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Discrepancy

• discrepancy of a matrix: extent to which the rows can be
simultaneously split into two equal parts.

• Formally, let ∥ · ∥∗ be a norm, and let

disc∗(M) = min
v∈{+1,−1}n

∥Mv∥∗

(M is an m× n matrix).

Goal: prove disc∗(M) is small in certain situations, and find the good
assignments v efficiently.
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Examples and Applications

•

disc∞

[
1 0 1
1 1 1

]
= 1

• Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disc∞(M) where M is a

1.
(2n
2k
)2

× 22n matrix
2. with one row for each rectangle A× B ⊂ {0, 1}n × {0, 1}n with

|A| = |B| = 2k,
3. each row is a 2n × 2n matrix with (x, y) entry equal to 1

22k 1A(x)1B(y).
number of rows is ≫ number of columns, random coloring
optimal but useless!
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Upper bounds

Definition
herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: Mij ∈ [−1, 1] and ≤ t nonzero entries per
column,

herdisc(M) ≤ 2t− 1.
Beck-Fiala Conjecture: If M as above,

herdisc(M) = O(
√
t)

Komlos Conjecture: M with unit vector columns,
herdisc(M) = O(1)

Banaczszyk’s Theorem: If M as above,
herdisc(M) = O(

√
logm)
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Discrepancy of random matrices

Let M be a random t-sparse matrix

m

 0 1 1 0 1
1 0 0 1 1
1 1 1 1 0


︸ ︷︷ ︸

n

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability 1− exp(−Ω(t)).

herdisc(M) = O(
√
t log t).

Many columns: If n = Ω
((m

t
)
log

(m
t
))

then with pr. 1−
(m
t
)−Ω(1),

disc(M) ≤ 2

Why not herdisc for many columns? 4
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General setup

• L ⊂ Rm is a nondegenerate lattice,
• X is a finitely supported r.v. on L such that spanZ X = L.
• n columns of M are drawn i.i.d from X.

Question
How does disc∗(M) behave for various ranges of n?
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This talk: n≫ m

For n≫ m the problem becomes a closest vector problem on L.
Definition
ρ∗(L) is the covering radius of L in the norm ∥ · ∥∗.

Fact
disc∗(M) ≤ 2ρ∗(L) with high probability as n→ ∞.

Naïvely, n has to be huge.
not tight!
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Question
For a given random variable X, how large must n be before
disc∗(M) ≤ 2ρ∗(L) with high probability?

t-sparse vectors, ℓ∞

• L is {x ∈ Zm :
∑
xi ≡ 0 mod t}

• ρ∞(L) = 1

By fact, disc∞(M) ≤ 2 eventually.
EL15 showed this happens for n ≥ Ω(

(m
t
)
log

(m
t
)
). exponential

dependence on t!
This work: n = Ω(m3 log2m)
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Our results



Our Results

Random t-sparse matrices:

Theorem (FS18)
Let M be a random t-sparse matrix. If n = Ω(m3 log2m), then

disc∞(M) ≤ 2

with probability at least 1− O
(√

m log n
n

)
.

Actually usually disc∞(M) = 1.
Related work: Hoberg and Rothvoss ’18 obtained Ω(m2 logm) for M
with i.i.d {0, 1} entries.
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More generally

L,M, X as before, and define

1. L = maxv∈supp X ∥v∥2
e.g.

√
t for t-sparse

2. distortion R∗ = max∥v∥2=1 ∥v∥∗.
e.g.

√
m for ∗ = ∞

3. spanningness: s(X) “how far X is from proper sublattice.”
will be ≤ 1/m for t-sparse

Theorem (FS18)
Suppose EXX† = Im. Then disc∗(M) ≤ 2ρ∗(L) with probability

1− O
(
L
√

log n
n

)
for

n ≥ N = poly(m, s(X)−1,R∗, ρ∗(L), log detL).
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To apply the theorem to non-isotropic X,
consider the transformed r.v. Σ−1/2X, where Σ = EXX†.
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Proof outline

Need to show: for most fixed M, the r.v. My, y ∈R {±1}n, gets within
2ρ∗(L) of the origin with positive probability.
Use local central limit theorem:

1. Intuitively the My (sampled at same time) approaches lattice
Gaussian:

Pr[My = λ] ∝≈ e−
1
2λ

†Σ−1λ

for λ ∈ M1+ 2L
2. For most M, My also behaves like this!
3. Then done: λ ∈ M1+ 2L contains, near origin, elements of

∗-norm 2ρ∗(L).
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Local central limit theorem

We propose an LCLT that takes a matrix parameter M, and show it
holds for most M.

• Proof of LCLT ≈ proof of LCLT in [Kuperberg, Lovett, Peled, ’12].
• Differences:

• theirs was for FIXED very wide matrices.
• Ours holds for MOST less wide matrices.
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Motivation for our LCLT

Obstruction to LCLTs:
If X lies on a proper sublattice L′ ⊊ L, in trouble.

Need an approximate version of the assumption that this doesn’t
happen.

13



Spanningness

Definition
Dual lattice: L∗ := {θ : ∀λ ∈ L, ⟨λ,θ⟩ ∈ Z}.

Definition
fX(θ) :=

√
E[|⟨X,θ⟩ mod 1|2], where mod1 → [−1/2, 1/2)

fX(θ) = 0 =⇒ θ ∈ L∗.
fX(θ) ≈ 0 =⇒ ⟨X,θ⟩ ≈∈ Z.
Thus, obstruction is θ far from L∗ with fX(θ) small.
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Spanningness: recall fX(θ) :=
√

E[|⟨X,θ⟩ mod 1|2]

Say θ is pseudodual if

fX(θ) ≤
1
2d(θ,L

∗).

(Why pseudodual? Near L∗, fX(θ) ≈ d(θ,L∗).)

Spanningness:

s(X) := inf
L∗ ̸∋ θ pseudodual

fX(θ).
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CLT

For a matrix M, define the multidimensional Gaussian density

GM(λ) =
2m/2 det(L)

πm/2
√
det(MM†)

e−2λ†(MM†)−1λ

on Rm (Gaussian with covariance 1
2MM

†).

Theorem (FS18)

With probability 1− O
(
L
√

log n
n

)
over the choice of M,

1. 1
2nIm ⪯ MM† ⪯ 2nIm

2. ∣∣∣∣ Pr
yi∈{±1/2}

[My = λ]− GM(λ)
∣∣∣∣ = GM(0) · O

(
m2L2
n

)
for all λ ∈ 1

2M+ L.

prvided n ≥ N0 = poly(m, s(X)−1, L, log detL). 16
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Proof of local limit theorem



Definition (Fourier transform!)
If Y is a random variable on Rm, Ŷ : Rm → C is

Ŷ(θ) = E[e2πi⟨Y,θ⟩].

Fact (Fourier inversion:)
if Y takes values on L, then

Pr(Y = λ) = det(L)
∫
D
Ŷ(θ)e−2πi⟨λ,θ⟩dθ

Here D is any fundamental domain of the dual lattice L∗.

Neat/obvious: true even if Y takes values on an affine shiǕt v+ L.
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Take Fourier transform

For fixed M, Fourier transform of My for y ∈R {±1/2}?
Say ith column is xi.

M̂y(θ) = Ey
[
e2πi⟨

∑n
j=1 yjxj,θ⟩

]
=

n∏
j=1

Eyj [e
2πiyj⟨xj,θ⟩]

=
n∏
j=1

cos(π⟨xj, θ⟩).

18



Use Fourier inversion

Let ε > 0, to be picked with hindsight (think n−1/4)∣∣∣∣ 1
detL

Pr(My = λ)− GM(λ)
∣∣∣∣ = ∣∣∣∣∫

D
e−2πi⟨λ,θ⟩(M̂y(θ)− ĜM(θ))dθ

∣∣∣∣
≤

∫
B(ε)

|M̂y(θ)− ĜM(θ)|dθ (I1)

+

∫
Rm\B(ε)

|ĜM(θ)|dθ (I2)

+

∫
D\B(ε)

|M̂y(θ)|dθ (I3)

If D ⊂ B(ε). D is the Voronoi cell in L∗.
rest of the proof is to show these are small!

• First two easy from the eigenvalue property.
• EM[I3] ≤ e−ε2n if ε ≤ s(X).
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Applying the main theorem



Random t-sparse matrices

From now on we just want to bound the spanningness. We’ll do it for
t-sparse vectors - the framework is that of [KLP12].
Lemma
Let X be a random t-sparse vector. Then s(X) = Ω( 1

m).
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Framework from [KLP12] for bounding spanningness

Recall what s(X) ≥ 1
m means. We need to show that if θ is

pseudodual, i.e., fX(θ) ≤ ∥θ∥/2 but not dual, then fX(θ) ≥ α/m.

Proof outline: (recall fX(θ) :=
√

E[|⟨X,θ⟩ mod 1|2])

• if all |⟨x,θ⟩ mod 1| ≤ 1/4 for all x ∈ supp X, then fX(θ) ≥ d(θ,L∗),
so θ not pseudodual unless dual.

• X is 1
2m-spreading: for all θ,

fX(θ) ≥
1
2m sup

x∈supp X
|⟨x,θ⟩ mod 1|

Together, if θ is pseudodual, then fX(θ) ≥ 1
8m .
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Showing X is spreading

1. The argument in [KLP12] shows that X is 1
(m logm)3/2

-spreading,
but is much more general.

2. A direct proof yields the 1
m .
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Random unit vectors

A result for a non-lattice distribution:
Theorem (FS18)
Let M be a matrix with i.i.d random unit vector columns. Then

discM = O(e−
√

n
m3 )

with probability at least 1−O
(
L
√

log n
n

)
provided n = Ω(m3 log2m),
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Open problems

• Can the colorings guaranteed by our theorems be produced
efficiently? The probability a random coloring is good decreases
with n as

√
n−m, which is not good enough.

• As a function of m, how many columns are required such that
disc(M) ≤ 2 for t-sparse vectors with high probability?

24



Thank you!
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