
Coding Theory: Math 454 Lecture 19 (7/31/2017)

Cole Franks

December 17, 2017

Contents

1 Error correcting codes 1
1.1 Binary bit-error correcting codes . 2
1.2 Correcting, Detecting Errors . 3
1.3 How much information we can send: Rate 4

2 The Hamming bound 5
2.1 Linear codes . 6
2.2 The Hamming code . 9
2.3 Better Examples . 12

3 Upper Bounds on the sizes of Error correcting codes 12
3.1 The Hamming Bound . 12

4 Lower Bounds on the sizes of Error correcting codes 12
4.1 Gilbert-Varshamov nonconstructive lower bound 12

5 Random Errors 12
5.1 Proof sketch for Shannon, random linear codes. 12

1 Error correcting codes

Error correcting codes are methods to encode messages for transmission through error
prone communications channels.

Example 1. In international Morse code, messages are sent by dashes and dots. To
represent a dot, you might turn on a light for a short period of time. To represent a dash,

1

you might turn it on for a longer period, say 3 dot durations. To represent a space between
words, wait for 7 dot durations.

SOS = • • •PAUSE −−− PAUSE • ••

However, if the transmitting ship is very far from the receiving ship or there is a black hole
in between them which slows down the light rays, the above message might be mistaken
for

DOG = − • •PAUSE −−− PAUSE −− • .

Remark 1.1. The type of errors matter a great deal. Perhaps there are deletions, inser-
tions, etc. Perhaps the message is spoken words, and the errors are in forms of syllables.

In general, we think of sending messages in the following model.

message m −−−−−→
encoding

codeword c −−−−−→
channel

received word c′ −−−−−→
decoding

m′

We think of the channel as where the errors occur. Ideally, after decoding, m′ would be
equal to m, but if there are too many errors, that may not be possible.

1.1 Binary bit-error correcting codes

First, we make the assumption that the messages we want to send are binary strings. This
is not much of an assumption, because anything can be written down in binary.

Next, we make a stronger assumption that we will also only be transmitting binary
strings across the channel and the only errors that occur are bit-errors, which consist of
replacing a 1 by a 0 or a 0 by a 1.

Definition 1.1 (code). A code is a subset of the binary strings of length n. The parameter
n is called the block-length of the code.

Example 2. Let C = {001, 010, 100, 111}. This is a code of block-length 3. Using C, we
can send a message of 2 bits. That is, a binary string of length 2. To do this, we come up
with a correspondence between messages and codewords, which we call the encoding.

00→ 001, 01→ 010, 10→ 100, 11→ 111.

Next, we transmit the encoding of the message we wanted to send. A possible situation is

11 −−−−−→
encoding

111 −−−−−→
channel

110 −−−−−→
decoding

m′.

In this example, the transmitted codeword was 111, and a bit-error occurred in the last
position.

2

If in addition we know that our channel was only capable of producing one error, we can
deduce that an error occurred in this situation, because 110 is not in the code C. However,
we cannot figure out which codeword it came from, because 110 can be made from 100, 010
and 111 by one bit-error, so the original message could have been any of 00, 01, 11.

Definition 1.2 (Hamming distance). The Hamming distance d(x, y) between two strings
is the number of positions in which they differ. For example, d(001, 100) = 2.

Fact 1.2 (Key fact). If a codeword c is transmitted across a channel capable of producing
at most r bit-errors, then

d(c, c′) ≤ r

for the received word c′.

Fact 1.3. The Hamming distance is symmetric and satisfies the triangle inequality, that
is d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(y, z). The proof is left as an exercise.

Definition 1.3 (Distance of a code). In coding theory, we have the conflicting goals of
sending lots of information (that is, being able to send many possible messages) in a short
message, and preventing confusion due to errors. First we tackle the “avoiding confusion”
angle, and then we talk about trying to send lots of information.

The distance of a code is the minimum Hamming distance between two distinct code-
words in the code. For example, the distance of {001, 010, 100, 111} is 2.

1.2 Correcting, Detecting Errors

Detecting errors just involves finding out if an error occurred.

Definition 1.4. We say a code can detect r errors if the following holds:
Whenever a codeword is transmitted across a channel capable of producing r bit-errors,

it is possible to deduce whether an error occurred using only the received word.

Using our diagram from before, error detection consists of reading c′ and deciding
whether an error occurred.

message m −−−−−→
encoding

codeword c −−−−−→
channel

received word c′ −−−−−→
decoding

?

We don’t find out what m or c is just using error correction.

Fact 1.4. If the distance of a code is d, then the code can detect exactly d− 1 errors.

Proof. If a channel can produce at most d − 1 bit-errors, it cannot turn one codeword
into another by flipping bits, because the minimum Hamming distance between any two

3

codewords is at least d. Thus, if the received word c′ is not in the code, we can deduce
that some errors occurred.

The code is not guaranteed to detect d errors, because one codeword can be transformed
into another by d bit-errors.

Definition 1.5. We say a code can correct r errors if the following holds:
Whenever a codeword is transmitted across a channel capable of producing r bit-errors,

one can deduce which codeword was sent using only the received word. Using our diagram
from before, error correction consists of reading c′ and deciding which codeword c must
have been sent, and then decoding that codeword c to get the original message m.

message m −−−−−→
encoding

codeword c −−−−−→
channel

received word c′ −−−−−→
decoding

m′ = m

Fact 1.5. If the distance of a code is d, then the code can correct exactly b(d − 1)/2c
errors.

Proof. Suppose C is a code of distance d, and a codeword c is sent across a channel capable
of producing at most b(d − 1)/2c bit-errors. Then d(c, c′) ≤ b(d − 1)/2c. We claim that
c is the only codeword within distance b(d− 1)/2c of c′ - if there were another codeword,
say c′′, then

d(c, c′′) ≤ 2b(d− 1)/2c ≤ d− 1

by the triangle inequality for Hamming distance, which is a contradiction. Thus, we simply
output the nearest codeword c to c′ in Hamming distance. In fact, we only need to look
nearby to c′ for c.

Example 3. The code in Example 2 has distance 2, so it can detect 1 error, but it can
correct 0 errors.

Example 4. Consider the code that consists of codewords of length 3k formed by taking
all strings of length k and repeating each character 3 times. For example, 101 corresponds
to 111000111. The code, which is of block-length 3k, has distance 3, and so it can correct
1 error.

1.3 How much information we can send: Rate

We measure how much information we can send essentially by the number of possible
messages we can send. Suppose there is a collection of N messages. We can put these
in one to one correspondence with a subset of the binary strings some length - we would
need strings of length dlog2Ne to do this, since there are 2k strings of length k. So, for
convenience, we just think of log2N as the amount of information we can send, motivated
by the fact that you need strings of length roughly log2N to have a correspondence between
messages and strings.

4

Remark 1.6. For our discussion, the encoding itself doesn’t matter. All that matters is
the size of the code. This is because any two sets of the same cardinality can be put in 1-1
correspondence, so you can really just think that if you can find an error correcting code
C, then you can send |C| different messages without confusion, and hence you can send
log2 |C| bits of information.

It is easy to find a code with very good error correction properties - just repeat every bit
of your message a million times. This will be able to correct about half a million errors, but
it’s also very wasteful. For this reason, we define a quantity that measures the information
per symbol of the codeword.

Definition 1.6 (Rate). The rate of a code C of block-length n is defined to be

rate(C) =
log2 |C|

n
.

That is, the amount of information the code can send over the block-length of the code.

2 The Hamming bound

A code that can correct errors cannot be too big. This makes sense, because it seems
that a very large set of strings of length n must contain two nearby strings. After all, the
maximum Hamming distance between two strings is n, and there isn’t all the room in the
world. This section formalizes that reasoning.

In the proof that a code of distance d can correct (d− 1)/2 errors, we used the useful
concept of “all nearby strings” of another string x.

Definition 2.1 (Hamming ball). If x is a binary string of length n, then the Hamming
ball of radius r around x, denoted Br(x), is all strings of Hamming distance at most r from
x.

Fact 2.1.

|Br(x)| =
r∑

i=0

(
n

i

)
.

Fact 2.2. A code can correct r errors if and only if the Hamming balls of radius r around
the codewords are pairwise disjoint.

The below bound is also sometimes called the sphere-packing bound or the volume
bound.

Theorem 2.3 (Hamming bound). If a code C of block-length n can correct r errors, then

|C| ≤ 2n∑r
i=0

(
n
i

) .
5

Proof. The Hamming balls of radius r around the |C| codewords are pairwise disjoint, and
each has size

∑r
i=0

(
n
i

)
, so |C|

(∑r
i=0

(
n
i

))
≤ 2n.

Algorithm 1 (Algorithm to decode a code). Suppose C can correct r errors, and a code-
word c is transmitted across a channel capable of producing at most r errors. If the received
word is c′, we can deduce c by looking at all elements of Br(c

′) and picking out the only
element of the code.

Example 5. Suppose Alice encodes a message with the repetition code from Example 4
and sends it to Bob across a channel is capable of producing 1 error. Suppose Bob receives
the word 001111. Then the only words it could have come from are

B1(001111) = {001111, 101111, 011111, 000111, 001011, 001101, 001110}.

However, Bob knows Alice is using the repetition code, and the only element of the repeti-
tion code among B1(001111) is 000111. Thus, the original codeword sent was 000111, and
so the message was 01.

2.1 Linear codes

Definition 2.2. If x is a number, then x mod 2 is the remainder of x when you divide by
2. If x is odd, then we write x (mod 2) = 1 and if x is even then x (mod 2) = 0.

Fact 2.4. (x + y) mod 2 = (x mod 2 + y mod 2) mod 2. All this is really saying is that if
exactly one of x and y are odd, then x + y is odd, and otherwise, x + y is even.
Further, xy mod 2 = (x mod 2)(y mod 2); this just reflects that the product of an even
number with any number is even and the product of two odd numbers is odd.

In this section, it should be understood that all additions and multiplications of 1’s and
0′’s is performed mod2.

Example 6.

1 + 0 = 0 + 1 = 1

1 + 1 = 0 + 0 = 0

and

1 · 0 = 0 · 1 = 0 · 0 = 0

1 · 1 = 1.

Note that our “+” operation is the familiar XOR from computer science, and “ · ” is the
AND operation.

6

Definition 2.3. We can also easily add vectors mod2. For example,

[0, 1, 0, 0, 1, 1, 0] + [1, 1, 0, 0, 1, 1, 1] = [1, 0, 0, 0, 0, 0, 1].

We can also do scalar multiplications.

0[0, 1, 0, 0, 1, 1, 0] = [0, 0, 0, 0, 0, 0, 0], and 1[0, 1, 0, 0, 1, 1, 0] = [0, 1, 0, 0, 1, 1, 0].

This means we can multiply matrices. For example,

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

0
1
0
0
1
1
0

= 0

 1
1
0

+ 1

 1
0
1

+ 0

 0
1
1

+ 0

 1
1
1

+ 1

 1
0
0

+ 1

 0
1
0

+ 0

 0
0
1

=

 1
0
1

+

 1
0
0

+

 0
1
0

 =

 0
1
1

 .

Definition 2.4. A linear code C is one formed by taking all products of a fixed matrix
G with all vectors mod2. The matrix G is called a generator matrix. Usually we consider
the multiplication from the left.

Example 7. Let G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 . Then the code is all products yG, where

y is any of the 24 row vectors of length 4. For example,

[0, 0, 1, 1]G = [0, 0, 1, 1]

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

= [0, 0, 1, 0, 0, 1, 1] + [0, 0, 0, 1, 1, 1, 1]

= [0, 0, 1, 1, 1, 0, 0]

is a codeword of C. [0, 0, 0, 0]G = [0, 0, 0, 0, 0, 0, 0] is also a codeword of G. There will be
24 codewords, because y → yG is one-to-one since y appears as the first 4 coordinates of
yG.

7

Fact 2.5. The real reason such codes are called linear is that they have a nice property:
If c1 and c2 are in a linear code C, then so is c = c1 + c2. This is because c1 = yG and
c2 = xG, so

c1 + c2 = yG + xG = (x + y)G ∈ C.

Define the Hamming weight of a vector v, denoted w(v) to be the number of 1’s it has.
For example,

w([0, 0, 1, 0, 1]) = 2

. Then we have another key fact:

Fact 2.6 (Distance of a linear code). The distance of a linear code is the minimum Ham-
ming weight of any nonzero codeword.

Proof. Note that d(c1, c2) = w(c1 + c2), where addition is mod2. (there will be a one
exactly where the vectors c1 and c2 disagree.)

Definition 2.5 (Standard form). The generator matrix G for a linear code of block length
n and message length k is in standard form if it looks like[

Ik P
]
.

where P is a k × n matrix.

Example 8. The matrix G from Example 7 is in standard form, because

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

Using this matrix G it is easy to check, using case-by-case analysis, that the minimum
distance of the code it generates is 3.

Definition 2.6. If C is a linear code with generator matrix G =
[
Ik P

]
, then the

parity-check matrix of C is the n− k × n matrix

H =
[
−P T In−k

]
.

For us, the minus part doesn’t matter because x ≡ −x (mod 2), but we write it because
it would matter if we were working with symbols other than 0 and 1.

Fact 2.7. If the code C has generator matrix G and parity-check matrix H, then C is
exactly the vectors

{c : cHT = 0}.

That is, the code is exactly the vectors sent to 0 by the parity-check matrix.

8

Proof. If c is a codeword cHT = yGHT . But one can check that

GHT =
[
Ik P

] [−P
In−k

]
= −P + P = 0,

so yGHT = 0. On the other hand, if cHT = 0, then if c1 is the vector that is the first k
bits of c and c2 is the second n − k bits of c then cHT = −Pc1 + c2 = 0, so c2 = Pc1. In
other words, c = c1G. Thus, c is in the code.

2.2 The Hamming code

Definition 2.7. A Hamming(2k − 1, 2k − k − 1) code is an encoding of strings of length
2k − k− 1 of block-length 2k − 1 that has distance 3 and corrects 1 error. We can define a
Hamming(2k − 1, 2k − k − 1) code by the parity check matrix as follows:

The parity-check matrix of a Hamming(2k − 1, 2k − k − 1) code is any whose columns
are all possible vectors of length n − k. We typically order them so that the last part of
the matrix is the identity, which puts things in standard form.

Example 9. A parity check matrix H of a Hamming(7,4) code is (k = 3 in this case)

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 ,

because as you can see, all strings appear and the last part of the matrix is the identity.
To get the generator matrix, apply the definition of the parity check matrix to obtain

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

Fact 2.8. For k < n, a Hamming(2k − 1, 2k − k− 1) code has distance at least 3. Thus, it
can correct 1 error.

Proof. The distance of a linear code is the least Hamming weight of any nonzero codeword.
However, we know that the codewords are the ones passing the parity-check, that is

cHT = 0.

However, no row of HT is zero, so no codeword of Hamming weight 1 can pass the parity-
check. Also, no two rows are the same, so no codeword of Hamming weight 2 can pass the
parity-check. Thus, all codewords are of Hamming weight at least 3, the code has distance
at least 3!

9

Algorithm 2 (Decoding the Hamming Code). The following method works to decode a
linear code in standard form:

Input: A transmitted message c′ with at most 1 error, that is, a message c at Hamming
distance 1 from some codeword c of a Hamming(2k − 1, 2k − k − 1) code.

Output: The original message m.

• If c′ has at most 1 errors, then x = c′ + e where e is a string of Hamming weight at
most 1.

• Compute c′HT . However, by Fact 2.1.4,

c′HT = (c′ + e)HT = eHT .

• eHT is just the row of HT where the error occurred, which if transposed, will be the
column of H corresponding to the bit that erred. Deduce e by looking at where this
column came from.

• Set c = c′ − e.

• Since the generator matrix is in standard form, the first k bits of c are the message
m.

Example 10. Let’s use the parity check H for a Hamming(7,4) code to decode some
words. If a received word is c′ = [1, 1, 1, 1, 0, 1, 0], then we compute c′HT to obtain

[1, 1, 1, 1, 0, 1, 0]

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

= [1, 0, 1].

This corresponds to the column 1
0
1

of H, which is the 2nd column. Thus, e = [0, 1, 0, 0, 0, 0, 0], and so

c = [1, 1, 1, 1, 0, 1, 0]− e = [1, 0, 1, 1, 0, 1, 0],

and so the message was [1, 0, 1, 1].

10

Theorem 2.9. The rate of a Hamming(2k − 1, 2k − k − 1) code is, of course,

2k − k − 1

2k − 1
→ 1

as k → ∞. Further, Hamming codes are perfect codes - they exactly match the Hamming
bound.

Proof. Since the block-length of a Hamming(2k−1, 2k−k−1) code is 2k−1, the Hamming
bound says the number of codewords is at most

22
k−1

1 + (2k − 1)
= 22

k−1−k.

However, this is exactly the number of codewords of Hamming(2k − 1, 2k − k− 1), because
it encodes all binary strings of length 2k − k − 1.

Remark 2.10. Compare this to the repetition code which had rate ??3.

We can extend this algorithm for linear codes that correct more errors.

Algorithm 3 (Syndrome decoding). The following method works to decode a linear code
in standard form:

Input: A transmitted message x with at most (d − 1)/2 errors, that is, a message x at
Hamming distance ≤ (d− 1)/2 from some codeword yTG.

Output: The original message yT .

• If x has at most (d− 1)/2 errors, then x = yTG + e where e is a string of Hamming
weight at most (d− 1)/2.

• Compute HxT . By construction of the parity-check matrix H,

HxT = HGT y + He = He.

• For over all vectors e′ has Hamming weight at most (d − 1)/2, find the unique one
where He′ = He. Then e′ = e, so you have found e.

• yTG = x− e, so output the first k bits of x− e, which will be equal to y.

The above algorithm is correct.

Proof.

Example 11.

11

2.3 Better Examples

Definition 2.8 (Rate).

Hamming code corrects a single error.

Definition 2.9 (Mod 2 Arithmetic).

Definition 2.10 (Generator matrix).

Definition 2.11 (Parity-check matrix).

3 Upper Bounds on the sizes of Error correcting codes

3.1 The Hamming Bound

Theorem 3.1 (Maximum rate for detecting multiple errors).

Theorem 3.2 (Maximum rate for detecting a single error).

Definition 3.1 (Perfect codes).

Definition 3.2 (For fun: Golay Code).

4 Lower Bounds on the sizes of Error correcting codes

4.1 Gilbert-Varshamov nonconstructive lower bound

5 Random Errors

Definition 5.1 (Binary symmetric channel).

Probability of getting certain number of errors.

5.1 Proof sketch for Shannon, random linear codes.

Theorem 5.1 (Shannon’s Theorem).

What are they? Constructively what can be done?

12

	Error correcting codes
	Binary bit-error correcting codes
	Correcting, Detecting Errors
	How much information we can send: Rate

	The Hamming bound
	Linear codes
	The Hamming code
	Better Examples

	Upper Bounds on the sizes of Error correcting codes
	The Hamming Bound

	Lower Bounds on the sizes of Error correcting codes
	Gilbert-Varshamov nonconstructive lower bound

	Random Errors
	Proof sketch for Shannon, random linear codes.

