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Abstract. We introduce the technique of tracking numbers of graded algebras and mod-
ules. It is a modified version of the first Chern class of its free resolution relative to any of
its standard Noether normalizations. Several estimations are obtained which are used to
bound the length of chains of algebras occurring in the construction of the integral closure
of a graded domain. Noteworthy is a quadratic bound on the multiplicity for all chains of
algebras that satisfy the condition S2 of Serre.

1. Introduction

A tracking code of an algebraic structure–algebra, ideal, or module–is a tag or index
that can be used for the purpose of comparing two such structures. A way to introduce
them is to attach to an structure S (consider the case of modules over a ring R) an element
of an abelian group G,

det(S) ∈ G,

and follow it up with a linear functional

h : G −→ Z.

Such construction–if it comes with interesting functorial properties–can be useful to study
chains

S1 −→ S2 −→ · · · −→ Sn

and to develop techniques to bound their lengths. As an application of an index introduced
here, we bound lengths in all methods for construction of integral closures of standard
graded domains that uses extensions with the property S2 of Serre, in any characteristic.

The function we treat, tn(E), is mimicked on the first Chern class c1(E) of the graded
module E over the polynomial ring R = k[x1, . . . , xd]:

det(E) � R[−δ].
The integer δ will be called the tracking number of E: δ = tn(E). In particular, unlike
c1(E) the number tn(E) is independent of the Hilbert function of E. Its usefulness comes
from two contrasting rules for its computation–the definition via determinants of complexes
and its Hilbert polynomials.

We now describe the contents of this paper. For a positively generated algebra A, finite
over a standard Noether normalization R, tnR(A) is independent of R. For such algebras,
a stream of results emerges quickly:
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(1) (Theorem 3.6:) tn(A) is not defined entirely by the Hilbert function. In general
tn(A′) ≥ tn(A), where A′ is the algebra defined by the corresponding initial ideal
(strict inequality can occur).

(2) (Theorem 4.2:) tn(A) ≤ deg(A) · reg(A), where deg(A) is the multiplicity and
reg(A) the Castelnuovo-Mumford regularity of A.

(3) (Theorem 5.1:) If A is a reduced standard graded algebra, of integral closure A,

0 ≤ tn(A) ≤ tn(A) ≤
(

deg(A)
2

)
.

This surprising positivity statement is valid in all characteristics and allows for defining a
priori bounds in general processes of integral closure.

2. Determinant of an algebra or a module

Throughout we use basic results and terminology from [1] and/or [2]. In particular, for an
R–moduleE, we refer to E∗ = HomR(E,R) as its dual, and to E∗∗ = HomR(HomR(E,R), R)
as its bidual (sometimes with the natural mappingE → E∗∗). Polynomial rings, k[x1, . . . , xd],
will have the standard grading, deg xi = 1.

Let E be a finitely generated graded module over the polynomial ring R = k[x1, . . . , xd].
If dimE = d, denote by detR(E) the determinantal divisor of E: If E has multiplicity e,

det(E) = (∧eE)∗∗ � R[−δ].

Definition 2.1. The integer δ will be called the tracking number of E: δ = tn(E).

The terminology tracking number (or twist) refers to the use of integers as locators, or
tags, for modules and algebras in partially ordered sets. A forerunner of this use was made
in [5], when divisorial ideals were employed to bound chains of algebras with the property
S2 of Serre.

Example 2.2. If A is a homogeneous domain over a field k, R is a homogeneous Noether
normalization and S is a hypersurface ring over which A is birational,

R ⊂ S = R[t]/(f(t)) ⊂ A

(f(t) is a homogeneous polynomial of degree e), we have (∧eS)∗∗ = R[−(e
2

)
]. As a conse-

quence tn(A) ≤ (
e
2

)
.

Another illustrative example, is that of the fractionary ideal I = (x2/y, y). I is positively
generated but a simple calculation shows tn(I) = −1. Additionally, the algebra obtained
by forming the trivial extension of R by I, A = R ∝ I, has tn(A) = −1.

The following observation shows the use of tracking numbers to locate the members of
certain chains of modules.

Proposition 2.3. If E ⊂ F are graded modules with the same multiplicity that satisfy the
S2 condition of Serre, then tn(E) ≥ tn(F ) with equality only if E = F .
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Corollary 2.4. If the distinct modules in the chain

E0 ⊂ E1 ⊂ · · · ⊂ En

have the same multiplicity and satisfy the condition S2 of Serre, then n ≤ tn(E0)− tn(En).

We list some of the more elementary properties of the function tn(·).
Proposition 2.5. If the complex of finitely generated graded R–modules

0 → A
ϕ−→ B

ψ−→ C → 0

is an exact sequence of free modules in each localization Rp at height one primes, then
tn(B) = tn(A) + tn(C).

Proof. We break up the complex into simpler exact complexes:

0 → ker(ϕ) −→ A −→ A′ = image(ϕ) → 0

0 → A′ −→ ker(ψ) −→ ker(ψ)/A′ → 0

0 → B′ = image(ψ) −→ C −→ C/B′ → 0

and

0 → ker(ψ) −→ B −→ B′ → 0.

We note that by hypothesis, codim ker(ϕ) ≥ 1, codim C/B′ ≥ 2, codim ker(ψ)/A′ ≥ 2,
so that we have the equality of determinantal divisors: det(A) = det(A′) = det(ker(ψ)),
and det(C) = det(B′). What this all means is that we may assume the given complex is
exact.

The rest of the proof is well-known but it is a short argument that is given for complete-
ness. Suppose r = rank(A) and rank(C) = s and set n = r + s. Consider the pair ∧rA,
∧sC. For v1, . . . , vr ∈ A, u1, . . . , us ∈ C, pick wi in B such that ψ(wi) = ui and consider

v1 ∧ · · · ∧ vr ∧w1 ∧ · · · ∧ ws ∈ ∧nB.
Different choices for wi would produce elements in ∧nB that differ from the above by terms
that would contain at least r + 1 factors of the form

v1 ∧ · · · ∧ vr ∧ vr+1 ∧ · · · ,
with vi ∈ A. Such products are torsion elements in ∧nB. This implies that modulo torsion
we have a well defined pairing

[∧rA/torsion] ⊗R [∧sC/torsion] −→ [∧nB/torsion].

When localized at primes p of codimension at most 1 the complex becomes an exact complex
of projective Rp–modules and the pairing is an isomorphism. Upon taking biduals and the
◦ divisorial composition, we obtain the asserted isomorphism.
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Corollary 2.6. Let

0 → A1 −→ A2 −→ · · · −→ An → 0

be a complex of graded R–modules and homogeneous homomorphisms which is an exact
complex of free modules in codimension 1. Then

n∑
i=1

(−1)itn(Ai) = 0.

Proposition 2.7. Let R = k[x1, . . . , xd] and let

0 → A −→ B −→ C −→ D → 0,

be an exact sequence of graded R–modules and homogeneous homomorphisms. If dimB =
dimC = d, codim A ≥ 1 and codim D ≥ 2, then tn(B) = tn(C).

Corollary 2.8. If E is a graded R–module of dimension d, then tn(E) = tn(E/mod torsion) =
tn(E∗∗).

3. Calculation rules for algebras

Proposition 3.1. Let E be a finitely generated graded module over the polynomial ring
R = k[x1, . . . , xd]. If E is torsionfree over R, tn(E) = e1(E) the first Chern number of E.

Proof. Let

0 → ⊕jR[−βd,j ] → · · · → ⊕jR[−β1,j ] → ⊕jR[−β0,j] → E → 0

be a minimal (graded) free resolution of E. The integer

e1(E) =
∑
i,j

(−1)iβi,j

is (see [1, Proposition 4.1.9]) the next to the leading Hilbert coefficient of E. It is also
the integer that one gets by taking the alternating product of the determinants in the free
graded resolution (see Corollary 2.6).

In general, the connection between the tracking number and the first Hilbert coefficient
has to be ‘adjusted’ in the following manner.

Proposition 3.2. Let E be a finitely generated graded module over R = k[x1, . . . , xd]. If
dimE = d and E0 is its torsion submodule,

0 → E0 −→ E −→ E′ → 0,

then

tn(E) = tn(E′) = e1(E′) = e1(E) + ê0(E0),

where ê0(E) is the multiplicity of E0 if dimE0 = d− 1, or 0 otherwise.
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Proof. Denote by HA(t) the Hilbert series of an R–module A (see [1, Chap. 4]) and write

HA(t) =
hA(t)

(1 − t)d
,

if dimA = d. For the exact sequence defining E′, we have

hE(t) = hE′(t) + (1 − t)rhE0(t),

where r = 1 if dimE0 = d− 1, or r ≥ 2 otherwise. Since

e1(E) = h′E(1) = h′E′(1) + r(1 − t)r−1|t=1hE0(1),

the assertion follows.

Remark 3.3. Let A be a homogeneous algebra defined over a field k that admits a Noether
normalization R = k[x1, . . . , xd], then clearly tnR(A) = tnR′(A′), where K is a field exten-
sion of k, R′ = K ⊗k R and A′ = K ⊗k A. Partly for this reason, we can always define
the tracking number of an algebra by first enlarging the ground field. Having done that
and chosen a Noether normalization R that is a standard graded algebra, it will follow that
tnR(A) is independent of R.

Proposition 3.2 suggests a reformulation of the notion of tracking number. By using
exclusively the Hilbert function, the definition could be extended to all finite modules over
a graded algebra (positively graded but not necessarily standard).

Corollary 3.4. Let E and F be graded R–modules of dimension d. Then

tn(E ⊗R F ) = deg(E)tn(F ) + deg(F )tn(E).

Proof. We may assume that E and F are torsionfree modules. Let P and Q be minimal
projective resolutions of E and F , respectively. The complex P⊗RQ is acyclic in codimension
1, by the assumption on E and F . We can then use Corollary 2.6,

tn(E ⊗R F ) =
∑
k≥0

(−1)ktn(⊕i+j=kPi ⊗R Qj).

Expanding gives the desired formula.

Theorem 3.5. Let ∆ be a simplicial complex on the vertex set V = {x1, . . . , xn}, and
denote by k[∆] the corresponding Stanley–Reisner ring. If dim k[∆] = d,

tn(k[∆]) = dfd−1 − fd−2 + f ′d−2,

where fi denotes the number of faces of dimension i, and f ′d−2 denotes the number of
maximal faces of dimension d− 2.

Proof. Set k[∆] = S/I∆, and decompose I∆ = I1 ∩ I2, where I1 is the intersection of
the primary components of dimension d and I2 of the remaining components. The exact
sequence

0 → I1/I∆ −→ S/I∆ −→ S/I1 → 0,

gives, according to Proposition 3.2,

tn(k[∆]) = e1(k[∆]) + ê0(I1/I∆).
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From the Hilbert function of k[∆] ([1, Lemma 5.1.8]), we have that e1 = dfd−1−fd−2, while
if I1/I∆ is a module of dimension d− 1, its multiplicity is the number of maximal faces of
dimension d− 2.

Theorem 3.6. Let S = k[x1, . . . , xn] be a ring of polynomials, and A = S/I a graded
algebra. For a monomial ordering >, denote by I ′ = in>(I) the initial ideal associated to I
and set B = S/I ′. Then tn(B) ≥ tn(A).

Proof. Let J be the component of I of maximal dimension and consider the exact sequence

0 → J/I −→ S/I −→ S/J → 0.

dim J/I < dimA and therefore tn(A) = tn(S/J) = e1(S/J). Denote by J ′ the correspond-
ing initial ideal of J , and consider the sequence

0 → J ′/I ′ −→ S/I ′ −→ S/J ′ → 0.

Noting that S/I and S/J have the same multiplicity, and so do S/I ′ and S/J ′ by Macaulay’s
theorem, dim J ′/I ′ < dimA. This means that

tn(S/I ′) = tn(S/J ′) = e1(S/J ′) + ê0(J ′/I ′) = e1(S/J) + ê0(J ′/I ′) = tn(A) + ê0(J ′/I ′).

Example 3.7. Let A = k[x, y, z, w]/(x3 − yzw, x2y − zw2). The Hilbert series of this
(Cohen–Macaulay) algebra is

HA(t) =
hA(t)

(1 − t)2
=

(1 + t+ t2)2

(1 − t)2
,

so that
tn(A) = e1(A) = h′A(1) = 18.

Consider now the algebra B = k[x, y, z, w]/J , where J is the initial ideal of I for the
Deglex order. A calculation with Macaulay2 gives

J = (x2y, x3, xzw2, xy3zw, y5zw).

By Macaulay’s Theorem, B has the same Hilbert function as A. An examination of the
components of B gives the exact sequence

0 → B0 −→ B −→ B′ → 0,

where B0 is the ideal of elements with support in codimension 1. By Proposition 3.2,

tn(B) = tn(B′) = e1(B′).

At same time, one has the equality of h–polynomials,

hB(t) = hB′(t) + (1 − t)hB0(t),

and therefore
e1(B′) = e1(B) + e0(B0).

A final calculation of multiplicities gives e0(B0) = 5, and

tn(B) = 18 + 5 = 23.

The example shows that tn(A) is independent of the Hilbert function of the algebra.
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4. General bounds

We now describe how the technique of generic hyperplane sections leads to bounds of
various kinds. We are going to assume that the algebras are defined over infinite fields.

One of the important properties of the tracking number is that it will not change under
hyperplane sections as long as the dimension of the ring is at least 3. So one can answer
questions about the tracking number just by studying the 2 dimensional case. The idea
here is that tracking number is more or less the same material as e1 and hence cutting by
a superficial element will not change it unless the dimension is to drop below 2.

Proposition 4.1. Let R = k[x1, . . . , xd] be a ring of polynomials over the infinite field k,
deg(xi) = 1, d > 2, and let E be a finitely generated graded R–module of dimension d.
Then for a general element h ∈ R of degree one R′ = R/(h) is also a polynomial ring, and
tnR(E) = tnR′(E′), where E′ = E/hE.

Proof. First we will prove the statement for a torsion free module E. Consider the exact
sequence

0 → E −→ E∗∗ −→ C → 0.

Note that C has codimension at least 2 since after localization at any height 1 prime E
and E∗∗ are equal. Now for a linear form h in R that is a superficial element for C, we can
tensor the above exact sequence with R/(h) to get the complex

Tor1(C,R/(h)) −→ E/hE −→ E∗∗/hE∗∗ −→ C/hC → 0.

Now as an R–module C/hC has codimension at least 3, so as an R′ = R/(h) module it has
codimension at least 2. Also as Tor1(C,R/(h)) has codimension at least 2 as an R–module,
so it is a torsion R/(h)–module. Hence we have tnR′(E/hE) = tnR′(E∗∗/hE∗∗). But E∗∗

is a torsion free R/(h)–module, so

tnR′(E/hE) = e1(E∗∗/hE∗∗) = e1(E∗∗) = tnR(E∗∗) = tnR(E).

To prove the statement for a general R module E, we consider the short exact sequence

0 → E0 −→ E −→ E′ → 0,

where E0 is the torsion submodule of E. E′ is torsion free, so by the first case we know
that for a general linear element h of R, tnR/(h)(E′/hE′) = tnR(E′). Now if in addition
we restrict ourselves to those h that are superficial for E and E0, we can tensor the above
exact sequence with R/(h) and get

0 = Tor1(E′, R/(h)) −→ E0/hE0 −→ E/hE −→ E′/hE′ → 0,

but sinceE0/hE0 is a torsion R′ = R/(h)–module, tnR′(E/hE) = tnR′(E′/hE′) = tnR(E′) =
tnR(E).

We shall now derive the first of our general bounds for tn(E) in terms of the Castelnuovo–
Mumford regularity reg(E) of the module. For terminology and basic properties of the reg(·)
function, we shall use [2, Section 20.5].
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Theorem 4.2. Let R = k[x1, . . . , xd] and E a generated graded R–module of dimension d.
Then

tn(E) ≤ deg(E) · reg(E).

Proof. The assertion is clear if d = 0. For d ≥ 1, if E0 denotes the submodule of E of the
elements with finite support, deg(E) = deg(E/E0), tn(E) = tn(E/E0) and reg(E/E0) ≤
reg(E), the latter according to [2, Corollary 20.19(d)]. From this reduction, the assertion
is also clear if d = 1.

If d ≥ 3, we use a general hyperplane section h so that tnR(E) = tnR/(h)(E/hE), accord-
ing to Proposition 4.1, and reg(E/hE) ≤ reg(E), according to [2, Proposition 20.20]. (Of
course, deg(E) = deg(E/hE).)

With these reductions, we may assume that d = 2 and consider the natural exact sequence

E −→ E∗∗ −→ C → 0,

where C is a torsion module. One has tn(E) = tn(E∗∗). Since E∗∗ is R–free, tn(E∗∗) ≤
deg(E∗∗)reg(E∗∗), where deg(E∗∗) = deg(E). We claim that reg(E∗∗) ≤ reg(E). If E is
generated by elements of degree < reg(E∗∗), its image in E∗∗ would be a module of rank
< deg(E∗∗), forcing deg(C) > 0. ¡

5. Positivity results

We shall now prove our main result, the somewhat surprising fact that for a reduced
homogeneous algebra A, tn(A) ≥ 0. Since such algebras already admit a general upper
bound for tn(A) in terms of its multiplicity, together these statements are useful in the
construction of integral closures by all algorithms that use intermediate extensions that
satisfy the condition S2 of Serre.

Theorem 5.1. Let A be a reduced, non-negatively graded algebra that is finite over a stan-
dard graded Noether normalization R. Then tn(A) ≥ 0.

Proof. Let A = S/I, S = k[x1, . . . , xn], be a graded presentation of A. From our earlier
discussion, we may assume that I is height unmixed (as otherwise the lower dimensional
components gives rise to the torsion part of A, which is dropped in the calculation of tn(E)
anyway).

Let I = P1 ∩ · · · ∩ Pr be the primary decomposition of I, and define the natural exact
sequence

0 → S/I −→ S/P1 × · · · × S/Pr −→ C → 0,

from which a calculation with Hilbert coefficients gives

tn(A) =
r∑
i=1

tn(S/Pi) + ê0(C).

This shows that it suffices to assume that A is a domain.
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Let A denote the integral closure of A. Note that A is a non-negatively graded algebra
and that the same Noether normalization R can be used. Since tn(A) ≥ tn(A), we may
assume that A is integrally closed.

Since the cases dimA ≤ 1 are trivial, we may assume dimA = d ≥ 2. The case d = 2 is
also clear since A is then Cohen–Macaulay. Assume then d > 2. We are going to change
the base field using rational extensions of the form k(t), which do not affect the integral
closure condition. (Of course we may assume that the base field is infinite.)

If h1 and h2 are linearly independent hyperplane sections in R, they define a regular
sequence in A, since the algebra being normal satisfies the S2 condition of Serre. Effecting
a change of ring of the type k → k(t) gives a hyperplane section h1 − t · h2 ∈ R(t), which is
a prime element in A, according to Nagata’s trick ([3, Lemma 14.1]). Clearly we can choose
h1 and h2 so that h1 − t · h2 is a generic hyperplane section for the purpose of applying
Proposition 4.1 to A. This completes the reduction to domains in dimension d− 1.

One application is to the study of constructions of the integral closure of an affine domain
(see [5] where details are given and the characteristic zero case is exploited via resultants).

Theorem 5.2. Let A be a standard graded domain over a field k and let A be its integral
closure. Then any chain of distinct subalgebras satisfying the condition S2 of Serre,

A ⊂ A1 ⊂ · · · ⊂ An = A,

has length at most
(e
2

)
, where e = deg(A).

Proof. It will suffice, according to Corollary 2.4, to show that 0 ≤ tn(A) ≤ (e
2

)
. The

positivity having been established in Theorem 5.1, we now prove the upper bound.
If k is a field of characteristic zero, by the theorem of the primitive element, A contains

a hypersurface ring S = R[t]/(f(t)), where R is a ring of polynomials R = k[z1, . . . , zd],
deg(zi) = 1, and f(t) is a homogeneous polynomial in t of degree e. As tn(A) ≤ tn(S) =

(e
2

)
,

the assertion would hold in this case.

To complete the proof in other characteristics we resort to the following construction:

Proposition 5.3. Let A be an integral domain finite over the subring R, A = R[y1, . . . , yn],
and let rankR(A) = e. Let K be the field of fractions of R and define the field extensions

F0 = K, Fi = K[y1, . . . , yi], i = 1 . . . n.

Then the module
E =

∑
Ryj11 · · · yjnn , 0 ≤ ji < ri = [Fi : Fi−1]

is R–free of rank e. If A is a standard graded algebra, with deg(yi) = 1, tn(E) ≤ (
e
2

)
.

Proof. As the rank satisfies the equality e =
∏n
i=1 ri, e is the number of ‘monomials’

yj11 · · · yjnn . Their linear independence over R is a simple verification. Note also that there
are monomials of all degrees between 0 and

∑n
i=1(ri−1). Thus according to Proposition 3.1,

the bound for tn(E) is obvious, with equality holding only when E is a hypersurface ring
over R. (The precise value for tn(E) could be derived from Corollary 3.4.)
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