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1 Balls in Bins

All the problems we have done so far can be summarized by counting ways to put dis-
tinguishable or undistinguishable balls in distinguishable or undistinguishable bins. These
problems behave very differently depending on distinguishability. First let’s clear up what
distinguishable and indistinguishable mean.

An arrangement of balls into bins is some placement of balls into bins (which we have
also called parts, or subsets). One key thing is order inside a bin never matters, because
the bins are subsets. For example, if we have bin A and bin B and balls {1, . . . 4}, then
A = {2, 3, 1} and B = {4} is the same as A = {1, 2, 3} and B = {4}.

1.1 Distinguishable or indistinguishable balls

Distinguishable means labels matter. For example, we can label n distinguishable balls
with {1, . . . n}, or the elements of any n-element set. If the balls are distinguishable, then
the arrangement

A = {2, 3, 1} and B = {4}

is different from
A = {2, 3, 4} and B = {1}.
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However, if the balls are indistinguishable, then the labels don’t matter, so

A = {2, 3, 1} and B = {4}

is the same as
A = {2, 3, 4} and B = {1}.

If labels don’t matter, we might as well not have them, so we may as well just write

A = {3 · •} and B = {1 · •}.

1.2 Distinguishable vs indistinguishable bins (corrected!)

In the previous section, our bins were distinguishable. This means their labels mattered.
If our two bins are distinguishable, the arrangement

A = {2, 3} and B = {1, 4}

is different from
B = {2, 3} and A = {1, 4}.

Another way to say this is that we have a sequence of bins. So our first configuration is
({2, 3}, {1, 4}), and our second is ({1, 4}, {2, 3}), which are clearly different.

On the other hand, if the bins are indistinguishable, then their labels don’t matter. For
instance,

A = {2, 3} and B = {1, 4}

is the same as
B = {2, 3} and A = {1, 4}.

However,
A way to put this on sound footing is that we only care about the set of bins, rather

than the sequence. Here our first arrangement is the set {{2, 3}, {1, 4}}, and our second is
{{1, 4}, {2, 3}}, which are the same.

1.3 How to count (almost) anything (corrected!)

See Figure 1.
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Figure 1: The definition of Stirling number I gave in class was wrong. This is the correct
one. Also, note the difference between the new indistinguishable bins column and the old
indistinguishable bins column.
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Here are a few examples.

distinguishable balls, distinguishable bins, fixed sizes: How many ways are there
to distribute 14 numbered lottery balls to Alice, Bob, Carol, and Dale such that
Alice gets 3, Bob gets 4, Carol gets 2, and Dale gets 5?

distinguishable balls, distinguishable bins, any sizes: How many ways are there to
schedule 8 different classes in 3 periods? (allowing periods to be used more than
once)

indistinguishable balls, distinguishable bins, any sizes: How many ways are there
for a pirate to distribute 50 blue-raspberry lollipops between his first mate, his parrot,
and his mother?

distinguishable balls, indistinguishable bins, fixed sizes (corrected!): How many
meals with 3 plates of food (one with 4 ingredients, one with 3 ingredients, and
one with 3 ingredients) can we make with the 10 ingredients of baby octopus, bok
choy, oyster sauce, smoked paprika, duck breast, green onions, ginger, honey, prunes,
animal crackers, and cream cheese?
Solution: There is 1 bin of size 4 and there are 2 bins of size 3. Thus, we apply the
formula from the table with n1 = 4, k1 = 1, n2 = 3, k2 = 2 to obtain

10!

4!(3!)21!2!

meals.

2 Finite Probability

Chapter 10 of Keller and Trotter has a very nice introduction to probability.

Finite probability concerns experiments with a finite number of outcomes. We will
assume our outcomes are all equally likely. The set of all outcomes is called the sample
space, and subsets of the sample space are called events.

Example 1. Pat spins a wheel with equally sized sections labeled 1, 2, 3, 4, 5, 6, 7, 8, 9, as
in Figure 2. The sample space for this experiment is {1, 2, 3, 4, 5, 6, 7, 8, 9}. One event is
A = {1, 2, 3}, which in English would be called “spinning a one, two, or three.”
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Figure 2: A wheel for Pat to spin.

Example 2. Suppose we flip a coin three times. The sample space is the set of all possible
outcomes, namely the set

{HHH,THH,HTH,HHT, TTH, THT,HTT, TTT}.

Definition 2.1. Suppose S is a sample space and E is an event. The probability of E,
written

Pr(E),

is equal to
|E|/|S|.

Example 3. In the coin example, an event E1 could be “has at least two tails”. This is
an informal way of saying E1 = {x : x has at least two tails}. There are 4 outcomes in the
sample space with at least two tails. Pr(E1) = 1/2.
If E2 is the event “the first flip and the second flip are both heads”, then |E2| = 2, so
Pr(E1) = 1/4.

Example 4. In the wheel example, the probability of the event A is 3/7. In English, the
event would be “the spinner lands in A.”

Example 5. Suppose our experiment is to flip n coins. Now the sample space S is all 2n

sequences in which each entry is H or T . Let E be the event that we get k heads. Then

|E| = {the number of sequences with k heads},
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which we know is (
n

k

)
.

Therefore,

Pr(E) =

(
n
k

)
2n

.

What if E is the event that we get an odd number of tails? By the addition principle,

|E| =
∑

0≤k≤n, k odd

(
n

k

)
.

On the other hand, the event that we get an even number of tails, is S \ E, and

|S \ E| =
∑

0≤k≤n, k even

(
n

k

)
.

Miraculously, |S \ E| − |E| = 0. To see why, write

|S \ E| − |E|

=
∑

0≤k≤n, k even

(
n

k

)
−

∑
0≤k≤n, k odd

(
n

k

)

=
∑

0≤k≤n

(
n

k

)
(−1)k.

By the Binomial Theorem, ∑
0≤k≤n

(
n

k

)
(−1)k

=
∑

0≤k≤n

(
n

k

)
(−1)k1n−k

= ((−1) + 1)n = 0.

We have shown |S \ E| − |E| = 0, so |S \ E| = |E|. Since |S \ E| + |E| = 2n (they are
disjoint, so we can use the addition principle), |S \ E| = |E| = 2n/2. So

Pr(E) =
1
22n

2n
= 1/2.
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