. Let ([α : t], w) be a
k-rational point on Y , so that w ∈ AE(k) = E. We may regard [α : t] ∈ P(L⊕
O)(k) as being given by a point u ∈ U(k), lying over a point (s0, . . . , sℓ−1) of
S(k)×ℓ, and a nonzero pair (α, t) ∈ L|u×k (up to scalars). From the definition of
L, we see that (up to scalars) α determines a ℓ-tuple (b0, b1+t1ǫ, . . . , bℓ−1+tℓ−1ǫ),
where bi ∈ A|si and ti ∈ k. When α 6= 0 we have b0 6= 0 and, for all i > 0,
(bi, ti) 6= (0, 0), Finally, writing Ai for A|si , the norm condition says that in E:

NA0/k(b0)
∏ℓ−1

i=1
NAi⊗E/E(bi + tiǫ) = tℓw.

If k ⊆ F is a field extension, then an F -point of Y is described as above,
replacing k by F and E by E ⊗k F everywhere.

Lemma 11.18. Let u ∈ U be a point over (s0, s1, . . . , sℓ−1) ∈ S×ℓ, and write
Ai for the k(si)-algebra A|si . Then the following hold.

1. If a doesn’t split at any of the points s0, . . . , sℓ−1, then the norm map
N : L|u → k(u)⊗ E is non-zero.

2. If a|s0 6= 0 in KM
n (k(s0))/ℓ, then A0 is a field.

3. For i ≥ 1, if a|E(si) 6= 0 in KM
n (E(si))/ℓ then Ai ⊗ E is a field.

Proof. The first assertion follows from part (4) of the Chain Lemma 9.1, which
says that s 6∈ V (γ1), since by 9.8 the norm on L is induced from the ℓ-form γ1
on J . Assertions (2–3) follow from part (2) of the Chain Lemma, since a 6= 0
implies that γ1 is nontrivial.

Lemma 11.19. If Y has a k-point with t = 0 then a|E = 0 in KM
n (E)/ℓ.

Proof. We use the description of a k-point of Y from 11.17. Since (α, t) 6= (0, 0),
if t = 0, then α 6= 0. Therefore b0 6= 0 ∈ A0 and bi + tiǫ 6= 0 ∈ Ai ⊗ E for
all i. By Lemma 11.18, if a|E 6= 0 in KM

n (E)/ℓ then A0 and all the algebras

Ai ⊗ E are fields, so that N(α) = NA0/k(b0)
∏ℓ−1
i=1 NAi⊗E/E(bi + tiǫ) 6= 0, a

contradiction to tℓw = 0.
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Combining Lemmas 11.18 and 11.19, we obtain the following consequence
(in the notation of 11.17):

Corollary 11.20. If a 6= 0 in KM
n (E)/ℓ and w ∈ E× is such that Yw has a

k-point, then

1. A0 and the Ai ⊗ E are fields and

2. w is a product of norms of an element b0/t of A0 and elements bi + tiǫ in
the subsets Ai + k · ǫ of Ai ⊗k E for all i.

Remark 11.20.1. In Theorem 11.23 we will see that if w is a general element of
E then such a k-point exists.

The group G = µnℓ acts nicely on S, J and A by Corollary 9.51, and on P(A)
by 9.46. Letting G act trivially on AE , G acts on B, U and Y (but not nicely;
see 9.44.1).

In the notation of 11.17, if ([α : t], w) is a fixed point of the (nice) G-action
on Y then the points si ∈ S and u = (u0, u1, ...) in U = P(A)×∏P(B) are fixed.
By definition (see 9.44), the fixed points of any nice action are k-rational, so u0
and the si are k-rational. If u is defined over F , each point (bi : ti) is fixed in
B|si . Since G acts nicely on J , Example 9.46.1 shows that if t = 0 then, for all i,
either ti 6= 0 (and bi ∈ F ⊂ Ai⊗F ) or else ti = 0 and 0 6= bi ∈ J |⊗risi ⊗F ⊆ Ai⊗F
for some ri, 0 ≤ ri < ℓ.

Lemma 11.21. For all w ∈ AE, FixG Yw is disjoint from the locus where t = 0.

Proof. Suppose ([α : 0], w) is a fixed point defined over a field F containing k.
As explained above, b0 6= 0 and (for each i > 0) bi+ tiǫ 6= 0 and either ti 6= 0 or
there is an ri so that bi ∈ J |⊗risi ⊗F . Let I ⊆ {1, . . . , n− 1} be the set of indices
such that ti 6= 0.

By Example 9.46, b0 ∈ J |⊗r0s0 for some r0, and hence NA0
(b0) is a unit in k,

because the ℓ-form γ is nontrivial on J |s0 . Likewise, if i /∈ I, then NAi⊗F/F (bi)
is a unit in F .

Now suppose i ∈ I, i.e., ti 6= 0, and recall that in this case bi ∈ F ⊂Ai ⊗F .
If we write EF for the algebra E ⊗ F , noting that EF ∼= F [ǫ]/(ǫℓ − c) for some
c ∈ F , then the norm from Ai⊗EF to EF is simply the ℓ-th power on elements
in EF , so NAi⊗EF/EF (bi + tiǫ) = (bi + tiǫ)

ℓ as an element in the algebra EF .
Taking the product, and keeping in mind that t = 0, we get the equation

∏
i∈I

NAi⊗EF/EF (bi + tiǫ) =
∏

i∈I
(bi + tiǫ)

ℓ = 0.

Because EF is a separable F -algebra, it has no nilpotent elements. We
conclude that ∏

i∈I
(bi + tiǫ) = 0.

The left hand side of this equation is a polynomial of degree at most ℓ− 1 in ǫ;
since {1, ǫ, . . . , ǫℓ−1} is a basis of F ⊗ E over F , that polynomial must be zero.
This implies that bi = ti = 0 for some i, a contradiction.
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Proposition 11.22. If w ∈ AE is general then FixG Yw lies in the open subva-
riety of Yw where t

∏ℓ
i=1 ti 6= 0.

Th expression that w is “general” means that w does not lie on a certain
proper closed subvariety of AE .

Proof. By Lemma 11.21, FixG Yw is disjoint from the locus where t = 0, so we
may assume that t = 1. Since w is general, we may also take w 6= 0. So let
([α : 1], w) be a fixed point of Yw defined over F ⊇ k for which tj = 0. As in
the proof of the previous lemma, we collect those indices i such that ti 6= 0 into
a set I, and write EF for E ⊗k F . Recall that for i ∈ I, we have bi ∈ F . Since
j /∈ I, we have that |I| ≤ ℓ− 2. For i /∈ I,

NAi⊗EF/EF (bi + tiǫ) = NAi⊗F/F (bi) ∈ F×

(the norm cannot be 0 as tℓw = w 6= 0 by assumption). So we get that

∏
i∈I

(bi + tiǫ)
ℓ = ξw

for some ξ ∈ F×. If we view ξw as a point in P(E)(F ) = (EF −{0})/F×, then
we get an equation of the form

[∏
i∈I

(bi + tiǫ)
ℓ
]
= [w].

But the left-hand side lies in the image of the morphism
∏
i∈I P

1 → P(E) which

sends [bi : ti] ∈ P1(F ) to [
∏
(bi + tiǫ)

ℓ] ∈ P(E)(F ). Since |I| ≤ ℓ− 2, this image
is a proper closed subvariety, proving the assertion for general w.

Remark 11.22.1. The open subvariety of Yw in 11.22 is G-isomorphic (by setting
t and all ti to 1) to a closed subvariety of A(A)ℓ, namely the fiber over w ∈ AE

of the map NA⊗E/E : A(A)ℓ → AE defined by the formula of 11.17:

N(b0, . . . , bℓ−1) = NA0/k(b0)
∏ℓ−1

i=1
NAi⊗E/E(bi + ǫ).

Indeed, A(A)ℓ is G-isomorphic to an open subvariety of Y and NAi⊗E/E is the
restriction of α 7→ N(α).

Recall from Definition 8.15 that two G-varieties are fixed point equivalent if
their fixed loci are 0-dimensional smooth points and that (after separable base
change) the tangent spaces are isomorphic as G-representations.

Theorem 11.23. For a general closed point w ∈ AE, Yw is G-fixed point
equivalent to the disjoint union of (ℓ− 1)! copies of P(A)ℓ.

Proof. Since both Yw and P(A)ℓ lie over S×ℓ, it suffices to consider a G-fixed
point s = (s0, . . . , sℓ−1) in S(k)ℓ and prove the assertion for the fixed points
over s. Because G acts nicely on S and J , k(s) = k and (by Lemma 9.47) G
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acts on Js via a projection G → µℓ as the standard representation of µℓ. Note
that Js = Jsi for all i.

By Example 9.46, there are precisely ℓ fixed points on P(A) lying over a
given fixed point si ∈ S(k), and at each of these points the (vertical) tangent
space is the reduced regular representation of µℓ. Thus each fixed point in P(A)ℓ
is k-rational, the number of fixed points over s is ℓℓ, and each of their tangent
spaces is the sum of ℓ copies of the reduced regular representation.

Since w is general, we saw in 11.22 that all the fixed points of Yw satisfy
t 6= 0 and ti 6= 0 for 1 ≤ i ≤ ℓ−1. By Remark 11.22.1, they lie in the affine open
A(A)ℓ of P(L⊕O). Because µℓ acts nicely on Js, an F -point b = (b0, . . . , bℓ−1)
of A(A)ℓ is fixed if and only if each bi ∈ F . That is, FixG(A(A)ℓ) = Aℓ. Now
the norm map restricted to the fixed-point set is just the map Aℓ → AE sending
b to bℓ0

∏ℓ−1
i=1(bi+ǫ)

ℓ. This map is finite of degree ℓℓ(ℓ−1)!, and étale for general
w, so FixG Yw has ℓℓ(ℓ − 1)! geometric points for general w. This is the same
number as the fixed points in (ℓ − 1)! copies of P(A) over s, so it suffices to
check their tangent space representations.

At each fixed point b, the tangent space of A(A)ℓ (or Y ) is the sum of ℓ
copies of the regular representation of µℓ. Since this tangent space is also the
sum of the tangent space of Aℓ (a trivial representation of G) and the normal
bundle of Aℓ in Y , the normal bundle must then be ℓ copies of the reduced
regular representation of µℓ. Since the tangent space of A

ℓ maps isomorphically
onto the tangent space of AE at w, the tangent space of Yw is the same as the
normal bundle of Aℓ in Y , as required.

Remark 11.23.1. The fixed points in Yw are not necessarily rational points, and
we only know that the isomorphism of the tangent spaces at the fixed points
holds over a separable extension of k. This is parallel to the situation with the
fixed points in Qw described in Theorem 10.11.

Corollary 11.24. For a general closed point w ∈ AE, the variety Yw is a
νn-variety over any field k of characteristic 0.

Proof. By Theorem 11.23, Yw is G-fixed point equivalent to (ℓ − 1)! copies of
P(A), which is a νn-variety by Theorem 10.6. As in the proof of Proposition
10.12, Theorem 8.16 implies that Yw is also a νn-variety.

11.5 Expressing norms

The purpose of this section is to prove Theorem 11.10, that if E = k(ǫ) is a
fixed Kummer extension of k and w ∈ E is a norm NE(z)/E(α) for a Kummer
point z ∈ XE , then w is a product of norms of the form specified in Theorem
11.10. In the language of Section 11.1, this means that [z, α] =

∑
[zi, bi+ tiǫ] in

H−1,−1(X). Since our proof will depend upon the bordism results in Chapter
8, we will need to assume that k has characteristic 0. We will also assume that
k is ℓ-special in order to invoke Theorem 9.52.
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Let S be the variety of the Chain Lemma 9.1 for a = {a1, . . . , an}, and
A = A(J) the associated sheaf of Kummer algebras over S (see 9.8). Recall
from Definition 10.8 that Q is the subvariety of P(A⊕O)×A1

k consisting of all
points ([a : t], w) such that N(a) = tℓw. Extending the base field to E yields
the subvariety QE of P(A⊕O)E×A1

E , and we write RQ for the Weil restriction
ResE/k(QE); see Definition 11.12. The main property of Weil restriction we will
need is that the k-points of RQ are naturally isomorphic to the E-points of Q,
and may thus be written as ([a : t], w) with w ∈ E. Similarly, we write AE for
the Weil restriction ResE/k(A

1
E), noting that AE(k) ∼= E. Since Weil restriction

is a functor, the projection q : Q→ A1
k induces a morphism

Rq = ResE/k(qE) : RQ→ AE . (11.25)

Let U be the variety over S×ℓ defined in Definition 11.15; there is an associ-
ated invertible sheaf L on U , equipped with a norm N : L→ OSE

. Recall from
Definition 11.16 that Y is the subvariety of P(L⊕O)× AE whose k-points are
tuples ([α : t], w) with t ∈ k and w ∈ E such that N(α) = tℓw in E. By 11.17,
a k-point ([α : 1], w) of Yw determines an ℓ-tuple (s0, ..., sℓ−1) of k-points of S
and an ℓ-tuple (b0, b1 + t1ǫ, ...) with bi in Ai = A|si , so that

w = NA0/k(b0)
∏ℓ−1

i=1
NAi⊗E/E(bi + tiǫ).

To prove Theorem 11.10 it therefore suffices to show that Yw(k) is non-empty
whenever w = NE(z)/E(α) is nonzero (we use t0 = 0). To do this, we will

produce a correspondence Z → Y ×AE RQ that is dominant and invoke the DN
Theorem 8.18 to see that the degree of Z over RQ is prime to ℓ.

The correspondence Z is constructed using the geometric version 11.8 of the
multiplication principle.

Lemma 11.26. Let F be the function field of Y . Then there exists a finite
extension K/F , of degree prime to ℓ, and a point ξ ∈ RQ(K) lying over the
generic point of AE.

Proof. Let F ′ be a maximal prime-to-ℓ extension of F ; then the fields F ′ and
EF ′ = E ⊗k F ′ are ℓ-special. We may regard the generic point of Y as an
element of Y (F ). Applying the inclusion F ⊂ F ′ to this element, followed by
the projection Y → AE , we obtain an element v of AE(F ′) = EF ′. By 11.17,
v is a product of norms from A(A)(EF ′). By the multiplication principle 11.8,
there exists β ∈ A(A)(EF ′) such that N(β) = v. Now let ξ be the point
([β : 1], v) of RQ(F ′). By (11.25), Rq(ξ) = v, and ξ is defined over some finite
intermediate extension F ⊆ K ⊆ F ′, with [K : F ] prime to ℓ.

Let ηK denote the point of Y (K) defined by the inclusion of F = k(Y ) in K,
and let ξ : SpecK → RQ be the K-point of Lemma 11.26. We can now define
Z to be a (smooth, projective) model of (ηK , ξ) ∈ (Y ×AE RQ)(K), equipped
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with maps Y
f← Z

g→ RQ.

Spec(K)
(η, ξ)

> Z
∃g

> RQ Q

Spec(F )

ηK
∨

> Y

f
∨

> AE

Rq
∨

A1

q
∨

The following result uses the DN Theorem 8.18 of Chapter 8 with r = ℓ.

Theorem 11.27. The morphism g : Z → RQ is proper and dominant (hence
onto) and of degree prime to ℓ.

Proof. Let ω be the generic point of AE . Using the normal basis theorem, we
can write E(ω) = E(ω1, ..., ωℓ) for transcendentals ωi permuted by the action
of the cyclic Galois group Γ = Gal(E/k). We saw in Theorem 10.11 that the
group G = µnℓ acts on Q over A1

k, and acts nicely on Qw for every w 6= 0 in k.
We will apply the DN Theorem 8.18 with base field k′ = E(ω), group G = µnℓ

and symbols ui = {a1, . . . , an, ωi} ∈ KM
n+1(k

′)/ℓ.

To define the Xi, choose a µ
n
ℓ -equivariant resolution of singularities Q̃→ Q;

since Q is smooth where t 6= 0 (by the Jacobian criterion), this is an isomorphism

where t 6= 0. The map q extends to a map Q̃→ A1, and we let Xi be the fiber
Q̃ωi

over the point ωi ∈ A1(E(ω)) = E(ω).
We claim that the hypotheses of the DN Theorem are satisfied. Since theQωi

are projective, the Xi = Q̃ωi
are smooth projective varieties. By Proposition

10.10 and Lemma 10.19, Xi is a smooth, geometrically irreducible splitting
variety for the symbol ui of dimension ℓn − 1. Thus, hypothesis (1) of the DN
Theorem 8.18 is satisfied.

Let RQ̃ denote the Weil restriction of Q̃E , and setX = RQ̃E(ω). Because our
base field contains E, it follows from Lemma 11.14 that RQ ×AE SpecE(ω) ∼=∏

ΓQE(ω) and

X = RQ̃E(ω) = RQ̃× SpecE(ω) ∼=
∏

Γ
Q̃E(ωi).

Finally, we let Y be some desingularization of YE(ω), and let W be a model of

ZE(ω), which has a map to Y over fE(ω) and a map to X = RQ̃E(ω) over gE(ω).
By Theorem 10.11, Qw and P(A) are G-fixed point equivalent over the field

k′( ℓ
√
w) for every w 6= 0 in k′. By Theorem 8.16, td,1(Xi) = td,1(P(A)); by

Lemma 8.13, we conclude that sd(Xi) ≡ vsd(P(A)) (mod ℓ2) for some unit
v ∈ Z/ℓ. Since sd(P(A)) 6≡ 0 by Theorem 10.6, we conclude that sd(Xi) 6≡ 0,
i.e., that hypothesis (3) of the DN Theorem 8.18 is satisfied.

Furthermore, K = k′(X1 × · · · × Xi−1) is contained in a rational function
field over E; in fact, the field E(ωj)(Qωj

) becomes a rational function field once
we adjoin ℓ

√
γ. Since E does not split a, K does not split a either. It follows

that K does not split ui = a ∪ {ωi}, verifying hypothesis (2) of Theorem 8.18.
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We have now checked the hypotheses (1–3) of Theorem 8.18. It remains to
check that X and Y are G-fixed point equivalent up to a prime-to-ℓ factor. We
proved in Theorem 10.11 that Xi is G-fixed point equivalent to P(A). We also
proved in Theorem 11.23 that YE(ω) is G-fixed point equivalent to (ℓ−1)! copies

of P(A)ℓ, hence so is Y (since the fixed points lie in the smooth locus). Thus, Y
is G-fixed point equivalent to (ℓ− 1)! copies of X. Therefore the DN Theorem
applies to show that g is dominant and of degree prime to ℓ, as asserted.

Since k is ℓ-special, so is E. As stated in Corollary 11.6, the norm map
Ã0(E)→ E× is injective; we identify Ã0(E) with its image. Thus [z, α] ∈ Ã0(E)
is identified with w = NE(z)/E(α) ∈ E×.

Lemma 11.28. Let k be an ℓ-special field of characteristic 0. Then the subgroup
Ã0(E) of E× is equal to q(Q(E))− {0}.

Proof. Suppose we are given [z, α] ∈ Ã0(E) with w = NE(z)/E(α) as above. By
Construction 11.9, with k replaced by E, there is an E-point s ∈ SE such that
E(z) = E[ ℓ

√
γ(s)]. Under the correspondence E(z) ∼= A(A)s(E), we identify

α with an E-point of A(A)E over s ∈ S. The map A(A)E → QE sends α to
([α : 1], w), which we may regard as a k-point of RQ, and w = Rq([α : 1], w).

This shows that Ã0(E) ⊆ q(Q(E))− {0}.
Conversely, by Definition 10.8, an element u of Q(E) over s ∈ S with q(u) 6=

0 has the form ([α : 1), w), where α is in E′ = E[ ℓ
√
γ(s)], and q(u) = w =

NE′/E(α). Such an element is in Ã0(E).

Proof of Theorem 11.10. We have constructed a diagram Y
f← Z

g→ RQ and
proved that the degree of g is prime to ℓ (see 11.27). By blowing up Z if

necessary we may assume that g : Z → RQ factors through g̃ : Z → RQ̃, with
the degree of g̃ prime to ℓ.

Let [z, α] ∈ Ã0(E), and set w = NE(z)/E(α). By Lemma 11.28, there exists a

point ([α : 1], w) ∈ RQ(k). Lift this to a point in RQ̃(k) (recall that RQ̃→ RQ

is an isomorphism where t 6= 0). Since Z → RQ̃ is a morphism of smooth
projective varieties of degree prime to ℓ and k is ℓ-special, we can lift ([α : 1], w)
to a k-point of Z, by Theorem 7.5(a). Applying f : Z → Y , we get a k-point
in Yw. By the definition of Y and Corollary 11.20, this means that we can find
Kummer extensions k(xi)/k (corresponding to points si ∈ S, and determining
points xi ∈ X because X is a ℓ-generic splitting variety), elements bi ∈ k(xi)
and ti ∈ k such that w =

∏
iNE(xi)/E(bi + tiǫ), as asserted.

11.6 Historical notes

This chapter is based upon the preprints of Rost, except for the proof of the
Norm Principle which Rost never wrote down. Our other sources are the papers
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[SJ06, HW09] and the lectures given by Rost at the Institute for Advanced
Study in 1999-2000 and 2005.

The condition that sd(X) 6≡ 0 (mod ℓ2) arose in [Voe03a, 3.2] as a sufficient
condition for Margolis homology to vanish. The preprint [Ros96] introduced the
notation A0(X,K1) for the group we now recognize as H−1,−1(X).

The term “Rost variety” is fairly recent, but the proof that such varieties
exist was announced by Rost in 1998 and proven in [SJ06, Th. 0.1], modulo the
proofs of the Chain Lemma 9.1 and the Norm Principle, Theorem 11.1. Proofs
of these results appeared in [HW09].
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Chapter 12

Model structures for the
A1-homotopy category

In order to work with objects in the Morel–Voevodsky A1-homotopy category
Ho, it is useful to introduce a Quillen model structure on an appropriate cate-
gory of spaces, one which is compatible with the passage in motivic cohomology
from complexes of presheaves with transfers to the triangulated categoryDMeff

nis.
This model structure will be used to set up the formalism underlying motivic
Steenrod operations, symmetric powers and motivic classifying spaces in the
next few chapters.

The goal of this chapter is to provide such a framework, namely the A1-
local projective model structure on the categories of simplicial presheaves
and simplicial presheaves with transfers. These model categories, written as
∆opPshv(Sm)A1 and ∆opPST(Sm)A1 , are defined in 12.62 and 12.68. Their

respective homotopy categories are Ho(Sm) and the full subcategory DMeff
nis

≤0

of DMeff
nis; see 12.63 and 12.69.

Sections 12.2 and 12.4 introduce the notions of radditive presheaves and ∆̄-
closed classes, and develop their basic properties. This material will be used
in chapter 14 to deal with symmetric powers of motives, and in particular to
show that symmetric power functors on term-wise ind-representable simplicial
presheaves preserve A1-weak equivalences. The theory of ∆̄-closed classes is
needed because the extension of symmetric power functors to simplicial radditive
presheaves is not a left adjoint.

We will use many of the basic ideas of Quillen model categories. Recall that
a Quillen model category is a category equipped with three classes of morphisms
(weak equivalences, fibrations and cofibrations) satisfying 5 axioms, including
a lifting axiom and a functorial factorization axiom; we refer the reader to the
books by Hovey [Hov99] or Hirschhorn [Hir03] for more information about model
categories.

Much of the material in this chapter is based upon the technique of Bous-
field localization, which we recall in Definition 12.38. We will also need the
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fundamental notion of a Quillen adjunction, which we now recall.

12.0. If A, B are model categories, an adjoint pair of functors (F,U) from
A to B is called a Quillen adjunction if F preserves cofibrations and trivial
cofibrations, or equivalently, if U preserves fibrations and trivial fibrations.

A Quillen adjunction induces a derived adjunction (LF,RU) between the
associated homotopy categories of A and B; see [Hir03, 8.5.18]. For example,

LF (A) may be defined to be F (QA), where QA
≃−→ A is a functorial cofibrant

replacement; RU(B) may defined using a functorial fibrant replacement of B.
We say that (F,U) is a Quillen equivalence if the derived adjunction defines

an equivalence of homotopy categories. This is equivalent to the condition that
(for all cofibrant A in A and all fibrant B in B) a map F (A) → B is a weak
equivalence in B if and only if its adjoint A → U(B) is a weak equivalence in
A. See [Hov99, 1.3.3] and [Hir03, 8.5.3] for more information.

Here is an example of a Quillen adjunction of interest to us. We will see in
12.28 that the forgetful functor from presheaves with transfers to presheaves on
Sm has a left adjoint, X 7→ Rtr(X

rad), and this defines a Quillen adjunction
from ∆opPshv(Sm)A1 to ∆opPST(Sm)A1 . Similarly, the restriction functor
from presheaves on the category Norm of normal varieties to the category
Sm of smooth varieties defines a Quillen adjunction from ∆opPshv(Sm)A1 to
∆opPshv(Norm)A1 . It will be studied in Section 12.8 below.

12.1 The projective model structure

We begin by considering the category Pshv(C) of presheaves on an arbitrary
small category C, i.e., contravariant functors from C to Sets, and the category
∆opPshv(C) of simplicial objects in Pshv(C). By abuse, we will apply this to
skeletally small categories such as Sm.

Definition 12.1. A morphism X → Y of simplicial presheaves is called a global
weak equivalence (resp., a projective fibration) if X(C) → Y (C) is a simplicial
weak equivalence (resp., a Kan fibration) for every C in C. It is a trivial projective
fibration if it is both a projective fibration and a global weak equivalence.

Quillen showed that these determine the structure of a proper simplicial
model category on ∆opPshv(C), called the projective model structure. As usual,
the projective cofibrations are determined by the left lifting property. That is,
a map A→ B is a projective cofibration if for every trivial projective fibration
X → Y and every solid diagram

A > X

B
∨

>

h
>

Y
∨
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there is a map h making both triangles commute.
The pairing X ⊠K of a simplicial presheaf X and a simplicial set K is the

simplicial presheaf n 7→∐
Kn

Xn, and the simplicial mapping space Map(X,Y )
is the simplicial set n 7→ Hom(X ⊠ ∆n, Y ). This pairing makes the model
category ∆opPshv(C) into a simplicial model category. See Theorems 11.7.3 and
13.1.14 of [Hir03] for proofs.

Lemma 12.2. Let C be an object of C, and F a simplicial presheaf on C. Then
F (C) ∼= Map(C,F ) and for each n there is a natural isomorphism

Map∆opPshv(C)(C ⊠∆n, F ) ∼= Map∆opSets(∆
n, F (C)).

Proof. By direct computation, the summand C× [ι] of C⊠∆k corresponding to
the canonical ι ∈ ∆k

k induces a natural isomorphism Fk(C) ∼= Hom(C ⊠∆k, F ).
As k varies, this shows that F (C) ∼= Map(C,F ). For the second asssertion, it
suffices to show that Hom(C ⊠K,F ) ∼= Hom(K,F (C)) for K = ∆n ×∆k (as k
varies). As with any simplicial set, we can write K as the colimit of its simplices
σ : ∆i → K. Since C ⊠K is the colimit (over σ) of the C ⊠∆i, we are reduced
to the case K = ∆i, where Hom(∆i, F (C)) ∼= Fi(C) ∼= Hom(C ⊠∆i, F ).

Given a functor f : C → C′, there is a well known adjunction (f∗, f∗) between
presheaves on C and C′. The direct image functor f∗ : Pshv(C′) → Pshv(C) is
(f∗Y )(C) = Y (fC), and the inverse image functor f∗ : Pshv(C) → Pshv(C′) is
given by the formula

(f∗X)(C ′) = colim
C′→fC

X(C).

It is well known (and an easy exercise) that if X is an object of C, regarded as
a presheaf, then f∗X is represented by f(X).

Clearly, f∗ preserves projective fibrations and global weak equivalences.
Therefore, (f∗, f∗) is a Quillen adjunction of projective model structures.

As with any Quillen adjunction, (f∗, f∗) induces a derived adjunction
(Lf∗,Rf∗) between the homotopy categories (see 12.0). Because f∗ preserves
global weak equivalences, it also defines a functor between homotopy categories;

since (f∗Y )(C)
≃−→ (Rf∗Y )(C) is an equivalence for all Y and C, we have

f∗ ∼= Rf∗. Thus we may regard f∗ as the right adjoint of Lf∗.

Lemma 12.3. Let i : C ⊂ C′ be a full embedding. Then:
(1) the inverse image i∗ : ∆opPshv(C)→ ∆opPshv(C′) is a full embedding as

a full coreflective subcategory. That is, the unit of the adjunction X → i∗i
∗X is

an isomorphism for any X in ∆opPshv(C).
(2) the total inverse image Li∗ embeds the homotopy category of ∆opPshv(C)

into the homotopy category of ∆opPshv(C′) as a full (coreflective) subcategory.

Proof. For (1), it suffices to show that X(C) −→ i∗i
∗X(C) = (i∗X)(i C) is an

isomorphism for every C in C; this is clear from the definition of i∗X(i C), as
the identity map of C is initial among all maps C → C1 in C′ with C1 in C.

For (2), we may assume that X is cofibrant; by (1), the unit map X →
i∗(Li

∗X) ∼= i∗i
∗(X) is an isomorphism. This implies X → i∗Li

∗X is an isomor-
phism in the homotopy category, and hence that Li∗ is a full embedding.
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It is useful to have a broad family of examples of projectively cofibrant
presheaves in ∆opPshv(C).

Example 12.4. For any C in C, the representable presheaf H = HomC(−, C)
and the presheaves H ⊠ ∆n are projectively cofibrant in Pshv(C). This is be-
cause morphisms H ⊠∆n → Y correspond to elements of Yn(C), and the lift-
ings required by the left lifting property exist because any trivial Kan fibration
X(C)→ Y (C) is a surjection in each degree.

Any coproduct of representable presheaves is projectively cofibrant, since
coproducts of cofibrant objects are cofibrant. It will be convenient to let C∐
denote the full subcategory of presheaves which consists of coproducts of rep-
resentable presheaves; if C = ∐HomC(−, Cα), we sometimes write F (C) for
Hom(C,F ) =

∏
F (Cα).

It is worth noting that the Yoneda embedding does not preserve coproducts.
Indeed, the presheaf coproduct ∐HomC(−, Cα) in C∐ sends A to ∐Hom(A,Cα)
while HomC(−,∐Cα) sends A to the typically larger set Hom(A,∐Cα).

Recall from [AGV73, Vbis(5.1.1)] that a simplicial object Y in any category
is called split if each Yi has a subobject Ni such that the natural maps

∐
η∗ :

∐

η:[i]։[j]

Nj → Yi

are isomorphisms. The coproduct here is over all surjections η in ∆ with source i.

Theorem 12.5. Every split simplicial presheaf in C∐ is projectively cofibrant.

Since simplicial sets are split, presheaves of the form C ⊠X• are split sim-
plicial. Thus we have:

Corollary 12.5.1. If C is an object of C and X• is a simplicial set then C⊠X•
is projectively cofibrant.

Before giving the proof of 12.5, we need to introduce some terminology.
Let ∆≤n denote the full subcategory of ∆ with objects [0], [1]. . . . , [n], and in :
∆≤n ⊂ ∆ the inclusion. The direct image functor in∗ is called n-truncation.
In addition to the left adjoint i∗n,the n-truncation functor in∗ also has a right
adjoint i!n. The n-coskeleton of a simplicial F is defined to be coskn F = i!nin∗F ,
and the n-skeleton of F is defined to be skn F = i∗nin∗F . There are natural 1–1
correspondences between maps in∗X → in∗Y of the n-truncated objects, maps
X → coskn Y and maps sknX → Y . Both in∗i

∗
n and in∗i

!
n are the identity.

There are natural maps sknX → X → cosknX.
Finally, the boundary ∂∆n+1 of ∆n+1 is the simplicial subset generated by

the faces of the unique non-degenerate (n+1)-simplex in ∆n+1. That is, ∂∆n+1 =
i∗nin∗∆

n+1.

Lemma 12.6. If X is a representable presheaf and F is any simplicial presheaf,
then presheaf maps X

a−→ (coskn F )n+1 are in 1–1 correspondence with simpli-
cial maps ∂∆n+1 −→ F (X).
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Proof. Set K = F (X). Then the left and right adjoints of in∗ yield:

Hom(X, (coskn F )n+1) = (cosknK)n+1 = Hom(∆n+1, cosknK)

∼= Hom(in∗∆
n+1, in∗K) ∼= Hom(∂∆n+1, F (X)).

Remark 12.6.1. Here is another proof. Giving a map from X to (coskn F )n+1

is equivalent to giving maps a0, . . . , an+1 : X → Fn such that ∂iaj = ∂j−1ai for
i < j (see [GJ99, VII.1.19]). Regarding a0, . . . , an+1 as a sequence of elements
in Fn(X), we have the data of a map ∂∆n+1 → F (X).

Proof of Theorem 12.5. Given a split simplicial C in C∐ and a trivial projective

fibration F
π−→ B, we need to show that any map C

b−→ B has a lift C
f−→ F .

By the Yoneda Lemma, we may regard the components bn : Cn → Bn of b as
elements of Bn(Cn), and the components fn of f as elements of Fn(Cn).

We will construct a compatible family of maps in∗C → in∗F lifting the
truncations of b; taking the inverse limit yields the desired lift f : C → F of
b. The 0-truncation of b is the map b0; since the set map F0(C0) → B0(C0) is
onto, we may lift b0 to an element f0 of F0(C0), representing a map C0 → F0.

Inductively, suppose we are given a map in∗C → in∗F which lifts in∗b, or
equivalently by adjunction, a map f ′ : C → coskn F lifting C → B → cosknB.
By Lemma 12.6, the component f ′n+1 : Cn+1 → (coskn F )n+1 corresponds to a
map f ′ : ∂∆n+1 → F (Cn+1) fitting into the solid diagram

∂∆n+1 f ′
> F (Cn+1)

∆n+1
∨

bn+1

>

fn+1
>

B(Cn+1).

≃ π(Cn+1)
∨

Since π is a trivial projective fibration, π(Cn+1) is a trivial fibration of simplicial
sets, so there is a dotted arrow fn+1 making the diagram commute. By Lemma
12.6, fn+1 corresponds to a commutative diagram

Cn+1 > (coskn C)n+1

Fn+1

fn+1
∨

> (coskn F )n+1.

f ′
∨

By assumption, Cn+1 has a nondegenerate subobject Nn+1. By [AGV73,
Vbis(5.1.3)], this diagram determines a map from the truncation in+1∗C of C
to the truncation in+1∗F (equivalently, coskn+1 C → coskn+1 F ) which restricts
to f ′ and lifts the n+ 1-truncation of b.

Construction 12.7. There is a canonical functor L∗ from simplicial presheaves
to globally cofibrant simplicial presheaves, as we assume that C has a set of
objects. To construct it, we consider the discrete category Cδ on the objects of
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C. The inclusion ι :Cδ ⊂ C induces an adjunction (ι∗, ι∗) of presheaf categories,
with

ι∗X(C ′) =
∐

C′→C

X(C) =
∐

C

HomC(C
′, C)×X(C) =

∐

C,X(C)

HomC(C
′, C),

for C ′ in C and X in Pshv(Cδ), and L = ι∗ι∗ is a cotriple on Pshv(C). Setting
Ln = Ln+1, the map L(F ) → F yields a simplicial map L∗F → F called the
cotriple resolution of the presheaf F ; see [Wei94, 8.6.4]. Recall that the nerve
of C is the simplicial set N• = N•(C) in which Nn is the set of all composable
sequences C0 → · · · → Cn in C. Then we have the explicit formula

LnF =
∐

Nn

∐
F (Cn)

C0. (12.7.1)

By inspection, L∗F is a split simplicial object of C∐, so by Theorem 12.5 it is
projectively cofibrant. Moreover, F is the coequalizer of the diagram L1F ⇒

L0F . If F = F• is a simplicial presheaf we write L∗F• for the diagonal of the
bisimplicial presheaf L∗(F•). Again by inspection, L∗F• is a split simplicial
object of C∐, so it is also projectively cofibrant.

Example 12.8.1. If F = pt is the constant one-point presheaf, then (L∗pt)(C)
is contractible for each C in C. Indeed, (L∗pt)(C) is the nerve of the comma
category C\C, which has 1 ∈ Hom(C,C) as initial object.

If Cδ is an object of Cδ, then (ι∗Cδ)(C ′) = HomC(C
′, C).

Lemma 12.9. The Ln commute with coproducts: Ln(
∐
I Fi) =

∐
I Ln(Fi).

Proof. This follows from (12.7.1), since
∐

∐Fi(Cn)
C0 =

∐
I

∐
Fi(Cn)

C0.

Recall that two maps f, g : A→ B between simplicial objects are simplicially
homotopic if there are maps hi : An → Bn+1 (i = 0, ..., n) such that ∂0h0 = f ,
∂n+1hn = g and the standard formulas for ∂ihj and σihj hold; see [Wei94,
8.3.11]. This gives rise to the notion of a simplicial homotopy equivalence in
any category of simplicial objects, one which is preserved by functors.

Since the representable presheaf F = C is i∗(Cδ), the general theory of
cotriple resolutions (see [Wei94, 8.6.8–10]) implies that L∗C → C is a simplicial
homotopy equivalence, and hence that (L∗C)(C

′) → C(C ′) = Hom(C ′, C) is a
homotopy equivalence for each C ′, i.e., L∗C → C is a global weak equivalence.
Since the coproduct

∐
L∗(Cα) →

∐
Cα of simplicial homotopy equivalences is

a simplicial homotopy equivalence, this argument establishes:

Corollary 12.9.1. If F is a simplicial object in C∐ then L∗F → F is also a
global weak equivalence.

The following lemma will be used in 12.26 and (14.24.1).

Lemma 12.10. Let F1 → F2 be a monomorphism of pointed presheaves, with
presheaf quotient F3(C) = F2(C)/F1(C). Then L∗F1 → L∗F2 is a termwise
split inclusion, and there is an isomorphism L∗F2/L∗F1

∼= L∗F3/L∗pt.
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Proof. For each object C of C, choose a set-theoretic splitting of the surjection
F2(C)→ F3(C) = F2(C)/F1(C), i.e., a decomposition F2(C) = F1(C)∨F3(C).
For each C and C0, this decomposition yields an isomorphism

∐
F2(C)

C0
∼=

(∐
F1(C)

C0

)
∐
(∐

F3(C)\∗
C0

)
.

As in the proof of Lemma 12.9, the explicit formula (12.7.1) shows that each
LnF2 is the coproduct of LnF1 and the presheaf Qn =

∐
Nn

∐
F3(C)\∗ C0. Since

LnF3 is the coproduct of Lnpt and Qn, the result follows.

We conclude this section with a description of all cofibrant objects in
∆opPshv(C). It follows from the general theory of cellular model categories.

Definition 12.11. ([Hir03, 12.1]) A model categoryM is cellular if it has a set
I of generating cofibrations whose sources and targets are compact objects, a
set J of generating trivial cofibrations whose sources are small relative to I, and
such that the cofibrations are effective monomorphisms. For example, ∆opSets
is cellular: I is the set of all ∂∆n → ∆n and J is the set of all horns Λnk → ∆n.

We refer the reader to [Hir03, 11.1] for the terminology in this definition. In
particular, M is “cofibrantly generated” by I and J . Moreover, a map in M
is a trivial fibration (resp., a fibration) iff it has the right lifting property with
respect to I (resp., J).

Example 12.11.1. Hirschhorn observes that the projective model structure
on ∆opPshv(C) is cellular in [Hir03, Prop. 12.1.5], assuming that C is small (or
skeletally small); IC is the set of all C ⊠ ∂∆n → C ⊠∆n with C in C, JC is the
set of all horns C ⊠ Λnk → C ⊠∆n with C in C, and the pairing ⊠ is defined at
the end of 12.1.

A map which is a transfinite composition of morphisms which are pushouts
of morphisms in a set I of maps in C is called a relative I-cell complex; see
[Hir03, 10.5.8]. The following result is proven in [Hir03, 11.2.1] when I is IC .

Lemma 12.12. Let M be a cellular model category. Then every cofibration is
a retract of a relative IC-cell complex (which is also a cofibration).

Let us say that a map X → Y of presheaves is nice if it is isomorphic to
the projective cofibration X →֒ X ∐ (

∐
Ci) for some family of representable

presheaves Ci. From Example 12.4, the X → X ∐ (
∐
Ci ⊠ ∆ni) are projec-

tive cofibrations as well as termwise nice. We now show that every projective
cofibration is a retract of a termwise nice map.

Corollary 12.13. If f : X → Y is a projective cofibration in ∆opPshv(C) then
there is a termwise nice map X → Ỹ and a split inclusion i : Y → Ỹ whose
splitting map p restricts to f on X.

Proof. ([Voe10d, 3.27b]) The generating cofibrations of ∆opPshv(C) (maps in
IC) are termwise nice by Example 12.11.1. Since pushouts of nice maps are
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nice, and transfinite compositions of nice morphisms are nice, relative IC-cell
complexes are termwise nice cofibrations. By the small object argument, f

factors as X
n−→ Ỹ

p−→ Y , where n is termwise nice and p has the right lifting
property for IC . Since f is a retract of a relative IC-cell complex by Lemma
12.12, p has a section i with n = if .

12.2 Radditive presheaves

A convenient category of presheaves that we shall use for our motivic model
structures is the category of radditive presheaves. One might think of rad-
ditive presheaves as intermediate between sheaves and presheaves since, on a
Grothendieck site in which {U, V } covers U ∐ V , every sheaf is radditive.

The use of radditive presheaves allows us to give a unified treatment of
several Quillen adjunctions; see diagram (12.28.1) in Section 12.3. In addition,
the motivic Hurewicz functor Rtr is easily defined for radditive presheaves; see
12.28. Most of the material in this section was published in [Voe10d].

We assume throughout this section that C is a skeletally small category with
finite coproducts (and hence an initial object ∅).

Definition 12.14. A presheaf of sets X on C is called radditive if X(∅) is a
one-element set and the map X(C ∐ C ′)→ X(C)×X(C ′) is a bijection for all
C,C ′ in C. We write rad(C) for the full subcategory of Pshv(C) (presheaves on
C) consisting of all radditive presheaves.

Example 12.14.1. The representable presheaf HomC(−, C) is radditive for
each C in C. Thus we may regard C as a full subcategory of rad(C), via the
Yoneda embedding of C into Pshv(C). The following calculation shows that the
embedding C ⊂ rad(C) preserves coproducts: for radditive F ,

Homrad(C)(HomC(−, C1 ∐ C2), F ) = F (C1 ∐ C2) = F (C1)× F (C2).

In contrast, the Yoneda embedding C → Pshv(C) does not preserve coproducts:
if C = C1 ∐ C2 then idC ∈ Hom(C,C) is not in HomC(C,C1)∐HomC(C,C2).

Example 12.14.2. Let Sets denote the category of finite sets and ∗ the 1-
element set. Any radditive presheaf F on Sets is completely determined by
the set F (∗). Thus the Yoneda embedding gives an equivalence between Sets
and rad(Sets). Similarly, the category Sets+ of pointed sets is equivalent to
the category rad(Sets+) because F is completely determined by the data ∗ =
F (∗)→ F (S0), i.e., by the pointed set F (S0).

Example 12.14.3. Suppose that C is either Sm or Norm (normal schemes
over k), and let C0 denote the full subcategory of nonempty connected varieties
in C. Then a radditive presheaf on C is uniquely determined by its values on
C0, because every object of C is uniquely a finite coproduct of objects in C0. In
other words, the restriction ι∗ of presheaves from C to C0 induces an equivalence
between rad(C) and Pshv(C0). The inverse equivalence Pshv(C0)→ rad(C) sends
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F to F∐
0 (∐Xi) =

∏
F (Xi), and F → F rad = (ι∗F )

∐ is the universal map to a
radditive presheaf.

Example 12.14.4. If I is filtered and Fi are radditive, then the presheaf
colimFi is also radditive. Indeed, because filtered colimits commute with fi-
nite limits, colimI

(
Fi(C)× Fi(C ′)

)
= (colimI Fi(C))× (colimI Fi(C

′)).

Another important family consists of ind-objects of C.

Definition 12.15. Let Cind denote the full subcategory of presheaves on C
consisting of filtered colimits of representable presheaves; this is the same as
the category of ind-objects of C (see [AGV73, I.8.2]). By Examples 12.14.1 and
12.14.4, ind-objects are radditive as presheaves. Thus Cind is a full subcategory
of rad(C).

Example 12.15.1. By Example 12.14.1, the coproduct of Hom(−, C1) and
Hom(−, C2) is Hom(−, C1∐C2) in both rad(C) and in Cind. Since the coproduct
over an indexing set I is the filtered colimit of the coproducts over finite sub-
categories of I, it follows that arbitrary coproducts of objects of C exist in both
rad(C) and Cind, and are equal. We shall write ∐radCα for the coproduct (in Cind)
of objects {Cα : α ∈ A} of C, to distinguish it from the corresponding coproduct
in Pshv(C). There is a canonical presheaf map η :

∐
Hom(−, Cα) → ∐radCα

between coproducts.

We will prove in Proposition 12.17 below that the inclusion rad(C) ⊂ Pshv(C)
has a left adjoint (−)rad for every C. The key step is to show that reflexive
coequalizers of radditive presheaves are radditive. Recall that a coequalizer
diagram A ⇒ B in a category is called reflexive if both maps have a common
right inverse B → A.

Lemma 12.16. If E ⇒ F is a reflexive coequalizer diagram of radditive pre-
sheaves, then the presheaf coequalizer is a radditive presheaf.

Proof. If G is the presheaf coequalizer of E ⇒ F , each set G(C) is the set
coequalizer of E(C) ⇒ F (C). In the category of sets, reflexive coequalizers
commute with finite products (exercise!). Hence the set G(C) × G(C ′) is the
coequalizer of E(C ∐ C ′) ⇒ F (C ∐ C ′).

Proposition 12.17. The inclusion rad(C) ⊂ Pshv(C) has a left adjoint (−)rad,
and the universal map ηF : F → F rad is an isomorphism for every radditive F .

Proof. (See [Voe10d, 3.6].) Recall from Construction 12.7 that any presheaf F
is the coequalizer of the reflexive diagram L1F ⇒ L0F . The formula (12.7.1)
shows that each LnF is a coproduct of representable presheaves, so the co-
product (LnF )

rad exists in rad(C) by Example 12.15.1. We define F rad to be
the presheaf coequalizer of the reflexive diagram (L1F )

rad ⇒ (L0F )
rad; F rad

is radditive by Lemma 12.16. We also define ηF : F → F rad to be the co-
equalizer of the maps η : Li(F ) → (LiF )

rad in Example 12.15.1. It is now
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easy to check that F rad is natural in F , and that ηF induces an isomorphism
η∗ : Hom(F rad, G) ∼= Hom(F,G) for any radditive G.

When F is radditive, this yields η∗ : Homrad(C)(F
rad,−) ∼= Homrad(C)(F,−)

so ηF is an isomorphism by the Yoneda lemma.

Corollary 12.18. The category rad(C) admits all small colimits; if colimFi is
the colimit of F : I → rad(C) in Pshv(C), the colimit in rad(C) is (colimFi)

rad.

Construction 12.19. Recall from 12.7 that there is a canonical functor L∗

from simplicial presheaves to cofibrant simplicial presheaves. If F is a simplicial
radditive presheaf, we define Lres (F ) to be L∗(F )

rad. That is,

Lres nF = (LnF )
rad =

∐rad

C0→···→Cn

∐rad

F (Cn)
C0.

for all n. In particular, Lres (F ) is an object of ∆op(Cind); see Example 12.15.1.
Alternatively, the adjunction (ι∗, ι∗) in 12.7 induces an adjunction (ιrad, ι∗)

between Pshv(Cδ) and rad(C). This gives rise to the cotriple ιradι∗ = Lrad in
rad(C), and Lres (F ) is the resulting cotriple resolution of F in rad(C). As in
Corollary 12.9.1, the general theory of cotriples implies that Lres (C)→ C is a
simplicial homotopy equivalence for every C.

Remark 12.19.1. ([Voe10d, 3.19(1)]) Lres commutes with filtered colimits:

Lres (colimFi) ∼= colimLresFi. Indeed,
∐rad

colimFi(Cn)
C0 = colim

∐rad
Fi(Cn)

C0

for each chain C0 → · · · → Cn; see Lemma 12.9.

The following trick, modelled on the analysis for Sets and Sets+ above,
allows us to pass back and forth between the pointed and unpointed cases when
C has a final object ∗. Let C+ ⊂ C denote the subcategory of pointed objects of
C which are isomorphic to C+ = C ∐ ∗ for some C, together with all pointed
morphisms; C+ has initial object ∗ and has finite coproducts whenever C does.

Lemma 12.20. If C has a final object, rad(C+) is equivalent to the category of
pointed objects in rad(C).

Proof. The canonical functor C b→ C+, defined by b(C) = C+ preserves coprod-

ucts so it defines a functor rad(C+) b∗−→ rad(C) sending G to b∗G(C) = G(C+);
the presheaf b∗G is pointed by the image of ∗ = G(∗)→ G(C+) = b∗G(C).

Conversely, given a pointed radditive presheaf F on C, define G : C+ → Sets
on objects by letting G(X) be the inverse image of the basepoint in the canonical
map F (X)→ F (∗) associated to ∗ → X; if X ∼= C+ then F (X) ∼= F (C)×F (∗)
and G(X) ∼= F (C). To a morphism X → X ′ in C+ we associate the composition

G(X ′) →֒ F (X ′)→ F (X) ∼= F (C)× F (∗) pr−→ F (C) = G(X).

It is routine to check that G is a presheaf; G is radditive because G(∗) = ∗ and
G(C+ ∨ C ′

+) = G ((C ∐ C ′)+) = F (C)× F (C ′). Thus F 7→ G defines a functor
from pointed radditive presheaves on C to rad(C+). By inspection, it is inverse
to the given functor b∗ : rad(C+)→ rad(C).
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Lemma 12.21. If C is an additive category, rad(C) and rad(C+) are both equiv-
alent to the category of contravariant additive functors from C to abelian groups.

Proof. Clearly any additive contravariant functor is a radditive presheaf. Sup-
pose conversely that F is a radditive presheaf on C. For each C, the di-
agonal ∆ : C → C ⊕ C gives an operation F (C) × F (C) → F (C). The
usual diagrams for a group object show that this operation is associative and
commutative, that the basepoint 0 of F (C) is an identity, and that an in-
verse operation on F (C) is given by F (−1C); this makes F (C) an abelian
group. If F is the radditive presheaf underlying an additive functor to Ab,
this construction recovers the original additive structure on each F (C). Given
B → C, the two maps ∆C ◦ f, (f ⊕ f) ◦∆B : B → C ⊕ C agree, showing that
HomC(B,C) → HomAb(F (C), F (B)) is a homomorphism, i.e., that F is an
additive functor. This establishes the equivalence between radditive presheaves
and additive functors to Ab.

Finally, since 0 is both initial and terminal in C, any radditive functor F has
F (0) = 0, and so is pointed; cf. Lemma 12.20.

Example 12.21.1. Let S be either the category Sm of smooth schemes, or the
category Norm of normal schemes over k, and let Cor(S) denote the category
of (finite) correspondences on S, with coefficients in a ring R, as defined in
[MVW, §1 and 1A]. We write PST(S) for the (abelian) category of contravari-
ant additive functors Cor(S) → Ab; such functors are called presheaves with
transfers on S. By Lemma 12.21, PST(S) is the same as rad(Cor(S)).

Given an arbitrary functor f : C → C′, neither half of the adjunction (f∗, f∗)
between presheaves will preserve radditive presheaves. We write f rad for the
functor F 7→ (f∗F )rad from rad(C) to rad(C′) (see 12.14.3). It agrees with f on
representable presheaves; ifX is an object of C, regarded as a presheaf, then f∗X
is f(X), regarded as a (radditive) presheaf, and hence f radX = f∗X = f(X).

Lemma 12.22. For any functor f :C→C′, the functor f rad : rad(C)→ rad(C′)
commutes with coproducts, filtered colimits and reflexive coequalizers.

Proof. ([Voe10d, 4.1]) The functor (−)rad◦f∗ from Pshv(C) to rad(C′) commutes
with all colimits because it is the composition of two left adjoints. Since the
inclusion rad(C) ⊂ Pshv(C) preserves filtered colimits and reflexive coequaliz-
ers (the latter by Lemma 12.16), it follows that f radG preserves these special
colimits as well.

12.3 The radditive projective model structure

There is an analogue for radditive presheaves of the projective model structure
for presheaves: we just restrict the notions of fibration and weak equivalence.
As in the previous section, we assume throughout that C is a skeletally small
category with finite coproducts.
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Definition 12.23. A global weak equivalence (resp., a projective fibration) be-
tween simplicial radditive functors is just a global weak equivalence (resp., a
projective fibration) between the underlying simplicial presheaves in the sense
of Definition 12.1. We define projective cofibrations to be the maps having the
left lifting property relative to trivial projective fibrations.

We will write U ⊗ K for (U ⊠ K)rad when U is a simplicial object in Cind
and K is a simplicial set, so (U ⊗K)p = ∐rad

Kp
Up. Note that if each Kp is finite

then U ⊗K is in ∆opCind. In particular, C ⊗∆n = (C ⊠∆n)rad is in ∆opCind.
Let IradC denote the set of all morphisms C⊗∂∆n → C⊗∆n and J rad

C denote
the morphisms C ⊗ Λnk → C ⊗∆n with C in C. These are the radditivizations
of the generating cofibrations IC and trivial cofibrations JC for ∆opPshv(C) in
Example 12.11.1.

Since radditivization is left adjoint to the inclusion rad(C) ⊂ Pshv(C), it
follows formally from the cellular model structure on simplicial presheaves that
IradC consists of cofibrations, and that a map in ∆oprad(C) is a projective fi-
bration (resp., trivial projective fibration) if and only if it has the right lifting
property with respect to J rad

C (resp., IradC ).
We will see in Application 12.32 below that the morphisms in J rad

C are global
weak equivalences. Hence they are trivial cofibrations.

Lemma 12.24. The global weak equivalences, projective fibrations and projec-
tive cofibrations form a cellular model structure on ∆oprad(C).

We shall call it the projective model structure on ∆oprad(C).
Proof. ([Voe10d, 3.25]) Given the criterion of Theorem 2.1.19 in [Hov99] for
a cofibrantly generated model structure, and the remarks above, the proof is
formal from the definitions, using IradC for the set of generating cofibrations, and
J rad
C for the set of generating trivial cofibrations.

Since the inclusion rad(C) ⊂ Pshv(C) preserves global weak equivalences and
fibrations, the adjoint pair (−rad, incl) of Proposition 12.17 defines a Quillen
adjunction ∆opPshv(C)→ ∆oprad(C). It follows that if A→ B is a cofibration
in Pshv(C) then Arad → Brad is a cofibration in rad(C). In particular, any
projective cofibration in ∆opPshv(C) whose source and target are simplicial
radditive is a projective cofibration in ∆oprad(C), and any representable presheaf
is projectively cofibrant in rad(C).
Example 12.24.1. Let Cor(S) be the category of (finite) correspondences on
either Sm or Norm, and recall from Example 12.21.1 that rad(Cor(S)) =
PST(S). By [MVW, 8.1], every projective object in PST(S) is a summand
(i.e., retract) of a direct sum of representable presheaves. Since Kan fibrations
of simplicial groups are just termwise surjections, projective cofibrant objects in
∆opPST(S) are just termwise projective objects, and a projective cofibration
A→ A′ is just an injection whose cokernel is termwise a projective object.

From this concrete description, it is easy to see that the model structure
on ∆opPST(S) is left proper, meaning that the pushout of a weak equivalence
along a cofibration is a weak equivalence.
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Remark 12.24.2. When C is either Sm, Sch or Norm, the projective model
structures on ∆oprad(C) and ∆oprad(C+) are proper. This is because raddi-
tive functors on C are the same as presheaves on C0, by Example 12.14.3. As
illustrated in [Voe10d, Ex. 3.48], ∆oprad(C) need not be proper for general C.

The following lemma, taken from [Voe10d, 3.18], shows that Lres is a func-
torial cofibrant replacement functor for ∆oprad(C).
Lemma 12.25. For every radditive F , the map Lres (F )→ F is a global weak
equivalence in ∆oprad(C) and hence in ∆opPshv(C).
Proof. We use the notation of Construction 12.7. For each C in C, Lres nF (C)
is the coproduct of copies of C0(C), by (12.7.1). This is the same as evalu-
ation at C of the presheaf ι∗Lres n(F ) on Cδ. Since Lres (F ) is the cotriple
resolution associated to the cotriple ιradι∗ of 12.19, it follows from the general
theory of cotriples (see [Wei94, 8.6.10]) that the augmented ι∗Lres (F ) → ι∗F
is left contractible (in the sense of [Wei94, 8.4.6]) and hence is a simplicial
homotopy equivalence. Evaluation yields a simplicial homotopy equivalence
Lres (F )(C)→ F (C) for each C, showing that Lres (F )→ F is a global weak
equivalence.

Applying (−)rad to Lemma 12.10, we see that if F1 → F2 is a monomorphism
of pointed radditive presheaves, with presheaf quotient F3(C) = F2(C)/F1(C),
then Lres (F1)→ Lres (F2) is a termwise split inclusion,

Lres (F2)/Lres (F1) ∼= Lres (F rad
3 )/Lres (pt),

and (by Example 12.8.1) Lres (pt)→ pt is a global weak equivalence.

Let us say that a map f : A → B in rad(C) is a nice radditive map if there

is a nice presheaf map f̃ : A→ B̃ ∼= A∐ (∐Ci) (in the sense of 12.13) such that

B = B̃rad and f = f̃ rad. Here is the radditive analogue of Corollary 12.13.

Lemma 12.26. (1) If X
f−→ Y is a projective cofibration in ∆oprad(C) then

there is a termwise nice radditive map X → Ỹ and a split inclusion Y
i−→ Ỹ

whose splitting map p restricts to f on X.
(2) Suppose that C is Sm or Norm. If E → F is a projective fibration in

∆opPshv(C), then Erad → F rad is a projective fibration in ∆oprad(C).
Proof. By Lemmas 12.12 and 12.24, cofibrations in ∆oprad(C) are the same
as retracts of relative IC-cell complexes. As in the proof of Corollary 12.13,
pushouts and transfinite compositions preserve nice radditive maps, so each
relative IC-cell complex in ∆oprad(C) is a termwise nice radditive map. As in

loc. cit., the map f factors as X
n−→ Ỹ

p−→ Y , where n is a termwise nice
radditive map and p has the right lifting property for IC . Hence p has a section
i with n = if .

For (2), note that any C is a finite coproduct of connected Ci, so the map
from Erad(C) =

∏
E(Ci) to F

rad(C) =
∏
F (Ci) is a finite product of the Kan

fibrations E(Ci)→ F (Ci). Hence E
rad(C)→ F rad(C) is a Kan fibration.

June 27, 2018 - Page 178 of 281



Model Structures

Lemma 12.27. Suppose that C and C′ have finite coproducts, and that C f−→ C′
commutes with finite coproducts. Then the adjunction (f∗, f∗) between pre-
sheaves restricts to an adjunction (f∗, f∗) between rad(C) and rad(C′).

Similarly, we have a Quillen adjunction (f∗, f∗) between ∆oprad(C) and
∆oprad(C′), and an adjunction (Lf∗, f∗) between their homotopy categories.

Proof. If Y is radditive, then so is f∗Y because f(C1 ∐ C2) = f(C1) ∐ f(C2).
If X is radditive then so is f∗X, because filtered colimits of sets commute with
finite products. By naturality, f∗ and f∗ also form an adjoint pair between the
simplicial categories. Since f∗ preserves global weak equivalences and projective
fibrations, it is a Quillen adjunction. Finally, f∗ ∼= Rf∗.

Corollary 12.27.1. If i : C ⊂ C′ preserves coproducts, the inverse image i∗ :
∆oprad(C)→ ∆oprad(C′) is a full embedding as a coreflective subcategory.

In addition, Li∗ embeds the homotopy category of ∆oprad(C) into the homo-
topy category of ∆oprad(C′) as a full (coreflective) subcategory.

Proof. Immediate from Lemma 12.27 and Lemma 12.3.

Example 12.28. The standard embedding of Sm = Sm/k into Cor(Sm, R)
preserves coproducts by definition [MVW, 1.1], so by Lemma 12.27 we have an
adjunction (Rtr, u) between rad(Sm) and PST(Sm, R) = radCor(Sm, R) for
each ring R. The notation reflects the fact that the right adjoint u is the functor
from presheaves with transfers to the underlying (radditive) presheaves, and the
composition of the left adjoint Rtr with the Yoneda embedding of Cor(Sm, R)
into PST(Sm, R) sends X to the presheaf with transfers Rtr(X) = Ztr(X)⊗R.
Thus we have a pair of adjunctions:

Pshv(Sm)
(−rad, incl)

> rad(Sm)
(Rtr, u)

> PST(Sm, R).

Hence there are Quillen adjunctions between the corresponding simplicial
model categories. There is of course a similar diagram for pointed presheaves
by Lemma 12.21, and a similar diagram with Sm/k replaced by Norm/k.

We may compare these using the adjunctions (i∗, i∗) of 12.1 and Lemma
12.27 associated to the inclusion i : Sm → Norm and the induced inclusion
i : Cor(Sm) → Cor(Norm) of Example 12.21.1. By naturality and Example
12.28, these fit into a commutative diagram of projective model categories and
Quillen adjunctions:

∆opPshv(Sm+)
(i∗, i∗)

> ∆opPshv(Norm+)

∆oprad(Sm+)

(−rad, incl)
∨ (i∗, i∗)

> ∆oprad(Norm+)

(−rad, incl)
∨

∆opPST(Sm)

(Rtr, u)
∨ (i∗, i∗)

> ∆opPST(Norm).

(Rtr, u)
∨

(12.28.1)
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By Corollary 12.27.1, the horizontal maps are fully faithful, even on the level of
homotopy categories. Vertically, we have an adjunction (LRtr, u) of homotopy
categories. By Example 12.19, we may choose the model Rtr(Lres (F )) for the
total left derived functors LRtr.

Example 12.28.2. If (X,x) is a pointed normal variety, regarded as a pointed
presheaf on Norm, we may form the simplicial wedge X∨∆1 with the 1-simplex
by identifying x with one of the vertices of ∆1. This is pointed (using the other
vertex of ∆1 as basepoint) and is a split simplicial object of ∆opNorm+ because
its degree n term is the coproduct of X and n+ 1 copies of Spec(k). It is easy
to see that X ∨∆1 → (X,x) is a global weak equivalence.

The normalized chain complex corresponding to the simplicial presheaf with
transfers Rtr(X ∨∆1) is R

x−→ Rtr(X) which is chain homotopic to the usual
presheaf with transfers Rtr(X,x) in degree 0; see [MVW, p. 15].

In particular, for Gm = (A1−{0}, 1) this gives a simplicial object V of
Norm+ so that Rtr(V ) = Rtr(Gm). Note that R(1)[1] = C∗Rtr(Gm) by defini-
tion.

12.4 ∆̄-closed classes and weak equivalences

In this section we introduce Voevodsky’s notion of a ∆̄-closed class [Voe10d],
and use it to finish the proof that ∆oprad(C) is a model category under the
projective model structure of Definition 12.23, by showing that the morphisms
in J rad

C are global weak equivalences (in Application 12.32); see Lemma 12.24.

We will also show that for any functor C f−→ C′, the inverse image f∗ :
∆opCind → ∆opC′ ind will preserve global weak equivalences, as long as C and C′
have finite coproducts. This has several useful consequences: in addition to the
Application 12.32 just mentioned, it also implies that if X is a simplicial scheme
then the canonical map from LRtr(X) = Rtr(Lres (X)) to Rtr(X) is a global
weak equivalence of simplicial presheaves with transfers; see 12.33.1. Third, it
implies that the symmetric powers functors (introduced in Chapter 14) preserve
global weak equivalences.

Definition 12.29 (∆̄-closed classes). Let E be a category containing all small
colimits, and E a class of morphisms in ∆opE . We say that E is a ∆̄-closed class
if: (1) E contains all simplicial homotopy equivalences; (2) E has the 2-out-of-3
property (i.e., whenever f ◦ g exists and two out of f , g and f ◦ g are in E
then so is the third); (3) for each bisimplicial map f : A•• → B•• whose rows
fj : A•j → B•j are in E, the diagonal map diag(A)→ diag(B) is in E; and (4)
E is closed under finite coproducts and filtered colimits i.e., if each Aα → Bα
is in E for all α in a filtering diagram, then so is colimAα → colimBα.

Let S be a class of morphisms in ∆oprad(C) such that the Bousfield local-
ization at S exists in the sense of Definition 12.38 below. Theorem 12.47 below
shows that the class of S-local equivalences is ∆̄-closed.
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Remark 12.29.1. The intersection of ∆̄-closed classes in E is again a ∆̄-closed
class. Thus each class of morphisms has a ∆̄-closure: the smallest ∆̄-closed class
containing it. We will often use this observation below, including in Theorems
12.31, 12.55 and 12.66.

Example 12.29.2. In the category of simplicial sets, the class W of weak
homotopy equivalences is the smallest ∆̄-closed class in ∆opSets. The fact that
W is ∆̄-closed is well known. To see that every ∆̄-closed class E contains W ,
we use the fibrant replacement functor K 7→ K(∞) = colimK(n), obtained via
the small object argument for the maps Λnk → ∆n.

Suppose that K → K ′ is a weak equivalence. Then K(∞) ≃−→ K ′(∞) is a
weak equivalence between Kan complexes; as such it is a simplicial homotopy
equivalence, and hence in E. Now each K(n) → K(n+1) is in E because it is a
pushout of a coproduct of the simplicial homotopy equivalences Λnk → ∆n along
maps Λnk → K(n), and pushouts preserve simplicial homotopy equivalences. By
induction, each K → K(n) is in E, and hence so is the colimit K → K(∞). The
2-out-of-3 property implies that K → K ′ is in E, as asserted.

Theorem 12.30. Let Φ : E → E ′ be a functor which commutes with filtered
colimits, and E′ a ∆̄-closed class of morphisms in ∆opE ′. Let E denote the
class of morphisms η in ∆opE such that Φ(η) is in E′. Then E is ∆̄-closed.

Proof. By assumption, E is closed under filtered colimits and has the 2-out-of-3
property. Since Φ preserves simplicial homotopies and diagonals of bisimplicial
maps, the other conditions in Definition 12.29 are satisfied as well.

We now specialize to the case ∆opE = ∆opCind, following [Voe10d, 3.16,21].

Theorem 12.31. The global weak equivalences between objects of ∆op(Cind)
form the smallest ∆̄-closed class of morphisms in ∆op(Cind).
Proof. The class of global weak equivalences is ∆̄-closed in ∆op(Cind) because
X → Y is a global weak equivalence exactly when each X(U)→ Y (U) is a weak
equivalence, and the class of weak equivalences is ∆̄-closed in ∆opSets.

Conversely, we must show that if f : X → Y is a global weak equivalence of
simplicial objects in Cind, and E is any ∆̄-closed class of morphisms in ∆opCind,
then f is in E. If each Xn is representable, each Lres (Xn)→ Xn is a simplicial
homotopy equivalence by Construction 12.19, and hence Lres (X) → X is in
E. In general, X is a filtered colimit of representable simplicial presheaves, by
Construction 12.7, so (by Remark 12.19.1) Lres (X) → X is in E. Form the
diagram:

Lres (X)
in E

> X

Lres (Y )

Lres (f) in E
∨ in E

> Y.

f
∨

(12.31.1)

By the formula in 12.19, Lres (f) = ∆(Lres f•) is the diagonal of a bisimplicial
map whose rows are coproducts of maps of the form U0⊗X(Un)→ U0⊗Y (Un).
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Since each X(Un) → Y (Un) is a weak equivalence of simplicial sets, the rows
are in E by Sublemma 12.31.2 and hence Lres (f) is in E. By the 2-out-of-3
property applied to diagram (12.31.1), f is in E.

Sublemma 12.31.2. If K → K ′ is a weak equivalence of simplicial sets, then
each U ⊗K → U ⊗K ′ is in E, the smallest ∆̄-closed class in ∆opCind.

Proof. We saw in Example 12.29.2 that K(∞) → K ′(∞)
is a simplicial homotopy

equivalence. By functoriality, U ⊗K(∞) → U ⊗K ′(∞)
is a simplicial homotopy

equivalence in ∆opCind, and hence is in E.

U ⊗K in E
> U ⊗K(∞)

U ⊗K ′
∨ in E

> U ⊗K ′(∞)

s.h.e.
∨

Similarly, each K(n) → K(n+1) is the pushout of a coproduct of the simplicial
homotopy equivalences Λnk → ∆n (as we pointed out in loc. cit.). Therefore
U⊗K(n) → U⊗K(n+1) is the pushout of a coproduct of the simplicial homotopy
equivalences U ⊗ Λnk → U ⊗ ∆n; as such, these maps are in E. Taking the
colimit over n, we see that U ⊗ K → U ⊗ K(∞) is in E, and similarly for

U ⊗K ′ → U ⊗K ′(∞)
. The 2-out-of-3 property implies that U ⊗K → U ⊗K ′

is in E.

Application 12.32. The morphisms in J rad
C have the form C ⊗Λnk → C ⊗∆n

with C in C (Example 12.11.1). By Sublemma 12.31.2 and Theorem 12.31, they
are global weak equivalences. This fact was used in the proof of Lemma 12.24.

Now let f : C → C′ be a functor. Since f∗ is a left adjoint, it commutes with
filtered colimits. Hence it sends Cind to C′ ind.

Corollary 12.33. Let f : C → C′ be a functor. Then the inverse image func-
tor f∗ : ∆op(Cind) → ∆op(C′ ind) takes global weak equivalences to global weak
equivalences.

Proof. ([Voe10d, Th.4.8]) Combine Theorems 12.31 and 12.30, with Φ = f∗. If
E is the class of maps η with f∗η a global weak equivalence then E is ∆̄-closed,
and hence E contains all global weak equivalences.

Example 12.33.1. The functor Rtr : ∆
opPshv(Sm+)→ ∆opPST(Sm) is the

inverse image functor associated to Sm → Cor(Sm, R). Its derived functor
LRtr sends f to Rtr(Lres (f)); see Example 12.7. Hence if X• is a simplicial
presheaf for which each Xn is an ind-object of Sm, Corollary 12.33 applied to

Lres (X•)
η→ X• implies that LRtr(X•)→Rtr(X•) is a global weak equivalence.

We conclude this section by describing the behavior of ∆̄-classes under var-
ious pushouts. This will be needed in Section 12.6.
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Definition 12.34. Suppose that C ← A → B is a diagram in ∆opE . By
definition, the homotopy pushout is the (usual) pushout of the diagram

A∐A
0, 1

> A⊗∆1

B ∐ C.
∨

By inspection, it is the diagonal of the bisimplicial object with rows C∐A∐n∐B
obtained by formally adding degeneracies to A ⇒ B ∐ C (∂0 and ∂1 map A to
B and C, respectively). (Cf. [BK72, XII.2].)

The mapping cylinder cyl(f) of f : A→ B is the special case of the homotopy
pushout when A = C; it is also the pushout of B ← A → A ⊗ ∆1, and there
are canonical maps A → B ∐ A → cyl(f). It is a standard exercise, using the
simplicial contraction of ∆1, to show that B → cyl(f) is a simplicial homotopy
equivalence.

Remark 12.34.1. It is a basic fact [BK72, XII.3.1(iv)] that the category of sim-
plicial sets is left proper: the pushout B∪AC of an injection A ⊂ B of simplicial
sets along any map A→ C is weakly equivalent to the homotopy pushout.

The next lemma is based on [Voe10d, 2.10] and [Del09, p24].

Lemma 12.35. Given a pushout square Q in ∆opE

Q :

A > B

C
∨

> B ∪A C
∨

with each An → Bn a coprojection (i.e., Bn = An ∐ B′
n), the map from the

homotopy pushout KQ to B ∪A C is in every ∆̄-closed class in ∆opE.
Proof. Let Kn denote the homotopy pushout of the square Qn formed by the
nth terms of Q. Since KQ is the diagonal of the bisimplicial system with rows
Kn, it suffices to show that each Kn → Bn∪An

Cn is in E. Thus we may assume
that B = A∐B′, so that B ∪A C = B′ ∐ C.

When B = A∐B′, the square Q is the coproduct of the two squares

A ========= A ∗ > B′

and

C
∨

========= C
∨

∗

wwwwww
> B′.

wwwww

Thus the homotopy pushout KQ is the coproduct of the mapping cylinders of
∗ → B and A→ C. Thus K → B′ ∐ C is in E.

Proposition 12.36. Let E be a ∆̄-closed set of morphisms in E. Suppose that
Q → Q′ is a morphism of pushout squares in E of the form in Lemma 12.35,
with each An → Bn and A′

n → B′
n a coprojection. If A → A′, B → B′ and

C → C ′ are in E, then so is B ∪A C → B′ ∪A′ C ′.
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Proof. Let P and P ′ denote the homotopy pushouts of Q and Q′; by Lemma
12.35, P → B ∪A C and P ′ → B′ ∪A′ C ′ are in E. By the 2-out-of-3 property,
it suffices to show that P → P ′ is in E. By Definition 12.34, P and P ′ are the
diagonals of bisimplicial objects X and X ′ whose nth rows are a coproduct of
B, C and n copies of A, resp., of B′, C ′ and n copies of A′. Since the rows of
the bisimplicial map X → X ′ are in E, the diagonal map P → P ′ is also in
E.

Corollary 12.37. Let E be a ∆̄-closed set of morphisms in E. If e : A → B
is a map in E, and each An → Bn is a coprojection. then E also contains the
pushout C → B ∪A C along any map A→ C in E.
Proof. ([Voe10d, L. 2.13]) Apply Proposition 12.36 to the morphism of squares:

A ========= A A
e

> B

−→

C
∨

========= C
∨

C
∨

> B ∪A C.
∨

12.5 Bousfield localization

In this section, we introduce the notion of Bousfield localization. The model
structures on presheaves which are suitable for (Nisnevich) sheaf theory and
A1-homotopy theory will be obtained by Bousfield localization of the projective
model structure on presheaves.

Recall from [Hir03, 3.1] that if S is a class of maps in a model category
M then a left localization of M with respect to S (if it exists) is a Quillen
adjunction (j, r) :M →MS such that j takes S to weak equivalences, and is
universal with respect to this property.

Definition 12.38. ([Hir03, 3.1.4].) The S-local objects in M are the fibrant
objects L such that Map(B,L) → Map(A,L) is a weak equivalence for every
map A → B in S. The S-local equivalences are the maps X → Y in M such
that Map(Y, L)→ Map(X,L) is a weak equivalence for every S-local L.

The left Bousfield localization of M with respect to S (if it exists) is a
left localization in which M and MS have the same underlying category and
the same class of cofibrations (the Quillen adjunction is the identity), the weak
equivalences inMS are the S-local equivalences in the sense of Definition 12.38,
and the fibrations are determined by the right lifting property.

Since r :MS →M preserves fibrations, every fibration inMS is a fibration
in M, but not conversely. It turns out that the fibrant objects in MS are
exactly the S-local objects ofM in the sense of Definition 12.38.

Remark 12.38.1. Bousfield localization preserves Quillen equivalences in the
following sense; see [Hir03, 3.3.20]. Let (F,U) be a Quillen equivalence between
model categoriesM and N . If S is a class of maps inM and T = F (S), then
(F,U) is also a Quillen equivalence betweenMS and NT .
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Remark 12.38.2. By Ken Brown’s Lemma ([Hov99, 1.1.12] or [Hir03, 7.7.2]),
every S-local equivalence between S-local objects, i.e., between fibrant objects
ofMS , is also a weak equivalence inM. Dually, every weak equivalence inM
between cofibrant objects is an S-local equivalence inMS .

A proof of the following theorem is given in [Hir03, Thm. 4.1.1]. Recall that
a model category is left proper if weak equivalences are preserved by pushouts
along cofibrations. For example, ∆opPshv(C+) is left proper, because pushouts
are constructed objectwise; see [Hir03, 13.1.14].

Theorem 12.39. If M is a left proper cellular model category, then the left
Bousfield localization exists for every set S, and is again a left proper cellular
model category. IfM is a simplicial model category, so isMS.

Remark 12.39.1. LetM be as in Theorem 12.39. IfM is skeletally small then
the Bousfield localization ofM exists with respect to any class of morphisms S.
Indeed, there is a set S0 contained in S such that every s in S is isomorphic to
some s0 in S0, and MS is the Bousfield localization of M with respect to S0.
This remark will be used without comment below, for example when applied to
the projective model category structure on ∆opPshv(Sm).

We also need some facts about the fibrant replacement functor in MS . To
formulate them, we need to recall several definitions from Hirschhorn [Hir03].

Definition 12.40. Let λ be an ordinal, viewed as a category. By a λ-sequence
in a categoryM we mean a functor X

X0
i0−→ X1

i1−→ · · · −→ Xα
iα−→ · · · , α < λ,

from λ to M such that for each limit ordinal κ < λ the induced map
colimα<κXα → Xκ is an isomorphism. When λ = ω, this is the usual notion
of a sequence indexed by N. The colimit of X (if it exists inM) is sometimes
called the transfinite composition of the maps iα.

Given a set Λ of morphisms in a simplicial model category M, a relative
Λ-cell complex is a map that can be constructed as a transfinite composition of
pushouts of maps in Λ.

Given a cofibrant object A and a cofibration f : A > > B, the nth horn on
f is the cofibration Λnf defined by

(A⊗∆n)
∐

A⊗∂∆n

(B ⊗ ∂∆n) >
Λn

f
> B ⊗∆n.

If S is a set of cofibrations fs : As > > Bs in M with each As cofibrant, the
set Λ(S) of horns of the fs (for all n ≥ 0) is a full set of horns on S in the sense
of [Hir03, 4.2.1].

The following theorem is proven by Hirschhorn, using the small object argu-

ment, in [Hir03, 4.2.5, 4.2.9 and 4.3.1]. The map X
≃−→ LSX in 12.41(4) may

be taken to be the fibrant replacement of X in the localized model structure
MS .
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Theorem 12.41. Let M be a (simplicial) left proper cellular model category,
with generating cofibrations I and generating trivial cofibrations J . We assume
that every j in J is a relative I-cell complex with cofibrant domain.

If S is a set of cofibrations with cofibrant domains, then:

1. the set Λ(S) of horns on S consists of S-local equivalences;

2. every relative J ∪ Λ(S)-cell complex is both a cofibration and an S-local
equivalence;

3. an object X of M is fibrant in MS if and only if X is fibrant in M and
has the right lifting property relative to Λ(S);

4. for every X inM there is a natural map X → LSX with LSX fibrant in
MS. The map is a relative J ∪ Λ(S)-cell complex.

We will apply Theorem 12.41 whenM is either ∆opPshv(C) or ∆oprad(C).
Remark 12.41.1. The trivial cofibrations JC and J rad

C satisfy the hypotheses of
Theorem 12.41 by Example 12.11.1 and Lemma 12.24.

12.6 Bousfield localization and ∆̄-closed classes

Suppose that S is a class of morphisms in ∆oprad(C) such that the Bousfield
localization at S exists, e.g., if S is a set. The goal of this section is to prove
that the S-local equivalences in ∆opCind form a ∆̄-closed class (Theorem 12.47).

Lemma 12.42. Let E be a ∆̄-closed class in a model category M = ∆opE.
If f : A → B is a map in E, and each An → Bn is a coprojection (i.e.,
Bn = An ∐B′

n), then the horns on f are also in E.

Proof. Set P = (A⊗∆n)
∐
A⊗∂∆n(B⊗∂∆n). Now A⊗∂∆n e

> B⊗∂∆n is in
E, since it is the diagonal of a bisimplicial map whose rows are finite coproducts
of copies of f . Each term of e is a coprojection, since this is the case for the
terms An → Bn of f . Corollary 12.37 implies that the pushout A⊗∆n → P of
e is in E. Since the composition A⊗∆n → P → B ⊗∆n is in E, the nth horn
P → B ⊗∆n of f is in E by the 2-out-of-3 property.

If S is a set of maps s : As → Bs inM, and cyl(s) is the mapping cylinder
of s defined in 12.34, let cyl S denote the set of maps As → cyl(s) for s in S.
From the universal property of left localization, the Bousfield localizationsMS

andMcyl S have the same cofibrations, weak equivalences and fibrations. Their
fibrant replacements LSX and Lcyl SX are different, but weakly equivalent.

Proposition 12.43. LetM = ∆opE be a (simplicial) left proper cellular model
category, with generating cofibrations I and generating trivial cofibrations J
which are relative I-cell complexes with cofibrant domains. We assume that for
each map T → T ′ in J the maps Tn → T ′

n are coprojections.
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If S is a set of cofibrations As >
s
>Bs in M with cofibrant domains, and

each As∐As → As ⊗ ∆1 is a cofibration, then the fibrant replacement maps
X→Lcyl SX forMcyl S belong to every ∆̄-closed class E containing J and S.

Proof. Let E be the smallest ∆̄-closed set containing J and S. Since each
Bs → cyl(s) is a simplicial homotopy equivalence, E also contains cyl S. By
Lemma 12.42, the horns on cyl S are also in E, as each (As)n → cyl(s)n is
a coprojection. Each As → cyl(s) is a cofibration, as it is the composition of
As > > As∐Bs and the pushout of As∐As → As⊗∆1. By Theorem 12.41(4),
each X → Lcyl SX is a relative J ∪ Λ(cyl S)-cell complex. Because E is closed
under transfinite compositions, it suffices to show that E contains the pushout
of elements of J ∪ Λ(cyl S) along any map. This follows from Corollary 12.37;
we have already noted that the As → cyl(s) are termwise coprojections, and
the elements of J are termwise coprojections by hypothesis.

Example 12.44. LetM be either ∆opPshv(C) or ∆oprad(C). The trivial cofi-
brations JC and J rad

C of M satisfy the hypotheses of Proposition 12.43 by Ex-
ample 12.11.1 and Lemma 12.24. If S is any set of cofibrations with cofibrant
domains, then the fibrant replacement X → Lcyl SX is in the ∆̄-closure of J∪S.
Lemma 12.45. Let M be a model category. Suppose that f is a morphism of
pushout squares with the Xi and X

′
i cofibrant for i = 1, 2, 3:

X1 > X2 X ′
1

g
> X ′

2

f−→

X3

g
∨

> X4

∨

X ′
3

g′
∨

> X ′
4

∨

such that g and g′ are cofibrations. If fi : Xi → X ′
i is a weak equivalence for

i = 1, 2, 3 then f4 is also a weak equivalence.

Proof. This is Proposition 15.10.10 in [Hir03].

In order to prove that the class of S-local equivalences is ∆̄-closed, we need
to introduce a few standard constructions.

Definition 12.46. If one forgets the degeneracies in a simplicial object, one
obtains a semi-simplicial object, that is, a contravariant functor from the sub-
category ∆s of injections in ∆. In fact, forgetting the degeneracies is the direct
image i∗ associated with the inclusion i : ∆s

⊂ > ∆; see [Wei94, 8.1.9].
As pointed out before Lemma 12.3 in Section 12.1, i∗ has a left adjoint i∗,

and (i∗i∗K)p is the coproduct of the Kj for j ≤ p, indexed by of the surjections
[p] → [j] in ∆. The functor i∗i∗ is sometimes called the wrapping functor, and
the adjunction counit i∗i∗K → K is a weak equivalence; see [Voe10d, 3.22] or
[Wei94, 8.4.4].

We note that i∗i∗K is split simplicial by construction (with Nn = Kn). By
Theorem 12.5, if each Kj is a coproduct of representable presheaves then i∗i∗K
is projectively cofibrant inM = ∆opE .
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Lemma 12.46.1. The skeleta of i∗i∗K fit into the pushout diagram:

Kn ⊗ ∂∆n > skn−1(i
∗i∗K)

Kn ⊗∆n
∨

> skn(i
∗i∗K).

in
∨

Proof. This is just Proposition VII.1.13 in [GJ99], applied to the split simplicial
(or “degeneracy free”) object i∗i∗K with A = ∅ and Nn = Kn.

Theorem 12.47. Let S be a class of morphisms in ∆oprad(C) such that the
Bousfield localization at S exists. Then the class of S-local equivalences in
∆oprad(C) or ∆opCind is ∆̄-closed.

Proof. We check first that S-local weak equivalences are closed under arbitrary
filtered colimits. For each small filtered category I there is a model structure
on I-diagrams for which the weak equivalences (resp., fibrant objects) are the
maps A → B such that each Ai → Bi is an S-local equivalence (resp., is S-
local). Given a weak equivalence A → B of I-diagrams, we need to show that
colimI A→ colimI B is an S-local equivalence.

Since global weak equivalences are closed under arbitrary filtered colimits,
by Theorem 12.30 and Example 12.29.2, we may assume that the I-diagrams A
and B are cofibrant in this model structure. For any S-local fibrant presheaf X,
the Iop–diagrams Map(A,X) and Map(B,X) are fibrant diagrams of simplicial
sets and hence the induced map

Map(colimI B,X) ∼= lim←−I Map(B,X)→ lim←−I Map(A,X) ∼= Map(colimI A,X)

is a weak equivalence of simplicial sets. By Definition 12.38, the map

colimI A→ colimI B

is an S-local equivalence of simplicial presheaves.
The only other non-trivial thing to check is that if K → K ′ is a bisim-

plicial map with each column Kp,• → K ′
p,• an S-local equivalence, then

diag(K) → diag(K ′) is an S-local equivalence. Applying the functorial cofi-
brant replacement Lres of Construction 12.19 to each column (see 12.25), we
may assume that each column Kp,• and K ′

p,• is cofibrant and that each Kp,q

and K ′
p,q is in C∐.

Let L•,• (resp., L′
•,•) be the bisimplicial objects obtained by applying the

wrapping functor 12.46 to each row K•,q (resp., K
′
•,q). Each row L•,q and L

′
•,q is

cofibrant. In addition, each of the columns of L (and L′) is cofibrant, because the
pth column Lp,• is a coproduct of the cofibrant Kj,• for j ≤ p. Since each Lp,• →
Kp,• is a global weak equivalence, each Lp,• → L′

p,• is an S-local equivalence.

As global weak equivalences are ∆̄-closed, the maps diag(L) → diag(K) and
diag(L′)→ diag(K ′) are global weak equivalences. Therefore it suffices to show
that diag(L)→ diag(L′) is an S-local equivalence.
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Let skn L denote the bisimplicial object whose qth row is the n-skeleton
skn L•,q. We will use induction on n to show that each diag(skn L) and
diag(skn L

′) is cofibrant, and that each diag(skn L)→ diag(skn L
′) is an S-local

equivalence. Since diag(L) is the colimit of the diag(skn L) as n→∞, and simi-
larly for diag(L′), Proposition 17.9.1 of [Hir03] implies that diag(L)→ diag(L′)
is an S-local equivalence between cofibrant objects, as required.

For n = 0, the qth row of sk0 L is the constant presheaf L0,q = K0,q, so
diag(sk0 L) is the first column L0,• of L; this is cofibrant by construction, and
diag(sk0 L)→ diag(sk0 L

′) is an S-local equivalence.
For n > 0, Lemma 12.46.1 yields pushout squares of simplicial objects:

Kn,q ⊗ ∂∆n > skn−1(L•,q) Kn,• ⊗ ∂∆n > diag(skn−1 L)
for all q

and hence

Kn,q ⊗∆n
∨

> skn(L•,q)

in
∨

Kn,• ⊗∆n
∨

> diag(skn L).

in
∨

Since the left verticals are cofibrations, so are the right verticals in. Since
diag(skn−1 L) is cofibrant by induction, it follows that diag(skn L) is cofibrant.
We have a morphism between the pushout squares of Lemma 12.46.1:

Kn,• ⊗ ∂∆n > diag(skn−1 L) K ′
n,• ⊗ ∂∆n > diag(skn−1 L

′)

−→

Kn,• ⊗∆n
∨

> diag(skn L)

in
∨

K ′
n,• ⊗∆n

∨

> diag(skn L
′).

i′n
∨

As the Kn,• → K ′
n,• are S-local equivalences, so are the maps Kn,• ⊗ ∆n →

K ′
n,• ⊗∆n and Kn,• ⊗ ∂∆n → K ′

n,• ⊗ ∂∆n. By Lemma 12.45 and induction on
n, the maps diag(skn L)→ diag(skn L

′) are S-local equivalences.

12.7 Nisnevich-local projective model structure

In this section, we introduce a Bousfield localization of the projective model
structure on presheaves which is suitable for (Nisnevich) sheaf theory. Recall
that we are restricting our attention to the case where C is Sch, Sm or Norm,
and C+ is the category of varieties with a disjoint basepoint.

When C is Sch, Sm or Norm, the Nisnevich topology on C and C+ may be
defined in terms of “upper distinguished” squares; see [MV99, 3.1.3] or [MVW,
12.5]. By definition (see loc. cit.), a commutative square Q of the form

Q :

U ′ > V ′

U
∨ i

> V

f
∨

(12.48)
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is called upper distinguished if i is an open immersion, U ′ = U ×V V ′, f is étale
and (V ′ − U ′)red → (V − U)red is an isomorphism.

The Nisnevich topology on C is the smallest topology such that {U, V ′} is a
covering of V for each upper distinguished square (12.48). A presheaf F on C is
a Nisnevich sheaf if and only if F takes upper distinguished squares to pullback
squares; see [MV99, 3.1.4] or [MVW, 12.7].

Definition 12.49. A morphism X → Y in ∆opPshv(C+) (resp., in ∆oprad(C+)
or ∆opPST(C)) is called a Nisnevich-local equivalence if it induces an isomor-
phism on the Nisnevich sheaves of homotopy groups on each scheme U in C, for
any choice of basepoint x ∈ X(U).

The Nisnevich-local model structure on ∆opPshv(C+) is defined to be the
Bousfield localization of the projective model structure of Definition 12.1 at the
class S of Nisnevich-local equivalences: the cofibrations are the projective cofi-
brations, and the fibrations are determined by the right lifting property. That
this model structure exists was proved by Blander in [Bla01]; the Nisnevich-local
equivalences are the same as the S-local equivalances by Lemma 12.50 below.

When C is Sch, Sm or Norm, the Bousfield localizations of the projective
model structures on ∆oprad(C+) and ∆opPST(C) at the classes of Nisnevich-
local equivalences are also called Nisnevich-local model structures.

We will write ∆opPshv(C+)nis, etc., for these model structures. We will
sometimes refer to them as Nisnevich-local projective model structures, to dis-
tinguish them from their corresponding injective model structures, which are
discussed in Lemma 12.58 below.

The idea of using Bousfield localization to define local model structures is
due to Blander, who proved the following result in [Bla01, Thm. 1.5, Lemma 4.1].
Although Blander’s results are stated for ∆opPshv(C+), his proofs also work for
the model structures on radditive presheaves and presheaves with transfers on
C.
Lemma 12.50. In the Nisnevich-local model structures on ∆opPshv(C+),
∆oprad(C+) and ∆opPST(C), the weak equivalences are exactly the Nisnevich-
local equivalences.

Moreover, a simplicial presheaf F is Nisnevich-local in the sense of Bousfield
localization (Definition 12.38) if and only if (i) F → ∗ is a projective fibration
and (ii) F converts upper distinguished squares to homotopy pullback squares.

Remark 12.50.1. Blander actually considered the Bousfield localization for any
essentially small Grothendieck site on C, i.e., localization at the class S of maps
inducing an isomorphism on the sheaves of homotopy groups, and proved in
[Bla01, 1.5] that S is always the class of S-local equivalences.

Remark 12.50.2. If there were only a set of Nisnevich-local equivalences, we
could also conclude that the model structures exist by Theorem 12.39, as the
projective model structures are left proper (see Remark 12.24.2 and Example
12.24.1), and cellular (by 12.11.1). Thus if we restrict to presheaves X with
the cardinality of all X(U) uniformly bounded by an appropriate cardinal, we
would also get Nisnevich-local model structures.
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By naturality of Bousfield localization [Hir03, 3.3.20], there are Quillen ad-
junctions:

∆opPshv(C+)nis
(−rad, incl)

> ∆oprad(C+)nis
(Rtr, u)

> ∆opPST(C)nis;

∆opPshv(Sm+)nis
(i∗, i∗)

> ∆opPshv(Norm+)nis;

∆opPST(Sm+)nis
(i∗, i∗)

> ∆opPST(Norm+)nis.

It is easy to see that the squares in (12.28.1) also form a commutative diagram
of Nisnevich-local model categories and Quillen adjunctions.

In Section 12.8, we will need the following comparison between the Nisnevich-
local model structures on ∆opPshv(C+) and ∆oprad(C+).

Recall from Definition 12.38 that a presheaf L is Nisnevich-local if Hom(f, L)
is a projective weak equivalence for every Nisnevish-local map f .

Corollary 12.51. A morphism X
f−→ Y in ∆oprad(C+) is a Nisnevich-local

fibration (resp., Nisnevich-local equivalence) if and only if it is a Nisnevich-local
fibration (resp., Nisnevich-local equivalence) in ∆opPshv(C+).

A presheaf X in ∆oprad(C+) is Nisnevich-local if and only if it is Nisnevich-
local in ∆opPshv(C+).

Proof. It suffices to establish the result for (Nisnevich-)local fibrations, since the
other assertions follow formally from Lemma 12.50. One direction is easy: if f
is a local fibration in ∆oprad(C+), then f is a local fibration in ∆opPshv(C+) by
the Quillen adjunction.

Conversely, suppose that f : X → Y is a Nisnevich-local fibration in
∆opPshv(C+), i.e., f has the right lifting property for trivial cofibrations in

∆opPshv(C+). Let j : A >
≃
> B be a trivial cofibration in ∆oprad(C+). We

can factor j in ∆opPshv(C+) as A >
≃
> B′ ≃

>> B, where the first map is a
trivial cofibration and the second map is a trivial fibration; note that B′ is not
radditive. By Lemma 12.26(1), we can also factor j as the composition of a

termwise nice map A> > B̃, the map B̃→ B̃rad, and a retraction B̃rad→B of
B

ι−→ B̃rad. Given the solid square below on the left, the map B′ → B → Y

has a lift λ : B′ → X by the lifting property for f relative to A >
≃
> B′. Thus

we may form the right hand diagram below, in which the top composite is a.
Because B′ ։ B is a trivial local fibration in ∆opPshv(C+), there is a map

β : B̃ → B′ factoring the first square on the right; the evident map λβ factors
the outer square on the right.

A
a

> X A >
≃

> B′ λ
> X

B′

≃
∨

∨

≃
>>

λ
>

B >

?

>

Y

f
∨

B̃

≃
∨

∨

>

β
>

B

≃
∨
∨

> Y

f
∨
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Factoring λβ as B̃ → B̃rad γ−→ X, the composite B
ι−→ B̃rad γ−→ X factors

the large square on the left. Thus f has the right lifting property for trivial
cofibrations in ∆oprad(C+), i.e., f is a local fibration in ∆oprad(C+).

Our next goal is to show (in Proposition 12.54) that the Nisnevich-local
model structure on ∆opPshv(C) is actually the Bousfield localization at a class
S of maps, indexed by the upper distinguished squares. The S-localization is
designed to turn upper distinguished squares into homotopy cartesian squares.

Lemma 12.52. For each diagram B ← A→ C in C, the homotopy pushout K
is cofibrant in ∆opPshv(C), and K ∐K → K ⊠∆1 is a cofibration.

Proof. Recall that K is the pushout of the diagram B∐C ← A∐A→ A⊠∆1.
As pointed out in Example 12.11.1, A ∐ A → A ⊠∆1 is one of the generating
cofibrations in the projective model structure on ∆oprad(C), so the pushout
B ∐ C → K is a cofibration. Since B ∐ C is cofibrant (by Examples 12.4 and
12.14.1), K is cofibrant.

Similarly, (A⊠∆1)⊠ ∂∆1→ (A⊠∆1)⊠∆1 is a cofibration, and K ∐K →
K ⊠∆1 is the pushout of this along A⊠∆1 → K, so it is a cofibration.

Lemma 12.53. Given a diagram B ← A → C of representable presheaves
with homotopy pushout K, and a globally fibrant presheaf F , the simplicial set
Map(K,F ) is the homotopy pullback of the diagram F (B)← F (A)→ F (C).

Proof. For each n, the homotopy pushout of B ⊠∆n ← A ⊠∆n → C ⊠∆n is
K ⊠∆n. Since Map(K,F )n = Hom(K ⊠∆n, F ), this implies that Map(K,F )
is the presheaf pullback of the diagram

Map(A×∆1, F )→ Map(A∐A,F )← Map(B ∐ C,F ).

Here A∐A and B ∐C are coproducts of presheaves. Since F (A) = Map(A,F )
by Lemma 12.2, and similarly for F (B), F (C),

Map(B ∐ C,F ) = Map(B,F )×Map(C,F ) ∼= F (B)× F (C)

and similarly for Map(A ∐ A,F ); see [Hir03, 9.2.3]. Since Map(A ⊠ ∆1, F ) ∼=
Map∆opSets(∆

1, F (A)) by Lemma 12.2, we have the pullback diagram

Map(K,F ) > Map(∆1, F (A))

F (B)× F (C)
∨

> F (A)× F (A).

p
∨

Since F (A), F (B) and F (C) are fibrant, and p is a fibration, Map(K,F ) is the
homotopy pullback of F (B)← F (A)→ F (C); see [Hir03, 13.3.2].

For each upper distinguished square Q as in (12.48), with homotopy pushout
KQ, there is a canonical map sQ : KQ → V .
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Proposition 12.54. The Bousfield localization of ∆opPshv(C) or ∆oprad(C) at
S = {KQ → V } is the Nisnevich-local model structure.

Proof. We give the proof for Pshv(C); the proof for rad(C) is similar. As with
any Bousfield localization, the S-local equivalences are determined by the S-
local objects (that is, the fibrant objects); see 12.38. Thus it suffices to show
that an object is S-local if and only if it is Nisnevich-local. Since the localization
∆opPshv(C)S → ∆opPshv(C)nis is a left Quillen functor, its adjoint preserves
fibrant objects: every Nisnevich-local object is an S-local object.

Conversely, suppose that F is S-local; we need to show that it is Nisnevich-
local. By Lemma 12.50, it suffices to show that it converts upper distinguished
squares into homotopy pullback squares. Given an upper distinguished square
Q as in (12.48), with homotopy pushout KQ, the square

Map(KQ, F ) > F (V ′)

F (U)
∨

> F (U ′)
∨

is a homotopy pullback square by Lemma 12.53, as F is globally fibrant by
Definition 12.38. Since F is S-local and KQ → V is in S, the map from F (V ) ∼=
Map(V, F ) to Map(KQ, F ) is a homotopy equivalence of simplicial sets (see
12.38). It follows that F (Q) is a homotopy pullback square, as required.

Let S denote the class of maps sQ : KQ → V , as Q runs over the upper
distinguished squares in C, and let T denote the class of maps tQ : KQ → cyl(sQ)
(T is the class cyl S of Proposition 12.43). Since each map sQ is a Nisnevich-
local equivalence, and each V → cyl(sQ) is a simplicial homotopy equivalence,
each tQ is also a Nisnevich-local equivalence, and it is clear that the Bousfield
localizations of ∆oprad(C) at S and T are the same.

In fact, each tQ : KQ → cyl(sQ) in T is a cofibration with a cofibrant
domain. To see this, fix Q and recall from Lemma 12.52 that KQ is cofibrant
and KQ∐KQ → KQ⊠∆1 is a cofibration. The pushout of this cofibration along
KQ ∐KQ → KQ ∐ V is also a cofibration, namely tQ ∐ v : KQ ∐ V → cyl(sQ).
Since V is cofibrant, tQ : KQ → cyl(sQ) is a cofibration.

If X is a simplicial object in Cind then so is Lcyl TX, because Lcyl TX is a
relative cell complex for J rad

C ∪Λ(cyl T ); Lcyl TX is a transfinite composition of
pushouts along maps in J rad

C , which are in Cind by 12.32. See Theorem 12.41(4).

Remark 12.54.1. Given Proposition 12.54, Theorem 12.39 implies that these
Nisnevich-local model structures are left proper and cellular. This was also
proven by Blander (Lemmas 1.1 and 1.3 in [Bla01]).

Theorem 12.55. Let S denote the class of morphisms sQ : KQ → V, as Q runs
over all upper distinguished squares (12.48). Then the class of Nisnevish-local
equivalences in ∆opCind is the smallest ∆̄-closed class of morphisms containing
S.
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Proof. ([Voe10d, 3.51]) Let E denote the smallest ∆̄-closed class of morphisms
in ∆opCind containing S. By Theorem 12.47, the class of S-local equivalences is
∆̄-closed. Thus we have

E ⊆ {S–local equivalences} = {Nisnevich–local equivalences}.

(The equality is by Proposition 12.54.) We need to show that every S-local
equivalence f : X → Y is in E. For each f , consider the following diagram.

X
f

> Y

Lcyl T (X)

in E
∨ in E

> Lcyl T (Y )

in E
∨

By Proposition 12.43 and Example 12.44, the fibrant replacement maps X →
Lcyl TX are in E. By the remarks before this theorem, E also contains the class
T of maps KQ → cyl(sQ). By the 2-out-of-3 property, Lcyl T (f) : Lcyl T (X) →
Lcyl T (Y ) is an S-local equivalence between S-local fibrant objects. By Ken
Brown’s Lemma 12.38.2, Lcyl T (f) is a global weak equivalence; by Theorem
12.31, it belongs to E. Again by the 2-out-of-3 property, f is in E.

Application 12.55.1. The functor i∗ : ∆opSmind ⊂ ∆opNormind preserves
global weak equivalences, by Theorem 12.33. It follows from Theorem 12.55
that i∗ also takes Nisnevich-local equivalences to Nisnevich-local equivalences.

We will see another application of Theorem 12.55 in Section 14.3, that the
symmetric powers functors SG preserve Nisnevich-local equivalences.

12.8 Model categories of sheaves

In this section, we compare our Nisnevich-local model structure on presheaves
on C to the Morel–Voevodsky model structure on sheaves introduced in [MV99],
when C is Sch, Sm or Norm. The intermediary is a projective model structure
on Nisnevich sheaves, due to Blander, which we now recall.

By [Bla01, 2.1] there is a proper simplicial cellular projective model structure
on the category ∆opSheaves(C) of simplicial sheaves on C. The weak equiva-
lences and fibrations in this category are the Nisnevich-local equivalences and
fibrations of the underlying simplicial presheaves. The usual sheafification ad-
junction (a∗, a∗) is a Quillen adjunction for both ∆opPshv(C)→ ∆opSheaves(C)
and ∆opPshv(C)• → ∆opSheaves(C)• because the forgetful functor a∗ preserves
fibrations and weak equivalences.

Theorem 12.56. We have Quillen equivalences for both the pointed and un-
pointed Nisnevich-local projective model categories:

∆opPshv(C)nis ∼−→ ∆oprad(C)nis ∼−→ ∆opSheaves(C).
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Proof. Blander observed in [Bla01, 2.2] that sheafification (a∗, a∗) is a Quillen
equivalence ∆opPshv(C) → ∆opSheaves(C) for the Nisnevich-local projective
model structure, because for any simplicial presheaf F the map F → a∗a

∗F is a
Nisnevich-local equivalence. This observation also holds in the pointed setting.

Example 12.14.3 shows that for any simplicial presheaf A the map A →
Arad induces an isomorphism of Nisnevich sheaves. Using Corollary 12.51, it
follows that for any simplicial radditive presheaf B, a map A → B is a local
equivalence in ∆opPshv(C) if and only if the map Arad → B is a local equivalence
in ∆oprad(C). By definition (see 12.0), the Nisnevich-local Quillen adjunction
(−rad, incl) is a Quillen equivalence.

The inclusion i : Sm ⊂ Norm allows us to compare homotopy categories.
The following lemma is taken from [Voe10c, 2.43].

Lemma 12.57. The total direct image Li∗ embeds the Nisnevich-local homo-
topy category of ∆opPshv(Sm)nis into the Nisnevich-local homotopy category of
∆opPshv(Norm)nis as a full (coreflective) subcategory.

Proof. By Lemma 12.3(1), i∗ : ∆opPshv(Sm) → ∆opPshv(Norm) is a full
embedding as a coreflective subcategory (i.e., X ∼= i∗i

∗X for all X). Because i∗
preserves Nisnevich-local equivalences, the proof of Lemma 12.3 goes through to
show that (i∗, i∗) is a Quillen adjunction between the corresponding Nisnevich-
local model structures, and that i∗ ∼= Ri∗. As in the proof of Lemma 12.3(2),
there is an induced adjunction (Li∗,Ri∗) between the homotopy categories, and
Li∗ is a full embedding as a coreflective subcategory: eachX → i∗Li

∗X ∼= i∗i
∗X

is an isomorphism in the homotopy category of ∆opPshv(Sm)nis.

Injective model structures. There is a different model structure on the cat-
egory of simplicial sheaves, called the local injective model structure. Although
the weak equivalences are still the Nisnevich-local equivalences of Definition
12.49, the cofibrations are the monomorphisms, and the fibrations are deter-
mined by the right lifting property. The injective model structure is due to
Joyal (see [Jar86]), and is used by Morel and Voevodsky in [MV99].

Lemma 12.58. The identity map is a Quillen equivalence, from the Nisnevich-
local projective model structure on simplicial sheaves to the Nisnevich-local in-
jective model structure on simplicial sheaves.

Proof. The identity is a Quillen functor because every projective cofibration
is a monomorphism and hence a cofibration for the Nisnevich-local injective
structure (see 12.0). Because the homotopy categories of the two model struc-
tures are both the localization of ∆opSheaves(C) at the class of Nisnevich-local
equivalences, they are canonically isomorphic.

Remark 12.58.1. (Blander) The Nisnevich-local injective model structure on
simplicial sheaves has more cofibrations than the Nisnevich-local projective
model structure. For example, if U → X is an open inclusion then the map
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of representable sheaves is a cofibration in the injective model structure (by def-
inition), but not always a cofibration in the projective model structure, because
it does not have the left lifting property with respect to a Kan fibration F → ∗
unless F (X)→ F (U) is onto.

We now turn to the corresponding results for sheaves with transfers.

Definition 12.59. Let NST(C, R) denote the category of Nisnevich sheaves
of R-modules with transfers (sheaves which are also presheaves with transfers).
By [Jar03, 2.2], the Nisnevich-local equivalences and projective cofibrations de-
termine a proper closed simplicial model structure on the simplicial category
∆opNST(C, R).

Because the sheafification a∗nis(F ) of a presheaf with transfers F is a
sheaf with transfers (see [MVW, 13.1]), and the forgetful functor a∗ to
∆opPST(C, R)nis preserves fibrations and weak equivalences, sheafification de-
termines a Quillen adjunction (a∗, a∗) from ∆opPST(C, R)nis to ∆opNST(C, R).

Theorem 12.60. The adjoint pair (a∗nis, a∗) defines a Quillen equivalence

∆opPST(C, R)nis ≃−→ ∆opNST(C, R).
Moreover, both (equivalent) homotopy categories are equivalent to the full

subcategory D≤0(NST) of the derived category D−(NST(C, R)) of Nisnevich
sheaves of R-modules with transfers on C.

Proof. Let A be in ∆opPST(C, R) and let F be in ∆opNST(C, R). By Definition
12.49, a map A → a∗F is a Nisnevich-local equivalence if a∗nis(A) → F is a
weak equivalence of simplicial sheaves, i.e., a Nisnevich-local equivalence in
∆opNST(C, R). Thus (a∗nis, a∗) is a Quillen equivalence.

The embedding into the derived category follows from the observation that
via the Dold–Kan correspondence, a Nisnevich-local equivalence between sim-
plicial sheaves is the same as a quasi-isomorphism between the associated chain
complexes of sheaves.

Corollary 12.61. The derived functor Li∗ embeds the homotopy category
D≤0(NST(Sm, R)) into the homotopy category D≤0(NST(Norm, R)) as a
coreflective subcategory.

Proof. Immediate from Lemma 12.3 and Theorem 12.60.

12.9 A1-local model structure

We are now ready to provide a model structure on presheaves associated to
the Morel–Voevodsky pointed A1-homotopy category Ho•. For C either Sm or
Norm, consider the class S of maps X × A1 → X (regarded as maps between
constant simplicial presheaves on C) and the corresponding class S+ of maps
X × A1

+ → X+ in the pointed category ∆opPshv(C+).
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Definition 12.62. We write ∆opPshv(C)A1 (resp., ∆opPshv(C+)A1) for the
Bousfield localization of ∆opPshv(C)nis (resp., of ∆opPshv(C+)nis) with respect
to the class S of projections X × A1 → X (resp., to the class S+). They are
called the A1-local projective model structures on these categories, and the weak
equivalences in this model structure are called A1-local equivalences.

We can also form the Bousfield localization ∆opSheaves(C)A1 of the projec-
tive model structure on ∆opSheaves(C) with respect to S. By Remark 12.38.1

and Theorem 12.56, ∆opPshv(C)A1
≃−→ ∆opSheaves(C)A1 is a Quillen equiva-

lence. A similar assertion is true for the pointed categories.

Remark 12.62.1. We could also take the Bousfield localization at the class of
inclusions X → X × A1. Since both the projections and inclusions define the
same class of weak equivalences, the Bousfield localizations are equivalent.

The category ∆opSheaves(C) also has an A1-local injective model structure.
This is defined as the Bousfield localization of the injective model structure
(Lemma 12.58) with respect to the class of maps X → X ×A1. It is the model
category used by Morel and Voevodsky in [MV99, 3.2.1].

Definition 12.63. The A1-homotopy categoryHo(C) is the homotopy category
of the A1-local injective model structure on ∆opSheaves(C).

The pointed A1-homotopy category Ho•(C) is formed in the same way from
pointed simplicial sheaves; see [MV99, p. 109].

Lemma 12.64. The A1-local projective model structure and the A1-local in-
jective model structure on ∆opSheaves(C) are Quillen equivalent. In particular,
they have canonically equivalent homotopy categories. Thus we have Quillen
equivalences:

Ho(∆opPshv(C)A1)
≃−→ Ho(∆opSheaves(C)A1)

≃−→ Ho(C)
Ho(∆opPshv(C+)A1)

≃−→ Ho(∆opSheaves(C+)A1)
≃−→ Ho•(C).

Proof. The class of maps X → X × A1 is is the same class used in Remark
12.62.1 to form the A1-local projective model structure in Definition 12.62. The
first assertion now follows from Lemma 12.58 and Remark 12.38.1. The final
sentences follow from 12.0 and Definition 12.63.

The A1-local equivalences are difficult to describe directly. By Definition
12.38, a map E → F is an A1-local equivalence if for any A1-local L the map
Map(F,L) → Map(E,L) is a Nisnevich-local equivalence. This reduces the
problem to describing A1-local objects. By Definition 12.38, an object L of
∆opPshv(C+) is A1-local if and only if:
(i) L is Nisnevich-local, as characterized in Lemma 12.50, and
(ii) Map(U,L)→ Map(U × A1, L) is a weak equivalence for all U .

By Lemma 12.2, Map(U,L) ∼= L(U). Thus (ii) is equivalent to the condition:
(ii′) L(U × A1)→ L(U) is a weak equivalence for all U in C.

Given Definition 12.62, Theorem 12.47 immediately implies:
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Lemma 12.65. The A1-local equivalences in ∆op(Cind) form a ∆̄-closed class.

We now give another description of A1-equivalences, taken from [Voe10d,
3.49]. Here C is either Sch, Sm or Norm, and ‘sheaves’ means for the Nisnevich
topology on C.

Theorem 12.66. 1In either ∆op(Cind) or ∆opSheaves(C), the A1-local equiv-
alences form the smallest ∆̄-closed class containing the Nisnevich-local equiva-
lences and the projections X × A1 → X.

Proof. By Proposition 12.54 and Definition 12.62, the A1-local (projective)
model structure is the Bousfield localization of the projective model structure
at S0 ∪ Snis, where Snis denotes the class of morphisms sQ : KQ → V described
in Theorem 12.55, and S0 denotes the class of zero-sections X → (X × A1).

Let E denote the smallest ∆̄-closed class of morphisms in ∆opCind contain-
ing both Snis and S0; by Theorem 12.55, E contains all Nisnevich-local equiva-
lences in ∆opCind. The class of A1-local equivalences in ∆op(Cind) is ∆̄-closed,
by Lemma 12.65, so it contains E. It remains to show that every A1-local
equivalence in ∆op(Cind) is in E.

As in the proof of Theorem 12.55, let Tnis denote the class of maps KQ →
cyl(sQ), let S1 be the class cyl(T ), and set S = S0 ∪ S1. Then E contains S,
and the fibrant replacement maps X → LSX of Theorem 12.41(4) also belong
to E by Proposition 12.43.

For each A1-local equivalence f : X → Y , consider the following diagram.

X
f

> Y

LS(X)

in E
∨ in E

> LS(Y ).

in E
∨

By the 2-out-of-3 property, the bottom map LS(f) : LS(X) → LS(Y ) is an
A1-local equivalence between A1-local fibrant objects. By Ken Brown’s Lemma
12.38.2, LS(f) is a global weak equivalence; by Theorem 12.31, LS(f) belongs
to E. Again by the 2-out-of-3 property, f is in E.

Corollary 12.67. The total direct image Li∗ embeds the A1-local homotopy
category Ho•(Sm) into the A1-local homotopy category Ho•(Norm) as a full
(coreflective) subcategory.

Proof. Because i∗ commutes with products, it sends the maps U × A1
+ → U+

to maps (i∗U) × A1
+ → (i∗U)+, which are A1-local equivalences. Because i∗

commutes with colimits, and preserves Nisnevich-local equivalences, Theorem
12.66 implies that i∗ sends A1-local equivalences to A1-local equivalences, and
i∗Y ∼= Ri∗Y for all Y . The proof of Lemma 12.3(2) now goes through, as it did
for Lemma 12.57; that is, it suffices to assume X is A1-cofibrant, in which case
the unit of the adjunction X → i∗LX ∼= i∗i

∗X is an isomorphism.

1The proof of Theorem 12.66 is based on [Voe10d, 3.51] and [Del09, p. 389].
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Notation 12.67.1. When X and Y are smooth, morphisms X → Y in Ho(Sm+)
are the same as morphisms in Ho(Norm+), by 12.67. This justifies writ-
ing [X,Y ]A1 for the morphisms from X to Y in the A1-homotopy category
Ho(Norm+).

Presheaves with transfers. We now turn to the homological side of the
story: the A1-model category structures on simplicial presheaves with transfers.

Definition 12.68. We write ∆opPST(C)A1 for the Bousfield localization of
∆opPST(C)nis with respect to the class of maps Rtr(X) → Rtr(X × A1). We
write Hotr(C) for the associated homotopy category.

Let DM≤0
eff (C) denote the full subcategory of the triangulated category

DMeff
nis(C) of [MVW, 14.1] consisting of complexes concentrated in nonposi-

tive cohomological degrees. Using Theorem 12.60, we immediately obtain the
following result.

Corollary 12.69. The homotopy category Hotr(C) is equivalent to DM≤0
eff (C).

Example 12.69.1. If X• is a pointed simplicial object of C (or Cind), then

LRtr(X•)
≃−→ Rtr(X•) is an equivalence by 12.33.1. If p ≥ q then R(q)[p] is a

nonpositive cochain complex; regarding it as a simplicial object via the Dold–
Kan correspondence, we have:

Hp,q(X•, R) =HomDM(Rtr(X•), R(q)[p])
∼=HomHotr

(LRtr(X•), R(q)[p]) ∼= [(X•)+, uR(q)[p]] .

This observation will be central to Chapter 13.

Remark 12.69.2. Let L be a simplicial presheaf with transfers. Since each X →
X × A1 is a map between cofibrant objects, it is well known that L is A1-local
in ∆opPST(C) if and only if uL is A1-local in ∆opPshv(C+). One reference for
this fact is [Hir03, 3.1.12].

Remark 12.69.3. By naturality of Bousfield localization [Hir03, 3.3.20], the
Quillen adjunctions (i∗, i∗) and (Rtr, u) of (12.28.1) are also Quillen adjunc-
tions for the A1-local model structures, so that (12.28.1) induces a commutative
diagram of A1-local model categories and Quillen adjunctions.

The corresponding diagram of A1-local homotopy categories uses the derived
functors LRtr and Li∗:

HoA1(Sm+)
(Li∗, i∗)

> HoA1(Norm+)

Hotr(Sm)

(LRtr, u)
∨ (Li∗, i∗)

> Hotr(Norm).

(LRtr, u)
∨

(12.70)
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Let M be an object in DM≤0
eff (C) ≃ Hotr(C). Then uM is a simplicial group

object, so its classifying object B(uM) exists; B(uM) is the simplicial object
associated to p 7→ (uM)p. Since u preserves fibration sequences, such as M →
cone(M)→M [1], we see that

u(M [1]) ≃ B(uM).

Similarly, since Rtr preserves cofibration sequences, such as the simplicial sus-
pension sequence V+ → cone(V )+ → ΣV , we have

Rtr(ΣV ) ≃ Rtr(V )[1]. (12.71)

If V is any simplicial radditive presheaf on Norm+, the natural transforma-
tion Rtr(i∗V )→ i∗(RtrV ) is an A1-local equivalence of presheaves with transfers
on Sm, because it is a global weak equivalence by (12.28.1). Thus Rtr(i∗V ) and
i∗(RtrV ) are identified in DMeff

nis.
We can use (12.71) to obtain an interpretation of the motivic cohomol-

ogy of any V in ∆opNorm+. By (12.70) and Example 12.33.1, Lres (i∗V ) ≃
i∗Lres (V ) ≃ i∗V . Therefore

Hp,q(V,R) =
[
i∗V, uR(q)[p]

]
A1
∼=

HomDM(LRtr(i∗V ), R(q)[p]) = HomDM(i∗Rtr(V ), R(q)[p]).

Topological realization 12.72. There is a realization functor from Sm/C
to the category Toplc of locally contractible topological spaces, sending X to
X(C) and A1

C
to a contractible space. This implies that there is an inverse image

functor, from ∆opPshv(Sm/C) to simplicial sheaves on Toplc, sending A1-local
equivalences to weak equivalences. By Morel–Voevodsky [MV99, 3.3.3], the in-
clusion of simplicial sets into simplicial sheaves on Toplc induces an equivalence
of homotopy categories (its inverse is evaluation of a simplicial sheaf on the
topological simplices). Hence we have a functor tC from the A1-homotopy cat-
egory Ho(Sm/C) to the usual homotopy category; see [MV99], 2.1.57, 2.3.17
and 3.3.4ff. Up to homotopy, the topological realization functor sends An−0 to
S2n−1 and An/(An−0) to S2n.

The Quillen functor u : ∆opPST(Sm) → ∆oprad(Sm+) of Remark 12.69.3
lands in the category of simplicial sheaves of R-modules. Composition with
tC gives a simplicial R-module, which we may identify with a chain complex
using the Dold–Kan correspondence. As the composition sends A1-local equiv-
alences to chain homotopy equivalences, it induces a functor on homotopy cate-
gories. By the previous paragraph, tC sends La[b] to the reduced chain complex

C̃∗(S
2a+b, R) and the reduced motive S̃m(La[b]) of (14.1) to C̃∗(S̃

m(S2a+b), R).

12.10 Historical notes

The global projective model structure on simplicial presheaves was present in
Quillen’s foundational paper [Qui67] on homotopical algebra. Brown and Ger-
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sten introduced the local projective model structure in [BG73] as a descent tool
for simplicial sheaves, and the injective model structure on simplicial sheaves
is due to Joyal; see [Jar86]. These model structures were studied by Jardine,
who pointed out in [Jar87] and [Jar00, App.B] that the model structures could
profitably be lifted to presheaves.

The original model structure used by Morel and Voevodsky in [MV99, 2.1.4]
to define the motivic homotopy category Ho was the global injective model
structure on simplicial sheaves, and the A1-localization of this model structure.
Blander pointed out in [Bla01] that this could also be accomplished using the
projective model structure and its Bousfield localizations on either sheaves or
presheaves, as we have done here; see also [RØ06]. Theorem 12.5 is new.

The radditive functors approach we have used is taken from [Voe10d]. Some
of the characterizations are new, such as 12.26 and 12.51. Our definition 12.29 of
a ∆̄-closed class is taken from [Voe10d, 2.18]. This differs slightly, both from the
definition in [Del09] — which requires arbitrary coproducts — and the original
definition in [Voe00a]. Theorem 12.47 is new.

The construction of the Hurewicz functor Rtr was done independently by
many people; see [Spi01, 14.7], [Mor04, p. 241], [Wei04] and [Rio07]. It is also
implicit in the 2000 preprint [Voe00a], and underlies the viewpoint presented in
[Voe03c, 2.1]. The use of the adjunction (Rtr, u) to construct classifying spaces
is taken primarily from [Voe10c], and partially from [Wei09].
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Cohomology operations

Fix a perfect field k. Although motivic cohomology was originally defined for
smooth varieties over k, it is more useful to view it as a functor defined on
the pointed A1-homotopy category Ho•, originally constructed by Morel and
Voevodsky in [MV99, 3.3.2] and discussed in Section 12.9 above.

After defining cohomology operations and giving a few examples, we devote
Section 13.2 to an axiomatic treatment of the motivic Steenrod operations,
following Voevodsky [Voe03c]. The motivic Milnor operations are presented in
Section 13.4. In Section 13.6, we show that the sequence of Milnor operations
Qi is exact on the reduced cohomology of the suspension ΣX attached to a
Rost variety X, using the degree map tN of Section 13.5. We conclude with
Voevodsky’s motivic degree theorem in Section 13.7, which is needed for the
proof of Proposition 5.16.

13.1 Motivic cohomology operations

For each abelian group A, the motivic cohomology groups Hp,q(−, A) form a
bigraded family of functors from smooth (simplicial) schemes to abelian groups.
By definition, there is a chain complex A(q)[p] of sheaves with transfers so that
Hp,q(X,A) = HomDM(Rtr(X), A(q)[p]); see [MVW, 3.1].

Suppose for simplicity that p ≥ q. Then the cochain complex A(q)[p] is zero
in positive degrees, so it may be identified with a simplicial sheaf with transfers
(by the Dold–Kan correspondence); we define K(A(q), p) to be the underlying
pointed simplicial sheaf uA(q)[p]. Via the adjunction (Rtr, u) in (12.70), we saw
in Example 12.69.1 that for every smooth (simplicial) scheme X we have

Hp,q(X,A) = HomHotr
(Rtr(X), A(q)[p]) ∼= HomHo•(X+,K(A(q), p)).

(Here X+ is X with a disjoint basepoint.) This formula allows us to extend
motivic cohomology from smooth schemes to the pointed A1-homotopy category
Ho•.
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Definition 13.1. Given a pointed motivic space M , we define the reduced
motivic cohomology of M , H̃p,q(M,A), to be HomHo•(M,K(A(q), p)).

A cohomology operation φ is a natural transformation from H̃r,s(−, A) to

H̃p,q(−, B) of contravariant functors Ho• → Sets. It depends upon the integers
r, s, p, q and the groups A and B; we say that φ has bidegree (p− r, q − s).

By construction, H̃p,q(−, A) is a representable cohomology theory on Ho•.

Using the natural isomorphism Hp,q(X,A) ∼= H̃p,q(X+, A), a cohomology oper-
ation also determines a natural transformation φX : Hr,s(X,A) → Hp,q(X,B)
of functors defined on ∆opSm.

For example, if R is a ring then H̃∗,∗(M,R) is a ring, and any monomial

f(x) = cxi with c ∈ Hp,q(k,R) defines a cohomology operation on H̃r,s(−, R),
taking values in H̃p+ir,q+is(−, R).

Lemma 13.1.1. If c 6=0, the operations x 7→ cxi are nonzero on H2n,n(−, R).

Proof. By the Projective Bundle Theorem ([MVW, 15.5]), there is a canonical
line element u ∈ H2,1(PN , R) such that

H∗,∗(PN , R) ∼= H∗,∗(k,R)[u]/(uN+1).

When N ≥ ni and x is un ∈ H2n,n(PN , R), cxi = cuni is nonzero.

By the Yoneda Lemma, cohomology operations on H̃r,s(−, A) are classified
by the motivic cohomology of K(A(s), r), with the identity operation x 7→ x

corresponding to the canonical element α = αAr,s ∈ H̃r,s(K(A(s), r), A). We
record this:

Lemma 13.2. The set of cohomology operations ψ : H̃r,s(−, A)→ H̃p,q(−, B)

is in 1–1 correspondence with elements of H̃p,q(K(A(s), r), B), with ψ corre-
sponding to ψ(α).

Example 13.2.1 (H2,1). The classifying space K(Z(1), 2) is represented by
the pointed ind-scheme (P∞, ∗); see [MV99, 4.3.8] or [Voe03c, 2.1]. Since

H∗,∗(P∞, R) = lim←− H̃
∗,∗(PN , R) is the power series ring H∗,∗(k,R)[[t]] for every

ring R (by the Projective Bundle Theorem [MVW, 15.5]), motivic cohomology

operations H̃2,1(−,Z) → H̃p,q(−, R) are classified by sequences (a1, a2, ...) in
the finite sum ⊕qi=1H

p−2i,q−i(k,R).
We can interpret the cohomology operation corresponding to (a1, ...) as the

polynomial x 7→ f(x) =
∑
aix

i. Thus if t denotes a formal variable of bidegree

(2, 1) then cohomology operations H̃2,1(−,Z) → H̃p,q(−, R) are just homoge-
neous polynomials f(t) in H∗,∗(k,R)[t] of bidegree (p, q).

Example 13.2.2 (H1,1). The pointed scheme Gm = (A1−{0}, 1) represents the
classifying space K(Z(1), 1). This follows from the homotopy fibration sequence
Gm → A∞−{0} → P∞ and Example 13.2.1; another proof will be given in

15.6 below. Since H̃p,q(Gm, R) ∼= Hp−1,q−1(k,R), every motivic cohomology
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operation H̃1,1(−,Z) λ−→ H̃p,q(−, R) has the form λ(x) = ax for a unique
a ∈ Hp−1,q−1(k,R). The element a is determined by λ(t) = at, where t ∈
H̃1,1(Gm,Z) is the canonical element, via the isomorphism Hp−1,q−1(k,R) ∼=
H̃p,q(Gm, R) sending a to at.

Example 13.2.3 (H0,0). Since K(A, 0) is the pointed set A, it is not hard to

see that cohomology operations H̃0,0(−, A)→ H̃p,q(−, B) correspond to pointed
functions f : A → Hp,q(k,B) (sending 0 to 0). If X is a smooth connected
scheme then the cohomology operation corresponding to f is the composition

H0,0(X,A) = A
f−→ Hp,q(k,B)→ Hp,q(X,B).

Operations in weight 0. The case s = q = 0 may be classically understood
as topological cohomology operations, classified in [Car54], because of the fol-
lowing well known lemma. If X is a smooth scheme, let π0(X) denote the set of
its components; if X• is a smooth simplicial scheme, π0(X•) is a simplicial set.

Lemma 13.3. For every smooth simplicial scheme X•, the motivic cohomology
group Hp,0(X•, A) is isomorphic to the topological cohomology Hp

top(π0X•, A) of
the simplicial set π0(X•).

Proof. For smooth connected X we have Hp,0(X,A) = Hp
zar(X,A) = 0 for

p > 0 and H0,0(X,A) = A almost by definition; see [MVW, 3.4]. Hence the
spectral sequence Ep,q1 = Hq(Xp, A)⇒ Hp+q,0(X•, A) degenerates, as E

p,q
1 = 0

for q 6= 0, and the q = 0 row E∗,0
1 is the chain complex Hom(π0(X•), A). As the

cohomology of this complex is H∗
top(π0(X•), A), we are done.

Proposition 13.4. Motivic cohomology operations H̃r,0(−, A) → H̃p,0(−, B)
are in 1–1 correspondence with the classical topological cohomology operations
H̃r

top(−, A)→H̃p
top(−, B).

Proof. LetK(A, r) denote the simplicial Eilenberg–MacLane space representing
Hr

top(−, A). As an object of Ho•, K(A(0), r) is represented by the pointed
simplicial scheme which in degree i is the disjoint union of copies of Spec(k)
indexed by the elements of the set K(A, r)i. In particular, π0(K(A(0), r)) =

K(A, r). Lemma 13.3 implies that H̃p,0(K(A(0), r), B) ∼= H̃p
top(K(A, r), B).

Example 13.4.1. Consider the vector space V of all cohomology operations
H2a+1,0(−,Z/ℓ)→ H2aℓ+2,0(−,Z/ℓ) which vanish on suspensions. By Proposi-
tion 13.4, V is in 1–1 correspondence with the kernel of the map

H2aℓ+2
top (K(Z/ℓ, 2a+ 1),Z/ℓ)→ H2aℓ+1

top (K(Z/ℓ, 2a),Z/ℓ)

induced by ΣK(Z/ℓ, 2a) → K(Z/ℓ, 2a + 1). By [Ser52] and [Car54], V is a
1-dimensional vector space spanned by βP atop. (For ℓ = 2 we have Sq2a+1

top =
βP atop.) This observation is used in Corollary 6.32.
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Remark 13.4.2. Recall that in topology the classical Eilenberg–MacLane space
BG = K(G, 1) of a group G represents cohomology in the sense that
H1

top(X,G) = [X,BG]. There is a canonical element α1 ∈ H1
top(BG,G), cor-

responding to the identity of BG, and the Yoneda Lemma yields a 1–1 corre-
spondence between cohomology operations ψ : H1

top(−, G)→ Hp
top(−,Z/ℓ) and

elements of Hp
top(BG,Z/ℓ), given by ψ 7→ ψ(α1).

In motivic cohomology, we have the simplicial classifying space B•(G), which
is the simplicial set BG regarded as a simplicial scheme. In simplicial degree i,
B•(G) is the disjoint union over the indexing set Gi+1 of copies of Spec(k) in
simplicial degree i, and the simplicial structure comes from the group structure
of G. Now set G = Z/ℓ. By Lemma 13.3, H1,0(−,Z/ℓ) is represented by B•(G)
in the motivic homotopy category. Again by the Yoneda Lemma, there is a 1–
1 correspondence between motivic cohomology operations ψ : H1,0(−,Z/ℓ) →
Hp,q(−,Z/ℓ) and elements of Hp,q(B•G,Z/ℓ), given by ψ 7→ ψ(α1), where α1

is the canonical element of H1,0(B•G,Z/ℓ). These facts were also mentioned in
Section 6.6, and used in Proposition 6.29.

Bi-stable operations. Recall from Definition 1.41 that a family of operations
φr,s : Hr,s(−, A) → Hr+i,s+j(−, B) of bidegree (i, j) is called bi-stable if it
commutes with both the simplicial suspension and the Tate suspension isomor-
phisms. (It is simplicially stable if it commutes with the simplicial suspension.)
For every c ∈ Hp,q(k,Z), the left multiplication λr,s(x) = c x is a bi-stable
operation.

Since simplicially stable operations (and hence bi-stable operations) are ad-
ditive by [Voe03c, 2.10], the non-additive operations in Examples 13.2.1 and
13.2.3 are not bi-stable. The additive operations f(x) = xℓ defined on H2,1 do
extend to bi-stable operations, namely the bi-stable operations P 1 defined in
the next section. The operations f defined on H0,0(−,Z/ℓ) in Example 13.2.3
are only additive when f is a homomorphism, and in that case correspond to
multiplication by f(1) ∈ Hp,q(k,B).

The canonical example of a bi-stable operation is the family of Bockstein
operations β : Hp,q(X,Z/ℓ) → Hp+1,q(X,Z/ℓ), which are the boundary maps
in the long exact sequence associated to the exact coefficient sequence 0 →
Z/ℓ(q) → Z/ℓ2(q) → Z/ℓ(q) → 0. It is the reduction modulo ℓ of the integral
Bockstein β̃ : Hp,q(X,Z/ℓ) → Hp+1,q(X,Z), the boundary map associated to

the exact sequence 0 → Z(q)
ℓ→ Z(q) → Z/ℓ(q) → 0. It is well known that

β2 = 0, because it is the composition

Hp,q(X,Z/ℓ)
β̃→ Hp+1,q(X,Z)→ Hp+1,q(X,Z/ℓ)

β→ Hp+2,q(X,Z/ℓ),

The following result is stated without proof in [Voe03c, (8.1)].

Lemma 13.5. The Bockstein is a derivation with respect to the cup product on
H∗,∗(X,Z/ℓ).

Proof. (Folklore) Recall that Hp,q(X,Z/ℓν) is the pth hypercohomology of a
chain complex Z(q)/ℓν of Zariski sheaves. Choose flasque Godement-style res-
olutions Z(q)/ℓ2 → I(q) whose stalks are free (=injective) Z/ℓ2-modules, and
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write Ī(q) for I(q)/ℓ, so that Z(q)/ℓ→ Ī(q) is also a flasque resolution. Given
cycles ūi (i = 1, 2) representing ui ∈ Hpi,qi(X,Z/ℓ), lift them to chains u′i in
I(qi); then β(ui) is represented by u′′i , defined by δ(u′i) = i(u′′i ).

The cup product u1 ∪ u2 is represented by the image of ū1 ⊗ ū2 under the
map m : Ī(q1)⊗Ī(q2)→ Ī(q1+ q2) resolving Z/ℓ(q1)⊗Z/ℓ(q2)→ Z/ℓ(q1+ q2);
see [MVW, 3.11]. Since the coboundary on I(q1)⊗ I(q2) satisfies

δ(u′1 ⊗ u′2) = i(u′′1)⊗ u′2 + (−1)p1u′1 ⊗ i(u′′2) = i(u′′1 ⊗ ū2) + (−1)p1i(ū1 ⊗ u′′2)

it follows that β(u1 ∪u2) is represented by m(u′′1 ⊗ ū2)+ (−1)p1m(ū1⊗u′′2), i.e.,
by β(u1) ∪ u2 + (−1)p1u1 ∪ β(u2).

13.2 Steenrod operations

One important family of bi-stable (and hence additive) cohomology operations
are the reduced power operations P i, which were constructed by Voevodsky in
[Voe03c, p. 33], and mirror the classical Steenrod operations P itop in topology.
In this section, we assume that 1/ℓ ∈ k and give an axiomatic description of
their salient properties; Voevodsky’s construction of the P i is sketched in the
next section, following [Voe03c].

The operation P i on H̃∗,∗ is bi-stable of bidegree (2i(ℓ− 1), i(ℓ− 1)). Thus

P i : H̃p,q(X,Z/ℓ)→ H̃p+2i(ℓ−1),q+i(ℓ−1)(X,Z/ℓ).

for X in Ho•. The following list of axioms are verified in [Voe03c, §9–§10].
Axioms for Steenrod Operations 13.6. The operations P i satisfy:

1. P 0x = x for all x, and P ix = xℓ if x has bidegree (2i, i).

2. P ix = 0 if x has bidegree (p, q) with q ≤ i and p < q + i.

3. If ℓ > 2, the usual Cartan formula Pn(xy) =
∑n
i=0 P

i(x)Pn−i(y) holds.
The Cartan formula for βPn(xy) follows from this since β is a derivation.

4. If ℓ > 2, the usual Adem relations hold (compare [Ste62, p.77]). For i < jℓ:

P iP j =

[i/ℓ]∑

t=0

(−1)i+t
(
(ℓ− 1)(j − t)− 1

i− tℓ

)
P i+j−tP t;

P iβP j =

[i/ℓ]∑

t=0

(−1)i+t
(
(ℓ− 1)(j − t)

i− tℓ

)
βP i+j−tP t

+

[(i−1)/ℓ]∑

t=0

(−1)i+t−1

(
(ℓ− 1)(j − t)− 1

i− tℓ− 1

)
P i+j−tβP t.

The Adem relations for βP iP j follow since β is a derivation.
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If ℓ > 2, it follows from the axioms that the P i and the Bockstein β generate
a bigraded ring, isomorphic to the topological Steenrod Algebra A∗

top(Z/ℓ) de-

scribed in [Ste62, VI]. In particular, every monomial in β and the P i is a unique
Z/ℓ-linear combination of the admissible monomials:

βǫ0P s1βǫ1 · · ·P skβǫk , ǫi = 0, 1 and si ≥ ℓsi+1 + ǫi.

The Adem relations show that the admissible monomials form a basis for the
Z/ℓ-subalgebra of the ring of all bi-stable cohomology operations, isomorphic to
A∗

top(Z/ℓ).

Axioms for Sqa 13.7. When ℓ = 2 we define Sq2i to be P i, and define Sq2i+1

to be βP i. In particular, Sq0(x) = x and Sq1(x) = β(x) is the Bockstein. Thus
Sq2i has bidegree (2i, i) and Sq2i+1 has bidegree (2i+1, i). The operations Sqi

satisfy the following axioms, the first two of which are special cases of 13.6(1,2):

1. Sq0(x) = x for all x, and Sq2i(x) = x2 if x has bidegree (2i, i).

2. Sq2i(x) = 0 if x has bidegree (p, q) with q ≤ i, p < q + i.

3. A modified Cartan formula holds:

Sq2n(xy) =
∑

i+j=n

Sq2i(x)Sq2n−2i(y) + τ
∑

i+j=n−1

Sq2i+1(x)Sq2j+1(y),

where τ is the nonzero element in H0,1(k,Z/2) = µ2
∼= Z/2. The Cartan

formula for Sq2n+1(xy) follows from this since β is a derivation.

4. Modified Adem relations hold; these are taken from [Voe03a, 10.2].

Sq2iSq2k =
i∑

t=0 even

(
2k − t− 1

2i− 2t

)
Sq2i+2k−tSqt

+ τ

i∑

t=0 odd

(
2k − t− 1

2i− 2t

)
Sq2i+2k−tSqt, 0 < i < 2k

Sq2iSq2k+1 =

i∑

t=0

(
2k − t
2i− 2t

)
Sq2i+2k+1−tSqt

+ β(τ)

i∑

t=0 odd

(
2k − t
2i− 2t

)
Sq2i+2k−tSqt, 0 < i < 2k + 1.

The Adem relations for Sq2i+1Sqb follow from this since β is a derivation.

Remark 13.7.1. When comparing with other formulations of the Adem relations
for ℓ = 2, it is useful to recall that if n is even and j is odd then

(
n
j

)
≡ 0 (mod 2).
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Formally setting τ = 1 and β(τ) = 0 transforms the Adem relations 13.7(4)
for ℓ = 2 into the topological Adem relations (see [Ste62, p. 2]): If 0 < a < 2b
then

SqaSqb =

[a/2]∑

t=0

(
b− t− 1

a− 2t

)
Sqa+b−tSqt.

Remark 13.7.2. Let α1 be the canonical element of H1,0(B•Z/2,Z/2). By
Axiom 13.7(2), Sq2(τα1) = Sq2(τ) = 0; by the Cartan formula 13.7(3),
τSq2(α1) = τβ(τ)β(α1). Now multiplication by τ is injective, as a consequence
of the Milnor Conjecture (the main theorem of this book for ℓ = 2). This proves
that Sq2(α1) = β(τ)β(α1), which is nonzero, while Sq3(α1) = β Sq2(α1) = 0.

Definition 13.8. Let A∗,∗ = A∗,∗(k,Z/ℓ) denote the subalgebra of the ring of
all bi-stable cohomology operations generated by the P i, β and left multiplica-
tion by elements of H∗,∗(k,Z/ℓ). The Adem relations show that it is free as
a left H∗,∗(k,Z/ℓ)-module, with the admissible monomials as a basis, even if
ℓ = 2; see [Voe03c, 11.5].

13.3 Construction of Steenrod Operations

In this section, we briefly sketch Voevodsky’s construction of the motivic co-
homology operations. They are modelled on Steenrod’s construction, which we
recall.

Topological operations: The topological Steenrod operations P i are con-
structed in [Ste62] as follows. Let us write H∗(X) for H∗

top(X,Z/ℓ) and let Cℓ
denote the cyclic group of order ℓ. Steenrod first constructs a reduced power
operation in [Ste62, VII.2.3]:

P : Hn(X) −→ Hnℓ
Cℓ
(X) ∼=

⊕

i+j=nℓ

Hi(X)⊗Hj(BCℓ).

If ℓ 6= 2, H∗(BCℓ) is Z/ℓ[[c, d]]/(c2 = 0) with β(c) = d; if ℓ = 2, H∗(BCℓ)
is Z/ℓ[[c]]. In either case, c ∈ H1(BCℓ) so there is a canonical element wj in
Hj(BCℓ) for all j ≥ 0. Steenrod defines P i(x) for x ∈ Hn(X) and i ≤ n/2 to
be the coefficient of (−1)iw(n−2i)(ℓ−1) (times a constant νn if ℓ 6= 2); see [Ste62,
VII.6.1].

Motivic operations: For every subgroup G of the symmetric group Σℓ,
and each n > 0, Voevodsky constructs a map K(Z/ℓ(n), 2n) ∧ (BgmG)+ →
K(Z/ℓ(nℓ), 2nℓ) in [Voe03c, 5.3 and p. 28], representing a power map

P : H̃2n,n(−) −→ H̃2nℓ,nℓ(− ∧BgmG+).
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Here we abbreviate H̃∗,∗(−,Z/ℓ) as H̃∗,∗. He then uses the computation, given
in [Voe03c, 6.16] (and sketched in 15.16 and Corollary 15.17 below), that

H∗,∗(BgmΣℓ) =

{
H∗,∗(k)[[c, d]]/(c2 = 0), ℓ 6= 2;

H∗,∗(k)[[c, d]]/(c2 + τd+ ρc), ℓ = 2.

Here c ∈ H2ℓ−3,ℓ−1(BgmΣℓ), d ∈ H2ℓ−2,ℓ−1(BgmΣℓ) and β(c) = d. Moreover,
by the Künneth formula (see Proposition 15.30):

H∗,∗(X ×BgmΣℓ) ∼= H̃∗,∗(X+ ∧ (BgmΣℓ)+) ∼= H∗,∗(X)⊗H∗,∗(k) H∗,∗(BgmΣℓ).

For x ∈ H2n,n(X) and a ≤ n/2, Voevodsky defines P i(x) to be the coefficient
of dn−i in P (x); see [Voe03c, (9.1) and p. 33].

If p 6= 2q, Voevodsky defines P i on Hp,q(X) to make the following diagram
commute for b large and a = 2q − p+ b, so that p+ a+ b = 2(q + b):

Hp,q(X)
∼=

> Hp+a+b,q+b(Sa ∧Gbm ∧X)

Hp+2i(ℓ−1),q+i(ℓ−1)(X)

P i

∨ ∼=
> Hp+a+b+2i(ℓ−1),q+b+i(ℓ−1)(Sa ∧Gbm ∧X).

P i

∨

This produces a bi-stable family of operations; see [Voe03c, Prop. 2.6]. Finally,
the verification of the axioms 13.6–13.7 is given in Sections 9–10 of [Voe03c].

13.4 The Milnor operations Qi

In this section, we introduce the sequence ofmotivic Milnor operations Qi, i ≥ 0.
These are bi-stable motivic cohomology operations, starting with the Bockstein
Q0. For ℓ 6= 2, they satisfy the same formulas as the Milnor operations Qtop

i in
topology, but the formulas are slightly different when ℓ = 2.

13.9. Topological Milnor operations: The topological Steenrod algebra
A∗ = A∗

top contains a distinguished family of cohomology operations Qtop
i , i ≥ 0,

called the Milnor operations after their discovery by Milnor in [Mil58]. By
definition, Qtop

0 is the Bockstein; the rest are determined inductively by the
commutator formula

Qtop
i+1 = [P ℓ

i

top, Q
top
i ].

Thus Qtop
i has degree 2ℓi−1 and Qtop

1 = P 1
topβ−βP 1

top. Milnor proved in [Mil58,
4a] that the Qi generate an exterior algebra under composition, i.e., Q2

i = 0
and QiQj = −QjQi, and in [Mil58, Lemma 9] that the Qi are derivations.
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Milnor’s paper [Mil58] also defined a family of cohomology operations P r
top,

indexed by finite sequences r = (r1, r2, ...) of natural numbers, such that the
usual operation P rtop is P r

top when r = (r), and proved in [Mil58, 4a] that

P rQi −QiP r = Qi+1P
r−(ℓi,0,0) +Qi+2P

r−(0,ℓi,0) + · · · . (13.9.1)

In fact, the finite products Qtop
i1
· · ·Qtop

is
P r
top (i1 < · · · < is) form a basis of the

topological Steenrod algebra A∗; see [Mil58, 4a].
By Theorem 1 of [Mil58], there is a coproduct ∆ : A∗ → A∗⊗A∗, making the

graded dual A∗ into a graded Hopf algebra. By Theorem 2 of [Mil58], A∗ is the
tensor product of an exterior algebra in variables {τ1, τ2, ...} with a polynomial
algebra in variables {ξ1, ξ2, ...}, with τi dual to Qi; Milnor defines P (r1,r2,...) to
be dual to the product ξr1ξr2 · · · , so that ξj is dual to P

rj ;

Definition 13.10. When ℓ 6= 2, the Milnor operation Qi on H∗,∗(X,Z/ℓ) is
the cohomology operation of bidegree (2ℓi − 1, ℓi − 1) defined inductively by

setting Q0 = β (the Bockstein), Q1 = P 1β − βP 1, and Qi+1 = [P ℓ
i

, Qi].
When ℓ = 2, we again set Q0 = Sq1 = β (the Bockstein) and Q1 = P 1β −

βP 1 = Sq3+Sq2Sq1. Voevodsky defines operations P r using Milnor’s formulas
(see Remark 13.10.1) and shows in [Voe03c, 13.6] that the remaining Qi may
be defined inductively by the formula Qi = [β, P ri ], where ri is the sequence
(0, ..., 0, 1) of length i.

Remark 13.10.1. It is convenient to write QE for Qi1 · · ·Qis , where E denotes
the finite sequence (i1, ..., is). As in the topological situation 13.9, the finite
products QEP r form a basis of the motivic Steenrod algebra A∗,∗(k) even when
ℓ = 2. In fact, Voevodsky constructs a coproduct ∆ on A∗,∗ in [Voe03c, 11.8]
and shows in [Voe03c, 12.6] that the dual A∗,∗ is a commutative algebra having
a basis consisting of monomials τEξr, where τE = τi1 · · · τis and ξr =

∏
ξrii ; in

[Voe03c, 13.2] he defines Qi to be the dual of τi and defines P r to be the dual
of ξr.

Lemma 13.11. When ℓ 6= 2, the Qi generate an exterior algebra under com-
position, and each Qi is a derivation: Qi(xy) = Qi(x)y + xQi(y). Moreover,

P rQi = QiP
r +Qi+1P

r−ℓi , Qi = P riβ − β P ri .

Proof. As noted after 13.6, when ℓ 6= 2 the subalgebra of bi-stable motivic oper-
ations generated by the Bockstein and the P i is isomorphic to A∗

top. Therefore
the first sentence follows formally from 13.9. To see the final assertions, note that
Milnor’s formula (13.9.1) with r = (r, 0, ...) becomes P rQi−QiP r = Qi+1P

r−ℓi,
and that Milnor’s formula with r = ri = (0, ..., 0, 1) becomes [P ri , Q0] = Qi.

The following consequence will be used in Lemma 5.14.

Corollary 13.12. If ℓ 6= 2 then

βP b = P bβ − P b−1Q1 + P b−1−ℓQ2 − P b−1−ℓ−ℓ2Q3 + · · · .
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The analogue of Lemma 13.11 for ℓ = 2 involves the class ρ = β(τ) of −1
in k×/k×2 = H1,1(k,Z/2). This is illustrated by the formula Q2 = [P 2, Q1] +
ρQ0Q1P

1 of [Voe03c, 13.7], which is the special case P 2Q1 of our next formula.

Lemma 13.13. When ℓ = 2, the Qi generate an exterior algebra under com-
position and we have

P rQk = QkP
r +Qk+1P

r−2k + ρQk−1QkP
r−2k−1

+ ρ2Qk−2Qk−1QkP
r−3·2k−2

+ · · ·++ρj Qj · · ·QkP r−(2j−1)2k−j

+ · · · .

Proof. It suffices to write P rQk in terms of the standard basis QEP r of A∗,∗

described in 13.10.1. This basis element cannot occur unless the coproduct of
τEξr contains ξr1⊗τk, by [Voe03c, (12.9)]. By inspection, the only term ξr which
can occur is ξa1 , whose coproduct contains ξa1 ⊗ 1. Following Milnor’s method
in [Mil58], we must look for terms τE whose coproduct contains ξb ⊗ τk. The

two univariate terms τE = τk, τk+1 contain 1 ⊗ τk and ξ2
k

1 ⊗ τk, leading to the

terms QkP
r +Qk+1P

r−2k , and no other univariate terms are possible.
To check the remaining terms τE , we must check the τj whose coproduct

contains ξb1 ⊗ τi for i < k. The only possibilities are τj for j ≤ k since ψ∗(τ0) =

τ0 ⊗ 1 + 1 ⊗ τ0, and if j > 0 then ψ∗(τj) contains 1 ⊗ τj + ξ2
j−1

1 ⊗ τj−1. Since
τ2j = ρτj+1 + ρτ0ξj+1 + [−1]ξj+1 by [Voe03c, 12.6], the term τj cannot occur
for j < k without τj+1 also occurring. By induction on k with E = (ǫ0, ..., ǫk),
ψ∗(τ

E) can only contain ξb1 ⊗ τk when E is Ej = (0, ..., 0, 1, 1, ..., 1) (j zeros),
and in this case it contains ρjξb1⊗τk for b = 2k−j+ · · ·+2k−1 = 2k−j(2j−1).

The following consequence is needed to prove Lemma 5.14.

Corollary 13.14. If ℓ = 2 and Qj(x) = 0 for j = 0, ..., k − 1 then

Qk+1P
r−2k(x) = P rQk(x) +QkP

r(x), and hence Qk+1(x) = [P 2k , Qk](x).

Proof. This follows from Lemma 13.13 by induction on k. If j < k the hypothesis
that Qj(x) = 0 and the inductive formula for QjP

a(x) shows that the term
Qj+1 · · ·Qk(QjP a)(x) contains Q2

j+1 = 0.

Remark 13.14.1. If ℓ = 2, the Qi need not be derivations unless
√
−1 ∈ k (so

ρ = 0). For example, Q1(xy) = Q1(x) y + xQ1(y) + ρ (βx)(βy). It is proven in
[Voe03a, 13.4] that the general formula has the form

Qi(xy) = Qi(x) y + xQi(y) + ρ
∑

cE,FQ
E(x)QF (y),

where E,F are subsets of {0, ..., i− 1} and cE,F ∈ H∗,∗(k,R).

Lemma 13.15. The operations Qi are K
M
∗ (k)-linear: if y ∈ KM

∗ (k) then

Qi(xy) = Qi(x) · y.
Proof. It suffices to consider y ∈ k×. Since Qj(y) = 0 for all j, the result follows
from Lemma 13.11 if ℓ 6= 2, and from Remark 13.14.1 if ℓ = 2.
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13.5 Qn of the degree map

To compute the Margolis homology for Qi in Section 13.6, we need a motivic
interpretation of the degree map deg : CHd(Y ) → Z, where CHd(Y ) is the
group of zero-cycles on a smooth projective variety Y of dimension d.

At the motivic level, the degree map τtr : Ld → Ztr(Y ) may be defined as
the tensor product of Ld = Z(d)[2d] with the dual Z→ Ztr(Y )∗ of the structure
map, together with the duality Ztr(Y ) ∼= Ld ⊗ Ztr(Y )∗. Since H2d,d(Ld,Z) =
Hom(Ld,Ld) = Z we have a map

deg = Hom(τtr,L
d) : CHd(Y ) = H2d,d(Y,Z)→ Z.

This is the usual degree map on zero-cycles, because for any closed point
S = Spec(E) of Y the composition Z → Ztr(Y )∗ → Ztr(S)

∗ ∼= Ztr(S) with the
structure map is multiplication by [E : k]. We need to lift the construction of
the degree map via τtr to the Morel–Voevodsky category of motivic spaces; see
Definition 12.63.

Recall from [Voe03c, 4.3] that for any s-dimensional vector bundle E on Y
the Thom space ThY (E) is the pointed sheaf E/(E − Y ) and there is a Thom

class tE in H̃2s,s(ThY (E),Z) = Hom(ThY (E),Ls) and a Thom isomorphism

H∗,∗(Y,Z) ∼= H̃∗,∗(Y+,Z)
≃−→ H̃∗+2s,∗+s(ThY (E),Z) (13.16)

defined by a 7→ a · tE (multiplication by tE). For each i > 0, we set T i =

Ai/(Ai−0), so that Ztr(T
i) ∼= Li and H̃2i,i(T i,Z) ∼= Z.

Let t̄E denote the mod-ℓ reduction of the Thom class tE . We pause to record
the following result, proven in [Voe03c, 14.2(1)].

Lemma 13.17. For any vector bundle E and any i we have Qi(t̄E) = 0 in
H∗,∗(ThY (E),Z/ℓ).

Choose an s-dimensional vector bundle N on Y representing the stable nor-
mal bundle, and form its Thom space ThY (N ). The following theorem was
proven in [Voe03a, Thm2.11], and is the motivic analogue of Atiyah Duality
[Ati61b, Thm. 3.3]; the topological analogue of the map τ in the theorem is the
Pontryagin–Thom collapse map on an embedding of Y into a sphere.

Theorem 13.18. There is a map T d+s
τ−→ ThY (N ) such that the degree map

deg : CHd(Y ) → Z coincides with the composition of the Thom isomorphism
(13.16), τ∗ and the cancellation isomorphism:

H2d,d(Y,Z)
tN−→ H̃2(d+s),d+s(ThY (N ),Z)

τ∗−→ H̃2(d+s),d+s(T d+s,Z) ∼= Z.

Construction 13.19. The map τ of Theorem 13.18 determines a cofibration
sequence:

T d+s
τ→ ThY (N )

p→ ThY (N )/T d+s
δ−→ Σ1

sT
d+s (13.19.1)
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Under the identification of Ztr(Σ
1
sT

d+s) with Ld+s[1], the map δ in (13.19.1)
corresponds to a cohomology class

v = Ztr(δ) ∈ H̃2(d+s)+1,d+s(ThY (N )/T d+s,Z). (13.19.2)

For d = dim(Y ) > 0 we have H̃2s,s(T d+s,Z) = H̃2s−1,s(T d+s,Z) = 0 for
weight reasons, so from the cohomology exact sequence associated to (13.19.1),

H̃2s−1,s(T d+s)→ H̃2s,s(ThY (N )/T d+s)
p∗−→ H̃2s,s(ThY (N ))

τ∗−→ H̃2s,s(T d+s),

we see that the Thom class tN ∈ H̃2s,s(ThY (N ),Z) lifts to a unique class

t̃N ∈ H̃2s,s(ThY (N )/T d+s,Z). (13.19.3)

If t̃ and t̄N denote the reductions of t̃N and tN modulo ℓ, then p∗t̃ is t̄N .
We now assume that d = ℓn − 1, so that Qn has bidegree (2d + 1, d), and

Qn(t̃) has the same bidegree (2d + 2s + 1, d + s) as v. Recall from Section 1.3
that the characteristic number sd(Y ) is defined as the degree of sd(TY ), and
that sd(Y ) ≡ 0 (mod ℓ).

Theorem 13.20. If d = ℓn−1 and sd(Y ) = c · ℓ then Qn(t̃ ) ≡ c · v (mod ℓ).

Proof. (Cf. [Voe11, 4.1]) Recall that Qn = P rnβ − β P rn (for ℓ = 2, from 13.10;
for ℓ 6= 2, from Lemma 13.11). Since t̃ is the reduction of the integral class t̃N
and β is the Bockstein, we have β(t̃ ) = 0. Thus it is sufficient to show that

β P rn(t̃ ) ≡ c · v (mod ℓ).

Since p∗t̃ = t̄N , we have p∗P rn(t̃ ) = P rn(t̄N ). The Thom isomorphism implies
that P r

n(t̄N ) is t̄N times an element of H2d,d(Y,Z/ℓ) = CHd(Y )/ℓ. By [Voe03c,
Cor. 14.3], that element is the characteristic class sd(TY ) ∈ CHd(Y ) of the
tangent bundle TY of Y . Therefore P r

n(t̄N ) is the mod-ℓ reduction of the integral
cohomology class sd(TY ) · tN . This information is summarized by the following
commutative square in the motivic category DM(k,Z):

Ztr(ThY (N ))
p

> Ztr(ThY (N )/T d+s)

Z(d+ s)[2d+ 2s]

sd(TY ) · tN
∨ mod-ℓ

> Z/ℓ(d+ s)[2d+ 2s].

P rn(t̃ )
∨

Since Ztr(T
d+s) is Ld+s = Z(d+ s)[2d+2s], this square extends to a morphism

of distinguished triangles, where the top triangle is Ztr of (13.19.1):

Ld+s
τ
> Ztr(ThY (N ))

p
> Ztr(ThY (N )/T d+s)

δ
> Ld+s[1]

Ld+s

c′

∨
ℓ

> Ld+s

sd(TY ) · tN
∨

> Z/ℓ(d+ s)[2d+ 2s]

P rn(t̃ )
∨ β̃

> Ld+s[1]

c′

∨
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for some morphism c′. Since Hom(Ld+s,Ld+s) = Z, c′ is multiplication by
some integer; the commutativity of the left square and Theorem 13.18 means
that we have c′ · ℓ = τ∗(sd(TY ) · tN ) = deg(sd(TY )) = sd(Y ), so c′ = c. The
commutativity of the right square means that we have the desired congruence:

c · v = c · [δ] = β̃ ◦ P rn(t̃ ),

which is equivalent to βP rn(t̃ ) modulo ℓ, as desired.

13.6 Margolis homology

Since the cohomology operations Qi satisfy Q2
i = 0, it is natural to consider

H∗,∗(Y•,Z/ℓ) as a family of chain complexes with differential Qi, for any sim-
plicial variety Y•. The resulting homology is bigraded, and referred to as Mar-
golis homology for Qi because the analogous construction in topology is due
to H.Margolis [Mar83]. We will show that the Margolis homology vanishes on
some simplicial varieties, using the degree map tN of Theorem 13.18.

Here is a simple example, involving the Bockstein Q0 = β. Let X be any
smooth variety, and X the simplicial scheme s 7→ Xs+1 of Definition 1.32. Recall
from Definition 1.36 that the unreduced suspension ΣX is defined to be the
mapping cone of X+ → Spec(k)+.

Example 13.21. Suppose that X has a closed point x, such that k(x) is a finite

separable field extension of k. By Corollary 1.38, the groups H̃∗,∗(ΣX,Z) have

exponent [k(x) : k]. If [k(x) : k] is not divisible by ℓ2 then the H̃∗,∗(ΣX,Z(ℓ))
have exponent ℓ. Thus the universal coefficient sequence for the integral Bock-
stein (localized at ℓ) is

0→ H̃p,q(ΣX,Z(ℓ))→ H̃p,q(ΣX,Z/ℓ)
β̃−→ H̃p+1,q(ΣX,Z(ℓ))→ 0,

and the sequence
β−→ H̃∗,∗(ΣX,Z/ℓ)

β−→ is seen to be exact by splicing. That

is, the Margolis homology of H̃∗,∗(ΣX,Z/ℓ) for β = Q0 vanishes.

Fix i ≥ 1, d = ℓi − 1 and a smooth d-dimensional variety Y such that
sd(Y ) 6≡ 0 (mod ℓ2). For every smooth projective X admitting a map Y → X,

we construct a map Φ : H̃p,q(ΣX) → H̃p−2d−1,q−d(ΣX). Recall (from 12.1)
that a map F → G of simplicial sheaves is called a global weak equivalence if
F (U)→ G(U) is a weak equivalence of simplicial sets for every U .

Construction 13.22. As in 13.18, choose a vector bundle N on Y representing
the stable normal bundle. We observed just after Definition 1.32 in Chapter 1
that, because N maps to Y and hence X, both X×N → N and X× (N −Y )→
(N − Y ) are global weak equivalences of sheaves.

Because (N − Y )+ → N+ → ThY (N ) is a cofibration sequence of pointed
sheaves, and the smash product with X+ preserves cofibration sequences, it
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follows that X+∧ThY (N ) ≃ ThY (N ). Since ΣX is the cone of X+ → Spec(k)+,
this implies that ΣX ∧ ThY (N ) ≃ 0. From the cofibration sequence (13.19.1)
we deduce that

ΣX ∧ (ThY (N )/T d+s)
≃−→ ΣX ∧ ΣT d+s (13.22.1)

is a (global) weak equivalence. We define Φ to be the composite map:

H̃p,q(ΣX)
t̃N−→ H̃p+2s,q+s(ΣX ∧ (ThY (N )/T d+s))

(13.22.1)−→ H̃p+2s,q+s(ΣX ∧ ΣT d+s) ∼= H̃p−2d−1,q−d(ΣX).

We now implicitly work with coefficients Z/ℓ, so that Qi is defined, has
bidegree (2d+1, d), and both Qi Φ and ΦQi have bidegree 0. This is illustrated
by the following diagram, where we have written K for ThY (N )/T d+s; the map
t̃ is the reduction modulo ℓ of the lift t̃N of the Thom class tN , defined in
(13.19.3). Thus the horizontal composites are the operation Φ. The lower right
isomorphism sends v · x to x, where v is defined in (13.19.2).

H̃p,q(ΣX)
t̃

> H̃p′,q′(ΣX ∧K)
∼=

(13.22.1)
> H̃p−2d−1,q−d(ΣX)

H̃p+2d+1,q+d(ΣX)

Qi
∨

t̃
> H̃p′+2d+1,q′+d(ΣX ∧K)

Qi
∨ ∼=

(13.22.1)
> H̃p,q(ΣX)

Qi
∨

Here p′ = p + 2s and q′ = q + s. We warn the reader that, although the
right square commutes, the left square does not commute. This is quantified by
Proposition 13.23, which is taken from [Voe03a, 3.3].

Proposition 13.23. Suppose Y is smooth of dimension d = ℓi−1, and sd(Y ) =
c · ℓ. Then for every smooth X and map Y → X, Qi Φ− ΦQi is multiplication
by c on H̃p,q(ΣX,Z/ℓ).

Proof. The isomorphism H̃p′+2d+1,q′+d(ΣX∧K) ∼= H̃p,q(ΣX) of (13.22.1) sends
Qi(t̃ · x) − t̃ · Qi(x) to Qi Φ(x) − ΦQi(x), and v · x to x. The proposition now
follows from the observation that, by Lemma 13.23.1 below and Theorem 13.20,

Qi(t̃ · x)− t̃ ·Qi(x) = Qi(t̃) · x = cv · x.

Lemma 13.23.1. For all x ∈ H̃p,q(ΣX,Z/ℓ), Qi(t̃ · x) = Qi(t̃ ) · x+ t̃ ·Qi(x).

Proof. When ℓ 6= 2, this is just the assertion that Qi is a derivation (by Lemma
13.11). Thus we may suppose that ℓ = 2. By Remark 13.14.1, we have the
formula

Qi(t̃ · x) = Qi(t̃ )x+ t̃ Qi(x) + ρ
∑

E,F

cE,F
∏

e∈E

Qe(t̃ )
∏

f∈F

Qf (x),
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where E,F are subsets of {1, ..., i − 1}. Thus it suffices to show that for all

e < i we have Qe(t̃ ) = 0 in H̃a,b(ThY (N )/T d+s) (where a = 2s + 2ℓe − 1 and
b = s+ ℓe − 1). Consider the cohomology exact sequence of (13.19.1),

H̃a,b(Σ1
sT

d+s)
δ∗−→ H̃a,b(ThY (N )/T d+s)

p∗−→ H̃a,b(ThY (N )).

Now H̃a,b(Σ1
sT

d+s) = 0 for weight reasons when e < i, so it suffices to observe

that p∗Qe(t̃ ) = Qe(t̄N ) vanishes in H̃a,b(ThY (N )), by Lemma 13.17.

Theorem 13.24. Suppose there is νi-variety Xi and a map Xi → X. Then
the Margolis sequence for Qi is exact on H̃∗,∗(ΣX,Z/ℓ).

Qi−→ H̃∗−2ℓi+1,∗−ℓi+1 Qi−→ H̃∗,∗ (ΣX,Z/ℓ)
Qi−→ H̃∗+2ℓi−1,∗+ℓi−1 Qi−→

Proof. Since the case i = 0 was handled in Example 13.21, we assume i > 0 and
use the map Φ constructed in 13.22. By Proposition 13.23, Qi Φ − ΦQi must
be multiplication by a nonzero constant c ∈ Z/ℓ. Thus the Margolis sequence
is exact, because if Qi(x) = 0 we have x = Qi(Φx)/c = Qi(Φx/c).

Theorem 13.24 is one of the main reasons that νi-varieties are useful. This
theorem was used in Proposition 3.15 to show that the cohomology operation
Qn−1 · · ·Q0 is an injection from Hn,n−1(X,Z/ℓ) to H2bℓ+2,bℓ+1(X,Z), and may
be viewed as the key topological step in the entire proof of Theorems A and B.

13.7 A motivic degree theorem

Let X be a variety of dimension d = ℓn − 1 such that sd(X) 6≡ 0 (mod ℓ2),
i.e., a νn-variety, set R = Z/ℓ and let X be the simplicial scheme introduced in
1.32. In Lemma 6.8, we identified Rtr(X) with the unit motive R, defined in
6.3. Also recall from Section 13.5 that the degree map CHd(X) → Z may be
interpreted motivically using a map τtr : Ld → Ztr(X), or (mod ℓ) as a map
R⊗ Ld → Rtr(X).

Proposition 5.16 asserts that (under certain hypotheses) a map λ (defined
in Proposition 5.9) is such that λ ◦ τtr : Rtr(X) ⊗ Ld → Sℓ−1A is nonzero in
DMeff

nis(X, R). Theorem 13.25 below shows that it suffices to produce a nonzero
element α with Qn(α) = 0, which is accomplished in the proof of 5.16.

Theorem 13.25. 1 Let X be a νn-variety, and let α be a nonzero class in
Hp,q(X, R) = HomDM(R,R(q)[p]), with p > q, such that Qn(α) = 0. Suppose

that the structure map Rtr(X)
π−→ R factors as Rtr(X)

λ−→ M
y−→ R with

α ◦ y = 0 for some M .
Then λ ◦ τtr : R⊗ Ld →M is nonzero as a map in DMeff

nis(X, R).

1Compare with [Voe11, 4.4].
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The situation in Theorem 13.25 and its proof is summarized by the following
commutative diagram in DM, with α ◦ y = 0.

R⊗ Ld
τtr
> Rtr(X)

p
> cone(τtr)

M

λ ◦ τtr
∨ y

>

λ

<
R

π
∨ α

>

π̃

<
R(q)[p].

show
nonzero

∨

Proof. We begin the proof with a reduction. Let M ′ be the motive defined by
the distinguished triangle

R(q)[p− 1] −→ M ′ −→ R
α−→ R(q)[p].

Since we assume that α ◦ y = 0, y lifts to a morphism M → M ′ in the sense
that y is the composite M →M ′ → R. Therefore to prove the proposition it is
sufficient to show that the composition

R⊗ Ld → Rtr(X)→M →M ′

is nonzero. We may now forget about the original M and consider only M ′.
By 4.5, HomX(R ⊗ Ld,R) = H−2d,−d(X, R); this is zero as −d < 0. Thus

the composition π ◦ τtr : R ⊗ Ld → R is zero, and π extends to a morphism
π̃ : cone(τtr)→ R; π̃ is uniquely determined because Hom(R⊗ Ld[1],R) = 0.

If the compositionR⊗Ld→M ′ were zero then λ would lift to λ̃ : cone(τtr)→
M ′ and y ◦ λ̃ would be a second lift of π. This would imply that

α ◦ π̃ = α ◦ y ◦ λ̃ = 0.

Therefore, to finish the proof, it suffices to show that α ◦ π̃ is non-zero.
Recall from Theorem 13.18 that the degree map τtr arises from the compo-

sition of the Thom isomorphism with a map τ : TN → ThX(N ), where N is an
s-dimensional bundle representing the stable normal bundle on X, N = d + s
and TN = AN/(AN−0). Smashing the sequence (13.19.1) with X+, we see that
τ determines a cofibration sequence

TN ∧ X+
τ−→ ThX(N ) ∧ X+ → (ThX(N )/TN ) ∧ X+

δ−→ Σ1
sT

N ∧ X+

By (13.19.3), the Thom class tN in H2d,d(ThX(N ),Z) lifts to a class t̃N in

H̃2d,d(ThX(N )/TN ,Z). By abuse of notation, we write t̃ for the image of t̃N
modulo ℓ in H̃2d,d(ThX(N )/TN ∧X+, R). Since ThX(N ) maps to X and hence
X, we have ThX(N )∧X+

∼−→ ThX(N ) by the discussion in Section 4.2. There-
fore we have a commutative diagram:

Hom(cone(τtr),R(q)[p])
p∗

> Hp,q(X,R)

H̃p+2d,q+d(ThX(N )/TN ∧ X+, R)

y 7→ y · t̃
∨

> H̃p+2d,q+d(ThX(N ), R).

x 7→ x · tN
∨
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In the left vertical map, we have written y · t̃ for the more pedantic product of
p∗(y) ∈ Hp,q(X,R) with t̃.

Since π represents 1 ∈ H0,0(X,R) and π̃ ∈ Hom(cone(τtr),R) has p∗(π̃) = π,
we have π̃ · t̃ = t̃. Hence the left vertical map sends α ◦ π̃ to α · t̃. Hence it
suffices to show that t̃ · α 6= 0.

We are going to show that Qn(t̃ · α) 6= 0. First, we claim that

Qn(t̃ · α) = Qn(t̃)α. (13.25.1)

For ℓ > 2, this follows from the fact that Qn is a derivation (Lemma 13.11) and
Qn(α) = 0. For ℓ = 2, Qn is not a derivation, and there are additional terms
on the right side of (13.25.1) which depend on Qi(t̃) for i < n, as described
in Remark 13.14.1. As in the proof of Lemma 13.23.1, it follows from simple
weight considerations that Qi(t̃) = 0 for i < n and therefore (13.25.1) holds for
ℓ = 2 as well.

Theorem 13.20 shows that the right hand side Qn(t̃)α of (13.25.1) equals
c · v ·α where c = sd(X)/ℓ and v is given in (13.19.2). Since X is a νn-variety, c
is an invertible element of Z/ℓ. Hence it suffices to check that v · α 6= 0. Since
v = δ∗(u), where u is the tautological generator of

H2N+1,N (Σ1
sT

N , R) ∼= H0,0(Spec(k), R) = R,

we have v · α = δ∗(u · α). Setting p′ = p + 2N and q′ = q + N , the element
u ·α lies in Hp′+1,q′(Σ1

sT
N ∧X+, R) ∼= Hp,q(X, R) and is nonzero because α 6= 0.

Because ThX(N ) ∧ X+
≃−→ ThX(N ), we have an exact sequence

Hp′,q′(ThX(N ), R)
τ∗−→ Hp′,q′(TN ∧ X+, R)

δ∗−→ Hp′,q′(ThX(N )/TN ∧ X+, R),

and Hp′,q′(ThX(N ), R) ∼= Hp+2d,q+d(X,R) = 0 by the Thom isomorphism and
the cohomological dimension theorem. Hence δ∗ is an injection; since u · α 6= 0,
we have v · α = δ∗(u · α) 6= 0, as required.

13.8 Historical notes

Steenrod’s original 1947 paper constructing the Steenrod squares opened the
doors for remarkable developments in algebraic topology; his Sq1 was the Bock-
stein, first introduced by Meyer Bockstein in 1942. Henri Cartan discovered
the Cartan formula almost immediately; Serre recognized the connection to
Eilenberg–MacLane spaces and classified all mod–2 cohomomology operations
in his 1952 note [Ser52]. Steenrod later constructed the reduced power opera-
tions P i and Cartan used them to describe all mod–ℓ cohomomology operations
in his 1954 note [Car54]. The 1962 book [Ste62] summarized the main develop-
ments of that era.

The idea that there should be cohomology operations in motivic cohomol-
ogy, and that they should be defined in the A1-homotopy category, is due to

June 27, 2018 - Page 218 of 281



Operations

Voevodsky. His construction of the operations P i is modelled on the work of
Steenrod [Ste62]. The main structural theorems of [Voe03c] are summarized in
Section 13.2; some typos in loc. cit. have been corrected in 13.7.

Similarly, the results in Section 13.4 are based on the 1958 paper [Mil58]
by Milnor, which introduced the operations Qi, and all the formulas for ℓ 6= 2
are due to Milnor. Of course, the motivic definition of the Qi and many of the
other results are taken from [Voe03c]. The formulas 13.13 and 13.14 are new.

Sections 13.5 and 13.6 are taken from Sections 2 and 3 of Voevodsky’s paper
[Voe03a] and from Riou’s commentaries [Rio14] and [Rio12]. The final section
13.7 is taken from Section 4 of [Voe11].
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Chapter 14

Symmetric powers of
motives

In this chapter we develop the basic theory of symmetric powers of smooth vari-
eties, which will play an important role in the construction of motivic classifying
spaces in Chapter 15.

The constructions in this chapter are based on an analogy with the corre-
sponding symmetric power constructions in topology. Recall that if K is a set
(or even a topological space) then the symmetric power SmK is defined to be
the orbit space Km/Σm, where Σm is the symmetric group. If K is pointed,
there is an inclusion SmK ⊂ Sm+1K and S∞K =

⋃
SmK is the free abelian

monoid on K − {∗}.
When K is a connected topological space, the Dold–Thom theorem [DT58]

says that H̃∗(K,Z) agrees with the homotopy groups π∗(S
∞K). In particular,

the spaces S∞(Sn) have only one homotopy group (n ≥ 1) and hence are the
Eilenberg–MacLane spaces K(Z, n) which classify integral homology.

14.1 Symmetric powers of varieties

If X is a quasiprojective variety over a perfect field, its mth symmetric power
is the geometric quotient variety SmX = Xm/Σm, where Σm is the symmetric
group; locally, if X = Spec(A) and B = A⊗ · · · ⊗ A then SmX = Spec(BΣm).
If G is a subgroup of Σm then we also set SGX = Xm/G; locally SGX =
Spec(BG). This is an abuse of notation, since SGX depends upon m.

The example X = A2 shows that symmetric powers of smooth varieties are
not always smooth. However, if X is normal then Xm, SmX and SGX are also
normal, because locally the coordinate rings of Xm and SGX are the normal
domains B = A⊗m and B ∩ k(Xm)G. For this reason, we shall work with
the category Norm of normal quasiprojective varieties; Sm and SG determine
functors from Norm to itself.
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Replacing Xm by the smash product (X+)
∧m = (Xm)+, the formula

S̃G(X+) = (X+)
∧m/G = (SGX)+

defines “reduced” functors S̃G from the pointed category Norm+ (normal va-
rieties of the form X ∐ ∗) to itself. The unreduced functors Sm are defined on
Norm+ by SG(X+) = SG(X ∐ ∗).

By naturality, SG and S̃G also determine self-functors on ∆opNorm and
∆opNorm+. There is a natural decomposition:

Sm(X ∐ Y ) =
∐

i+j=m
Si(X)× Sj(Y ). (14.1)

Setting Y = Spec(k), formula (14.1) gives a decomposition of Sm(X+) as
the coproduct of the Si(X) for 0 ≤ i ≤ m. This decomposition is not natural

for pointed maps, but it is related to S̃m(X+) = (SmX)+ by a natural sequence
of pointed objects, split for each X:

∗ → Sm−1(X+)→ Sm(X+)→ S̃m(X+)→ ∗. (14.2)

We let S∞(X+) denote the filtered colimit of the pointed presheaves Sm(X+)
along the maps in the split sequences (14.2). For example, for S0 = Spec(k)+
we have S̃m(S0) = S0, Sm(S0) ∼= {0, 1, . . . ,m} and S∞S0 = N.

If X is a variety then the sets (SGX)(U) need not equal the symmetric
powers SG(X(U)) of the sets X(U). For example, if X = A1 and U = Spec(k)
then S2X = A2 and the natural map from S2(A1(k)) = A2(k)/Σ2 to A2(k),
sending (a, b) = (b, a) to (a + b, ab), is not onto when k has a quadratic field
extension.

Definition 14.3. Let G−Norm denote the category of normal G-schemes
and equivariant morphisms. The functor endowing a scheme with the triv-
ial G-action has a left adjoint, the quotient functor (/G) : T 7→ T/G from
G−Norm to Norm. Its inverse image functor (/G)∗, from Pshv(G−Norm) to
Pshv(Norm), is defined by (/G)∗H(Y ) = colimY→T/GH(T ). Note that (/G)∗

commutes with colimits because it is left adjoint to F 7→ F (−/G).
It will be convenient to factor SG as the composition of (/G)∗ and a functor

P from presheaves on Norm to presheaves on G−Norm, which we now define.

Definition 14.4. Let G be a subgroup of Σm. Given a G-scheme T , let T∐m

denote the disjoint union of m copies of T , made into a G-scheme via the
diagonal action, with quotient T∐m/G. For any (simplicial) presheaf F on
Norm, we define the (simplicial) presheaf PF on the category of normal G-
schemes by

(PF )(T ) = F
(
T∐m/G

)
.

It is clear that P commutes with colimits: P (colimFα) ∼= colim(PFα). Since
PF is natural in F , P is a functor from Pshv(Norm) to Pshv(G−Norm).

Similarly, we define P : Pshv(Norm+) → Pshv(G−Norm+) by sending a
presheaf F on Norm+ to (PF )(T ) = F (T∨m/G), where T∨m = T ∨ · · · ∨ T
with the diagonal action.
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Lemma 14.5. If X is a normal scheme, the presheaf PX is representable by
the G-scheme Xm. That is, (PX)(T ) = HomG(T,X

m).1

Similarly, P (X+) is representable by the pointed G-scheme (Xm)+.

Proof. Non-equivariantly, we have natural isomorphisms

Hom(T,Xm) ∼= Hom(T,X)m ∼= Hom(T∐m, X).

A map (f1, ..., fm) : T → Xm is equivariant if f1(γt) = fγ(i)(t) for all γ ∈ G.
Since G acts trivially on X, this is also the condition for a map T∐m → X to
be equivariant. Thus we have HomG(T,X

m) ∼= Hom(T∐m/G,X).
The pointed version is left to the reader.

The considerations of Chapter 12 also apply to simplicial presheaves on
G−Norm. For example, the notions of global weak equivalence, etc. make
sense for simplicial presheaves on G−Norm. This includes the notion of a
radditive presheaf (Definition 12.14).

Lemma 14.6. P preserves global weak equivalences, and sends radditive pre-
sheaves to radditive presheaves.

Proof. Let F1 → F2 be a global weak equivalence of simplicial presheaves on
Norm. Then for every normal G-scheme T we have a weak equivalence

(PF1)(T ) = F1(T
∐m/G)

∼−→ F2(T
∐m/G) = (PF2)(T ).

Hence PF1 → PF2 is a global weak equivalence of simplicial presheaves on
G−Norm. Similarly, if F is radditive on Norm then for every T1 and T2:

PF (T1 ∐ T2) = F
(
(T∐m

1 ∐ T∐m
2 )/G

)
= F ((T∐m

1 /G)∐ (T∐m
2 /G))

= F (T∐m
1 /G)× F (T∐m

2 /G) = PF (T1)× PF (T2).

Hence PF is also a radditive presheaf.

Proposition 14.7. If F is a presheaf on Norm, resp., Norm+, there is a
presheaf isomorphism

(SG)∗F ∼= (/G)∗(PF ), resp., (S̃G)∗F ∼= (/G)∗(PF ).

Proof. Because all functors involved commute with colimits, and F is the co-
equalizer of L1F ⇒ L0F (see Construction 12.7), we may assume that F is
represented by a normal scheme X. But by Lemma 14.5, we have

SG(X) = (/G)∗(Xm) = (/G)∗(PX).

1Taken from [Del09], Ex. 6
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14.2 Symmetric powers of correspondences

The symmetric power construction is compatible with elementary and finite
correspondences, as defined in Section 6.1. Indeed, if f : X → Y is a finite
correspondence then so is f×m : Xm → Y m. If f×m is an elementary cor-
respondence then it induces an elementary correspondence Xm/G → Y m/G
for every G ⊆ Σm, almost by definition. In general, the finite correspondence
f×m : Xm → Y m/G descends to a finite correspondence from Xm/G to Y m/G,
which we call SGtr(f), by the case Z = Y m/G of the following formula of Suslin
and Voevodsky; see [SV96, 5.16].

Cor(Xm/G,Z)
∼=−→ Cor(Xm, Z)G.

Recall (say from [MVW]) that Cor(Norm) denotes the category of finite
correspondences onNorm, with coefficients in a fixed ringR. We will sometimes
require that |G| is invertible in R. For clarity, we shall write Rtr(X) for a normal
scheme X, regarded as an object of Cor(Norm).

Definition 14.8. The endofunctor SGtr : Cor(Norm)→ Cor(Norm) is defined
for any subgroup G of Σm, on objects by SGtr(Rtr(X)) = Rtr(S

GX), and on
morphisms by f 7→ SGtr(f). When G = Σm we write Smtr for SΣm

tr . By naturality,
SGtr extends to an endofunctor on the simplicial category ∆opCor(Norm).

For X+ in Norm+ we define SGtrRtr(X+) = Rtr(S
G(X+)), so that SGtr ◦Rtr =

Rtr◦SG is a functor from Norm+ to Cor(Norm). In particular, SmtrRtr(X+) =
RtrS

m(X+) = Rtr((S
mX)+). The next lemma is based on [Voe10c, 2.34].

Lemma 14.9. For any (simplicial) normal varieties X, Y we have

Smtr (RtrX ⊕RtrY ) ∼=
⊕

i+j=m

Sitr(RtrX)⊗ Sjtr(RtrY ).

Proof. Immediate from Rtr(X
∐
Y ) = RtrX ⊕RtrY and (14.1).

Lemma 14.10. Let G be a finite group whose order is invertible in R. If G acts
faithfully and algebraically on X then π : X → X/G induces an isomorphism

Rtr(X)G
≃−→ Rtr(X/G).

Proof. The transpose πt is a finite correspondence from X/G to X, and is
equivariant, so we may regard πt as a map from Rtr(X/G) to Rtr(X)G. Since π :
X → X/G is pseudo-Galois with group G (see Definition 8.19), the composition
π ◦ πt is multiplication by |G| on Rtr(X/G) — which is an isomorphism by
assumption — and πt ◦ π is

∑
g∈G g. (See [SV96, 5.17] or [SV00b, 3.6.7].) But∑

g is an isomorphism on Rtr(X)G, since the idempotent e = (1/|G|)∑g∈G g

of R[G] acts on Rtr(X) as projection onto the summand Rtr(X)G.

Corollary 14.11. If H ⊳ G ⊆ Σn and [G : H] is invertible in R, then G/H

acts on SHX and SGtr(Rtr(X)) ∼= SHtr (Rtr(X))
G/H

.
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Proof. Apply Lemma 14.10 to the action of G/H on SHX, using SGtrRtr(X) =
Rtr(S

GX) and SGX = (SHX)/(G/H).

Examples 14.12. (a) Since Sm(Spec k) ∼= Spec k, Smtr (R)
∼= R for all m.

If the si are the elementary symmetric polynomials then Sm(A1) =
Spec(k[s1, ..., sm]) ∼= Am.

(b) The functors Smtr extend to the idempotent completion of Cor, because if
e is an idempotent finite correspondence then so is SG(e). For example,
since Rtr(P

1) ∼= R ⊕ L1 and SmP1 ∼= Pm, we see that Smtr (R ⊕ L1) =
Rtr(P

m) = Rtr(P
m−1)⊕ Lm. Lemma 14.9 yields Smtr (L

1) ∼= Lm.

(c) The map π : Sm(A1) → A1, (a1, ..., am) 7→ a1 · · · am, and its restriction
Sm(A1−{0}) → A1−{0}, are vector bundles with fiber Am−1, split by
a 7→ (a, 1, . . . , 1). This is because π is the map Spec(k[s1, ..., sm]) →
Spec(k[sm]). For later use, we note the consequence that Sm(A1−{0}) ∼=
(A1−{0})×Am−1, and hence the simplicial presheaf Sm(A1−{0}) is A1-
weakly equivalent to (A1−{0}).

(d) Suppose that m! is a unit of R, so that the symmetrizing idempotent
e = (Σσ)/m! of R [Σm] exists. Since R[Σm] acts on Rtr(X

m), we can form
the summand e · Rtr(X

m). From Lemma 14.10 we see that the canonical
map Rtr(X

m)→ Rtr(S
mX) = Smtr (RtrX) induces an isomorphism

Smtr (RtrX) ∼= Rtr(X
m)Σm = e ·Rtr(X

m), when 1/m! ∈ R.

(e) Suppose that 1/m! ∈ R. If T is such that the interchange τ on T ⊗ T is
A1-homotopic to the identity (e.g., T = La[2b]), then Smtr (T ) ≃ T⊗m, by
(d). If τ ≃ −1 (e.g., T = La[2b + 1]) and m > 1, then Smtr (T ) ≃ 0, again
by (d). In particular,

Smtr (L
a[2b]) ≃ Lam[2bm], Smtr (L

a[2b+ 1]) ≃ 0.

The following result is the analogue of a formula for augmented simplicial
R-modules discovered by Steenrod in [Ste72]; it is taken from [Voe10c, 2.47].

Lemma 14.13. (Steenrod’s Formula) Applying Rtr to (14.2) (for X+) yields a
split exact sequence; the splitting is natural in Norm+:

0→ RtrS
m−1(X+)→ RtrS

m(X+)→ RtrS̃
m(X+)→ 0.

Proof. By (14.2), the sequence is split exact for each X+. Recall that, as in
Section 5.2, for eachX and i < m the transfer maps for Si(X)×Xm−i → Sm(X)
and the structure map πX : X → ∗ induce maps τi : RtrS

m(X) → RtrS
i(X)

and hence from SmtrRtr(X+) = Rtr(S
m(X)+) to S

i
trRtr(X+) = Rtr(S

i(X)+).
The alternating sum (over i) of the transfers τi defines a splitting map

τ : SmtrRtr(X+) = Rtr(S
m(X)+)→ ⊕mi=1Rtr(S

i(X)+) = ⊕mi=1S
i
trRtr(X+).
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We claim that τ is natural for maps f : Z+ → X+. To see this, note that Z+ is
the disjoint union of f−1(X) and Y+ = f−1(∗). Thus f factors as a composite

Z+
∼=

(
f−1(X)∐ Y

)
+

(f∐1)+
> (X ∐ Y )+

πY−→ X+,

where πY sends Y to the basepoint. Since the transfers τi are natural for maps
coming from Norm, such as (f ∐ 1)+, it suffices to consider the projections
πY : (X ∐ Y )+ → X+.

We must show that for each j > 0 and a < i the composition from the
summand SitrRtr(X)⊗ SjtrRtr(Y ) of RtrS

m(X ∐ Y ) to SatrRtr(X) is zero.

SitrRtr(X)⊗ SjtrRtr(Y ) ⊂ > SmtrRtr(X ∐ Y )
(−1)a+bτa ⊗ τb

> SatrRtr(X)⊗ SbtrRtr(Y )

SmtrRtr(X)

StrRtr(πY )
∨ (−1)aτa

>

>

SatrRtr(X).

1⊗ πY
∨

This composition factors through each of the
(
j
b

)
terms SatrRtr(X)⊗ SbtrRtr(Y )

for b = 0, ..., j, and the result follows from
∑j
b=0(−1)b

(
j
b

)
= 0.

Corollary 14.14. For any simplicial object V• of Norm+ there is an isomor-
phism

Rtr(S
∞V•) = lim

m→∞
Rtr(S

mV•) ∼=
⊕∞

i=1
SitrRtr(V•).

Proof. Since RtrS
0(V•) = 0, the formula Rtr(S

mV•) ∼=
⊕m

i=1 SitrRtr(V•) follows
by induction, using the splittings in Lemma 14.13.

Remark 14.14.1. We will now describe Smtr in terms of Sℓtr when R = Z(ℓ). If G
is any subgroup of Σm, and n ≥ 1, the wreath product

G ≀ Σn = Gn ⋊ Σn

acts on {1, . . . ,mn} by decomposing it into n blocks of m elements, with Gn

acting on the blocks and Σn permuting the blocks. Thus G ≀ Σn ⊂ Σmn. It is
easy to see that

SG≀Σn(X) = Sn(SG(X)), SG≀Σn

tr (RtrX) = SntrS
G
tr(RtrX).

Similarly, if H is a subgroup of Σn and we embed Σm × Σn in Σm+n then
SG×H(X) = SG(X)× SH(X) and SG×H

tr (RtrX) = SGtr(RtrX)⊗ SHtr (RtrX).

Proposition 14.15. Consider the ℓ-adic expansion m = m0+m1ℓ+ · · ·+mrℓ
r,

with 0≤mi<ℓ. The subgroup

G = Σm0
× (Σℓ ≀ Σm1

)× ((Σℓ ≀ Σℓ) ≀ Σm2
) · · · × ((Σℓ

≀r) ≀ Σmr
)

⊆ Σm0
× Σm1ℓ × Σm2ℓ2 × · · · × Σmrℓr

of Σm contains a Sylow ℓ-subgroup of Σm. If R = Z(ℓ) or Z/ℓ, then for every
simplicial V and M = Rtr(V ), Smtr (M) is a direct summand of

SGtr(M) = (Sm0
tr M)⊗ Sm1

tr (SℓtrM)⊗ Sm2
tr (Sℓtr(S

ℓ
trM))⊗ · · · ⊗ Smr

tr ((Sℓtr)
rM).
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Proof. It is well known (and easy to check) that G contains a Sylow ℓ-subgroup
of Σm, i.e., that ℓ ∤ d = [Σm : G]. The displayed formula for SGtr(M) follows
from the above remarks, and the map π from SG(V ) = V m/G to SmV =
V m/Σm is finite of degree d. The transpose πt is a finite correspondence, and

the composition π◦πt is multiplication by d on Rtr(S̃
mV ) = Smtr (M), and hence

is an isomorphism.

14.3 Weak equivalences and symmetric powers

The goal of this section is to show that the functors SG, and in particular the
symmetric powers Sm, preserve A1-local equivalences between filtered colimits
of representable presheaves onNorm. As in Definition 12.15, we writeNormind

for the category of ind-normal varieties, i.e., the category of filtered colimits of
representable presheaves on Norm (see [AGV73, I.8.2]).

For example, consider the functorial cofibrant replacement Lres (F ) of a
simplicial radditive presheaf F , described in Example 12.19 and Remark 12.7.
Each of the terms Lres nF is an infinite coproduct of representable presheaves,
which are filtered colimits of finite coproducts. Since each finite coproduct is
representable by Example 12.14.1, each Lres nF is a filtered colimit of rep-
resentable presheaves. Hence Lres (F ) is in ∆opNormind for every radditive
presheaf F .

Lemma 14.16. If X is a simplicial ind-normal variety, the cofibrant re-
placement Lres (X)

∼−→ X of Example 12.19 induces global weak equivalences

SGLres (X)
∼−→ SGX and S̃GLres (X+)

∼−→ S̃G(X+).

Proof. The endofunctor SG of C = Norm has (SG)∗X = SGX. Since
Lres (X)

∼−→ X is a global weak equivalence in ∆opNormind, Corollary 12.33
states that SGLres (X)

∼−→ SGX is a global weak equivalence. The same ar-

gument, applied to Norm+, yields the assertion for S̃G(X+).

For any radditive presheaf F , we set (LSG)F = SGLres (F ). In this lan-
guage, Lemma 14.16 states that (LSG)X

∼−→ SGX for all representable X.

Proposition 14.17. The derived functor LSG = SGLres preserves global weak
equivalences between simplicial radditive presheaves. That is, if F1 → F2 is any
global weak equivalence, then so is LSG(F1)→ LSG(F2).

The pointed functor LS̃G = S̃GLres also preserves global weak equivalences.

Proof. ([Voe10c, 2.11]) The map Lres (F1)
≃−→ Lres (F2) is a global equivalence

because both of the Lres (Fi)
≃−→ Fi are (by 12.25). Hence the induced map

from LSG(F1) = SGLres (F1) to LSG(F2) = SGLres (F2) is a global weak

equivalence, by Corollary 12.33. The argument for LS̃G is similar.

Next, we consider the behavior of symmetric powers under Nisnevich-local
equivalences.
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Proposition 14.18. If X
f→ Y is a Nisnevich-local equivalence between objects

of ∆opNormind then so is SG(f) : SGX → SGY .

A similar assertion holds for S̃GX → S̃GY when X → Y is in ∆opNormind
+ .

Proof. Let E denote the class of morphisms f in ∆opNormind
+ such that

SGf(W ) is a weak equivalence for all hensel local W . It is a ∆̄-closed class,
by Theorem 12.30. Thus it suffices to show that E contains the Nisnevich-local
equivalences.

Fix a hensel local W and consider the functor Φ(X) = (SGX)(W ) from
Normind to Sets (or from ∆opNormind to ∆opSets). Because SG commutes
with colimits, so does Φ.2 It is also clear that if U is open in X then SGU is
open in SGX and hence Φ(U)→ Φ(X) is an injection.

Suppose that f : V ′ → V is an étale cover and U ⊂ V is open, so that
(V ′−U ′)red → (V−U)red is an isomorphism, i.e., we have an upper distinguished
square Q of the form (12.48). Let KQ denote the associated homotopy pushout,
defined in 12.34. Applying Φ, which commutes with colimits, we have two
pushout squares of simplicial sets:

Φ(U ′) ⊂ > Φ(V ′) Φ(U ′)∐ Φ(U ′) ⊂ > Φ(U ′ ⊗∆1)

Φ(Q) :

Φ(U)
∨

⊂
i

> Φ(V )

f
∨

Φ(U)∐ Φ(V ′)
∨

⊂ > Φ(KQ).
∨

These squares show that Φ(V ) and Φ(KQ) are the respective pushout and homo-
topy pushout of Φ(U)← Φ(U ′)→ Φ(V ′). Recall from Remark 12.34.1 that the
pushout of an injection of simplicial sets is weakly equivalent to the homotopy
pushout. Therefore Φ(V )→ Φ(KQ) is a weak equivalence.

Thus E contains the maps KQ → V for all upper distinguished squares
(12.48). By Theorem 12.55, every Nisnevich-local equivalence is in the ∆̄-closure
of the class of maps KQ → V for all upper distinguished squares (12.48). There-
fore the Nisnevich-local equivalences are in E.

Corollary 14.19. The derived functor LSG = SGLres preserves Nisnevich-
local equivalences.

Proof. If F1 → F2 is a Nisnevich-local equivalence of simplicial radditive pre-
sheaves, the cofibrant replacement f : Lres (F1) → Lres (F2) is a Nisnevich-
local equivalence of objects in ∆opNormind. Therefore SG(f) : LSG(F1) →
LSG(F2) is a Nisnevich-local equivalence by Proposition 14.18.

We can now consider the behavior under A1-weak equivalences.

Lemma 14.20. If π : V → X is a vector bundle, then SGV → SGX is an
A1-local equivalence.

2Compare to [Del09, Thm.6]

June 27, 2018 - Page 227 of 281



Symmetric Powers

Proof. If X = Spec(R) and V = Spec(A), A = SymR(P ), then V m =
Spec(A⊗m), and the graded algebra map

φR : A⊗m → A⊗m[u], s = a1 ⊗ · · · ⊗ am 7→ s · ue1+···em (ai ∈ Aei),

is natural in R. The φR glue to define an equivariant map V m × A1 φ−→ V m,
fitting into the equivariant diagram on the left below. Modding out by the
G-action yields the commutative diagram on the right.

V m
u = 0

∼
> V m × A1 SG(V )

u = 0

∼
> SG(V )× A1 <

u = 1

∼ SG(V )

Xm

πm

∨ t = 0
> V m

φ
∨

SG(X)

SGπ
∨

t = 0
> SG(V m)

φ/G
∨ =

<

From the right-hand diagram (and the 2-out-of-3 property), we see that φ/G is
an A1-local equivalence. Since SGπ is a retract of an A1-local equivalence, it
follows that SGπ is also an A1-local equivalence.

Proposition 14.21. If X
f→ Y is an A1-local equivalence between objects of

∆opNormind then so is SGX
SGf−→ SGY .

Proof. Let E denote the class of morphisms f in ∆opNormind such that SGf
is an A1-local equivalence. Since the class of A1-local equivalences is ∆̄-closed
by Theorem 12.66 and SG commutes with colimits, E is a ∆̄-closed class by
Theorem 12.30.

Again by Theorem 12.66, the A1-local equivalences are the smallest ∆̄-closed
class containing the Nisnevich-local equivalences and the maps U × A1 → U .
Since SG preserves Nisnevich-local equivalences by Proposition 14.18, and
SG(X × A1)→ SG(X) is an A1-local equivalence by Lemma 14.20, E contains
the A1-local equivalences.

Corollary 14.22. The derived functor LSG = SGLres preserves A1-local
equivalences.

14.4 SG of quotients X/U

In the next chapter, we will need to compute S̃G(An/U) and LS̃G(An/U), where
U is the complement of the origin and G is a subgroup of Σm. In this section
we consider the more general problem of computing S̃G(X/U), where U ⊂ X is
the open complement of a closed subvariety Z.

By definition, X/U is the pointed Nisnevich sheaf associated to the reflexive
coequalizer (X ∪U ∗) of (X ∐U)+ ⇒ X+, which sends V to X(V )/U(V ). Since
(X ∐ U)+ is representable, (X ∪U ∗) is a radditive presheaf by Lemma 12.16.
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Recall from Section 12.1 that the functors S̃G on Norm+ extend to inverse

image functors (S̃G)∗ on Pshv(Norm+). Because (S̃G)∗ preserves colimits,

(S̃G)∗(X ∪U ∗) is the presheaf coequalizer of SG(X ∐ U)+ ⇒ (SGX)+; by
Lemma 12.16, this presheaf is radditive. The following theorem is a combination
of Example 5.8 in [Del09] and Proposition 2.12 in [Voe10c].

Theorem 14.23. There is a Nisnevich-local equivalence

(S̃G)∗(X/U) ≃ (S̃G)∗(X ∪U ∗) f−→ SGX/(SGX − SGZ).

Proof. Writing V for SGX − SGZ, SGX/V is the pointed Nisnevich sheaf as-
sociated to the coequalizer (SGX) ∪V ∗ of ((SGX) ∐ V )+ ⇒ (SGX)+. We
will define f by using a decomposition of SG(X ∐ U) to produce a morphism
h : SG(X ∐ U)+ → ((SGX)∐ V )+, compatible with the coequalizer diagrams

SG(X ∐ U)+ ⇒ (SGX)+ > (S̃G)∗(X ∪U ∗)

((SGX)∐ V )+

h
∨

⇒ (SGX)+

wwww
> (SGX) ∪V ∗

f
∨

and then show that f is a Nisnevich-local equivalence, by evaluating h at hensel
local schemes.

Step 1: We first consider the case G = Σm, using the decomposition
Sm(X ∐ U) = ∐ SiX × Sm−iU of (14.1). The identity map of SmX and
the concatenation maps

SiX × Sm−iU → V, i < m,

assemble to define a natural map h : Sm(X∐U)→ (SmX)∐V, compatible with
the coequalizer diagrams. Thus h induces a morphism f as indicated above.

To show that f is a Nisnevich-local equivalence, it suffices (by the construc-
tion of coequalizers in the category of sets) to show that h is a surjection when
evaluated at any hensel local scheme T .

Fix i and j > 0 such that i + j = m, and set H = Σi × Σj , so that
SiX×SjU = (Xi×U j)/H is an open subscheme of SiX×SjX = Xm/H. Let
Yj denote the étale locus of SiX × SjU → V . We claim that the union of the
étale maps Yj → V (j > 0) forms a Nisnevich cover of V . This implies that for
any hensel local T , the subset ∐Yj(T ) of ∐(SiX × SjX)(T ) maps onto V (T ),
which will finish the case G = Σm.

To demonstrate the claim, let Bj denote the locally closed subscheme Zi×U j
of Xm. Because Z and U are disjoint, the stabilizer subgroups of points in Bj
lie in H. By Lemma 14.23.1, applied to G = Σm and Y = Xm, the étale locus
of SiX × SjX → SmX contains SiZ × SjU = Bj/H. As SiZ × SjU is also
contained in SiX × SjU , it is contained in Yj .

As a scheme, V is the union of the images of the Bj (0 < j ≤ m). Therefore,
it suffices to show that each morphism SiZ × SjU → V is a locally closed
immersion. Consider the Σm-closure of Bj in Xm, Aj =

⋃
σ∈Σm

σ(Bj). Then
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Aj is the disjoint union of the σ(Bj) as σ runs over a set of coset representatives
of H in Σm. Hence Aj/Σm equals Bj/H = SiZ × SjU . Since Aj is locally
closed in Xm and the map Xm → Xm/Σm = SmX is both open and proper,
SiZ × SjU is locally closed in SmX. This establishes the claim, and finishes
the case G = Σm.

Step 2: When G is an arbitrary subgroup of Σm, we proceed by first ana-
lyzing SG(X ∐ U) = (X ∐ U)m/G. The G-scheme (X ∐ U)m breaks up as the
disjoint union over i+ j = m of G-schemes Yi,j , where Yi,j is the Σm-closure of
Xi × U j ; since the stabilizer of Xi × U j is Σi × Σj , Yi,j is the disjoint union
over coset representatives:

Yi,j =
∐

σ∈Σm/Σi×Σj

σ(Xi × U j).

Note that Ym,0 = Xm, so Ym,0/G = SGX. For each pair (i, j) with j > 0 and
for each σ, the images of the concatenations σ(Xi×U j)→Xm→ SGX lie in V .

We define the morphism h : SG(X∐U)→ SGX∐V as follows. We map the
summand Ym,0/G = Xm/G to SGX by the identity map; the summands Yi,j/G
with j > 0 are mapped to V by the mod G reduction of the concatenation maps
defined above. It is clear that h is compatible with the coequalizer diagram.

As in the case G = Σm, f will be a Nisnevich-local equivalence if h is a
surjection, i.e., if the étale locus of the morphisms Yi,j/G → V (j > 0) form a
Nisnevich cover of V . To see this, we decompose each Yi,j even further using

the double cosets [σ] in G\Σm/(Σi × Σj). Let Y
[σ]
i,j denote the union of those

components τ(Xi×U j) of Yi,j indexed by coset representatives τ in the G-orbit

Gσ in Σm/(Σi × Σj). Then Yi,j =
∐

[σ]
Y

[σ]
i,j , G acts on each factor Y

[σ]
i,j , and

SG(X ∐ U) = ∐Y [σ]
i,j /G.

The G-stabilizer of σ ∈ Σm/(Σi×Σj) is H [σ]
i,j = G∩σ(Σi×Σj)σ−1. Thus the

orbit Gσ of Σm/(Σi×Σj) is isomorphic to G/H
[σ]
i,j , and H

[σ]
i,j acts on σ(Xi×U j).

In summary, we have a natural isomorphism (induced by the inclusion)

σ(Xi × U j)/H [σ]
i,j

≃−→ Y
[σ]
i,j /G,

and the map h restricted to the component Y
[σ]
i,j /G of SG(X ∐ U) is

h
[σ]
i,j : σ(X

i × U j)/H [σ]
i,j → V.

Set H = H
[σ]
i,j and B = σ(Zi × U j). Since B is closed in σ(Xi × U j), B/H

is closed in σ(Xi × U j)/H. Finally, let A denote the G-closure of B in Xm,
A =

⋃
τ∈G τ(B). Now consider the following diagram, in which the top right

map is an open immersion and both left horizontal maps are closed immersions.

B/H ⊂ > σ(Xi × U j)/H ⊂ > Xm/H

A/G

∼=
∨

⊂ > Y
[σ]
i,j /G

∼=
∨

h
[σ]
i,j

> V ⊂ Xm/G
∨
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Because Z and U are disjoint, the stabilizer subgroups of points in B lie in H.
By Lemma 14.23.1, applied to G and Y = Xm, the map Xm/H → Xm/G is
étale in a neighborhood of B/H.

As a scheme, V is the union of the images of the B/H (over all (i, j) with
0 < j ≤ m and all σ). That is, the images form a constructible stratification of

V . Hence the union of the étale loci of the Y
[σ]
i,j /G→ V form a Nisnevich cover

of V . This implies that h is onto when evaluated at any hensel local scheme,
and hence f is an isomorphism.

Lemma 14.23.1. Let G be a finite group and H a subgroup. Suppose G acts
faithfully on a quasi-projective variety Y , and let U be the (open) subscheme
of points y whose (scheme-theoretic) stabilizer Gy is contained in H. Then
Y/H → Y/G is étale on U/H.

Proof. This is proven in V(2.2) of [SGA71], where the stabilizer Gy is called the
groupe d’inertie of y.

We also need to determine LS̃G(X/U). By 14.19, it is Nisnevich-local equiv-

alent to LS̃G(X ∪U ∗) = SGLres (X ∪U ∗). We start with G-schemes.

Proposition 14.24. Suppose that V ⊂ T is an open inclusion of G-schemes,
with pointed quotient presheaf T ∪V ∗. Then we have a global weak equivalence

(/G)∗Lres (T ∪V ∗) ≃−→ (/G)∗(T ∪V ∗).
If T is A1-local equivalent to a point, (/G)∗(T ∪V ∗) is A1-local equivalent to

the suspension of V/G.

Proof. Consider the map of squares, induced by Lres (F )→ F :

Lres (V+) ⊂ > Lres (T+) V+ ⊂ > T+

>

Lres (∗)
∨

> Lres (T ∪V ∗)
∨

∗
∨

> T ∪V ∗.
∨

(14.24.1)

Since Lres is a functor, G acts on the terms in the left square. By Construction
12.19 (the radditive version of Lemma 12.10), the left top map is a termwise split
monomorphism and the left square is cocartesian. By assumption, the right top
map is a monomorphism and the right square is cocartesian. Since (/G)∗ is a left
adjoint, it preserves pushouts. As (/G)∗(V+) = (V/G)+, (/G)

∗(T+) = (T/G)+
and (/G)∗(∗) = ∗, we have a map of cocartesian squares:

(/G)∗Lres (V+) ⊂ > (/G)∗Lres (T+) (V/G)+ > (T/G)+

>

(/G)∗Lres (∗)
∨

> (/G)∗Lres (T ∪V ∗)
∨

∗
∨

> (/G)∗(T ∪V ∗).
∨

(14.24.2)
Since each term Lres (T+)n is termwise the coproduct of Lres (V+)n and an-
other coproduct of schemes, and (/G)∗ is computed termwise, the left top map
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is a monomorphism. Because T → T/G is an open map, V/G → T/G is an
open inclusion. Thus (V/G)(W )→ (T/G)(W ) is a monomorphism for each W
in Norm+.

Recall from Remark 12.34.1 that if K → K ′ is a monomorphism of simplicial
sets and K → L is any map then the pushout K ′ ∪K L is weakly equivalent
to the homotopy pushout. It follows that both squares are homotopy pushouts
when evaluated at any W .

Now the maps between the three corresponding top and left corners of
(14.24.1) are global weak equivalences, by 12.19. By Theorem 12.33, applied
to (/G)∗, the maps between the three corresponding top and left corners of
(14.24.2) are also global weak equivalences. It follows that the homotopy
pushout

(/G)∗Lres (T ∪V ∗)→ (/G)∗(T ∪V ∗)
is also a global weak equivalence.

Now suppose that T is A1-local equivalent to a point. Since A1-localization
preserves homotopy cocartesian squares, the pushout (/G)∗(T ∪V ∗) is A1-
equivalent to the homotopy pushout of (/G)∗(T+) = (T/G)+ and ∗ along
(/G)∗(V+) = (V/G)+, i.e., to the cone of (V/G)+ → S0. Hence (/G)∗(T ∪V ∗)
is A1-local equivalent to the suspension of V/G (see Definition 1.36).

Remark. Proposition 14.24 is essentially Lemma 16 in [Del09], with F = ∗.

14.5 Nisnevich G-local equivalences

The goal of this section is to prove the following theorem, which is needed for
Lemma 15.24.

Theorem 14.25. Suppose that U ⊂ X is an open inclusion of normal schemes.
Then LS̃G(X ∪U ∗) ∼−→ S̃G(X ∪U ∗) is a Nisnevich-local equivalence.

The proof will need the notion of a G-local hensel scheme, and a Nisnevich
G-local equivalence. This notion first appeared in [Del09, p.373].

Definition 14.26. Let G be a finite group scheme. A G-local hensel scheme T
is a G-scheme whose underlying scheme is a finite disjoint union of hensel local
schemes, and such that the scheme T/G is hensel local.

A map F1 → F2 of simplicial presheaves on G−Norm is a Nisnevich G-
local equivalence if F1(T ) → F2(T ) is a weak equivalence for every G-local
hensel scheme T . A map F1 → F2 of simplicial presheaves on G−Norm+ is
a Nisnevich G-local equivalence if F1(T+) → F2(T+) is a weak equivalence for
every G-local hensel scheme T .

Remark 14.26.1. The G-local hensel schemes are the points of the G-Nisnevich
topology on G−Norm of [Del09, §3.1]. In this topology, covers of T are col-
lections of G-equivariant étale maps Yi → T such that T admits a filtration by
closed equivariant subschemes ∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tn = T such that for each
j one of the maps Yi → T admits a section over Tj − Tj−1.

June 27, 2018 - Page 232 of 281



Symmetric Powers

Construction 14.27. The following construction produces G-local hensel
schemes. Fix a hensel local scheme S and a G-scheme W . Given a G-local
hensel scheme T with T/G = S, any G-map T →W induces a map S →W/G.
Conversely, given a map f : S →W/G, the pullback T = S×W/GW is a G-local
hensel scheme, and the equivariant map fT : T → W induces the original map
f on the G-quotient schemes. Thus we have a bijection

colim
T/G=S

HomG(T,W )
∼=−→ (W/G)(S) = Hom(S,W/G).

The colimit is taken over the system of G-local schemes T over S with T/G =
S. Note that a morphism T1 → T2 in this system induces an isomorphism

HomG(T2,W )
∼=−→ HomG(T1,W ).

If F is a simplicial presheaf on G−Norm+, the system of G-local hensel T
with S = T/G is cofinal in the comma category of maps S → T ′/G. Hence

((/G)∗F )(S) = colim
S→T ′/G

F (T ′) = colim
S=T/G

F (T ).

We will need two properties of Nisnevich G-local equivalences.

Lemma 14.28. 1) If F1 → F2 is a Nisnevich G-local equivalence of radditive
presheaves on G−Norm+, then LresF1 → LresF2 is also a Nisnevich G-local
equivalence.

2) If F1 → F2 is a Nisnevich G-local equivalence in ∆op(G−Norm+), then
(/G)∗F1 → (/G)∗F2 is a Nisnevich local equivalence.

Proof. The first assertion follows from 12.25 for C = G−Norm+, which as-
serts that LresF1 → F1 and LresF2 → F2 are global weak equivalences in
∆oprad(C).

For the second assertion, we observe that for each hensel local S the map
(/G)∗F1(S) → (/G)∗F2(S) is the colimit over the system of G-local hensel T
with S = T/G of the weak equivalences F1(T )→ F2(T ).

Lemma 14.29. Let U ⊂ X be an open inclusion of normal schemes, and set
Z = X − U , W = Xm − Zm. Then for every subgroup G of Σm there is a
Nisnevich G-local equivalence

P (X ∪U ∗) f−→ (Xm ∪W ∗).

Proof. By Lemma 14.5, P (X+) ∼= (Xm)+. We claim there is a map h fitting
into a coequalizer diagram in ∆oprad(G−Norm) similar to that in Theorem
14.23:

P (X ∐ U)+ ⇒ P (X+) > P (X ∪U ∗)

(Xm ∐W )+

h
∨

⇒ (Xm)+

∼=
∨

> Xm ∪W ∗.

f
∨
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The construction of h is parallel to the construction in the proof of Theorem
14.23. As a G-scheme, P (X ∐ U)+ ∼= (X ∐ U)m+ is the coproduct of G-schemes
Yi,j , i + j = m; each Yi,j is the coproduct of all terms σ(Xi × U j) for σ in
Σm/(Σi×Σj). As in the proof of Theorem 14.23, h maps Ym,0 = Xm to Xm by
the identity and maps Yi,j to W by concatenation when j > 0. As in loc. cit., h
is compatible with the coequalizer diagram, and defines a map f . In fact, the
map in Theorem 14.23 is obtained by applying (/G)∗ to the map f we have just
constructed, since V = (/G)∗W .

Using the decomposition of the Yi,j into G-schemes Y
[σ]
i,j in the proof of

Theorem 14.23, we see that W has a G-invariant constructible stratification by

locally closed subschemes B
[σ]
i,j (the G-closure of the B in loc. cit.) such that

the restriction of h to the étale loci of Y
[σ]
i,j → W splits over B

[σ]
i,j . (In the

terminology of Remark 14.26.1, the étale loci of Yi,j → W form a G-Nisnevich
cover of W .) It follows that the maps

h :
∐

j>0
Yi,j(T )→W (T )

are surjective for every G-local hensel scheme T . By the construction of coequal-
izers in the category of sets, P (X ∪U ∗)(T )→ (Xm ∪W ∗)(T ) is a bijection.

Proof of Theorem 14.25. 3 Let us write C for the simplicial radditive presheaf
Lres (X ∪U ∗). By Lemmas 12.25 and 14.6, PC → P (X ∪U ∗) is a global
weak equivalence of simplicial radditive presheaves on G-Norm+. Applying the

cofibrant resolution LresH
≃−→ H in ∆oprad(G−Norm+) (which is a global

weak equivalence of simplicial radditive presheaves by Lemma 12.25), we have
a square of global weak equivalences in ∆oprad(G−Norm+).

Lres (PC)
≃

> PC

LresP (X ∪U ∗)

≃
∨ ≃

> P (X ∪U ∗).

≃
∨

With the exception of P (X ∪U ∗), the corners of this diagram are simplicial

objects of (G−Norm+)
ind, by the analysis before Lemma 14.16. Since S̃G ∼=

(/G)∗P by Proposition 14.7, applying (/G)∗ to this diagram yields the following
diagram of simplicial radditive presheaves on Norm+.

(/G)∗Lres (PC)
≃

> (/G)∗PC
∼=

> S̃G(C)

(/G)∗LresP (X ∪U ∗)

≃
∨ η

> (/G)∗P (X ∪U ∗)
∨ ∼=

> S̃G(X ∪U ∗)
∨

3The proof of Theorem 14.25 is based on Proposition 42 in [Del09].
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The theorem asserts that the composition from the upper left to the lower right
is a Nisnevich-local equivalence. By Theorem 12.33, the left vertical and top
left horizontal maps are global weak equivalences. Thus to prove the assertion,
it suffices to show that the lower left horizontal map

η : (/G)∗LresP (X ∪U ∗)→ (/G)∗P (X ∪U ∗)

is a Nisnevich-local equivalence.
We saw in Lemma 14.29 that f : P (X ∪U ∗) → (Xm ∪W ∗) is a Nisnevich

G-local equivalence. Thus by Lemma 14.28, LresP (X∪U ∗)→ Lres (Xm∪W ∗)
is a Nisnevich G-local equivalence. Applying (/G)∗, we obtain a commutative
diagram

(/G)∗LresP (X ∪U ∗)
η

> (/G)∗P (X ∪U ∗)
∼=
> S̃G(X ∪U ∗)

(/G)∗Lres (Xm ∪W ∗)

14.28 ≃
∨ ≃

14.24
> (/G)∗(Xm ∪W ∗)

(/G)∗f
∨ ∼=

> S̃G(X+)/V,

14.23 ≃
∨

where V = SGX − SG(X − U). The bottom left horizontal map is a global
weak equivalence by Proposition 14.24, the right vertical map is a Nisnevich-
local equivalence by Theorem 14.23, and the left vertical map is a Nisnevich-
local equivalence by Lemma 14.28. Thus the upper left horizontal map is a
Nisnevich-local equivalence, as needed to finish the proof.

14.6 Symmetric powers and shifts

In this section, we establish two distinguished triangles in DM (see Theorem
14.34); these will be used in Corollary 15.27 to describe Sℓtr(L

a[b]). We will
assume that (ℓ−1)! is invertible in the coefficient ring R.

Definition 14.30. A motive X is called even if the transpose automorphism
τ(X) of X ⊗X is the identity; X is called odd if τ(X) is multiplication by −1.

It is easy to see that τ(X[n]) = (−1)nτ(X). This implies that if X is even
then X[1] is odd, and if X is odd then X[1] is even. Since R is clearly even,
this implies that R[n] is even or odd, depending on whether n is even or odd.

Lemma 14.31. The motives Ln are even.

Proof. By [MVW, 15.8], R(n) is even, and Ln = R(n)[2n].

Here is a useful decomposition result.

Theorem 14.32. Let f : X → Y be a termwise split injection of simplicial
ind-objects in Cor(Norm, R). Then we have a collection of objects

Sna,b = Sna,b(f), 0 ≤ a ≤ b ≤ n,
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with Sn0,n = Sntr(Y ), such that for 0 ≤ a ≤ n there are isomorphisms

Sna,a
∼= Satr(X)⊗ Sn−atr (Y/X).

Moreover, for 0 ≤ a ≤ b < c ≤ n we have distinguished triangles in DM:

Snb+1,c → Sna,c → Sna,b → Snb+1,c[1].

These data are natural in X → Y .

Proof. Set Z = Y/X and choose termwise splittings Yp ∼= Xp ⊕ Zp, so that

Sntr(Yp) = ⊕i+j=nSitr(Xp) ⊗ Sjtr(Zp) by Lemma 14.9. Let Sna,n denote the sub-

object of Sntr(Y ) which termwise is the sum of the Sitr(Xp)⊗ Sjtr(Zp) for i ≥ a.
Clearly Sn0,n = Sntr(Y ) and Snn,n = Sntr(X). Define Sna,b to be the termwise cok-
ernel of the termwise split injection Snb+1,n → Sna,n. Because X is a simplicial
subobject of Y , these are all simplicial ind-objects. The description of Sa,a and
the existence of the distinguished triangles are straightforward.

Corollary 14.33. ([Voe10c, 2.45]) Let X → Y be a termwise split injection
of simplicial ind-objects in Cor(Norm, R), with Z = Y/X. Then there are
distinguished triangles

X ⊗ Sn−1
tr Z → Sn0,1 → SntrZ → X ⊗ Sn−1

tr Z[1],

Sn−1
tr (X)⊗ Z → Sn0,n−1 → Sn0,n−2 → Sn−1

tr (X)⊗ Z[1].

Proof. These are the triangles of Theorem 14.32 for (a, b, c) = (0, 0, 1) and
(a, b, c) = (0, n− 2, n− 1).

We now come to the main result in this section; it is taken from [Voe10c, 2.46].

Theorem 14.34. Assume that (ℓ− 1)! is invertible in R, and let X be a sim-
plicial ind-object in Cor(Norm, R).

1. If X is odd, there is a distinguished triangle

X⊗ℓ[ℓ− 1]
ζ−→ (SℓtrX)[1]

η−→ Sℓtr(X[1]) −→ X⊗ℓ[ℓ].

2. If X is even, there is a distinguished triangle

X⊗ℓ[1]
ζ−→ (SℓtrX)[1]

η−→ Sℓtr(X[1]) −→ X⊗ℓ[2].

Proof. Let CX denote the simplicial cone on X and consider the termwise split
cofiber sequence X → CX → SX in ∆opCor(Norm, R)ind. Note that CX ∼= 0
and SX ∼= X[1] in DM.

Assume first that X is odd. Then Z = X[1] is even, so Sℓ−1
tr (X[1]) is

isomorphic to (X[1])⊗ℓ−1 = X⊗ℓ−1[ℓ − 1] by Example 14.12(e). Thus the first
sequence of Corollary 14.33 with n = ℓ, Y = CX and Z = X[1] becomes:

X⊗ℓ[ℓ− 1]→ Sℓ0,1 → Sℓtr(X[1])→ X⊗ℓ[ℓ].
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Thus to prove assertion 14.34(1), it suffices to show that Sℓ0,1
∼= Sℓtr(X)[1]. By

Theorem 14.32 with (a, b, c) = (0, 1, ℓ), we have a distinguished triangle

Sℓ2,ℓ → Sℓ0,ℓ → Sℓ0,1
δ−→ Sℓ2,ℓ[1].

By construction, Sℓ0,ℓ is equal to S
ℓ
tr(CX), which is zero. Hence δ is an isomor-

phism: Sℓ0,1
∼= Sℓ2,ℓ[1]. We are done if ℓ = 2, since in that case Sℓ2,2

∼= S2
tr(X).

By Theorem 14.32 with (a, b, c) = (2, ℓ−1, ℓ), we have a distinguished triangle

SℓtrX = Sℓℓ,ℓ → Sℓ2,ℓ → Sℓ2,ℓ−1 → (SℓtrX)[1].

Therefore it remains to show that Sℓ2,ℓ−1 equals zero.

Now Sℓi,i is isomorphic to Sitr(X)⊗ Sℓ−itr (X[1]). Since X is odd, Sitr(X) = 0

for 1 < i < ℓ, by Example 14.12(e), so Sℓi,i = 0. We are now done if ℓ = 3,

since Sℓ2,2 = 0. From the distinguished triangles with (a, b, c) = (2, i − 1, i) for

3 ≤ i ≤ ℓ− 1, Sℓi,i=0 yields

Sℓ2,ℓ−1

∼=−→ · · ·Sℓ2,3
∼=−→ Sℓ2,2 = 0.

This finishes the proof of the first part of Theorem 14.34.
Now assume that X is even. Then Sℓ−1

tr (X) ∼= X⊗ℓ−1 by Example 14.12(e).
Since Z = X[1], Sℓℓ−1,ℓ−1

∼= Sℓ−1
tr (X)⊗X[1] = X⊗ℓ[1]. Thus the second sequence

of Corollary 14.33 with n = ℓ, Y = CX and Z = X[1] becomes:

X⊗ℓ[1]→ Sℓ0,ℓ−1 → Sℓ0,ℓ−2 → X⊗ℓ[2].

The triangle for (a, b, c) = (0, ℓ− 1, ℓ) yields Sℓ0,ℓ−1

∼=−→ (SℓtrX)[1]. We are done

if ℓ = 2, as S2
0,0 = S2

tr(X[1]). Since X[1] is odd, Sjtr(X[1]) = 0 for 1 < j < ℓ and

hence Sℓi,i = 0 for 1 ≤ i ≤ ℓ − 2. Now the triangles for (a, b, c) = (0, i − 1, i),
1 ≤ i ≤ ℓ− 2, yield

Sℓ0,ℓ−2

∼=−→ · · · ∼=−→ Sℓ0,1
∼=−→ Sℓ0,0 = Sℓtr(X[1]).

This finishes the proof.

Corollary 14.35. Set T = La[b]. Then there is a map (SℓtrT )[1]
η−→ Sℓtr(T [1])

whose cone is: T⊗ℓ[2] for b even, and T⊗ℓ[ℓ] for b odd.

Proof. By Lemma 14.31, La[b] is even or odd, according to the parity of b. Now
apply Theorem 14.34.

By 12.72, we can refer to topology to calculate the maps in 14.34.

Example 14.36. When T = R = Z/ℓ, we have Sℓtr(R) = Rtr(S
ℓ Spec k) = R.

We claim that Sℓtr(R[1]) = 0, which by 14.34(2) implies that Sℓtr(R[2])
∼= R[2ℓ].

To see the claim, we regard the discrete simplicial set S1 as a union of
copies of Spec k in each degree, so that R ⊕ R[1] ∼= Rtr(S

1). Since R[1] is odd,
Sitr(R[1]) = 0 for 1 < i < ℓ and we have Sℓtr(R ⊕ R[1]) = R ⊕ R[1] ⊕ Sℓtr(R[1]).
Nakaoka’s simplicial calculation in [Nak57] shows that Sℓtr(R⊕R[1]) = R⊕R[1].
It follows that Sℓtr(R[1]) = 0, as claimed.
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Example 14.37. For T = R[b] and b ≥ 1, we can compare with the cohomology
of the Eilenberg–MacLane spaces K(Z, b). Recall that by Dold–Thom [DT58]
we have a homotopy equivalence K(Z, b) ≃ S∞(Sb), where Sb is a (based)

simplicial sphere, so we have H̃∗
top(K(Z, b), R) ∼=

⊕
H̃∗

top(S̃
i(Sb), R) by Steen-

rod’s formula in topology (cf. Corollary 14.14). If char(k) = 0, the topological
realization of Theorem 14.34 for X = Sb ⊗ Spec(k) yields triangles in D−(R):

C̃∗(S̃
ℓ(Sb), R)[1]

t(η)−→ C̃∗(S̃
ℓ(Sb+1), R) −→

{
C̃∗(S

bℓ+2), R)

C̃∗(S
bℓ+ℓ), R)

t(ζ)−→ .

Now take R = Z/ℓ. On cohomology, the map H̃∗+1
top (S̃ℓ(Sb))

t(η)−→ H̃∗
top(S̃

ℓ(Sb+1))

is an injection, because it is a summand of the suspension map H̃∗+1
top (K(Z, b))→

H̃∗
top(K(Z, b+ 1)), which Cartan showed was an injection in [Car54]. It follows

that the map t(ζ) is zero on cohomology, and hence t(ζ) = 0 in the semisimple
triangulated categoryD−(Z/ℓ). Thus the triangles split and we have the formula
in D−(Z/ℓ):

C̃∗(S̃
ℓ(Sb), R) ∼=

{ ⊕(b−1)/2
i=1 R[b+ 2i(ℓ− 1)]⊗ (R⊕R[1]), b odd,

R[bℓ]⊕⊕b/2−1
i=1 R[b+ 2i(ℓ− 1)]⊗ (R⊕R[1]), b even.

Note that the singular cohomology H̃∗
top(S̃

ℓ(Sb), R) can be read off from this
formula, and we get exactly the result obtained in 1957 by Nakaoka in [Nak57];
cf. [Milg, 4.2].

Corollary 14.38. 4 When char(k) = 0, R = Z/ℓ and b ≥ 1, we have

S̃ℓtr(R[b])
∼=

{ ⊕(b−1)/2
i=1 R[b+ 2i(ℓ− 1)]⊗ (R⊕R[1]), b odd,

R[bℓ]⊕⊕b/2−1
i=1 R[b+ 2i(ℓ− 1)]⊗ (R⊕R[1]), b even.

Thus the canonical map S̃ℓtr(R[b])[1] → S̃ℓtr(R[b + 1]) is a split injection for all
b > 0, and the zero map for b = 0.

Proof. We proceed by induction on b, the cases b = 1, 2 being covered in Ex-
ample 14.36. Suppose that the formula holds for b and consider the map ζ in
14.34. If b is odd, ζ = 0 because inductively S̃ℓtr(R[b]) is a sum of terms R[c]

with c < bℓ, so that Hom(R[bℓ+ ℓ− 1], S̃ℓtr(R[b])) is zero. If b is even, the same

considerations show that Hom(R[bℓ], S̃ℓ(R[b])) ∼= Hom(R[bℓ], R[bℓ]) ∼= Z/ℓ. In
this case, we see that the topological realization functor is an isomorphism on

Hom(R[bℓ], S̃ℓtr(R[b]))
∼=−→ HomD−(Z/ℓ)(C̃∗(S

bℓ), C̃∗(S̃
ℓ(Sb))) ∼= Z/ℓ.

(The last isomorphism is from 14.37.) Since ζ maps to ζtop = 0, we have
ζ = 0. Thus the triangle in 14.34 splits, and we obtain the inductive result for
S̃ℓ(R[b+ 1]).

4Taken from [Wei09, 3.5.1]
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14.7 Historical notes

Symmetric products were introduced by Dold and Thom in 1956, and published
in the 1958 paper [DT58]. They played an important role in the development
of algebraic topology and spectra, especially in the 1960s.

The use of symmetric products of varieties in motivic cohomology had its
origins in the 1996 Suslin–Voevodsky paper [SV96], where effective correspon-
dences from X to Y were shown to be in 1–1 correspondence with morphisms
X → S∞Y+. Thus the connection between symmetric products and motivic
cohomology was clear from the beginnings of the subject in the late 1990s.

Early approaches such as [MV99] and [Voe03c] used G-equivariant methods
to model classifying spaces BG and to construct the Steenrod operations. The
foundations of the symmetric product approach were presented by Voevodsky
in a course in 2000–01 and published in [Del09] and [Voe10c].

The material in this chapter is based upon Section 5 of [Del09] and Section 2
of [Voe10c]. As we only need the notions of Nisnevich G-local equivalence and G-
local hensel schemes (Definition 14.26), we have avoided a lengthy development
of the G-Nisnevich topology, or the corresponding model structure on simplicial
presheaves on G−Norm in [Del09].
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Chapter 15

Motivic classifying spaces

In this chapter, we first connect the motives S∞
tr (L

n) to cohomology operations
on H2n,n in Theorem 15.3, at least when char(k) = 0. This parallels the Dold–
Thom theorem in topology, which identifies the reduces homology H̃∗(X,Z) of a
connected space X with the homotopy groups of the infinite symmetric product
S∞X.

A similar analysis shows that Gm represents H1,1(−,Z), which allows us
to describe operations on H1,1 (Section 15.2). In Section 15.3 we introduce
the notion of scalar weight operations on H2n,n. In Sections 15.4 and 15.5, we
develop formulas for Sℓtr(L

n). These formulas imply that S∞
tr (L

n) is a proper
Tate motive (15.28), so there is a Künneth formula for them (15.32). The
chapter culminates in Theorem 15.38, where we show that βP b is the unique
cohomology operation of scalar weight 0 in its bidegree. This is used in Part I,
Theorem 6.33 to identify a cohomology operation φ with βPn.

15.1 Symmetric powers and operations

In this section, we relate cohomology operations to the symmetric powers
Sitr(L

n) (see Theorem 15.3). The key will be the following result of Suslin
and Voevodsky from [SV96]. Recall that the algebraic group completion of an
abelian monoid M is an abelian group A together with a map M → A which
is universal for maps to abelian groups. Since S∞(Y+) is a presheaf of abelian
monoids, its algebraic group completion is a presheaf of abelian groups.

Recall from Example 12.28 that Rtr(Y ) is a presheaf with transfers (for any
ring R and any scheme Y ), and that uRtr(Y ) denotes the underlying presheaf.

Theorem 15.1. If char(k) = 0 and Y is normal, there is a morphism ηY :
S∞(Y+) → uZtr(Y ) of presheaves of abelian monoids, natural in Y, such that
for each scheme X the following map is an algebraic group completion.

ηY (X) : Hom(X+, S
∞Y+)→ uZtr(Y )(X)
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Proof. Suslin and Voevodsky proved in [SV96, 6.8] that finite correspondences
of degree m ≥ 0 from X to Y correspond to morphisms from X to Sm(Y ),
and effective finite correspondences correspond to elements of Hom(X+, S

∞Y+).
Since elements of Ztr(Y )(X) correspond to all finite correspondences from X
to Y, Ztr(Y )(X) is the group completion of Hom(X+, S

∞Y+), and the group
completion map ηY (X) is natural in X and Y .

Remark 15.1.1. If char(k) = p > 0 and R = Z[1/p], the same proof (using
[SV96, 6.8]) shows that uRtr(Y )(X) is the group completion of the abelian
monoid Hom(X+, S

∞Y+)[1/p].

There is a topological notion of the group completion of an H-space, based
on the observation that the realization of any simplicial abelian monoid is a
commutative H-space. If B is a homotopy commutative H-space, π0(B) is an
abelian monoid. A topological group completion of B is an H-map f : B → C
such that π0(B) → π0(C) is the algebraic group completion, and f∗ identifies
H∗(C) with the localization of the ring H∗(B) at the multiplicative set π0(B).
The topological group completion of B is unique up to homotopy equivalence.

If B is a simplicial abelian monoid, and A is its algebraic group completion,
then B → A is also a topological group completion.

Corollary 15.2. Let Y be a simplicial object of Norm+ with char(k) = 0.
Assume that, for all normal X, either (i) the simplicial set Hom(X+, S

∞Y ) is
connected, or (ii) π0 Hom(X+, S

∞Y ) is an abelian group. Then the canonical
simplicial morphism S∞Y → uZtr(Y ) is a global weak equivalence.

Proof. It suffices to show that each H-space B = Hom(X+, S
∞Y ) is already

topologically group complete. By assumption, π0(B) is an abelian group. The
result follows because any simplicial H-space B has a homotopy inverse if and
only if π0(B) is a group, by [Whi78, X.2.2].

Remark 15.2.1. The hypothesis on π0 is necessary in Corollary 15.2. For exam-
ple, the morphism in 15.1 for Y = S0 is the group completion N→ Z, which is
not a weak equivalence.

Remark 15.2.2. If char(k) = p > 0, we may define S∞Y [1/p] to be the colimit of

S∞Y
p−→ S∞Y

p−→ · · · . Then for R = Z[1/p] we have a global weak equivalence

S∞Y [1/p]
≃−→ uRtr(Y ) for every simplicial object Y of Norm+ satisfying (i)

or (ii) from Corollary 15.2.

We now apply these general considerations to Ln = LnR = R(n)[2n].
Write Kn and B•Kn for the underlying sheaves uLn and uLn[1] representing
H2n,n(−, R) and H2n+1,n(−, R), respectively; see Lemma 13.2. The example
Y = S0 in Remark 15.2.1 shows that we need to restrict to n > 0.
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Theorem 15.3. Suppose that char(k) = 0. For n ≥ 1, there are A1-local
equivalences in ∆opPST(Sm, R):

Rtr(Kn) ≃S∞
tr (L

n
R)≃

∞⊕

i=1

Sitr(L
n
R), and

Rtr(B•Kn) ≃S∞
tr (L

n
R[1])≃

∞⊕

i=1

Sitr(L
n
R[1]).

Hence cohomology operations from H2n,n(−,Z) to Hp,q(−, R), resp., from
H2n+1,n(−,Z) to Hp,q(−, R), are in 1–1 correspondence with elements of

H̃p,q(Kn, R) ∼= HomDM(⊕∞i=1S
i
tr(L

n), R(q)[p]) =
∞∏

i=1

Hom(Sitr(L
n), R(q)[p]),

resp., with elements of

H̃p,q(B•Kn, R)∼=HomDM(⊕∞i=1S
i
tr(L

n[1]), R(q)[p])=

∞∏

i=1

Hom(Sitr(L
n[1]), R(q)[p]).

Proof. First suppose that R is any commutative ring. Writing Č(An) for the
simplicial Čech scheme on An, let V denote the cone of (An − 0)+ → Č(An)+,
given by (An − 0) ⊂ An; V is an object of ∆opSm+. Note that V is A1-
local equivalent to the cone of (An−0) → An, which in turn is Nisnevich-local
equivalent to An/(An−0). By 12.69.3, Rtr preserves A

1-local equivalences. Thus
LnR = Rtr (A

n/(An − 0)) is A1-local equivalent to Rtr(V ) in ∆opPST(Sm, R)
for all R. Applying u, we see that uLnR is A1-local equivalent to uRtr(V ) in
∆opPshv(Sm+).

Now set R = Z, and suppose that char(k) = 0. Since Č(An) → Spec(k)
is a global weak equivalence, each Hom(X+, S

mV ) is connected. By Corollary
15.2, S∞V → uZtr(V ) is a global weak equivalence. Hence we have A1-local
equivalences S∞V ≃ Kn, and S∞

tr Rtr(V ) = Rtr(S
∞V ) ≃ Rtr(Kn). By Corol-

lary 14.14, Rtr(Kn) ≃ ⊕SmtrRtr(V ). Finally, since LnR is A1-local equivalent to
Rtr(V ), Proposition 14.21 implies that each SmtrRtr(V ) is A1-local equivalent to
SmtrL

n
R.

Similarly, B•Kn = u(Ln[1]) ≃ uZtr(ΣV ). In this case, the decomposition
arises from Rtr(B•Kn) ≃ RtrS

∞(ΣV ), Proposition 14.21 and Corollary 14.14.

Remark 15.3.1. If char(k) = p > 0, the conclusions of Theorem 15.3 hold with
Z replaced by Z[1/p]. To see this, replace Corollary 15.2 with Remark 15.2.2 in
the proof.

Example 15.3.2. For n = 1, Theorem 15.3 gives an alternative to the calcu-
lation in 13.2.1 that cohomology operations φ : H2,1(−,Z) → Hp,q(−, R) are
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in 1–1 correspondence with homogeneous polynomials f(t) =
∑
i>0 ait

i of bide-
gree (p, q) in H∗,∗(k,R)[t], where t has bidegree (2, 1). The polynomial

∑
ait

i

corresponds to the operation φ(x) =
∑
aix̄

i.
Indeed, we saw in Example 14.12(b) that Sitr(L

1) ∼= Li for all i > 0. By
Theorem 15.3, the classifying space K1 = uL1 has cohomology:

Hp,q(K1, R) =

∞∏

i=1

HomDM(Li, R(q)[p]) =

∞∏

i=1

Hp−2i,q−i(k,R).

Example 15.4. As pointed out before Lemma 13.2, the identity cohomology
operation on H2n,n(−, R) corresponds to the canonical element α = αR2n,n of

H̃2n,n(Kn, R). It follows from Theorem 15.3 and the Slice Lemma 6.15 that

H̃2n,n(Kn, R) ∼= Hom(Ln,Ln) ∼= R, and it is easy to see that this group is
generated by α. This was first observed by Voevodsky in [Voe03c, 3.7].

Consider the i-th power cohomology operation x 7→ xi from H2n,n(X,R) to
H2ni,ni(X,R). It is nonzero for every R, by Lemma 13.1.1, and has a natural
interpretation in terms of the summand Sitr(L

n) in the decomposition in Theo-
rem 15.3. If 1/(ℓ− 1)! ∈ R and i < ℓ then Sitr(L

n) ∼= Lni by Example 14.12(e),
and the power map corresponds to the generator αi of Hom(Sitr(L

n),Lni) = R.
Consider the diagonal V → V i → Si(V ) for V = Č(An)/(An−0). Applying

Rtr yields the motivic power map Ln → Lni (see [MVW, 3.11]), and the sym-
metrizing map Lni → Sitr(L

n), up to the A1-local equivalences LniR ≃ Rtr(V
i).

Applying u to Ln → Lni yields the map Kn → Kni representing the power
operation. By Theorem 15.3, the adjoint map Rtr(Kn)→ Lni may be identified
with the map S∞

tr (L
n)→ Sitr(L

n)→ Lni.

15.2 Operations on H1,1

In this section we fulfill the promise of Example 13.2.2, to show that the classi-
fying space K(Z(1), 1) is the pointed scheme Gm = (A1−{0}, 1), at least when k
has characteristic 0. As pointed out in loc. cit., this implies that every motivic
cohomology operation φ : H1,1(−,Z)→ Hp,q(−, R) has the form φ(x) = ax for
a unique element a ∈ Hp−1,q−1(k,R). We begin with a useful general observa-
tion.

Lemma 15.5. If (X,x) is a pointed normal variety, there are global weak equiv-

alences LS̃m(X,x)
∼−→ (S̃m)∗(X,x)

∼−→ (SmX,xm).
In particular, LSm(Gm) is weakly equivalent to (Sm(A1−{0}), 1m).

Proof. Since the presheaf (X,x) is the reflexive coequalizer of S0 ⇒ X+, and

S̃m(S0) = S0, the presheaf (S̃m)∗(X,x) is the reflexive coequalizer of S0 ⇒

S̃m(X+) = (SmX)+ by Lemma 12.16. Since the coequalizer identifies xm with

the basepoint, we have (S̃m)∗(X,x) ∼= (SmX,xm).
The global weak equivalence X ∨∆1 → (X,x) of Example 12.28.2 induces

a global weak equivalence X ∨∆1 ≃ Lres (X ∨∆1) ≃ Lres (X,x) (see 12.25),
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so we have Sm(X ∨∆1) ≃ LSm(X ∨∆1)
∼−→ LSm(X,x) by Lemma 14.16 and

Proposition 14.17.
It follows from (14.1) that Sm(X∨∆1) is the union of the sheaves SiX×Sj∆1

along the subsheaves SiX × xj of SmX for i+ j = m. The linear contractions
ft(x1, . . . , xj) = (tx1, . . . , txj) of the (Sj∆1)(U) provide a homotopy retraction
of Sm(X ∨∆1)(U) onto SmX(U), sending the basepoint to xm.

Theorem 15.6. The pointed space Gm = (A1−{0}, 1) represents H1,1(−,Z),
at least when char(k) = 0.

Proof. Recall from Section 13.1 that H1,1(−,Z) is represented by uZ(1)[1]. Be-
cause u preserves A1-local equivalences such as Z(1)[1] = C∗Ztr(Gm)

∼→ Ztr(Gm)
(see 12.70), it is also represented by uZtr(Gm). Also recall from Example 12.28.2
that Gm is weakly equivalent to the split simplicial variety V = (A1−{0})∨∆1,
and hence uZtr(V ) ≃ uZtr(Gm).

By Proposition 14.17, S∞V ≃ LS∞(V ) ≃ LS∞(Gm). By Lemma 15.5 and
Example 14.12(c), the maps LSm(Gm) → (Sm(A1−{0}), 1) → Gm and hence
their colimit LS∞(Gm)→ Gm are A1-equivalences. This shows that there is an
A1-local equivalence between S∞V and Gm.

We claim that the map S∞V → uZtr(V ) is an A1-local equivalence. Assum-
ing this, we have the asserted A1-local equivalence:

K(Z(1), 1) = uZtr(Gm) ≃ uZtr(V )
≃←− S∞V

≃−→ Gm.

To establish the claim, consider the diagram of presheaves of simplicial
abelian monoids:

S∞V
A1

∼
> S∞V (−×∆•) ∼

> LS∞Gm(−×∆•)
A1

∼
> Gm

uZtrV

η
∨ A1

∼
> (uZtrV )(−×∆•).

η
∨

The two left horizontal maps are A1-local equivalences by construction, the
upper middle horizontal is a global weak equivalence by Proposition 14.17 and
the upper right horizontal is an A1-local equivalence by Example 14.12(c). The
vertical maps η are group completions, by Theorem 15.1. (This step requires
char(k) = 0.) But the group completion of any simplicial abelian monoid H
is a homotopy equivalence when π0(H) is a group; applying this to H(U) =
S∞V (U ×∆•), we see that the right vertical group completion map is a global
weak equivalence. The claim follows.

15.3 Scalar weight

In this section, we introduce the notion of scalar weight for motivic cohomology
operations, and give some examples. After describing Sℓtr(L

n) (Theorem 15.26),
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we will show that motivic cohomology operations H2n,n(−,Z) → Hp,q(−,Z/ℓ)
are graded by scalar weight when n > 0 (Section 15.7).

Definition 15.7. Let φ : Hp,q(−, R) → Hp′,q′(−,Z/ℓ) be a cohomology oper-
ation. We say that φ has scalar weight 0 if φ(ℓ · x) = 0 and φ(m · x) = φ(x) for
every integer m 6≡ 0 (mod ℓ), every X and every x ∈ Hp,q(X,R).

We say that φ has scalar weight 1 if φ(m · x) = m · φ(x) for every integer m,
every X and every x ∈ Hp,q(X,R). More generally, if 1 ≤ s < ℓ, φ is said to
have scalar weight s if φ(m · x) = ms · φ(x) for every integer m, every X and
every x ∈ Hp,q(X,R).

In particular, φ(m · x) = φ(m′ · x) if m ≡ m′ modulo ℓ. Hence the group
Z/ℓ× acts on the R-submodule of operations φ which have scalar weight s; if
m ∈ Z/ℓ× and α ∈ Hp,q(X,R) then (φ ·m)(α) = msφ(α).

For example, the identity map and the Frobenius φ(x) = xℓ have scalar
weight 1 when R = Z/ℓ. More generally, any additive cohomology operation
(such as P b) has scalar weight 1.

Abstractly, cohomology operations need not have scalar weight, or even be
a sum of operations having scalar weight.

Example 15.7.1. Scalar weight s cohomology operations φ on H0,0(−,Z) are
completely determined by φ(1), where 1 ∈ H0,0(k,Z) ∼= Z, since φ(m · 1) =
msφ(1), and they are classified by the elements of H∗,∗(k,Z/ℓ). For example,
there are exactly ℓ cohomology operations H0,0(−,Z) → H0,0(−,Z/ℓ) of any
scalar weight s.

In contrast, the description in Example 13.2.3 shows that there are uncount-
ably many cohomology operations from H0,0(−,Z) to H0,0(−,Z/ℓ).

Example 15.7.2. We can create cohomology operations of all scalar weights by
multiplication; if φi has scalar weight si then the monomial x 7→ φ1(x) · · ·φm(x)
has scalar weight s, where s ≡∑

si (mod ℓ−1). In particular, if a ∈ H∗,∗(k,Z/ℓ)
then φ(x) = axs has scalar weight s.

Example 15.7.3. Cohomology operations H2,1(−,Z)→ Hp,q(−,Z/ℓ) are rep-
resented by homogeneous polynomials f(t) =

∑
i>0 ait

i of bidegree (p, q) in
H∗,∗(k,Z/ℓ)[t] by either Example 13.2.1 or 15.3.2. That is, φ(x) = f(x). The
operation φ(x) = axi, corresponding to the monomial ati, has scalar weight i
modulo (ℓ− 1): (φ ·m)(x) = φ(mx) = a(mx)i = miφ(x).

Thus every cohomology operation H2,1(−,Z) → H∗,∗(−,Z/ℓ) is a unique
sum φ0 + · · · + φℓ−2 of operations φs of scalar weight s. The operations of
scalar weight 0 are exactly those represented by a polynomial in tℓ−1, and every
operation of scalar weight s (0<s< ℓ − 1) corresponds to ats or tsf(tℓ−1) for
an operation f(tℓ−1) of scalar weight 0.

Suppose that n ≥ 1. By Theorem 15.3, Rtr(Kn) ≃
⊕∞

1 Smtr (L
n), so that

every cohomology operation H2n,n(−,Z)→ H∗,∗(−,Z/ℓ) is a sum of operations
corresponding to elements of HomDM(Smtr (L

n),Z/ℓ(∗)[∗]). Following Steenrod
[Ste72], we will refer to these latter cohomology operations as having rank m.
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Definition 15.8. A cohomology operation H2n,n(−,Z) → Hp,q(−,Z/ℓ) has
rank m if it factors as ZtrKn → Smtr (L

n)→ Z/ℓ(q)[p].

In Section 15.7, we will show that every motivic operation H2n,n(−,Z) →
H∗,∗(−,Z/ℓ) of rank m has scalar weight m. This is true for 1 ≤ m < ℓ by
Examples 15.8.1 and 15.8.2 below. To handle the case m = ℓ, we will need a
description of Sℓtr(L

n). That is the goal of the next two sections.

Example 15.8.1. Rank 1 cohomology operations H2n,n(−,Z)→ H∗,∗(−,Z/ℓ)
are all of the form φ(x) = ax, where

a ∈ H∗−2n,∗−n(k,R) = Hom(S1
tr(L

n), R(∗)[∗]).
These operations are additive, and so have scalar weight one.

Example 15.8.2. Similarly, if 1 < s < ℓ then it follows from Example 15.4
that cohomology operations H2n,n(−,Z)→ Hp,q(−,Z/ℓ) of rank s are all of the
form φ(x) = axs, and have scalar weight s. Here

a ∈ Hp−2ns,q−ns(k,R) = Hom(Sstr(L
n), R(q)[p]).

15.4 The motive of (V −0)/C with V C = 0

The goal of this section is to describe the motive associated to the quotient
(V −{0})/C, where C is the cyclic group of order ℓ, and V is a nontrivial
representation over k with V C = {0}. This description is preparation for the
next section, whose goal is to derive a formula for Sℓtr(L

n), where L = R(1)[2].
This formula will then be used to establish the key uniqueness theorem 15.38.

By abuse of notation, we identify V with the affine space A(V ) =
Spec(Sym(V ∗)), and let (V−0) denote the algebraic variety A(V )−{0}. We also
write X for (V −0)/C. Since V (k) 6= {0}, both (V −0) and X have a k-rational
point. The choice of this point provides the motive Rtr(X) with a summand
R = Rtr(Spec(k)), and provides H∗,∗(X,Z/ℓ) with a summand H∗,∗(k,Z/ℓ).

Our first step is to produce a non-constant map u : Rtr(X) → R(1)[1], i.e.,
an element of H1,1(X,Z/ℓ) not in the summand H1,1(k,Z/ℓ) ∼= k×/k×ℓ.

Lemma 15.9. Let V be a nonzero representation of C with V C = 0, and set
X = (V −0)/C. If dim(V ) ≥ 2 then O(X)× = k× and Pic(X) ∼= µℓ(k).

Hence H1,1(X,Z/ℓ) ∼= H1,1(k,Z/ℓ)⊕ µℓ(k).
Proof. Since dim(V ) > 1, O(X) = k[V−0] = k. By [MVW, 4.9], H1,1(X,Z/ℓ) ∼=
H1

ét(X,µℓ), which is (non-canonically) the direct sum of O(X)×/O(X)×ℓ =
k×/k×ℓ and Hom(Z/ℓ,Pic(X)). Thus it suffices to show that Pic(X) ∼= µℓ(k).

Since C is cyclic of prime order and V C = 0, C acts freely on (V−0). Hence
(V−0)→ X is a Galois cover with group C. There is a Hochschild–Serre spectral
sequence with Ep,q2 = Hp(C,Hq

ét(V −0,Gm)) converging to H∗
ét(X,Gm) [Mil80,

III(2.20)]. Since Pic(V −0) = 0, the row q = 1 is zero, and we have

Pic(X) ∼= E1,0
2 = H1(C, k[V −0]×) = H1(C, k×) ∼= µℓ(k).
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Remark 15.9.1. If dim(V ) = 1, i.e., A(V ) = Spec(k[t]), then X = (V −0)/C =
Spec(k[tℓ, t−ℓ]) is isomorphic to A1−{0}. In this case Pic(X) = 0 and Rtr(X) ∼=
R⊕R(1)[1].

Definition 15.10. Suppose that k contains a primitive ℓth root of unity ζ,
and that V is a nonzero representation of C of dimension ≥ 2 with V C =
0. By Lemma 15.9, the choice of a k-point of X = (V − 0)/C determines
an isomorphism H1,1(X,Z/ℓ) ∼= H1,1(k,Z/ℓ) ⊕ µℓ. Let u be the element of
H1,1(X,Z/ℓ) corresponding to ζ, and let v ∈ H2,1(X,Z/ℓ) denote the Bockstein
applied to u. Note that u determines a map Rtr(X) → R(1)[1] in DM(k,R),
where R = Z/ℓ.

Each vi ∈ H2i,i(X,Z/ℓ) determines a map Rtr(X) → Li in DM(k,R), and
each uvi ∈ H2i+1,i+1(X) determines a map Rtr(X) → Li(1)[1] in DM(k,R).
The elements vi, uvi for 0 ≤ i < dim(V ) assemble to form the map:

IV = IV (ζ) : Rtr((V −0)/C) −→
⊕dim(V )−1

i=0

{
Li ⊕ Li(1)[1]

}
.

The map IV (ζ) in 15.10 depends on the choice of ζ. To see how, recall
that the choice determines an isomorphism (Z/ℓ)×

∼−→ Aut(µℓ), sending s to
ζ 7→ ζs. For s ∈ (Z/ℓ)×, let m(s) denote the isomorphism of

⊕
Li ⊕ Li(1)[1]

which is multiplication by si on Li and by si+1 on Li(1)[1].

Lemma 15.11. For each s ∈ (Z/ℓ)×, IV (ζ
s) is the composition m(s) ◦ IV (ζ).

Proof. Under the natural isomorphism H1,1(X,Z/ℓ) ∼= H1
ét(X,µℓ) of Lemma

15.9, u corresponds to ζ and hence su corresponds to ζs. Since the components
of the map IV (ζ

s) are obtained from u by applying the Bockstein and taking
products, the map v : Rtr(X)→ L(1)[1] is replaced by sv, vi is replaced by sivi

and uvi is replaced by si+1uvi.

Theorem 15.12. Let V be a nonzero representation of C with V C = 0. If
R = Z/ℓ and µℓ ⊂ k×, the map IV of Definition 15.10 is an isomorphism in
DM(k,R):

IV : Rtr ((V −0)/C) ≃−→ ⊕dim(V )−1
i=0

{
Li ⊕ Li(1)[1]

}
.

To prove Theorem 15.12, note that the choice of ζ determines an isomor-
phism C ∼= µℓ, and allows us to consider representations of µℓ as representations
of C. We begin by considering the case in which V is an isotypical representa-
tion.

Lemma 15.13. Let V1 be the direct sum of n ≥ 2 copies of the standard one-
dimensional representation of µℓ. Then the map IV1

of Definition 15.10 is an
isomorphism in DM(k,R):

IV1
: Rtr((V1−0)/C) ≃−→ ⊕n−1

i=0

{
Li ⊕ Li(1)[1]

}
.
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Proof. ([Voe03c, 6.3]) Set X = (V1−0)/C. Since the projection (V1−0)→ Pn−1

is equivariant with fiber A1−{0}, it factors through a map X → Pn−1 with fiber
isomorphic to A1−{0} (see Remark 15.9.1). As observed in [Voe03c, 6.3], X is
isomorphic to the complement of the zero-section of the line bundle L on Pn−1

associated to the sheaf O(−ℓ). By [MVW, 15.15] we have a Gysin triangle

Rtr(P
n−1)(1)[1] −→ Rtr(X)→ Rtr(L)

γ−→ Rtr(P
n−1)⊗ L −→ Rtr(X)[1],

and Rtr(L) ∼= Rtr(P
n−1) ∼= ⊕n−1

i=0 L
i. The components of the composition

Rtr(X)→ Rtr(L)→ ⊕n−1
i=0 L

i are the maps vi.
Now for any line bundle L over any Y, the Gysin map γ : Rtr(Y ) = Rtr(L)→

Rtr(Y )⊗ L is 1⊗ [L], where [L] is the class of L in Pic(Y )/ℓ = Hom(R,L). In
the case at hand, [O(−ℓ)] = 0 in Pic(Pn−1)/ℓ. Therefore γ = 0, and the Gysin
triangle splits. The result may be read off from this information.

This proves Theorem 15.12 when ℓ = 2, since our assumption that V C = 0
implies that V ∼= V1. If dim(V ) = 1, the isomorphism is given by Remark 15.9.1,
so we may assume that dim(V ) ≥ 2.

Next, we consider the case when V is isotypical for a different representation.

Corollary 15.14. Let Va be the direct sum of n ≥ 2 copies of the twisted 1-
dimensional representation ζ · x = ζax. Then the map Ia = IVa

of Definition
15.10 is an isomorphism in DM(k,R), and there is a commutative diagram:

Rtr(V1 − 0)/C
≃
I1
> ⊕n−1

i=0

{
Li ⊕ Li(1)[1]

}

Rtr(Va − 0)/C

∼=
∨ ≃

Ia
> ⊕n−1

i=0

{
Li ⊕ Li(1)[1]

}
.

⊕(ai, ai+1)
∨

Proof. The representation Va is the pullback of the representation V1 along the
automorphism ζ 7→ ζa of C = µℓ. Hence we may identify V1 and (V1−0)/C with
Va and (Va−0)/C, respectively. Since the automorphism acts as multiplication
by a on H1(C, k×), which is Pic((V1−0)/C) by Lemma 15.9, this identification
multiplies both u and v = β(u) by the unit a.

Remark 15.14.1. The power morphism pa : V1 → Va sending (x1, . . . , xn) to
(xa1 , . . . , x

a
n) is C-equivariant, finite and surjective of degree an. The same is true

for the restriction (V1− 0)→ (Va− 0) and for the C-quotient qa : (V1− 0)/C →
(Va− 0)/C. Since the degree of qa is prime to ℓ, it follows that Rtr(qa) is a split
surjection, and hence an isomorphism in DM(k,R) (by Corollary 15.14).

Proof of Theorem 15.12. Since µℓ ⊂ k×, Maschke’s theorem allows us to write
V as a direct sum of 1-dimensional representations, and hence as a direct sum
of the isotypical representations Va as in Corollary 15.14, 1 ≤ a ≤ ℓ − 1 of
dimension na,

∑
na = dim(V ). Let V ′ denote the sum of dim(V ) copies of the

standard representation, so that the direct sum of the equivariant morphisms pa
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of Remark 15.14.1 is a finite C-equivariant map p : V ′ → V of degree d =
∏
ana .

The same is true for the restriction (V ′−0) → (V − 0) of p, so the C-quotient
q : (V ′ − 0)/C → (V − 0)/C is finite of degree d, prime to ℓ. It follows that
Rtr(q) is a split surjection.

Since q∗ : Pic((V − 0)/C) → Pic((V ′−0)/C) sends uV to d · uV ′ and hence
vV to d · vV ′ , it follows that Rtr(q) : Rtr((V

′−0)/C) −→ Rtr((V − 0)/C) is
compatible with the maps IV , IV ′ in Definition 15.10. Thus the diagram

Rtr(V
′ − 0)/C

∼=
IV ′

> ⊕n−1
i=0

{
Li ⊕ Li(1)[1]

}

Rtr(V − 0)/C

Rtr(q)
∨

IV
> ⊕n−1

i=0

{
Li ⊕ Li(1)[1]

}
.

∼= ⊕(di, di+1)
∨

commutes. This implies that Rtr(q) is also a split injection, and hence an
isomorphism. It follows that IV is an isomorphism.

Proposition 15.15. Let V be a representation of G = C⋊Aut(C) with V C = 0
and d = dim(V ) > 0. If R = Z/ℓ and µℓ ⊂ k×, there is a natural isomorphism

Rtr ((V − 0)/G) ∼= Rtr ((V − 0)/C)
Aut(C)

∼= R⊕
⊕

0<i<d
(ℓ−1)|i

(
Li ⊕ Li−1(1)[1]

)
⊕
{
Ld−1(1)[1], (ℓ− 1) | d
0, else.

Proof. Set X = (V −0)/C and A = Aut(C). Since C acts trivially on X, the
G-action on V induces an action of A = G/C on X. Observe that Aut(C) acts

faithfully on X. Lemma 14.10 yields the formula Rtr(X)A
≃−→ Rtr(X/A) =

Rtr((V −0)/G). Given the direct sum decomposition of Rtr(X) in Theorem
15.12, the formula for M = Rtr(X)A is immediate from Lemma 15.11.

We conclude this section by describing the motivic cohomology rings of (V−
0)/C and (V −0)/G, via the decompositions in Theorem 15.12 and Proposition
15.15. When µℓ ⊂ k×, the reduced regular representation W1 of C is the direct
sum of the ℓ−1 nontrivial 1-dimensional representations of C ∼= µℓ, andW

C
1 = 0.

LetWn denote the direct sum of n copies ofW1, so d = dim(Wn) = n(ℓ−1),
and set Xn = (Wn−0)/C. Note that Σn acts on Wn by permuting its factors.

15.16. We briefly recall the computation of H∗,∗(Bgmµℓ) and H
∗,∗(BgmΣℓ) in

[Voe03c, §6]. Suppose that k has ℓ-th roots of unity, so that we may identify
C with the algebraic group µℓ. By [Voe03c, 6.1], the map Hp,q(Xn+1,Z/ℓ) →
Hp,q(Xn,Z/ℓ) is an isomorphism if n > q. Taking the limit as n → ∞ yields
Hp,q(Bµℓ,Z/ℓ) = limHp,q(Xn,Z/ℓ) by [Voe03c, 6.2]. By [Voe03c, 6.10],

H∗,∗(Bµℓ,Z/ℓ) = H∗,∗(k,Z/ℓ)[[u, v]]/(u2 = 0) (15.16.1)

for ℓ > 2 and

H∗,∗(Bµ2,Z/2) ∼= H∗,∗(k,Z/ℓ)[[u, v]]/(u2 = τv + ρu). (15.16.2)

Recall from 15.10 that u ∈ H1,1(Xn,Z/ℓ) and v ∈ H2,1(Xn,Z/ℓ).
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Now consider the group G = C ⋊ A, A = Aut(C). For ℓ = 2, when A = 1,
we have µ2 = G = Σ2 and hence BG = Bµ2.

When ℓ > 2, the groupA acts by algebra maps, and a ∈ A satisfies: a·u = au,
a · v = av; see [Voe03c, 6.11]. Thus for c = uvℓ−2 and b = β(c) = vℓ−1 we have:

H∗,∗(BgmG,R) ∼= H∗,∗(Bgmµℓ, R)
A ∼= H∗,∗(k,R)[[c, b]]/(c2), ℓ odd.

By [Voe03c, 6.13-6.14], c and b come from H∗,∗(BgmΣℓ, R). This implies that
the canonical injectionH∗,∗(BgmΣℓ, R) ⊂ > H∗,∗(BgmG,R) is an isomorphism.

Corollary 15.17. If µℓ ⊂ k×, H∗,∗(Xn,Z/ℓ) is a free module over H∗,∗ =
H∗,∗(k,Z/ℓ), and the elements vi, uvi for 0 ≤ i < d = n(ℓ− 1) form a basis.
(a) If ℓ 6= 2 the ring structure is H∗,∗(Xn,Z/ℓ) ∼= H∗,∗[u, v]/(vd = u2 = 0).
(b) If ℓ = 2 then the ring structure is

H∗,∗(Xn,Z/2) ∼= H∗,∗(k,Z/2)[u, v]/(vd, u2 + τv + ρu).

Here τ is the nonzero element of H0,1(k,Z/2) = µ2(k) ∼= Z/2 and ρ is the class
of −1 in H1,1(k,Z/2) ∼= k×/k×2.

Proof. The first sentence is immediate from Theorem 15.12. Since H∗,∗(Xn, R)
is a quotient of H∗,∗(Bµℓ,Z/ℓ), the algebra structure on H∗,∗(Xn,Z/ℓ) follows
from (15.16.1) and (15.16.2).

The group A = Aut(C) ∼= (Z/ℓ)× acts on Xn = (Wn − 0)/C and hence on
the ring H∗,∗(Xn,Z/ℓ), and a ∈ A satisfies: a · u = au, a · v = av; see Lemma
15.11 or [Voe03c, 6.11]. Hence a acts on uvi−1 and vi as multiplication by ai;
these elements are invariant if and only if i ≡ 0 (mod (ℓ − 1)). In particular,
the elements c = uvℓ−2 and b = vℓ−1 are invariant under this action. From
Proposition 15.15 we immediately conclude:

Corollary 15.18. If µℓ ⊂ k×, H∗,∗(Xn/A,Z/ℓ) = H∗,∗(Xn,Z/ℓ)
A is a free

module over H∗,∗ = H∗,∗(k,Z/ℓ), and the elements bj, cbj for 0 ≤ j < n form
a basis. If ℓ > 2 the ring structure is

H∗,∗(Xn/A,Z/ℓ) ∼= H∗,∗[b, c]/(bn = c2 = 0).

The case ℓ = 2 is given by Corollary 15.17(b), because in that case A is trivial.

15.5 The motive Sℓtr(L
n)

In this section, we compute Sℓtr(L
n). To do so, we identify the cyclic group

C = Cℓ with the Sylow ℓ-subgroup of Σℓ on generator (12 · · · ℓ), and identify
G = C ⋊ Aut(C) with the normalizer NΣℓ

(C), where s ∈ (Z/ℓ)× ∼= Aut(C)
corresponds to the permutation σ(i) = si of (12 · · · ℓ). Since [Σℓ : C] is prime
to ℓ, we may identify Sℓtr(L

n) with a summand of both SCtr(L
n) and SGtr(L

n).
As observed in Corollary 14.11, SGtr(L

n) ∼= SCtr(L
n)Aut(C), so the calculation is

reduced to SCtr(L
n).
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We first extend the formulas for Rtr((V −0)/G) in Section 15.4 to the case
when V C 6= 0 (15.22). For this, it is convenient to use an auxiliary space. Recall
that the Thom space Th(V ) of an affine space V is defined to be the Nisnevich
sheaf V/(V −0). If a finite group G acts on V , X = (V −0)/G is open in V/G.

Definition 15.19. If G is a finite group acting on V , we define Th(V )/G to be
the pointed Nisnevich sheaf quotient (V/G)/X, where X = (V −0)/G.

Since the radial A1-contraction V × A1 → V is equivariant, it induces an
A1-contraction (V/G) × A1 → V/G. By Proposition 14.24, Th(V )/G is A1-
equivalent to the suspension ΣX, i.e., the cone of X+ → S0 (see 1.36). Thus
there is a cofiber sequence

X+ → S0 → Th(V )/G→ Σ(X+).

If V 6= 0 then X(k) 6= ∅, and X+ → S0 splits, yielding ΣX+ ≃ ΣS0∨Th(V )/G;
applying Rtr[−1] and using (12.71) yields an isomorphism

Rtr((V − 0)/G+) ∼= R⊕ LRtr(Th(V )/G)[−1], V 6= 0. (15.20)

This display is (37) in [Voe10c]; cf. Lemma 16 in [Del09].

Lemma 15.21. Let V be a nonzero representation of a finite group G with
V G = 0, and let An be a trivial representation of G.

Then Th(V ⊕ An)/G ∼= Th(V )/G ∧ Th(An), and
LRtr(Th(V ⊕ An)/G) ∼= LRtr(Th(V )/G)⊗ Ln ∼= {Rtr ((V −0)/G) /R} ⊗ Ln[1].

The term in braces is the quotient by the basepoint inclusion of R.

Proof. There is a canonical isomorphism Th(V ) ∧ Th(An) ≃−→ Th(V ⊕ An),
because both are the quotient of V ⊕An by (V ⊕An)−{0}. (This was observed
in [MV99, 3.2.17].) The same reasoning shows that there is a canonical isomor-

phism Th(V )/G ∧ Th(An) ≃−→ Th(V ⊕ An)/G, because both sheaves are the
quotient of V/G× An by (V/G× An)−{0}.

The final assertion is obtained by applying Rtr, using the formula (15.20)
for Rtr(Th(V )/G)⊕R[1] and observing that Rtr(Th(A

n)) ∼= Ln.

Proposition 15.22. Suppose that µℓ ⊂ k× and set R = Z/ℓ. If V 6= 0 is a
representation of C with V C = 0 and d = dim(V ), the map of Definition 15.10
induces an isomorphism in DM(k,R) between LRtr (Th(V ⊕ An)/C) [−1] ⊕ R
and

Rtr ((V ⊕ An−0)/C) ≃−→ R⊕ Ln(1)[1]⊕
⊕d−1

i=1

{
Ln+i ⊕ Ln+i(1)[1]

}
.

If V is a representation of G = C ⋊Aut(C) with V C = 0 and d = dim(V ) > 0,

Rtr ((V ⊕ An−0)/G) ∼= Rtr ((V ⊕ An−0)/C)Aut(C)

∼= R⊕
⊕

0<i<d
(ℓ−1)|i

(
Ln+i ⊕ Ln+i−1(1)[1]

)
⊕
{
Ln+d−1(1)[1], (ℓ−1) | d
0, else.
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Proof. ([Voe10c, 3.56]) Set A = Aut(C), W = V ⊕ An, X = (W −0)/C and
X0 = (V −0)/C. Then (15.20) and Lemma 15.21 yield:

Rtr(X)/R ∼= LRtr(Th(W )/C)[−1] ∼= Rtr(X0)/R⊗ Ln,

Rtr(X/A)/R ∼= LRtr(Th(W )/G)[−1] ∼= Rtr(X0/A)/R⊗ Ln.

Now plug in the formulas for Rtr(X0)/R and Rtr(X0/A)/R, which are given in
Theorem 15.12 and Proposition 15.15.

Since L = R(1)[2], combining Lemma 15.21 with Proposition 15.22 yields:

Corollary 15.23. Suppose that V is a representation of G = C ⋊Aut(C) with
V C = 0 and d = dim(V ) > 0 is divisible by (ℓ−1). Then LRtr (Th(V ⊕ An)/G)
is isomorphic to

Rtr((V − 0)/G)/R⊗ Ln[1] ∼=
⊕

0<i<d
(ℓ−1)|i

(
Ln+i ⊕ Ln+i[1]

)
⊕ Ln+d.

Here is our main application of Proposition 15.22. The symmetric group Σℓ
acts on the product (An)ℓ of ℓ copies of An by permuting the factors. When
n = 1, Σℓ acts trivially on the diagonal A1 and we have (A1)ℓ ∼= A1 ⊕W1. The
restriction (from Σℓ to Cℓ) of W1 is the reduced regular representation of Cℓ.
Therefore (An)ℓ has the form Wn ⊕An, where Σℓ acts trivially on An, and Wn

is the direct sum of n copies of the representation W1, as in Corollary 15.18.

Lemma 15.24. For all G ⊆ Σm, SGtrL
n ∼= LRtr(Th(A

nℓ)/G) in DM(k,R).

Proof. By definition, SGtr(L
n) = RtrS̃

GLres (An/(An− 0)). By Theorems 14.25
and 14.23, there is a Nisnevich-local equivalence

S̃GLres (An/(An − 0))
≃−→ (S̃G)∗(An/(An − 0))

≃−→ SGAn/(SGAn − SG0).

Keeping in mind that S̃GLres (An/(An− 0)) is in ∆opNormind
+ , applying LRtr

yields a Nisnevich-local equivalence

SGtr(L
n) = RtrS̃

GLres (An/(An − 0))
≃−→ LRtr

(
SGAn/(SGAn − SG0)

)
.

Finally, SGAn/(SGAn−SG0) equals Th(Anℓ)/G because SGAn−SG0 equals
Anℓ/G− 0 = (Anℓ−0)/G. Applying LRtr gives the result.

Corollary 15.25. If µℓ ⊂ k×, R = Z/ℓ and G = C ⋊Aut(C) then

SCtrL
n ∼=

nℓ−1⊕

i=n+1

{
Li ⊕ Li[1]

}
⊕ Lnℓ;

SGtrL
n ∼=

n−1⊕

j=1

{
Ln+j(ℓ−1) ⊕ Ln+j(ℓ−1)[1]

}
⊕ Lnℓ.
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Proof. Combine Lemma 15.24 and Anℓ ∼=Wn ⊕An with Proposition 15.22 (for
SCtrL

n) and Corollary 15.23 (for SGtrL
n), noting that d = n(ℓ− 1).

Theorem 15.26. When R = Z/ℓ, Sℓtr(L
n) is A1-equivalent to SGtr(L

n), i.e.,

Sℓtr(L
n) ≃

n−1⊕

j=1

{
Ln+j(ℓ−1) ⊕ Ln+j(ℓ−1)[1]

}
⊕ Lnℓ.

Proof. ([Voe10c, 2.58]) The basis of H∗,∗(Xn/G), displayed in Corollary 15.18,
corresponds to the factors of SGtr(L

n), which are displayed in Corollary 15.25.
Since [Σℓ : G] = (ℓ − 2)!, Sℓtr(L

n) is a summand of SGtr(L
n), and H∗,∗(Xn/Σℓ)

is a summand of H∗,∗(Xn/G). By 15.16, the canonical map H∗,∗(BgmΣℓ) →
H∗,∗(BgmG) is an isomorphism. Hence the map on quotients, H∗,∗(Xn/Σℓ)→
H∗,∗(Xn/G), is a surjection and hence an isomorphism. This implies that each
summand of SGtr(L

n) belongs to Sℓtr(L
n).

For the next application, we need the topological realization functor tC

from DM≤0 to the subcategory D≤0(Ab) of the derived category of abelian
groups, described in 12.72. This functor sends Rtr(A

m/(Am − 0)) to the re-

duced chain complex C̃∗(S
2m) ∼= R[−2m] of the based sphere S2m, sends La[b]

to C̃∗(S
2a+b, R) and Smtr (L

a[b]) to C̃∗(S̃
m(S2a+b)). For the next result, we set

A =
⊕a

i=1

{
La+i(ℓ−1)[1]⊕ La+i(ℓ−1)[2]

}
.

Corollary 15.27. When R = Z/ℓ, a > 0, and char(k) = 0, there is a split

injection Sℓtr(L
a[b])[1]

η−→ Sℓtr(L
a[b+1]) for all b, and we have: Sℓtr(L

a[1]) ∼= A;

Sℓtr(L
a[b]) ∼=A[b−1]⊕

{
Laℓ[b]⊕ Laℓ[b+ 1]

}
⊗
⊕k

i=1
R[2i(ℓ− 1)], b = 2k + 1;

Sℓtr(L
a[b]) ∼=Sℓtr(La[b− 1])[1]⊕ Laℓ[bℓ], b ≥ 2 even.

Proof. ([Wei09, 14.7.2]) Set T = La[b]. We will assume the result is true for T
and prove that it is true for T [1]. It holds for b = 0 by Theorem 15.26, so we
assume it holds for b. For b > 0, consider the triangle of Theorem 14.34:

(SℓtrT )[1]
η−→ Sℓtr(T [1])→ cone(η)

δ−→ (SℓtrT )[2].

By Corollary 14.35, cone(η) is T⊗ℓ[2] for b even, and T⊗ℓ[ℓ] for b odd. For b
odd, δ is zero for weight reasons. For b even, the boundary map δ is an element
of Hom(T⊗ℓ, SℓtrT )

∼= Z/ℓ. Using the topological realization functor of 12.72,
the topological calculations of Cartan [Car54] show that the boundary map δ is
also zero for b even. In both cases, the triangle splits. The result now follows
by induction on b, since:

Sℓtr(L
a[b+ 1]) ∼= Sℓtr(L

a[b])[1]⊕ cone(η).

Remark 15.27.1. The formulas in Corollary 15.27 also hold for a = 0, as L0 = R;
we saw in Example 14.36 that Sℓtr(R[1]) = 0, and Sℓtr(R[2])

∼= R[2ℓ]. The general

formula for S̃ℓtr(R[b]) is given in Corollary 14.38.
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15.6 A Künneth formula

A proper Tate motive is a direct sum of motives of the form La[b] with b ≥ 0.
The category of proper Tate motives over a field R is idempotent complete, and
closed in DM under ⊗. Corollary 15.27 shows that the Sℓtr(L

a[b]) are proper
Tate motives.

Theorem 15.28. When R = Z/ℓ, S∞
tr (L

n) is a proper Tate motive. For each
q there are only finitely many terms of weight q.

Proof. Combining 14.14, 14.15, 15.26 and 15.27 yields the theorem.

Lemma 15.29. For all integers p, q, n and i, and all simplicial schemes X:

HomDM(Rtr(X)(q)[p], R(i)[n]) =

{
Hn−p,i−q(X,R) if q ≤ i;

0 if q > i.

Proof. We may suppose that p = 0. Suppose first that q ≤ i. By the Cancella-
tion Theorem [MVW, 16.25] we have Hom(M(q), R(i)) = Hom(M,R(i− q)) for
any M in DM. In particular, Hom(Rtr(X)(q), R(i)[n]) = Hom(Rtr(X), R(i −
q)[n]) = Hn,i−q(X,R). Similarly, the case when q > i reduces to the case
i = 0, q > 0. Here Rtr(X)(q) is a summand of Rtr(X × Pq) and Hp,0(−, R) =
Hp

zar(−, R), so the result follows from H∗
zar(X,R)

∼= H∗
zar(X × Pq, R); see

[Voe03c, 3.5].

Proposition 15.30. (Pure Künneth formula) Let X and Y be pointed simplicial
ind-schemes such that Rtr(Y ) is a direct sum of motives R(qα)[pα]. Assume
that for each q there are only finitely many α with qα = q. Then the Künneth
homomorphism is an isomorphism:

H∗,∗(X,R)⊗H∗,∗(k,R) H
∗,∗(Y,R)→ H∗,∗(X × Y,R).

Proof. By Lemma 15.29, Hn,i(Y,R) = HomDM(Rtr(Y ), R(i)[n]) is a free
H∗,∗(k,R)-module on finitely many generators γα in bidegrees (pα, qα). Simi-
larly, Rtr(X ×Y ) is the direct sum of the Rtr(X)(qα)[pα], so (by Lemma 15.29)
Hn,i(X×Y,R) = HomDM(Rtr(X×Y ), R(i)[n]) is a free H∗,∗(X,R)-module on
the same set of generators γα in bidegrees (pα, qα). The result follows.

Recall that if K → H is a morphism of graded-commutative rings, H ⊗K H
is an associative graded-commutative ring with product

(x⊗ y)(x′ ⊗ y′) = (−1)|y| |x′|xx′ ⊗ yy′.

The twist τ(x ⊗ y) = (−1)|x| |y|y ⊗ x fixes K and defines an action of the
symmetric group Σ2 on H ⊗K H, which extends to an action of Σm on the
m-fold tensor product H⊗K · · ·⊗KH. We define Symm(H) to be the invariant
subring (H ⊗K · · · ⊗K H)Σm of H⊗m. For example, if |x| = 2, Symm(K[x]) is
the polynomial ring K[s1, . . . , sm] on the symmetric polynomials si.
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Corollary 15.31. If 1/m! ∈ R and Rtr(Y ) is a direct sum of R(qα)[pα] with
qα = q for only finitely many α, then the H∗,∗(k,R)-algebra H∗,∗(Y,R) satisfies

SymmH∗,∗(Y,R) ∼= H∗,∗(Sm(Y ), R).

Proof. By the Künneth formula 15.30, H∗,∗(Y,R)⊗m → H∗,∗(Y m, R) is an iso-
morphism of free H∗,∗(k,R)-modules. The symmetric group Σm acts on both
sides and the isomorphism is equivariant, so the symmetric subrings are isomor-
phic. Finally, H∗,∗(SmY,R) = H∗,∗(Y m, R)Σm ; see Example 14.12(d).

Recall from 15.8 that Kn is the sheaf underlying Ln, representing H2n,n(−, R).

Corollary 15.32. For all n > 0 the Künneth maps are isomorphisms:

H∗,∗(Kn,Z/ℓ)⊗H∗,∗ · · · ⊗H∗,∗ H∗,∗(Kn,Z/ℓ)
≃−→ H∗,∗(Kn × · · · ×Kn,Z/ℓ),

or equivalently,

H̃∗,∗(Kn,Z/ℓ)⊗H∗,∗ · · · ⊗H∗,∗ H̃∗,∗(Kn,Z/ℓ)
≃−→ H̃∗,∗(Kn ∧ · · · ∧Kn,Z/ℓ).

Proof. We saw in the proof of Theorem 15.3 that there is a V in ∆opSm+ such
that Rtr(V ) is A1-local equivalent to Ln and S∞V ≃ uLn = Kn. By Theorem
15.28, S∞Ln is a proper Tate motive with only finitely many terms of any given
weight. Thus

S∞
tr Rtr(V ) = Rtr(S

∞V ) ≃ Rtr(Kn) ≃ S∞
tr L

n.

Proposition 15.30 implies that

H∗,∗(X,Z/ℓ)⊗H∗,∗(k) H∗,∗(Kn,Z/ℓ) ∼= H∗,∗(X ×Kn,Z/ℓ).

The corollary follows by induction on the number of terms Kn.

15.7 Operations of pure scalar weight

With the description of Sℓtr(L
n) in hand, we may now prove the following the-

orem, which shows that H∗,∗(Kn,Z/ℓ) is graded by the group (Z/ℓ)×. We
assume that char(k) = 0 and that n ≥ 1. The rank of a cohomology operation
H2n,n(−,Z)→ H∗,∗(−,Z/ℓ) is defined in 15.8.

Theorem 15.33. The cohomology operations H2n,n(−,Z) → H∗,∗(−,Z/ℓ) of
rank m have scalar weight m mod (ℓ− 1).

The proof of Theorem 15.33 will occupy the rest of this section. Operations
of rank < ℓ are covered by Example 15.8.1, so we may assume that m ≥ ℓ.
The first lemma shows that operations coming from Smtr (L

n) may be factored
using the ℓ-adic expansion of m. By Example 15.7.2, this reduces the proof of
Theorem 15.33 to m = miℓ

i.
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Lemma 15.34. Write m = m0+m1ℓ+· · ·+mrℓ
r with 0 ≤ mi < ℓ. Every coho-

mology operation φ of rank m is a sum of operations x 7→ φ0(x)φ1(x) · · ·φr(x),
where the φi have rank miℓ

i.

Proof. Set R = Z/ℓ and set Hi = Σmiℓi . By Proposition 14.15, the subgroup
H =

∏
Hi of Σm contains a Sylow ℓ-subgroup, and Smtr (L

n) is a summand of
SHtr (L

n). Hence any rank m operation φ : Kn → Smtr (L
n) → R(∗)[∗] factors

through a map SHtr (L
n) → R(∗)[∗]. We saw before Proposition 14.15 that

SHtr (L
n) ∼= ⊗Smiℓ

i

tr (Ln).
By the Künneth formula 15.30, we have

Hom(SHtr (L
n),Z/ℓ(∗)[∗]) ∼=

r⊗

i=0

Hom(Smiℓ
i

tr (Ln),Z/ℓ(∗)[∗]),

so φ is induced by a sum of terms φ0 ⊗ φ1 ⊗ · · · ⊗ φr.

The next two propositions handle the cases m = ℓ and m = ℓν .

Proposition 15.35. Every cohomology operation H2n,n(−,Z) φ→ Hp,q(−,Z/ℓ)
of rank ℓ has scalar weight one.

Proof. Set T = Z/ℓ(q)[p], so φ comes from an element of Hom(Sℓtr(L
n), T ).

By Corollary 15.27, the map Sℓtr(L
n)[1]

η−→ Sℓtr(L
n[1]) is a split injection, so

Hom(Sℓtr(L
n[1]), T [1])

η∗−→ Hom(Sℓtr(L
n), T ) is onto. Hence φ lifts to a coho-

mology operation φ1 : H2n+1,n(−,Z) → Hp+1,q(−,Z/ℓ), in the sense that the
suspension Σφ(x) is φ1(Σx). If x, y ∈ H2n,n(X,Z) then by [Voe03c, 2.9], the
cohomology operation φ1 is additive on H2n+1,n(ΣX,Z), so:

Σφ(x+ y) = φ1(Σ(x+ y)) = φ1(Σx+Σy) = φ1(Σx)+φ1(Σy) = Σφ(x)+Σφ(y).

Since the suspension Σ is an isomorphism of groups, φ is additive.

We now establish the case m = ℓν by induction on ν, the case ν = 1 being
15.35.

Proposition 15.36. Every cohomology operation H2n,n(−,Z) φ→ Hp,q(−,Z/ℓ)
of rank ℓν has scalar weight one.

If 0 < s < ℓ, then every operation of rank sℓν has scalar weight s.

Proof. We proceed by induction on ν, the case ν = 0 being in hand. By Proposi-
tion 14.15, every operation of rank sℓν has the form Ssℓ

ν

tr (Ln)→ Sstr(S
ℓν

tr (L
n))→

T . By 15.31, every element of Hom(Sstr(S
ℓν

tr (L
n)), T ) is a sum of monomials

φ1 · · ·φs where the φi belong to Hom(Sℓ
ν

tr (L
n), T ). Once we show that the φi

have scalar weight 1, it will follow from Example 15.7.2 that these monomials
have scalar weight s. Thus we are reduced to the case s = 1.

Consider the subgroup G = Σℓ ≀ · · · ≀Σℓ (ν−1 times) of H = Σℓν−1 ; as noted
in Proposition 14.15, G ≀ Σℓ ⊂ H ≀ Σℓ ⊂ Σℓν , and S

ℓν

tr (L
n) is a direct summand
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of both SH≀Σℓ
tr (Ln) = Sℓtr(S

H
tr (L

n)) and SG≀Σℓ
tr (Ln). Thus it suffices to treat

cohomology operations of the form Sℓ
ν

tr (L
n)→ Sℓtr(S

H
tr (L

n))→ T . By Corollary

15.27, we may write SHtr (L
n) = Sℓ

ν−1

tr (Ln) as a sum of Lai [bi]. By Lemma

14.9, SℓtrS
ℓν−1

tr (Ln) is a sum of “linear” terms Sℓtr(L
ai [bi]), which correspond to

additive cohomology operations by Lemma 15.37 below, and “nonlinear” terms
of the form

Sr1tr (L
ai1 [bi1 ])⊗ · · · ⊗ Srktr (Laik [bik ]),

∑
ri = ℓ.

By induction, each of the Lai [bi] correspond to cohomology operations of scalar
weight one. Since ri < ℓ, we see from Example 14.12(d) that the Sri(Lai [bi])
correspond to operations φi(x) of scalar weight ri. Hence the “nonlinear” terms
φ1(x) · · ·φk(x) correspond to cohomology operations which have scalar weight∑
ri = ℓ ≡ 1 (mod ℓ− 1).

Lemma 15.37. Let La[b] be a summand of Sℓ
ν−1

tr (Ln). Then the motivic co-
homology operations H2n,n(−,Z) → H∗,∗(−,Z/ℓ) corresponding to elements of
Hom(Sℓtr(L

a[b]),Z/ℓ(∗)[∗]) are additive. Hence they have scalar weight one.

Proof. By Corollary 15.27, the map Sℓtr(S
ℓν−1

tr (Ln))[1]
η−→ Sℓtr(S

ℓν−1

tr (Ln)[1]) is

a split injection, and restricts to a split injection Sℓtr(L
a[b])[1]

η−→ Sℓtr(L
a[b+1]).

We may now argue as in the proof of Proposition 15.35. By Theorem 15.27, the
map Hom(Sℓtr(L

a[b + 1]), T [1]) → Hom(Sℓtr(L
a[b]), T ) is onto. Hence φ lifts to

a cohomology operation φ1 : H2n+1,n(−,Z) → Hp+1,q(−,Z/ℓ). But then φ is
additive by [Voe03c, 2.9].

This completes the proof of Theorem 15.33.

15.8 Uniqueness of βP n

The purpose of this section is establish the uniquess of certain cohomology
operations from H2n+1,n(−,Z) to H2nℓ+2,nℓ(−,Z/ℓ). This is accomplished in
Theorem 15.38. 1

We saw in Definition 1.6 that the cohomology operations described in The-
orem 15.38 correspond to elements of H∗,∗(B•Kn,Z/ℓ). We saw in Section 14.2
(see 14.15) that a complete description of this cohomology is possible, but it is
messy for n > 1.

Consider the cohomology operation H2n+1,n(−,Z/ℓ) βP
n

−→ H2nℓ+2,nℓ(−,Z/ℓ),
where the Bockstein β and the Steenrod operation Pn are described in Section
3.4. Since this operation is bi-stable, it is additive and commutes with simplicial
suspension Σ by [Voe03c]. Since Pn(y) = yℓ for y ∈ H2n,n(X,Z/ℓ) by axiom
13.6(2), and the Bockstein β is a derivation, we have:

βPn(Σy) = Σ(βPny) = Σβ(yℓ) = ℓ · Σβ(y) = 0.

1The n of this section is unrelated to the n in the norm residue homomorphism of the
Bloch–Kato conjecture.
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Thus βPn, or rather its composition with mod-ℓ reduction

H2n+1,n(−,Z)→ H2n+1,n(−,Z/ℓ) βP
n

−→ H2nℓ+2,nℓ(−,Z/ℓ),

satisfies (1) and (2) of the following uniqueness theorem.

Theorem 15.38. Let φ : H2n+1,n(−,Z)→ H2nℓ+2,nℓ(−,Z/ℓ) be a cohomology
operation such that for all X and all x ∈ H2n+1,n(X,Z):

1. φ(bx) = bφ(x) for b ∈ Z;

2. If x = Σy for y ∈ H2n,n(X,Z) then φ(x) = 0.

Then φ is a multiple of the composition of βPn with mod-ℓ reduction.

Remark 15.38.1. In topology, βPn is the image of a cohomology operation
H2n+1(−,Z)→ H2nℓ+2(−,Z). We saw the relevance of this in Chapter 5.

Lemma 15.39. If R(q)[p] is a summand of Smtr (L
n), and m ≡ s mod (ℓ − 1)

for m ≥ 1 and 0 ≤ s < ℓ−1, then:
(a) If s 6= 0 then q ≥ ns, with equality iff m < ℓ;

(b) If s = 0 then q ≥ n(ℓ− 1), with equality iff m = ℓ− 1;

(c) p ≥ 2q ≥ 2n

Proof. Recall from Proposition 15.30 thatR(q)[p] = Lq[b] for b ≥ 0, so p = 2q+b.
Hence (a) and (b) imply (c). If 1 ≤ m < ℓ then Smtr (L

n) ∼= Lmn and q = mn
by 14.12(e). This yields the equalities in (a) and (b). To prove the inequalities
in (a) and (b), we suppose that m ≥ ℓ and write m =

∑
miℓ

i, noting that∑
mi > m0,

∑
mi ≡ m mod (ℓ − 1). By Proposition 14.15 and Theorem

15.26, we also have

q ≥
∑

mi (n+ i(ℓ− 1)) > (
∑

mi)n.

Since
∑
mi ≥ s, we have q > ns. If s = 0 then

∑
mi ≥ ℓ − 1 and we have

q > n(ℓ− 1).

Remark 15.39.1. The equalities in Lemma 15.39 are the equations (2.6), (2.7)
and (2.8) of [Voe11].

We now analyze the motivic cohomology H2nℓ+2,nℓ(B•Kn,Z/ℓ), where
B•Kn is the underlying sheaf uLn[1]. It is well known that the shift operator
[1] on chain complexes of abelian groups corresponds to the bar construction
on simplicial abelian groups, under the Dold–Kan correspondence. Passing to
sheaves of abelian groups, we see that since Kn is the simplicial sheaf corre-
sponding to (a chain complex homotopy equivalent to) Ln the simplicial sheaf
B•Kn may be taken to be the simplicial classifying space [r] 7→ (Kn)

r.

∗ ←−−−←−−− Kn
←−
←−
←− Kn ×Kn · · ·

June 27, 2018 - Page 258 of 281



Motivic classifying spaces

There is a standard first-quadrant spectral sequence for the cohomology of any
simplicial space V with coefficients in Z/ℓ(nℓ); for V = B•Kn it has

Er,s1 = H̃s,nℓ(K∧r
n ,Z/ℓ)⇒ H̃r+s,nℓ(B•Kn,Z/ℓ). (15.40)

Now H̃s,w(Kn,Z/ℓ) = 0 for w < n by Theorem 15.3. From the Künneth formula

15.32, it follows that H̃s,w(K∧r
n ,Z/ℓ) = 0 for w < nr. Thus if n > 0 we have

Er,s1 = 0 for r > ℓ, and the spectral sequence (15.40) converges.

Proof of Theorem 15.38 when ℓ = 2. If ℓ = 2 then H̃2n,n(Kn) ∼= Z/2 on gener-

ator α; see Example 15.4. Hence α ∧ α is the generator of H̃4n,2n(Kn ∧Kn) ∼=
H̃2n,n(Kn) ⊗ H̃2n,n(Kn) ∼= Z/2. Simple weight considerations, using the

Künneth formula 15.32 and Theorem 15.26, show that H̃4n,2n(Kn) = Z/2

on generator α2, corresponding to Pn on H2n,n(−,Z), and H̃4n+1,2n(Kn) =

H̃4n−1,2n(Kn) = 0. Since Er,s1 = 0 for r > 2, the row s = 4n of the spectral
sequence (15.40) yields the exact sequence (with coefficients Z/2):

0→H̃4n+1,2n(B•Kn)→H̃4n,2n(Kn)
d1→ H̃4n+2,2n(K∧2

n )→H̃4n+2,2n(B•Kn)→0.

The first and last terms are nonzero because Pn and βPn are nonzero co-
homology operations on H2n+1,n(−,Z) (see [Voe03c] or Section 13.2), so the
differential d1 is zero. Hence

H4n+1,2n(B•Kn,Z/2) ∼= H4n+2,2n(B•Kn,Z/2) ∼= Z/2.

Thus every cohomology operation from H2n+1,n(−,Z) to H4n+1,2n(−,Z/2) or
H4n+2,2n(−,Z/2) is a multiple of Pn or βPn, respectively.

In order to prepare for the proof of Theorem 15.38 when ℓ > 2, we consider
the cohomology of Kn ∧ . . . ∧Kn in scalar weight 1.

Lemma 15.41. The scalar weight s = 1 part of Hp,q(K∧r
n ,Z/ℓ) vanishes if

q < nℓ and r ≥ 2, and also if q = nℓ and p < 2nℓ.

Proof. ([Voe11, 2.7–2.8]) By 15.32 and 15.28, it suffices to consider x1⊗· · ·⊗xr
where the xi are in Hom(Saitr L

n, R(qi)[pi]), Σpi = p and Σqi = q. By 15.33, we
may assume Σai ≡ 1 mod (ℓ − 1). If q < nℓ then ai 6≡ 0 by 15.39(b) and we
must have Σai ≥ ℓ, which is excluded by 15.39(a) as q ≥ nΣai. This establishes
the case q < nℓ. When q = nℓ, the vanishing comes from 15.39(c).

Using Lemma 15.41, the relevant part of the spectral sequence looks like this:

0

s = 2nℓ+ 1 0 H̃2nℓ+1,nℓ(Kn) −→
s = 2nℓ 0 H̃2nℓ,nℓ(Kn)

d1−→ H̃2nℓ,nℓ(Kn ∧Kn)→ H̃2nℓ,nℓ(K∧3
n )→

0 0 (nothing in scalar weight 1 below here)
r = 0 r = 1 r = 2 r = 3

Now d1(α
ℓ) = (α⊗ 1+1⊗α)ℓ−αℓ⊗ 1− 1⊗αℓ = 0, so αℓ is a permanent cycle

in the spectral sequence.
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Construction 15.42. Recall from [Voe03c, 3.7] that H2n,n(Kn, R) ∼= R on the
fundamental class α = αR2n,n. Since it is additive, α has scalar weight 1. Hence

γ = {(α⊗ 1 + 1⊗ α)ℓ − αℓ ⊗ 1− 1⊗ αℓ}/ℓ = αℓ−1 ⊗ α+ · · ·+ α⊗ αℓ−1

is an element of H2nℓ,nℓ(Kn ∧Kn,Z/ℓ) of scalar weight 1. A calculation shows

that d2,2nℓ1 maps γ to zero in H2nℓ,nℓ(Kn∧Kn∧Kn,Z/ℓ). Formally this follows
from d1(α

ℓ) = (α⊗ 1)ℓ − (α⊗ 1 + 1⊗ α)ℓ + (1⊗ α)ℓ = −ℓγ and d1 ◦ d1 = 0.

Lemma 15.43. Let Dr denote the subset of elements of scalar weight one in
H2nℓ,nℓ(K∧r

n ,Z/ℓ). If r > 1 then Dr is the Z/ℓ-vector space generated by mono-
mials of the form αi1 ∧ . . . ∧ αir , where i1 + · · ·+ ir = ℓ and each ij > 0.

When ℓ = 2, we have already seen that H̃2nℓ,nℓ(K∧r
n , R) = 0 for r > 2 and

that H̃2nℓ,nℓ(Kn ∧Kn, R) ∼= R on α ∧ α. Thus we may assume that ℓ > 2.

Proof. ([Voe11, 2.9]) The monomials are linearly independent by the Künneth
formula 15.32 and 13.1.1. Lemma 15.41 implies thatDr is generated by elements
of the form x1⊗· · ·⊗xr where the xi ∈ Hom(SaiLn, R(qi)[pi]) ⊂ Hpi,qi(Kn, R).
By 15.39(b), if two of the xi have scalar weight 0 then nℓ = q =

∑
qi ≥ 2n(ℓ−1),

which cannot happen (as the case ℓ = 2 has been ruled out).
Hence at most one xi can have scalar weight 0. By 15.39(a), this can occur

only if r = 2 and then only if (q1, q2) is (n, n(ℓ− 1)) or (n(ℓ− 1), n). In the first
case, x1 is in H2n,n(Kn, R) ∼= R (on α) and x2 is in Hom(Sℓ−1Ln,Ln(ℓ−1)) ∼= R
(on αℓ−1) by 15.39(b,c) and 14.12(e), so x1 ⊗ x2 is a multiple of α ∧ αℓ−1. The
second case is similar.

Thus we are reduced to the case in which r ≥ 2 and all ai 6≡ 0 mod (ℓ−1).
By 15.39(a, c) and q = nℓ we must have Σai = ℓ, qi = nai and pi = 2qi. Since
Saitr (L

n) = Lnai by 14.12(e) we must have xi = αai up to scalars.

Lemma 15.44. E2,2nℓ
2 is 1-dimensional on the class of γ.

Proof. D2 has basis ei = αi ∧ αℓ−i, 1 ≤ i ≤ ℓ − 1. Let W be the subspace of
D3 on the monomials fi = αi ∧ α ∧ αℓ−i−1, 1 ≤ i ≤ ℓ − 2. The composition

D2
d1−→ D3

proj−→W is onto because it sends e1 to −f1 and ei to −(i+1)fi+i fi−1.
This follows from the expansion

d1(ei) = 1∧αi∧αℓ−i−
(
1∧α+α∧1

)
∧αℓ−i+αi∧

(
1∧α+α∧1

)ℓ−i−αi∧αℓ−i∧1.

Since dim(W ) = dim(D2) − 1, the kernel of d1 is at most 1-dimensional; by
15.42, the kernel is nonzero as d1(γ) = 0.

Proof of Theorem 15.38: We regard φ as an element of H̃2nℓ+2,nℓ(B•Kn,Z/ℓ).
Condition 15.38(1) says that φ has scalar weight one. Condition 15.38(2) says
that φ (like βPn) is in the kernel of the map

H̃2nℓ+2,nℓ(B•Kn,Zℓ)→ H̃2nℓ+2,nℓ(ΣKn,Zℓ) = H̃2nℓ+1,nℓ(Kn,Z/ℓ)
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defined by the inclusion of ΣKn into B•Kn as the 1-skeleton in the B-direction.
That is, φ and βPn lie in the kernel of the edge map in the spectral sequence
(15.40). Since they have scalar weight 1, Lemma 15.41 shows that they come

from elements of E2,2nℓ
2 , which is 1-dimensional by Lemma 15.44. Since βPn 6=

0, φ must be a multiple of βPn. �

Remark 15.45. Consider the simplicial scheme BGa over R = Z/ℓ and the
cochain complex C∗ associated to the cosimplicial abelian group O(BGa). Then
Cr = R[x1, . . . , xr] is graded with the xi in degree 1, and its cohomology
H∗(BGa,Ga) was computed by Lazard in [Laz55, Thm. 1.21].

Define Cpdeg=i → H2ni,ni(Kp,Z/ℓ) by the rule xi 7→ 1⊗· · ·⊗α⊗· · · 1, where
the α is in the ith place. It is observed in [Voe11] that this map induces a
morphism of graded cochain complexes from C∗

deg=i to the row s = 2ni of the
E1 page of the spectral sequence (15.40) with coefficients in R(ni), and hence
a homomorphism Hr

deg=i(BGa,Ga)→ Er,2ni2,sw=i, taking the degree i subspace to
subspace of cohomology having scalar weight i.

Lemma 15.43 implies that Crdeg=ℓ
∼= Dr for r ≥ 2 and hence that the induced

map Hr
deg=ℓ(BGa,Ga)→ Er,2ni2,sw=ℓ is an isomorphism for r ≥ 3 (and a surjection

for r = 2). Therefore the rest of the row Er,2nℓ2,sw=ℓ may also be read off from
Lazard’s calculations.

15.9 Historical notes

The present material is based upon Voevodsky’s 2003 preprint [Voe03b], the
2007 preprint version of his paper [Voe10c] as well as [Wei09]. Section 15.4
is taken from Section 2.3 of [Voe10c]. Many of the arguments we use did not
appear in the published versions of [Voe11] and [Voe10c].
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Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1960/1961,
pp. Exp. No. 221, 249–276. MR 1611822

June 27, 2018 - Page 263 of 281



Bibliography

[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York,
1977, Graduate Texts in Mathematics, No. 52. MR 57 #3116

[Hir03] P. S. Hirschhorn, Model categories and their localizations, Mathe-
matical Surveys and Monographs, vol. 99, American Mathematical
Society, Providence, RI, 2003. MR MR1944041 (2003j:18018)

[Hov99] M. Hovey, Model categories, Mathematical Surveys and Mono-
graphs, vol. 63, American Mathematical Society, Providence, RI,
1999. MR MR1650134 (99h:55031)

[HW09] C. Haesemeyer and C. Weibel, Norm varieties and the chain lemma
(after Markus Rost), Abel Symposium, Springer, 2009, pp. 95–130.

[Ill09] L. Illusie, On Gabber’s refined uniformization, Preprint. Available
at www.math.u-psud.fr/˜illusie/refined uniformization3.pdf, 2009.

[Jar86] J. F. Jardine, Simplicial objects in a Grothendieck topos, Appli-
cations of algebraic K-theory to algebraic geometry and num-
ber theory, Part I, II (Boulder, Colo., 1983), Contemp. Math.,
vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 193–239. MR
MR862637 (88g:18008)

[Jar87] , Simplicial presheaves, J. Pure Appl. Algebra 47 (1987),
no. 1, 35–87. MR 906403 (88j:18005)

[Jar00] , Motivic symmetric spectra, Doc. Math. 5 (2000), 445–553
(electronic). MR MR1787949 (2002b:55014)

[Jar03] , Presheaves of chain complexes, K-Theory 30 (2003), no. 4,
365–420, Special issue in honor of Hyman Bass on his seventieth
birthday. Part IV. MR MR2064245 (2005d:18016)

[Kat80] K. Kato, A generalization of local class field theory by using K-
groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3,
603–683. MR MR603953 (83g:12020a)

[Kel13] S. Kelly, Triangulated categories of motives in positive characteris-
tic, Preprint (Ph.D. thesis). Archived at arXiv:1305.5349, 2013.

[KM13] Nikita A. Karpenko and Alexander S. Merkurjev, On standard norm
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