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- discrepancy of a matrix: extent to which the rows can be
simultaneously split into two equal parts.

- Formally, let || - ||« be @ norm, and let

disc, (M) = {m1in1} [|MV]|
ve{+1,-1}"

(M is an m x n matrix).

Goal: prove disc.(M) is small in certain situations, and find the good
assignments v efficiently.



Examples and Applications

10 1
dis = q
'C“L 1 1]



Examples and Applications

T 0 1
di =
w[177]

- Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disco (M) where M is a



Examples and Applications

T 0 1
di =
w[177]

- Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disco (M) where M is a

1. (gh)2 x 221 matrix



Examples and Applications

T 0 1
di =
w[177]

- Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disco (M) where M is a

1. (gh)2 x 221 matrix

2. with one row for each rectangle A x B € {0,1}" x {0,1}" with
Al = |B] = 2%,



Examples and Applications

T 0 1
di =
w[177]

- Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disco (M) where M is a

n 2 .

1. (%) x 22" matrix

2. with one row for each rectangle A x B € {0,1}" x {0,1}" with
Al = |B] = 2%,

3. each row is a 2" x 2" matrix with (x,y) entry equal to 53 1a(X)15(y).



Examples and Applications

10 1
disc = q
'”[1 1 1]

- Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disco (M) where M is a

n 2 .
1. (%) x 22" matrix
2. with one row for each rectangle A x B € {0,1}" x {0,1}" with
Al = |B| = 2",
3. each row is a 2" x 2" matrix with (x,y) entry equal to 53 1a(X)15(y).
number of rows is > number of columns, random coloring

optimal but useless!
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Upper bounds

Definition
herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: M € [-1,1] and < t nonzero entries per
column,

herdisc(M) < 2t — 1.
Beck-Fiala Conjecture: If M as above,
herdisc(M) = O(v/1)
Komlos Conjecture: M with unit vector columns,
herdisc(M) = O(1)
Banaczszyk's Theorem: If M as above,

herdisc(M) = O(+/log m)
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Discrepancy of random matrices

Let M be a random t-sparse matrix

01 1 0 1
mi{1 0 0 11
T1 110

Theorem (Ezra, Lovett 2015)
Few columns: If 1 = O(m), then with probability 1 — exp(—£()).

(M) = O(y/tlogt).

Many columns: If n =Q ((}') log (}')) then with pr. 1 — ("} )79(1)

’

disc(M) <2

Why not for many columns?
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General setup

C R™ is a nondegenerate lattice,
is a finitely supported rv. on £ such that spany; X = L.

- n columns of M are from X.

Question
How does disc.(M) behave for various ranges of n?
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Question
For a given random variable X, how large must n be before
discy (M) < 2p.(L) with high probability?

t-sparse vectors, /o,
- Lis{xeZ™:Y xj=0mod t}
" Po(L) =1
By fact, discoo(M) < 2 eventually.
EL15 showed this happens for n > Q((7) log (})). exponential

dependence on t!
This work: n = Q(m?>log? m)
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Our Results

Random t-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If n = Q(m?log? m), then

discoo (M) <2

with probability at least 1— O (w / m'ﬁ“) .

Actually usually discoo(M) = 1.
Hoberg and Rothvoss '18 obtained Q(m? log m) for M
with i.i.d {0, 1} entries.
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More generally

L, M, X as before, and define

1. L= MaXyesupp X HVHZ
e.g. v/t for t-sparse
2. distortion R. = maxy,=1 |||«
e.g. v/mfor* = oo
3. spanningness: s(X) “how far X is from proper sublattice.”
will be < 1/m for t-sparse

Theorem (FS18)
Suppose EXXT = Ip,. Then disc.(M) < 2p.(L) with probability

1-0 <Lﬁ> for

ZPOIY( ) (X)it ) (E)v ‘C)



To apply the theorem to non-isotropic X,
consider the transformed rv. ¥=1/2X where ¥ = EXX'.

10
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Proof outline

Need to show: for most fixed M, the rv. My, v €r {+1}", gets within
2p«(L) of the origin with positive probability.
Use local central limit theorem:

1. Intuitively the My (sampled at same time) approaches lattice
Gaussian:
Pr[My = A] o~ e ATTTIA
forA e M1+ 2L
2. For most M, My also behaves like this!

3. Then done: A € M1+ 2L contains, near origin, elements of
*-norm 2p.(L).

n



Local central limit theorem
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Local central limit theorem

We propose an LCLT that takes a matrix parameter M, and show it
holds for most M.

- Proof of LCLT ~ proof of LCLT in [Kuperberg, Lovett, Peled, "12].
- Differences:

- theirs was for FIXED very wide matrices.
- Ours holds for MOST less wide matrices.

12



Motivation for our LCLT

If X lies on a proper sublattice £’ C L, in trouble.

Need an approximate version of the assumption that this doesn't
happen.
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Definition
Dual lattice: £* := {0 : VA € L,(\,0) € Z}.

14



Definition
Dual lattice: £* := {0 : VA € L,(\,0) € Z}.

Definition
fx(6) := \/E[|(X,0) mod 1]2], where mod1 —




Definition
Dual lattice: £* := {0 : VA € L,(\,0) € Z}.

Definition
fx(6) := \/E[|(X,0) mod 1]2], where mod1 —

fx(6) =0 = 6 € £*.



Definition
Dual lattice: £* := {0 : VA € L,(\,0) € Z}.

Definition
fx(6) := \/E[|(X,0) mod 1]2], where mod1 —

fx(0) =0= 0 € L*.
x(0) = 0 = (X,0) ~¢ Z.



Definition
Dual lattice: £* := {0 : VA € L,(\,0) € Z}.

Definition
fx(6) := \/E[|(X,0) mod 1]2], where mod1 —

fx(0) =0= 0 € L*.
x(0) = 0 = (X,0) ~¢ Z.
Thus, obstruction is @ far from £* with fx(8) small.
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Say 6 is pseudodual if

1x(0) < 5d(0, £7).

l\.)\4

(Why pseudodual? Near £*, fx(0) ~ d(0, L*).)
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Spanningness: recall

Say 6 is pseudodual if

d(o, £*).

l\.)\4

fx(0) <

(Why pseudodual? Near £*, fx(0) ~ d(0, L*).)

Spanningness:

s(X) := inf x(6).

L*F 0 pseudodual

15
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CLT

For a matrix M, define the multidimensional Gaussian density

7M/2, /det(MM?)

on R™ (Gaussian with covariance JMMT).

Theorem (FS18)

With probability 1 — O (L\/"’%”) over the choice of M,

Iy =31 - 6,09] = 6.0)-0 ()

n

Pr
vie{£1/2}

forall x € 3M + L.

prvided = poly(m,s(X)~", L, log det £). E



Proof of local limit theorem
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Definition (Fourier transform!)

If Yis a random variable on R™, Y:R™ = Cis
Y(6) = E[e*™"0)].

Fact (Fourier inversion:)
If Y takes values on L, then

Pr(Y = A) = det(£) / V(@) 27 A0) dg
D

Here D is any fundamental domain of the dual lattice £*.

Neat/obvious: true even if Y takes values on an affine shift v+ L.



Take Fourier transform

For fixed M, Fourier transform of My fory eg {+1/2}?
Say ith column is x;.

@(9) ~E, [ezm@fﬁ y,-xﬁeq

n
_ H E, [e2714105:0)]
j=1

=[] cos(r(x;,)).
j=1



Use Fourier inversion

Let e > 0, to be picked with hindsight (think n=1/%)

oz Py = X) = 6| = | [ e 7 ) - GAMw))de'

det £

s/!@@—@@We ®
B(e)
BN G ()

4 / 1(6)|d6 B
D\B(¢)
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Use Fourier inversion

Let e > 0, to be picked with hindsight (think n=1/%)

U pr(My = A) — Gu(A) Ae”XM@@—awwﬁ

det L
sﬂr@m—ﬁwwe (h)
B(e)
ﬁ/ [POLL (h)
RM\B(e)
+/ 1(6)|d6 (1)
D\B(e)

If D C B(¢e). D is the Voronoi cell in £*.
rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- En[ls] < e =" if & < s(X).

19
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Random t-sparse matrices

From now on we just want to bound the spanningness. We'll do it for
t-sparse vectors - the framework is that of [KLP12].
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Random t-sparse matrices

From now on we just want to bound the spanningness. We'll do it for
t-sparse vectors - the framework is that of [ l.
Lemma

Let X be a random t-sparse vector. Then s(X) = Q(+).
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Framework from [ ] for bounding spanningness

Recall what s(X) > - means. We need to show that if 8 is
pseudodual, i.e., fx(@) < ||@||/2 but not dual, then fx(8) > a/m.

Proof outline: (recall fx(8) := +/E[|(X,8) mod 17])

- ifall [{(x,08) mod 1| < 1/4 for all x € supp X, then fx(0) > d(8, L*),
so @ not pseudodual unless dual.
- Xis —-spreadmg for all 6

]
fx(0) > — sup [(x,0) mod 1
(0) om xesuppx|< ) |

Together, if @ is pseudodual, then fx(6) > im O

21



Showing X is spreading

1. The argument in [KLP12] shows that X is
but is much more general.

(4444335 -spreading,
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Showing X is spreading

1. The argument in [KLP12] shows that X is
but is much more general.

W -spreading,

2. Adirect proof yields the ..
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Random unit vectors

A result for a non-lattice distribution:
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Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)
Let M be a matrix with i.i.d random unit vector columns. Then

discM = O(e_\/%)

with probability at least 1— O (Lw/ '°§”> provided n = Q(m?log? m),

23



Open problems

- Can the colorings guaranteed by our theorems be produced
efficiently? The probability a random coloring is good decreases
with nas v/n~ ", which is not good enough.

- As a function of m, how many columns are required such that
disc(M) < 2 for t-sparse vectors with high probability?

2%



Thank you!
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