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Abstract

We introduce techniques to derive estimates for the degrees of the generators of the
integral closure of several classes of Rees algebras of modules, and to bound the length
of normalization processes. In the case of regular base rings, the bounds are expressed
in terms of Buchsbaum–Rim multiplicities and a module version of Briançon–Skoda
numbers.

Normalization of modules is the study of the integral closure of the Rees algebra of a
module. The questions that arise are natural extensions of those that occur in the normal-
ization of ordinary blowups and also of the so–called multi Rees algebras of ideals. In this
paper, we focus on numerical aspects of the process of normalization of a module. Let R

be a Noetherian ring and E a finitely generated torsionfree R–module having a rank. To
enable the extension, we consider two technical devices to attach an ideal I of a ring S to
the R–module E so that the comparison can be made between the Rees algebra of E and
the Rees algebra of I. One of the ideals that can be used is the ideal generated by the
module in the polynomial ring which contains the Rees algebra of the module. The other is
known as the generic Bourbaki ideal of E. More details on these ideals will be given later.
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Let us recall the notion of the Rees algebra of a module. Let R be a Noetherian ring,
let E be a finitely generated torsionfree R–module having a rank, and choose an embedding
ϕ : E ↪→ Re. The Rees algebra R(E) of E is the R–subalgebra of the polynomial ring
R[t1, . . . , te] generated by all linear forms a1t1 + · · ·+aete, where (a1, . . . , ae) is the image of
an element of E in Re under the embedding ϕ. The Rees algebra R(E) is a standard graded
algebra whose n–th component is denoted by En. It is independent of the embedding ϕ

since E is torsionfree and has a rank. There is a more general notion of the Rees algebra
of a module ([5]), but it is in agreement with the one above for the class of modules we
consider. In general, there is a surjection from the symmetric algebra Sym(E) of E onto
the Rees algebra of E and the module E is said to be of linear type if this surjection is an
isomorphism. Let U be a submodule of E. The module E is integral over the module U if
the Rees algebra of E is integral over the R-subalgebra generated by U . In this case we say
that U is a reduction of E. The integral closure E of E (in Re) is the largest submodule
of Re which is integral over the module E. If E is equal to E, then E is called integrally
closed or complete in Re. If the Rees algebra R(E) of E is integrally closed in R[t1, . . . , te],
then the module E is said to be normal in Re. If R is normal, then these notions do not
depend on the embedding ϕ as the integral closure of R(E) in R[t1, . . . , te] is simply the
integral closure of R(E) in this case. Furthermore the integral closure R(E) of R(E) is a
positively graded R–algebra whose n–th component is the integral closure En of the module
En ([16]).

Our objective is to derive numerical properties of the integral closure of the Rees algebra
of a module and to measure the length of the algorithmic procedures used to compute it.
This paper is organized as follows. In Section 1, we show how the normalization of a
module can be obtained from the normalization of an ideal in another ring. It turns out
that the integral closure of the Rees algebra of a module is a direct summand of the integral
closure of the Rees algebra of the ideal generated by the module. In Section 2, we deal with
Buchsbaum–Rim coefficients of modules having finite colength. In particular, we derive
bounds for modified Buchsbaum–Rim coefficients of the normalization of a module. They
are used along with the notion of Briançon–Skoda number to study the chains of algebras
that occur in the normalization of a module. Several bounds for the length of such chains
are obtained and they are similar to those of [14] in the case of ideals. In Section 3, we show
how the results of Section 2 can be extended to equimultiple modules. Finally in Section
4, we pay attention to the bounds for the degrees of the generators of a Cohen–Macaulay
graded algebra which is integral over the Rees algebra of a module.

1 Turning modules into ideals

In this section we show how the issues of normalization of ideals and modules resemble one
another. We begin by providing a source of integrally closed modules.

Proposition 1.1 Let R be a normal domain and let I =
⊕

n≥0

In be a homogeneous ideal of
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the polynomial ring S = R[t1, . . . , te]. If I is integrally closed as an S–ideal, then each In

is integrally closed as an R–module.

Proof. Write S =
⊕

n≥0

Sn. Then In is a submodule of the free R–module Sn and we have

R(In) ⊆ R(In) ⊆ R(Sn) = Sym(Sn) Φ−→ S,

where Φ is the natural map induced by the identity on Sn. Let u ∈ In ⊂ Sn. Then there is
an equation in R(Sn) of the form

um + a1u
m−1 + · · ·+ am = 0, ai ∈ In

i.

Applying Φ to this equation, it converts into an equation of integrality of u ∈ S over the
ideal I. Since I = I, we obtain u ∈ In.

In the next proposition we explain how to turn an R–module E into an ideal. By doing
so, we relate the normalization of a module E to that of the ideal generated by E.

Proposition 1.2 Let R be a normal domain and E a finitely generated torsionfree R–
module. Let S = R[t1, . . . , te] be a polynomial ring which contains the Rees algebra R(E)
as a homogeneous R–subalgebra and denote by I the S–ideal generated by E ⊂ S. For any
positive integer n,

En =
[

In
]
n

,

where [ ]n denotes the n–th component.

Proof. It is clear that En = [ In ]n ⊆
[

In
]
n
. Since

[
In

]
n

is integrally closed by Propo-

sition 1.1, we have En ⊆ [
In

]
n

=
[

In
]
n
. Now it suffices to verify the equality of the

two integrally closed modules En and
[

In
]
n

at the discrete valuation rings containing R.
For V any discrete valuation ring containing R we write V S = V ⊗R S = V [t1, . . . , te], and
consider the V S–ideal (V E) generated by V E. It suffices to show

(V E)n = (V E)n,

for then [
In

]
n
⊆

[
(V E)n

]
n

= [ (V E)n ]n = V En,

and hence
[

In
]
n
⊆ En.

We now prove that (V E)n = (V E)n for every V . We may assume that the V S–ideal
(V E) is generated by the forms a1t1, . . . , aete with ai ∈ V . We may suppose that a1 divides
all ai, say ai = a1bi, so that (V E) = a1(t1, b2t2, . . . , bete). Now (V E) is normal if and only
if (t1, b2t2, . . . , bete) is normal. We claim that (t1, b2t2, . . . , bete) is normal if and only if
(b2t2, . . . , bete) is normal. Then we can drop the indeterminate t1 and iterate. As for the
claim, we show more generally that an R–ideal I is normal if and only if (I, x) is normal in

3



the polynomial ring R[x]. This follows from the fact that the extended Rees ring of (I, x)
is R[x]

[
It, xt, t−1

]
= R[It, t−1][xt], where t is an indeterminate.

The next corollary is an immediate consequence of Proposition 1.2.

Corollary 1.3 Let R be a normal domain and E a finitely generated torsionfree R–module.
Let S be a polynomial ring which contains the Rees algebra R(E) as a homogeneous R–
subalgebra, and let I denote the S–ideal generated by E ⊂ S. If I is normal, then E is
normal.

Example 1.4 The converse of Corollary 1.3 is not true in general. Let R = k[x, y] and let
E be the submodule of the free module Re1 ⊕Re2 generated by x2e1 and y2e2. Then E is
a free module and hence it is normal. However the ideal I of S = R[e1, e2] is generated by
two cubic forms. They are a regular sequence. A presentation of S[It] is S[T1, T2] modulo
the form f = y2e2T1 − x2e1T2. Notice that the ideal p = (x, y)S[It] is a prime ideal of
height 1, but that S[It]p is not a discrete valuation ring.

Let R be a Noetherian ring and E a finitely generated torsionfree R–module having a
rank. Let S be a polynomial ring which contains the Rees algebra R(E) as a homogeneous
R–subalgebra, and let I denote the S–ideal generated by E. Then the symmetric algebra
of E is a direct summand of the symmetric algebra of I. Hence if I is of linear type, then
E is of linear type. But the converse is not true. For example, let R = k[x, y, z] and let E

be the image of R–linear map ϕ =
[

z2 x2 y2 xy
x2 y2 xz xz + z2

]
. By [19, 5.6], the module E is

of linear type. But the ideal I is not of linear type.

Let (R, m) be a Noetherian local ring and let E be a finitely generated R–module having
a rank e. The analytic spread of E is defined to be the dimension of the special fiber ring
R(E)/mR(E) and is denoted by `(E). We recall that `(E) ≤ d+e−1 if d = dim R > 0 ([19,
2.3]). For a reduction U of E, the reduction number rU (E) of E with respect to U is the least
integer r ≥ 0 such that Er+1 = UEr. Let R be a Noetherian local ring with infinite residue
field. A reduction is said to be minimal if it is minimal with respect to containment. For
any minimal reduction U of E, one has ν(U) = `(E) where ν(·) denotes minimal number of
generators. We define the reduction number r(E) of E to be the minimum of rU (E), where
U ranges over all minimal reductions of E.

Remark 1.5 Let (R, m) be a normal local ring with infinite residue field and let E be
a finitely generated torsionfree R–module. Let S = R[t1, . . . , te] be a polynomial ring
containing the Rees algebra R(E) as a homogeneous R–subalgebra, and let I denote the
S–ideal generated by E ⊂ S. An R–module U ⊆ E is a reduction of E if and only if the
S–ideal J generated by U is a reduction of I. Moreover `(E) = `(ISn) and r(E) = r(ISn),
where n is the maximal homogeneous ideal of S.
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Proof. Notice that En = UEn−1 if and only of In = JIn−1. The ideal ISn has a general
minimal reduction generated by linear forms in S. Such a reduction is given by JSn for
some U . Hence `(E) = `(ISn) and r(E) = r(ISn).

Remark 1.6 Let R be an equidimensional universally catenary Noetherian local ring of
dimension d and let E be a finitely generated torsionfree R–module having a rank e. Let S =
R[t1, . . . , te] be a polynomial ring which contains the Rees algebra R(E) as a homogeneous
R–subalgebra, and let I be the S–ideal generated by E ⊂ S. Suppose that the colength
λ(Re/E) is finite. Then

ht(I) = min{ e, d + e− ν (Re/E) }.

In particular if e ≤ d, then ht(I) = e.

Proof. The quotient ring S/I can be identified with the symmetric algebra Sym(Re/E).
Since λ(Re/E) < ∞, using [9, 2.6], we obtain

ht(I) = dimS − dim(S/I) = d + e−max{ d, ν(Re/E) } = min{ e, d + e− ν(Re/E) }.

2 Briançon-Skoda number for modules

Our objective in this section is to find bounds for a chain of algebras which occur in the
process of normalization of a module. Let us first review the definition of Buchsbaum–
Rim polynomials. Let R be a Noetherian local ring of dimension d and let E ( Re be
a submodule such that the colength λ(Re/E) is finite. Let En denote the image of the
R–linear map Symn(E) −→ S =

⊕

n≥0

Sn = Sym(Re) = R[t1, . . . , te]. Buchsbaum and Rim

proved that the colength λ(Sn/En) is a polynomial in n of degree d + e− 1 for sufficiently
large n ([4, 3.1 and 3.4]). This polynomial is called the Buchsbaum–Rim polynomial of E.
It is of the form

P (n) = br(E)
(

n + d + e− 2
d + e− 1

)
− br1(E)

(
n + d + e− 3

d + e− 2

)
+ lower terms.

The positive integer br(E) is called the Buchsbaum–Rim multiplicity of E. For any reduction
U of E, it is known that br(E) = br(U) ([12, 5.3]).

Let R be an analytically unramified normal local ring. Since the integral closure R(E)
is finite over R(E), it follows that λ(En/En) is a polynomial of degree at most d + e − 2
for n À 0. Hence one obtains the following polynomial expression for n À 0,

λ(Sn/En) = P (n) = br(E)
(

n + d + e− 2
d + e− 1

)
− br1(E)

(
n + d + e− 3

d + e− 2

)
+ lower terms.
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It also follows that br(E) = br(E). More generally, if A =
⊕

n≥0

An is a graded R–subalgebra

such that R(E) ⊂ A ⊂ R(E), then for n À 0,

λ(Sn/An) = PA(n) = br(A)
(

n + d + e− 2
d + e− 1

)
− br1(A)

(
n + d + e− 3

d + e− 2

)
+ lower terms.

Let R be a Noetherian local ring and let E 6= 0 be a finitely generated torsionfree R–
module. The module E is called an ideal module if E∗∗ is free, where ∗ denotes dualizing
into the ring R. For example, if R is Cohen–Macaulay ring of dimension at least 2, then a
submodule E ( Re having finite colength is an ideal module ([19, 5.1]). An ideal module E

has a rank ([19, 5.1]), say e, and affords a natural embedding E ↪→ E∗∗ = Re. Composing
an epimorphism Rn ³ E with this embedding, we obtain an R–linear map ϕ : Rn → Re

with image(ϕ) = E. Notice that the i–th Fitting ideal Fitti(Re/E) of Re/E is the R–ideal
generated by the (e − i) × (e − i)–minors of ϕ, and that these ideals only depend on E.
Hence we may write det0(E) for Fitt0(Re/E). We define the codimension of E as the height
of det0(E), the deviation of E as d(E) = ν(E) − e + 1 − grade(det0(E)), and the analytic
deviation as ad(E) = `(E)−e+1−ht(det0(E)). An ideal module E is said to be a complete
intersection or equimultiple if d(E) ≤ 0 or ad(E) ≤ 0, respectively. At this point we need
the notion of m–full modules. A submodule E ⊂ Re over a local ring (R, m) is called m–full
if there is an element x ∈ m such that mE :Re x = E. We are now ready to give bounds for
the Buchsbaum–Rim multiplicity.

Proposition 2.1 Let (R, m) be an analytically unramified Cohen–Macaulay normal local
ring of dimension d ≥ 2 and let E ( Re be a submodule with λ(Re/E) < ∞. Let s be the
integer such that Fitte−1(Re/E) is contained in ms but not in ms+1. Then

e(m)sd−1 ·
(

d + e− 2
e− 1

)
≤ br(E) ≤ e(det0(E)) ·

(
d + e− 1

e− 1

)
,

where e(m) and e(det0(E)) are the Hilbert–Samuel multiplicities of the ideals m and det0(E)
respectively.

Proof. We may assume that the residue field of R is infinite. Let S =
⊕

n≥0

Sn = Sym(Re) =

R[t1, . . . , te] and let Rn ϕ−→ Re −→ Re/E −→ 0 be a presentation of Re/E. Since
Fitte−1(Re/E) = I1(ϕ) ⊆ ms and E = image(ϕ), we have

En ⊆ mnsSn for all n ≥ 0.

As integrally closed modules are m–full by [3, 2.6], [3, 2.7] shows that

ν(mnsSn) ≤ ν(En).

Now for sufficiently large n, we have a polynomial expression

λ
(
mns/mns+1

)
= e0

(
ns + d− 1

d− 1

)
− e1

(
ns + d− 2

d− 2

)
+ · · ·+ (−1)d−1ed−1 ≤ ν(mns).
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Let U be a minimal reduction of E. Then U is a complete intersection, and using [2, 4.4
and 3.1] we obtain

ν(mns)·
(

n + e− 1
e− 1

)
= ν(mnsSn) ≤ ν(En) = ν(Un) ≤ br(U)·

(
n + d + e− 3

d + e− 2

)
+

(
n + d + e− 3

d + e− 3

)
.

It follows that

e0s
d−1

(d− 1)!(e− 1)!
nd+e−2 + lower terms ≤ br(U)

(d + e− 2)!
nd+e−2 + lower terms.

Since br(U) = br(E) and e0 = e(m), we have

br(E) ≥ e(m)sd−1 ·
(

d + e− 2
e− 1

)
.

The other inequality follows from the fact that det0(E)Re ⊂ E and hence

λ(Sn/En) ≤ λ(Sn/det0(E)nSn) for all n ≥ 0.

We recall the notion of Briançon–Skoda number of an ideal I of an analytically unram-
ified Noetherian local ring R with infinite residue field. It is the smallest integer c(I) = s

such that In+s ⊂ Jn for all n and for any minimal reduction J of I ([8, 4.13]). In a similar
way, we can define the Briançon–Skoda number of an R–module E.

Definition 2.2 Let R be an analytically unramified normal local ring with infinite residue
field and let E be an ideal module over R. The embedding E ↪→ E∗∗ = Re identifies
the Rees algebra R(E) as a R–subalgebra of S =

⊕

n≥0

Sn = Sym(Re) = R[t1, . . . , te]. The

Briançon–Skoda number c = c(E) of E is the smallest integer c such that

En+c ⊆ UnSc for all n ≥ 0

and for any minimal reduction of U of E.

It is clear from the definition that the Briançon–Skoda number of the R–module E is
at most the Briançon–Skoda number of the Sn–ideal generated by E ⊂ S, where n is the
maximal homogeneous ideal of S. However these two numbers are not equal in general as
can be seen from Example 1.4. Now we show how the Briançon–Skoda number leads to a
bound for br1(E). For ideals this result was proved in [14, 2.2].

Theorem 2.3 Let R be an analytically unramified Cohen–Macaulay normal local ring of
dimension d ≥ 2 with infinite residue field and let E ( Re be a submodule with λ(Re/E) <

∞. If the Briançon–Skoda number of E is c, then

0 ≤ br1(E) ≤ br1(E) ≤ br(E) ·
(

e + c− 1
e

)
.
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Proof. We use the notation of Definition 2.2. Let U be a minimal reduction of E. Then U is
a complete intersection and br1(U) = 0 ([2, 3.4]). Since λ(Sn/En) ≤ λ(Sn/En) ≤ λ(Sn/Un)
and br(E) = br(E) = br(U), we have 0 ≤ br1(E) ≤ br1(E). It remains to prove the last
inequality in the theorem.

By the definition of c = c(E) we obtain

λ(Sn+c/Un+c)− λ(Sn+c/En+c) = λ(En+c/Un+c) ≤ λ(UnSc/Un+c). (1)

Write C =
⊕

n≥0

UnSc/Un+c. This is a finitely generated graded module over R(U)/mtR(U)

for some t > 0, where m denotes the maximal ideal of R. Hence it has a Hilbert polynomial
P (n) of the form

P (n) = e0(C) ·
(

n + d + e− 2
d + e− 2

)
− e1(C) ·

(
n + d + e− 3

d + e− 3

)
+ lower terms.

Since the polynomial P (n) has degree at most d + e − 2 and br1(U) = 0, inequality (1)
implies that br1(E) ≤ e0(C).

In order to estimate e0(C), we consider the filtration

Un+c ⊂ Un+c−1S1 ⊂ · · · ⊂ UnSc.

We define the R(U)–modules

Di =
⊕

n≥c−i

UnSi/Un+1Si−1, 1 ≤ i ≤ c,

which give the factors of a filtration of C. Any epimorphism Rd+e−1 ³ U induces a surjective
map

φ : Symn(Rd+e−1)⊗ Si−1 ⊗ (S1/U) ³ UnSi/Un+1Si−1.

Since λ(S1/U) = br(U) = br(E) ([4, 4.5], [12, 5.3]), we have

λ
(
Symn(Rd+e−1)⊗ Si−1 ⊗ (S1/U)

)
=

(
n + d + e− 2

d + e− 2

)(
e + i− 2

i− 1

)
br(E).

Therefore we obtain

e0(C) ≤ br(E)
c∑

i=1

(
e + i− 2

i− 1

)
= br(E) ·

(
e + c− 1

e

)
,

which establishes the last inequality in the theorem.

An important instance is given by the Briançon–Skoda theorem in [13, Theorem 1].
Lipman and Sathaye showed that if R is a regular local ring, then In+`−1 ⊂ In for all n,
where ` is the analytic spread of I 6= 0. This shows that the Briançon–Skoda number of
I 6= 0 is at most `(I)− 1. Using this theorem, we are able to give a bound for the length n

of a chain R(E) ⊆ A0 ( · · · ( An = R(E) of graded algebras satisfying (S2) between the
Rees algebra R(E) of a module E and its integral closure R(E).
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Theorem 2.4 Let R be a regular local ring of dimension d ≥ 2 and let E ( Re be a
submodule with λ(Re/E) < ∞. For any distinct graded R–subalgebras A and B such that

R(E) ⊆ A ( B ⊆ R(E),

where A satisfies Serre’s condition (S2), we have

0 ≤ br1(A) < br1(B) ≤ br(E) ·
(

2e + d− 3
e

)
.

In particular, any chain of graded (S2) R–subalgebras containing R(E) and contained in

R(E) has length at most br(E) ·
(

2e + d− 3
e

)
.

Proof. We may assume that the residue field of R is infinite. Let A and B be any graded
R–subalgebras such that

R(E) ⊆ A ⊆ B ⊆ R(E),

and let D = B/A. As in the proof Theorem 2.3, the module D = B/A has dimension at
most d + e − 1 and hence br1(A) ≤ br1(B). Moreover if A satisfies (S2) and A 6= B, then
D has dimension exactly d + e− 1 and hence br1(B) = br1(A) + e0(D) with e0(D) > 0. In
particular br1(A) < br1(B). Combining this with Theorem 2.3, we obtain

0 ≤ br1(E) ≤ br1(A) < br1(B) ≤ br1(E) ≤ br(E) ·
(

e + c− 1
e

)
,

where c is the Briançon–Skoda number of E.
Let S = R[t1, . . . , te] be a polynomial ring containing the Rees algebra R(E) as a

homogeneous R–subalgebra, n the maximal homogeneous ideal of S, and I the S–ideal
generated by E ⊂ S. Then by Remark 1.5 and [13, Theorem 1],

c = c(E) ≤ c(ISn) ≤ `(ISn)− 1 = `(E)− 1 ≤ d + e− 2.

Hence we obtain

br1(B) ≤ br(E) ·
(

2e + d− 3
e

)
.

A simple way to find an integral extension of a ring with the property (S2), which
does not necessarily involve canonical modules, arises in the following manner. Let R be
a Noetherian domain satisfying (S2) and let A be a domain containing R that is a finite
R–module. Then B = HomA(HomR(A,R), HomR(A,R)) is a finite and birational ring
extension of A that satisfies (S2). This observation can be applied to Rees algebras of
modules. Let R be an analytically unramified Cohen–Macaulay normal local ring with
infinite residue field and let E be an equimultiple module. Let U be a minimal reduction
of E. Then R(U) = R(E), the module U is a complete intersection, and the Rees algebra
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T = R(U) is Cohen–Macaulay ([19, 5.6]). Then for any graded R–subalgebra A with
T ⊂ A ⊂ T ,

HomA(HomT (A, T ), HomT (A, T ))

is a graded R–subalgebra of T containing A that satisfies (S2).

3 Extended degree for equimultiple modules

In this section we extend the results of the previous section to equimultiple modules. Let
R be an analytically unramified Cohen–Macaulay normal local ring, E an equimultiple
R–module of rank e and codimension g ≥ 2, and Min(Re/E) = {p1, . . . , ps} the set of
all minimal prime ideals in Supp(Re/E). Notice that dimRpi = g for 1 ≤ i ≤ s. Let
S =

⊕

n≥0

Sn = Sym(Re) = R[t1, . . . , te] be a polynomial ring which contains the Rees algebra

R(E) as a homogeneous R–subalgebra. Consider a graded R–subalgebra A =
⊕

n≥0

An with

R(E) ⊂ A ⊂ R(E) ⊂ S. We define a function deg(Sn/An) : N→ N by

deg(Sn/An) =
s∑

i=1

λ
(
(Sn/An)pi

)
deg(R/pi),

where deg(·) is the Hilbert–Samuel multiplicity. For n À 0, the length λ
(
(Sn/An)pi

)
is

given by a polynomial Pi(n) of the form

Pi(n) = br(Api) ·
(

n + g + e− 2
g + e− 1

)
− br1(Api) ·

(
n + g + e− 3

g + e− 2

)
+ lower terms.

Hence for n À 0, we have

deg(Sn/An) =
g+e−1∑

j=0

(−1)jbj(A)
(

n + g + e− j − 2
g + e− j − 1

)
,

where

b0(A) =
s∑

i=1

br(Api) deg(R/pi) and bj(A) =
s∑

i=1

brj(Api) deg(R/pi) if j > 0.

We define bj(E) = bj(R(E)) and bj(E) = bj(R(E)).

Proposition 3.1 Let R be an analytically unramified Cohen–Macaulay normal local ring
with infinite residue field and let E be an equimultiple R–module of rank e and codimension
g ≥ 2. Let Min(Re/E) = {p1, . . . , ps} and let U be a minimal reduction of E. Then

(a) b0(E) = deg(Re/U).
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(b) Let ε = min1≤i≤s{ si | Fitte−1((Re/E)pi) is contained in psi
i Rpi but not in psi+1

i Rpi}.
Then

εg−1

(
g + e− 2

e− 1

) s∑

i=1

deg(Rpi) deg(R/pi) ≤ b0(E).

(c) For any graded R–subalgebra A with R(E) ⊂ A ⊂ R(E), we have b0(A) = b0(E).

Proof. To prove (a) notice that

b0(E) =
s∑

i=1

br(Epi) deg(R/pi) =
s∑

i=1

λ
(
(Re/U)pi

)
deg(R/pi) = deg(Re/U).

Part (b) follows from Proposition 2.1, and (c) is a consequence of the fact that the Buchsbaum–
Rim multiplicity does not change when passing to the integral closure of a module ([12, 5.3]).

Proposition 3.2 Let R be a regular local ring and let E be an equimultiple module of rank
e and codimension g ≥ 2. Then

0 ≤ b1(E) ≤ b1(E) ≤ b0(E) ·
(

2e + g − 3
e

)
.

Proof. Let Min(Re/E) = {p1, . . . , ps}. By Theorems 2.3 and 2.4, we have

0 ≤ br1(Epi) ≤ br1(Epi) ≤ br(Epi) ·
(

2e + g − 3
e

)
.

Therefore we obtain

0 ≤ b1(E) =
s∑

i=1

br1(Epi) deg(R/pi) ≤
s∑

i=1

br1(Epi) deg(R/pi) = b1(E),

b1(E) ≤
s∑

i=1

br(Epi) ·
(

2e + g − 3
e

)
deg(R/pi) = b0(E) ·

(
2e + g − 3

e

)
.

We are now going to use Proposition 3.2 to bound the length of any chain of graded
algebras satisfying (S2) which appear in the process of normalization of an equimultiple
module. For ideals this was done in [14, 4.2].

Theorem 3.3 Let R be a regular local ring and let E be an equimultiple module of rank e

and codimension g ≥ 2. For any distinct graded R–subalgebras A and B such that

R(E) ⊆ A ( B ⊆ R(E)
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and A satisfies (S2), we have

0 ≤ b1(A) < b1(B) ≤ b1(E) ≤ b0(E) ·
(

2e + g − 3
e

)
.

In particular, any chain of graded (S2) R–subalgebras containing R(E) and contained in

R(E) has length at most b0(E) ·
(

2e + g − 3
e

)
.

Proof. By Proposition 3.2, it suffices to show that b1(A) < b1(B). Consider the exact
sequence of R(E)–modules

0 → A −→ B −→ D → 0.

Let Min(Re/E) = {p1, . . . , ps}. Suppose b1(A) = b1(B). Then by Theorem 2.4, we have
Api = Bpi for each i. Hence L = annR(D) has height at least g + 1. Let P be any minimal
prime ideal of LA and p = P ∩ R. Notice that Rp has dimension at least g + 1. Hence
dimAp is at least g + 1 + e. On the other hand dim(Ap/LAp) ≤ `(Ep) = g + e− 1 as E is
equimultiple. Therefore the ideal LAp has height at least 2 and hence LA does. Since A
satisfies (S2), we have grade(LA) ≥ 2, and therefore A = B.

4 Cohen–Macaulay algebras

For any monomial ideal in a polynomial ring in d variables over a field, it is known that the
integral closure of the Rees algebra of the ideal is Cohen–Macaulay ([6, Theorem 1]) and
that if the first d − 1 powers of the ideal are integrally closed then it is normal ([17, 3.1]).
Similar results are known for an integrally closed module over a 2–dimensional regular local
ring ([11, 4.1]). Now we show for a graded R–subalgebra B of R(E) containing R(E) that if
B is Cohen–Macaulay then B is generated by its components of degrees at most dimR− 1.

Theorem 4.1 Let R be an analytically unramified Cohen–Macaulay normal local ring of
dimension d > 0 with infinite residue field and let E be a finitely generated torsionfree
R–module. Let B =

⊕

n≥0

Bn be a graded R–subalgebra with R(E) ⊂ B ⊂ R(E). If B is

Cohen–Macaulay, then
Bn+1 = EBn for all n ≥ d− 1.

In particular B is generated as an R(E)–module by forms of degrees at most d− 1.

When the module E has a rank 1, which is the case of ideals, the theorem is proved in
[15]. That result was based on the characterization of the Cohen–Macaulayness of the Rees
algebra of an ideal I in terms of its associated graded ring and its reduction number ([1],
[10], [18]). It turns out that Theorem 4.1 is a direct consequence of the case of ideals and
the technique of Bourbaki sequences.
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Proof. We assume that rank(E) = e ≥ 2. Let a1, . . . , an be a set of R–generators of E and
let Z be a n× (e− 1) matrix of distinct indeterminates over R. Let R′ be R[Z]m[Z]. Set

E′ = R′ ⊗R E, xj =
n∑

i=1

zijai, F =
e−1∑

j=1

R′xj , B′ = R′ ⊗R B.

Notice that E′/F has rank 1 as an R′–module and that the natural mapR(E′)/FR(E′) −→
B′/FB′ becomes an isomorphism after tensoring with the quotient field of R. Furthermore
as ht(ER(E)) = e, we have ht(EB) = e. As B is a Cohen–Macaulay domain, [7, Theorem
and Proposition 3] shows that B′/FB′ is again a Cohen–Macaulay domain. Thus writing I ′

for the image of E′/F in B′, we see that I ′ is an R′–ideal and R(I ′) ⊂ B′/FB′ is a finite and
birational extension. Hence B′/FB′ is a Cohen–Macaulay ring contained in R(I ′). Now the
assertion follows from the result in the case of ideals ([15]) and an application of Nakayama’s
Lemma.
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