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TANGENT ALGEBRAS

ARON SIMIS, BERND ULRICH, AND WOLMER V. VASCONCELOS

Abstract. One studies the Zariski tangent cone TX
π−→ X to an affine variety

X and the closure TX of π−1(Reg(X)) in TX . One focuses on the comparison

between TX and TX , giving sufficient conditions on X in order that TX = TX .

One considers, in particular, the question of when this equality takes place in

the presence of the reducedness of the Zariski tangent cone. Another problem
considered here is to understand the impact of the Cohen–Macaulayness or

normality of TX on the local structure of X.

1. Introduction

Let A be an affine algebra over a field k, and let ΩA/k be the A-module of Kähler
k-differentials. Classically, the properties of this module are closely related to the
local singularities of A, embodying in particular the well-known Jacobian criterion
for the smoothness of A. Its sheaf version for an algebraic variety is fundamental
in intersection theory and its cohomology is a major vehicle for the study of the
global geometry of the variety.

In this paper we focus on two basic algebras associated to ΩA/k , where A is a
reduced ring essentially of finite type over a perfect field k: the Rees algebra RA/k
of ΩA/k (defined in Section 2) and its close predecessor SA/k , the symmetric algebra
of ΩA/k . If A is regular these algebras coincide, but otherwise they may be quite
apart and their respective properties have different impact on the nature of A. In
[22] the ring SA/k was called the Zariski tangent algebra of A because the closed
fibers of the map Spec(SA/k) −→ Spec(A) are the Zariski tangent spaces to closed
points of Spec(A), when A is an affine algebra over an algebraically closed field.
Alternatively, Spec(SA/k) is the first jet scheme of Spec(A). As to RA/k , it plays
the role of the coordinate ring of a correspondence in biprojective space (see [19]).
A variation on RA/k is the Rees algebra of the top wedge product of ΩA/k which,
as was argued in [21], gives a full-fledged algebraic version of Zak’s inequality for
the dimension of the Gauss image of a projectively embedded variety.

Yet another version of such “tangent” algebras is the tangent star algebra TA/k ,
defined as the associated graded ring of the kernel DA/k of the multiplication map
A ⊗k A −→ A – also known as the diagonal ideal. Looking at the relation of
this algebra to SA/k was the core of [22]. Under mild conditions, it can be shown
that TA/k modulo its A-torsion is isomorphic to RA/k (see [19, 4.6]). Therefore a
certain knowledge about the structure of RA/k might be borrowed from results in
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[22]. However, since this would not make up for the main bulk in the present work,
we have decided to study RA/k ab initio, in its own right.

There is a natural surjection

SA/k � RA/k .

A great deal of the present work has to do with this map, whose kernel measures
the failure of describing RA/k solely in terms of linear equations, or to use a recent
terminology for modules, the failure of ΩA/k being of linear type. We also study
how the singularities of A are reflected in the normality, Cohen–Macaulayness and
Gorensteiness of RA/k .

Let us now describe the main results in some detail.

The paper is divided into three sections. In the first section we focus on the
Zariski tangent algebra SA/k . Recall that ΩA/k ' DA/k/D2

A/k. Now, quite gener-
ally, let S be a Noetherian ring and let D ⊂ S be an ideal such that the symmetric
algebra SA(D/D2) is torsionfree over A = S/D. If one assumes, moreover, that
D is generically a complete intersection and A is reduced then SA(D/D2) is re-
duced. The converse to this statement, namely, that SA(D/D2) is torsionfree if
it is reduced, is known to be false in general. The corresponding question for the
associated graded ring grD(S) was treated in [14, 1.10] and shown to be affirmative
provided S is a quasi-unmixed local ring and A has finite projective dimension over
S. Although the diagonal ideal DA/k does not have finite projective dimension for
singular A, our goal in the first part of the section is to consider this converse in
the framework of SA/k = SA(DA/k/D2

A/k), trading off the homological restriction
on A for a condition on its defining equations (Theorem 2.1 and Corollary 2.2).

In the second part of this section we deal with the same question in the case of
an analytically irreducible curve singularity over an algebraically closed field. Here,
without any assumptions on the defining equations, we prove that such curves
are non-singular provided SA/k is reduced (Theorems 2.6 and 2.8). This can be
regarded as an analogue of Berger’s conjecture (see [4]) in which the reducedness
of SA/k replaces the torsionfreeness of ΩA/k .

In the last part of the section we study the relationship between the normality
of SA/k and its “reflexivity”, defined in terms of the double duals of the symmetric
powers of ΩA/k . Quite generally, the latter is known to imply the former, at least
when A is normal. We will prove that the converse holds under suitable conditions
on the equations of order 2 defining A (Proposition 2.9 and Theorem 2.10).

The second section is mainly devoted to the behavior of the Rees algebra RA/k .
Our first fundamental result deals with the case where A is locally everywhere a
complete intersection. Notice that, in this case, the module of differentials ΩA/k
has projective dimension one. We first recall in parallel the case of the symmetric
algebra. Namely, if A is a local Cohen–Macaulay ring and E is a finite A-module of
projective dimension one, then E satisfies condition (F0) if and only if the symmetric
algebra SA(E) is a complete intersection over A, and E satisfies condition (F1) if
and only if SA(E) is A-torsionfree ([1, Proposition 4], [13, 1.1], [24, 3.4]) – see
Section 2 for an explanation of the condition (Ft). As the torsionfreeness of SA(E)
gives a natural isomorphism SA(E) ' RA(E), it follows that condition (F1) implies
the Rees algebra RA(E) to be Cohen–Macaulay. However, the converse does not
hold in general, even if one assumes the preliminary condition (F0). Nevertheless we
are able to prove this converse in the case where E is the module of differentials of
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a complete intersection over a field of characteristic zero (Theorem 3.1). Our result
shows that Cohen–Macaulayness is a rather restrictive property for RA/k . It implies
for instance that if X ⊂ P2d+1

k is a d-dimensional non-degenerate smooth complete
intersection over a field k of characteristic zero with homogeneous coordinate ring
A, then RA/k is never a Cohen–Macaulay ring. It would be interesting to have a
geometric explanation for this phenomenon.

The second kind of structural results concerns the normality of RA/k , in which
the condition (F2) will play a predominant role. Throughout this part A is assumed
to be a normal domain. To enlarge the picture we consider yet another algebra as-
sociated to a finite A-module E, namely, BA(E) :=

⊕
i≥0(Ei)∗∗, where Ei denotes

the ith graded component of RA(E) and −∗ stands for Hom(−, A). This algebra
could be dubbed the reflexive closure of the Rees algebra RA(E) – note it is a Krull
domain with the same divisor class group as A, but may fail to be Noetherian (see,
e.g., [17, Theorem 2]). This algebra has been studied earlier in [11] (see also [28,
Chapter 7]). First is a basic criterion for the equality RA(E) = BA(E) assuming
that RA(E) is normal or just satisfies Serre’s condition (S2) (Proposition 3.4). The
criterion is given in terms of a new condition that controls the growth of the local
analytic spreads of E. We then move on to an encore of modules of projective
dimension one over normal Cohen–Macaulay domains. For such a module E it is
known that the condition (F2) holds if and only if SA(E) = BA(E) (see [1, Propo-
sition 4]). In particular, if E satisfies (F2) then RA(E) is normal. Surprisingly, the
converse holds as well provided the non-free locus of E be contained in the singular
locus of A (Theorem 3.7). An application to ΩA/k when A is a normal complete
intersection now ensues (Corollary 3.8). In fact it turns out that the inequalities
edimAp ≤ 2 dimAp − 2 locally on the singular locus of A become equivalent to
the powers of ΩA/k being integrally closed in the range 1 ≤ i ≤ ecodimA ; here
ecodimA := edimA− dimA.

In the last section we consider special situations. A substantial part thereof deals
with extending the previous results to cases other than complete intersections. A
reasonable bulk of results is obtained if A is of low dimension or low embedding
codimension or is sufficiently structured. Thus we find satisfactory answers in the
codimension 2 perfect and codimension 3 Gorenstein cases (Proposition 4.1, The-
orem 4.8 and Proposition 4.2). Naturally this part requires several developments
and the results become somewhat too technical to be described in this introduction.
We refer the reader to the appropriate places in the last part of this work.

The section ends with some consequences of the theory so far regarding its rela-
tion to Calabi–Yau varieties. We argue that if A is the homogeneous coordinate ring
of a Calabi–Yau variety then often SA/k or RA/k are the homogeneous coordinate
rings of “Calabi–Yau like” varieties.

2. The symmetric algebra of the module of differentials

We need some preliminaries on symmetric and Rees algebras of modules. We will
draw upon [23] for terminology and basic notions about Rees algebras of modules.
Let E be a finite module over a Noetherian ring A and assume that E is generically
free (i.e., free locally at every associated prime of A). In this setting the Rees
algebra RA(E) of E is defined as the symmetric algebra of E modulo A-torsion,
RA(E) := SA(E)/τA(SA(E)). As is known, this definition retrieves the usual
notion of the Rees algebra of an ideal containing a regular element. If in addition
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E is torsionfree, then E can be embedded into a finite free module F and the Rees
algebra of E can be identified with the image of SA(E) in the polynomial ring
SA(F ). In case SA(E) = RA(E) we say that E is a module of linear type.

We recall the following additional notions. Let E be a finite module over a
Noetherian ring A. Suppose that E has a rank r (i.e., E is free of rank r locally
at every associated prime of A). Given an integer t ≥ 0, we say that E satisfies
condition (Ft) if µ(Ep) ≤ dimAp + r− t for every p ∈ Spec(A) such that Ep is not
free; here µ(−) denotes the minimal number of generators. In terms of Fitting ideals
this condition means that height Fitti(E) ≥ i− r + t+ 1 for i ≥ r. The properties
(Ft) play a role in the study of SA(E). Thus, e.g., the Cohen–Macaulayness of this
algebra implies condition (F0) for E, and if E is of linear type then (F1) holds.

By the same token, one can introduce yet another condition based on the analytic
spread `(E) of a finite module E over a local ring (A,m), defined to be the Krull
dimension of the residue algebra RA(E)/mRA(E) (see [23]). We will say that
a finite module E of rank r over a Noetherian ring A satisfies condition (Lt) if
`(Ep) ≤ dimAp + r − t for every p ∈ Spec(A) with dimAp ≥ t. Roughly, this
condition plays a similar role for the Rees algebra as (Ft) plays for the symmetric
algebra. Condition (Ft) implies (Lt), and the converse holds if E is free locally in
codimension ≤ t− 1 and is of linear type. We will only use these conditions in the
range 0 ≤ t ≤ 2.

Our main interest throughout is the module of Kähler differentials ΩA/k . Let A
be a reduced algebra essentially of finite type over a perfect field k – hence ΩA/k is
generically free. We denote by SA/k := SA(ΩA/k) and by RA/k := RA(ΩA/k) the
symmetric algebra and the Rees algebra of ΩA/k , respectively. If in addition (A,m)
is local and equidimensional then ΩA/k has a rank, given by

(2.1) rank ΩA/k = dimA+ trdegk(A/m).

In this case the above Fitting conditions can be expressed in terms of local embed-
ding dimensions. Namely, ΩA/k satisfies (Ft) if and only if edimAp ≤ 2 dimAp − t
for every non-regular prime p ∈ Spec(A) (see [22, the proof of 2.3]).

In the following part we put an emphasis on the structure of the symmetric
algebra SA/k as an ancestor of the corresponding Rees algebra RA/k , which will be
the topic of the next section.

2.1. Reducedness: relation to torsionfreeness. The main result of this part
has a curious geometric consequence. Let A be a local domain with an isolated
singularity that is essentially of finite type over a perfect field. If the Zariski tangent
algebra of A is reduced, but not a domain, then the defining ideal of A has to contain
“many” quadrics. In the language of jet schemes, the same conclusion holds if the
first jet scheme of Spec(A) is reduced, but not irreducible.

Theorem 2.1. Let A be a reduced ring essentially of finite type over a perfect field
k. Assume that for every non-minimal p ∈ Spec(A), Ap ' R/I where (R, n) is a
regular local ring essentially of finite type over k and I ⊂ R is an ideal satisfying

µ(I + n3/n3) ≤ dimR− 1.

Then SA/k is reduced (if and ) only if it is A-torsionfree (i.e., ΩA/k is of linear
type).

Proof. The “if” statement was explained in the Introduction.
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To show the converse, let T ⊂ SA/k denote the A-torsion submodule of SA/k and
suppose that T 6= 0. Then there exists an associated, hence minimal, prime of SA/k
contracting to a non-minimal prime of A. We may further take such a non-minimal
prime to be minimal among all non-minimal primes of A that are contracted from
some minimal prime of SA/k . By localizing at this non-minimal prime, we do not
change either the hypotheses or the conclusion of the statement, so we can reduce
the argument to the situation where (A,m,K) is local and m is the contraction of
a minimal prime of SA/k . Moreover, every minimal prime of SA/k not containing
m must contract to a minimal prime of A, hence contains the torsion T . From this
follows, since SA/k is reduced, the crucial relation

(2.2) T ∩mSA/k = 0 .

Now SA/k/mSA/k is a standard graded polynomial ring over K in n := µ(ΩA/k)
variables. The equality (2.2) implies that T is mapped isomorphically onto its image
in this polynomial ring. Let h(t) := dimK [T ]t and r := min{t ≥ 0 | [T ]t 6= 0}. It
follows that h(t) is at least the number of monomials of degree t−r, in other words,

h(t) ≥
(
t− r + n− 1

n− 1

)
.

Now consider a presentation A ' R/I as given by assumption. Further write
m := µ(I + n3/n3) and (A′,m′) := (A/m2,m/m2). The usual A-free presentation of
ΩA/k by means of the transpose of a Jacobian matrix induces a presentation

A′ m −→ A′ n −→ A′ ⊗A ΩA/k → 0 ,

yielding, for every t ≥ 1, an exact sequence

A′ m ⊗A′ St−1(A′ n) −→ St(A′ n) −→ A′ ⊗A St(ΩA/k)→ 0 .

The equality (2.2) also says that, for every t ≥ 0, the graded component [T ]t of
T is a K-vector space of dimension h(t) and a direct summand of St(ΩA/k) as an A-
module. Hence A′⊗A St(ΩA/k) too admits K⊕h(t) as a direct summand. Therefore
m′ ⊕h(t) is a direct summand of the image of A′ m⊗A′ St−1(A′ n) in St(A′ n), which
implies that

m

(
t− 1 + n− 1

n− 1

)
≥ µ(m′)h(t) ≥ µ(m′)

(
t− r + n− 1

n− 1

)
for every t ≥ 1. Observing that dimR = µ(m) = µ(m′), this inequality contradicts
the assumption m ≤ dimR− 1. �

Corollary 2.2. Let (R, n) be a regular local ring essentially of finite type over a
perfect field k, and let I ⊂ R be an ideal such that A = R/I is reduced. Assume
that one of the following conditions holds :
(i) µ(Ip) ≤ dimRp − 1 for every non-minimal p ∈ V (I) ;
(ii) I ⊂ n3 and A is an isolated singularity.

Then SA/k is reduced (if and ) only if it is A-torsionfree.

Remark 2.3. The full force of Theorem 2.1 takes form in the case of a homogeneous
ideal I ⊂ k[X] = k[X1, . . . , Xn], with k a perfect field, such that A = k[X]/I
is reduced and regular on the punctured spectrum. If SA/k is reduced, but not
torsionfree, then Proj (k[X]/I) ⊂ Pn−1

k lies on the intersection of n independent
quadrics because in this situation dimk[I] 2 ≥ n by Theorem 2.1. There is a converse
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when I ⊂ (X)2 is equidimensional and dimk[I] 2 ≤ 2 height I, namely, if SA/k
is torsionfree then n ≥ 2 height I + 1 (cf. the beginning of this section), hence
Proj (k[X]/I) ⊂ Pn−1

k cannot lie on the intersection of n independent quadrics.

The next two examples illustrate the above results. The first shows that Theorem
2.1 is sharp, i.e., that the assumption on the numbers of generators cannot be
relaxed. For a geometric insight it may be convenient to recall the interpretation,
given in [19, 5.17], of the tangential variety to Proj (A) ⊂ Pn−1

k as Proj (k⊗ARA/k).

Example 2.4. Consider the homogeneous coordinate ring A of the Veronese sur-
face in P5

k. Thus A = k[X]/I2(X) where X is a symmetric 3 × 3 matrix of in-
determinates over k (assumed to be of characteristic 6= 2). Here A is a Cohen–
Macaulay domain with an isolated singularity, I2(X) is generated by quadrics, and
µ(I2(X)) = 6 = dim k[X]. It can be seen with the aid of Macaulay that SA/k is
reduced. However, it is not A-torsionfree because ΩA/k fails to have the expected
number of generators locally at the irrelevant ideal A+ (see the beginning of this
section) – alternatively, using the interpretation mentioned above, one could argue
that the defining equation of the tangential variety (which coincides with the secant
variety, hence is defined by the determinant of X), when read in the presentation
variables of SA/k , is a nonzero torsion element. Actually, as in the reduction step
of the proof of Theorem 2.1, SA/k has exactly two minimal primes, T and (X)SA/k ,
the first of which defines RA/k .

Another computation with Macaulay shows that SA/k is Cohen–Macaulay, but
S(DA/k) is not. This example incidentally answers a question posed in [10, Re-
mark on p. 142 ] concerning the existence of a Cohen–Macaulay generic complete
intersection ideal D ⊂ S, with S and S/D Cohen–Macaulay, for which the symmet-
ric algebra S(D/D2) is Cohen–Macaulay, but the symmetric algebra S(D) is not.
Mark Johnson obtained examples with the latter behavior even in a polynomial
ring ([15, Example 1]).

Example 2.5. Let A = k[X]/I2(X) where (X) is the r-catalecticant matrix(
X1 X2 X3 X4

Xr+1 Xr+2 Xr+3 Xr+4

)
with 1 ≤ r ≤ 4. Note that for r = 4 we obtain the 2 × 4 generic matrix and
for r = 1, the usual 2 × 4 generic Hankel matrix. Also A is a Cohen–Macaulay
(domain) in all cases, being a specialization of the generic situation. Clearly A
is an isolated singularity. For values 1 ≤ r ≤ 2 the Zariski tangent algebra SA/k
is neither Cohen–Macaulay nor torsionfree. Geometrically, we see the reason for
SA/k 6= RA/k since in this range the tangential variety Proj (k ⊗A RA/k) ⊂ Pr+3

k

to Proj(k[X]/I2(X)) ⊂ Pr+3
k is a proper subvariety of the ambient space. For

values 3 ≤ r ≤ 4 the Zariski tangent algebra SA/k is Cohen–Macaulay (computer
calculation), hence torsionfree because r+4 ≥ 7 = 2 height I2(X)+1 (see [24, 3.3]).

2.2. Reducedness: an analogue of Berger’s conjecture. When dimA = 1
one can make Theorem 2.1 more precise. Here it is natural to work in the more
general setting of complete k-algebras. Instead of the module of Kähler differentials
we use the universally finite module of differentials, defined in an analogous way
as D/D2 where D now is the kernel of the multiplication map A⊗̂kA −→ A . Our
result is reminiscent of Berger’s well-known conjecture asserting that the module of
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differentials of a reduced curve singularity over a perfect field cannot be torsionfree
(see [4]). It is clear at least that the entire symmetric algebra SA/k cannot be A-
torsionfree, as otherwise the module of differentials would satisfy condition (F1),
which translates into the inequality edimA ≤ 2 dimA − 1 = 1 (see the discussion
at the beginning of Section 2).

Theorem 2.6. Let k be an algebraically closed field and let A = k[[x1, . . . , xn]] be
a one–dimensional domain. Then SA/k is reduced (if and ) only if A is regular.

Proof. Assume that SA/k is reduced. To argue by way of contradiction assume that
n = edimA ≥ 2. Now, the integral closure of A is the power series ring k[[t]] in one
variable. Letting v(−) denote the t-adic valuation, we may arrange so that

v(x1) < v(x2) < v(x3) ≤ · · · ≤ v(xn)

and v(x2)/v(x1) is not an integer (the condition on v(xi), for i ≥ 3, being vacuous if
n = 2). Write A = k[[X1, . . . , Xn]]/(f1, . . . , fm) with fi ∈ (X1, . . . , Xn)2, Tj = dXj

and tj = dxj , where d denotes the universally finite derivation. Notice that

SA/k ' A[t1, . . . , tn] = A[T1, . . . , Tn]/(
n∑
j=1

∂fi
∂xj

Tj | 1 ≤ i ≤ m) .

Here ∂fi/∂xj denotes the image of ∂fi/∂Xj in A. Clearly these elements are
contained in the maximal ideal m of A.

As before, let T denote the A-torsion of SA/k . By the reducedness of SA/k ,
one has T ∩ mSA/k = 0 as in (2.2) – note that the localization reduction step
there is needless in the present context. In particular Supp(mSA/k) ∩ V (mSA/k) ⊂
V (T + mSA/k) as subsets of Spec(SA/k). On the other hand,

dim SA/k/(T + mSA/k) = dim RA/k/mRA/k = 1 .

Since (mSA/k, t3, . . . , tn) is a two-dimensional prime ideal of SA/k , it follows that
(mSA/k, t3, . . . , tn) 6∈ Supp(mSA/k).

Thus (m SA/k)(m SA/k,t3,...,tn) = 0. From the presentation

SA/k/(t3, . . . , tn) = A[T1, T2]/J
with

J =
(
∂fi
∂x1

T1 +
∂fi
∂x2

T2 | 1 ≤ i ≤ m
)
,

we see that
mA[T1, T2]mA[T1,T2] = JA[T1, T2]mA[T1,T2] .

In particular, there exists a polynomial g(T1, T2) ∈ A[T1, T2] \mA[T1, T2] with

g(T1, T2) ·m ⊂
(
∂fi
∂x1

T1 +
∂fi
∂x2

T2 | 1 ≤ i ≤ m
)
.

Comparing coefficients, we conclude that

m =
(
∂fi
∂x1

,
∂fi
∂x2

| 1 ≤ i ≤ m
)
.

Since v(x1) is the smallest positive element in the value semigroup of A, there
exists an i such that v(x1) = v(∂fi/∂x1), or v(x1) = v(∂fi/∂x2). Write f :=
fi. Assuming the first, we write f = aX2

1 + g, with a ∈ k and g ∈ (X3
1 ) +

(X1, . . . , Xn)(X2, . . . , Xn). Obviously v(g(x1, . . . , xn)) > 2v(x1), hence v(∂g/∂x1) >
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v(x1). Therefore v(∂f/∂x1) = v(x1) implies a 6= 0, while f(x1, . . . , xn) = 0 implies
a = 0. This is a contradiction.

Next assume v(x1) = v(∂f/∂x2) and write

f =
∞∑
i=2

aiX1
i + bX1X2 + h ,

where ai ∈ k, b ∈ k and h ∈ (X2
1 , X2)X2 + (X1, . . . , Xn)(X3, . . . , Xn). Here

v(h(x1, . . . , xn)) > v(x1)+v(x2), hence v(∂h/∂x2) > v(x1). Therefore v(∂f/∂x2) =
v(x1) implies b 6= 0. But then f(x1, . . . , xn) = 0 implies

v(x1) + v(x2) = v(bx1x2) = v(
∞∑
i=2

aix
i
1) = lv(x1)

for some integer l. But this contradicts our assumption that v(x2)/v(x1) is not an
integer. �

Remark 2.7. The above result means that the first jet scheme of an integral alge-
broid curve singularity over an algebraically closed field cannot be reduced.

The proof of Theorem 2.6 gives the following stronger result:

Theorem 2.8. Let k be an algebraically closed field, let A = k[[x1, . . . , xn]] be a
one-dimensional ring and assume that SA/k is reduced. Then A/p is regular for
every minimal prime ideal p of A. If in addition char(k) = 0 and A is quasi-
homogeneous (i.e., the completion of a positively graded k-algebra), then A is regu-
lar.

Proof. We use the notation of the previous proof. Of course A is reduced. Suppose
there exists a minimal prime p of A such that A/p is not regular. Then choose a
minimal generating set x1, . . . , xn of m/p such that

v(x1 + p) < v(x2 + p) < v(x3 + p) ≤ · · · ≤ v(xn + p) ≤ ∞

and the ratio of the first two values is not an integer (here v is the t–adic valuation
on the integral closure k[[t]] of A/p). The rest of the proof proceeds as before,
replacing SA/k/(t3, . . . , tn) by SA/k/(p, t3, . . . , tn).

Now assume that char(k) = 0 and A is quasi-homogeneous. Let τ denote the
kernel of the Euler map ΩA/k � m. Since τ is the torsion of ΩA/k , by the re-
ducedness of SA/k we have τ

⋂
mΩA/k = 0 as in (2.2), hence τ is a direct summand

of ΩA/k . It follows that τ = 0 since µ(ΩA/k) = edim R = µ(m). But then A is
regular because in the quasi-homogeneous case the Berger conjecture is true (see
[18, 4.4]). �

2.3. Normality versus reflexivity. Let A be a normal domain essentially of
finite type over a perfect field k. An interesting algebra related to SA/k is the
“reflexive closure” BA/k := BA(ΩA/k) =

⊕
i≥0 (ΩiA/k)∗∗ of RA/k =

⊕
i≥0 ΩiA/k ,

where −∗ stands for A-duals. There is a natural A-algebra inclusion RA/k ⊂ BA/k
(see Subsection 3.2, where we study cases when this inclusion is an equality). Now,
if SA/k is normal then it is torsionfree, so SA/k = RA/k ⊂ BA/k . In this part we
give sufficient conditions in order that, in the presence of the normality of SA/k ,
the inclusion SA/k ⊂ BA/k be an equality. The conditions are stated, once again,
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in terms of the number of “quadrics” contained in I, when I is the defining ideal
of A in a regular local ring (R, n) essentially of finite type over k.

First we prove a more general result.

Proposition 2.9. Let (R, n) be a regular local ring essentially of finite type over a
perfect field k and let I ⊂ n2 be an ideal such that A = R/I is reduced. Write g for
the height of I and m for the maximal ideal of A.

(a) If SA/k is equidimensional and (SA/k)mSA/k
is regular, then µ(I+n3/n3) ≥

2g.
(b) Assume that char(k) = 0 and R is the localization of the polynomial ring

k[X1, . . . , Xn] at its homogeneous maximal ideal. Let I2 denote the ideal of
R generated by 2-forms in X1, . . . , Xn such that I + n3 = I2 + n3. If SA/k
is equidimensional and (SA/k)mSA/k

is regular, then `(I2) = 2g.

Proof. Knowingly, SR/k is a polynomial ring over R. In a more precise way, let
d : R −→ ΩR/k stand for the universal derivation. Then SR/k ' R[T], where in part
(a), T = T1, . . . , Tn may be chosen to be the differentials (i.e., the images under d)
of a separating transcendence basis of R over k and, in part (b), as the differentials
dX1, . . . , dXn. Set K := R/n, so that the residue field of R(T) = R[T]nR[T] is
K(T). Write r := trdegk(A/m) = trdegkK. There is a presentation

(SA/k)mSA/k
' R(T)/J .

Let p be a minimal prime of A with dimA/p = dimA. Since SA/k is equidi-
mensional, one has dim SA/k = dimA/p + rank ΩAp/k (see [25, the proof of 1.1.1]).
Therefore, by (2.1) one gets

dim SA/k = dimA/p+trdegk(A/p) = 2 dimA/p+r = 2(n−r−g)+r = 2n−2g−r.

Hence, again by the equidimensionality of SA/k ,

heightJ = dimR(T)− height mSA/k = n− r − (dim SA/k − dim SA/k/mSA/k)
= n− r − (dim SA/k − n) = n− r − ((2n− 2g − r)− n) = 2g .

Thus, since (SA/k)mSA/k
is regular, we have

dimK(T)(J +N 2/N 2) = 2g ,

where N = nR(T).
Now let f1, . . . , fm in R be so chosen that they generate I modulo n3 for part

(a), and that they be homogeneous quadrics in k[X1, . . . , Xn] generating the ideal
I2 for part (b). In either case, one has

J +N 2/N 2 = (dfi | 1 ≤ i ≤ m) +N 2/N 2.

It follows that m ≥ 2g, thus proving (a).
To prove (b), let f := f(X) denote any of the chosen 2-forms f1, . . . , fm in

k[X] = k[X1, . . . , Xn]. Since the Hessian matrix ϕ of f is symmetric, one has

X · ϕ ·Tt = T · ϕ ·Xt.

As the Hessians of f(X) and of f(T) coincide this shows that
n∑
j=1

∂f(X)
∂Xj

Tj =
n∑
j=1

∂f(T)
∂Tj

Xj ,
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hence

df =
n∑
j=1

∂f(T)
∂Tj

Xj .

We deduce that

dimk(T)((dfi | 1 ≤ i ≤ m) +N 2/N 2) = rank
(
∂fi(T)
∂Tj

)
i,j

= rank
(
∂fi(X)
∂Xj

)
i,j

= n− rank ΩR/k[f1,...,fm]

= n− trdegk[f1,...,fm]R

= trdegk k[f1, . . . , fm] = dim k[f1, . . . , fm]

(see also [20, 1.1]). On the other hand, since f1, . . . , fm are forms of the same degree
generating I2, we have k[f1, . . . , fm] ' k⊗RR(I2), hence dim k[f1, . . . , fm] = `(I2).
Summing up, we have proved that

2g = dimk(T)(J +N 2/N 2) = `(I2).

�

Theorem 2.10. Let A be a normal domain essentially of finite type over a perfect
field k. Assume that one of the following conditions holds :

(i) For every non-regular prime p ∈ Spec(A), Ap ' R/I where (R, n) is a
regular local ring essentially of finite type over k and I ⊂ n2 is an ideal
satisfying µ(I + n3/n3) ≤ 2 height I − 1 ;

(ii) (char(k) = 0) A is an isolated singularity and has a presentation A '
R/I with (R, n) the localization of k[X1, . . . , Xn] at (X1, . . . , Xn), such that
`(I2) 6= 2 height I; here I2 denotes the ideal of R generated by 2-forms in
X1, . . . , Xn such that I + n3 = I2 + n3.

Then SA/k is normal (if and ) only if SA/k = BA/k .

Proof. Assume that SA/k is normal. In this case SA/k is a domain, since Spec (SA/k)
is connected. We prove that the natural inclusion SA/k ⊂ BA/k is an equality. It
suffices to show this after localizing at the height one primes of SA/k . Thus, let
q ∈ Spec(SA/k) be a prime of height one. We are done once we prove that Aq∩A
is regular. Now, replacing A by Aq∩A, we may assume that (A,m) is local and
m ⊂ q. By assumption, (SA/k)q is regular, hence so is its further localization
(SA/k)mSA/k

. According to Proposition 2.9 this contradicts our assumptions, unless
A is regular. �

Corollary 2.11. Let (R, n) be a regular local ring essentially of finite type over a
perfect field k and let I ⊂ n2 be an ideal such that A = R/I is an equidimensional
isolated singularity. If SA/k is reduced and (SA/k)mSA/k

is regular then

µ(I + n3/n3) ≥ min{dimR, 2 height I} .

Proof. If µ(I + n3/n3) ≤ dimR − 1 then SA/k is torsionfree by Theorem 2.1. Since
A is reduced and equidimensional it follows that SA/k is equidimensional as well
(see (2.1) and [25, the proof of 1.1.1]). Therefore µ(I + n3/n3) ≥ 2 height I by
Proposition 2.9(a). �



TANGENT ALGEBRAS 11

3. The Rees algebra of the module of differentials

3.1. Cohen–Macaulayness of RA/k. Let A be a local Cohen–Macaulay ring and
let E be a finite A-module of projective dimension one. If E satisfies condition (F1)
then the symmetric algebra SA(E) is a Cohen–Macaulay torsionfree A-algebra (see
[1, Propositions 3 and 4], [13, 1.1], [24, 3.4]) – in particular, the Rees algebraRA(E)
is Cohen–Macaulay. The question as to whether, conversely, RA(E) being Cohen–
Macaulay implies (F1) has a negative answer in general even if E satisfies (F0) (see
[23, 4.7]). The theorem below will show that this converse holds when E is the
module of differentials of a complete intersection over a field of characteristic zero.
This shows that Cohen–Macaulayness is a rather restrictive property for RA/k .

Theorem 3.1. Let k be a field of characteristic zero and let A be a k-algebra essen-
tially of finite type which is locally a complete intersection. Assume the following
conditions :

(i) edimAp ≤ 2 dimAp for every prime p ∈ Spec(A) ;
(ii) RA/k is Cohen–Macaulay.

Then edimAp ≤ 2 dimAp − 1 for every non-minimal prime p ∈ Spec(A).

Proof. Arguing by way of contradiction, let p ∈ Spec(A) be minimal such that
edimAp ≥ 2 dimAp ≥ 2. By localizing at this prime, we may assume that (A,m)
is local and, by (i), that edimA = 2 dimA.

Next we reduce to the case where the residue field K := A/m is algebraic over
k. To do this, let r be the transcendence degree of K over k and suppose r ≥
1. Write A = k[x1, . . . , xm]p and pick r general k-linear combinations y1, . . . , yr
of x1, . . . , xm such that, in particular, their residues yield a transcendence basis
of K over k. Notice that L := k(y1, . . . , yr) is a subfield of A. Furthermore,
ΩA/L = ΩA/k/(Ady1 + · · · + Adyr) with d : A −→ ΩA/k denoting the universal
derivation. On the other hand, height(ΩA/kRA/k) = rank ΩA/k by [23, 2.2] and
rank ΩA/k > r according to (2.1). Hence the general choice of y1, . . . , yr and the
Cohen–Macaulayness of RA/k yield an isomorphism

R(ΩA/L) ' R(ΩA/k)/(dy1, . . . , dyr) ,

which shows in particular that this Rees algebra is again Cohen–Macaulay (see [6,
2.2(f)]). Thus, replacing k by L, we may assume henceforth that K is algebraic
over k.

Set d := dimA (a number, not the universal derivation!) and induct on d.
If d = 1, the Cohen–Macaulayness of RA/k implies that ΩA/k modulo torsion is
free (see [23, 4.3]), which would force A to be regular (see [16, Theorem]), thus
contradicting the equality edimA = 2.

Hence we may suppose that d ≥ 2. Write A = R/I, where (R, n) is a regular
local ring essentially of finite type over k and I ⊂ n2 is an ideal. Write n :=
dimR = edimA = 2d and let δ : R −→ ΩR/k be the universal derivation. Since
R is smooth over k and the extension k ⊂ K is separable algebraic, there exist
n elements X1, . . . , Xn in n so that δX1, . . . , δXn form a basis of ΩR/k . For an
element f in R we can then define the “partial derivatives” ∂f

∂Xi
via the equation

δf =
∑ ∂f

∂Xi
dXi, and we write ∂f

∂xi
for their images in A. By assumption, I is



12 A. SIMIS, B. ULRICH, AND W. V. VASCONCELOS

generated by an R-regular sequence f1, . . . , fd. We consider the n by d matrices

Θ =
(
∂fj
∂Xi

)
and θ =

(
∂fj
∂xi

)
.

Now θ presents the A-module ΩA/k , which has projective dimension one and
satisfies condition (F1) locally in codimension d−1 ≥ 1 by the inductive hypothesis.
The analytic spread of this module is at most dimA+ rank ΩA/k − 1 (see [23, 2.3])
and the latter number is 2d−1 = n−1 (see (2.1)). Since RA/k is Cohen–Macaulay,
we may then apply [23, 2.3, 4.7(a) and 4.8] with s = n− 1 to conclude that after a
k-linear change of basis,

I1(θ) =
(
∂f1

∂xn
, . . . ,

∂fd
∂xn

)
.

Thus

I1(Θ) ⊂
(
∂f1

∂Xn
, . . . ,

∂fd
∂Xn

, I

)
.

Set J := I1(Θ) and J0 := ( ∂f1∂Xn
, . . . , ∂fd

∂Xn
), and notice that J + I = J0 + I by the

above. Furthermore height J0 ≤ d.
We show that

I ⊂ nJ ,

where ¯ denotes integral closure. Thus, let f be an element of n. We argue that

f ∈ n

(
∂f

∂X1
, . . . ,

∂f

∂Xn

)
.

This is well-known in slightly different settings (see, e.g., [26, 7.1.5]), but for lack of
the particular reference needed here we include a proof. By the valuative criterion
for integral dependence it suffices to show that f ∈ n( ∂f

∂X1
, . . . , ∂f

∂Xn
)V for every

local extension R ⊂ V with V a complete discrete valuation ring (see, e.g., [26,
6.8.4]). Since the extension k ⊂ K is separable, there exists a coefficient field K
of V that contains k. Clearly V ' K[[t]]. Write D : K[[t]] −→ K[[t]]Dt ' K[[t]]
for the universally finite K-derivation of K[[t]], which maps a power series h(t) to
h′(t)Dt. As R ⊂ K[[t]] and k ⊂ K, one can restrict D to R and this restriction
factors though δ. Thus Df =

∑ ∂f
∂Xi

DXi or, equivalently, f ′ =
∑ ∂f

∂Xi
X ′i. Since

the characteristic of K is zero, one has hV = th′V for every power series h ∈ V that
in not a unit in V . Recall that f and X1, . . . , Xn are in n, hence in the maximal
ideal of V . Thus, multiplying both sides of the above equation for f ′ by t, one sees
that indeed f ∈

∑ ∂f
∂Xi

XiV ⊂ n( ∂f
∂X1

, . . . , ∂f
∂Xn

)V .
Having shown the inclusion I ⊂ nJ , we conclude that

J + I = J0 + I ⊂ J0 + nJ ⊂ J0 + n(J + I) .

The valuative criterion for integral dependence now yields J + I ⊂ J0. Therefore
height(J + I) = heightJ0 ≤ d. Hence dimR/(J + I) ≥ 2d− d = d ≥ 2. But this is
impossible because R/(J + I) ' A/I1(θ) has dimension zero by assumption (i). �

Remark 3.2. The theorem implies the following geometric result: let X ⊂ P2d+1
k

denote a d-dimensional smooth complete intersection over a field k of characteristic
zero, with homogeneous coordinate ring A. If RA/k is Cohen–Macaulay then X is
degenerate.
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Question 3.3. It seems reasonable to ask whether Theorem 3.1 holds without
assumption (i).

3.2. Normality of RA/k. Let A be a normal domain and let E be a finite A-module
of rank r. We write Ei for the ith graded component RA(E)i of RA(E) and call
it the ith power of E. Notice that Ei = Si(E)/τA(Si(E)). Since E has rank r,
E1 can be embedded into F := Ar and any such embedding induces an embedding
of RA(E) into a polynomial ring SA(F ) = A[t] = A[t1, . . . , tr] as a graded A-
subalgebra. Let RA(E) denote the integral closure of RA(E) in A[t], which is
again a graded A-subalgebra. Since A is normal, this integral closure coincides
with the integral closure of RA(E) in its field of fractions, and in particular does
not depend on the chosen embedding E1 ⊂ F . We denote by Ei ⊂ A[t]i the ith
graded component of RA(E) and call it the ith normalized power of E. We say
that E is integrally closed if E1 = E1 and that E is normal if Ei = Ei for every
i ≥ 1, or equivalently, if RA(E) is normal. One can see that there are inclusions

(3.1) Ei ⊂ Ei ⊂ (Ei)∗∗ ⊂ Si(Ar) .
Recall that BA(E) :=

⊕
i≥0(Ei)∗∗; the property (L2) used in the next proposition

has been defined in the preliminaries of Section 2 .

Proposition 3.4. Let A be a universally catenary normal domain and let E be a
finite A-module. The following conditions are equivalent :

(1) RA(E) is normal and E satisfies condition (L2) ;
(2) RA(E) satisfies condition (S2) of Serre and E satisfies condition (L2) ;
(3) RA(E) = BA(E).

Proof. (1) ⇒ (2): This is obvious.
(2) ⇒ (3): It suffices to show that all powers of E satisfy Serre’s condition (S2).

For that let p ⊂ A be any prime ideal of height at least two. We may assume that
A is local with maximal ideal m = p. Then height mRA(E) = dimRA(E)− `(E) =
dimA + rankE − `(E) ≥ 2, the first equality by the catenarian assumption, the
second one by a standard formula (see [23, 2.2]), and the last inequality by (L2).
Since RA(E) satisfies condition (S2), the ideal m then contains an RA(E)-regular
sequence of two elements. This is also a regular sequence on each power Ei, hence
depthEi ≥ 2 for every i ≥ 1.

(3)⇒ (1): By (3.1), we have equality of powers and normalized powers through-
out. This means that RA(E) is normal.

Next let p ⊂ A be a prime ideal of height at least two. We may assume that A
is local with maximal ideal m = p. To prove condition (L2) it suffices to show that
height mRA(E) ≥ 2. We will actually show that mRA(E) has grade at least two.

To see this, let a ∈ m \ {0}. We may assume that E is torsionfree. Since A
is normal, E is free locally in codimension one. Hence each of the A/(a)-modules
Ei/aEi has a rank, and this rank is the same as the rank of (E/aE)i. Further-
more, the A-torsion of SA(E) vanishes locally at the associated primes in A of
A/(a), therefore it maps to the A/(a)-torsion of SA/(a)(E/aE). It follows that
there is an induced surjective map RA(E) � RA/(a)(E/aE), hence a surjective
map RA(E)/aRA(E) � RA/(a)(E/aE) (see [19, 4.5]). Now, for rank reasons the
kernel of this map is an A/(a)-torsion module. On the other hand, since a is regu-
lar on every power Ei and these are assumed to be reflexive, Ei/aEi is torsionfree
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for every i ≥ 1. It follows that the map RA(E)/aRA(E) � RA/(a)(E/aE) is an
isomorphism.

Since A is normal of dimension at least two, the grade of m is at least two.
Therefore the grade of m/(a) in A/(a) is at least one, thus the grade of its extension
to RA/(a)(E/aE) is at least one. By the above isomorphism we then get that the
ideal mRA(E)/aRA(E) has grade at least one, hence mRA(E) has grade at least
two, as required. �

In the special case of projective dimension one, we can improve the above result.
For this, we will rely on a basic property of integrally closed modules. Let E
be an integrally closed submodule of a free module Ar over a normal domain A.
The associated primes of Ar/E are particularly restricted when E is a module of
finite projective dimension. This phenomenon was described in the case of ideals
by Burch ([5, Corollary 3 on p. 947]). More recently, using a different approach,
the question was taken up by Goto and Hayasaka ([7, 1.1 and 2.3]) in the case of
ideals and by Hong ([12, 4.8]) in the case of modules. In the latter approaches the
condition known as m-fullness was used. Let (A,m) be a Noetherian local ring with
infinite residue field and let E ⊂ Ar be a submodule of a free module. One says
that E is m-full if there exists an element x ∈ m such that

mE :Ar x = E .

The valuative criterion for integral dependence shows that an integrally closed
module E ⊂ Ar is m-full provided the residue field of the normal local ring A is
infinite.

We will make use of the following two results which are restated here for the
reader’s convenience. Most properties of the notion of m-fullness arise from the
first of these results (see [29, 8.101] for details), including the second one.

Proposition 3.5. Let (A,m) be a Noetherian local ring and E a submodule of Ar

such that mE :Ar x = E for some x ∈ m. Then

E/xE ' (E :Ar m)/E ⊕ (E + xAr)/xAr ' (E :Ar m)/E ⊕ E/x(E :Ar m) .

Theorem 3.6. Let (A,m) be a Noetherian local ring and E a submodule of Ar such
that mE :Ar x = E for some regular element x ∈ m. Suppose that projdim(E) <∞
and m ∈ Ass(Ar/E). Then A is regular.

In general, the normality of the Rees algebra RA(E) of a finite module E over
a normal domain A fails to imply that E satisfies (L2), or even (F2). This may
be the case even if E has projective dimension one – for an easy example take E
to be the homogeneous maximal ideal of a polynomial ring in two variables over a
field. Surprisingly, the implication does hold for modules whose non-free locus is
contained in the singular locus of the ring, as is stated in the next theorem.

Theorem 3.7. Let A be a normal Cohen–Macaulay domain and let E be a finite
A-module of rank r such that :
(i) E has a projective resolution 0→ P1 −→ P0 −→ E → 0 ;
(ii) Ep is Ap-free for every prime p ∈ Spec(A) such that Ap is regular.

The following are equivalent :
(1) RA(E) is normal ;
(2) Ei = Ei in the range 1 ≤ i ≤ rank P0 − r ;
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(3) E satisfies condition (F2) ;
(4) RA(E) = BA(E) .

Proof. (1) ⇒ (2): This is obvious.
(2) ⇒ (3): Let p ∈ Spec(A) be a prime minimal with the property that (F2)

fails. Localizing at p, we may assume that A is a local ring of dimension d ≥ 2,
µ(E) ≥ d + r − 1, and E satisfies (F2) locally on the punctured spectrum of A.
Consider a minimal free resolution

0→ As −→ An −→ E → 0 .

By assumption n ≥ d+ r − 1, hence s ≥ d− 1. Since (F0) holds on the punctured
spectrum, it follows that the Weyman complex is a minimal free resolution of the
symmetric power Sd−1(E) (see [31, Theorem 1(b)]). This complex has length d− 1
because s ≥ d− 1. Moreover E satisfies (F1) on the punctured spectrum, therefore
Sd−1(E) is torsionfree. Thus Ed−1 ' Sd−1(E) has projective dimension d − 1. In
particular, m ∈ Ass (Sd−1(Ar)/Ed−1). Since d− 1 ≤ s ≤ rank P0− r, we can apply
the main assumption to conclude that Ed−1 is integrally closed. Therefore A is
regular by Theorem 3.6. This is a contradiction vis-à-vis (ii) since E is not free.

(3) ⇒ (4): This is well-known for modules of projective dimension one over
Cohen–Macaulay rings (see, e.g., [1, Proposition 4]).

(4) ⇒ (1): This follows from Proposition 3.4. �

Theorem 3.7 applies naturally to the module E = ΩA/k via the intervention of the
Jacobian criterion, which says that the non-free locus of the module of differentials
coincides with the singular locus of a reduced ring A essentially of finite type over
a perfect field k. If in addition A is locally a complete intersection, then E = ΩA/k
also has projective dimension ≤ 1.

Corollary 3.8. Let R be a regular domain essentially of finite type over a perfect
field, let I be an R-ideal of height g that is locally a complete intersection, and
assume that A = R/I is a normal domain. The following are equivalent :

(1) RA/k is normal ;
(2) ΩiA/k = ΩiA/k in the range 1 ≤ i ≤ g ;
(3) edimAp ≤ 2 dimAp − 2 for every non-regular prime p ∈ Spec(A) ;
(4) RA/k = BA/k .

Proof. Note that condition (3) translates into ΩA/k satisfying (F2) according to the
preliminaries of Section 2. The rest follows immediately from Theorem 3.7. �

The next result treats the case of rings that are not necessarily complete inter-
sections. Here we show, in particular, that if SA/k is normal then the failure of the
equality SA/k = BA/k forces the existence of “quadrics” in the defining ideal of A,
in a way reminiscent of Proposition 2.9.

Proposition 3.9. Let R be a regular ring essentially of finite type over a perfect
field k and let I be an ideal such that A = R/I is a normal domain. If, for some
i ≥ 1, Si(ΩA/k) ' ΩiA/k and ΩiA/k is integrally closed, then I 6⊂ p(3) for every
p ∈ AssR((ΩiA/k)∗∗/ΩiA/k) .

Proof. We replace R by Rp to assume that (R, n) and (A,m) are local. We may also
suppose that the residue field is infinite. Notice that m ∈ AssA((ΩiA/k)∗∗/ΩiA/k), in
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particular dimA ≥ 2. Since Si(ΩA/k) ' ΩiA/k, the presentation

I/I2 −→ An = A⊗R ΩR/k −→ ΩA/k → 0

induces an exact sequence

(3.2) I/I2 ⊗A Si−1(An) −→ Si(An) −→ ΩiA/k → 0 .

Embed ΩiA/k ⊂ (ΩiA/k)∗∗ ⊂ At. Since ΩiA/k is assumed to be integrally closed,
it is m-full. Thus there is an element x ∈ m satisfying the hypothesis of Proposi-
tion 3.5 with E = ΩiA/k. Clearly m ∈ AssA(At/ΩiA/k), hence ΩiA/k :At m 6= ΩiA/k.
Therefore the proposition implies that ΩiA/k/xΩiA/k has A/m as a direct summand
over A/(x). On the other hand, tensoring (3.2) with A/(x), we see that the syzygies
of ΩiA/k/xΩiA/k have coefficients in the A/(x)-ideal generated by the entries of the
Jacobian matrix of the generators of I. As m/(x) 6= 0, we cannot have I ⊂ n3. �

4. Structure results in low codimension

4.1. Normality revisited. We now focus on the behavior of RA/k in low dimen-
sion or low embedding codimension. A highlight is the closer relationship between
the normality of RA/k and the local structure of A than is typical of more general
Rees algebras.

When A is a Noetherian local ring, we write ecodimA := edimA− dimA.
Let A be a local Cohen–Macaulay ring essentially of finite type over a perfect

field k and assume ecodimA ≤ 2. Write A ' R/I, where R is a regular local ring
essentially of finite type over k and I an ideal of height ≤ 2. In this case the first
Koszul homology module H1(I) on a generating set of I is Cohen–Macaulay (see [2,
2.1(a)]). Thus, if I is generically a complete intersection, then the natural complex

(4.1) 0→ H1(I) −→ Am −→ I/I2 → 0

is exact. One always has a complex of graded modules over the polynomial ring
B := SA(ΩR/k ⊗R A) ' SA(An) ,

(4.2) 0→ TorR2 (A,A)⊗AB(−2) −→ TorR1 (A,A)⊗AB(−1) −→ B −→ SA/k → 0 ,

which is nothing but the M-complex of the diagonal ideal DA/k ⊂ A ⊗k A (see
[22, Section 2.2] for details). If height I ≤ 1 then the module TorR2 (A,A) vanishes,
whereas for height I = 2 it is isomorphic to (ωA)∗, the A-dual of the canonical
module of A. The complex (4.2) can be used to derive properties of SA/k and of
RA/k :

Proposition 4.1. Let A be a reduced local Cohen–Macaulay ring essentially of
finite type over a perfect field k. Assume that ecodimA ≤ 2 and that edimAp ≤
2 dimAp for every prime p ∈ Spec(A).

(a) The sequence (4.2) is exact and SA/k is Cohen–Macaulay ;
(b) ΩA/k is of linear type if and only if edimAp ≤ 2 dimAp − 1 for every

non-minimal prime p ∈ Spec(A) ;
(c) In case A is normal, ΩA/k is of linear type and normal if and only if

SA/k = BA/k if and only if edimAp ≤ 2 dimAp − 2 for every non-regular
prime p ∈ Spec(A).
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Proof. Write A = R/I as above, with height I = 2.
(a): Notice that

(ωA)∗ ' HomA(ωA ⊗A ωA, ωA) ' HomA(S2(ωA), ωA) .

By [30, 1.3], S2(ωA) is a maximal Cohen–Macaulay A-module, hence TorR2 (A,A) is
zero or maximal Cohen–Macaulay. Moreover, (4.1) gives depth I/I2 ≥ dimA− 1.
Since these depth conditions also hold locally at every prime and since ΩA/k satisfies
condition (F0), the Acyclicity Lemma implies that (4.2) is exact. It also follows that
depth SA/k ≥ dimA+ n− 2. On the other hand, dim SA/k = dimA+ n− 2 again
because ΩA/k satisfies (F0) (see [24, 2.2]). Therefore SA/k is Cohen–Macaulay.

(b): From part (a) we have that SA/k is unmixed. In this case, the module ΩA/k
is of linear type if and only if it satisfies (F1) (see [24, 3.3 and the first remark on
p. 346]). Alternatively, one could use the exact sequence (4.2).

(c): Assume that ΩA/k is of linear type and normal. We show the equality
SA/k = BA/k . For any non-regular prime p ∈ Spec(A) write Ap ' R/I, where
(R, n) is a regular local ring essentially of finite type over k and I ⊂ n2 is an ideal
of height g ≤ 2. By Theorem 2.10, it suffices to show that µ(I + n3/n3) ≤ 2g − 1.
This is clear if g = 1 or if g = 2 and µ(I) ≤ 3. Thus we may assume that g = 2
and µ(I) ≥ 4. But in this situation the Hilbert–Burch theorem gives I ⊂ n3.

If SA/k = BA/k then ΩA/k is of linear type and, in particular, free locally in
codimension one. Hence the conditions (F2) and (L2) are equivalent. Thus Propo-
sition 3.4 shows that ΩA/k satisfies (F2).

Finally, if ΩA/k has the (F2) property then it is of linear type by part (b).
Moreover part (a) implies that SA/k is Cohen–Macaulay. Thus SA/k = RA/k sat-
isfies condition (2) of Proposition 3.4, hence the proposition implies that ΩA/k is
normal. �

We now treat the case where A is a local Gorenstein algebra of embedding
codimension 3. Write A ' R/I, where R is a regular local ring essentially of finite
type over a perfect field k and I is an ideal of height 3. By [8, 2.8], I/I2 is a maximal
Cohen–Macaulay A-module and therefore (I/I2)∗∗ ' I/I2. Thus, starting from a
presentation of ΩA/k , we obtain the Z-complex

0→ (∧3I/I2)∗∗ ⊗A B(−3) −→ (∧2I/I2)∗∗ ⊗A B(−2) −→ (I/I2)⊗A B(−1)(4.3)

−→ B −→ SA/k → 0 ,

where B is the polynomial ring SA(ΩR/k ⊗R A).

Proposition 4.2. Let A be a reduced local Gorenstein ring essentially of finite type
over a perfect field k. Assume that ecodimA ≤ 3 and that edimAp ≤ 2 dimAp for
every prime p ∈ Spec(A).

(a) The sequence (4.3) is exact and SA/k is Gorenstein ;
(b) ΩA/k is of linear type if and only if edimAp ≤ 2 dimAp − 1 for every

non-minimal prime p ∈ Spec(A) ;
(c) In case A is normal, ΩA/k is of linear type and normal if and only if

SA/k = BA/k if and only if edimAp ≤ 2 dimAp − 2 for every non-regular
prime p ∈ Spec(A).

Proof. Since edimAp ≤ 2 dimAp for every prime p ∈ Spec(A) and A is Gorenstein,
it follows that A is a complete intersection locally in codimension two. We note
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that (∧3I/I2)∗∗ ' ωA ' A and that the pairing

∧2I/I2 × I/I2 −→ ∧3I/I2 −→ A

identifies (∧2I/I2)∗∗ with (I/I2)∗. As I/I2 is a maximal Cohen–Macaulay A-
module we conclude that the three left most modules in (4.3) are maximal Cohen–
Macaulay B-modules. Therefore (4.3) is exact and, since it is a self-dual complex
of B-modules, SA/k is Gorenstein. Now the argument proceeds as in the proof of
Proposition 4.1. To show (c) one replaces the Hilbert–Burch theorem used there
by the Buchsbaum–Eisenbud structure theorem. �

One ought to observe that parts (a) and (b) of Propositions 4.1 and 4.2 were
obtained in [22, 3.4 and 3.2] by passing through the tangent star algebra TA/k . Since
the present approach is self-contained and perhaps more direct we have chosen to
keep it for completeness.

The previous results motivate the following question:

Question 4.3. Let A be a normal Cohen–Macaulay domain essentially of finite
type over a perfect field k. If ΩA/k is of linear type and normal does it follow that
edimAp ≤ 2 dimAp − 2 for every non-regular prime p ∈ Spec(A) (or, equivalently,
is SA/k = BA/k)?

Our aim for most of the remainder of the section is a refined version of Proposi-
tion 4.1(c) that does not require the (F0) assumption on the module of differentials
– see Theorem 4.8 below. For this we need several auxiliary results that may be of
independent interest. Recall that if A is a Noetherian ring and U ⊂ E are finite
modules having a rank then U is said to be a reduction of E if the induced inclusion
R(U) ⊂ R(E) is an integral ring extension (see, e.g., [23, p. 613]).

Proposition 4.4. Let A be a Noetherian ring and let ϕ : Ag+1 −→ Ag be a
homomorphism such that im(ϕ) has rank g and Ext1

A(im(ϕ), A) = 0. Then Ig(ϕ) '
(ker(ϕ))∗. In particular, if A satisfies (S2) it follows that Ig(ϕ) is either the unit
ideal or an unmixed ideal of height one. If in addition A is Gorenstein locally in
codimension one, then im(ϕ) is a reduction of (im(ϕ))∗∗.

Proof. There is an exact sequence

An
ψ−→ Ag+1 ϕ−→ Ag,

so that the entries of the first column of ψ are the signed maximal minors of ϕ,
hence generate Ig(ϕ), an ideal of positive grade. Set K := ker(ϕ) and L := im(ϕ).
From the assumption we obtain a short exact sequence

0→ L∗ −→ Ag+1∗ −→ K∗ → 0 ,

which shows that K∗ ' im(ψ∗). Next we project An∗ onto the free module gener-
ated by the first basis element, thus getting a commutative diagram

Ag+1∗ ψ∗−→ An∗

‖ ↓ π
Ag+1∗ πψ∗−→ A .

Notice that im(πψ∗) = Ig(ϕ). The projection π induces a surjection im(ψ∗) �
im(πψ∗) = Ig(ϕ), which is necessarily an isomorphism since the two modules are
torsionfree of rank one.
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Moreover, if A satisfies (S2) then Ig(ϕ) satisfies (S2), hence it is the unit ideal
or an unmixed ideal of height one. The last assertion is a property of the integral
closure of modules with divisorial determinantal ideal (see [12, the proof of 2.5]). �

Corollary 4.5. Let R be a regular local ring and let A = R/I be an almost complete
intersection which is a complete intersection locally in codimension one and satisfies
(S2). If A is non-obstructed (i.e., T 2(A/R,A) = Ext1

A(I/I2, A) = 0), then I/I2 is
a reduction of (I/I2)∗∗.

Proof. Write g := height I. First notice that A is equidimensional because it is
catenary and satisfies (S2). Therefore I/I2 has rank g as an A-module. Since I is
generated by g + 1 elements, the first Koszul homology H1(I) of these elements is
the canonical module of A, hence satisfies (S2). Therefore the sequence

0→ H1(I) −→ Am −→ I/I2 → 0

is exact and I/I2 is a torsionfree A-module. Embedding I/I2 into Ag and applying
Proposition 4.4 with im(ϕ) = I/I2, we deduce the result. �

Next is a curious result in embedding codimension 2 that, like Theorem 2.6, can
be regarded as an analogue of Berger’s conjecture.

As in previous instances, τA(E) will denote the A-torsion of an A-module E.
Let A = R/I be a normal Cohen–Macaulay ring, where R is a regular local ring

essentially of finite type over a perfect field k and height I ≤ 2. The exact sequence
(4.1) and the Cohen–Macaulayness of H1(I) imply that I/I2 is torsionfree. Thus
the natural complex

(4.4) 0→ I/I2 −→ ΩR/k ⊗R A ' An −→ ΩA/k → 0

is exact as well.

Theorem 4.6. Let (A,m) be a normal local Cohen–Macaulay ring essentially of
finite type over a perfect field k. Assume the following conditions :

(i) ecodimA = 2 ;
(ii) A is an almost complete intersection locally in codimension 2.

If ΩA/k/τA(ΩA/k) is a Cohen–Macaulay module then A is regular.

Proof. Set Ω := ΩA/k and ω := ωA. Write A ' R/I, where R is a regular local ring
essentially of finite type over k and I a perfect ideal of height 2. It suffices to prove
that I is a complete intersection, for in this case (4.4) shows that Ω is torsionfree
of projective dimension one – thus Ω = Ω/τA(Ω) is a maximal Cohen–Macaulay
module of finite projective dimension, hence necessarily free.

We first consider the case dimA = 2. Supposing I is not a complete intersection
we have that this ideal is minimally generated by 3 elements. Consider a minimal
presentation

(4.5) 0→ R2 ϕ−→ R3 −→ I → 0 .

From the exact sequences (4.1) and (4.4) we derive an exact sequence

(4.6) 0→ ω ' H1(I) −→ A3 Θ−→ An −→ Ω→ 0 ,

with Θ the transposed Jacobian matrix of the 3 generators of I. Moreover, since
Ω/τA(Ω) is Cohen–Macaulay and τA(Ω) has grade at least 2, one concludes that
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Ext1
A(Ω, ω) = 0. Thus, applying −∨ = HomA(−, ω) to (4.6), one can see that there

is an exact sequence

ωn
Θ∨−→ ω3 −→ ω∨ ' A −→ A/I1(ϕ)A→ 0 .

Hence we obtain the exact sequence

(4.7) ωn
Θ∨−→ ω3 −→ I1(ϕ)/I → 0 .

By (4.5) and the Hilbert–Burch theorem, one has I ⊂ I1(ϕ)2. In particular,
I1(Θ) ⊂ I1(ϕ). Thus tensoring (4.7) with R/I1(ϕ) gives

(ω/I1(ϕ)ω)⊕3 ' (I1(ϕ)/I)⊗R R/I1(ϕ) ' I1(ϕ)/I1(ϕ)2.

On the other hand, dualizing (4.5) into R and tensoring with R/I1(ϕ) yields

ω/I1(ϕ)ω ' (R/I1(ϕ))⊕2.

It follows that

I1(ϕ)/I1(ϕ)2 ' (ω/I1(ϕ)ω)⊕3 ' (R/I1(ϕ))⊕6.

Since R is regular, [27, 1.1] implies that I1(ϕ) is generated by a regular sequence
of length 6. But this is impossible in R, a ring of dimension four.

We now consider the case of arbitrary dimension. By the above, A is regular
locally in codimension 2. Therefore (4.6) implies that Ω is torsionfree, hence Cohen–
Macaulay by assumption. But then also I/I2 is Cohen–Macaulay by (4.4), which
forces I to be a complete intersection (see [8, 2.4]). �

The next proposition leads into our main result about the normality of the
module of differentials in the case of embedding codimension two.

Proposition 4.7. Let (A,m) be a normal local ring essentially of finite type over
a perfect field k. Assume the following conditions :

(i) dimA = ecodimA = 2 ;
(ii) A is either a complete intersection or else an almost complete intersection

defined by an ideal of order ≥ 3.
Then ΩA/k is not integrally closed.

Proof. Write A ' R/I, where (R, n) is a regular local ring essentially of finite type
over k and I a perfect ideal of height 2. We may assume that R has infinite residue
field. Set Ω := ΩA/k and Ω1 := Ω/τA(Ω) .

There is an exact sequence

(4.8) 0→ (I/I2)∗∗ −→ An −→ Ω1 → 0 .

By Theorem 4.6, Ω1 is not Cohen–Macaulay. Thus m ∈ AssA(A2/Ω1) for any
embedding Ω1 ⊂ A2. Suppose that Ω is integrally closed, which means that Ω1 is
integrally closed. In particular, Ω1 is m-full. If A is a complete intersection, then Ω1

has finite projective dimension by (4.8), which leads to a contradiction according to
Theorem 3.6. Thus we may assume that A is an almost complete intersection and
that I ⊂ n3. By Proposition 3.5, there exists an x ∈ m such that A/m is a direct
summand of Ω1/xΩ1. Write (A′,m′) for the local ring A/(x) and let {e1, . . . , en}
be the canonical basis of A′ n. Tensoring (4.8) with A′ we obtain a presentation

(4.9) 0→M −→ A′ n −→ Ω1/xΩ1 → 0 ,
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where we may assume that M = m′ e1 ⊕N with N ⊂ ⊕ni=2A
′ei. Hence the image

of M under the projection A′ n � A′e1 ' A′ is m′.
On the other hand, as A is a Cohen–Macaulay ring of embedding codimension 2 it

is non-obstructed (see [9, 3.2(a)]). Therefore by Corollary 4.5, I/I2 is a reduction
of (I/I2)∗∗. Since I ⊂ n3 it follows that I/I2 ⊂ m2An. Hence, projecting onto
A′e1 ' A′, we see that (m′)2 is a reduction of m′. This is impossible because
dimA′ > 0 . �

Theorem 4.8. Let (A,m) be a normal local Cohen–Macaulay ring essentially of
finite type over a perfect field k. Assume the following conditions :

(i) ecodimA = 2 ;
(ii) Locally in codimension 2, the ring A is either a complete intersection or

else an almost complete intersection defined by an ideal of order ≥ 3.
Then the following conditions are equivalent :

(1) ΩA/k is normal ;
(2) edimAp ≤ 2 dimAp − 2 for every non-regular prime p ∈ Spec(A).

Moreover, if the equivalent conditions (1) or (2) hold then ΩA/k is of linear type,
RA/k is Cohen–Macaulay, and RA/k = BA/k .

Proof. (1)⇒ (2): Proposition 4.7 implies that ΩA/k satisfies (F1). Hence by Propo-
sition 4.1(b), ΩA/k is of linear type and then according to Proposition 4.1(c), it
satisfies (F2).

(2) ⇒ (1): This follows from Proposition 4.1(c).
The remaining assertions follow from the same proposition. �

4.2. Relation to Calabi–Yau varieties. In this last part we explain to what
extent the present results relate to Calabi–Yau varieties.

Let X ⊂ Pn−1
C be an arithmetically normal projective variety and let A stand for

its homogeneous coordinate ring. We say that X is of Calabi–Yau type if there exists
a homogeneous isomorphism ωA ' A. The notion of Calabi–Yau variety would also
require that X be smooth and H1(X,OX) = 0. If X is of Calabi–Yau type it often
turns out that Proj(RA/C) ⊂ P2n−1

C has the same property. Here and in what follows
we use the natural embeddings Proj(RA/C) ⊂ Proj(SA/C) ⊂ Proj(SR/C) = P2n−1

C ,
where R = C[X1, . . . , Xn] and SR/C is a polynomial ring in 2n variables over C that
is regarded as standard graded.

We first look into the case of complete intersections.

Proposition 4.9. Let X ⊂ Pn−1
C be a non-degenerate smooth projective variety

that is a complete intersection of g ≥ 1 hypersurfaces of degrees d1 ≥ · · · ≥ dg, and
let A stand for its homogeneous coordinate ring. Assume that X is of Calabi–Yau
type and consider the subschemes Y := Proj(RA/C) ⊂ Z := Proj(SA/C) ⊂ P2n−1

C .
(a) The subscheme Z is the complete intersection of 2g hypersurfaces of degrees

d1, . . . , dg, d1, . . . , dg and ω SA/C ' SA/C as graded modules ;
(b) If d1 = 2 then Z is neither reduced nor irreducible, and Y is not arithmeti-

cally Cohen–Macaulay ;
(c) If d1 ≥ 3 then Y = Z is reduced and irreducible ;
(d) The subscheme Y is arithmetically normal if and only if d1 ≥ 4 or d2 ≥ 3

(formally setting d2 = 2 when g = 1). In this case Y = Z is of Calabi–Yau
type.
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Proof. Since ωA ' A(−n +
∑g
i=1 di) and X is of Calabi–Yau type, we have n =∑g

i=1 di. Since X is non-degenerate, dg ≥ 2. Therefore n ≥ 2g, hence ΩA/C satisfies
condition (F0). Since projdim(ΩA/C) ≤ 1 this implies that SA/C is a complete
intersection of dimension 2(n−g) (see [1, Proposition 4]). Moreover, SA/C is defined
by 2g forms of degrees d1, . . . , dg, d1, . . . , dg in a standard graded polynomial ring in
2n variables over C. Therefore ω SA/C ' SA/C(−2n + 2

∑g
i=1 di) = SA/C as graded

modules. This shows (a).
To prove (b), note that the hypothesis forces the equality n = 2g and thus

ΩA/C does not satisfy condition (F1). It follows from [3, the proof of 2.2] that
Z is not irreducible, whereas Theorem 2.1 (or Remark 2.3) implies that Z is not
reduced either. Furthermore, Y is not arithmetically Cohen–Macaulay according
to Theorem 3.1 (or Remark 3.2).

As to (c), the assumption implies that n ≥ 2g+1, hence ΩA/C satisfies condition
(F1). Again since projdim(ΩA/C) ≤ 1 we have SA/C = RA/C (see [1, Proposition 4],
[13, 1.1], [24, 3.4]). Finally, notice that d1 ≥ 4 or d2 ≥ 3 if and only if n ≥ 2g + 2.
Thus the equivalence in (d) follows from Corollary 3.8. Parts (a) and (c) then imply
the rest. �

Next is the non-complete intersection case.

Proposition 4.10. Let X ⊂ Pn−1
C be a smooth arithmetically Cohen–Macaulay

projective variety that is not a complete intersection, and let A stand for its homoge-
neous coordinate ring. Assume that dimX ≥ 2, ecodimX ≤ 3, and X is of Calabi–
Yau type. Consider the subschemes Y := Proj(RA/C) ⊂ Z := Proj(SA/C) ⊂ P2n−1

C .
(a) The subscheme Z is arithmetically Gorenstein and ω SA/C ' SA/C as graded

modules ;
(b) If dimX = 2 then Z is neither reduced nor irreducible ;
(c) If dimX ≥ 3 then Y = Z is reduced and irreducible ;
(d) The subscheme Z is arithmetically normal if and only if dimX ≥ 4, in

which case Y = Z is of Calabi–Yau type.

Proof. Notice that A ' R/I, where R = C[X1, . . . , Xn] and I is a homogeneous
Gorenstein ideal of height at most 3, hence of height 3 because X is not a complete
intersection; for the same reason, I ⊂ (X1, . . . , Xn)2. Since X is smooth and
n = height I+ dimA ≤ 2 dimA, the module ΩA/C satisfies (F0). Proposition 4.2(a)
then shows that SA/C is Gorenstein and the complex (4.3) is exact. In fact, as a
complex of graded modules over the standard graded C-algebra B := A[T1, . . . , Tn]
this exact sequence now reads

0→ (∧3I/I2)∗∗⊗AB −→ (∧2I/I2)∗∗⊗AB −→ (I/I2)⊗AB −→ B −→ SA/C → 0 ,

where −∗ = HomA(−, A) = HomA(−, ωA). One has (∧3I/I2)∗∗ ' TorR3 (A,A) '
A(−n). Now the arguments in the proof of Proposition 4.2(a) show that ω SA/C '
SA/C as graded modules, proving part (a).

As to (b), if dimX = 2 then n = height I + dimA = 6 = 2 dimA. In particular,
ΩA/C does not satisfy (F1). Thus Z is not irreducible according to [3, the proof of
2.2]. On the other hand, by considering the Hilbert function of A modulo a linear
system of parameters one sees that dimC[I] 2 ≤ 5 = n − 1. Now an application of
Theorem 2.1 (or Remark 2.3) yields that Z is not reduced either, proving (b).

Finally, part (c) follows from Proposition 4.2(b) and part (d) from Proposi-
tion 4.2(c). �
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