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Introduction

Our theme are the structures that arise as solutions of col-

lections of equations of integral dependence in an algebra A,

zn + a1z
n−1 + · · · + an = 0.

In such equations, the ai’s and z are required to satisfy set

theoretic restrictions of various kinds, with the solutions assem-

bled into algebras, ideals, or modules, each process adding a

particular flavor to the subject. The study of these equations–

including the search for the equations themselves–is a region

of convergence of many interests, with the overall goal being

to find the equations defining the assemblages.



What are the motivations? An algebraic structure–a ring, an

ideal or even a module–is often susceptible to smoothing pro-

cesses that enhance their properties. One major process is the

integral closure of the structure. This often enable them

to support new constructions, including analytic ones. In the

case of algebras, the divisors acquire a group structure, the co-

homology tends to slim down. To make this more viable, mul-

tiplicity theory–broadly seen as the assignment of measures of

size to an structure–must be built up with the introduction of

new families of degree functions suitable for tracking the pro-

cesses through their complexity costs. The synergy between

these two regions is illustrated in the diagram:

Integral
Closure

�� ��
algebraic
structures ��

Multiplicity
Theory���� complexity

counts

��

The overall goal is to describe the developments leading to this

picture, and, hopefully, of setting the stage for further research.



How to start? For one of these structures, S, the analysis

and/or construction of its integral closure S usually passes

through the study of its so–called reductions S0:

S
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���
�

�
�

S0
�� S

The S0 are structures similar to S, with the same closure

as S but geometrically and computationally simpler than S

and therefore provide for a convenient platform from which to

examine S. A drawback is that there are many S0. Rather

than a source of frustration, this diversity is a mine of oppor-

tunities to examine S, and often it is the springboard to the

examination of other properties of S besides its closure.



There is an obvious organization for the several problems that

arise. Without emphasizing relationships one has:

• Membership Test: f ∈ S ?

• Completeness Test: S = S ?

• Construction Task: S � S?

• Complexity Cost: cx(S � S)?



Toolbox

Normalization: The Setting

A is a Noetherian domain of finite integral closure A. The

background for a comparison between these two rings is:

Theorem: [Krull-Serre]

A = A ⇔ A satisfies R1 and S2.

R1 means that the conductor idealC = ann (A/A)

has height at least 2

S2 means that associated primes of principal ideals of A have

height 1

Observe that R1 is about 2, while S2 is about 1!



The explanation of the theorem is the representation

A =
⋂
Ap,

where p runs over the prime ideals of grade 1.



Two natural questions: (1) How to recognize these conditions,

and when missing (2) how to turn them on?

• If A is an affine domain over a field of characteristic 0,

R1 also means that the Jacobian ideal J(A) of A has

codimension at least 2: This by the Jacobian criterion.

More significant however is one of Emmy Noether last

theorems:

J(A) ⊂ C = ann (A/A).

• S2 is a module-theoretic condition and can be recognized

when A admits a subring R which is normal and over

which A is finite [like in a Noether normalization]. Then

S2 means

A � A∗∗ = HomR(HomR(A,R), R)

This show how to turn S2 on: pass from A to A∗∗.



• Note that

A∗∗ =
⋂
Ap,

where p runs over the height 1 primes of A

• A similar representation is

A =
⋂
Ap,

where again p runs over the height 1 primes of A.



One Step Normalization

Theorem: Let A be a reduced affine algebra over a field of
characteristic zero, that satisfies the conditionR1 of Serre (i.e.
A is smooth in codimension 1). There exist two elements f
and g in the Jacobian ideal J of A such that if

L = {(a, b) ∈ A× A, af − bg = 0, }
then

A = {a/g, (a, b) ∈ L}.

The explanation is very clear: Pick f and g so that height(f, g) =
2. Any α ∈ A occurs as one of these ratios, since fα and
gα lie in A, by Noether Theorem. Conversely,

a/g = b/f ∈ Ap

for each height one prime. Now use

A =
⋂
AP,

for rings with R1.



One Explicit Normalization

Very oftenA is described not asA = k[x1, . . . , xn]/I , that

is, by generators and relations, but is given as a subring of a

ring of polynomials A = k[f1, . . . , fq] ⊂ k[x1, . . . , xn].

Here is a family of examples for which it is possible to describe

A in the same form.

Consider any graph G with vertex set V = {x1, . . . , xn}.

LetF be the set of all monomials xixj inR, such that {xixj}
is an edge of G. For simplicity of notation we denote k[F ]

by k[G]. Given the subgraph w of G consisting of two edge

disjoint odd cycles
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z0 = z5z7 = z10
z6

z8z1

z4 z9

z2

z3

Z1 = {z0, z1, . . . , zr = z0}
and

Z2 = {zs, zs+1, . . . , zt = zs},



joined by a path (those subgraphs will be called bow ties),

we associate the monomialMw = z1 · · · zrzs+1 · · · zt. We

observe that Z1 and Z2 are allowed to intersect and that only

the variables in the cycles occur in Mw, not those in the path

itself.

Theorem:[Simis-Villarreal-V, Hibi-Ohsugi] Let G be a graph

and let k be a field. Then the integral closure k[G] of k[G]

is generated as a k-algebra by the set

B = {f1, . . . , fq} ∪ {Mw|w is a bow tie},
where f1, . . . , fq denote the monomials defining the edges of

G.



Bring-Jerrard Extensions

These are extensions defined by an equation

zn + az + b = 0,

over a domain R. Recently, S.-L. Tan and D.-Q. Zhang have

proposed a description of the integral closure of A = R[z],

where R is a factorial domain containing a field (whose char

does not divide n(n − 1)) (one can assume that there is no

prime p such that pn | b & pn−1 | a):

0 → A −→ R2n−2 ϕ−→ Rn−2,

where ϕ is a mapping explicitly given.



Localization & Normalization

We treat a role that localization plays in the construction of

the normalization of certain rings. The setting will be that of

an affine domainA over a field k with a Noether normalization

R = k[x1, . . . , xd] ↪→ A.

To start, consider the following recast of the Krull-Serre crite-

rion:

Proposition: Let A be a Noetherian domain and let f, g be a

regular sequence. If A is the integral closure of A, then

A = Af ∩ Ag.

The assertion holds for arbitrary Noetherian domains although

we will only use for affine domains. When f and g are taken

as a regular sequence in R, we still have the equality A =

Af ∩ Ag. Since Af = Af (and similarly for g), there are



R–submodules C = (c1, . . . , cr) and D = (d1, . . . , ds)

such that Cf = Af and Df = Ag.

Proposition: If f, g is a regular sequence in R, setting B =

(c1, . . . , cr, d1, . . . , ds), one has a natural isomorphism

B∗∗ = HomR(HomR(B,R), R) � A.

Proof. Consider the inclusion B ⊂ A. Since A satisfies

the condition S2, it will also satisfy S2 relative to the subring

R. This means that the bidual of B will be contained in A,

B∗∗ ↪→ A. To prove they are equal, it will suffice to show that

for each prime ideal p ⊂ R of codimension 1, B∗∗
p = Ap.

But from our choices of f and g, Bp = Ap. �



A special case is when f belongs to the conductor of A, since

Af = Af already, so that we simply take C = A. For

simplicity we denote B = A(f, g), and the special case by

A(1, g). As an application, let us consider a reduction tech-

nique that converts the problem of finding the integral closure

of a standard graded algebra into another involving finding the

integral closure of a lower dimension affine domain (but not

graded) and the computation of duals.

Proposition: Suppose as above that f lies in the conductor of

A and g is a form of degree 1 (in particular, d ≥ 2)). The

integral closure of A is obtained as the R–bidual of a set of

generators of the integral closure of A/(g − 1).

Proof. The localization Af has a natural identification

with the ring Ag = S[T, T−1], where S is the set of frac-

tions in Ag of degree 0 and T is an indeterminate. Further,

as it is well-known, S � A/(g − 1). �



What Algorithms Do

The construction P is often characterized by iterations of a

basic procedure P producing integral, rational extensions of

the affine ring A terminating at its integral closure A

A = A0 
→ A1 
→ A2 
→ · · · 
→ An = A

• What are these processes like?

• How long these chains might be?

• How long the description of A might take in terms of the

description of A?

In other words: how to do it, what are the costs, what is there

at the end?



Short of a direct description of the integral closure of A by

a single operation as above, the construction of A is usually

achieved by a ‘smoothing’ procedure: An operation P on affine

rings with the properties:

• A ⊂ P(A) ⊂ A;

• If A �= A then A �= P(A).

The general style of the operation P of the form:

A � I(A) � P(A) = HomA(I(A), I(A)),

where I(A) is an ideal somewhat related to the conductor of

A.



Two examples of such methods, using Jacobian ideals, are fea-
tured in [Va] and [deJong], respectively. Let J be the Jacobian
ideal ofA. The corresponding smoothing operations are as fol-
lows:

(i) P1(A) = HomA(J−1, J−1)

(ii) P2(A) = HomA(
√
J,

√
J)

These algorithms have a great advantage in that they incorpo-
rate normality criteria:

P(A) = A if and only if A = A

They are restricted to affine algebras over fields which are nice.
A more abstract method applies to arithmetic algebras (say
defined over Z) but lacks this feature. The drawback is that
to compute P(A) one needs a presentation of the algebra A:
Thus a fresh batch of new indeterminates is required for each
iteration.



Consider an ideal I of A and set

P3(A) =
⋃
n

HomA(In, In).

When I is an unmixed ideal of codimension 1, its subring

HomA(Ie, Ie),

for e some multiplicity of A (and therefore fixed) will have the

same bidual (S2–closure) as P3(A). This follows because

whenever we localize in codimension 1, I has a reduction J =

(a) of reduction number at most e− 1,

Ie = aIe−1,

and therefore Ia−1 ⊂ HomR(Ie, Ie).

When applied to the canonical ideal I of A, this implies that

if P3(A) = A, then A is Gorenstein in codimension 1.

Whenever this happens, algorithms involving P3 would have

to be quick-started by other means. When we discuss tracking

numbers, we are going to see that this cannot happen often!

Of course the great advantage here is that no new variables are

required.



Example

Let us illustrate with one example how the two methods differ
markedly in the presence of the condition R1 of Serre. Let
A be an affine domain over a field of characteristic zero, and
let J be its Jacobian ideal. Suppose heightJ ≥ 2 (the R1
condition). As we have discussed,

A = J−1 ⊂ HomA(J−1, J−1) ⊂ A.

Consider now the following example. Let n be a positive inte-
ger, and set

A = R[x, y] + (x, y)nC[x, y],

whose integral closure is the ring of polynomials C[x, y]. Note
that Ax = C[x, y]x and Ay = C[x, y]y. This means that√
J is the maximal ideal

M = (x, y)R[x, y] + (x, y)nC[x, y].

It is clear that

HomA(M,M) = R[x, y] + (x, y)n−1C[x, y].

It will take precisely n passes of the operation to produce the
integral closure. In particular, neither the dimension (d = 2),
nor the multiplicity (e = 1) play any role.



The ‘length’ or ‘order’ of the construction is the smallest integer

n such that Pn(A) = A. The ‘cost’ of the computation

C(A) however will consist of
∑n
i=1 c(i), where c(i) is the

complexity of the operation P on the data set represented by

Pi−1(A).

Obviously, in a Gröbner basis setting, different iterations of P
may carry non-comparable costs. This holds true particularly

if each iteration uses its own local variables.



Almost irresponsibly one could define the astronomical com-

plexity of a smoothing operation by the order of P :

n = CP(A).

It is not yet clear whether this number carries any significance.

The fact however is that P usually acts not on the full set

B(A) of integral birational extensions of A,

P : B(A) 
→ B(A),

but also on much smaller subsets of extensions (containing A)

P : B0(A) 
→ B0(A).



One Main Problem

A very important issue is the development of efficient proce-

dures acting on very sparse sets of extensions:

{P, B0(A)}

We are going to consider the extensions A ⊂ B ⊂ A which

satisfy the condition S2 of Serre, and define smoothing oper-

ations on them. The counting will be based on the following

general property of a reduced, equidimensional affine algebra

A.



Divisorial Extensions

A divisorial extensionB of A is an algebra in A with the con-

dition S2 of Serre–e.g. A itself. The subset of such algebras

will be denoted S2(A).

They can be obtained as follows. Let S ⊂ A be a subalge-

bra over which of A is finite and satisfies S2. For instance,

subalgebras such those that occur in the classical Noether nor-

malization process. For any B ∈ A,

B ⊂ HomA(HomS(B,S),HomS(B,S)) ∈ S2(A).

In fact, this is a sub construction of the normalization process.

Its usefulness already arises in:

Proposition: Suppose that S has S2 and is Gorenstein in codi-

mension 1 and A is rational over it. Then



• HomS(B,S) is a divisorial ideal of S.

• HomS(·,S) is an involution of S2(A).

• The chains in S2(A) are bounded.

The proofs are elementary using essentially duality in codimen-

sion 1. Since the divisorial ideals of S satisfy the descending

chain condition between two fixed endpoints [in the case of

S2(A): HomS(A,S) and HomS(A,S)] the last asser-

tion follows easily:

Replace A by a hypersurface ring

S = k[x1, . . . , xd, xd+1]/(f) ↪→ A, S = A.

By duality there is a one–one correspondence between the ex-

tensionsB ∈ S2(S) and their conductors γ(B) = HomS(B, S)

(these are divisorial ideals of S). Note that γ(A) ⊂ γ(B).

This sets up an order reversing embedding of partially ordered

sets

S2(S) ↪→ ideals of Quot(S/γ(A)).

But Quot(S/γ(A)) is an Artinian ring.



Numerical Bounds

We are going to make more precise the preceding discussion.

Throughout we will assume thatA is a reduced affine ring and

A is its integral closure.

Definition: An integral extension B of A is divisorial if

A ⊂ B ⊂ A and B satisfies the S2 condition of Serre. The

set of divisorial extensions of A will be denoted by S2(A).

Let A = k[x1, . . . , xn]/I be a reduced equidimensional

affine algebra over a field k of characteristic zero, let R =

k[x1, . . . , xd] ⊂ A be a Noether normalization and S =

k[x1, . . . , xd, xd+1]/(f) a hypersurface ring such that the

extension S ⊂ A is birational. Denote by J the Jacobian

ideal of S, that is the image in S of the ideal generated by the

partial derivatives of the polynomial f .

From S ⊂ A ⊂ S = A we have that J is contained in the

conductor of S. To fix the terminology, we denote the annihila-

tor of the S-moduleA/S by c(A/S). Note the identification

c(A/S) = HomS(A,S).



We want to benefit from the fact that S is a Gorenstein ring,

in particular that its divisorial ideals have a rich structure.

Definition: Let I be an ideal containing regular elements of a

Noetherian ring S. The degree of I is the integer

deg(I) =
∑

height p=1

λ((S/I)p).

Definition: A proper operation (or smoothing) is an order

preserving mapping

P : S2(A) −→ S2(A)

such that if B �= A then B � P(A).

Theorem: Let S be a reduced hypersurface ring

S = k[x1, . . . , xd+1]/(f)

over a field of characteristic zero and let J be its Jacobian ideal.

Then the integral closure of S can be obtained by carrying out

at most deg(J) proper operations on S.



Proof. Denote S = k[x1, . . . , xd+1]/(f), where f is a

form of degree e = deg(A). By Euler’s formula, f ∈ L =(
∂f
∂x1

, . . . , ∂f
∂xd+1

)
. Let then g, h be forms of degree e− 1

in L forming a regular sequence in T = k[x1, . . . , xd+1].

Clearly we have that deg(g, h)S ≥ deg(J). On the other

hand, we have the following estimation of ordinary multiplici-

ties

(e− 1)2 = deg(T/(g, h))

=
∑

height P=2

λ(T/(g, h)P) deg(T/P)

≥ ∑
height P=2

λ(T/(g, h)P)

≥ ∑
height P=2

λ(T/(f, g, h)P)

= deg((g, h)S)

≥ deg(c).



Corollary: LetA be a reduced equidimensional standard graded

algebra over a field of characteristic zero, and set e = deg(A).

Then any sequence

A = A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ A

of finite extensions of A with the property S2 of Serre has

length at most (e− 1)2.

Corollary: Let k be a field of characteristic zero and letA be a

standard graded domain over k of dimension d and multiplicity

e. Let S be a hypersurface subring of A such that S ⊂ A

is finite and birational. Then the integral closure of A can be

obtained after (e− 1)2 proper operations on S.



Non-Homogeneous Algebras

We will now treat affine algebras which are not homogeneous.

Suppose A is a reduced equidimensional algebra over a field of

characteristic zero, of dimension d. Let

S = k[x1, . . . , xd, xd+1]/(f) ↪→ A

be a hypersurface ring over which A is finite and birational.

The degree of the polynomial f will play the role of the mul-

tiplicity of A. Of course, we may choose f of as small degree

as possible.

Our aim is to find estimates for the length of chains of algebras

S = A0 ⊂ A1 ⊂ · · · ⊂ Aq = A

satisfying the condition S2, between S and its integral closure

A. The argument we used required the length estimates for

the length of the total ring of fractions of S/c, where c is the

conductor ideal of S, ann (A/S). Actually, it only needs es-

timates for the length of the total ring of fractions of (S/c)m,

where m ranges over the maximal ideals of S.



In the homogeneous case, we found convenient to estimate

these lengths in terms of the multiplicities of (S/c)m; we will

do likewise here.

A first point to be made is the observation that we may replace

k by K ∼= S/m and m by a maximal ideal M of K ⊗k A
lying over it. In other words, we can replace R by a faithfully

flat (local) extension R′. The conditions are all preserved in

that S′ = K⊗kS is reduced, S′ = K⊗kA, the conductor

of S extends to the conductor of S′, and chains of extensions

with the S2 conditions give like to likewise extensions of K-

algebras. Furthermore the length of the total ring of fractions

of R/c is bounded by the length of the total ring of fractions

of R′/c′.

What this all means is that we may assume that m is a ra-

tional point of the hypersurface f = 0. We may change the

coordinates so that m corresponds to the actual origin.



Proposition: Let A = k[x1, . . . , xd] be the ring of polyno-

mials over the infinite field k and let f, g be polynomials in

A vanishing at the origin. Suppose f, g is a regular sequence

and deg f = m ≤ n = deg g. Then the multiplicity of

the local ring (A/(f, g))(x1,...,xn) is at most nm2.

Proof. Write f as the sum of its homogeneous components,

f = fm + fm−1 + · · · + fr,

and similarly for g,

g = gn + gn−1 + · · · + gs.

We first discuss the route the argument will take. Suppose that

gs is not a multiple of fr. We denote by R the localization

of A at the origin, and its maximal ideal by m. We observe

that A/(fr) is the associated graded ring of R/(f), and the

image of gs is the initial form g. Thus the associated graded

ring of R/(f, g) is a homomorphic image of A/(fr, gs). If

fr and gs are relatively prime polynomials, it will follow that

the multiplicity of R/(f, g) will be bounded by r · s,
degR/(f, g) ≤ r · s.



We are going to ensure that these conditions on f and g are

realized for f and another element h of the ideal (f, g). After

a linear, homogeneous change of variables (as k is infinite),

we may assume that each non-vanishing component of f and

of g has unit coefficient in the variable xd. For that end it

suffices to use the usual procedure on the product of all nonzero

components of f and g. At this point we may assume that f

and g are monic.

Rewrite now

f = xmd + am−1x
m−1
d + · · · + a0,

g = xnd + bn−1x
n−1
d + · · · + b0

with the ai, bj in k[x1, . . . , xd−1]. Consider now the re-
sultant Res(f, g) of these two polynomials with respect to
xd:

det




1 am−1 am−2 . . . a0

1 am−1 . . . a1 a0
... ... ... ... ... ... ... ...

1 am−1 am−2 . . . a0

1 bn−1 bn−2 . . . b0
1 bn−1 . . . b1 b0

... ... ... ... ... ... ... ...
1 bn−1 bn−2 . . . a0



.



We recall that h = Res(f, g) lies in the ideal (f, g).

Scanning the rows of the matrix above (n rows of entries of

degree at most m, m rows of entries of degree at most n),

it follows that degh ≤ 2mn. A closer examination of the

distribution of the degrees shows that degh ≤ mn. If hp
is the initial form of h, then clearly hp and fr are relatively

prime since the latter is monic in xd, while hp lacks any term

with xd.

Assembling the estimates, one has

degR/(f, g) ≤ degR/(f, h) ≤ r·p ≤ m·mn = nm2.

Corollary: Let S = k[x1, . . . , xd+1]/(f) be a reduced hy-

persurface ring over a field of characteristic zero, with deg f =

e. Then any chain of algebras between S and its integral clo-

sure, satisfying the condition S2, has length at most e(e −
1)2.



AUs: Astronomical Units

Theorem: Let k be a field of characteristic zero and consider

the reduced hypersurface ring

S = k[x1, . . . , xd, xd+1]/(f), deg f = e.

Then

�(Quot(S/γ(S))) ≤
{

(e− 1)2 f is homogeneous
e(e− 1)2 otherwise



Arithmetic Noether Normalization

LetR be a normal domain, and supposeA = R[x1, . . . , xn]
is an integral domain of dimension d. To use the approach
above to build divisorial extensions betweenA and A requires
the presence of a Gorenstein subalgebra

S ⊂ A

over which A is finite (or rational).

These approaches may not be always possible. Here is a posi-
tive case:

Theorem: Suppose that R is a ring of algebraic integers.

• (Shimura) If A is graded there are elements y1, . . . , xr,
r = dimA−1, such that R[y1, . . . , yr] is a Noether
normalization of A.

• In general there are elements y1, . . . , yr, r = dimA,
suchA is finite over the hypersurface ringR[y1, . . . , yr].



Embedding Dimensions
and Degrees

Let A be a reduced, equidimensional, affine ring over field k,

given by generators and relations, A = k[x1, . . . , xn]/I .

The smallest n is the embedding dimension of A

(over k). Let A be its integral closure.

A = k[x1, . . . , xn]/I ↪→ A = k[y1, . . . , ym]/J

• What is emb(A) like?

• If A is graded, are there bounds for the degrees of gener-

ating sets of A?



Some Conjectures

Conjecture: There exist elementary functions β(d, e), δ(d, e),

polynomial in e for fixed d, such that for any standard graded

integral domain A of dimension d = dimA and multiplicity

e = deg(A),

emb(A) ≤ β(dimA,deg(A)),

embd(A) ≤ δ(dimA,deg(A)).

We will describe joint work with Bernd Ulrich on these two

questions.



Cohen-Macaulay A

Proposition: Let A be a reduced equidimensional affine ring.

If A is Cohen–Macaulay, then

emb(A) ≤ d+ e− 1 (2d+ e− 1 in the global case).

Proof. If R ⊂ A is a Noether normalization. A is a free

R–module of rank e.



Dimension 3++

Theorem: Let k be a field of characteristic zero and let A be

a reduced and equidimensional k–algebra of dimension d and

multiplicity e > 1.

• If A ⊂ B is a finite and birational extension of graded

rings depthAB ≥ d− 1 then

νA(B) ≤ (e− 1)2

emb(B) ≤ (e− 1)2 + d+ 1.

• If A ⊂ B is a finite and birational extension of affine

rings and for each maximal ideal P ofA, depthAP
BP ≥

d− 1, then

νA(B) ≤ e(e− 1)2 + d+ 1

emb(B) ≤ e(e− 1)2 + 2d+ 1.



Corollary: Let k be a field of characteristic zero and let A be

a reduced and equidimensional k–algebra of dimension 3 and

multiplicity e. The integral closure B = A satisfies

emb(B) ≤
{

(e− 1)2 + 4 if A is homogeneous
e(e− 1)2 + 7 if A is non homogeneous.



How are these bounds obtained? A key observation is to use

an exact sequence

0 → S −→ B −→ C → 0

(Let k be a field of characteristic zero) S is a reduced and

equidimensional Noetherian standard graded k–algebra of di-

mension d and multiplicity e > 1 of the form

k[x1, . . . , xd+1]/(f).

If S ⊂ B is a finite and birational extension of rings, then the

S–module B/S satisfies (in the graded case)

deg(B/S) ≤ e(e− 2).



Proof. We use Noether normalization and the theorem of

the primitive element to find a hypersurface subring

S = k[x1, . . . , xd, t]/(f) ⊂ B = A

over which B birational. With the given hypotheses, the S–

module C = B/S (may assume �= 0) is Cohen–Macaulay.

What is needed is to estimate the multiplicity of C and for

that we are going to use the fact that S is Gorenstein and

some properties of the Jacobian ideal of (f). We may assume

that S �= B. As S satisfies S2 and the extension S ⊂ B is

finite and birational, it follows that the S–module B/S is of

pure codimension one. Thus since S is Gorenstein,

deg(B/S) = deg(Ext1S(B/S, S)).

Applying HomS(·, S) to the exact sequence

0 → S −→ B −→ B/S → 0

yields an exact sequence

0 → S/S :S B → Ext1S(B/S, S) → Ext1S(B,S) → 0.



Since B has the property S2 over the Gorenstein ring S, the

S–module Ext1S(B, S) has codimension at least 3. Thus

deg(Ext1S(B/S, S)) = deg(S/S :S B).

On the other hand J(S) ⊂ S :S S by [Noether] (see also

[Kunzbook] or for more general results, [Lipman–Sathaye]).

Hence J(S) ⊂ S :S B and then, as both ideals have height

one,

deg(S/S :S B) = deg(S/J(S)).

Finally, writeS = R/(f) withR = k[x1, . . . , xn] a poly-

nomial ring and f a form of degree e. Set J = R
(
∂f
∂x1

, . . . , ∂f∂xn

)
.

One has f ∈ J since characteristic k = 0 and henceS/J(S) =

R/J . Note that J is an ideal of height 2 generated by forms

of degree e − 1. Let g, h be forms of degree e − 1 in J

generating a regular sequence.



Consider the induced exact sequence

0 → L→ R/(g, h) → Ext1S(C, S) → Ext1S(B, S) → 0.

Note that we cannot have L = 0 as R/(f, g) is Cohen–

Macaulay of dimension d − 1 and therefore Ext1S(B,S)

would have codimension at most 2. Thus L must be nonzero,

of dimension d− 1, and therefore

deg(S/J(S)) < deg(R/(g, h)) − 1

≤ (e− 1)2 − 1 = e(e− 2).



Proof of Theorem, first part. Let S be a hy-

persurface ring of multiplicity e, S ⊂ A ⊂ B, as in the in-

troduction. If S �= B, the module B/S is Cohen–Macaulay

of dimension d − 1 and multiplicity bounded by e(e − 2)

by the Lemma. By [Bruns-Herzog, Chapter 4], νS(B/S) ≤
deg(B/S), which will prove the first assertion. The other

estimate will follow.

The other part is another kind of calculation, but still straight-

forward.



Small Singularities

Let A be a reduced equidimensional affine algebra over a per-

fect field k, let J be its Jacobian ideal and B its integral clo-

sure. In this section we consider the case of dimA = d ≥ 4

and assume that the singular locus of A is suitably small.

Theorem: Let k be a field of characteristic zero and let A

be a reduced and equidimensional standard graded algebra of

dimension d ≥ 4 and multiplicity e. Write B = A and let

t be an integer with 2 ≤ t ≤ min{d− 2,depthAB}. If

A satisfies Rd−t−1 then

νA(B) ≤ (e(e− 1))2
d−t−1 − (2e(e− 1))2

d−t−2
+ 2.

If in addition k is algebraically closed and A is a domain then

emb(B) ≤ (e(e− 1))2
d−t−1 − (2e(e− 1))2

d−t−2
+ t+ 3.

In particular, this applies if A has an isolated singularity.



Bounding Degrees

Conjecture: [Eisenbud-Goto] LetA be a homogeneous integral

domain over an integrally closed field of characteristic zero.

Then the Castelnuovo–Mumford regularity of A is bounded

by

reg(A) ≤ deg(A) − codim(A) + 1.

Theorem: Let k be a field of characteristic zero and let A be a

standard graded domain over k of dimension d and multiplicity

e. Write B = A and suppose that A satisfies the condition

R1. If [Eisenbud-Goto] holds in dimension ≤ d− 1 then

embd(B) ≤ (e− 1)2.



Theorem: Let k be a perfect field, let A be a reduced and

equidimensional standard graded k–algebra of dimension d and

multiplicity e ≥ 2, and let A ⊂ B be a finite and birational

extension of graded rings. IfA satisfiesR1 and depthAB ≥
d− 1, then the A–module B is generated in degrees at most

3e− 4.



Module Operations

Some of the constructions discussed involve the passage from

an R–module E to its bidual HomR(HomR(E,R), R)

or the ring of endomorphisms HomR(E,E). More precisely,

we consider an R–algebraA and some of the A–ideals. It is of

interest to be able to make predictions about the number/type

of generators of both of these modules from data on E. If

using numerical data we have found convenient to bring in an

extended notion of multiplicity.

Cohomological Degrees

Definition A cohomological degree, or extended mul-

tiplicity, is a function on an appropriate category of modules

over a Noetherian local (or graded) ring R

Deg(·) : M(R) 
→ N,

that satisfies



(i) If L = Γm(A) is the submodule of elements ofA which

are annihilated by a power of the maximal ideal andA′ =
A/L, then

Deg(A) = Deg(A′) + λ(L),

where λ(·) is the ordinary length function.

(ii) (Bertini’s rule) If A has positive depth and h is an ap-

propriate generic element, then

Deg(A) ≥ Deg(A/hA).

(iii) (The calibration rule) If A is a Cohen–Macaulay module,

then

Deg(A) = deg(A),

where deg(A) is the ordinary multiplicity of the module

A.



These numbers tend to be very big, bounding in a manner of

speaking, both width and height:

• If (R,m, k) is a Gorenstein local ring, for any Deg(·),

βi(A) ≤ β(k) · Deg(A),

where βi(A) are the Betti numbers of the R–module

A.

• [U. Nagel] If R = k[x1, . . . , xd], then for any f.g.

graded R–module A, generated in degrees ≤ r,

reg(A) ≤ Deg(A) + r,

where reg(A) is the Castelnuovo-Mumford regularity

of A.



Homological Degree

Definition: Let M be a finitely generated graded module over

the graded algebraA and let S be a Gorenstein graded algebra

mapping onto A, with maximal graded ideal m. Assume that

dimS = r, dimM = d. The homological degree

of M is the integer

hdeg(M) = deg(M) +
r∑

i=r−d+1

( d− 1

i− r+ d− 1

)
· hdeg(ExtiS(M,S)).

This expression becomes more compact when dimM = dimS =

d > 0:

hdeg(M) = deg(M) +
d∑

i=1

(d− 1

i− 1

)
· hdeg(ExtiS(M,S)).



Its recursive character is a negative aspect but it is fairly ef-

fective and useful to refine other cohomological degrees, such

as the construction by Gunston of a degree bdeg(·) in which

the appropriate Bertini’s property

bdeg(A) = bdeg(A/hA)

will hold. In addition, hdeg(·) can be extended to a degree

that uses Samuel’s multiplicities.

When A is a Buchsbaum module,

hdeg(A) = deg(A) + I(A),

where I(A) is the Buchsbaum invariant in Stückrad-Vogel

theory.

Going back to biduals and modules of endomorphisms. [Re-

stricted to torsionfree modules over an affine domain R ad-

mitting a Gorenstein subring S over which R is finite and

rational–as the setting of Noether normalization in nice char-

acteristics.]



The HomAB Problem

Conjecture: For any finitely generated torsionfree S–modules

A and B,

ν(HomS(A,B)) ≤ c(R) · hdeg(A) · hdeg(B),

where c(S) is a constant determined from the dimension and

local Betti numbers of S.

This problem is studied by Dalili in his thesis and special cases

have been settled. It will hold for HomS(A,S),

ν(HomS(A,S)) ≤ c(R) · hdeg(A),

in the proof does not allow keeping track of homological infor-

mation on A∗, that we could use to bound the bidual A∗∗.

For that one turns to Auslander duals:

Definition: Let E be a finitely generated R–module with a

projective presentation

F1
ϕ−→ F0 −→ E → 0.



The Auslander dual ofE is the moduleD(E) = coker(ϕt),

0 → E∗ −→ F ∗
0

ϕt−→ F ∗
1 −→ D(E) → 0.

The module D(E) depends on the chosen presentation but it
is unique up to projective summands. In particular the values

of the functors ExtiR(D(E), ·) and TorRi (D(E), ·), for

i ≥ 1, are independent of the presentation. Its uses here lies
in the following:

Proposition: LetR be a Noetherian ring and letE be a finitely
generated R-module. There are two exact sequences of func-
tors:
0 → Ext1R(D(E), ·) −→ E ⊗R · −→ HomR(E

∗, ·) −→ Ext2R(D(E), ·) → 0

0 → TorR2 (D(E), ·) −→ E∗ ⊗R · −→ HomR(E, ·) −→ TorR1 (D(E), ·) → 0.

From these sequences, for any extended degree Deg(·), one
has

ν(E∗∗) ≤ ν(E) + ν(Ext2R(D(E), R))
≤ ν(E) + Deg(Ext2R(D(E), R))

ν(HomR(E,E)) ≤ ν(E∗ ⊗ E) + ν(TorR1 (D(E), E))

≤ ν(E∗) · ν(E) + Deg(TorR1 (D(E), E)).



This requires information aboutE∗ that can be tracked all the

way up to E and a great deal of control over D(E). This is

possible in dimR ≤ 4. For instance:

Proposition: Let (R,m) be a Gorenstein local ring of dimen-

sion d, and let E be a torsionfree R–module and let F be its

bidual. If dimF/E ≤ 2, then

hdeg(F) ≤
{

hdeg(E) if d ≥ 6,
2 · hdeg(E) if d = 4,5.

This is relevant to the issue of the number of generators of the

integral closure of an affine algebraA (with a Noether normal-

izationR) if A is non-singular in codimension ≤ dimA−3.



Tracking
Numbers

There is another approach to the tagging of the elements of

S2(A) by integers instead of by divisorial ideals of a ring.

This is developed by Kia Dalili and myself in [DV]. It has ad-

vantages of generality–as it applies to all [or none] characteris-

tics and even for modules–but it is restricted to graded objects.

It is also helpful in analyzing what often does not happen in

divisorial chains.



A tracking number of an algebraic structure–algebra, ideal, or

module–is a numerical tag or index that can be used for the

purpose of comparing two such structures. A way to intro-

duce them is to attach to an structure S (consider the case of

modules over a ring R) an element of an abelian group G,

det(S) ∈ G,

and follow it up with a linear functional

h : G −→ Z.

Such construction–if it comes with useful functorial properties–

can be useful to study chains

S1 −→ S2 −→ · · · −→ Sn

and to develop techniques to bound their lengths.

We will introduce one such function that has a natural place

in the study of the integral closure of algebras, and hopefully

of ideals and modules.



Its definition [here limited to graded structures] uses the combi-
natorial data encoded in the Hilbert function and also geomet-
ric information on the multiplicities of some of its components.

• Determinant of a module or algebra

• Tracking number of an algebra

• Calculation rules

• Initial ideals

• Simplicial complexes

• Degree bounds

• Lengths of Chains

• Questions



Determinant of a Module

Let R be a Noetherian normal domain and let E be a finitely

generated R–module of rank r. The determinant of E is the

reflexive module of rank one

det(E) = (∧rE)∗∗.

It is very useful in the comparison of certain modules. Consider

the following elementary observation:

Proposition: If E ⊂ F are two reflexive R–modules of the

same rank, then E = F iff det(E) = det(F).



Definition: Suppose R = k[x1, . . . , xd] is a ring of poly-

nomials over a field, with the standard grading. For a graded

R–module E, of dimension d, its torsionfree rank is its multi-

plicity e0(E). Its determinant

det(E) � R[−a].
(This is a graded isomorphism!) The integer a is called the

tracking number of E: tnR(E) = a.

When A is a graded algebra that admits a Noether normaliza-

tion such as R, we set

tn(A) = tnR(A).

We will see that tnR(A) is independent of R.



Proposition: If E ⊂ F are two reflexive R–modules of the

same rank, thenE = F iff tn(E) = tn(F). In particular,

any chain of distinct reflexive modules between E and F has

length at most tn(E) − tn(F).

Some experience shows that in the case of algebras, the chains

may be shorter by a factor than tn(E) − tn(F). It makes

also one wonder whether using Cohen–Macaulay algebras only

[when they exist at all] may further shorten the chains.



Calculation Rules

The basic rules are the following (restricted to graded modules)

• If E0 is the torsion submodule of E,

0 → E0 −→ E −→ E′ → 0,

tn(E) = tn(E′)

• If the complex (of graded modules and homogeneous map-

pings)

0 → E1 −→ E2 −→ · · · −→ En → 0,

is an acyclic complex of free modules in codimension 1,

then
n∑
i=1

(−1)itn(Ei) = 0



Proposition: LetE be a finitely generated graded module over
the polynomial ring R = k[x1, . . . , xd]. If E is torsionfree
over R, tn(E) = e1(E), the first Chern number of E.

Proof. Let

0 → ⊕jR[−βd,j] → · · · → ⊕jR[−β0,j] → E → 0

be a (graded) free resolution of E. The integer

e1(E) =
∑
i,j

(−1)iβi,j

is the next to the leading Hilbert coefficient of E. It is also the
integer that one gets by taking the alternating product of the
determinants in the free graded resolution. �

In general, the connection between the tracking number and
the first Hilbert coefficient has to be ‘adjusted’ in the following
manner.

Proposition: Let E be a finitely generated graded module over
R = k[x1, . . . , xd]. If dimE = d and E0 is its torsion
submodule,

0 → E0 −→ E −→ E′ → 0,



then

tn(E) = tn(E′) = e1(E
′) = e1(E) + ê0(E0),

where ê0(E) is the multiplicity of E0 if dimE0 = d− 1,
or 0 otherwise.

Proof. Denote by HA(t) the Hilbert series of an R-
module A and write

HA(t) =
hA(t)

(1 − t)d
,

if dimA = d. For the exact sequence defining E′, we have

hE(t) = hE′(t) + (1 − t)rhE0
(t),

where r = 1 if dimE0 = d − 1, or r ≥ 2 otherwise.
Since

e1(E) = h′E(1) = h′E′(1)+r(1−t)r−1|t=1hE0
(1),

the assertion follows. �

Remark: This suggests a reformulation of the notion of track-
ing number. By using exclusively the Hilbert function, the def-
inition could be extended to all finite modules over a graded
algebra.



Corollary: Let E and F be graded R-modules of dimension

d. Then

tn(E ⊗R F) = deg(E) · tn(F) + deg(F) · tn(E).

Proof. By a corollary above, we may assume that E and

F are torsionfree modules. Let P and Q be minimal projective

resolutions of E and F , respectively. The complex P ⊗R Q

is acyclic in codimension 1, by the assumption on E and F .

We can then use a corollary above,

tn(E ⊗R F) =
∑
k≥0

(−1)ktn(⊕i+j=kPi ⊗R Qj).

Expanding gives the desired formula. �

Key Remark: The Proposition gives another way to define

tracking numbers in a way that does not depend of

any Noether normalization. It is helpful in assignment track-

ing numbers to an associated graded ring grI(R), when there

is possibly no characteristic to be used.



Initial Ideals

Let A = k[x1, . . . , xn]/I be a standard graded algebra.
Let > be a monomial order and set I ′ = in>(I) and A′ =
k[x1, . . . , xn]/I

′. A comparison result gives:

Theorem: tn(A′) ≥ tn(A).

Proof. Let J be the component of I of maximal dimension
and consider the exact sequence

0 → J/I −→ S/I −→ S/J → 0.

dim J/I < dimA and therefore tn(A) = tn(S/J) =
e1(S/J). Denote by J ′ the corresponding initial ideal of J ,
and consider the sequence

0 → J ′/I ′ −→ S/I ′ −→ S/J ′ → 0.

Noting that S/I and S/J have the same multiplicity, and
so do S/I ′ and S/J ′ by Macaulay’s theorem, dim J ′/I ′ <
dimA. This means that

tn(S/I ′) = tn(S/J ′) = e1(S/J
′) + ê0(J

′/I ′)
= e1(S/J) + ê0(J

′/I ′)
= tn(A) + ê0(J

′/I ′).



Example: A = k[x, y, z, w]/(x3 − yzw, x2y − zw2):

tn(A) = e1(A) = 18.

A′ = k[x, y, z, w]/I ′, where I ′ is the initial of I for the

Deglex order. A calculation with Macaulay2 gives

I ′ = (x2y, x3, xzw2, xy3zw, y5zw).

tn(B) = 18 + 5 = 23.

The example shows that tn(·) is independent of the Hilbert

function of the algebra. As a piece of philosophy, we tend to

view tn(·) as a ‘nonlinear’ invariant of the algebra.



Simplicial Complexes

One of our goals is to determine bounds for tn(A), in partic-

ular whether these numbers are non-negative. There are also

some explicit formulas:

Theorem: If ∆ is a simplicial complex and k[∆] is the cor-

responding face ring,

tn(k[∆]) = dfd−1 − fd−2 + f ′d−2,

where f ′d−1 is the number of maximal faces of dimension d−2.

That tn(k[∆]) are non-negative also results from general

results for graded rings which are reduced.



General Bounds

There are various kinds of bounds for tn(A), but some require

lots of data. One that is very general is the following:

Theorem: LetE be a graded module generated in non-negative

degrees. Then

tn(E) ≤ deg(E) · reg(E),

where reg(E) is the Castelnuovo-Mumford regularity of E.

This follows from standard properties of reg, deg and tn

under generic hyperplane sections.



Positivity Results

Let A be a positively generated graded K-algebra, finite over

a (standard) polynomial ring. While tn(A) may be negative

[common in the case of modules] one has:

Theorem: If A is reduced, tn(A) ≥ 0.

Its proof and of the following intermingle:

Theorem: If A is a domain, tn(A) ≥ 0.



Sketch of Proof: We have A ⊂ A∗∗ ⊂ A where A∗∗ is the

bidual HomR(HomR(A,R), R)). A∗∗ is an algebra and

tn(A) = tn(A∗∗). We thus may assume dimA > 2 and

A has the S2-condition of Serre.

We replace the base field K by K(x) and pick a 1–form

h ∈ R such that h is a prime element in A and tn(A) =

tn(A/hA) and tn(A) = tn(A/hA). Start now with the

latter and continue until dimension drops to 2.



Multiplicity-Based Bounds

Theorem: If A is a standard graded domain of multiplicity e,

0 ≤ tn(A) ≤ tn(A) ≤
(e
2

)
.

In particular, any chain of distinct algebras

A = A0 ⊂ A1 ⊂ · · · ⊂ An = A

satisfying the condition S2 of Serre has length at most
(
e
2

)
.

Proof: If K is a field of characteristic zero, A contains a

hypersurface ring

S = R[t]/(f), deg f = e.

Since tn(S) =
(
e
2

)
, the theorems apply.

To complete the proof in other characteristics we resort to the

following construction [a module-theoretic ersatz for the theo-

rem of the primitive element]:



Proposition: Let A be an integral domain finite over the sub-

ring R, A = R[y1, . . . , yn], and let rankR(A) = e. Let

K be the field of fractions of R and define the field extensions

F0 = K, Fi = K[y1, . . . , yi], i = 1 . . . n.

Then the module

E =
∑

Ry
j1
1 · · · yjnn , 0 ≤ ji < ri = [Fi : Fi−1]

is R–free of rank e. If A is a standard graded algebra, with

deg(yi) = 1, tn(E) ≤
(
e
2

)
.

Proof. As the rank satisfies the equality e =
∏n
i=1 ri, e is

the number of ‘monomials’ yj11 · · · yjnn . Their linear indepen-

dence over R is a simple verification. Note also that there are

monomials of all degrees between 0 and (r1−1, . . . , rn−1).

Thus according to an earlier observation,

tn(E) ≥ tn(A),

and the bound for tn(E) is obvious, with equality holding

only when E is a hypersurface ring over R.

Exercise: Classify the algebras with tn(A) ≤ 1.



Lengths of Chains

We now indicate how tracking numbers may throw further light

on the lengths of the form:

A = A0 ⊂ A1 ⊂ · · · ⊂ An = A

Let us outline a method for generating such chains. Let S be

a hypersurface ring of integral closure S and A an extension

S ⊂ A ⊂ S

If A �= S, one seeks a larger extension A ⊂ B. In char 0 a

Jacobian ideal will do–but it will add many new variables. A

naive approach is to consider

C = ann(A/S),

and take the algebra

B0 = Ce : Ce,



e = deg(S). The bidual of B0,

B = HomS(HomS(B0, S), S))

will often work but not if A is quasi-Gorenstein—i.e. C � A.



Proposition: Let S ⊂ A ⊂ S (graded case). If A is quasi-

Gorenstein

tn(A) = deg(A) · half-integer.

In particular if A ⊂ B are two such algebras,

tn(A) − tn(B) ≥
{

deg(A), if deg(A) is odd
1/2 · deg(A),otherwise.

Proof. The canonical module ofA is HomR(A,R)(−a)
so if A is quasi-Gorenstein

HomR(A,R) � A(−b).
In this case,

tn(A∗) = −tn(A) = tn(A) + deg(A) · b.

Corollary: Quasi-Gorenstein extensions cannot occur ’too’ of-

ten in divisorial chains between S and its integral closure.



The issue is more complicated:

Ie : Ie = A

means that A is Gorenstein in codimension one [pre-quasi-

Gorenstein ...].

Conjecture: If A is a graded algebra as above,

tn(A) = deg(A) · half-integer.

Note that it would place a lower bound on tn(A).



Abstract Tracking Numbers

If R is an integrally closed local ring, we don’t know how to

construct tracking numbers for its R-modules. While the de-

terminant of an R–module E (dimE = dimR) can be

formed

det(E) = (∧eE)∗∗,

there doesn’t seem to be a natural way to attach a degree to

it.

In the case of a R–algebra A of finite integral closure A, there

is an ad hoc solution for the set of submodules of A of rank

r = rankR(A). The construction proceeds as follows:

Let F be a normalizing free R–module

F = Rr = Re1 ⊕ · · · ⊕Rer ⊂ A ⊂ A.

There exist 0 �= f ∈ R such that f · A ⊂ F . For the

R–submodule E of A,



det(fE) ⊂ R(e1 ∧ · · · ∧ er) = Rε.

This means that

det(fE) = I.Rε

where I is a divisorial ideal of R, so If−r is also a divisorial

ideal with a primary decomposition

If−r =
⋂
p
(ri)
i .

Definition: The tracking number of E (offset by F ) is the

integer

tn(E) =
∑
i

ri · deg(R/pi) + tn(Rε).

The value tn(E) is defined up to an offset but it is indepen-

dent of f . It will have several of the properties of the tracking

number defined for graded modules and can play the same role

in the comparison of the lengths of chains of subalgebras lying

between A and A.



Questions

• If (R,m) is a local ring and I is an m-primary ideal,
what is tn(G = grI(R)) like? IfR is Cohen-Macaulay
tn(G) ≥ 0 and can be bounded by other degree func-
tions. (This suggests that one should define the tracking
number of I as tn(G), not tn(I).) For instance, a
guess for a bound is

tn(G) ≤ e1(I) + e2(I).

• When R is a regular local ring of dimension d and G is
the associated graded ring of the integral closure filtration,

tn(G) ≤ (d− 1)e(I).

[Even sharper, according to Claudia’s talk.] Are there
such bounds for singular rings? (This bound also holds
for F –regular rings.)

• It is possible to define tracking numbers for some non-
graded algebras and they are interesting. The construc-
tion is ad hoc and does not extend for modules just for



affine domains but in any characteristic–ah, to paraphrase

a Purdue poet, it just requires a long determinant. (Ex-

tending the notion to more general graded structures is

straightforward.)

• For an associated graded ring G = grI(R)), with spe-

cial fiber F(I) = G ⊗ (R/m), can tn(F(I)) be

connected to the Hilbert coefficients of I in the manner

that the multiplicity of F(I) does?

• For an algebra A (finite over a standard Noether normal-

ization), an interesting puzzle is the possible relationship

between red(A) and tn(A). The formulas or bounds

that relate these integers to deg(A) or reg(A) suggest:

Conjecture: There exists a function c(d) (dependent on

the dimension d of A) such that

red(A) ≤ c(d)
√

tn(A).



Ideals and Modules

Like rings, there are also notions of integral closure and nor-

malization for ideals and modules. One setting they can be

discussed is that of Rees Algebras. There are several defi-

nitions from which we will pick a relative (and more classical)

one. Let R be a ring and E an R–module with an embedding

f : E −→ Rr.

The Rees algebra of E is the image of homomorphism of the

symmetric algebras

S(f) : S(E) −→ S(Rr) = R[T1, . . . , Tr],

R(E) = image S(f).

This definition seems to imply that the Rees algebra depends

on f , so that the proper notation for it should be Rf(E).



This is indeed the case according to an example in [EHU].

They have proposed for an absolute notion of Rees algebra,

R(E) = S(E)/
⋂
f

(ker S(f)).

This gives an algebra that is tighter than the standard defini-

tion

R(E) = S(E)/(modulo R–torsion)

When R is an integral domain, the 3 definitions coincide. In

any event, we will always take a fixed embedding

f : E −→ Rr

In fact, we assume R domain and r = rank(E). The map-

ping

∧r(f) : ∧rE −→ ∧rRr � R

define the ideal

det(E) = image(∧rf).



While we are on the subject, we offer yet another definition of

Rees algebras of modules. Given an R–module E, let

f : E −→ E0

be the embedding into its injective envelope. The the

image of

S(f) : S(E) −→ S(E0),

R(E) = image S(f).

If R is Noetherian and E is finitely generated, this definition

has obvious functorial properties that includes commuting with

localization.

R(E) = R⊕ E ⊕ E2 ⊕ · · · ⊂ S = R[T1, . . . , Tr]

One can then extend to R(E) the notion of integrality etc.

(But still with care since the embedding matters–but not if R

is normal.) The key notion is that of reduction:



Definition: The submodule U ⊂ E is a reduction of E if

R(E) is integral over R(U).

This amounts saying that

Er+1 = U ·Er,
for some integer r, with the smallest called the reduction

number of E relative to U .

Definition: The integral closure of E in Rr is the largest sub-

module E of Rr admitting E as a reduction. If E = E, E

is said to be integrally closed (or complete) (in Rr), with the

caveats dropping when R is normal. In such case,

E =
⋂
V

V E,

here V runs over all the valuations of R. It gives rise to

A test of

U = E



is

det(U) = det(E)

From now on R is normal. Then R(E) is normal when all

En are integrally closed.

Another notion and a construction are useful. If (R,m) is a

local ring,

F(E) = R(E) ⊗ (R/m)

is its special fiber. Its dimension �(E) is the analytic
spread of E (at m). When R/m is infinite, there are reduc-

tions generated by �(E) elements (they are minimal). Among

all such the smallest reduction number is called the reduction

number of E.

One can associate to E an ideal of S = R[T1, . . . , Tr],

(E) = ES,

or its Rees algebra (not to be confused with R(E))

S + ESt+ E2St2 + · · ·



Playing one structure against another is useful:

Proposition: Let M be a graded ideal of the polynomial ring

S = R[x1, . . . , xd], M = ⊕n≥0Mn. If M is an inte-

grally closed S-ideal then each componentMn is an integrally

closed R-module.

Proof. Mn is a R-module of the module Sn freely R-

generated by the monomials Tα in the xi of degree n. Denote

by R(Mn) ⊂ R(Sn) the corresponding Rees algebras. Let

u ∈ Sn be integral over Mn; there is an equation in R(Sn)

of the form

um + a1u
m−1 + · · · + am = 0, ai ∈Mi

n.

Map this equation using the natural homomorphismR(Sn) →
S, that sends the variable Tα into the corresponding monomial

of S. The equation converts into an equation of integrality of

u ∈ S over the ideal M . Since M = M , u ∈Mn. �



Proposition: Let S = R(Rr) = R[x1, . . . , xr] and de-

note by (E) the ideal of S generated by the forms in E. For

any positive integer n,

En = (En)n.

Proof. It suffices to verify the equality of these two inte-

grally closed modules at the valuations ofR. At some valuation

V , V S = V [z1, . . . , zr] and V E is generated by the forms

a1z1, . . . , arzr, with ai ∈ V . We must show that the ideal

(V E) is normal. We may assume that a1 divides all ai, ai =

a1bi, so the ideal (V E) = a1(z1, b2z2, . . . , brzr), and it

will be normal if and only if it is the case for (z1, b2z2, . . . , brzr).

Obviously we can drop the indeterminate z1 and iterate. �



Normality of Algebras of Linear Type

An important class of Rees algebras are those of linear type:

R(E) = S(E).

In this case if

Rm
ϕ−→ Rn −→ E → 0

is a free presentation of E, then

R(E) = R[T, . . . , Tn]/(f1, . . . , fm)

where

[f1, . . . , fm] = [T1, . . . , Tn] · ϕ.

It makes the algebras more amenable.



Theorem: Let R be a regular integral domain and let E be a
torsionfree module of rank r, with a free presentation

Rp ψ−→ Rm ϕ−→ Rn −→ E → 0.

Suppose S(E) is a domain. E is normal if and only if the

following conditions hold:

(i) The ideal Ic(ψ)SR(E), c = m+ r − n, is principal

at all localizations of SR(E) of depth 1.

(ii) The modules Ss(E) are complete, for s = 1, . . . , n−
r.

Ic(ψ)SR(E) ⇔ (Jacobian ideal)SR(E)



Let R be a Cohen–Macaulay ring and let E be a complete

intersection module. This means that there exists a mapping

of rank r

ϕ : Rn −→ Rr,

with E = image ϕ, with n = r + c − 1, for c ≥
2, and the ideal I = det0(E) of maximal minors of ϕ

has codimension c. These modules meet our assumptions that

SR(E) be an integral domain.

Theorem: Let R be a Cohen–Macaulay integrally closed do-

main and let E be a complete intersection module. The fol-

lowing conditions are equivalent:

(a) E is integrally closed.

(b) E is normal (i.e. SR(E) is normal).

(c) det0(E) is an integrally closed generic complete inter-

section.



To prove normality for SR(E) one must verify the conditions

(i) S2, and (ii) R1 of Serre. Fortunately for the modules

above SR(E) is Cohen-Macaulay (by [Katz-Naudé, Simis-

Ulrich-V]). It will allow the reduction to a result of [Goto],

valid for ideals.

For a module defined by a mapping

Rn
ϕ−→ Rr, I = Ir(ϕ),

it converts into:

Theorem: Let I be a generic complete intersection ideal of

codimension c. I is integrally closed if and only if the following

conditions hold:

(i) height ann ∧c+1
√
I ≥ c+ 1;

(ii) height ann ∧2 (
√
I/I) ≥ c+ 1.



The Hard Problems

One could drop the task onto the algebra lap, but the dimen-

sion of R(E) is too large and there may be some opportunities

that we may not want to miss.

• Integral Closure of Modules

A non direct construction of the integral closure of an ideal

or module can be sketched as follows. Let R be a normal

domain and let E be a torsionfree R-module. E is the degree

1 component of the integral closure of the Rees algebra of E:

E � R(E) = R+ E +E2 + · · · � E

This begs the issue since the construction of R(E), for arbi-

trary modules, may verge on the impossibility. It takes place

in a much larger setting (that of a presentation R(E) =

R[T1, . . . , Tn]/L). By a direct construction E � E we

mean an algorithm whose steps take place entirely inR orRr.

These are lacking in the literature.



A significant difference between the construction of the integral

closure of an affine algebra A and that of I for an ideal I
say lies in the ready existence of conductors: Given A by

generators and relations (at least in characteristic zero) the

Jacobian ideal J of A has the property

J ·A ⊂ A,

in other words, A ⊂ A : J . This fact lies at the root of

all current algorithms to build A. There is no known cor-

responding annihilator for I/I . In several cases, one can
cheat by borrowing part of the Jacobian ideal of R[It] by

proceeding as follows. Let (this will be part of the cheat)

R[It] = R[T1, . . . , Tn]/L be a presentation of the Rees

algebra of I . The Jacobian ideal is a graded ideal

J = J0 + J1t+ J2t
2 + · · · ,

with the components obtained by taking selected minors of
the Jacobian matrix. This means that to obtain some of the

generators of Ji we do not need to consider all the generators

of L. Since J annihilatesR[It]/R[It], we have that for each

i

Ji · I ⊂ Ii+1,



and therefore

I ⊂ ⋂
i≥0

Ii+1 : Ji.

Of course when using subideals J ′i ⊂ Ji, or further when only

a few J ′i are used, the comparison gets overstated.

Despite these obstacles, in a number of important cases, one is

able to understand relatively well the process of integral closure

and normalization of ideals. These include monomial ideals

and ideals of finite colength in regular local rings. Even here

the full panoply of techniques of commutative algebra must be

brought to play.

Ad hoc techniques

There are some annihilator methods that often produce

elements in I . One introduced in [Corso,Huneke,Katz,..] is

grounded on annihilation of homology. Let I = (f1, . . . , fn)

be an unmixed ideal of grade g. Let K be the Koszul complex

on the fi. For 0 ≤ j ≤ n− g,



Corso Conjecture-Question: Is

annHj(K) ⊂ I

Lots of experiments lend support to it. Also theoretical results

such if I = I and j = 1, or j = n − g. However it may

happen that ann (Hj(K) = I for all j ≤ n− g.

In the case of a moduleE ⊂ Rr, for any idealL not contained

in the associated primes of det0(E),

E :Rr L ⊂ E

[Note that for ideals, when I = det0(I), this adds nothing.]

Another approach is that of m-fullness. All modules have

the property that for any prime p (assume R contains an infi-

nite field) there is an element x ∈ p such that

xE :Rr p ⊂ E



Numerical Measures

Definition: Let R be a quasi-unmixed normal domain and let

I be an ideal.

(i) The normalization index of I is the smallest integer

s = s(I) such that

In+1 = I · In n ≥ s.

(ii) The generation index of I is the smallest integer

s0 = s0(I) such that∑
n≥0

Intn = R[It, . . . , Is0ts0].

For example, ifR = k[x1, . . . , xd] and I = (xd1, . . . , x
d
d),

then I1 = I = (x1, . . . , xd)
d. It follows that s0(I) = 1,

while s(I) = redI(I1) = d− 1.



For primary ideals and some other equimultiple ideals there are

relations between the two indices of normalization.

Proposition: Let (R,m) be an integrally closed, local Cohen-

Macaulay domain such that the maximal ideal m is normal.

Let I be m-primary ideal of indices of normalization s(I)

and s0(I). Then

s(I) ≤ e(I)((s0(I)+1)d−1)−s0(I)(2d−1)+1),

where e(I) is the multiplicity of I .

Reduction Number of Good Filtrations

Let R be a quasi unmixed integral domain and let I be a

nonzero ideal. Denote by

A =
∑
n≥0

Intn,

the Rees algebra attached to {In}. Noting that while A

may not be a standard graded algebra, it is finitely generated



over R[It]. We may thus apply the theory of Castelnuovo-
Mumford regularity to A in order to deduce results about the
reduction number of the filtration. We state one of these ex-
tensions.

We assume that (R,m) is a local ring and set �(A) =
dimA/mA for the analytic spread of A (which is equal to
the analytic spread of I). If J is a minimal reduction of I , set-
ting B = R[Jt], we can apply the results of [Johnston-Katz]
to the pair (B,A):

Theorem: Let (R,m) be a Cohen-Macaulay local ring and let
{In, �= 0, I0 = R} be a multiplicative filtration such that
the Rees algebra A =

∑
n≥0 Int

n is Cohen-Macaulay and
finite over R[I1t]. Suppose that heightI1 ≥ 0 and let J
be a minimal reduction of I1. Then

In+1 = JIn = I1In, n ≥ �(I1) − 1,

and in particular, A is generated over R[It] by forms of de-
grees at most �− 1 = �(I1) − 1,∑

n≥0

Int
n = R[It, . . . , I�−1t

�−1].



Corollary: If I is a monomial ideal of k[x1, . . . , xd] then

In = I · In−1 n ≥ d− 1.

For modules one has:

Theorem: Let R be a Cohen-Macaulay normal domain of di-

mension d and let E be a torsionfree R–module. If R(E) is

Cohen-Macaulay, then it is generated by En for n < d.

Note that the rank of the module does not matter. It is ob-

tained from the ideal case using the technique of Bourbaki

ideals and deformation.



Divisorial Extensions

An ordinary transplant of the theory of divisorial extensions to

Rees algebras, that is to the chains of subalgebras

R(E) ⊂ A ⊂ R(E),

would not be very useful since the ordinary multiplicities of

these algebras are much too high. Fortunately one can do

much better using the multiplicities (Buchsbaum multiplicities

in the case of modules) ordinarily associated to ideals.

This is a subject that will be treated at greater depth in Polini’s

talk in the workshop so we set the stage and discuss only gen-

eral aspects.

Primary Ideals in Regular Rings

We discuss the role of Briançon-Skoda type theorems in deter-

mining some relationships between the coefficients e0(I) and

e1(I) of the Hilbert polynomial of an ideal. We consider here



the case of a normal local ring (R,m) of dimension d and of

an m-primary ideal I . Set A = R[It] and B = R[It]; we

assume that B is a finite A-module. From the exact sequence

0 → In/In −→ R/In −→ R/In → 0,

we obtain as above the relationship

e1(I) = e1(I) + ê0(I),

where ê0(I) is the multiplicity of the module of components

In/In, if dimL = d; otherwise it is set to zero.



Theorem: Let (R,m) be a Cohen-Macaulay local ring of in-

finite residue field. Suppose the Briançon-Skoda number of R

is c(R). Then for any m-primary ideal I ,

e1(I) ≤ c(R) · e0(I).
In particular, e1(I) ≤ c(R) · e0(I).

Proof. The definition of c = c(I): For any ideal L of R

Ln+c ⊂ Ln, ∀n.
To apply this notion to our setting, let J be a minimal reduc-

tion of I . Assume In+c ⊂ Jn for all n. To estimate the

multiplicity of the module of components In+c/Jn+c-which

is the same as that of the module of components In/Jn-note

that In+c ⊂ Jn, and that Jn admits a filtration

Jn ⊃ Jn+1 ⊃ · · · ⊃ Jn+c,

whose factors all have multiplicity e0(J). More precisely, for
each positive integer k,

λ(Jn+k−1/Jn+k) = e0(J)
(n+ k − 1 + d− 1

d− 1

)
=

e0(J)

(d− 1)!
nd−1+lower



As a consequence we obtain

e1(I) ≤ e1(J) + c(R) · e0(J) = c(R) · e0(I),
since e1(J) = 0. The other inequality, e1(I) ≤ c(R) ·
e0(I) is easy.

Corollary: Let (R,m) be a Japanese regular local ring of

dimension d. Then for any m-primary ideal I ,

e1(I) ≤ (d− 1)e0(I), e1(I) ≤ (d− 1)e0(I).

Proof. In this case, the classical Briançon-Skoda theorem

asserts that c(R) = d− 1.

Normalization of Rees Algebras

The computation (and of its control) of the integral closure of

a standard graded algebra over a field benefits greatly from

Noether normalizations and of the structures built upon them.

If A = R[It] is the Rees algebra of the ideal I of an inte-

gral domain R, it does not allow for many such constructions.



We would still like to develop some tracking of the complex-
ity of the task required to build A (assumed A-finite) through
sequences of extensions

A = A0 → A1 → A2 → · · · → An = A

where Ai+1 is obtained from an specific procedure P applied
to Ai. At a minimum, we would want to bound the length of
such chains.

Let (R,m) be a Cohen-Macaulay local of dimension d, inte-
grally closed, of Briançon-Skoda number c(R), and let I be
an m-primary ideal of multiplicity e0(I). Let A and B be
distinct algebras satisfying the S2 condition of Serre, and such
that

R[It] ⊂ A ⊂ B ⊂ R[It].

For any algebra D such as these, we set λ(R/Dn) for its
Hilbert function; for n� 0, one has the Hilbert polynomial

λ(R/Dn) = e0(D)
(n+ d− 1

d

)
−e1(D)

(n+ d− 2

d− 1

)
+lower

The Hilbert coefficients satisfy e0(D) = e0(I), and accord-
ing to where 0 ≤ e1(D) ≤ c(R)e0.



Theorem: For any two algebras A and B as above,

c(R)e0(I) > e1(B) > e1(A) ≥ 0,

in particular any chain of such algebras has length bounded by

c(R)e0(I).

Proof. Set C = B/A. Since A has Krull dimension

d+1 and satisfies S2, it follows easily thatC is anA-module

of Krull dimension d. From the exact sequence,

0 → Cn −→ R/An −→ R/Bn → 0,

one gets that the multiplicity e0(C) ofC is e1(B)−e1(A).

As e0(C) > 0, we have all the assertions.

Corollary: If (R,m) is a regular local ring of dimension d

and I is an m-primary ideal, then (d− 1)e0(I) bounds the

lengths of the divisorial chains between R[It] and R[It].

Non-Primary Ideals

Few cases are known, an exception being:



Theorem: If I is an equimultiple ideal of codimension g of a

regular local (R,m) then any chain of S2 graded algebras

between R[It] and R[It] has length at most

(g − 1) deg(R/I).

If the proof of this result is any indication, this is a more general

phenomenon and should be approachable using some extended

multiplicity.


