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Abstract

We formulate a problem that can be viewed as a natural variation of the so-called
Pompeiu or Schiffer problem in the context of scattering of plane waves for the Linear
Helmholtz equation. For the two dimensional version of this variation, we establish
conditions on the wave numbers and incident directions, that ensure a non-vanishing
scattered field.

1 Introduction

The problem studied here can be viewed as a somewhat generalized variation of the Pompeiu
(or Schiffer) problem and the analysis represents a continuation of our recent work [9],
extending this to more general domains, but restricting it to more specific incident waves –
namely, plane waves. We also introduce a material parameter a in the principal part of the
Helmholtz operator, which now reads ∇ · (a∇u) + k2qu.

In [9], we studied the case a = 1 and considered (piecewise) analytic domains, whose
boundary parametrization x(t) = x1(t) + ix2(t), t ∈ [−1, 1] extends to a complex analytic
function of t in some domain T ⊂ C and has a simple critical point t0 ∈ T . Under a suitable
topological assumption – namely, that that there exists a contour joining the endpoints
±1, passing through t0 and lying in T , such that ℜx attains its maximum on this contour
at t0 – we proved, using the method of steepest descent, that general incident waves with
complex analytic extensions, which are nonvanishing at (x1(t0), x2(t0)) ∈ C2, necessarily
scatter. In particular, plane waves satisfy these conditions and therefore always scatter from
such domains. We then applied this result to several examples, including elliptical regions,
regular nonconvex regions, and regions with cusps.

We remark that, for a = 1 Cakoni and Vogelius [5] showed that within the class of
Lipschitz inhomogeneities (and constant q ̸= 1), non-scattering can generically occur only if
the inhomogeneity has a real analytic boundary. The Lipschitz assumption can be relaxed to
allow for certain cusps, see [13]. Their proof used tools from free boundary regularity theory
and was inspired by the work of Williams [15], who employed this theory to prove that, a
domain lacking the Pompeiu property necessarily has a real analytic boundary. Plane waves
fall within the generic category. Regularity results for a general anisotropic inhomogeneous
medium (including the scalar, isotropic case a ̸= 1) were obtained in [6]. For a scalar a ̸= 1
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plane waves fall in the generic category for all points on the boundary, where the propagation
direction is not tangential to the boundary.

Our analysis here is inspired by the work of Brown and Kahane [2], who proved that a
convex domain, whose maximal width is at least twice its minimal width, has the Pompeiu
property (see also Remark 3.14). For the definition of the Pompeiu property see Remark 2.2.
We refer to [16] for a survey on the Pompeiu problem; see also the Appendix of [9].

2 Preliminaries

Throughout, boldface symbols denote vectors, while regular (non-bold) symbols are reserved
for scalar quantities. Let us make the following assumptions:

(H1) D ⊂ R2 is a bounded, simply connected Lipschitz domain.

(H2) Outside D we have a homogeneous background medium with normalized material
parameters (1, 1). Inside D, the material parameters are (a, q), where a, q > 0 are
constants with (a, q) ̸= (1, 1). We introduce the refractive index

n =

√
q

a
. (2.1)

Here a and q represent the inverses of the mass density and bulk modulus of the medium,
respectively. Consider a non-trivial incident wave at a fixed wave number k > 0

∆uin + k2uin = 0 in R2, (2.2)

impinging on the inhomogeneity D. Let utr and usc denote the corresponding transmitted
and scattered waves, respectively. If uin is non-scattering, i.e., usc = 0, then the total field
outside D equals uin and soa∆utr + k2qutr = 0 in D,

utr = uin, a ∂νu
tr = ∂νu

in on Γ = ∂D,
(2.3)

where ν denotes the unit outer normal to the boundary Γ of the region D. From (2.3), we
obtain the following necessary condition for uin to be non-scattering (see Section 4.3 for the
proof):

Lemma 2.1. If uin is non-scattering, then

k2

(
1

a
− n2

)∫
D

uinϕdx−
(
1

a
− 1

)∫
D

∇uin · ∇ϕdx = 0 (2.4)

for all test functions ϕ ∈ H2(D) satisfying ∆ϕ+ k2n2ϕ = 0 in D.
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Our goal is to derive a contradiction to the above equation for incident plane waves. Let
us therefore consider a fixed incident plane wave in the direction of the unit vector η:

uin(x) = eikη·x, η ∈ S = {η ∈ R2 : η · η = 1}. (2.5)

The main idea is to also take plane wave solutions as test functions, but with a complex
wave vector. Namely, ϕ(x) = eiknξ·x, where · denotes the inner product of R2 and ξ ∈ S ,
where S denotes the complexification of the unit circle S, i.e.,

S =
{
ξ ∈ C2 : ξ · ξ = 1

}
. (2.6)

The restriction imposed on ξ ensures that ϕ satisfies the required PDE. For this choice of
test function, ∇uin · ∇ϕ = −k2n(ξ · η)uinϕ and (2.4) simplifies to

I(ξ) := C(ξ)I(ξ) = 0 ∀ ξ ∈ S , (2.7)

where

C(ξ) =
1

a
− n2 +

(
1

a
− 1

)
n ξ · η and I(ξ) =

∫
D

eik(η+nξ)·xdx. (2.8)

Remark 2.2. To highlight the connection between the failure of the Pompeiu property and
the non-scattering phenomenon, we recall the definition of the Pompeiu property. Rather
than using the original formulation, we invoke the celebrated result of Brown, Schreiber, and
Taylor [3] (see also [1]), which gives an equivalent definition: a bounded, simply connected
Lipschitz domain D fails to have the Pompeiu property if and only if there exists a constant
ρ > 0 such that ∫

D

eiρξ·xdx = 0 ∀ ξ ∈ S .

To conclude that the plane wave eikη·x scatters, we look for a test vector ξ ∈ S , such
that I(ξ) ̸= 0. In Theorem 3.1 we prove that such a choice is always possible when n ≤ 1,
which implies that a plane wave always scatters, independently of k,η and the geometry of
D. In fact, when n < 1 we use a complex-valued admissible ξ, while in the case n = 1 this
choice becomes inadmissible. Instead, we use real vectors ξ to derive a set of inequalities
involving k,η, and the directional widths of D, that guarantee scattering. By varying the
test vector ξ these inequalities are shown to cover the entire spectrum k ∈ (0,∞). The case
n > 1 is more delicate and is treated in Theorem 3.3, where inequalities involving n, k, η
and directional widths of D are derived to guarantee the scattering of plane waves. Unlike
the situation for n ≤ 1, these inequalities do not cover the full spectrum. They guarantee
scattering on intervals of the form

k ∈
(
0, k+

2

]
,

where k+ depends explicitly on the directional widths of D, η and n. For strictly convex
regions D stronger results can be obtained. In Theorem 3.7, we show that scattering is also
guaranteed on intervals of the form
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k ∈ [mk−,mk+], m = 1, 2, ...,

where k− is given by an explicit formula. These intervals drift towards infinity and grow
larger as m increases. Under the assumption that k+ ≥ 2k−, a condition depending only on
n, η, and the directional widths of D, the union of all these intervals covers the full spectrum
k ∈ (0,∞). Thus, under this assumption, scattering is guaranteed for every k, as asserted
in Corollary 3.11. If na ≤ 1, a discrete sequence of k’s must be excluded; see Remark 3.8.
Finally, in Corollary 3.12 we apply this criterion to two classes of strictly convex domains.
Restricting to the case na > 1 (which includes the case a = 1, n =

√
q > 1) we show that:

(1) If D has constant width, then all plane waves scatter provided n ≤ 3.

(2) If the maximal width of D is at least twice its minimal width (i.e., D is at least twice
as wide in one direction as in some other direction) then all plane waves scatter.

Finally, in Section 3.3 we study a simple model in whichD is an unbounded domain – namely,
a vertical slab – and consider an incident plane wave at normal incidence. This reduces the
problem to a one-dimensional setting. In Lemma 3.15, we show that this incident plane wave
is non-scattering for appropriate choices of k, n, and the slab thickness. In Remark 3.17, we
discuss the analogy between this and the non-scattering of particular Herglotz waves by a
disk. Our motivation for considering the infinite slab comes from the so-called Salisbury
screen [12, 10], one of the earliest models exhibiting non-scattering of incident plane waves.
While this is a classical model well studied in engineering and physics, it has received less
attention in the mathematics literature.

3 Main Results

The proofs of all main results are presented in Section 4.

3.1 General inhomogeneities

Theorem 3.1. Assume (H1) and (H2). If n ≤ 1, then every incident plane wave (2.5) is
scattered by the inhomogeneity D.

We note that the case n < 1 corresponds to waves traveling faster inside the medium D
than in the background, while the case n = 1 corresponds to equal wave speeds inside and
outside of D.

Remark 3.2. The fact that plane waves always scatter when n ≤ 1 is particularly inter-
esting, given that there exist other examples of non-scattering incident waves in this case.
For the disk (with a = 1 and q ̸= 1) there is an infinite sequence of wave numbers at which
one can find non-scattering Herglotz waves [7, 5]. For the unit square (with a = q ̸= 1)
the incident wave uin(x) = cosmπx1 cos lπx2, which solves the Helmholtz equation with
k2 = π2(m2 + l2), is non-scattering for any m, l ∈ Z [6].
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We now turn to the case n > 1. Before stating our results, we introduce some important
quantities. For λ ∈ S, let w(λ) denote the width of D in the direction λ, defined as the
length of the orthogonal projection of D onto the line spanned by λ. That is,

w(λ) = sup
x∈D

λ · x− inf
x∈D

λ · x.

We also introduce the positive increasing function

M(r) = r +
√
n2 − 1 + r2. (3.1)

Theorem 3.3. Assume (H1), (H2) and n > 1. The incident plane wave (2.5) in direction
η ∈ S is scattered by the inhomogeneity D provided

(i) na > 1 and

k ≤ π

w(λ)M(λ · η)
for some λ ∈ S, or

(ii) na ≤ 1 and

k ≤ π

w(λ)M(λ · η)
for some λ ∈ S\{λ±},

where λ± are the unit vectors that satisfy the equation

λ · η =
a
√
n2 − 1√
1− a2

=: r0. (3.2)

In other words, λ± are the vectors forming angles ± arccos r0 with η.

Note that any admissible direction λ can be chosen to obtain an inequality ensuring the
scattering of the corresponding plane wave. In part (i), every direction λ is admissible, while
in part (ii) all but two exceptional directions are admissible. If we rewrite r0 in the slightly
different form

r0 =

√
(na)2 − a2√
1− a2

, (3.3)

it is clear that r0 ∈ (0, 1] if n > 1 and na ≤ 1.
There are two particularly useful directions in our estimates: λ = −η and λ = η⊥, where

η⊥ denotes a unit vector perpendicular to η (the specific choice between the two possible
orthogonal directions is irrelevant). Since r0 cannot take the values −1 or 0, these directions
are also admissible in part (ii). Therefore, for n > 1, scattering is guaranteed provided

k ≤ π

w(η)M(−1)
, or k ≤ π

w(η⊥)M(0)
.

Simplifying the above values of the function M , we arrive at
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Corollary 3.4. Assume (H1), (H2) and n > 1. The plane wave uin is scattered by D
provided that

k ≤ max

{
π

w(η) (n− 1)
;

π

w(η⊥)
√
n2 − 1

}
. (3.4)

In particular, the above estimate shows continuity between the cases n ≤ 1 and n >
1. Indeed, as n → 1+ the guaranteed scattering extends to the full frequency spectrum
k ∈ (0,∞). It also admits a useful physical interpretation. Fix an inhomogeneity D with
material parameter n > 1. Then plane waves with sufficiently small k (i.e. large wavelength)
always scatter from D. If the inhomogeneity is much smaller than the wavelength, the
incident wave “sees” the inhomogeneity only weakly and is not expected to interact strongly
with it. The estimate shows that one cannot achieve non-scattering by relying on such weak
interactions, and that stronger wave–matter interactions are needed to even hope to achieve
non-scattering. This in itself is not unexpected: in many interesting cases, for instance when
a = 1, or when a − 1 and q − 1 have opposite sign, it is known that the real transmission
eigenvalue spectrum is bounded away from zero (see Theorem 4.15 and Theorem 4.42 of
[4]). Since being a real transmission eigenvalue is a nececessary condition for a wave number
to have an associated non-scattered incident wave, it follows that any incident wave, in
particular any plane wave, must scatter for sufficiently small wave numbers in these cases.
What is entirely novel about our estimates is their very explicit dependence on the geometry
of the domain and the direction of the incident plane wave.

Strong interactions correspond to small wavelengths (i.e., large k), and this case is treated
in Section 3.2 for strictly convex inhomogeneities. For such domains we obtain an infinite
set of increasing frequency intervals with guarantied scattering. Furthermore, if the maximal
width of the domain is more than twice the minimal width, then the union of these intervals
covers all of R+, and so we have scattering of plane waves for all wave numbers k.

Let us next restate Thereom 3.3 in a slightly different form. The largest interval of k
with guaranteed scattering is obtained by minimizing the denominator, so let

h0(η) = min
λ∈S

{w(λ)M(λ · η)} . (3.5)

When na > 1, scattering is guaranteed for

k ≤ π

h0(η)
. (3.6)

Since we are minimizing a continuous function over a compact set, the minimum h0(η) is
attained at some point λ0 ∈ S. If λ0 ̸= λ±, then for na ≤ 1 we again have guaranteed
scattering in the interval (3.6). Otherwise, if λ0 = λ±, then h0(η) = w(λ±)M(r0) and the
endpoint k = π/h0(η) must be excluded from the interval (3.6) in order to ensure scattering.

Remark 3.5. We do not believe the bounds established here are necessarily optimal. In
particular for strictly convex inhomogeneities we are inclined to believe that plane waves
always scatter. This belief is in part supported by the enhanced results for such domains,
which we describe in detail in the following section.

6



Remark 3.6 (Sound soft/hard obstacles).
The limit a → ∞ (or n → 0) includes scattering by a Dirichlet (sound-soft) obstacle as a
particular case. Theorem 3.1 applies here and implies that plane waves always scatter from
a sound-soft obstacle. The limit a → 0 (or n → ∞) corresponds to scattering by a Neumann
(sound-hard) obstacle. Part (i) of Theorem 3.3 applies in this case; however, the estimate
on k degenerates to 0. We remark that plane waves always scatter from both sound-soft and
sound-hard obstacles – this is immediate and does not require the above results. Indeed, if
uin were non-scattering then for a sound-soft obstacle uin = 0 on Γ, and for a sound-hard
obstacle ∂νu

in = 0 on Γ. These conditions cannot be satisfied by the plane wave (2.5).

3.2 Strictly convex inhomogeneities

Along with (3.5), introduce

h1(η) = max
λ∈S

{w(λ)M(λ · η)} . (3.7)

Theorem 3.7. Assume (H1), (H2), and that D is strictly convex. Suppose n > 1 and
na > 1. The incident plane wave (2.5) in direction η ∈ S is scattered by the inhomogeneity
D provided that

k ∈
∞⋃

m=1

[
2πm

h1(η)
,
2πm

h0(η)

]
. (3.8)

Remark 3.8. The above result also holds for na ≤ 1, except that the wave numbers

k =
2πm

w(λ±)M(r0)
, m = 1, 2, ...

(potentially) must be removed from the union (3.8). Recall that λ± are the exceptional
directions defined in Theorem 3.3.

Remark 3.9. Note that h0(η) ̸= h1(η) for every η. Indeed, if equality held, then the
function w(λ)M(λ · η) would have to be constant for all λ, but its values at λ = ±η
are always different. This implies that the intervals in (3.8) eventually start overlapping
as m grows, and thus cover an interval of the form [k0,∞). Consequently, the possible
non-scattering wave numbers k > 0 cannot accumulate at ∞. Since it is known that the
non-scattering wave numbers have no finite accumulation point [4, 14], it follows under the
assumptions of Theorem 3.7 that the set of non-scattering wave numbers is finite (possibly
empty) for any fixed incident direction η. This finiteness result (in the case a = 1) was
previously established in [14] using asymptotic methods.

Since the intervals in (3.8) expand as m increases, Theorem 3.7 in particular applies to
sufficiently large wave numbers k. Let us be more specific and draw a simple conclusion from
this result in terms of more explicit and easier-to-compute quantities, namely the maximal
and minimal widths of D:

w∗ = max
λ∈S

w(λ), w∗ = min
λ∈S

w(λ). (3.9)
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Corollary 3.10. Assume the hypotheses of Theorem 3.7, and suppose that w∗(n − 1) >
w∗(n+ 1). Then the incident plane wave (2.5) is scattered by D provided

k ≥ 2π

w∗(n− 1)− w∗(n+ 1)
, (3.10)

regardless of the direction η ∈ S.

Proof. Since M is an increasing function, we apply the basic estimates

h1(η) ≥ w∗M(−1) = w∗(n− 1), h0(η) ≤ w∗M(1) = w∗(n+ 1),

which hold for all η ∈ S. Theorem 3.7 implies that scattering is guaranteed if there exists
some m = 1, 2, ... such that

k ∈
[

2πm

w∗(n− 1)
,

2πm

w∗(n+ 1)

]
⇐⇒ m ∈

[
kw∗

2π
(n+ 1),

kw∗

2π
(n− 1)

]
Clearly, an integer m exists in the above interval, provided its length is at least 1, which is
precisely the condition (3.10).

Theorem 3.7 can be combined with part (i) of Theorem 3.3, and it is easy to see that
when h1(η) ≥ 2h0(η), the consecutive intervals starting from (3.6) and continuing with those
in (3.8) overlap and cover the entire frequency spectrum k ∈ (0,∞). Therefore, we obtain

Corollary 3.11. Assume the hypotheses of Theorem 3.7, and suppose the direction vector
η satisfies

h1(η) ≥ 2h0(η), (3.11)

then the incident wave (2.5) in direction η is scattered by D, regardless of the value of k.

The condition (3.11) is generally not straightforward to apply in a specific scattering
problem. However, it has two interesting consequences for two different types of (strictly
convex) domains, which are easy to establish and for which (3.11) is satisfied for all incidence
directions η.

Corollary 3.12. Assume the hypotheses of Theorem 3.7.

(i) Assume that D has constant width1, i.e., w(λ) = const for all λ ∈ S, and that n ≤ 3.
Then every incident plane wave (2.5) is scattered by D.

(ii) Assume D satisfies w∗ ≥ 2w∗, i.e., the maximal width of D is at least twice its minimal
width. Then every incident plane wave (2.5) is scattered by D.

1Domains with constant width include disks, but there are many other constant width domains with
analytic boundaries, see e.g. [8]. For a comprehensive, up-to-date discussion of constant width domains, see
[11]. Incidentally, a convex domain of constant width is automatically strictly convex.
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Proof. (i) Write w(λ) = w. Since M is an increasing function, we have

h1(η) = wmax
λ∈S

{M(λ · η)} = wM(1).

In other words, h1 is independent of η. An analogous formula holds for h0(η), so that the
inequality (3.11) reduces to M(1) ≥ 2M(−1). Or equivalently, using the definition (3.1),
this becomes 1 + n ≥ 2(−1 + n), i.e. n ≤ 3.

(ii) Assume that the maximum and minimum in (3.9) are attained at λ∗ and λ∗, respec-
tively. Since w(λ) = w(−λ), we can then estimate

h1(η) ≥ w(λ∗)M(±λ∗ · η) ≥ 2w(λ∗)M(±λ∗ · η).
Suppose that λ∗ · η ≥ λ∗ · η. Since M is an increasing function we obtain

h1(η) ≥ 2w(λ∗)M(λ∗ · η) ≥ 2h0(η).

On the other hand, if −λ∗ · η ≥ −λ∗ · η, we obtain the same estimate using −λ∗. Hence,
(3.11) holds in either case, regardless of η, and the proof is complete.

Remark 3.13. When a = 1, our results from [9] imply that plane waves always scatter
from any elliptical region D, including the case when D is a disk, regardless of the value of
n =

√
q ̸= 1, and without any condition on maximal vs. minimal width.

Remark 3.14. Corollary 3.11 or part (ii) of Corollary 3.12 can be viewed as an extension
of the result of Brown and Kahane [2] to the scattering context. Their result states that a
strictly convex set with w∗ ≥ 2w∗ has the Pompeiu property. Formally, the Pompeiu context
corresponds to setting uin = 1, i.e. η = 0 in the integral I(ξ) (2.8). In that case, we can
freely rotate D, since rotations can be absorbed into the test vector parameter ξ, which
varies in a rotationally invariant set S . This rotational invariance simplifies the analysis and
leads to their conclusion provided h1 ≥ 2h0, where these functions no longer contain the
term M(λ · η). In other words, h1 and h0 reduce to w∗ and w∗, respectively. Moreover, in
the Pompeiu context the term C(ξ) (2.8) is not present.

3.3 Infinite slab: non-scattering of plane waves

Let the inhomogeneity be an infinite vertical slab of thickness w, i.e., D = {(x, y) : 0 <
x < w}, with material parameters a = 1 and q > 0 constant. Outside the medium, the
parameters are (1, 1). As before n =

√
q. We consider an incident plane wave at normal

incidence, traveling along the x-axis:

uin(x) = e−ikx. (3.12)

Consequently, the scattered and transmitted waves also propagate along the x-axis, making
the problem effectively one-dimensional.

Lemma 3.15. Assuming the setting introduced above, the incident plane wave (3.12) is non-
scattering if and only if
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• kw = 2πm and n =
l

m
for some m, l = 1, 2, ... (m ̸= l), or

• kw = π + 2πm and n =
1 + 2l

1 + 2m
for some m, l = 0, 1, 2, ... (m ̸= l)

Proof. With u = utr − uin, the non-scattering problem (2.3) reduces to
u′′ + k2n2u = k2(1− n2)uin in (0, w)

u(0) = u(w) = 0

u′(0) = u′(w) = 0.

This is a simple ODE whose solution is u(x) = −e−ikx + c1 sin(knx) + c2 cos(knx), where
c1, c2 ∈ C. The boundary conditions u(0) = u′(0) = 0 imply that c2 = 1 and c1 = −i/n.
The remaining two boundary conditions can be reduced to

sin(knw) = 0 and e−ikw = cos(knw),

which concludes the proof.

Remark 3.16. In electromagnetism, the classical Salisbury screen consists of the slab D,
along with a resistive sheet at x = 0 with resistivity R > 0 and a perfect conductor at x = w.
Both can be modeled using appropriate boundary conditions. Similar to Lemma 3.15, one
can show that a suitable choice of the parameters k, w and R leads to non-scattering of the
incident plane wave (3.12).

Remark 3.17. The above model can be viewed as the plane-wave analogue of the non-
scattering of a particular Herglotz wave for the disk. Let us describe this analogy in more
detail. Herglotz waves are continuous superpositions of plane waves; a particular example is
the radial incident Herglotz wave uin(x) = J0(k|x|), where J0 is the Bessel function of order
0. Let D = Dw(0) be the disk of radius w > 0 centered at the origin, and assume the same
material parameters as in the slab case above. Then this incident wave is non-scattering for
D if and only if [7]

J ′
0(kw)J0(knw)− nJ0(kw)J

′
0(knw) = 0.

Due to the radial symmetry, this non-scattering problem also reduces to a one-dimensional
problem, and the above equation then follows easily. Note the analogy: in both cases,
the geometry of the inhomogeneity perfectly matches the wavefronts of the corresponding
non-scattering incident wave.

4 The Proofs

In the following subsections, we present the proofs of Theorems 3.1, 3.3, 3.7, and Lemma 2.1.
As already discussed, the proofs proceed by contradiction: we assume that the incident
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plane wave is non-scattering. Then, by Lemma 2.1 (see (2.7)), this assumption implies that
I(ξ) = 0 for all ξ = (ξ1, ξ2) ∈ C2 with ξ · ξ = 1, i.e.,

ξ21 + ξ22 = 1. (4.1)

The desired contradiction is obtained by finding ξ for which I(ξ) ̸= 0.

4.1 Proofs of Theorems 3.1 and 3.3

Recall that I(ξ) = C(ξ)I(ξ), where C and I are given by (2.8). For convenience, we restate
these definitions:

C(ξ) =
1

a
− n2 +

(
1

a
− 1

)
n ξ · η and I(ξ) =

∫
D

eik(η+nξ)·xdx.

The case n < 1. To simplify the analysis, we rotate the coordinate axes so that the
incident direction is η = (1, 0). The idea is simple: if both components of η + nξ are in iR,
then I(ξ) is clearly nonzero. So we attempt to select ξ so that

1 + nξ1 ∈ iR and nξ2 ∈ iR.

Writing ξ2 = iy with y ∈ R, we conclude from (4.1) that

ξ1 = ±
√

1 + y2, (4.2)

which are real numbers. Therefore, 1 + nξ1 ∈ iR only when it vanishes, i.e., ξ1 = −1/n.
This is consistent with (4.2) provided n < 1, and we choose the minus sign in (4.2) with
y2 = 1

n2 − 1. With this choice of ξ we have C(ξ) = 1 − n2 ̸= 0, and so I(ξ) ̸= 0. This
concludes the proof of Theorem 3.1 for the case n < 1.

The case n > 1. The preceding method does not produce an admissible ξ. Instead we
consider real-valued vectors ξ, so that ξ ∈ S is a true direction vector.

Let us start by analyzing the integral I(ξ). An important observation is that as ξ varies
over all possible directions, so does the vector k(η + nξ), since n > 1. Indeed, note that
η + nξ traces a circle centered at η with radius n. Because n > 1, this circle contains
the origin in its interior and thus spans all directions. In other words, given an arbitrary
direction vector λ ∈ S we can find a vector ξ ∈ S and a constant R > 0 such that

k(η + nξ) = Rλ. (4.3)

More precisely

ξ =
1

n

(
R

k
λ− η

)
,

and since this must be a unit vector, R must satisfy

R2

k2
− 2

R

k
λ · η + 1− n2 = 0. (4.4)
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This is a quadratic equation with positive discriminant (as n > 1). It has two roots, one
positive and one negative. Since we are interested in the positive root, it follows that

R = R(λ) = k
(
λ · η +

√
n2 − 1 + (λ · η)2

)
.

In terms of the function M defined in (3.1), we have

R = kM(λ · η). (4.5)

Let us change the test vector variable from ξ to λ, using (4.3) and (4.5). In that case,

I(ξ) =

∫
D

eiRλ·xdx =: Ĩ(λ).

Using Fubini’s theorem, we now aim to reduce the above integral to a one-dimensional
integral. Note that the integrand is constant along lines perpendicular to λ. Therefore, we
slice D using such line segments, and more specifically, change the integration variable from
x to (t, s), where

x = tλ+ sλ⊥,

Here, tλ varies over the orthogonal projection of D onto the line in direction λ. Translation
of D does not affect the nonvanishing of Ĩ, so we place the projection’s starting point at the
origin: t ∈ [0, w(λ)], where w(λ) is the width of D in the direction λ. Let Dt denote the
slice of D perpendicular to λ at coordinate t, i.e.

Dt = {s : tλ+ sλ⊥ ∈ D}

and let L(t) = |Dt| be the one-dimensional Lebesgue measure of this slice. Thus,

Ĩ(λ) =

∫ w(λ)

0

∫
Dt

eiRtdsdt =

∫ w(λ)

0

L(t)eiRtdt. (4.6)

Taking the imaginary part, we arrive at

ℑĨ(λ) =
∫ w(λ)

0

L(t) sin(Rt)dt.

Because L(t) ≥ 0 and not identically zero, the integral is nonzero whenever Rw(λ) ≤ π;
equivalently, by (4.5)

k ≤ π

w(λ)M(λ · η)
.

In summary, if the above inequality holds for some direction vector λ ∈ S, then Ĩ(λ) = I(ξ)
is nonzero. Since I = CI, to obtain the desired contradiction it remains to ensure that the
term

C(ξ) =
1

a
− n2 +

(
1

a
− 1

)
n ξ · η
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is also nonzero. We begin by analyzing this in terms of λ using (4.3) and (4.5). For
convenience, introduce the variable

r = λ · η ∈ [−1, 1].

Invoking (4.3) and (4.5) we then have

n ξ · η = M(r)r − 1.

Let us study the equation C(ξ) = 0. Since this has no solution when a = 1, we assume a ̸= 1
and perform straightforward simplifications to rewrite it as

rM(r) = a
n2 − 1

1− a
=: c0. (4.7)

It remains to determine whether the above equation admits a solution r in the interval
[−1, 1]. Using the definition of M from (3.1), we obtain

√
n2 − 1 + r2 =

c0
r
− r. (4.8)

Squaring both sides and simplifying, we arrive at

r2 =
c20

n2 − 1 + 2c0
= a2

n2 − 1

1− a2
.

For this equation to have a real solution, it is necessary that a < 1. In that case, the
solutions are r = ±r0, where r0 is the square root of the right-hand side expression (see also
(3.2)). It is easy to check that when r = −r0 the expression on the right-hand side of (4.8)
is negative. Therefore, the only solution is r = r0 > 0. We have r0 ∈ (0, 1] if and only if
na ≤ 1. Consequently, when na > 1, the constant C(ξ) is always nonzero for any choice
of λ ∈ S, which completes the proof of part (i) of Theorem 3.3. On the other hand, when
na ≤ 1 (in which case it automatically follows that a < 1) the constant C(ξ) vanishes if and
only if λ ·η = r0. Let λ± denote the two (or one) vectors satisfying this equation, then C(ξ)
is nonzero for all λ ∈ S\{λ±}. This completes the proof of part (ii).

The case n = 1. In this case a ̸= 1, because otherwise a = q = 1. We begin by noting
that

C(ξ) =

(
1

a
− 1

)
(1 + ξ · η) .

When ξ = −η we have C(ξ) = 0 so this choice is not of interest. For ξ ̸= −η we have
C(ξ) ̸= 0, and we may find λ ∈ S and a constant R > 0 such that k(η+ ξ) = Rλ. A simple
calculation shows that λ · η = R/2k > 0. Similarly for any λ ∈ S, with λ · η > 0, we may
find ξ ∈ S, R > 0, such that k(η + ξ) = Rλ and ξ ̸= −η so C(ξ) ̸= 0. Vectors of interest
(those for which C(ξ) ̸= 0) are thus those λ ∈ S satisfying λ · η > 0.
An argument analogous to that for n > 1 now shows that scattering occurs, provided

k ≤ π

2w(λ)λ · η
,

13



for some λ ∈ S with λ · η > 0. Since D is bounded, the widths w(λ) remain bounded. We
now choose λ such that λ · η → 0+, in which case the above inequality grows to cover the
entire interval k ∈ (0,∞), and we conclude that plane waves always scatter. This finishes
the proof of Theorem 3.1.

4.2 Proof of Theorem 3.7

Our starting point is the formula (4.6):

I(ξ) = Ĩ(λ) =

∫ w(λ)

0

L(t)eiR(λ)tdt,

where λ ∈ S is an arbitrary vector and its relation to ξ is given by (4.3). As before,
R(λ) = kM(λ · η), and L(t) denotes the length of the slice of D perpendicular to λ at
coordinate t ∈ [0, w(λ)]. Since D is convex, the function L(t) is concave. This can be easily
seen once we rotate the coordinate axes so that λ lies along the horizontal direction. Then
we can write L(t) = L2(t) − L1(t), where s = L1(t) and s = L2(t) denote the lower and
upper portions of the boundary ∂D, respectively. Both L2 and −L1 are concave functions.

Taking the real part of the above expression, suppressing the λ dependence in the nota-
tion, and integrating by parts, we obtain2

ℜĨ =

∫ w

0

L(t) cos (Rt) dt = − 1

R

∫ w

0

L′(t) sin (Rt) dt.

Here, the boundary terms vanish because L(0) = L(w) = 0. This is due to the strict con-
vexity of D, which prevents its boundary from containing line segments. Changing variables
reduces the integral to

ℜĨ =

∫ wR

0

L̃(x) sinxdx, L̃(x) = − 1

R2
L′

( x

R

)
.

Since L is concave, L̃ is an increasing function. Suppose now that the parameters w and R
are such that wR = 2π. In that case,

ℜĨ =

∫ 2π

0

L̃(x) sinxdx =

∫ π

0

+

∫ 2π

π

=

∫ π

0

[
L̃(x)− L̃(π + x)

]
sinxdx < 0.

In other words, L̃ puts more weight on the second interval (π, 2π) on which sine is negative,
making the total integral negative. It is easy to see that the same conclusion can be obtained
also in the case where wR = 2πm for some integer m = 1, 2, ... (simply split the integral
into a sum of m terms and conclude that each term is negative). Writing more explicitly, we
obtain that at the wave numbers

k =
2πm

w(λ)M(λ · η)
, λ ∈ S, m = 1, 2, ...

2L′ exists and is an integrable function, since D is convex.
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the integral Ĩ(λ) is nonzero. The right-hand side expression is a continuous function of λ
and as λ varies over S, it attains all values between its minimum and maximum. In other
words, Ĩ(λ) is nonzero for some λ ∈ S (and thus I is nonzero for some ξ ∈ S) provided

k ∈
[
2πm

h1(η)
,
2πm

h0(η)

]
m = 1, 2, ...

where h0 and h1 are defined in (3.5) and (3.7), respectively. To conclude the proof, we recall
that C(ξ) is nonvanishing for all λ when na > 1, whereas for na ≤ 1 we must exclude the
directions λ = λ± (see part (ii) of Theorem 3.3).

4.3 Proof of Lemma 2.1

Setting u = utr − uin and using (2.2) we rewrite the system (2.3) in terms of u and uin:∆u+ k2n2u = k2 (1− n2)uin in D,

u = 0, ∂νu =
(
1
a
− 1

)
∂νu

in on Γ = ∂D,

Multiplying the above PDE by a test function ϕ ∈ H2(D) and integrating over D, we obtain

k2
(
1− n2

) ∫
D

uinϕdx =

∫
D

∆uϕ+ k2n2uϕdx =

=

∫
D

u∆ϕdx+

∫
Γ

(∂νuϕ− u∂νϕ) ds+

∫
D

k2n2uϕdx,

where we have used Green’s identity. Now, using the boundary conditions satisfied by u, we
get

k2
(
1− n2

) ∫
D

uinϕdx =

∫
D

u
(
∆ϕ+ k2n2ϕ

)
dx+

(
1

a
− 1

)∫
Γ

∂νu
in ϕds.

Imposing ∆ϕ+ k2n2ϕ = 0 in D, the above formula reduces to

k2
(
1− n2

) ∫
D

uinϕdx+

(
1− 1

a

)∫
Γ

∂νu
in ϕds = 0. (4.9)

We use the divergence theorem to rewrite the second integral above:

∫
Γ

∂νu
in ϕds =

∫
D

div
(
∇uin ϕ

)
dx =

∫
D

(
∇uin · ∇ϕ+∆uin ϕ

)
dx

=

∫
D

(
∇uin · ∇ϕ− k2uinϕ

)
dx.

The last step follows from the PDE (2.2) satisfied by the incident wave. To complete the
proof, we substitute the above expression into (4.9).
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