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Abstract

The theory of the integral closure of ideals has resisted direct approaches to some
of its basic questions (membership and completeness tests, and construction). We
mainly treat the membership problem in the monomial case by exploiting the connection
with multiplicities and its linkage to the computation of volumes of polyhedra. We
discuss several existent software packages and introduce our own contribution, a Monte

Carlo based approach to the computation of volumes. Finally, we make comparisons of
multiplicities of general ideals and of their initial ideals.

Introduction

Let R denote a Noetherian ring and I one of its ideals. The integral closure of I is the ideal
I of all elements of R that satisfy an equation of the form

zn + a1z
n�1 + � � �+ an�1z + an = 0; ai 2 Ii:
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There are several issues associated with this notion, from which we single out the following.
Let R = k[x1; : : : ; xn] be a ring of polynomials over the �eld k, let I = (f1; : : : ; fm) � R,
and let f 2 R. Our main concern is how to carry out the following tests/construction:

� Membership Test: f 2 I ?

� Completeness Test: I = I ?

� Construction Task: I ; I?

� Complexity Cost: cx(I ; I) ?

In the literature one does not �nd e�ective methods to generally deal with these prob-
lems. The diÆculty arises, partly, from the specialized nature of the equations the elements
need to satisfy. The exception, when we understand the problem fully, is the case of mono-
mial ideals. In this case, I is the monomial ideal de�ned by the integral convex hull of the
exponent vectors of I (see [8, p. 140]). Through the techniques of integer programming,
all four problems can, theoretically and often in practice, be solved. For non-monomial
ideals, only specialized cases of some of these questions have been dealt with ([7] treats the
completeness test for generic complete intersections).

Our interest in these questions is reinforced by its connections to another issue, which
has not been adequately dealt with either, the computation of multiplicities in local rings.
If (R;m) is a Noetherian local ring of Krull dimension d, and I is an m{primary ideal then
e(I), the multiplicity of I, is the integer

lim
n!1

�(R=In)

nd
d!;

where �(�) is the length function. The Hilbert function of the ideal is �(R=In), which is
given by a polynomial of degree d for n� 0 (see [2], [8]). When the ideal is monomial, the
limit can be interpreted as a Riemann sum of volumes (normalized by the factor d!) and we
exploit this connection.

These numbers are not easily captured, if at all, by Gr�obner bases computations. In part
this is because a large number of indeterminates are required to frame the calculation. A
simpli�ed version occurs when I is the maximal ideal and a conversion to a monomial ideal
is possible through a theorem of Macaulay (Theorem 4.1). The connection between the two
sets of issues, integral closure and multiplicity, rests primarily on a well-known theorem of
Rees ([15], and its generalizations): For I � L, e(I) = e(L) if and only if L � I.

We brie
y describe our results. The �rst section is an elementary recasting of the
description of I for a monomial ideal I. It is mainly used to recast the interpretation of
multiplicity as a volume. It also exhibits the fact that the degrees of the generators of I do
not exceed the top degree of a generating set of I by more than d � 1. In some sense this
solves the complexity count of the determination of I by placing a bounding box around I,
according to Corollary 1.3
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Equipped with the understanding of multiplicities of monomial ideals of �nite co-length,
in section 2 we introduce aMonte Carlo method for the computation of volumes of polytopes
and report on our experience with it. It is simple to set up and we found it comparable (in
deriving estimates) to the more technical approaches aimed at exact computation. One of
our goals is to explore the existing library of software to deal with these questions. We are
particularly interested in problems in large numbers of indeterminates, obviously beyond
the horizon of symbolic computation engines based on Gr�obner basis techniques.

In section 3, we use standard linear programming techniques to deal with the four tests
above. Ideally, one would like to answer the �rst two tests through an oracle matrix. For
instance, in the membership test: Given a monomial ideal I, there is a matrix A and a
vector b such that a monomial xv 2 I if and only if

A � v � b:

We show how to do this with o�-the-shelf software, and rather eÆciently for ideals of �nite
co-length. For this class of ideals, we also show how any membership oracle can be used
as a completeness test and as a path to the construction task using exclusively monomial
arithmetic.

The last section is an exploration of the relationships between the multiplicities of an
ideal I of �nite co-length and of its initial ideal in>(I), for some term ordering. It always
holds that e(I) � e(in>(I)), with equality meaning that for each integer n, in>(I

n) is
integral over (in>(I))

n (Theorem 4.3). Note that in this case, the initial algebra of the
Rees algebra R[It] is Noetherian (a very infrequent occurrence).

Regrettably, the methods developed to compute multiplicities and treat integral closure
issues do not extend to general ideals of rings of polynomials, or to aÆne algebras. In these
cases, one can still appeal to Gr�obner bases methods for small-scale examples.

1 Integral closure of monomial ideals

To set up the framework, we recall some general facts about the integral closure of monomial
ideals that are required for our treatment of multiplicity. Let R = k[x1; : : : ; xn] be a ring
of polynomials over the �eld k, and let I be the ideal generated by the set of monomials
xv1 ; : : : ;xvm . First we recall two descriptions of the integral closure of I.

One standard way to describe the integral closure of a monomial ideal is ([8, Exercise
4.23]):

Proposition 1.1 Suppose R = k[x1; : : : ; xn], and I is generated by a set of monomials

xv1 ; : : : ;xvm . Let � be the set of exponents of monomials in I,

� =
m[
i=1

vi + Nn :

Regarding � as a subset of Rn+ , let � be the convex hull of Rn+ + �, and let �� be the set of

integral points in �. Then I is the ideal generated by xv, v 2 ��.
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We will use a second description (see [20, Section 6.6], [21, Section 7.3]) of the generators
of the integral closure. If xv 2 I, it will satisfy an equation

(xv)` 2 I`;

and therefore we have the following equation for the exponent vectors,

` � v = u+
mX
i=1

ri � vi; ri � 0;
mX
i=1

ri = `:

This means that v =
u

`
+ �, where � belongs to the convex hull Conv(v1; : : : ; vm) of

v1; : : : ; vm. The vector v can be written as (set w = u
` )

v = bwc+ (w � bwc) + �;

and it is clear that the integral vector

v0 = (w � bwc) + �

also has the property that xv0 2 I.

Proposition 1.2 Let I be an ideal generated by the monomials xv1 ; : : : ;xvm . Let C be the

rational convex hull of V = fv1; : : : ; vmg and

B = [0; 1) � � � � � [0; 1) = [0; 1)n:

Then I is generated by xv, where v 2 (C +B)
T
Nn .

For simplicity we set B(V ) = (C +B)
T
Nn .

C +B

Figure 1: B(V ): The dotted lines indicate the boundary of C + B. The open circles are
those lattice points which give elements in the integral closure of I. The lattice point that
is not in (C +B)

T
Nn , is in the ideal generated by the lattice points in (C +B)

T
Nn .
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The following help illustrate some of the issues with computing the integral closure of
an ideal. First, a degree bound for the generators of the integral closure arises directly from
Proposition 1.2. A sharper bound might depend on the codimension of the ideal.

Corollary 1.3 Let I be a monomial ideal of k[x1; : : : ; xn], generated by monomials of degree

at most d. Then I is generated by monomials of degree at most d+ n� 1.

The following example shows that the integral closure of a monomial ideal I, although
by Proposition 1.1 de�ned by the integral convex hull of all the exponent vectors of I, may
not be generated by the monomials de�ned by the integral convex hull of the exponent
vectors of a minimal set of generators of I. The vector h3; 5i in Figure 1 also illustrates
this possibility. This, of course, makes the determination of I a great deal harder. We will
revisit this example when we give two membership tests.

Example 1.4 Let I be the ideal of the ring of polynomials R = k[x1; : : : ; x8] de�ned by
the monomials given through exponent vectors v1; : : : ; v8:

1 1 1 1 1 0 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 0 1 0
1 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1

Let L = I3, and consider the vector v = (2; : : : ; 2). In view of the equality

8v = (1; : : : ; 1) + 3(v1 + � � �+ v8);

one has

v = (
1

8
(3v1) + � � �+

1

8
(3v8)) + (

1

8
; : : : ;

1

8
);

which shows that xv lies in the integral closure of L; note that this monomial has degree
16 while L is generated by monomials of degree 15. Since the vectors vi are linearly in-
dependent, one can easily check with Maple that decrementing v, in any coordinate, by 1
produces elements that do not lie in the convex hull of f3v1; : : : ; 3v8g. It follows that L
requires minimal generators of degree at least 16.

We next recall the connection between integral closure, multiplicity and the computation
of volumes of polyhedra. Let f1 = xv1 ; : : : ; fr = xvr be a set of monomials generating the
ideal I. The convex hull C(V ) of the vi's partitions the positive quadrant into 3 regions:
an unbounded connected region, C(V ) itself and the complement P of the other two. The
bounded region P is the region most pertinent to our calculation (see also [18, p. 235],
[19]).
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P0

P

Figure 2: The polytope boundary is C(V ) and P is as marked. We will also refer to the
polytope marked by P0 and the simplex that bounds P and P0 will be referred to as �.

The integral closure I is generated by the monomials whose exponents have the form

rX
i=1

rivi + � � Nd

such that ri � 0 and
P

ri = 1 and � is a positive vector with entries in [0; 1). Suppose that
I is of �nite co-length, then, using the notation of Proposition 1.1, �(R=I) is the number
set of lattice points not in C(Rn+ + �).

Consider the integral closure of In. According to the valuative criterion ([22, p. 350]),
In is equal to the integral closure of the ideal generated by the nth powers of the fi's. This
means that the generators of In are de�ned by the exponent vectors of the formX

rinvi + �;

with ri and � as above. We rewrite

n(
X

rivi +
�

n
)

so the vectors enclosed must have denominators dividing n. To deal with In we are going to
use the set of vectors vi, but change the scale by 1=n. This means that each In determines
the same P. The length `n of R=In is the number of scaled lattice points in P. Placing the
lower left corner of a hypercube of side 1=n at each lattice point we see that the sum of the
volumes of the hypercubes is equal to the number of lattice points times (1=n)d which in
turn is (1=n)d`n = (1=n)d�(R=In). However, this sum is also a Riemann sum approximating
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the volume of P and thus the limit of this quantity as n ! 1 is just the exact volume of
P (see Figure 3). This number, multiplied by d!, is the multiplicity of the ideal.

 

Figure 3: The cubes of side one and side 1
4 are shown.

Let us sum up some of these relationships between multiplicities and volumes of poly-
hedra (see [19, p. 131]).

Proposition 1.5 Let I be a monomial ideal of R = k[x1; : : : ; xd] generated by xv1 ; : : : ;xvm .
Suppose that �(R=I) <1. If P is the region of Nd de�ned by I then

e(I) = d! �Vol(P): (1)

Example 1.6 Our �rst example is an ideal of k[x; y; z]. Suppose

I = (xa; yb; zc; x�y�z
);
�

a
+
�

b
+



c
< 1:

The inequality ensures that the fourth monomial does not lie in the integral closure of the
other three. A direct calculation shows that the multiplicity is indeed the volume of the
region P times d!, which in this case is given by a nice formula

e(I) = ab
 + bc�+ ac�:

We observe that P is not a polytope, but can be expressed as the di�erence between two
polytopes directly determined by the set of exponents vectors de�ning I, V = fv1; : : : ; vmg,
vi 6= 0. Since I has �nite co-length, suppose the �rst d exponent vectors correspond to the
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generators of I \ k[xi], i = 1; : : : ; d. Let � be the polyhedron de�ned by these vectors,
� = C(0; v1; : : : ; vd), and denote by P0 the convex hull of V (see Figure 2). We note

P = � n P0;

and therefore

Vol(P) = Vol(�)�Vol(P0) =
jv1j � � � jvdj

d!
�Vol(P0):

We use this relationship to compute multiplicities. If we set

p =
Vol(P0)

Vol(�)

then the proposition follows.

Proposition 1.7 Let I be a monomial ideal of �nite colength generated by the monomials

xv1 ; : : : ;xvm . With the notation above, we have

e(I) = (1� p)jv1j � � � jvdj:

2 A probabilistic approach to volumes and multiplicities

There is an extensive literature on the computation of volumes of polyhedra. We bene�ted
from the discussion of volume computation in [4]. The associated costs of the various
methods depend on how the convex sets are represented. They often require conversion from
one representation to another. We propose a manner in which to approach the calculation
of p, i.e. the calculation of Vol(P0) as a fraction of Vol(�). First, note that � is de�ned by
the equations

� :
x1
jv1j

+ � � � +
xd
jvdj

� 1; xi � 0: (2)

According to [6, pp. 284{285], since P0 is the convex hull of the vectors vi, i = 1; : : : ;m,
there are standard linear programming techniques to convert the convex hull description of
P0 into an intersection of halfspaces

P0 : A � x � b: (3)

Equally important, these linear programming techniques have been converted into very
eÆcient routines in several programming environments. We will focus on those routines
found in the collection [5].

Our statistical approach is based on classical Monte Carlo quadrature methods ([17]).
Sampling a very large number of points in �, and checking when those points lie in P0

are both computationally straight forward because of the ease of the descriptions given in
equations (2) and (3).
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Our proposal consists of making a series of N independent trials, keeping track of the
number of hits H, and using the frequency H

N as an approximation for p. According to
basic probability theory, these approximations come with an attached probability in the
sense that for small � > 0

Probability

�����HN � p

���� < �

�
is high. This estimation is based on Chebyshev's inequality ([10, p. 233]). We brie
y review
this inequality. If X is a random variable with �nite second moment E(X2), then for any
t > 0

PfjXj � tg � t�2E(X2):

In particular for a variable X of mean E(X) = � and �nite variance Var(X), for any t > 0

PfjX � �j � tg � t�2Var(X): (4)

For a set of N independent trials x1; : : : ; xN of probability p, the random variable we are
interested in is the average number of hits

X =
x1 + � � � + xN

N
=

H

N
:

We have E(X) = p and Var(X) =

q
p(1�p)
N . If we set � = t�2Var(X), and substitute into

(4), we obtain

P

(����HN � p

���� <
r
p(1� p)

�N

)
> 1� �:

Since p(1� p) � 1
4 , it becomes easy to estimate the required number of trials to achieve

a high degree of con�dence. Thus, for instance, a crude application shows that in order to
obtain a degree of con�dence of 0:95, and � = 0:02, the required number of trials should be
N � 12; 500 (Actually, a re�ned analysis, using the law of large numbers, cuts this estimate
by 4

5 ).

We have implemented this probabilistic approach to multiplicity. Our implementation
uses o�-the-shelf software. We illustrate our implementation though the discussion of some
examples.

Example 2.1 Computing multiplicity using probability requires a conversion that uses
PORTA (see [5]), a collection of transformation techniques in linear programming.

We will illustrate an application of the probabilistic method for the calculation of multi-
plicity in the setting of Proposition 1.5. Let I = (x3; y4; z5; w6; xyzw). Proposition 1.5 gives
e(I) = 342. To apply the probabilistic method, the exponents are written into a matrix
and PORTA is used to obtain the inequalities de�ning the convex hull. The PORTA input
and output are recorded below.
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The points defining the convex hull must be written in a file with

the extension .poi [say mult1.poi] and the routine ``traf'' is called

traf mult1.poi

----------------------------------

The content of mult1.poi is:

----------------------------------

DIM = 4

CONV_SECTION

3 0 0 0

0 4 0 0

0 0 5 0

0 0 0 6

1 1 1 1

END

------------------------------------

The output file is the desired set of linear inequalities

and it is put in the file mult1.poi.ieq:

------------------------------------

DIM = 4

VALID

1 1 1 1

INEQUALITIES_SECTION

( 1) -23x1-15x2-12x3-10x4 <= -60

( 2) -20x1-15x2-12x3-13x4 <= -60

( 3) -10x1- 9x2- 6x3- 5x4 <= -30

( 4) - 4x1- 3x2- 3x3- 2x4 <= -12

( 5) +20x1+15x2+12x3+10x4 <= 60

END

A C++ program is then used to calculate the probability. Testing with 10,000 points
gives a probability of .04989 and a multiplicity of 342.04.

Now we present more examples utilizing our implementation of our proposed probability
based algorithm for computing the multiplicity of monomial ideals. We include an analysis
of their run times and probable accuracy of results. In presenting these examples, the
dimension-independence of the method is clear. However, the di�erences between theoretical
results and implemented results are also clear. All results listed were obtained on a Pentium
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III processor that runs at 900 MHZ, has 256 MB RAM and is operating under Red Hat
Linux.

We illustrate the results of our algorithm using three examples. For the purposes of
the examples, we will refer to our algorithm as POLYPROB. We revisit Example 2.1 and
give two other examples for comparing MACAULAY2 [12], VINCI [4], NORMALIZ [3],
and POLYPROB. VINCI is an alternate program for computing the volume of a polytope,
while our computations in MACAULAY2 are classical, meaning we compute the leading
coeÆcient of the Hilbert Polynomial of the associated graded ring.

Example 2.2 Our second example is again in a four dimensional ring

I = (x4; y5; z6; w7; xz2w; y2zw2; xyzw):

This example is more complicated, but we can still use MACAULAY2, VINCI and POLYPROB
to compute the multiplicity.

Example 2.3 Last we present an example where MACAULAY2 fails, and the issues of
accuracy and speed in POLYPROB and VINCI are also illustrated. This example is sixteen
dimensional

(x21; x
3
2; x

4
3; x

5
4; x

6
5; x

7
6; x

8
7; x

9
8; x

10
9 ; x1110; x

12
11; x

13
12; x

14
13; x

15
14; x

16
15; x

17
16; x3x5x8x10x12x14x16;

x2x5x7x13; x3x7x9x10x
2
13x

2
15x16; x2x4x6x

2
11x

2
14; x4x6x8x11; x1x9; x1x15):

For this ideal, while we have

P

(����HN � p

���� <
r
p(1� p)

�N

)
> 1� �;

when we multiply the probability by 17! to get the multiplicity, we also multiply the error by
this same number. In Example 2.3 for � = :02 and N = 20000 we get H = 16618 andH=N =
:8309 in one trial. The formula states that the probability that j:8309 � pj < 1

4(:01)(20000) =

:000625 is greater than .98. However, we can only say that j(1 � :8309)17! � e(I)j <
(:00125)(17!) = 2:22305(1011). Even with everything else the same and N = 1; 000; 000,
j:8309 � pj < :000025, but j(1 � :8309)17! � e(I)j < (:0000125)(17!) = 4:44609(109). We
would need N = 1014 to get the error on the multiplicity, using POLYPROB, to around 10.
Unfortunately, the numbers we are dealing with mean that using standard 
oating point
arithmetic there will be large computer precision error involved. The program VINCI also
has this problem for large computations. We have been able to implement POLYPROB
using GMP [11] aribitrary precision arithmetic and these are the numbers we include here.
Unfortunately, it would take days to run 2.3 in POLYPROB with N = 1014.

For each example, NORMALIZ computed the multiplicity (342, 546, and 60012790921296
respectively) in a negligable amount of time (less than .01 in each of the �rst two examples)
so we don't list this in the chart to save space. This table lists the exact (up to computer
precision error) multiplicity as computed by MACAULAY2 or VINCI and the POLYPROB
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(PP) results for di�erent values of N . The entries in the \PP result" column are an average
of 10 trials. Averaging trials appears to give slightly more accurate results. Last we include
the CPU run times for each of the calculations.

Ex.
M2
re-
sult

VINCI result PP result N
#
ineq.

PP
time

M2
time

VINCI
time

2.1 342 342 342.202 5000 5 .05 .25 .07
342.04 10000 .07
342.043 20000 .10
342.093 50000 .18

2.2 546 546 547.688 10000 14 .07 1.37 .07
547.642 20000 .10
545.946 50000 .18
545.553 100000 .31

2.3 - (6:001279)(1013) (5:95065)(1013) 10000 494 .73 - .13
(5:98462)(1013) 20000 1.42
(6:0257)(1013) 50000 3.47
(6:01912)(1013) 100000 6.98
(6:01127)(1013) 500000 34.93
(6:00291)(1013) 1000000 1:10.57

At this point NORMALIZ seems to outperform all of the programs on these examples.
POLYPROB is clearly much better than M2 on even medium problems. In terms of time
VINCI appears to be the best of those programs in the chart. However, we note that
POLYPROB will work as accurately if we give it an ideal of the form (x�11 ; : : : ; x�nn ; f1; : : : fn)
where fi for at least one i is in the integral closure of the ideal (x�11 ; : : : ; x�nn ), but VINCI
will fail to give the correct multiplicity in this case and as noted before, VINCI is only
written using standard 
oating point arithmetic.

POLYPROB Implementation

The fundamental operation of our POLYPROB algorithm is a random trial: that is, gen-
erating a random vector within the simplex containing the polytope, and testing whether
the vector is in the polytope. Thus, POLYPROB requires an eÆcient way to get ran-
dom vectors uniformly distributed over a simplex. To see how to do this, �rst consider
the general problem of generating a vector (x1; : : : ; xn) uniformly distributed over an n{
dimensional polytope P. Given a description of the polytope, say as the convex hull of a
set of vertices, we can calculate the minimum and maximum values for each coordinate of a
vector in the polytope. That is, we can determine that the polytope lies within the hyper-
cube

Qn
i=1[ai; bi]. Our �rst task, then, is to pick x1 2 [a1; b1] according to an appropriate

probability distribution.
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Thus, for any c 2 [a1; b1] we can calculate f(c) = Pr(x1 2 [a1; c]) by calculating the
volume of P \ f(x1; : : : ; xn) : a1 � x1 � cg as a percentage of the volume of P. This
gives us a monotone increasing distribution function f : [a1; b1] ! [0; 1]. It is from this
distribution function that we want to sample x1. If we can pick a random real number X
uniformly distributed over [0; 1], then we can just take x1 = f�1[X]. Once x1 has been
sampled, its value determines an (n � 1)-dimensional cross-section of P so we have now
reduced the problem to picking a smaller random vector (x2; : : : ; xn) uniformly distributed
over that cross-section. Thus we can iteratively pick x2; : : : ; xn by the same algorithm used
to pick x1.

For general polytopes, there are very large practical problems with this algorithm. How-
ever, for simplices all of these problems disappear. Since � is a simplex we only need to
perform this algorithm for simplices. Consider a simplex with one vertex at the origin and
vertices v1; : : : ; vn where vi = (0; : : : ; ai; 0; : : : ; 0). Then

Pr(x1 2 [c; a1]) =

�
a1 � c

a1

�n

so the inverse of the distribution function is just f�1(X) = 1�X1=n times the scaling factor
ai. And if we sample x1, the cross-section of the simplex at x1 is just the (n�1)-dimensional
simplex with vertices at (x1; 0; 0; : : : ; 0) and v2:::vn where vi = (x1; 0; : : : ; (1 �

x1
a1
)ai; : : :).

The source code for our implementation of POLYPROB illustrates our application of this
method; it is available at http://www.math.rutgers.edu/�nweining/polyprob.tar.gz.

3 Membership test for integral closure of monomial ideals

In this section we provide a linear programming solution to the membership test `f 2 I?'

Monomial ideals of �nite co-length

We will provide now membership & completeness tests and a construction of the integral
closure of monomial ideals of �nite co-length. Our treatment is a by-product of the half-
spaces description of the convex hull given in Eq. (3). We point out how the following oracle
gives a solution to the membership and completeness tests and the construction task in case
of an ideal of �nite co-length.

Proposition 3.1 Let I be a monomial ideal of �nite co-length as above, and let f be a

monomial. Denote by e = (e1; : : : ; en) the exponent vector of f , by v = (v1; : : : ; vn), A and

b the vectors and matrices associated to I as discussed above. Then f is integral over I if

one of the two conditions holds:

A � e � b,Pn
i=1

ei
vi
� 1:
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Proof. These conditions simply express the fact that either e lies in the convex hull of the
vectors v1; : : : ;vn (in which case f would lie in the integral closure of (xv1 ; : : : ;xvn)), or
that adding f to I does not a�ect the volume of P. In the second case, e(I) = e(I; f), f is
integral over I by Rees' theorem. 2

De�nition 3.2 A membership oracle for the integral closure of an ideal I is a boolean
function A such that f 2 I if and only if A(f) = true.

Proposition 3.1 above shows that monomial ideals of �nite co-length admit such oracles.
We show now how given any membership oracle A for a monomial ideal I of �nite co-length
leads also to a completeness test. We begin with a general observation that shows some of
the opportunities and diÆculties in developing such tests.

Proposition 3.3 Let (R;m) be a Noetherian local ring and let I be an ideal of �nite co-

length. Denote by L = I : m the socle ideal of I. Then I is complete if and only if no

element of L n I is integral over I.

Proof. If f 2 I n I, then for some power of m, mrf will contain non{trivial elements in the
socle of I. The converse is clear. 2

Proposition 3.4 Let I be a monomial ideal in k[x1; : : : ; xd] of �nite co-length and let A
be a membership oracle for the integral closure of I. Let ff1; : : : ; fsg be the monomials in

I : (x1; : : : ; xd) n I. Then

I = I () A(fi) = false; i = 1; : : : ; s:

Proof. First, we consider the reverse direction. Let L = I : (x1; : : : ; xd) be the socle ideal
of I. L is generated by the fi and monomials in I. Since I is a monomial ideal, if f is
a monomial 2 I n I, by multiplying by another monomial g, we obtain gf generating a
nonzero element in the vector space L=I. This means that gf must be one of the fi. Since
gf is also integral over I, the assertion follows. The other assertion is obvious. 2

The construction of I follows in a straightforward manner:

If I 6= I, de�ne
I1 = (I;A(fi) = true; i = 1; : : : ; s):

Since I1 = I, A is still a membership oracle for the integral closure of I1 and we can repeat
until In = I. The program terminates by Proposition 3.4 and is has been implemented in
MACAULAY2.

General monomial ideals

A more comprehensive membership test for the question \f 2 I", valid for any monomial
ideal, is the following. However, this test lacks the e�ectivity of the method in the previous
section.
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Proposition 3.5 Let v1; : : : ; vm be a set of vectors in Nn and let A be the n �m matrix

whose columns are the vectors v1; : : : ; vm. If I = (xv1 ; : : : ;xvm), then a monomial xb lies

in the integral closure of I if and only if the linear program:

Maximize x1 + � � �+ xm (�)

Subject to Ax � b and x � 0

has an optimal value greater or equal than 1, which is attained at a vertex of the rational

polytopeP = fx 2 Rm jAx � b and x � 0g.

Proof. )) Let xb 2 I, that is, xpb 2 Ip for some positive integer p. There are non-negative
integers ri satisfying

xpb = xÆ (xv1)r1 � � � (xvm)rm and r1 + � � �+ rm = p:

Hence the column vector c with entries ci = ri=p satis�es

Ac � b and c1 + � � �+ cm = 1:

This means that the linear program has an optimal value greater or equal than 1.
() Observe that the vertices of P have rational entries (see [6, Theorem 18.1]) and that

the maximum of x1 + � � � + xm is attained at a vertex of the polytopeP , thus there are
non-negative rational numbers c1; : : : ; cm such that

c1 + � � �+ cm � 1 and c1v1 + � � �+ cmvm � b:

By induction on m it follows rapidly that there are rational numbers �1; : : : ; �m such that

0 � �i � ci 8i and
mX
i=1

�i = 1:

Therefore there is a vector Æ 2 Qn with non-negative entries satisfying

b = Æ + �1v1 + � � �+ �mvm:

Thus there is an integer p > 0 such that

pb = pÆ|{z}
2Nn

+ p�1|{z}
2N

v1 + � � � + p�m|{z}
2N

vm;

and consequently xb 2 I. 2

Remark 3.6 According to [6, Theorem 5.1] if the primal problem (�) has an optimal
solution x, then the dual problem

Minimize b1y1 + � � �+ bnyn
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Subject to yA � 1 and y � 0

has an optimal solution y such that the optimal values of the two problems coincide. Thus
one can also use the dual problem to test whether xb is in I. Here 1 denotes the vector
with all its entries equal to 1. The advantage of considering the dual is that one has a �xed
polyhedron

Q = fy 2 Rn j yA � 1 and y � 0g

that can be used to test membership of any monomial xb, while in the primal problem
the polytope P depends on b. Using PORTA one can readily obtain the vertices of the
polyhedral set Q. The matrix M whose rows are the vertices of Q is a \membership test
matrix" in the sense that a monomial xb lies in I i� Mb � 1.

Let us illustrate the criterion with a previous example.

Example 3.7 Consider the ideal I of Example 1.4. To verify that xb = x21 � � � x
2
8 is in I3

one uses the following procedure in Mathematica

ieq:={

3x1 + 3x2 + 3x3 + 3x4 + 3x5<=2,

3x1 + 3x2 + 3x3 + 3x4 + 3x6<=2,

3x1 + 3x2 + 3x3 + 3x4 + 3x7<=2,

3x1 + 3x2 + 3x3 + 3x4 + 3x8<=2,

3x1 + 3x5 + 3x6 + 3x7 + 3x8<=2,

3x2 + 3x5 + 3x6 + 3x7 + 3x8<=2,

3x3 + 3x5 + 3x6 + 3x7 + 3x8<=2,

3x4 + 3x5 + 3x6 + 3x7 + 3x8<=2}

vars:={x1,x2,x3,x4,x5,x6,x7,x8}

f:=x1+x2+x3+x4+x5+x6+x7+x8

ConstrainedMax[f,ieq,vars]

The answer is:

{16/15,

{x1 -> 2/15, x2 -> 2/15, x3 -> 2/15, x4 -> 2/15, x5 -> 2/15,

x6 -> 2/15, x7 -> 2/15, x8 -> 2/15}}

where the �rst entry is the optimal value and the other entries correspond to a vertex of
the polytopes P . Using the criterion and the procedure above one rapidly veri�es that xb

is a minimal generator of I3.
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4 Computation of general multiplicities

We will make general observations about the computation of the multiplicity of arbitrary
primary ideals. The input data is usually the following. Let A = k[x1; : : : ; xr]=L be an aÆne
algebra and let I be a primary ideal for some maximal ideal M of A. The Hilbert{Samuel
polynomial is the function, n� 0

n 7! �(A=In) =
e(I)

d!
nd + lower terms; dimAM = d:

In other words, e(I) is the ordinary multiplicity of the standard graded algebra

grI(A) =
X
n�0

In=In+1:

For the actual computation, ordinarily one needs a presentation of this algebra

grI(A) = k[T1; : : : ; Tm]=H;

where the right side is not always a standard graded algebra. In the special case of I =
(x1; : : : ; xr)A and L is a homogeneous ideal, one has that

grM (A) ' A;

and therefore it can be computed in almost all computer algebra systems by making use of:

Theorem 4.1 (Macaulay Theorem) Given an ideal I and a term ordering >, the map-

ping

NormalForm: R=I �! R=in>(I) (5)

is an isomorphism of k-vector spaces. If I is a homogeneous ideal and > is a degree term

ordering, then NormalForm is an isomorphism of graded k{vector spaces, in particular the

two rings have the same Hilbert function.

For our case, this implies that

e(I) = deg(A) = deg(k[x1; : : : ; xr]=in>(L));

where > is any degree term ordering of the ring of polynomials k[x1; : : : ; xr]. We can turn
the general problem into this case by the following observation (which hides the diÆculties
of the conversion). Let (R;m) be a Noetherian local ring and let I be an m{primary ideal.
To calculate the multiplicity e(I) we need some form of access to a presentation of the
associated graded ring grI(R),

grI(R) = k[T1; : : : ; Ts]=(f1; : : : ; fm);
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in order to avail ourselves of the programs that determine Hilbert functions. A proposed
solution, that uses heavily, Gr�obner basis theory, is given in [14].

Alternatively, one can turn to indirect means. For instance, suppose R = k[x1; : : : ; xd] is
a ring of polynomials and I is an (x1; : : : ; xd){primary ideal. Let J be a minimal reduction
of I, then

e(I) = �(R=J):

(A similar approach works whenever R is a Cohen{Macaulay ring.) If > is a term order of
R, then

�(R=I) = �(R=in>(J)):

The diÆculty is to obtain J . It usually arises by taking a set of d generic linear combi-
nation of a generating system of I. In addition, even when I is homogeneous, J will not be
homogeneous (often it is forbidden to be). One positive observation that can be made is:

Proposition 4.2 Let I be an (x1; : : : ; xd){primary ideal. For any term order > of R,

e(I) � e(in>(I)) � d! � e(I): (6)

Proof. Denote L = in>(I). The multiplicities are read from the leading coeÆcients
of the Hilbert polynomials �(R=In) and �(R=Ln), n � 0. We note however that while
�(R=I) = �(R=L), for large n we can only guarantee

�(R=In) = �(R=in>(I
n)) � �(R=Ln);

since the inclusion
(in>(I))

n � in>(I
n)

may be proper.
The other inequality will follow from Lech's formula ([13]) applied to the ideal L:

e(L) � d!�(R=L)e(R) � d!e(I);

since e(R) = 1 and �(R=L) = �(R=I) � e(I). 2

As an illustration, let I = (xy; x2 + y2) � k[x; y]. Picking the deglex ordering with
x > y, gives L = in>(I) = (xy; x2; y3). We thus have

4 = e(I) < e(L) = 5:

We are now going to explain the equality e(I) = e(L). Set Ln = in>(I
n). Note that

B =
P

n�0 Lnt
n is the Rees algebra of the �ltration de�ned by Ln's. Actually, B is the

initial algebra in>(R[It]) of the Rees algebra R[It] for the extended term order of R[t]:

ftr > gts , r > s or r = s and f > g:

In general, B is not Noetherian (which is the case in the simple example above, according
to [9]).
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Theorem 4.3 Let I be an (x1; : : : ; xd){primary ideal of the polynomial ring k[x1; : : : ; xd],
and let > be a term ordering. The following conditions are equivalent:

(a) e(I) = e(in>(I)).

(b) B is integral over R[Lt], in particular B is Noetherian.

Proof. (a) ) (b): To prove that B is contained in the integral closure of R[Lt] it will be
enough to show that for each s, the algebra R[Lst] is integral over R[L

st], in other words,
to prove the assertion (b) for corresponding Veronese subalgebras.

Since, by hypothesis, the functions �(R=Ln) and �(R=In) = �(R=Ln), for n � 0, are
polynomials of degree d with the same leading coeÆcients, and we have

�(R=(Ls)n) � �(R=Ln
s ) � �(R=Lsn) = �(R=Isn) = �(R=(Is)n);

and
e(Ls) = sde(L) = sde(I) = e(Is);

it follows that Ls and Ls have the same multiplicities. By Rees theorem ([15]), Ls is integral
over Ls.

(b) ) (a): It is immediate. 2

Some of these facts can be extended to more general aÆne algebras. Suppose I is a
monomial ideal of �nite co-length and L � I is a monomial subideal. The multiplicity of
I=L arises from the function

n 7! �(R=(In + L)):

We will argue that there is a `volume formula', similar to Proposition 1.5 that holds in this
case. It is an application of the associativity formula for multiplicities: If p1; : : : ; pr are the
minimal prime ideals of L of dimension s = height L, then

e(I=L) =

rX
i=1

�((R=L)pi) � e((I + pi)=pi):

Once the pi have been found, we may apply Proposition 1.5 to each monomial ideal Ii =
(I + pi)=pi. The other terms are co-lengths of monomial ideals. Indeed, the length li of the
localization (R=L)pi is obtained by setting to 1 in R and in L all the variables which do not
belong to pi. On the other hand, the ideal I=pi is obtained by setting to 0 the variables
that lie in pi.

Proposition 4.4 The multiplicity of the `monomial' ideal I=L is given by

e(I=L) =
rX

i=1

li � e(Ii):
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We can also make comparisons between multiplicities of ideals in general aÆne rings
and the monomial case. Consider an ideal

I=L � A = R=L = k[x1; : : : ; xn]=L

of codimension d. For some term order, let L0 and I 0 be the corresponding initial ideals.
Denoting by (�)0 the initial ideal operation, we have

I 0n + L0

L0
�

(In + L)0

L0
; n � 0:

As in the case when L = (0), we have

�(R=(In + L)) = �(R=(In + L)0) � �(R=(I 0
n
+ L0)); n � 0;

and consequently,
e(I=L) � e(I 0=L0):

On the other hand, by Lech's formula ([13]),

e(I 0=L0) � d! � �(R=I 0) � e(R=L0) = d! � �(R=I) � e(R=L);

the substitution e(R=L0) = e(R=L) by Macaulay's theorem.
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