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Some of these notes follow sections 5.1 and 5.6 of Keller and Trotter, which you can
find here:

http://www.rellek.net/book/ch_graphs.html.

More is in Brualdi 11.5. We also talked a bit about isomorphism today; some of that stuff
can be found in Lecture 10.

Remark 0.1. One key take-away from the definition of isomorphism is that any property of
graphs which doesn’t depend on the names of the vertices is preserved under isomorphism.
For example, if G and H are isomorphic, then the property “contains a copy of C3” is
satisfied by G if and only if it is satisfied by H. A non-example of such a property is the
property “ab is an edge of G”, which clearly depends on the labels of vertices, so we needn’t
have ab an edge of H even if G and H are isomorphic. We’ll define containment formally
later in these notes.
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1 Subgraphs

Definition 1.1 (Subgraph). If G = (V,E) is a graph, then H = (W,F ) is a subgraph of
G if W ⊂ V and F ⊂ E. Sometimes we say G contains H. If G contains a subgraph
isomorphic to H, we say G contains a copy of H.

Example 1. The graph
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contains the subgraph








































































































and also the subgraph








































































































Definition 1.2 (Acyclic). A graph G is acyclic if it contains no cycles.

Example 2. An acyclic graph:
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2 Connectivity

Definition 2.1 (Connected, Connected Component). A graph G = (V,E) is connected if
for any pair of distinct vertices x and y, G contains a path with x and y as endpoints.

Intuitively, you can get from any place in the graph to another by walking along the
edges. A graph that is not connected is said to be disconnected. If G is a graph, then a
connected component C of G is a maximal connected subgraph of G. That is, you can’t
add any more vertices to C and still have it be a connected subgraph of G.

A connected component is everything you can get to from a particular vertex in G by
walking on the edges.

A connected graph:








































































































A disconnected graph:








































































































Theorem 2.1. A connected graph G with n vertices has at least n− 1 edges.

Proof. Think about this by adding the edges of G one at a time. Before we have added
any, there are n components. Each time we add a new edge, we can decrease the number
of components by at most one (either we join two, or we don’t!). Thus, we need to add at
least n− 1 edges to get one component (i.e., a connected graph).

3 Trees

Trees are the “smallest” connected graphs.

Definition 3.1. A connected, acyclic graph is called a tree.

Example 3. A tree:
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Definition 3.2. The neighborhood N(v) of a vertex v is all vertices adjacent to v.

Remark 3.1. Let T be a tree. Let’s try to draw T . Start at some arbitrary vertex
r. Look at its neighbors; draw them below r. For each of the neighbors, look at their
neighborhoods other than r. Those neighborhoods can’t intersect, because otherwise there
would be a cycle. Thus, we can draw their neighborhoods (other than r) below them. We
can do this for the vertices we just drew; because there are no cycles, we will be able to
place the new neighborhoods directly below the corresponding existing vertex. Continuing
this process gives a nice (upside down) tree-like picture.

Example 4. A better way of drawing the last tree we saw is








































































































3.1 Important properties of trees

Theorem 3.1. (Big tree theorem) Let T be a graph on n vertices. The following are
equivalent.

1. T is a tree.

2. T is connected but removing any edge from T results in a disconnected graph.

3. T is connected and has exactly n− 1 edges.
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4. T is acyclic and has exactly n− 1 edges.

Proof of 2 using 1: Assume T is a tree, so it is connected and acyclic. Consider an edge
xy of T . If removing xy doesn’t connect the graph, then there is a path between x
and y that doesn’t use xy. Adding xy back in gives a cycle in T , so T must contain
a cycle; this is a contradiction.

Proof of 3 using 2 and 1: Let’s do this by induction on n, the order of the tree. A
single vertex is a tree and has 0 edges, so the base case n = 1 holds. Let T be a
tree with n ≥ 2 vertices, then there must be an edge xy or else the graph cannot
be connected. T ′ = (V,E \ {xy}) must have two components, because by the last
argument we know there is are at most two and there cannot be just one component
by part 1 of the Theorem. Thus, T ′ has two components, each of which is a tree.
Say one of the components has 1 ≤ k ≤ n− 1 vertices; then the number of edges in
these two trees is (k − 1) + (n− k − 1) = n− 2 by induction. When we include xy,
we get n− 1.

Proof of 2 using 3 : If T is connected but has n − 1 edges, then removing any edge
disconnects it by Theorem 2.1. Hence 2 holds.

Proof of 1 using 2: Suppose T satisfies 2 but T has a cycle. Then removing some edge of
this cycle does not disconnect T , a contradiction. Hence T is a cyclic and connected,
and so it is a tree.

Proof of 4 using 3 and 1: Easy.

Proof of 1 using 4 and the equivalence of 1 and 3: If T is acyclic, each of the k
connected components of T must be trees. By the equivalence of 1 and 3 which
we have already shown, if the components have n1, . . . , nk vertices, then they have
n1 − 1, . . . , nk − 1 edges. Thus, T has (n1 − 1) + · · · + (n1 − 1) = n − k edges, so
k = 1, implying T is connected. Thus T is a tree.
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