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Abstract

We study non-scattering phenomena associated with the time-harmonic Helmholtz equation
in two dimensions. For very general classes of star-shaped domains, we show that there are at
most finitely many wavenumbers such that Herglotz incident waves with a fixed density function
are non-scattering.
Keywords. Non-scattering, Herglotz waves, transmission eigenvalues, star-shaped domains,
Schiffer conjecture.

1 Introduction

In this paper we study the geometric implications of (a high degree of) non-scattering in the context
of the two dimensional Helmholtz equation. The focus is on smooth inhomogeneities, since it is
already known that non-scattering, at just a single wave number and for a single incident wave,
generically implies that the inhomogeneity (scatterer) is smooth [5, 8, 4]. The present study may
be seen as a continuation of the investigation initiated in [10]. We consider the two dimensional
Helmholtz equation for a wave number, k > 0, and an incident wave in the form of a superposition
of plane waves, a so-called Herglotz wave:

H[k, ϕ](x) =

∫ π

−π
ϕ(ξ)eikξ·x dθξ . (1.1)

The function ϕ ∈ L2(S1) is the associated Herglotz density. We note that H[k, ϕ](x) solves
∆H[k, ϕ] + k2H[k, ϕ] = 0 in all of R2. The bounded inhomogeneity Ω ⊂ R2, with index of re-
fraction q ∈ L∞(Ω) (not identically 1), is non-scattering in the presence of this incident wave (at
wave number k), if and only if the total field outside Ω coincides with the incident field. This
happens if and only if there exists a solution to the following over-determined problem{

∆u+ k2qu = 0 in Ω,

u−H[k, ϕ] = 0, ∂νu− ∂νH[k, ϕ] = 0, on ∂Ω.
(1.2)

In terms of the transmission eigenvalue problem{
∆u+ λqu = 0, ∆v + λv = 0, in Ω,

u− v = 0, ∂νu− ∂νv = 0, on ∂Ω,
(1.3)
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this is equivalent to the fact that λ = k2 is a transmission eigenvalue with eigenvector component
v given by H[k, ϕ].

Throughout this paper we assume that q is a positive constant, different from 1. For disks
centered at the origin we recall the following result concerning the existence of infinite sequences
non-scattering (Herglotz) wave numbers; For more details, see [6, 7, 10].

Proposition 1. Let Ω be a disk of radius R0 > 0 centered at the origin, and let n ∈ N be any fixed

integer. Then there exists an infinite sequence of positive wave numbers {k(n)j }∞j=1 with k
(n)
j → ∞

as j → ∞ such that Ω is non-scattering for the incident Herglotz waves H[k
(n)
j , e−inθ], j = 1, 2, . . ..

For domains Ω that are not disks centered at the origin, the situation is quite different, as we
shall soon see.

Finally we notice that ũ := u−H[k, ϕ] satisfies{
∆ũ+ k2qũ = f in Ω,

ũ = 0, ∂ν ũ = 0, on ∂Ω,
(1.4)

with f = −k2(q − 1)H[k, ϕ]. The over-determined problem (1.4) resembles the so-called Schiffer
problem. The Schiffer conjecture states that, given Ω a simply connected domain in Rm, m = 2, 3,
(1.4) admits a solution with f ≡ 1 for some k ∈ R if and only if Ω is an m-dimensional ball.
The proof of this is still an open problem, with some partial results, including that (1.4) admits a
solution with f ≡ 1 for infinitely many k ∈ R if and only if Ω is an m-dimensional ball [1, 9]. In
this paper we show (for m = 2) that for broad classes of non-circular domains, Ω, and for a fixed
nontrivial Herglotz density, ϕ, there exist at most finitely many wave numbers k, for which Ω is
non-scattering given the incident wave H[k, ϕ]. Precise statements of our results are given in the
next section.

1.1 Main Results

One of our results concerns ellipses centered at the origin. We recall that that the eccentricity of

an ellipse is given by the formula
√
1− b2

a2
, where a is the length of its semi-major axis, and b is

the length of its semi-minor axis.

Theorem 1. Let Ω be an ellipse centered at the origin. Suppose that the eccentricity e of Ω satisfies

0 < e2 <
√
q/(1 +

√
q).

Then, given a C1 function ϕ on S1, which is not identically zero, there are at most finitely many
k’s such that Ω is non-scattering in the presence of the incident wave v = H[k, ϕ]. 1

This result, which was already announced in [10], significantly extends the result of Theorem 1
in that paper. Another result concerns disks that are not centered at the origin.

Theorem 2. Let Ω = BR0(x0) be a disk of radius R0 centered at the point x0 ̸= 0. Suppose that

|x0|/R0 <


√
q/(1 +

√
q) for

√
q < 1 or 1 <

√
q ≤ 1√

3−1
,√

1− 2(1 +
√
q)/(3

√
3q)

(
<

√
q/(1 +

√
q)
)

for
√
q > 1√

3−1
.

Then, given a C1 function ϕ on S1, which is not identically zero, there are at most finitely many
k’s such that Ω is non-scattering in the presence of the incident wave v = H[k, ϕ].

1We identify S1 with the interval [0, 2π) (and with the quotient space R/{2π}) by the map θ 7→ (cos θ, sin θ)T ,
unless otherwise specified.
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The following result concerns ellipses where the origin is one of the foci.

Theorem 3. Let Ω be an ellipse with one of its foci located at the origin. Suppose the eccentricity
e of Ω satisfies {

0 < e2 < 3/4− 1/(4
√
q), if q > 1 or 1/4 < q < 1,

0 < e2 < q, if 0 < q ≤ 1/4.

Then, given a C1 function ϕ on S1, which is not identically zero, there are at most finitely many
k’s such that Ω is non-scattering in the presence of the incident wave v = H[k, ϕ].

Theorems 2 and 3 are direct consequences of Theorem 5 (and its counterpart for the case when
0 < q < 1, see [11]), which will be stated shortly. In fact, applying Theorem 5 we can also show
similar results for certain off-center ellipses. For brevity we opt not to present those results. We
postpone the proofs of Theorems 2 and 3 to the Appendix.

We now proceed to present our more general results pertaining to non-circular domains that
are star-shaped with respect to the origin. For simplicity we only formulate and prove these
more general results for the case q > 1, but similar results hold for 0 < q < 1, see [11]. Since
Theorems 2 and 3 are derived as consequences of Theorem 5, they are here in reality only verified
for q > 1. We shall need two definitions.

Definition 1. Given a bounded C2 domain Ω ⊂ R2, we say that Ω is star-shaped with respect to
the origin if ∂Ω admits a parameterization {ρ(θ)θ⃗ : θ ∈ [0, 2π)}, where θ⃗ = (cos θ, sin θ)T and ρ is
a positive 2π-periodic C2 function. We refer to ρ as the radius function of the domain Ω.

Definition 2. Given a constant q > 1 we call a radius function, ρ, admissible (with respect to q)
if it satisfies the following “smallness” condition:

(ln ρ)′′(t) <
√
q/(1 +

√
q) for all t. (1.5)

Note that we only impose an upper bound for (ln ρ)′′, besides the natural condition
∫ 2π
0 (ln ρ)′′(t)dt =

0 due to periodicity. In particular, the quantity −(ln ρ)′′(t) is allowed to be arbitrarily large in an
arbitrarily small interval.

Our first result for these star-shaped domains concerns domains where “half” of the boundary
consists of circular arcs.

Theorem 4. Suppose q > 1 and suppose Ω is a C2 domain, which is star-shaped with respect to
the origin with an admissible radius function ρ. Assume that ρ satisfies

ρ′ = 0 in N , and ρ′ ̸= 0 a.e. in N + π,

for some relatively open subset N of [0, 2π) satisfying |N | = π and N ∪ (N + π) = [0, 2π) (in the
sense of the quotient space R/{2π}). Let ϕ be a nontrivial C1 function on S1. Then there are at
most finitely many wave-numbers k such that Ω is non-scattering in the presence of the incident
wave v = H[k, ϕ].

Remark 1.1. An example of Ω in Theorem 4 is a star-shaped domain with the radius function

ρ(t) =

{
1 + a sin3 t, 0 < t < π,

1, π < t < 2π,
with a ∈ (0, 1) being a constant.

Ω forms a C2 “egg” shape (see first frame of Figure 1). One can verify that 0 < 5a ≤ √
q/(1+

√
q)

is a sufficient condition for (1.5) to be satisfied. We show in Figure 1 some domains Ω that satisfy
the conditions in Theorem 4.

3



Figure 1: Examples of star-shaped domains fulfilling conditions in Theorem 4. From left to
right: ρ(t) = 1 + aχ(0,π) sin

3 t, ρ(t) = 1 + aχ(π,2π) sin
3 t, ρ(t) = 1 + aχ(0,π) sin

3 2t, ρ(t) =
1 + aχ(0,π/3)∪(2π/3,π)∪(4π/3,5π/3) sin

3 3t, where the values of a ∈ (0, 1) are chosen to be small so
that (1.5) is satisfied for all q > 1.

The following result is the “complement” of Theorem 4 in the sense that, it concerns domains
with boundaries containing no circular arcs.

Theorem 5. Suppose q > 1 and suppose Ω is a C2 domain, which is star-shaped with respect to
the origin with an admissible radius function ρ, that satisfies ρ′ ̸= 0 a.e. in [0, 2π), and for any t
ρ′(t) = 0 if and only if ρ′(t+ π) = 0. Assume furthermore that ρ satisfies one of the following two
conditions:

(i) For each t we have sgn ρ′(t) = sgn ρ′(t+ π), or

(ii) For each t such that ρ′(t) = 0, we have |ρ′′(t)|+ |ρ′′(t+ π)| > 0.

Let ϕ be a nontrivial C1 function on S1. Then there are at most finitely many wave numbers k
such that Ω is non-scattering in the presence of the incident wave v = H[k, ϕ].

Remark 1.2. A particular case, where the condition (i) in Theorem 5 is satisfied, is when ρ is
π-periodic, namely, when Ω is symmetric with respect to the origin.

Remark 1.3. We note that the ellipses considered in Theorem 1 are star-shaped with respect to the
origin, with radius functions

ρ(t) =
b√

1− e2 cos2 t
,

and hence

(ln ρ)′(t) =
−e2 cos t sin t
1− e2 cos2 t

and (ln ρ)′′(t) = e2
1− (2− e2) cos2 t

(1− e2 cos2 t)2
.

We can verify that

max
t

(ln ρ)′′(t) =

(ln ρ)′′|cos t=0 = e2, if 0 < e2 ≤ 2/3,

(ln ρ)′′|
cos2 t= 3e2−2

e2(2−e2)

=
(2− e2)2

8(1− e2)
> e2, if 2/3 < e2 < 1.

In particular, concerning ellipses centered at the origin, Theorem 1 is more general than Theorem 5
when (q > 1 and) the eccentricity satisfies 2/3 < e2 < 1, in view of the admissibility condition
(1.5).

The following result concerns Herglotz waves with real-analytic densities.

Theorem 6. Suppose q > 1 and suppose Ω is a C2 domain, which is star-shaped with respect to
the origin with an admissible radius function ρ. Let ϕ be a nontrivial function on S1, with |ϕ|2
real-analytic. Furthermore assume that ρ satisfies one of the following two conditions:
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(i) There exists some t0 such that ρ′(t0) ̸= 0 and ρ′(t0)ρ
′(t0 + π) ≥ 0, or

(ii) The quantity |ρ′(t)|+ |ρ′(t+ π)|+ |ρ′′(t)|+ |ρ′′(t+ π)| is strictly positive for all t.

Then there are at most finitely many wave numbers k such that Ω is non-scattering in the presence
of the incident wave v = H[k, ϕ].

Remark 1.4. Note that we do not require ρ′ ̸= 0 a.e. in Theorem 6 (as in Theorem 5). Moreover,
conditions (i) and (ii) in Theorem 6 are each much weaker than conditions (i) and (ii) in Theorem
5. However, the condition on ϕ is of course much more restrictive in Theorem 6.

1.2 Preliminaries

If the overdetermined boundary value problem 1.2 has a solution u ∈ H1(Ω), then integration by
parts yields

k2
∫
Ω
(q − 1)H[k, ϕ]w dx =

∫
∂Ω

(w ∂νH[k, ϕ]−H[k, ϕ] ∂νw ) dσ(x)

=

∫
∂Ω

(w ∂νu− u ∂νw ) dσ(x) = 0 ,

for any w solving ∆w + k2qw = 0 in Ω. Since q is a positive constant different from 1, we may
substitute w = eik

√
q x·η into this identity and obtain

k2
∫
Ω
eik

√
q η·x

∫ π

−π
ϕ(ξ) eikξ·x dθξ dx = 0, for any η ∈ S1,

or equivalently

ik

∫
∂Ω

∫ π

−π
ν · (ξ −√

qη)ϕ(ξ) eik(
√
qη+ξ)·x dθξ dσ(x) = 0, for any η ∈ S1. (1.6)

Let Ω be a simple connected C2 domain. By a parameterization y = y(θ) of ∂Ω, we understand
a bijective orientation-preserving C2 mapping y : S1 → ∂Ω with y′(θ) ̸= 0 for any θ. Moreover,
the orientation of the parameterization is set to be counterclockwise. For any vector ξ ∈ S1,
we denote by θξ the angular coordinate of ξ. We also denote x⊥ = (−x2, x1)T for any vector
x = (x1, x2)

T ∈ R2. With these conventions, the outwards unit normal vector to ∂Ω is given by
−y′⊥/|y′|. We can now rewrite (1.6) as

I(k) = I(k; η; Ω) :=
∫ π

−π

∫ π

−π
Ψη(θ, θξ)ϕ(ξ) e

ik ψη(θ,θξ) dθξ dθ = 0, for any η ∈ S1, (1.7)

where
ψη(θ, θξ) = (

√
q η + ξ) · y(θ) and Ψη(θ, θξ) = − (

√
q η − ξ) · y′⊥(θ). (1.8)

We aim to show that, for a wide variety of domains Ω excluding disks centered at the origin,
and for a fixed nontrivial ϕ, there exist at most finitely many wave numbers k such that Ω is
non-scattering in the presence of the incident wave H[k, ϕ]. We achieve this with a proof by
contradiction, starting with the assumption that there is a sequence of infinitely many such wave
numbers. Then, as the square of these wave numbers are transmission eigenvalues (for the problem
(1.3)) they must accumulate at ∞ (see, [3]). Consequently, we may consider the asymptotics, as
k → ∞, of the Fourier type integral I(k) in (1.7), by using the method of stationary phase. Finally
we obtain a contradiction between the asymptotics and the identity (1.7).
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For fixed η a stationary point (θ, θξ) associated with the phase function ψη is characterized by

∂ψη/∂θ = (
√
q η + ξ) · y′(θ) = 0 and ∂ψη/∂θξ = ξ⊥ · y(θ) = 0, (1.9)

or equivalently,
ξ = ±y(θ)/|y(θ)| and (

√
q η + ξ) · y′(θ) = 0. (1.10)

Let C = CΩ,η be the set of all stationary points (θ, θξ) of the phase function ψη for a fixed η. We
assume for the time being that C is a nonempty finite set and that all elements in C are simple
stationary points. The latter is satisfied if and only if detD2ψη(θ, θξ) ̸= 0 for all (θ, θξ) ∈ C, where
D2ψη denotes the Hessian

D2ψη(θ, θξ) =

[(√
q η + ξ

)
· y′′(θ) ξ⊥ · y′(θ)

ξ⊥ · y′(θ) −ξ · y(θ)

]
. (1.11)

Thanks to the periodicity of all the involved functions, the leading order contribution I(k; η; Ω), as
k → ∞, comes from the stationary points (see, [2])

I(k; η; Ω) = 2π

k

∑
(θ,θξ)∈C

ϕ(θξ)Ψη(θ, θξ)

|detD2ψη(θ, θξ)|1/2
e

iπ
4

sgnD2ψη(θ,θξ)eikψη(θ,θξ) + o
(1
k

)
, as k → ∞, (1.12)

where sgnM is the signature of a matrix M , namely, the difference between the number of positive
and negative eigenvalues of M .

In addition, we can differentiate (1.7) with respect to θη and obtain for all η ∈ S1 that

I(1)(k; η; Ω) :=

∫ π

−π

∫ π

−π

(
ik
√
qη⊥ · y(θ)Ψη(θ, θξ) +

√
qη · y

′(θ)

|y′(θ)|
)
ϕ(ξ) eik ψη(θ,θξ) dθξ dθ = 0.

Similar to (1.12), we also have the following asymptotics for I(1)(k) as k → ∞:

I(1)(k; η; Ω) = 2
√
qπi

∑
(θ,θξ)∈C

ϕ(θξ)Ψη(θ, θξ)

|detD2ψη(θ, θξ)|1/2
η⊥ · y(θ)e

iπ
4

sgnD2ψη(θ,θξ)eikψη(θ,θξ) + o (1) .

Following this idea, we can differentiate (1.7) N times and denote the resulting quantity I(N)(k).
By doing so we obtain, for each N ∈ N and η ∈ S1, that

I(N)(k; η; Ω) =
2π

k
(ik

√
q)N

∑
(θ,θξ)∈C

ϕ(θξ)Ψη(θ, θξ)

|detD2ψη(θ, θξ)|1/2
(
η⊥ · y(θ)

)N
e

iπ
4

sgnD2ψη(θ,θξ)eikψη(θ,θξ)

+ o
(
kN−1

)
, as k → ∞.

(1.13)

The main proofs of this paper are based on the analysis of the leading terms in (1.12), or
more generally, those in (1.13). For the appropriate non-circular domains we will show that they
cannot be identically zero for all η ∈ S1, which in turn contradicts the existence of infinitely many
non-scattering (Herglotz) wave numbers.

We finish this section by pointing out a simple fact that will be used later.

Lemma 1.1. Given η ∈ S1 let θ, θξ satisfy ∂ψη/∂θ = 0 as in (1.9). Then Ψη(θ, θξ) = 0 if and only
if y′(θ) = 0.

Proof. Notice from (1.8) and (1.9) that ∂ψη/∂θ = Ψη = 0 if and only if y′(θ) = 0 or (
√
q η + ξ) ·

(
√
q η−ξ) = q−1 = 0. The latter contradicts the assumption that q ̸= 1. The proof is complete.
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2 Ellipses

Up to a rotational change of coordinates (which our results are invariant under) an ellipse Ω,
centered at the origin, is given by

Ω = Ωa,b = {(x1, x2) : (x1/a)
2 + (x2/b)

2 < 1}, (2.1)

with 0 < b < a. We apply the parameterization y = (y1, y2)
T = (a cos θ, b sin θ)T for ∂Ω. Denote

s := b/a ∈ (0, 1). Then the conditions (1.9) for a stationary point (θ, θξ) ∈ C = CΩ,η read

−(
√
q η1 + ξ1) sin θ + s (

√
q η2 + ξ2) cos θ = 0 and − ξ2 cos θ + s ξ1 sin θ = 0,

which is equivalent to

√
q (η1 ξ2 − s2 η2 ξ1) + (1− s2)ξ1ξ2 = 0 and − ξ2 cos θ + s ξ1 sin θ = 0. (2.2)

The following result in proven in [10, Lemma 7].

Lemma 2.1. If s2 > 1/(1 +
√
q), then for each η ∈ S1, there are exactly two solutions θξ = Tjθη,

j = 1, 2, to the first equation of (2.2). These may be ordered to satisfy

sgn cos θη = sgn cos T1θη = − sgn cos T2θη, sgn sin θη = sgn sin T1θη = − sgn sin T2θη. (2.3)

With this ordering,

T1θη = θη if and only if T2θη = θη + π if and only if θη ∈ {0, π/2, π, 3π/2}. (2.4)

Moreover, we also have that | cos θη| ≤ |cos T1θη|, and{
| cos θη| ≤ |cos T2θη| ≤ | cos θη|/s2 if q > 1,

| cos θη| ≥ |cos T2θη| if 0 < q < 1,

where the leftmost equal signs hold if and only if θη ∈ {0, π/2, π, 3π/2}. As a consequence, we have
in total four stationary points, i.e., solutions to (2.2), given by

(Tj,sθη , Tjθη) and (Tj,sθη + π , Tjθη), j = 1, 2,

where

(cos Tj,sθη , sin Tj,sθη) =
(s cos Tjθη , sin Tjθη)√
s2 cos2 Tjθη + sin2 Tjθη

.

The following is a direct consequence of Lemma 2.1.

Corollary 2.2. Under the same assumptions and notations as in Lemma 2.1, then

Tj(θη + π) = Tjθη + π, j = 1, 2.

In addition, using ξ1 = cos Tjθη and ξ2 = sin Tjθη, we get

|η1|/|ξ1| − s2|η2|/|ξ2| = (−1)j(1− s2)/
√
q, whenever η1η2 ̸= 0.

As a consequence,
| cos T2θη| < | cos T1θη| when η1η2 ̸= 0.
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Lemma 2.3. With the same assumptions and notations as in Lemma 2.1, the mappings Tj :
R/{2π} → R/{2π},j = 1, 2, are C1 bijections, and they are locally strictly increasing2.

Proof. It can be calculated straight forwardly from (2.2) that

dTjθη
dθη

=

√
q (s2 η1 ξ1 + η2 ξ2)√

q (η1 ξ1 + s2 η2 ξ2) + (1− s2)(ξ21 − ξ22)
, (2.5)

where ξ1 = cos Tjθη and ξ2 = sin Tjθη. When θη /∈ {0, π/2, π, 3π/2}, that is when η1η2 ̸= 0 ( and
thus ξ1ξ2 ̸= 0), then (2.5) may be rewritten

dTjθη
dθη

=
s2 η1 ξ1 + η2 ξ2
η1
ξ1
ξ22 + s2 η2ξ2 ξ

2
1

, j = 1, 2. (2.6)

For θη ∈ {0, π/2, π, 3π/2} (2.5) gives

T ′
j 0 = T ′

j π =
s2
√
q

√
q + (−1)j−1(1− s2)

and T ′
j

π

2
= T ′

j

3π

2
=

√
q

s2
√
q − (−1)j−1(1− s2)

.

Applying (2.3) and the condition that s2 > 1/(1 +
√
q) we can deduce from (2.5) and (2.6) that

dTjθη/dθη > 0, for all η ∈ S1 and both j = 1, 2.

Due to the monotonicity, the surjectivity of Tj can be obtained from (2.4).

We are now ready to prove Theorem 1.

Proof of Theorem 1. We prove the result by contradiction. Let ϕ be a C1 function which is not
identically zero. Assume that there are infinitely many wave numbers kn, n ∈ N such that (1.2)
admits a solution ukn . Then, as explained before, k2n are transmission eigenvalues (for (1.3)) and
so kn must accumulate at ∞. Since e2 = 1 − s2 <

√
q/(1 +

√
q) implies that s2 > 1/(1 +

√
q)

lemmata 2.1 and 2.3 and Corollary 2.2 are all valid. Notice also that

{ψη,Ψη, D
2ψη}(θ + π, θξ) = −{ψη,Ψη, D

2ψη}(θ, θξ).

We get from (1.7) and (1.13) that, as k = kn → ∞,∑
j=1,2

ϕ(Tjθη)Ψj(θη)

|detD2ψj(θη)|1/2
[
e

iπ
4

sgnD2ψj(θη)+ikψj(θη)fNη,j − e−
iπ
4

sgnD2ψj(θη)−ikψj(θη)(−fη,j)N
]
→ 0, (2.7)

for all η ∈ S1, where

{ψj(θη),Ψj(θη), D
2ψj(θη)} = {ψη,Ψη, D

2ψη}(Tj,sθη, Tjθη),

and

fη,j =
b sin(Tjθη − θη)√

s2 cos2 Tjθη + sin2 Tjθη
.

2The monotonicity holds when we take the domain and the range of Tj to be fixed 2π-length intervals. In other
words, Tj : (t0, t0 + 2π) → (θ0 + 2κπ, θ0 + 2(κ + 1)π)) is strictly increasing for any t0 ∈ R and any κ ∈ Z, where
θ0 ∼= Tjt0 is the solution to the first equation of (2.2) as specified in Lemma 2.1.
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Here we have made use of the fact that detD2ψj(θη) ̸= 0 for j = 1, 2 and η ∈ S1 (see [10, Lemma
8]). By extraction of a subsequence (depending on θη) we may assume that

eikψj(θη) → zj(θη) as k = kn → ∞

for j = 1, 2 where |zj(θη)| = 1. From (2.7) with 0 ≤ N ≤ 3, we now conclude that
1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24
a31 a32 a33 a34



t1
t2
t3
t4

 = 0

Here a1 = −a2 = fη,1, a3 = −a4 = fη,2 and

t1 =
ϕ(T1θη)Ψ1(θη)

|detD2ψ1(θη)|1/2
e

iπ
4

sgnD2ψ1(θη)z1 , t2 = − ϕ(T1θη)Ψ1(θη)

|detD2ψ1(θη)|1/2
e

−iπ
4

sgnD2ψ1(θη)z−1
1

t3 =
ϕ(T2θη)Ψ2(θη)

|detD2ψ2(θη)|1/2
e

iπ
4

sgnD2ψ2(θη)z2 , t4 = − ϕ(T2θη)Ψ2(θη)

|detD2ψ2(θη)|1/2
e−

iπ
4

sgnD2ψ2(θη)z−1
2 .

We notice that fη,j = 0 if and only if η1η2 = 0. When η1η2 ̸= 0 and |fη,1| ≠ |fη,2| the above
Vandermonde matrix is invertible, and thus t1 = t2 = t3 = t4 = 0, in other words one possibility
for η1η2 ̸= 0 is

|fη,1| ≠ |fη,2| and ϕ(T1θη)Ψ1(θη) = ϕ(T2θη)Ψ2(θη) = 0, (2.8)

When |fη,1| = |fη,2| and η1η2 ̸= 0 the above Vandermonde matrix is not invertible (has rank 2)
and we get t1 + t3 = t2 + t4 = 0 or t1 + t4 = t2 + t3 = 0. In either case the alternative to (2.8) for
η1η2 ̸= 0 becomes

|fη,1| = |fη,2| and
|ϕ(T1θη)| |Ψ1(θη)|
|detD2ψ1(θη)|1/2

=
|ϕ(T2θη)| |Ψ2(θη)|
|detD2ψ2(θη)|1/2

,

The last statement can be rearranged as |fη,1| = |fη,2| and

|ϕ(T2θη)|2 = G(θη)|ϕ(T1θη)|2 with G(θη) =
∣∣detD2ψ2(θη)

∣∣
|detD2ψ1(θη)|

Ψ1(θη)
2

Ψ2(θη)2
. (2.9)

Here we used that Ψj(θη) ̸= 0 for any θη. This follows immediately from Lemma 1.1 since
y′(θ) = a(− sin θ, s cos θ) ̸= 0 for any θ. Based on (2.8) and (2.9), and the fact that Ψj(θη) ̸= 0 for
any θη, we conclude that in both cases, whether |fη,1| ≠ |fη,2| or |fη,1| = |fη,2|, one has

|ϕ(T2θη)|2 = G(θη)|ϕ(T1θη)|2 with G(θη) =
∣∣detD2ψ2(θη)

∣∣
|detD2ψ1(θη)|

Ψ1(θη)
2

Ψ2(θη)2
. (2.10)

Moreover, due to the continuity of ϕ, G, and Tj , we infer that (2.10) holds for all θη, and not
just when η1η2 ̸= 0. The argument used to arrive at (2.8) (2.9) will be developed further in Section
3 where we study more general star-shaped domains (see Lemma 3.4 and Corollary 3.5)).

We obtain by direct calculations that

G(0) = G(π) =
√
q − 1 + s2

√
q + 1− s2

(
√
q − 1)2

(
√
q + 1)2

< 1.

9



Then by continuity we have that

G(θη) < 1, for j = 1, 2 and θη ∈ (−t1, t1) ∪ (π − t1, π + t1), (2.11)

with some t1 ∈ (0, π/2). In addition, we obtain from (2.10) with θη = 0, π that ϕ(0) = ϕ(π) = 0;
otherwise

|ϕ(π)|2 = G(0)|ϕ(0)|2 = G(0)G(π)|ϕ(π)|2 < |ϕ(π)|2,

and similarly for ϕ(0), which is a contradiction. From Lemma 2.1 and Corollary 2.2 we get

T1(0, π/2) = T2(π, 3π/2) = (0, π/2), T1(π, 3π/2) = T2(0, π/2) = (π, 3π/2), (2.12)

and

T1t < t and T1(t+ π)− π = T1t < T2t− π = T2(t+ π), for all t ∈ (0, π/2). (2.13)

Next we show that ϕ = 0 in (0, T1t1) ⊂ (0, t1) ⊂ (0, π/2). If not, then we can find t2 ∈ (0, t1]
such that

|ϕ(T1t2)| = ∥ϕ∥C0[0,T1t1] > 0 and |ϕ(t)| < |ϕ(T1t2)| for all t ∈ (0, T1t2). (2.14)

Denote T0 = T −1
2 T1. We observe from (2.12), (2.13) and Lemma 2.3 that T0 : (0, π/2) → (π, 3π/2)

and T0 : (π, 3π/2) → (0, π/2) are both increasing bijections. Moreover,

π < T0t < t+ π and 0 < T 2
0 t < T0(t+ π) < t, for all t ∈ (0, π/2). (2.15)

Then we can apply (2.10) and (2.11) for θη = T −1
2 T1t2 = T0t2 ∈ (π, π + t2) and for θη = T 2

0 t2 ∈
(0, t2), which yields

|ϕ(T1t2)|2 = G(T0t2)|ϕ(T1T0t2)|2 = G(T0t2)G(T 2
0 t2)|ϕ(T1T 2

0 t2)|2 < |ϕ(T1T 2
0 t2)|2.

However, it contradicts (2.14) since 0 < T1T 2
0 t2 < T1t2 by (2.15).

We can now prove ϕ = 0 in (0, π/2). Since ϕ = 0 in (0, T1t1), we obtain from (2.10) that ϕ = 0 in
(π, T2t1). We can apply (2.10) for θη ∈ (π, T −1

1 T2t1) to obtain ϕ = 0 in (0, T2T −1
1 T2t1) = (0, T1T̃ 2

0 t1),

where T̃0 := T −1
1 T2. With an argument of induction, we can now show that

ϕ = 0 in (0, T1T̃ 2m
0 t1), for any m ∈ N.

From (2.15) it follows that that t < T̃ 2
0 t < π/2 for all t ∈ (0, π/2). As a consequence,

{T1T̃ 2m
0 t1}m∈N is a strictly increasing sequence in (0, π/2). Therefore it has a limit in (0, π/2]

as m → ∞, denoted as t0. In fact we must have t0 = π/2; otherwise T −1
1 t0 = T̃ 2

0 T
−)
1 t0 > T −1

1 t0.
Therefore, we have deduced that ϕ = 0 in (0, π/2).

Applying (2.8) or (2.10) again for θη ∈ (0, π/2) yields ϕ = 0 in (π, 3π/2). Using analogous
arguments we can also deduce that ϕ = 0 in (π/2, π) ∪ (3π/2, 2π). In particular, we need to make
use of the properties

T1(π/2, π) = T2(3π/2, 2π) = (π/2, π), T1(3π/2, 2π) = T2(π/2, π) = (3π/2, 2π),

and

T1t > t and T1(t+ π)− π = T1t > T2t− π = T2(t+ π), for all t ∈ (π/2, π),

which can be obtained from Lemma 2.1 and Corollary 2.2.
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3 Star-Shaped Domains

Let Ω be a C2 domain that is star-shaped with respect to the origin and with a radius function ρ.
In other words ∂Ω = {y(θ) := ρ(θ)θ⃗; θ ∈ [0, 2π)}. Then

y′ = (ρ′nθ⃗ + θ⃗⊥)ρ and y′′ =
(
(ρ′2n − 1 + ρ′′n)θ⃗ + 2ρ′nθ⃗

⊥)ρ, where ρn := ln ρ.

Recall that (θ, θξ) belongs to the set of stationary points C = CΩ,η (of ψη) if and only if (1.10) is
satisfied, or equivalently, for l = 1 or 2,

ξ = (−1)l−1 θ⃗ and
(
θ⃗ · ηl

√
q + 1

)
ρ′n(θ) = −θ⃗⊥ · ηl

√
q, with ηl := (−1)l−1η. (3.1)

Notice that θ that satisfies θ⃗ · ηl
√
q+1 = 0 can never be a solution to (3.1), since q ̸= 1. Therefore

the second condition in (3.1) for stationary points can equivalently be written as

ρ′n(θ) = h(θ − θηl) =

√
q sin(θ − θηl)√

q cos(θ − θηl) + 1
, (3.2)

where h is given by

h(θ) =

√
q sin θ

√
q cos θ + 1

. (3.3)

Applying (3.1) we have for every (θ, θξ) ∈ CΩ,η with ξ = (−1)l−1θ⃗ that

−y
′(θ)⊥

ρ(θ)
= θ⃗ − θ⃗⊥ρ′n(θ) =

(θ⃗ · ηl
√
q + 1)θ⃗ +

(
θ⃗⊥ · ηl

)
θ⃗⊥

√
q

θ⃗ · ηl
√
q + 1

=
ηl
√
q + θ⃗

θ⃗ · ηl
√
q + 1

,

and thus, recalling (1.8) and (1.11), we obtain by straightforward calculations that

Ψη(θ, θξ)

ρ(θ)
=

(−1)l−1(q − 1)

θ⃗ · ηl
√
q + 1

=
(q − 1)ρ(θ)

ψη(θ, θξ)
, (3.4)

(D2ψη)(θ, θξ) = −(−1)l−1ρ(θ)

[(
1 + ρ′2n − ρ′′n

)
|θ(θ⃗ · ηl

√
q + 1) −1

−1 1

]
. (3.5)

3.1 The Stationary Points for q > 1

We consider the case when q > 1 and ρ satisfies (1.5). Recall the function h as defined in (3.3).
Then

h′(θ) =

√
q(
√
q + cos θ)(√

q cos θ + 1
)2 ≥

√
q

1 +
√
q
> 0 for all θ. (3.6)

Hence h has the range (−∞,∞), and monotonically increases on both the intervals (θq −π, π− θq)
and (π − θq, θq + π), where θq = arccos(1/

√
q) ∈ (0, π/2). Therefore, we have

Lemma 3.1. Suppose that q > 1 and ρ is a C2 function satisfying (1.5). Then for each η ∈ S1 and
each l ∈ {1, 2}, there are exactly two solutions T1,lη and T2,lη to (3.2), which satisfy T1,lη − θηl ∈
(θq − π, π − θq) and T2,lη − θηl ∈ (π − θq, θq + π).
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Figure 2: Graphs of h and h′ with q = 9.

We note that3

Tj,lη̃ = Tj,l+1η, for η̃ = −η, η ∈ S1, and j, l = 1, 2, (3.7)

and

(−1)j−1 (
√
q cos(Tj,lη − θηl) + 1) > 0 and sgn sin(Tj,lη − θηl) = (−1)j−1 sgn ρ′(Tj,lη). (3.8)

Notice that (3.2) implies q(g2 + 1)t2 + 2
√
qg2t+ g2 − q = 0, where t = cos(θ − θηl) and g = ρ′n(θ).

Thanks to (3.8) we derive that

√
q cos(Tj,lη − θηl) =

−ρ′2n − (−1)j
√
q + (q − 1)ρ′2n

1 + ρ′2n

∣∣∣
Tj,lη

, (3.9)

and
√
q sin(Tj,lη − θηl) = ρ′n

1− (−1)j
√
q + (q − 1)ρ′2n

1 + ρ′2n

∣∣∣
Tj,lη

. (3.10)

As a consequence, for each j, l = 1, 2 we have

Tj,l−1+jη = θηl if and only if ρ′(θηl) = 0. (3.11)

We can regard the solutions Tj,lη, j = 1, 2, to (3.2) as maps Tj,l : S1 → R/{2π}. When there is no
ambiguity, we shall sometimes consider the domain of Tj,l as R/{2π} by identifying θηl with ηl, or

refer to the range fo Tj,l as S1 by identifying θ⃗ with θ.

Lemma 3.2. Under the same assumptions and notations as in Lemma 3.1, for each j, l = 1, 2,
Tj,l : S1 → S1 is a bijection and Tj,l : R/{2π} → R/{2π} is C1 and locally strictly increasing4.

Proof. Given j, l = 1, 2, we first deduce from (3.6) and (3.9) that

(
√
q cos t+ 1)h′(t) = (−1)j−1

√
q + (q − 1)ρ′2n (θ), (3.12)

where θ = θ(η) = Tj,lη and t = θ − θηl . Differentiating (3.2) with respect to θη and applying (3.6)
we arrive at

ρ′′n(θ)θ
′ =

√
q(θ′ − 1)

√
q + cos(θ − θηl)(√
q cos(θ − θηl) + 1

)2 = (θ′ − 1)h′(θ),

where θ′ := ∂θ/∂θη = ∂Tj,lη/∂θη. Hence by (3.12) we have

∂θ

∂θη
=

h′(θ)

h′(θ)− ρ′′n(θ)
=

√
q + (q − 1)ρ′2n (θ)√

q + (q − 1)ρ′2n (θ) + (−1)j
(√
q cos t+ 1

)
ρ′′n(θ)

. (3.13)

3For indices in {1, 2}, addition is performed modulo 2.
4The monotonicity holds when we take the domain and the range of Tj,l to be fixed 2π-length intervals. In other

words, Tj,l : (t0, t0 + 2π) → (θ0 + 2κπ, θ0 + 2(κ + 1)π)) is strictly increasing for any t0 ∈ R and any κ ∈ Z, where
θ0 ∼= Tj,lt0 is the solution to (3.2) as specified in Lemma 3.1. The same applies to the regularity.
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Figure 3: Graphs of h and hπ when q = 9.

From (3.8) it follows that 0 > (−1)j
(√
q cos t+ 1

)
> −(

√
q + 1). Then, recalling the admissibility

condition (1.5) on ρ, we deduce√
q + (q − 1)ρ′2n (θ) + (−1)j (

√
q cos t+ 1) ρ′′n(θ) >

√
q + (q − 1)ρ′2n (θ)−

√
q ≥ 0.

Consequently, ∂θ/∂θη > 0, and Tj,lη, j, l = 1, 2, are strictly increasing C1 functions of θη. Thanks
to the monotonicity, the bijectivity will follow if Tj,l is surjective on S1. In fact given j, l = 1, 2, and

θ⃗ ∈ S1, the equations (3.9) and (3.10), with Tj,lη replaced by θ, uniquely determine a θηl ∈ R/{2π}
and hence a unique η ∈ S1. The proof is complete.

Lemma 3.3. Under the same assumptions and notations as in Lemma 3.1, we have for each η ∈ S1
and each l = 1, 2 that

sgn ρ′(T1,lη) = (−1)l−1 sgn sin(T1,lη − θη) = (−1)l−1 sgn sin(T2,l+1η − θη) = sgn ρ′(T2,l+1η).

Moreover, for each l = 1, 2 and every η ∈ S1 such that ρ′(θηl) ̸= 0, we must have 0 < |T2,l+1η−θηl | <
|T1,lη − θηl | < π − θq, and

ρ(T2,l+1η) < ρ(T1,lη) and 0 < | sin(T2,l+1η − θη)| < | sin(T1,lη − θη)|.

Proof. We first observe that θ = T1,1η is the unique solution to ρ′n(θ) = h(θ − θη) with θ − θη ∈
(θq−π, π−θq), and θ = T2,2η is the unique solution to ρ′n(θ) = hπ(θ−θη) with θ−θη ∈ (−θq, θq) ⊂
(θq −π, π− θq). Here, hπ(θ) = h(θ−π). It can be verified straightforwardly that hπ monotonically
increases in (−θq, θq) and that

0 < |h(θ)| < |hπ(θ)|, for all θ ∈ (−θq, θq)\{0}.

(i) If ρ′(T2,2η) = 0, then hπ(T2,2η− θη) = 0 and hence T2,2η = θη. Consequently ρ
′(θη) = 0 and

T1,1η = θη.
(ii) In the case when ρ′(T2,2η) > 0, we first observe from (3.8) that T2,2η − θη ∈ (0, θq).

We claim that 0 < T2,2η − θη < T1,1η − θη < π − θq, and hence ρ′(T1,1η) > 0. Otherwise if
θq − π < T1,1η − θη ≤ T2,2η − θη < θq, and then

ρ′n(T2,2η)− ρ′n(T1,1η) = hπ(T2,2η − θη)− h(T1,1η − θη) > h(T2,2η − θη)− h(T1,1η − θη) ≥ 0.

Hence T1,1η ̸= T2,2η and, by the mean value theorem again, there exist t1, t2 ∈ (T1,1η, T2,2η) such
that

ρ′′n(t1) > h′(t2 − θη) ≥
√
q/(1 +

√
q),

which contradicts (1.5). Now 0 < sin(T2,2η − θη) < sin(T1,1η − θη) follows by noticing that either
0 < T2,2η − θη < T1,1η − θη ≤ π/2 or 0 < T2,2η − θη < θq < π/2 < T1,1η − θη < π − θq holds. Next,
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assume that ρ(T2,2η) ≥ ρ(T1,1η), and hence there exists t1 ∈ (T2,2η, T1,1η) such that ρ′(t1) ≤ 0.
Thus

ρ′n(T1,1η)− ρ′n(t1) ≥ h(T1,1η − θη) > h(T1,1η − θη)− h(t1 − θη),

where in the latter inequality we utilized the properties t1−θη ∈ (T1,1η−θη, T2,2η−θη) ⊂ (0, π−θη)
and h > 0 on (0, π − θη). Consequently there exist t2, t3 ∈ (t1, T1,1η) such that

ρ′′n(t2) > h′(t3 − θη) ≥
√
q/(1 +

√
q),

which again contradicts (1.5). Therefore ρ(T2,2η) < ρ(T1,1η).
(iii) By analogous arguments we can show that ρ′(T2,2η) < 0 implies T2,2η − θη ∈ (−θq, 0),

0 > T2,2η − θη > T1,1η − θη > θq − π, ρ′(T1,1η) < 0, 0 > sin(T2,2η − θη) > sin(T1,1η − θη), and
ρ(T2,2η) < ρ(T1,1η).

This verifies the statements of the lemma for l = 1, the statements for l = 2 can be proven
analogously by identifying T1,2η as the unique solution to ρ′n(θ) = h(θ − θη2) with θ − θη2 ∈
(θq − π, π − θq), and T2,1η the unique solution to ρ′n(θ) = hπ(θ − θη2) with θ − θη2 ∈ (−θq, θq).

3.2 The Asymptotics for q > 1

We shall prove Theorem 5 by contradiction. To that end, assume that there are infinitely many kn’s
such that (1.3) admits a solution (ukn , vkn) with vkn = H[kn, ϕ] for a given nontrivial C1 function
ϕ. Then the principal term of I(N)(k), given by (1.13) , will tend to 0 as k = kn → ∞, for all
η ∈ S1 and all N ∈ N.

We observe from (3.4), (3.5) and (3.8) that

sgnΨj,l
η = sgnψj,lη = (−1)l+j and sgnTrD2ψ1,l

η = −(−1)l−1 (3.14)

where [
Ψj,l
η , ψ

j,l
η , D

2ψj,lη
]
=

[
Ψη, ψη, D

2ψη
]
(Tj,lη , Tj,lη + δl,2π), j, l = 1, 2. (3.15)

Applying (3.9) to (3.5) yields

(−1)j−1 det(D2ψη)(θ, θξ) =
(√

q + (q − 1)ρ′2n + (−1)j(θ⃗ · ηl
√
q + 1)ρ′′n

)
|θρ2(θ),

with θ = Tj,lη and ξ = (−1)l−1θ⃗. Combining this with (1.5), (3.8) and (3.14) we derive that

sgn detD2ψj,lη = (−1)j−1 and sgnD2ψj,lη = (−1)l − (−1)l+j . (3.16)

Applying Lemma 3.1 to the principal term of (1.13) we now obtain

2∑
j,l=1

(
f j,lη

)N ϕ(Tj,lη + δl,2π)Ψ
j,l
η∣∣detD2ψj,l

η

∣∣1/2 eiπ
(−1)l(1−(−1)j)

4
+ikψj,l

η → 0, for all η ∈ S1 and N ∈ N, (3.17)

as k = kn → ∞. Here
f j,lη = ρ(Tj,lη) sin(Tj,lη − θη), j, l = 1, 2. (3.18)

For each η ∈ S1, denote

Λ = Λη = {(j, l);ϕ(Tj,lη + δl,2π) ̸= 0, j, l = 1, 2}. (3.19)
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Then∑
(j,l)∈Λ

(
f j,lη

)N ϕ(Tj,lη + δl,2π)Ψ
j,l
η∣∣detD2ψj,lη

∣∣1/2 eiπ
(−1)l(1−(−1)j)

4
+ikψj,l

η → 0, for all η ∈ S1 and N ∈ N, (3.20)

as k = kn → ∞. We have the following result depending on #Λ, the number of elements in the set
Λ.

Lemma 3.4. Under the same assumptions and notations as in Lemma 3.1, suppose that (3.17)
holds true. Then #Λ ∈ {0, 2, 3, 4} with the following additional properties satisfied.

If #Λ ∈ {2, 3}, then f j,lη take the same value for all (j, l) ∈ Λ.

If #Λ = 4, then either f j,lη take the same value for all (j, l) ∈ Λ, or Λ = Λ1 ∪ Λ2 where for

each p = 1, 2, #Λp = 2 and f j,lη take the same value for all (j, l) ∈ Λp. In the latter case, (3.20) is
satisfied for each Λp (with Λ replaced by Λp), p = 1, 2.

Proof. Recall from Lemma 1.1 that Ψj,l
η ̸= 0, j, l = 1, 2. Consider now the case #Λ = 4, and let

tι, aι denote

tι(k) =
ϕ(Tjι,lιη + δlι,2π)Ψ

jι,lι
η∣∣detD2ψjι,lι

η

∣∣1/2 eiπ
(−1)lι (1−(−1)jι )

4
+ikψjι,lι

η ̸= 0 and aι = f jι,lιη , for ι = 1, . . . , 4,

with ∪4
ι=1{(jι, lι)} = Λ. After extraction of a subsequence we may assume that

tι(k) → zι ̸= 0 as k → ∞ .

Applying (3.17) with N = 0, 1, 2, 3 we obtain that
1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24
a31 a32 a33 a34



z1
z2
z3
z4

 = 0 .

By direct algebraic operations, on the 4-by-4 Vandermonde coefficient matrix, we obtain that either
a1 = a2 = a3 = a4 and z1 + z2 + z3 + z4 = 0, or, up to a swap of notations, a1 = a2 ̸= a3 = a4 and
z1 + z2 = 0 and z3 + z4 = 0. The fact that (3.20) holds for each Λp follows immediately from this
latter statement. By similar arguments we can verify the cases when #Λ = 2 or 3, as well as show
that #Λ ̸= 1.

The following results are consequences of Lemmas 3.3 and 3.4.

Corollary 3.5. Under the same assumptions and notations as in Lemma 3.4, let η ∈ S1 satisfy
ρ′(θη)ρ

′(θη + π) ̸= 0. Then #Λ ∈ {0, 2, 4}. Moreover, if #Λ = 4 then

f j,1η = f j,2η and
|ϕ(Tj,1η)|

∣∣Ψj,1
η

∣∣∣∣ detD2ψj,1η
∣∣1/2 =

|ϕ(Tj,2η + π)|
∣∣Ψj,2

η

∣∣∣∣ detD2ψj,2η
∣∣1/2 , j = 1, 2.

If #Λ = 2 then Λ = {(j1, l1), (j2, l2)} ≠ {(j, 1), (j + 1, 2)}, j = 1, 2, and

f j1,l1η = f j2,l2η and
|ϕ(Tj1,l1η + δl1,2π)|

∣∣Ψj1,l1
η

∣∣∣∣detD2ψj1,l1η

∣∣1/2 =
|ϕ(Tj2,l2η + δl2,2π)|

∣∣Ψj2,l2
η

∣∣∣∣ detD2ψj2,l2η

∣∣1/2 .
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Proof. Recall from Lemma 3.3 that

|f2,1η | < |f1,2η | and |f2,2η | < |f1,1η |. (3.21)

Then we immediately infer from Lemma 3.4 that #Λ ̸= 3, which require three of the f j,lη ’s coincide.

If #Λ = 4, by Lemma 3.4, we must have f j1,l1η = f j2,l2η and f j3,l3η = f j4,l4η for some {(jι, lι); ι =
1, 2, 3, 4} = {(1, 1), (1, 2), (2, 1), (2, 2)}. In view of (3.21) we then must have f1,1η = f1,2η and
f2,2η = f2,1η . Moreover, notice that

ϕ(Tj,lη + δl,2π)Ψ
j,l
η∣∣detD2ψj,l

η

∣∣1/2 is independent of k, and
∣∣eiπ (−1)l(1−(−1)j)

4
+ikψj,l

η
∣∣ = 1,

Then we deduce from (3.20) for each Λj that

|ϕ(Tj,1η)|
∣∣Ψj,1

η

∣∣∣∣ detD2ψj,1η
∣∣1/2 =

|ϕ(Tj,2η + π)|
∣∣Ψj,2

η

∣∣∣∣ detD2ψj,2η
∣∣1/2 , j = 1, 2.

The case when #Λ = 2 can be shown similarly.

Corollary 3.6. Under the same assumptions and notations as in Lemma 3.4, suppose η ∈ S1
satisfies ρ′(θη + π) = 0 ̸= ρ′(θη). Then ϕ(T1,1η) = ϕ(T2,2η+ π) = 0. Moreover, ϕ(θη) and ϕ(θη + π)
are either both zero or both nonzero.

Proof. Since ρ′(θη+π) = 0 ̸= ρ′(θη), by (3.11) we have T2,1η = T1,2η = θη+π, and so f1,2η = f2,1η = 0.

By Lemma 3.3, 0 < |f2,2η | < |f1,1η |. Consequently we obtain from Lemma 3.4 that #Λ ∈ {0, 2}.
Moreover, if #Λ = 0 then ϕ(T1,1η) = ϕ(T2,2η + π) = ϕ(θη) = ϕ(θη + π) = 0. If #Λ = 2 then
ϕ(T1,1η) = ϕ(T2,2η + π) = 0, ϕ(θη)ϕ(θη + π) ̸= 0.

3.3 Proofs of Theorems 4, 5 and 6

We start these proofs in the same way as that of Theorem 1, by assuming the opposite, namely
that there are infinitely many wave numbers kn, n ∈ N, for which (1.3) (λ = k2n) admits a solution
(ukn , vkn) with vkn = H[kn, ϕ]. Then kn → ∞ and consequently, the asymptotics (3.17) as well as
Corollaries 3.5 and 3.6 are valid. Moreover, all the results established in Section 3.1 hold true. In
each case we then show that this leads to a contradiction.

3.3.1 Proof of Theorem 4

Given the assumptions of Theorem 4 there exists some open interval where ρ′ has one sign, say
ρ′ > 0. We may assume, up to a rotational change of coordinates, that

ρ′ > 0 in (0, τ) and ρ′(0) = ρ′(τ) = 0. (3.22)

Then, from (3.11) and the assumptions of Theorem 4,

T1,1(0, τ) = T2,2(0, τ) = (0, τ), and ρ′ = 0 in (π, π + τ).

Hence by Corollary 3.6 it follows that

ϕ = 0 in T1,1(0, τ) ∪ (T2,2(0, τ) + π) = (0, τ) ∪ (π, τ + π).

Applying this argument to all connected components of the set {ρ′ ̸= 0} we obtain that

ϕ = 0 in N ∪ (N + π) = [0, 2π),

which contradicts the assumption that ϕ is nontrivial. The proof is complete.
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3.3.2 Proof of Theorem 6

Similar to before, we assume without loss of generality that (3.22) holds for some τ > 0. As a
consequence, ρ′′(0) ≥ 0 ≥ ρ′′(τ). Notice that

T1,1(0, τ) = T2,2(0, τ) = (0, τ).

Then by Lemmas 3.2 and 3.3 we obtain for all t ∈ (0, τ) that

0 < sin(T2,2t− t) < sin(T1,1t− t),

0 < T2,2t− t < T1,1t− t < π − θq and 0 < T −1
1,1 t < T −1

2,2 t < t < τ. (3.23)

Furthermore, since ϕ is a nontrivial 2π-periodic real-analytic function, we derive from Corollar-
ies 3.5 and 3.6 that, for all t ∈ (0, τ) ∪ (π, τ + π) except for a possible finite set of points,

ρ′(t+ π)ϕ(T1,1t)ϕ(T2,1t)ϕ(T1,2t+ π)ϕ(T2,2t+ π) ̸= 0,

and

ρ(T1,1t) sin(T1,1t− t) = ρ(T1,2t) sin(T1,2t− t) and |ϕ(T1,1t)|2 = G11,12(t)|ϕ(T1,2t− π)|2, (3.24)

ρ(T2,2t) sin(T2,2t− t) = ρ(T2,1t) sin(T2,1t− t) and |ϕ(T2,2t+ π)|2 = G22,21(t)|ϕ(T2,1t)|2, (3.25)

where

Gj1l1,j2l2(t) =
∣∣ detD2ψj1,l1t

∣∣∣∣ detD2ψj2,l2t

∣∣
∣∣Ψj2,l2

t

∣∣2∣∣Ψj1,l1
t

∣∣2 , j1, j2, l1, l2 = 1, 2. (3.26)

By continuity we then observe that (3.24) and (3.25) are satisfied for all t ∈ [0, τ ]. As a consequence,
T1,20 = T2,10 = π, T1,2τ = T2,1τ = τ+π and sin(T1,2t−t) > 0 for all t ∈ (0, τ). Hence by Lemma 3.3
we have that ρ′ < 0 in (π, τ + π) and thus ρ′′(π) ≤ 0 ≤ ρ′′(τ + π). Moreover, for all t ∈ (0, τ) we
have

t+ θq < T1,2t < t+ π and 0 < sin(T2,1t− t) < sin(T1,2t− t). (3.27)

In particular, we have shown that (3.22) implies

ρ′ < 0 in (π, τ + π) and ρ′(π) = ρ′(τ + π) = 0, (3.28)

provided that there are infinitely many wave numbers kn, n ∈ N, with which (1.3) admits a solution
(ukn , vkn) where vkn = H[kn, ϕ]. In fact, by analogous arguments we can show that (3.22) and (3.28)
are equivalent. Therefore, we have completed the proof of Theorem 6 in Case (i) (recall:q > 1).
Direct calculation yields

0 < G11,12(0) =

√
q −

(√
q + 1

)
ρ′′n(0)√

q −
(√
q + 1

)
ρ′′n(π)

.

In Case (ii) of Theorem 6, since we already have ρ′(0) = ρ′(π) = 0, then ρ′′(0) and ρ′′(π) cannot
both be zero. Therefore ρ′′(0) > ρ′′(π) and hence G11,12(0) < 1. Then, in view of (3.24), we must
have ϕ(0) = 0. In addition, by continuity we also have G11,12 < 1 in (0, t1) for some t1 ∈ (0, τ).
Since ϕ is real analytic and nontrivial there exists t2 ∈ (0, t1) such that

|ϕ(t2)| = ∥ϕ∥C0[0,t1] > 0 and |ϕ(t)| < |ϕ(t2)| for all t ∈ (0, t2). (3.29)
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Then we can apply (3.24) for t = T −1
1,1 t2 ∈ (0, t2) and for t = T −1

1,1 T0t2 ∈ (0, t2) where T0 =

T1,2T −1
1,1 − π5, which yields

|ϕ(t2)|2 = G(T −1
1,1 t2)|ϕ(T0t2)|

2 = G(T −1
1,1 t2)G(T

−1
1,1 T0t2)|ϕ(T

2
0 t2)|2 < |ϕ(T 2

0 t2)|2.

However, this contradicts (3.29) because by (3.23) and (3.27) we have 0 < T0t = T1,2T −1
1,1 t−π <

T −1
1,1 t < t for all t ∈ (0, τ) and hence 0 < T 2

0 t2 < t2. The proof is complete.

3.3.3 Proof of Theorem 5

For either Case (i) or Case (ii) in Theorem 5 we have that ρ′(t) = 0 implies ρ′(t+π) = 0. Let ω be
a connected component of the set {θ : ρ′(θ) > 0}. We may without loss of generality assume that
ω = (0, τ) with τ ∈ (0, π]. Then

ρ′ > 0 in (0, τ) and ρ′(0) = ρ′(τ) = 0 and (3.30)

T1,1(0, τ) = T2,2(0, τ) = (0, τ) = T1,2(π, τ + π) = T2,1(π, τ + π).

In addition, we also have that ρ′(π) = ρ′(τ + π) = 0 and ρ′(t+ π) ̸= 0 for t ∈ (0, τ). Hence

T1,2(0, τ) = T2,1(0, τ) = (π, τ + π) = T1,1(π, τ + π) = T2,2(π, τ + π).

Moreover, by Lemmas 3.2 and 3.3 we obtain for all t ∈ (0, τ) that

0 < sin(T2,2t− t) < sin(T1,1t− t) and t < T2,2t < T1,1t < t+ π − θq. (3.31)

We first prove that
ϕ = 0 in (0, τ). (3.32)

Assume otherwise, namely
ϕ(τ0) ̸= 0 for some τ0 ∈ (0, τ).

Then we can find t1, t2 such that

ϕ(t) ̸= 0 for t ∈ (t2, t1), with 0 ≤ t2 < τ0 < t1 ≤ τ , (3.33)

and that for each ι = 1, 2, either ϕ(tι) = 0 or tι ∈ {0, τ}. Notice from (3.33) that ϕ◦T1,1 is nowhere
zero on T −1

1,1 (t2, t1) ⊆ (0, τ). Then #Λt ≥ 1 for t ∈ T −1
1,1 (t2, t1). Hence by Corollary 3.5 we must

have #Λt = 2 or 4. Moreover, if #Λt = 4, then ϕ(Tj,1t)ϕ(Tj,2t + π) ̸= 0 and f j,1t = f j,2t , for both

j = 1, 2, where f j,lt is defined in (3.18). Otherwise if #Λt = 2, then ϕ(T2,2t + π) = 0, and either,

ϕ(T2,1t) = 0 ̸= ϕ(T1,2t − π) and f1,1t = f1,2t , or, ϕ(T1,2t − π) = 0 ̸= ϕ(T2,1t) and f1,1t = f2,1t . As a
conclusion, whether #Λt = 2 or 4, one of the following must hold true for each t ∈ T −1

1,1 (t2, t1):

ρ(T1,1t) sin(T1,1t− t) = ρ(T1,2t) sin(T1,2t− t) and |ϕ(T1,1t)|2 = G11,12(t)|ϕ(T1,2t− π)|2, (3.34)

or

ρ(T1,1t) sin(T1,1t− t) = ρ(T2,1t) sin(T2,1t− t) and |ϕ(T1,1t)|2 = G11,21(t)|ϕ(T2,1t)|2. (3.35)

Combining with (3.31) we infer that sin(T1,2t − t) or sin(T2,1t − t) must be positive, and hence
by Lemma 3.3 ρ′(T1,2t) < 0 or equivalently ρ′(T2,1t) < 0, for t ∈ T −1

1,1 (t2, t1) ⊂ (0, τ). Since ρ′

5Hereafter, as an operator, ±π is understood as ±π : t 7→ t± π.
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is nowhere zero in (π, π + τ), we must have ρ′ < 0 in (π, τ + π). For Case (i), this represents
a contradiction to sgn ρ′(t) = sgn ρ′(t + π), and so in this case (3.32) is proven. We proceed to
establish (3.32) in Case (ii). Since ρ′ < 0 in (π, τ +π) a combination of Lemma 3.3 and (3.31) gives
that for all t ∈ (0, τ)

0 < sin(T2,1t− t) < sin(T1,2t− t) and t+ θq < T1,2t < T2,1t < t+ π

and for all t ∈ (0, τ), j = 1, 2

T1,2t− π < T2,1t− π < t < T2,2t < T1,1t, 0 < T1,2T −1
j,j t− π < t, 0 < T2,1T −1

j,j t− π < t. (3.36)

The following two auxiliary results will be needed.

Lemma 3.7. Suppose that ϕ is nowhere zero in (t2, t1) ⊂ (0, τ). Then ϕ is either nowhere zero in
T1,2T −1

1,1 (t2, t1)− π, or identically zero in T1,2T −1
1,1 (t2, t1)− π and nowhere zero in T2,1T −1

1,1 (t2, t1).
Similarly if ϕ is nowhere zero in (t′2 + π, t′1 + π) ⊂ (π, τ + π), then ϕ is either nowhere zero in

T2,1T −1
2,2 (t

′
2, t

′
1), or identically zero in T2,1T −1

2,2 (t
′
2, t

′
1) and nowhere zero in T1,2T −1

2,2 (t
′
2, t

′
1)− π.

Proof. We first consider the case when ϕ is nowhere zero in (t2, t1). Assume that ϕ is neither
nowhere zero or identically zero in T1,2T −1

1,1 (t2, t1) − π. Then there exists t12 ∈ (t2, t1) and ε1 ̸= 0
such that

ϕ(T1,2T −1
1,1 t12 − π) = 0 and ϕ(T1,2t− π) ̸= 0 for all t ∈ T −1

1,1 (t12, t12 + ε1). (3.37)

Here, we allow ε1 being either positive or negative, and in the latter case the interval (t12, t12 + ε1)
is understood as (t12 + ε1, t12). Recall that one of the relations (3.34) and (3.35) must be valid at
t = T −1

1,1 t12, while the case (3.34) contradicts the assumption ϕ(T1,2T −1
1,1 t12 − π) = 0. Hence (3.35)

must hold true for t = T −1
1,1 t12. As a consequence, we have ϕ(T2,1T −1

1,1 t12) ̸= 0 and thus

ϕ(T2,1t) ̸= 0 for all t ∈ T −1
1,1 (t12 − ε2, t12 + ε2),

with some constant ε2 ̸= 0. Therefore, there exists a constant ε ̸= 0 such that

ϕ(T1,1t)ϕ(T1,2t− π)ϕ(T2,1t) ̸= 0 for all t ∈ T −1
1,1 (t12, t12 + ε).

Applying Corollary 3.5 we then derive that #Λt = 4 and (3.34) (as well as (3.25)) must hold for
all t ∈ T −1

1,1 (t12, t12 + ε). Thus by continuity (3.34) is valid for t = T −1
1,1 t12, which implies that

ϕ(T1,2T −1
1,1 t12 − π) ̸= 0, contradicting (3.37).

If ϕ = 0 in T1,2T −1
1,1 (t2, t1)− π, then ϕ(T1,1t) ̸= 0 = ϕ(T1,2t− π) for all t ∈ T −1

1,1 (t2, t1). Hence by

Corollary 3.5 we must have ϕ(T2,1t) ̸= 0 = ϕ(T2,2t+ π) for all t ∈ T −1
1,1 (t2, t1).

The case when ϕ is nowhere zero in (t′2 + π, t′1 + π) can be shown analogously by observing
ϕ(T2,2t+ π) ̸= 0 for t ∈ T −1

2,2 (t
′
2, t

′
1), assuming

ϕ(T2,1T −1
2,2 t

′
12) = 0 and ϕ(T2,1t) ̸= 0 for all t ∈ T −1

2,2 (t
′
12, t

′
12 + ε1),

and applying Corollary 3.5 in T −1
2,2 (t

′
12, t

′
12 + ε1).

Applying Lemma 3.7 we can prove the following.

Corollary 3.8. Suppose that ϕ is nowhere zero in (t2, t1) ⊂ (0, τ). Then there exists a sequence of
intervals (tn,2, tn,1) ⊂ (0, τ), n ∈ N+, with {tn,1}n∈N+ monotonically decreasing to 0, such that ϕ is
either nowhere zero in all (tn,2, tn,1), n ∈ N+, or nowhere zero in all (tn,2 + π, tn,1 + π), n ∈ N+.
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Proof. Denote
T̃1,j := T1,2T −1

j,j − π and T̃2,j := T2,1T −1
j,j − π, j = 1, 2.

Then (3.36) implies that T̃j,l, j, l = 1, 2, are strictly decreasing mappings on (0, τ). We have from
Lemma 3.7 that

ϕ is nowhere zero in T̃1,1(t2, t1) ⊂ (0, τ) or in T̃2,1(t2, t1) + π ⊂ (π, τ + π).

In the former case, we set (t1,2, t1,1) := T̃1,1(t2, t1), and further apply Lemma 3.7 on (t1,2, t1,1).
Then

ϕ is nowhere zero in T̃1,1(t1,2, t1,1) ⊂ (0, τ) or in T̃2,1(t1,2, t1,1) + π ⊂ (π, τ + π).

For the latter case, let (t1,2, t1,1) := T̃2,1(t2, t1). Applying Lemma 3.7 again on (t1,2, t1,1) + π yields

ϕ is nowhere zero in T̃2,2(t1,2, t1,1) + π ⊂ (π, τ + π) or in T̃1,2(t1,2, t1,1) ⊂ (0, τ).

By induction, for each n ∈ N+, we can find T̃ (n) := T̃j,l for some j, l = 1, 2, and (tn+1,2, tn+1,1) :=

T̃ (n)(tn,2, tn,1), such that ϕ is nowhere zero in (tn+1,2, tn+1,1) or (tn+1,2, tn+1,1) + π. Therefore, we
can find an infinite subsequence of {(tn,2, tn,1);n ∈ N+}, say {(t′n,2, t′n,1);n ∈ N+}, such that ϕ is
nowhere zero either in all (t′n,2, t

′
n,1), n ∈ N+, or in all (t′n,2+π, t

′
n,1+π), n ∈ N+. Moreover tn,1 → 0

as n→ ∞ since T̃ (n) is a strictly decreasing mapping on (0, τ).

Returning to the proof of Theorem 5, we consider the case from Corollary 3.8, when ϕ is nowhere
zero in (tn,2, tn,1) ⊂ (0, τ), n ∈ N+, with tn,1 → 0 as n → ∞. The case when ϕ is nowhere zero in
(tn,2 + π, tn,1 + π) can be shown analogously, but we opt to omit the details.

On each of the intervals (tn,2, tn,1) we can apply Lemma 3.7 to obtain that one of the followings
holds. Either ϕ is nowhere zero in T1,2T −1

1,1 (tn,2, tn,1) − π and hence by Corollary 3.5, (3.34) is

satisfied in T −1
1,1 (tn,2, tn,1); in particular,

d

dt
[ρ(T1,1t) sin(T1,1t− t)] =

d

dt
[ρ(T1,2t) sin(T1,2t− t)] , (3.38)

holds for t ∈ T −1
1,1 (tn,2, tn,1). Or ϕ = 0 in T1,2T −1

1,1 (tn,2, tn,1) − π, and thus by Corollary 3.5 again,

(3.35) is satisfied in T −1
1,1 (tn,2, tn,1); in particular,

d

dt
[ρ(T1,1t) sin(T1,1t− t)] =

d

dt
[ρ(T2,1t) sin(T2,1t− t)] , (3.39)

for t ∈ T −1
1,1 (tn,2, tn,1). Therefore, letting n→ ∞, by continuity we infer that

either (3.38) or (3.39) is valid for t = 0. (3.40)

Notice that if ϕ is nowhere zero in an interval (t2, t1) ⊂ (0, τ), we also have ϕ(T2,2t) ̸= 0 for
t ∈ T −1

2,2 (t2, t1). Recall from (3.7) that

T1,1t = T1,2(t+ π) and T2,2t = T2,1(t+ π). (3.41)

Then ϕ(T2,1t) ̸= 0 for t ∈ T −1
2,2 (t2, t1)+π ⊂ (π, π+τ). By Corollary 3.5, for each t ∈ T −1

2,2 (t2, t1)+π,
either #Λt = 4 with both (3.24) and (3.25) valid, or #Λt = 2 with either (3.25) or (3.35) satisfied.
To fix the domain of the operators Ti,j as (0, τ), we make use of (3.41) again to rewrite (3.25) and
(3.35) as, respectively

ρ(T2,2t) sin(T2,2t− t) = ρ(T2,1t) sin(T2,1t− t) and |ϕ(T2,2t)|2 = G22,21(t)|ϕ(T2,1t− π)|2, (3.42)
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and

ρ(T2,2t) sin(T2,2t− t) = ρ(T1,2t) sin(T1,2t− t) and |ϕ(T2,2t)|2 = G22,12(t)|ϕ(T1,2t)|2. (3.43)

Then applying similar arguments as in the proof of Lemma 3.7, we can show that

ϕ being nowhere zero in (t2, t1) ⊂ (0, τ) implies ϕ is either

nowhere zero in T2,1T −1
2,2 (t2, t1)− π or identically zero

in T2,1T −1
2,2 (t2, t1)− π and nowhere zero in T1,2T −1

2,2 (t2, t1) ,

(3.44)

and moreover,

if ϕ is nowhere zero in T2,1T −1
2,2 (t2, t1)− π, then (3.42) holds

in T −1
2,2 [t2, t1]; otherwise (3.43) holds in T −1

2,2 [t2, t1].
(3.45)

Applying the statements (3.44) and (3.45), we may, similarly to before (see Corollary 3.8) obtain a
sequence of intervals (tn,2, tn,1) ⊂ (0, τ), with tn,1 → 0 as n→ ∞ so that for all n either

d

dt
[ρ(T2,2t) sin(T2,2t− t)] =

d

dt
[ρ(T2,1t) sin(T2,1t− t)] , (3.46)

or
d

dt
[ρ(T2,2t) sin(T2,2t− t)] =

d

dt
[ρ(T1,2t) sin(T1,2t− t)] , (3.47)

holds for all t ∈ T −1
2,2 (tn,2, tn,1). Therefore, passing to the limit n→ ∞, we get that

either (3.46) or (3.47) is valid for t = 0. (3.48)

We conclude the proof of (3.32) by showing that (3.40) and (3.48) contradict each other. Direct
calculation yields

d

dt
[ρ(Tj,lt) sin(Tj,lt− t)] = ρ′(Tj,lt) sin(Tj,lt− t)T ′

j,lt+ ρ(Tj,lt) cos(Tj,lt− t)
(
T ′
j,lt− 1

)
,

and (see, (3.13))

T ′
j,lt− 1 =

dTj,lt
dt

− 1 =
Qj,l(t)ρ

′′
n(Tj,lt)

Rj,l(t)−Qj,l(t)ρ′′n(Tj,lt)
,

where

Rj,l(t) =
√
q + (q − 1)ρ′2n (Tj,lt) and Qj,l(t) =

Rj,l(t)− (−1)j

1 + ρ′2n (Tj,lt)
.

Recall that ρ′′2(0) + ρ′′2(π) ̸= 0. Then either (3.38) or (3.39) at t = 0 implies that ρ′′(0)ρ′′(π) ̸= 0,
more precisely that ρ′′(π) < 0 < ρ′′(0). In addition,

√
q(√

q + 1
)
ρ′′(0)

− 1

ρ(0)
=

1

ρ(π)
−

√
q(√

q − (−1)j
)
ρ′′(π)

, (3.49)

where j = 1 if (3.38) is satisfied at t = 0 and j = 2 if (3.39) holds for t = 0. Similarly, we have

√
q(√

q − 1
)
ρ′′(0)

− 1

ρ(0)
=

1

ρ(π)
−

√
q(√

q − (−1)j̃
)
ρ′′(π)

, (3.50)

21



where j̃ = 1 if (3.47) is satisfied at t = 0 and j̃ = 2 if (3.46) holds for t = 0. However, we observe
directly that (3.49) and (3.50) can not be both true if j = j̃. In the case when j = 1 and j̃ = 2
we derive from (3.49) and (3.50) that ρ′′(0) = −ρ′′(π) and ρ(0) = −ρ(π), which violates ρ > 0.
Finally, if j = 2 and j̃ = 1 we obtain that ρ′′(0)ρ′′(π) > 0, which contradicts the assumption that
ρ′′(π) < 0 < ρ′′(0).

Up to now, we have proven that (3.30) implies (3.32). That is, ϕ must be identically zero in
any interval where ρ′ > 0. Applying analogous arguments we can also show if ρ′ < 0 in (0, τ) with
ρ′(0) = ρ′(τ) = 0, then ϕ = 0 in (0, τ). In particular (if ϕ is not identically zero in (0, τ)) we can
deduce that ρ′ > 0 in (π, τ +π), and Lemma 3.7 as well as (3.44) and (3.45) are still valid. In place
of (3.36) we have for all t ∈ (0, τ) that

T1,2t− π > T2,1t− π > t > T2,2t > T1,1t, τ > T1,2T −1
j,j t− π > t, τ > T2,1T −1

j,j t− π > t; (3.51)

Corollary 3.8 holds, except that {tn,2}n∈N+ is now a monotonically increasing sequence approaching
τ (instead of {tn,1}n∈N+ decreasing to 0), and (3.40) and (3.48) are valid at t = τ . This leads to a
contradiction in the same way as before. We leave the details to the reader. It is now established
that ϕ is identically zero on the set {θ : ρ′(θ) ̸= 0}, and by continuity and the fact that ρ′ ̸= 0
almost everywhere it follows that ϕ vanishes identically on [0, 2π). The proof is complete.

Appendix

Proof of Theorem 2. We can parameterize ∂BR0(x0) as a star domain with

ρ(θ) = |x0| cos(θ − θx0) +
√
R2

0 − |x0|2 sin2(θ − θx0).

By direct calculations we derive that

(ln ρ)′(θ) =
− sin(θ − θx0)√

R2
0/|x0|2 − sin2(θ − θx0)

and (ln ρ)′′(θ) =
−R2

0/|x0|2 cos(θ − θx0)(
R2

0/|x0|2 − sin2(θ − θx0)
)3/2 .

Aside from the admissibility condition (1.5), it is evident that ρ satisfies the conditions in Theorem 5.
We assume without loss of generality that θx0 = 0, and consequently x0 = (R0/s, 0) with

s = R0/|x0| > 1. Then

(ln ρ)′(θ) =
− sin θ√
s2 − sin2 θ

and (ln ρ)′′(θ) = −s2 cos θ(
s2 − sin2 θ

)3/2 .
It can be easily verified that

−min
θ

(ln ρ)′′(θ) = max
θ

(ln ρ)′′(θ) =


(ln ρ)′′(π) = 1/s, if s ≥

√
3,

(ln ρ)′′(arccos−
√
s2 − 1

2
) =

2

3
√
3

s2

s2 − 1
, if s <

√
3.

When
√
q ≤ 1/(

√
3 − 1) then (1 +

√
q)/

√
q is greater than or equal to

√
3. Therefore s =

R0/|x0| > (1 +
√
q)/

√
q implies s >

√
3, and so

(ln ρ)′′(θ) ≤ 1

s
<

√
q

1 +
√
q
for all θ ,
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i.e., (1.5) is satisfied.
When

√
q > 1/(

√
3− 1) then (1 +

√
q)/

√
q is strictly between 1 and

√
3, and

Aq := 1/

√
1− 2(1 +

√
q)/3

√
3q > (1 +

√
q)/

√
q .

Therefore s = R0/|x0| > Aq implies s > (1 +
√
q)/

√
q which, when s ≥

√
3, as before gives

max
θ

(ln ρ)′′(θ) <

√
q

1 +
√
q

and when 1 < s <
√
3 gives

max
θ

(ln ρ)′′(θ) <
2

3
√
3

A2
q

A2
q − 1

=
2

3
√
3

1

1− (1− 2(1 +
√
q)/3

√
3q)

=

√
q

1 +
√
q
.

In combination these two facts are sufficient to guarantee that (1.5) is satisfied. Theorem 2 (for
q > 1) now follows from Theorem 5.

Proof of Thoerem 3. Up to a rotational change of coordinates (placing it horizontally along its
major axis and with the right-most focal point at the origin) we can express the ellipse Ω as a star
domain with the radius function

ρ(θ) =
a(1− e2)

1 + e cos θ
,

where e is the eccentricity of the ellipse and a is half of the major diameter. Then

(ln ρ)′(θ) =
e sin θ

1 + e cos θ
and (ln ρ)′′(θ) = e

e+ cos θ

(1 + e cos θ)2
.

Aside from the admissibility condition (1.5), it is evident that the conditions in Theorem 5 are
satisfied. It can easily be verified that

max
θ

(ln ρ)′′(θ) =

{
(ln ρ)′′(0) = e/(1 + e), if e < 1/2,

(ln ρ)′′
(
arccos(1/e− 2e)

)
= 1/(4− 4e2), if 1/2 ≤ e < 1.

The admissible condition (1.5) (since q > 1) is now equivalent to

4e2 < 3− 1/
√
q.

With this observation Theorem 3 (for q > 1) follows directly from Theorem 5.
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