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Modules of Finite Projective Dimension

Let R be a Noetherian ring and M a finitely generated
R-module with a finite free resolution

0→ Fm → · · · → F1 → F0 → M → 0.

We are going to relate
1 The length of the resolution;
2 The properties of the ideals generated by the minors of the

matrices
ϕi : Fi → Fi−1;

3 Other invariants of M and of R.



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

Modules of Finite Projective Dimension

The following result describes how a finite free resolution is
anchored on its left end.

Theorem (McCoy Theorem)

Let R be a commutative ring and ϕ : Rm → Rn be a
homomorphism of free R–modules. Denote by I the ideal
generated by the m ×m minors of a matrix representation of ϕ.
Then ϕ is injective if and only if 0 : I = 0. In particular, if (R,m)
is a local ring, 0 : m 6= 0, and all entries of ϕ lie in m, then ϕ is
not injective.

Proof. If v = (a1, . . . ,am) is a nonzero vector in the kernel of ϕ,
by Cramer rule it follows that I is annihilated by ai for each i .
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Proof of McCoy’s Theorem

For the converse, denote by It (ϕ) the ideal generated by the
t × t minors of ϕ. We may assume that for some t ≤ m,
0 : It−1(ϕ) = 0 and 0 : It (ϕ) 6= 0. If t = 1, for any annihilator r of
I1(ϕ), we have ϕ(rRm) = 0, so we may take t ≥ 2.

Consider the system of linear equations

a11x1 + a12x2 + · · ·+ a1mxm = 0
...

an1x1 + an2x2 + · · ·+ anmxm = 0.

Let 0 6= r ∈ 0 : It (ϕ); we may assume that r does not annihilate
one minor of size t − 1, say the upper-left minor of size t − 1.
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A nonzero solution can be now obtained: set
xt+1 = · · · = xm = 0, and let xi , for i ≤ t , be the minor defined
by the i th column of the upper-left (t − 1)× t submatrix. Then
r · (x1, . . . , xm) solves the first t − 1 equations by Cramer rule,
and the remaining equations because r · It (ϕ) = 0. �
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Auslander–Buchsbaum Equality

The following is an explanation of the difference between the
(finitistic) global dimension of a ring and the projective
dimension of one of its modules.

Theorem

Let (R,m) be a Noetherian local ring and let M be a nonzero
finitely generated R–module. If proj dimR M <∞ then

proj dimR M + depth M = depth R. (1)

Recall that the depth of a module M is the length of the longest
M-regular sequence contained in m.
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Proof

We induct on r = codim R and p = proj dimR M. We may
assume that p > 0. Let

0→ Fp
ψ−→ Fp−1 −→ · · · −→ F1

ϕ−→ F0 −→ M → 0 (2)

be a minimal free resolution of M.

We compare the value of the formula (1) for M and for its first
module of syzygies K = ϕ(F1). If r = 0, the maximal ideal m

has a non trivial annihilator and therefore ψ, with its entries all
in m, cannot be injective.
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Suppose first that m is not an associated prime of M. Since
r > 0, there exists x ∈ m which is regular on M and R, and
therefore on all the modules in (2). Tensoring the resolution with
R/(x) gives a minimal resolution of the same length for M/xM
as an R/(x)–module. We now use the formula for R/(x).
For the second case, suppose m is an associated prime of M,
and let x ∈ m be a regular element of R. Tensoring the exact
sequence

0→ K −→ F0 −→ M → 0,

by R/(x), gives the exact sequence (using, say, the snake
lemma, or the reader’s favorite tool from homological algebra)

0→ xM −→ K/xK −→ F0/xF0 −→ M/xM → 0,

where xM is the set of elements of M annihilated by x . Note
that m is an associated prime of this submodule. We thus have
that m is an associated prime of K/xK .
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On the other hand, a minimal resolution of K/xK over R/(x) is
obtained by tensoring that part of (2) that resolves K . From the
previous case, proj dimR/(x) K/xK = depth R/(x) = r − 1, and
therefore proj dimR M = r , as desired. �
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Modules of Finite Injective Dimension

The f.g. R-modules of finite injective dimension have very
different properties:

Theorem
Let (R,m) be a Noetherian local ring and N 6= 0 be a module of
finite injective dimension. Then for any f.g. R-module M,

inj dim M = depth N + sup{j : ExtjR(M,N) 6= 0}.

This implies:

Corollary
All nonzero finitely generated R-modules of finite injective
dimension have the same injective dimension.
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Acyclicity of Free Complexes

We next give the most widely used tool to check the acyclicity
of free complexes. A fuller discussion may be found in many
textbooks and we content ourselves with the skeleton of a proof.

Let ϕ : Rm → Rn be a homomorphism between free modules.
Picking bases it can be represented by an n ×m matrix [aij ],
and rank ϕ is the largest integer r such that [aij ] has a nonzero
minor of order r . It is easily seen to be the least integer r such
that r th exterior power ∧rϕ : ∧r (Rm)→ ∧r (Rn) is nonzero. This
identification ensures that r is well defined. We denote by Ir (ϕ)
the ideal generated by all the minors of order r .
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Buchsbaum-Eisenbud

Theorem (Buchsbaum–Eisenbud)

Let R be a Noetherian ring and let

F• : 0→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0 → 0

be a complex of finitely generated free R–modules. For each
i = 1, . . . ,n, denote by ri = ri(F) =

∑n
j=i(−1)j−i rank Fj . The

following conditions are equivalent:
(a) F is acyclic.
(b) grade Iri (ϕi) ≥ i , for i = 1, . . . ,n.
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Proof. (a)⇒ (b): Let p be any associated prime ideal of (0) in
the ring R. Localizing F at p gives a complex F⊗ Rp of free
modules which is a free resolution of L = cokerϕ1. By the
Auslander-Buchsbaum equality, L must be a free Rp–module.
Thus the complex Fp splits completely which means that
ri = rank ϕi and all ideals Iri (ϕi) localize to Rp and consequently
must contain regular elements. If x is a regular element of R in⋂

i Iri (ϕi), tensoring F by R/(x) gives the exact sequence

0→ Fn ⊗ R/(x) −→ Fn−1 ⊗ R/(x) −→ · · · −→ F1 ⊗ R/(x),

on which we use the induction hypothesis since
ri(F) = ri(F⊗ R/(x)).
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(b)⇒ (a): By induction on all such shorter complexes, we
assume that the subcomplex

0→ Fn
ϕn−→ Fn−1 −→ · · · −→ Fr

ϕr−→ Fr−1,

is acyclic except possibly at Fr . By McCoy’s Theorem and the
hypothesis on Irn (ϕn), ϕn is an injective homomorphism, so that
1 ≤ r < n. Set B = imageϕr+1, Z = kerϕr and consider the
natural exact sequence

0→ B −→ Z −→ H = Hr (F)→ 0.

To show that H = 0, suppose otherwise and let p be a minimal
associated prime ideal of H. Localizing at p we may assume
that p is the unique maximal ideal of R, and that
depth R ≥ n − r . Since n ≥ 2, and using the depth lemma
repeatedly we obtain that depth B ≥ 2, depth Z ≥ 2 and
therefore depth H > 0, which contradicts the choice of p. �
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Syzygy Theorems

The bounds for projective dimensions arise from the fact that
the depths of the ideals of maximal minors of the matrices in
the complex increase:

0→ Fm → · · · → F1 → F0 → M → 0
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Regular Local Rings

Let R be a Noetherian local ring of maximal ideal m. By Krull’s
PIT, the minimal number of generators of m is at least the Krull
dimension of R.

Definition
R is a regular local ring if

ν(m) = dim R.

If dim R = 0, R is a field.
If dim R = 1, m = (x) contains properly some minimal
prime ideal p. Thus for u ∈ p, u = rx , so r ∈ p. Therefore

p = xp,

so p = 0 by Nakayama Lemma, that is R is a domain, more
precisely a PID.
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Regular Local Rings

If dim R = n, m = (x1, . . . , xn), the local ring R = R/(x1)
has dimension most n − 1 by Krull’s PIT, but it cannot have
dimension < n − 1 as this would imply that m/(x1) would
be a minimal prime of an deal generated by fewer that
n − 1 elements, (y1, . . . , yr ), r < n − 1, and m would be
minimal over (x1, y1, . . . , yr ), contradicting Krull’s.

We have that R = R/(x1) is a regular local ring, and by
induction it is a domain. If we choose the xi not belonging
to a minimal prime, (x1) is a non minimal prime ideal.
Use the argument of the case dim R = 1 to show that R is
an integral domain.
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Regular Local Rings

Theorem
If R is a regular local ring of dimension n and m = (x1, . . . , xn),
then x = {x1, . . . , xn} is a regular sequence. In particular, the
Koszul complex of x is a free resolution of the residue field R/m,

K(x)→ R/m.

Example
R = k [[x1, . . . , xn]], ring of formal power series in n variables.
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Prime Avoidance

Proposition

Let R be a commutative ring. Let I be an ideal of a ring R and
suppose that it is contained in the set theoretic union of a finite
collection of ideals Ii

I ⊂
s⋃

i=1

Ii .

Then I is contained in one of these ideals in the following two
cases:

1 The Ii are prime ideals for all but at most 2 i ’s;
2 R contains an infinite field k.
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Proof

(1): We may assume that I is not contained in the union of
fewer than s of the Ii . We argue by contradiction.

If s = 2, picking a ∈ I \ I1 ⊂ I2 and b ∈ I \ I2 ⊂ I1 then a + b
cannot be contained in either I1 or I2. Assume s > 2 and Is is
prime. Let a ∈ I \ I1 ∪ · · · ∪ Is−1 ⊂ Is and pick
b ∈ I · I1 · · · Is−1 \ Is. Then a + b cannot lie in any Ii .
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(2) The case s = 2 being trivial, suppose s > 2 and assume I is
not contained in the union of fewer Ii . This means that for every
t = 1, . . . , s, we can find

at ∈ It \
⋃
i 6=t

Ii .

Consider, for each c ∈ k , a linear combination

b = a1 + ca2 + · · ·+ cs−1as =
s∑

t=1

ct−1at .

Since k is infinite, we can find s different elements
c1, . . . , cs ∈ k such that the corresponding b1, . . . ,bs belong to
the same subset, say, I1. But I1 is a k–vector space so that any
linear combination of the bt will belong to it; moreover the matrix
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1 c1 c2

1 · · · cs−1
1

1 c2 c2
2 · · · cs−1

2
...

...
...

. . .
...

1 cs c2
s · · · cs−1

s


has determinant different from zero (it is a Vandermonde
determinant). Thus I1 contains a1, . . . ,as, contradicting the
choice of the at ’s. �
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Regular Local Rings: Homological
Characterization

Theorem
Let (R,m) be a Noetherian local ring. The following conditions
are equivalent:

1 R is a regular local ring;
2 proj. dim. R(R/m) <∞;
3 Every R-module has finite projective dimension.

Proof. (1)⇒ (2): If dim R = n, m = (x1, . . . , xn) we argued
above that the xi form a regular sequence. Thus the Koszul
complex of the xi gives a projective resolution of R/m.
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Regular Local Rings: Homological
Characterization

(2)⇒ (3): Let proj. dim. R(R/m) = n. Then

TorR
n+1(R/m,M) = 0

for any R-module. This implies that if

0→ K → Fn → · · · → F0 → M → 0

is a minimal free presentation of M,

Torn+1(M,R/m) = K/mK = 0

so proj dim RM < n + 1.
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(3)⇒ (1): Suppose all f.g. R-modules has projective
dimension at most n (and n is reached).

Since we may assume n > 0, by McCoy’s Theorem it
follows that m does not consists of zero divisors, that is
0 : m = 0.

Let p1, . . . , pm be the associated prime ideals of R. Since
pi 6= m for each i ,

m 6⊂ m2 ∪ p1 ∪ · · · ∪ pm.

By prime avoidance, there exists x ∈ m \m2 that is not a
zero divisor.



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

Regular Local Rings: Homological
Characterization

Choose a minimal set of generators of m, m = (x1, . . . , xn),
x1 = x .
Set I = (x1m, x2, . . . , xn) note

m = I + (x1), I ∩ (x1) = x1m.

This gives

m/x1m = I/x1m⊕ (x1)/x1m ' I/x1m⊕ R/m.
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Regular Local Rings: Homological
Characterization

Let
0→ Fm → · · · → F1 → F0 → m→ 0

be a R-projective resolution of m. Since x1 is a regular
element, tensoring with R = R/(x1) gives a R-projective
resolution of m/x1m.

Since R/m is a direct summand of m/x1m, R/m has finite
projective dimension over R/(x1).

By induction on the dimension, R/(x1) is a regular local
ring. It follows that R is also a regular local ring.
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Localization of Regular Local Rings

Corollary
Let R be a regular local ring and p a prime ideal. Then Rp is a
regular local ring.

Proof.
Let

0→ Fm → · · · → F1 → F0 → R/p→ 0

be a finite R-resolution of R/p. Localizing the complex at p gives
a free Rp-resolution of (R/p)p. But the latter is the residue field
of Rp. Now use the homological characterization of RLR .
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Corollary
Let k be a field and A = k [x1, . . . , xn] be a ring of polynomials.
For any prime ideal m of A, the localization R = Am is a RLR.

Proof. By the Hilbert Syzygy Theorem, every A-module has a
finite free resolution. Let M be an R-module. M is also an
A-module, so has a finite A-projective resolution

0→ Pn → · · · → P0 → M → 0

Localizing at m we get an R-projective resolution

0→ Pn ⊗ R→ P0 ⊗ R→ · · · → M ⊗ R = M → 0
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Jacobian Criterion

Example
Let A = C[x1, . . . , xn]/(f(x)) be a hypersurface ring. If P is a
prime ideal of A, then R = AP is a regular local ring iff

(f(x),
∂f
∂x1

, . . . ,
∂f
∂xn

) 6⊂ P.
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Factoriality of Regular Local Rings

Theorem
Regular local rings are factorial.

We are going to make use the following observation:

Lemma
A Noetherian integral domain R is factorial iff every nonzero
prime ideal contains a nonzero prime element. More explicitly,
every prime ideal p of height one is principal.

Proof. Noetherianess implies that every non-unit a has a
decomposition

a = a1 · · · · · an

where the ai are irreducible. For each i , by Krull’s PIT, every
minimal prime of (ai) is of height 1, so pincipal by assumption,
(ai) ⊂ pi = (di). Thus ai = ridi , and ri must be a unit.
The converse is clear. �
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Proof of Factoriality of RLR

Let R be a regular local ring of dimension n. If n = 1, the
maximal ideal m of R is principal, so R is a PID.

Suppose n > 1. Let m = (x1, . . . , xn). Set s = x1, we have
seen that R = R/(s) is a RLR, in particular s is a prime
element.

p be a prime ideal of height 1. To prove R is factorial we
must show that all such ideals are principal.

Let
0→ Fm → · · · → F1 → F0 → p→ 0

be a free resolution of p. Consider the ideal ps of the
localization Rs.
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Observe that every localization RQ of Rs at one of its
primes gives rise to a RLR of dimension < n, and therefore
the prime ideal pRS is principal. This means that the ideal
ps is a projective Rs-module.

Localizing the free R-resolution of p, gives an exact
complex of pojective modules, so it splits completely

ps ⊕ F ′1 ⊕ F ′3 ⊕ · · · ' F ′0 ⊕ F ′2 ⊕ · · ·

where F ′i = (Fi)s. Thus we have

ps ⊕M ' N

where M and N are free Rs-modules of ranks r − 1 and r ,
for some integer r .
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Lemma

Let I be an ideal of the integral domain A with I ⊕ Ar−1 ' Ar .
Then I ' A, that is I is pincipal.

Proof. Taking the r -th exterior power of the isomorphim of
modules, we have

A = ∧r Ar '
⊕

i+j=r

∧i I ⊗ ∧jAj .

Since I is projective thus local principal. This implies that ∧i I is
locally trivial for i > 1. Therefore A ' I. �
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End of Proof

We claim that p is a principal ideal. We have that p 6= (s)
and that ps = (a)Rs.

In picking the generator a of ps we may assume a ∈ R. a
could be of the form a = bs so that p = bRs also. However
this cannot go on indefinitly since by Krull’s Intersection
Theorem,

⋂
(sr ) = 0.

Thus assume ps = aRs, a /∈ (s). We claim p = (a). Let
c ∈ p. Then for some intger r , sr c ∈ (a),

sr c = da,

which implies s|d , so we can remove a factor of s from the
equation. And so on.,
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Cohen-Macaulay Rings and Modules

Cohen–Macaulay rings are arguably the most important class
of Noetherian rings. The terminology honors I. S. Cohen
(1917-1955) and F. S. Macaulay (1862-1937). It includes the
class of all regular rings, such as rings of polynomials over a
field or the integers, rings of formal powers series over fields
and convergent power series. They are a meeting ground for
algebraic, analytic and geometric techniques.

Most Cohen–Macaulay rings however are “singular”, which
rules out many geometric-analytic approaches but not wild
enough to forbid them all. It may be said that their singularities
are regular. Their significance arose also from the fact that they
turn out in the solution of many important problems, such as
the classical rings of invariants of reductive groups.
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But what is a Cohen–Macaulay ring? The spirit of the answer to
this question, paraphrasing Mel Hochster, is that they provide a
setting for proving interesting and difficult results.
Before we give the technical definition, let us give an indication,
in the setting of affine domains, of what those rings are like. Let
A be an affine domain over a field k , and let R = k [z1, . . . , zd ]
be one of its Noether normalizations. Then A is
Cohen–Macaulay if and only if A is a free module over the
polynomial ring R. Note how this permits, in analogy with the
study of rings of integers of number fields, the introduction of
many constructions–ramification locus, differents—that reflect
how (or how many) of the primes of A (in other words, the
points of the associated variety) lie over the primes of R (that is,
of the points of affine space).
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the Main Rings

• Regular local rings
• Complete intersections
• Cohen–Macaulay rings
• Gorenstein rings
• Canonical modules
• Duality
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Regular Local Rings

Let R be a Noetherian local ring of maximal ideal m. By Krull’s
PIT, the minimal number of generators of m is at least the Krull
dimension of R.

Definition
R is a regular local ring if

ν(m) = dim R.
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Main Results

Theorem
Let (R,m) be a Noetherian local ring. The following conditions
are equivalent:

1 R is a regular local ring;
2 proj. dim. R(R/m) <∞;
3 Every R-module has finite projective dimension.

Theorem
Localizations of regular local rings are regular local rings.

Theorem
Regular local rings are factorial.
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Complete Intersection

Definition
A local complete intersection is a ring isomorphic to
R/(x1, . . . ,xr ), with R a regular local ring and the xi forming a
regular sequence. If r = 1, R/(x1) is called a hypersurface ring.
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Cohen–Macaulay Rings

Recall two concepts:

height of an ideal I: the length of the shortest sequence of
elements x1, . . . , xn of I such that I is contained in a
minimal prime of (x1, . . . , xn).
grade of an ideal I: the length of the longest sequence of
elements x1, . . . , xn of I forming a regular sequence.

Definition
A Noetherian ring R is Cohen–Macaulay if height I = grade I for
each ideal.
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Example

Let R = k [x1, . . . , xd ] be a ring of polynomials and let G be a
finite group of k -automorphisms of R.

Let
S = RG = {f ∈ R : σ(f ) = f , σ ∈ G}

S is the ring of G-invariants of R. It has many interesting
properties.
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Proposition
S is a Noetherian subring of k [x1, . . . , xd ].

Proof.
For each f ∈ R, the coefficients of the polynomial∏

σ∈G

(t − σ(f ))

belong to S. These are the elementary symmetric
functions of f .
Consider the subring of S generated by the elementary
symmetric functions of all xi .
S0 is Noetherian and R is integral over it. It follows that R is
a f.g. S0-module. Since S is an S0-submodule of R, it is
Noetherian.
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Proposition
If the characteristic of k does not divide |G|, S is a
Cohen-Macaulay ring.

Proof.
The mapping R→ S given

f → 1/|G|
∑
σ∈G

σ(f )

is a surjective homomorphism of S-modules
This gives an splitting of f.g. S-modules, R = S⊕ L.
Any ideal of S generated by a system of parameters
f1, . . . , fd , the fi are also a system of parameters of R since
R is integral over S. Thus the fi form a regular sequence in
R, and therefore they are a regular sequence on any
summand of R.
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A calculation of Koszul complexes

Let I = (x) = (x1, . . . , xn) be an ideal and M a nonzero
R-module. For simplicity suppose R is a local ring so that we
don’t have to worry about M/IM 6= 0 in calculation of I-depth of
M.

Proposition
(I, y)–depth M ≤ 1 + I–depth M.

Proof. We use the expression of depth in terms of the
vanishing of Koszul complexes. Recall that if K = K(x; M) then
I-depth M is q if Hn−q(K) is the last nonvanishing homology
module.

Let K′ = K(x; M)⊗K(y). This is the Koszul complex of x, y .
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Proposition

Let K be a chain complex and let F = {F1,F0} be a chain
complex of free modules concentrated in degrees 1 and 0.
Then for each integer s ≥ 0 there is an exact sequence

0→ H0(Hs(C)⊗ F) −→ Hs(C⊗ F) −→ H1(Hs−1(C)⊗ F)→ 0.

Applying this Proposition to K′ = K(x, y ; M), it will follow that
the last nonvanihing homology module has either the same
index as that of K, or one less. Thus the (I, y)–depth of M is at
most 1 plus I-depth M.
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Proposition
Let R be a Noetherian ring. If height m = grade m for each
maximal ideal, then R is Cohen–Macaulay. In particular, if R is
a local ring, it suffices to test this equation for the maximal ideal.

Proof. If p is maximal among the prime ideals with
height p > grade p, let p ⊂ m = maximal ideal; we may assume
that R is local (why?). Let x ∈ m \ p; then
grade(p, x) ≤ 1 + grade p by the Proposition above, while
height(p, x) ≥ 1 + height p, thus contradicting
height(p, x) = grade(p, x). �
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Corollary
Let p ⊂ q be immediate primes (i.e. no other prime in–between)
in a Cohen–Macaulay ring R. Then height q = 1 + height p. In
particular, all saturated chains of prime ideals between two
fixed primes have the same length.

Remark
Let R be a Cohen–Macaulay ring. If S is a multiplicative set
(resp. x is a regular element) of R, then S−1R (resp. R/(x)) is
also Cohen–Macaulay. The power series ring R[[t ]] is
Cohen–Macaulay as t lies in the Jacobson radical.
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As for the ring of polynomials R[t ], the situation is more
interesting.

Let m be a maximal ideal of R[t ] and localize at p = m ∩ R,
in other words, we may assume that R is local and m

contracts to the maximal ideal of R.
Then m = (p, f ), where f may be taken to be a nonzero
monic polynomial and height m = 1 + height p.
Finally, note that p–depth R = p–depth R[t ]/(f ), since
R[t ]/(f ) is a free R–module.
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Macaulay Theorem

Corollary (Macaulay Theorem)
Let k be a field and let I = (f1, . . . , fm) ⊂ k [x1, . . . , xn] be an
ideal of codimension m. Then every primary component of I
has codimension m.

It follows from the properties of the Koszul complex that the
grade of a maximal ideal m (but not for an arbitrary prime ideal)
is the depth of the local ring Rm. Thus the notion of a
Cohen–Macaulay ring is a local property. We use this fact to
justify the definition of a Cohen–Macaulay module M: For each
maximal ideal (resp. for each prime ideal) m,
m–depth Mm = dim Mm.
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This permits giving a description of an affine Cohen–Macaulay
ring A in module-theoretic terms.

Theorem

Let A be an affine algebra and let k [z] = k [z1, . . . , zd ] ↪→ A be a
Noether normalization. If A is equidimensional then A is a
Cohen–Macaulay ring if and only if A is a free k [z]–module.

Proof.
For any maximal ideal p of k [z], dim Ap = d . For A to be
Cohen–Macaulay as a ring amounts to say that it is
Cohen–Macaulay as a k [z]–module.
But k [z] is a ring of global dimension d , and we can apply
the Auslander-Buchsbaum equality to have that Ap is a free
k [z]p–module and thus A is a projective k [z]–module
(necessarily free by the theorem of Quillen–Suslin). �
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In general, a Cohen–Macaulay affine ring A will break up into a
direct product of affine rings, A = A1 × · · · × Ar , each of which
is equi–dimensional.
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Example
The finiteness of the projective dimension of a ring over another
may come in very restrictive form. Here is one instance (whose
converse will not always hold). Let A be an affine algebra over
a field k and consider the sequence

0→ D −→ Ae = A⊗k A −→ A→ 0, x ⊗ y 7→ xy .

Then if the projective dimension of A over Ae is finite then A is
Cohen–Macaulay. We can work with a localization of A;
assume dim A = d and depth A = c. Then depth Ae = 2c. If
proj dimAe (A) is finite it is at least d since D has height d . From
the Auslander–Buchsbaum equality we have d + c ≤ 2c, and
therefore d = c.
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Hilbert–Burch Theorem.

Let M be a finitely generated module over a Noetherian ring R.
Suppose M has a projective resolution

0→ Rm ϕ−→ Rn −→ M → 0.

If m = n or M is a torsionfree R–module, the maximal minors of
ϕ play decisive roles in the structure of M. We consider the
elementary but important general description of ideals of
projective dimension one.

Theorem (Hilbert–Burch)

Let I = (a1, . . . ,an) be an ideal of a Noetherian ring R with a
free resolution of length one,

0→ Rn−1 ϕ−→ Rn −→ I → 0.

There exists a regular element d of R such that I = d ·∆,
where ∆ is the ideal generated by the minors of order n − 1 of
any matrix representation of ϕ.
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Proof. A sketch of the proof goes as follows. First, that I
contains regular elements and ∆ has grade two follow easily
from formula of Auslander-Buchsbaum. Assume the i th basis
element of Rn maps to ai . Let

ϕ =

 a1,1 · · · a1,n−1
...

. . .
...

an,1 · · · an,n−1


be a matrix representation of ϕ, and denote by
∆i = (−1)i detϕi the signed determinant of the submatrix ϕi
obtained by deleting the i th row of ϕ. Since

(a1, · · · ,an) · ϕ = 0, for 1 ≤ i < j ≤ n,

it follows that
ai ·∆j = aj ·∆i .

These equations give an isomorphism between (a1, . . . ,an)
and (∆1, . . . ,∆n). �
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Cohen–Macaulay Modules

There is also a notion of Cohen–Macaulay module which in
fairness must be independent of the base ring.

Definition
A finitely generated R–module M is Cohen–Macaulay if

I–depth M = height (I/J)

for every ideal I ⊃ J = annihilator M.

For the purpose of this definition, we may as well assume that
M is a faithful R–module. This definition is easier to manage
when R is a local ring, or R is a graded ring and M is a graded
module. (We only state the local version.)
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Definition
Let M be a finitely generated module over a local ring (R,m). A
system of parameters is a set x = {x1, . . . , xd} of elements in
m, d = dim M, such that `(M/(x)M) <∞.
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These sets are often obtained by taking general linear
combinations of the generators of m. It is useful in the following
well-used test of the Cohen–Macaulay property.

Theorem

Let (R,m) be a Noetherian local ring, M a finitely generated
R–module of positive rank, and (x) an ideal generated by a
system of parameters of R. Then M is Cohen–Macaulay if and
only if `(M/(x)M) = e(x,R) · rank M.

Here e(x,R) is the multiplicity of the ideal (x). If R is a
Cohen–Macaulay ring this is simply `(R/(x)). The other notion,
of the rank of a module, is defined in terms of the module
M ⊗R K , where K is the total ring of fractions of R. Thus, M has
rank n if M ⊗R K ' K n; in particular, if R is a domain then every
module has a rank.
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Depth and Hyperplane Sections

We describe a useful aspect of the relation between the depth
of a module E and the depth of the modules E/xE for families
of elements x .

Proposition
Let (R,m) be a Noetherian local ring with infinite residue field,
of Krull dimension d, let E be a finitely generated R–module
and let s be an integer s < d. Suppose that for each subset
x1, . . . , xs of a system of parameters of R contained in m \m2,

depth E/(x1, . . . , xs)E ≥ 1.

Then depth E ≥ s + 1. In particular if s = d − 1 then E is
Cohen–Macaulay.
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Proof. We look at the case s = 1. If depth E > 0, we choose
x1 ∈ m \m2 which is regular on E . The assertion is then clear.
(The assumption that R/m is infinite allows for the choice of x1.)

Suppose then that m is an associated prime of E . Denote by E0
the submodule of E with support in m, that is, E0 is the subset
of elements of E annihilated by some power of m. This implies
that in the exact sequence

0→ E0 −→ E −→ F → 0,

the module F has positive depth. Let x1 be a minimal
parameter that is regular on F . Tensoring the exact sequence
by R/(x1) (or using the kernel-cokernel sequence induced by
multiplication by x1) we obtain the exact sequence

0→ E0/x1E0 −→ E/x1E −→ F/x1F → 0.
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However, by assumption the module E/x1E has positive depth
so cannot contain a nonzero module, to wit E0/x1E0, supported
on m, so that by Nakayama lemma E0 = 0. The general case
follows by using descending induction on the module
E/(x1, . . . , xs−1)E . �
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Perfect Ideals

The following isolates an important class of Cohen–Macaulay
rings which are quotients of a given Cohen–Macaulay ring.

Definition
Let R be a Cohen–Macaulay local ring and let I be an ideal with
finite projective dimension. By the Auslander-Buchsbaum
Formula,

dim R/I ≥ depth R/I = dim R − proj dimRR/I.

In the case of equality, R/I is a Cohen–Macaulay ring. The
ideal I is then said to be perfect.

This means that there is a free resolution

0→ Fr −→ Fr−1 −→ · · · −→ F1 −→ F0 = R −→ R/I → 0, (3)

where r = codim I.
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An example (r = 2) is given by the Hilbert-Burch Theorem in
the case of an n × (n − 1) matrix whose maximal minors
generate an ideal of height two.
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It is a property of a perfect ideal I that if the resolution is
dualized with respect to HomR(·,R), the new complex is a
resolution of the r–dimensional cohomology

0→ F ∗0 −→ F ∗1 −→ · · · −→ F ∗r−1 −→ F ∗r −→ ExtrR(R/I,R)→ 0. (4)

Conversely, the ring R/I can be recovered from ExtrR(R/I,R):

R/I = ExtrR(ExtrR(R/I,R),R).



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

Gorenstein Rings

If (A,m) is an Artinian local ring which is a finite algebra over a
field k , the dual vector space A∗ = Homk (A, k) has a natural
structure of an A–module: If f ∈ A∗, r ∈ A, then
(r · f )(x) = f (rx). A∗ is an injective A–module since

HomA(E ,A∗) = Homk (E , k).

It is easy to see that A∗ is the injective envelope of A/m.
The condition that A be Gorenstein is then: A∗ ' A, that is, A∗

is generated by a single element. It is easy to describe the
generator of A∗, being enough to pick f ∈ A∗ which does not
vanish on the one-dimensional subspace 0 :A m (the socle of
A).
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Example
Let k be a field and G an abelian group. Set R = k [G] the
group ring over k . R is an injective module over itself. Check

R ' Homk (R, k).

This isomorphism says that

HomR(M,R) ' HomR(M,Homk (R, k)) ' Homk (M ⊗R R, k)

' Homk (M, k)

Thus the functor HomR(·,R) is exact since Homk (·, k) is so.
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Definition

Let R be a regular local ring or a polynomial ring over a field k .
A perfect ideal I of codimension r is called a Gorenstein ideal if

R/I ' ExtrR(R/I,R).

The significance of this definition in terms of the resolution is
the following. If R is a local ring or R is a graded ring and I is a
homogeneous ideal, the modules Fi in a minimal resolution of
R/I are essentially unique. Thus for a Gorenstein ideal I the
modules Fi must satisfy

Fi ' Fr−i , ∀i .

(In the graded case this is only true after a uniform shift in the
grading of the Fi ’s.)
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Example
The premier example of a Gorenstein ring is a complete
intersection: If R is a regular local ring and f = f1, . . . , fm is a
regular sequence, then A = R/(f) is a Gorenstein ring.

On the other hand, I = (x3, y3, z4, xy2 − xz2, x2z2 − y2z2) is a
Gorenstein ideal but not a complete intersection.

There are many other ways in which Gorenstein rings arise
without being complete intersections. For example, let A be a
finite dimensional k–algebra and denote A∗ = Homk (A, k).
Then the idealization of A∗,

B = A⊕ A∗,

is a Gorenstein ring. We leave to the reader to prove this
assertion and to establish when these algebras are complete
intersections.
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There is a general and intrinsic definition of Gorenstein ring or
ideal.

Definition
A Noetherian local ring R is a Gorenstein ring if it has finite
injective dimension as a module over itself.
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Properties of Gorenstein Rings

Theorem

Let (R,m) be a Noetherian local ring of dimension d. Then
(a) R is a Gorenstein ring if and only if R is Cohen–Macaulay

and for one (any) system of parameters x = x1, . . . , xd ,

((x) : m)/(x) ' R/m.

(b) If R is a Gorenstein local ring and I is a Cohen-Macaulay
ideal of codimension r , not necessarily perfect, then R/I is
a Gorenstein ring if and only if

ExtrR(R/I,R) ' R/I.
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Theorem (cont’d)
If R is a Gorenstein local ring,
(c) the mapping

M 7→ ExtrR(M,R)

is a self-dual functor on the category of finitely generated
Cohen-Macaulay R-modules of codimension r . In
particular, if (R,m) is a Cohen–Macaulay local ring of
dimension 1, then it is Gorenstein if and only if the functor
HomR(·,R) is self–dual on the category of torsionfree
R–modules.
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The condition (c) is interesting because it tells how the ring R
interacts with the category of modules, in words, it permits us to
construct interesting functors. These properties are
characteristic of Gorenstein rings. It was Grothendieck who
realized that suitably modified, (c) will still hold for many
Cohen-Macaulay local rings.
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Gorenstein Ideals of Codimension 3

In addition to perfect, Cohen–Macaulay ideals of codimension
two, which are completely described by the Hilbert-Burch
Theorem, another family of perfect ideals has a beautiful
determinantal description.

Let R be a Gorenstein local ring and let I be a perfect,
Gorenstein ideal of codimension 3. This implies that the ideal
I = (a1, . . . ,an) has a minimal free resolution,

0→ R
ψ−→ Rn ϕ−→ Rn −→ I → 0, (5)

in which the matrix representation of ψ is [a1, . . . ,an]. In fact,
the following holds:
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Theorem (Buchsbaum–Eisenbud)
If I is as above, there exists a minimal resolution such that:
(a) The mapping ϕ is skew–symmetric (i.e. has a matrix

representation with this property), and
(b) I is the ideal Pn−1(ϕ) generated by the Pfaffians of the

submatrices obtained by deleting the ith row and column of
ϕ, for i = 1 . . . n.

Conversely, if ϕ is skew–symmetric and Pn−1(ϕ) has
codimension 3 (its maximum value), then Pn−1(ϕ) is a
Gorenstein ideal. (In particular, n must be odd.)
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The Canonical Module of a Local Ring or Graded
Ring

Definition
Let R be a Gorenstein local ring and let I be an ideal of
codimension r , defining the ring A = R/I. The module

ωA = ExtrR(A,R). (6)

is the canonical module of A.
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In the case of a finite k–algebra A the canonical module is
ωA = A∗ = Homk (A, k). As the notation indicates, ωA depends
only on A, not especially on R and I. Its basic property is the
following extension of Theorem 43(c).

Theorem
If A is a Cohen-Macaulay local ring with a canonical module ωA,
then the mapping

M 7→ ExtrA(M, ωA)

is a self-dual functor on the category of finitely generated
Cohen-Macaulay A-modules of codimension r .
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Remark
If r = codim I, and x = x1, . . . , xr is a regular sequence
contained in I, then

ωA ' ((x) : I)/(x),

from the way these Ext’s are calculated.

If A is Cohen-Macaulay, ωA is a Cohen–Macaulay module of the
same dimension as A. In general the canonical module of a
ring A retains many of the most interesting properties of A, and
quite often improves on them.
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The case of graded rings is rich in numerical information. If
R = k [z1, . . . , zd ] is a ring of polynomials over a field k , graded
in the usual manner, the canonical module is R[−d ], not R
itself, to ensure naturality in the category of graded modules.
(Sometimes the shift is ignored harmlessly.)
If A is a finitely generated algebra over a field k and
R = k [z1, . . . , zd ] is a Noether normalization, then

ωA = HomR(A,R[−d ]) (7)

which extends the formula in the case of fields.
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Suppose further that A is a graded ring, A = A0 + A1 + · · · , and
R is such that zi ∈ A1. If A is Cohen–Macaulay, A is a free
R–module,

A '
⊕

i

R[−di ],

so that
ωA = HomR(A,R[−d ]) '

⊕
i

R[di − d ].

If
HA(t) =

h0 + h1t + · · ·+ hr tr

(1− t)d , hr 6= 0,

is the Hilbert–Poincaré function of A, this representation of ωA
gives also

HωA(t) =

∑
i td−di

(1− t)d = (1/t)s hr + hr−1t + · · ·+ h0tr

(1− t)d , s = sup{di} − d .
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Reading Depth

If A is a Cohen–Macaulay local ring with a canonical module
ωA, depths of modules can be expressed as follows.

Proposition

For any finitely generated A–module M,

depth M = dim A− sup{ r | ExtrA(M, ωA) 6= 0 }.

Proof. The proof is immediate (but a pleasant calculation).
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Exercises

Exercise (Peskine)
Let R be a local Cohen–Macaulay ring of Krull dimension
d > 0, with a canonical module ωR. Suppose that ωR is
isomorphic to an ideal of R (equivalently, suppose the total ring
of fractions of R is a Gorenstein ring). Prove that S = R/ωR is a
Gorenstein ring of Krull dimension d − 1.

Exercise
Let R be a local Cohen–Macaulay ring and let x1, . . . , xn be a
regular sequence. Prove that the ideal I generated by all
products xi1 · · · xik of k distinct xi is perfect.
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Exercise
Let R be a ring of polynomials and let I be a monomial ideal.
Prove that if I is a Cohen–Macaulay ideal then its radical

√
I is

also Cohen–Macaulay (Hint: use polarization).
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Graded modules

Let R = k [x1, . . . , xd ] be the ring of polynomials over the
field k . We denote by Rn the vector space of
homogeneous polynomials of degree n,

Rn = (x1, . . . , xd )n

A graded R-module M is a module with a decomposition
M =

⊕
n∈Z Mn such that RmMn ⊂ Mm+n.

The premier example is R itself. Others are the ideals
generated by homogeneous elements.
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Proposition
Let R = k [x1, . . . , xd ], k a field, and let M be a graded
R-module. A submodule E ⊂ M is graded iff E is generated by
homogeneous elements.

Concretely, if z1, . . . , zm are homogeneous elements of
M =

⊕
Mi , with zj of degree dj , that is zj ∈ Mdj , they generate

the module E =
⊕

En, whose elements of degree n are the
linear combinations

x = r1z1 + · · ·+ rmzm, ri ∈ Rn−di

For example, if I = (x2 + y2, x3 + x2y), then

In = {a · (x2 + y2) + b · (x3 + x2y)}

where a and b homogeneous of degrees n − 2 and n − 3, resp.
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Properties

For the remainder of this discussion, R = k [x1, . . . , xd ].

Proposition
If M is a finitely generated graded R-module then each
component Mn is a k-vector space of finite dimension.

Proof.
First consider the case M = R. Then Mn is the vector
space of all homogeneous polynomials of degree n. A
basis for this space is the set of monomials

xe1
1 · x

e2
2 · · · x

ed
d , e1 + e2 + · · ·+ ed = n.

The cardinality of this set is(
d + n − 1

d − 1.

)
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If M is a module generated by the homogeneous elements
z1, . . . , zm, with deg(zi) = di , then Mn is given by the linear
combinations

r1z1 + · · ·+ rmzm, ri ∈ Rn−di .

Since each Rj is a finite dimensional vector space, it
follows that dimk Mn <∞.
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Associated primes of graded modules

Proposition
If M is a finitely generated graded module then every
associated prime ideal p is homogeneous.

Proof. Let p = 0 : x for some x ∈ M.
If x ∈ Mr for some r , and a = a1 + · · ·+ ar , deg(ai) distinct,
then ax = 0 implies aix = 0 fo each ai , that is ai ∈ p. That
is, p is homogeeous.
Suppose x = x1 + · · ·+ xs, deg(xi) distinct. Let us argue
that p is homogeneous by induction on the number of
components of x . Let a = a1 + . . .+ ar ∈ p. Assume
a1 /∈ p. Since

ax = a1x1 + higher degree terms = 0,

a1x1 = 0.
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Note that x ′ = a1x 6= 0, since a1 /∈ 0 : x = p.

x ′ is shorter than x .

If rx ′0 = 0, ra1 ∈ p, so r ∈ p. Thus

p = 0 : x ′

so by induction p is homogeneous.
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Dimension of graded modules

Proposition
Let M be a finitely generated graded R-module.

1 There is a filtration of graded submodules

M = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ M0 = 0

such Mi/Mi−1 ' R/pi , where pi is homogeneous.
2 Every associated prime of M occurs as one of the pi .
3 The minimal primes in the set {pi} are associated primes

of M.
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Proof

Use induction on the set of graded submodules of M. Let L be
maximal, Consider the exact sequence 0→ L→ M → N → 0.

If L 6= M, let p be an associated prime of the graded module N,
p = 0 : x , for some homogeneous element x ∈ N. Lift x to the
homogeneous element y ∈ M and consider L′ = (L, y). ETC
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Hyperplane section

Let R =
⊕

n≥0 Rn. The elements of Rn are called n-forms, while
those of R1 are said to be hyperplanes.

Let M be a finitely generated graded R-module. Let

Ass (M) = {p1, . . . , pm}.

We have seen that the pi are graded ideals.

Proposition
There is a form h not contained in any pi 6= m. Moreover, if R0 is
an infinite field, h can be chosen in R1.
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Proof

Let us move a few frames forward.
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Generic hyperplane section

Proposition
Let h ∈ R+ be a form that is not contained in any associated
prime of M except possibly in the ideal m = R+. Then

L = {x ∈ M : hx = 0}

is an Artinian submodule of M, more precisely L is annihilated
by some power of m.

Proof.
Let p be an associated prime of L. We claim that p = m.

Since h ∈ p and p is also an associated prime of M, by the
choice of h, p = m.

The remainder follows from the next observation:
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Lemma
Let R be a Noetherian ring and M a f.g. R-module. If
Ass (M) = {p}, then the annihilator of M is p-primary, in
particular pnM = 0 for some integer.

Proof. Let M = 〈x1, . . . , xn〉 and I = ann (M). There is an
embedding

0→ R/I ↪→ M ⊕ · · · ⊕M,

1→ (x1, . . . , xn)

and thus Ass (R/I) = {p}.

In the proposition above, M is a f.g. over the Artinian ring
R/ann (M).
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Prime Avoidance

Proposition

Let A = A0[A1] be a Noetherian graded algebra over the local
ring (A0,m) with infinite residue field, generated by elements of
degree 1. Let P1, . . . ,Pr be a family of homogeneous prime
ideals that do not contain A1. Then there exists h ∈ A satisfying

h ∈ A1 \mA1 ∪
r⋃

i=1

Pi .

Furthermore, if the Pi ’s include all the associated primes of A
that do not contain A1 then 0 : (0 : hA) contains some power of
A+.

Another version: replace mA1 by A2 + A3 + · · · .
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Proof

Denote by C1, . . . ,Cr the components of degree 1 of these
homogeneous ideals. Consider the vector space V = A1/mA1
over the residue field A0/m and its subspaces
Vi = (Ci + mA1)/mA1. By Nakayama lemma and the choices of
the Pi ’s, Vi 6= V , ∀i . Since A0/m is infinite, it follows that

V 6=
r⋃

i=1

Vi ,

by any of the usual tricks.

(For example, let e1, . . . ,en be a basis V . Since each Vi is a
proper subspace, it is contained in the locus of the linear
polynomial fi(x) = ai1x1 + · · ·+ ainxn. Then any point where

f (x) =
r∏

i=1

fi(x)

does not vanish provides a vector that does not lie in any Vi .)
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For the second assertion, choose then h ∈ A1 whose image in
V does not lie in any Vi . Let P be a minimal prime of
0 : (0 : hA); it suffices to show that A+ ⊂ P. (If h is a regular
element, 0 : (0 : hA) = A.)

Note that P consists of zero divisors and contains h. This
means that P is an associated prime of A but distinct from any
of the Pi , and therefore must contain A+. �
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Homogeneous homomorphisms

Definition
Let R = k [x1, . . . , xd ] and let f : M → N be a homomorphism of
graded modules. We say that f is homogeneous of degree r if

f : Mn → Nn+r , ∀n.

If a is a homogeneous polynomial of degree r , then
multiplication by a defines a homogeneous homomorphism of
degree r ,

R → R, u → au
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If f : M → N is homogeneous (of degree r ), then K = ker f and
coker f = N/f(M) = C are graded.

In each degree there is an exact sequence of vector spaces

0→ Kn−r → Mn−r → Nn → Cn → 0
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Hilbert function of a graded module

Definition
Let M be a finitely generated graded R-module. The function

HM(n) = dimk Mn

is the Hilbert function of M.

HR(n) =

(
d + n − 1

d − 1

)
Let I = (x); then In = {f · x : f ∈ Rn−1}. Thus In ' Rn−1, and so

HI(n) =

(
d + n − 2

d − 1

)
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Definition
Let M be a finitely generated graded R-module. The formal
Laurent power series

PM(t) =
∑
n∈Z

dimk Mntn

is the Hilbert-Poincaré series of M. It is also called the
generating series of M.

PR(t) =
∑
n∈Z

(
d + n − 1

d − 1

)
tn =

1
(1− t)d
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If R = k (0 variables), M =
⊕

n Mn is a finite dimensional
graded vector space. So HM(n) = 0 for n� 0, and PM(t)
is a polynomial.

If z1, . . . , zm are the homogeneous generators of M, since

Mn = {
∑

i

rizi , deg(ri) + deg(zi) = n},

Mn = 0 for n < inf{deg(zi)}. Thus HM(n) = 0 for 0� n,
and PM(t) has only finitely many terms in negative
degrees.
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Example

Let R = k [x , y , z] and I = (xy , yz, zx) and set M = R/I.
Let us determine the Hilbert-Poincaré series of M.

Consider the homogeneous homomorphism of M induced
by multiplication by x . This gives rise, in each degree, to
the exact sequence of vector spaces

0→ Kn−1 −→ Mn−1 → Mn −→ Cn → 0,

where K is the kernel and C is the cokernel of the
multiplication by x .

C = R/(x , I) = k [y , z]/(yz) and K = (I : x)/I = (y , z)/I.
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Example cont’d

This gives the exact sequence

0→ R/I/(y , z)/I = R/(y , z)[−1] = k [x ][−1]→ R/I → k [y , z]/(yz)→ 0

This gives the equality of Hilbert series

PR/I(t) = Pk [x ][−1](t) + Pk [y ,z]/(yz)(t).

Pk [x ](t) = 1
1−t and Pk [x ][−1](t) = t

1−t

Pk [y ,z]/(yz) = 1−t2

(1−t)2 = 1+t
1−t .

PR/I(t) = 1+2t
1−t .
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Example

We denote dim Mn = mn, etc, so we have the equality
kn−1 −mn−1 + mn − cn = 0.
Info we assemble as

0 =
∑

n

(kn−1 −mn−1 + mn − cn)tn

= t
∑

n

kn−1tn−1 +
∑

n

mntn − t
∑
n−1

mn−1tn−1 −
∑

n

cntn

Which we solve for
∑

n mntn.
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Rationality of the Hilbert Series

Theorem
Let M be a finitely generated graded R-module. Then

1 PM(t) is a rational function of the form

PM(t) =
∑

n

dim Mntn =
h(t, t−1)

(1− t)d ,

where h(t, t−1) is a polynomial with integer coefficients.
2 There exists a polynomial H(x) such that

HM(n) = H(n), n� 0.

Proof. The proof is long but instructive. We will introduce
various notions along the way.
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Let us recall:

Proposition
Let k be a field and

0→ Vn −→ Vn−1 −→ · · · −→ V2 −→ V1 → 0

be an exact complex of finite dimensional vector spaces. Then

n∑
i=1

(−1)i dim Vi = 0.

Proof. This is a direct consequence of the case n = 3: If

0→ V3 −→ V2 −→ V1 → 0

is exact, then dim V2 = dim V1 + dim V3.
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Proof

The proof will be by induction on the number of d of
variables of R = k [x1, . . . , xd ]. If d = 0, Mn = 0 for n� 0,
so that HM(n) = 0 and PM(t) = h(t, t−1) for some
polynomial h.
For the induction step, consider the following sequence
defined by multiplication by xd :

0→ K −→ M
ϕ−→ M −→ C = M/xdM → 0, ϕ(z) = xdz.

ϕ maps Mn−1 to Mn. Its kernel is a graded submodule of M,

K = {z ∈ M : xdz = 0}

Observe that K and C are annihilated by xd , so they are
(graded) modules over k [x1, . . . , xd−1].



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

Consider the exact sequence of vector spaces

0→ Kn−1 −→ Mn−1 −→ Mn −→ Cn → 0.

By the usual property,

dim Kn−1 − dim Mn−1 + dim Mn − dim Cn = 0

We denote the dimensions by small numbers so that

kn−1 −mn−1 + mn − cn = 0

multiply by tn and add the formal power series to get
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∑
n

kn−1tn −
∑

n

mn−1tn +
∑

n

mntn −
∑

n

cntn = 0

That is
tPK (t)− tPM(t) + PM(t)− PC(t) = 0

so that
PM(t) =

PC(t)− tPK (t)
1− t

Since both PK (t) and PC(t) are rational functions of the form
f(t,t−1)

(1−t)d−1 , we have the second assertion of the theorem.
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Hilbert Polynomial

The proof that the Hilbert function HM(n) agrees with a
polynomial for n� 0 uses simple calculus: Consider the Taylor
expansion

1
(1− t)d =

∑
n

(
d + n − 1

d − 1

)
tn

and from the representation PM(t) = hM(t,t−1)
(1−t)d , write

hM(t, t−1) =

j=s∑
j=−r

aj tj

Taking into account that HM(n) is the coefficient of tn in the
expansion of PM(t) we have for n ≥ s

HM(n) =

j=s∑
j=−r

aj

(
d + n − j − 1

d − 1

)
This is a polynomial of degree ≤ d − 1 in the index n. Its
coefficients are important invariants of M.
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Recurrence

Observe that for n > s = deg hM(t), the coefficients an are
related by the recurrence relation

c0an + c1an−1 + · · ·+ cdan−d = 0

where the cj are the coefficients of the expansion of (1− t)d .
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Hilbert Polynomial

The Poincaré-Hilbert series of graded R-module M,

PM(t) =
hM(t, t−1)

(1− t)d

can be written
PM(t) =

tahM(t)
(1− t)d

where hM(0) 6= 0. We will also remove any 1− t factor out of
hM(t), that is hM(1) 6= 0.

For our purpose here we assume a = 0. Now expand
hM(t)–known as the h-polynomial of M–as

hM(t) =
m∑

j=0

hj(1)

j!
(t− 1)j .
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Hilbert Polynomial

Proposition
The Hilbert polynomial of M,

HM(n) =
d−1∑
j=0

(−1)jej(M)

(
n + d − j − 1

d − j − 1

)
,

where ej(M) are integers given by

ej(M) =
h(j)

M (1)

j!
.

If HM(n) 6= 0, the coefficient e0(M) = hM(1) > 0 and is called
the multiplicity of M.
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Proof

The assertion that e0(M) > 0 follows since HM(n) = dim Mn for
all n� 0 and therefore its leading coefficient must be
non-negative. The assertion that the ej(M) are integers is a
consequence of the following elementary observation:

Lemma
Let f(x) ∈ Q[x ] be polynomial such that f(n) ∈ Z for n ∈ Z.
Writing f(x) in the basis

{pj(x) =

(
x
j

)
, j ≥ 0},

f(x) =
∑
j≥0

ajpj(x),

ai ∈ Z.
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Proof

Apply induction to the function

∆(f)(x) = f(x)− f(x− 1) =
∑
j≥0

aj(pj(x)− pj(x − 1))

But for j ≥ 1,

pj(x)− pj(x − 1) =

(
x
j

)
−
(

x − 1
j

)
=

(
x

j − 1

)
= pj−1(x)

So by induction aj ∈ Z for j ≥ 1. This means that

f(x) =
∑
j≥1

ajpj(x) + a0,

from which it follows that a0 is the difference between two
Z-value functions.
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Hilbert Function and Krull Dimension

Now we clarify the relationship between the Krull dimension of
graded module and the degree of its Hilbert polynomial.

Proposition
Let M be a f.g. graded R-module such its Hilbert polynomial
HM(n) has degree d − 1 > 0 and multiplicity e0(M). Let h ∈ Rm
be a form that is not contained in any associated prime of M
with the possible exception of m. Then the degree of HM/hM(n)
is d − 2 and e0(M/hM) = me0(M).

Proof. Let K = 0 :M h and set C = M/hM. Consider the exact
sequence

0→ K [−m]→ M[−m]
ϕ→ M → C → 0,

where ϕ is the homogeneous homomorphism defined by
multiplication by h.



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

K is an Artinian module, so its Hilbert polynomial trivial. It
follows that

HC(n) = HM(n)− HM[−m](n) = HM(n)− HM(n −m)

=
d−1∑
j=0

(−1)jej(M)

(
n + d − j − 1

d − j − 1

)

−
d−1∑
j=0

(−1)jej(M)

(
n −m + d − j − 1

d − j − 1

)

= m · e0(M)

(
n + d − 2

d − 2

)
+ lower degree terms
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We leave to the reader the examination of the case d = 1 and
the proof of the following corollary:

Corollary
Let M be a f.g. graded R-module. The Krull dimension of M is
equal to the degree of the Hilbert polynomial of M plus 1.
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Example

Let R = k [x1, x2, x3], and let I be the ideal generated by the
monomials x1x2, x1x3, x2x3. Set M = R/I.

0→ (x3, I)/I → R/I → R/(x3, I)→ 0, (x3, I)/I ' R/(x1, x2)[−1] = k [x3][−1]

A calculation gives (R/(x3, I) = k [x1, x2]/(x1x2))

PR/I(t) = Pk [x1,x2]/(x1x2)(t) + Pk [x3][−1](t)

=
1− t2

(1− t)2 +
t

1− t

=
1 + 2t
1− t

HR/I(n) = 3, n ≥ 1.
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11/2 Calculations

Let A =
⊕

n An be a f. g. graded k [x1, . . . , xr ]-module
Let B =

⊕
n Bn be a f. g. graded k [y1, . . . , ys]-module

Set
C =

⊕
n

Cn, Cn =
⊕

(Ai ⊗ Bn−i)

C is a f.g. graded k [x1, . . . , xr ; y1, . . . , ys]-module
Its Hilbert function, cn = dim Cn, satisfies

cn =
∑

aibn−i
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A⊗ B

The Hilbert series of A⊗ B is:

PA⊗B(t) = PA(t) · PB(t) =
hA(t) · hB(t)

(1− t)r (1− t)s

Veronese Product

A different construction is: Suppose A =
⊕

n An is a graded
algebra. Set

V =
⊕

Vn, Vn = An ⊗ An

The Hilbert function of V is vn = dim Vn = a2
n. Can we express

PV(t) in terms of PA(t)?
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Exercises

Let Kn be the complete graph on n vertices labeled by the
indeterminates x1, . . . , xn. Let In be the ideal of the ring
R = k [x1, . . . , xn] (k a field) corresponding to it. (Kn is just
a reminder that to each graph there is an attached ideal.)
In is generated by all the monomials xixj , i 6= j . Find the
Hilbert functions of the graded modules In and R/In.
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Hilbert Functions and Free Resolutions

Let R = k [x1, . . . , xd ] and M a finitely generated graded
R-module. The syzygy theorem guarantees the existence of
finite free resolution of M, of length at most d . (Recall...) One
can embed additional information in the resolution using graded
free modules and homogeneous homomorphisms.

If M =
∑

Mn is a graded module, for a ∈ Z, L = M[−a] is
the graded module whose component of degree n is
Ln = Mn−a.
In case M = R, L = R[−a] has Ln = 0 for n < a. The
Hilbert-Poincaré series of R[−a] is

ta

(1− t)d
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Thus a free R-module F with generators of degrees
a1 . . . ,ar has for Hilbert series∑

tai

(1− t)d

To create graded, free resolution for the graded R-module M,
we proceed as follows:

Let V = M/(x1, . . . , xd )M. V is a graded k -vector space:

V = ke1 ⊕ ke2 ⊕ · · · ⊕ ken,

where ei has degree ai .
Map the free R-module F = R[−a01]⊕ · · · ⊕ R[−a0n] to M
so that R[−ai ] is mapped into a homogeneous
representative of ei .
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By Nakayama Lemma, ϕ0 : F0 → M is a surjection, and ϕ0
is homogeneous.

Let K1 = kerϕ0. K1 is graded and we repeat on it the
process above: There is a homogeneous map
ϕ1 : F1 → F0 where F1 =

⊕
R[−a1j ] so that reduction mod

m = (x1, . . . , xd ) gives a homogeneous isomorphism of of
graded vector spaces F1/mF1 ' K1/mK1.
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Putting it together gives a homogeneous free resolution

0→ Fd → Fd−1 → · · · → F1 → F0 → M → 0

where
ϕi :

⊕
j

R[−ai,j ]→
⊕

j

R[−ai−1,j ]

where ϕi homgeneous.
In each degree n, we have exact sequences of vector spaces

0→ Vd −→ Vd−1 −→ · · · −→ V1 −→ V0 → Mn → 0

and therefore

dim Mn =
d∑

i=0

(−1)i dim Vi .

Thus the Hilbert series of M can be written as

PM(t) =

∑
i,j(−1)i taij

(1− t)d
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The numerator of PM(t) is a polynomial h(t, t−1). If h(1,1) = 0,
h(t, t−1) is divisible by 1− t. Proceeding we arrive at a
representation

PM(t) =
h(t, t−1)

(1− t)m , h(1,1) 6= 0

Proposition
m is the Krull dimension of the module M, and h(1,1) is a
positive integer called its multiplicity, deg(M).
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Topologies

Definition
A topological abelian group G is an abelian endowed with a
topology so that the operations G×G→ G, (x , y)→ x + y and
G→ G, x → −x are continuous.

If (O) is closed, the diagonal of G×G is closed, when G is
Hausdorff.
If U is a neighborhood of O, then a + U is a neighborhood
of a since x → a + x is a homeomorphism.
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Proposition
Let H be the intersection of all neighborhoods of O in G. Then

1 H is a subgroup.
2 H is the closure of O.
3 G/H is Hausdorff.
4 G is Hausdorff iff H = 0.

Proof.
1 Follows from the continuity of the group operations.
2 x ∈ H⇔ 0 ∈ x − U for all neighorhoods U of O.
3 (2) implies that the cosets of H are all closed; thus points

are closed in G/H and so G/H is Hausdorff.
4 Thus H = 0⇒ G is Hausdorff, and converse is trivial.
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Cauchy Sequences

Definition
Let G be a topological abelian group.

1 A Cauchy Sequence in G is a sequence (an) of elements
of G, such that for any neighborhood U of O, there is an
integer s(U) with the property

xm − xn ∈ U ∀m,n ≥ s(U).

2 Two Cauchy sequences are equivalent if xn − yn → 0.
3 The set of all equivalence classes of Cauchy sequences is

denoted Ĝ.
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Cauchy Sequences=CS

If (xn) and (yn) are CS, (xn + yn) is a CS and its class Ĝ
depends only on the classes of (xn) and (yn).

For x ∈ G, the constant sequence (x) is a CS, and its class
φ(x) is an element of Ĝ, and φ : G→ Ĝ is a group
homomorphism.

ker (φ) =
⋂

U, for all neighborhoods of O

If f : G→ H is a homomorphism of topological groups,
there is a homomorphism f̂ : Ĝ→ Ĥ which is continuous.
Moreover, f̂ ◦ g = f̂ ◦ ĝ.
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Special Neighborhoods

Will use neigborhoods which are subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃

U is a neighborhood of 0 iff Gn ⊂ U for some n.

Z: Gn = pnZ

Gn are open and closed: If x ∈ Gn, x + Gn ⊂ Gn, so Gn is
open, while the complement of Gn is

⋃
h + Gn, h /∈ Gn.
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If
⋂

Gn = (0), the topology is metric:

d(x , y) = 2−n ↔ x − y ∈ Gn \Gn+1

If G is a ring and the Gn are proper ideals, d(u,0) = 1 for
all units u ∈ G.
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Inverse Systems

This setting leads to an algebraic formulation of
completion.If (xn) is a CS the image of (xn) in G/Gn is
ultimately constant, say equal to cn: When we pass from
n + 1 to n, cn+1 → cn under the projection

G/Gn+1
θn+1−→ G/Gn

Thus (xn) defines a coherent sequence (cn)

θn+1(cn+1) = cn ∀n

Ĝ is the set of all coherent sequences with obvious
structure.
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Inverse Systems

Definition
A sequence of groups {An} and homomorphisms

θn+1 : An+1 → An

is an inverse system. The group of all coherent sequences is
called the inverse limit of the sequence. Notation: lim←− An.
The system is surjective if all θn are surjective.
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Exactness

Proposition
If 0→ {An} → {Bn} → {Cn} → 0 is an exact sequence of
inverse systems then

0→ lim←−An −→ lim←−Bn −→ lim←−Cn

is always exact. If, moreover, {An} is a surjective system, then

0→ lim←−An −→ lim←−Bn −→ lim←−Cn → 0

is exact.
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Proof

Let A =
∏∞

n=1 An, and define dA : A→ A by
dA(an) = an − θn+1(an+1).

Then ker dA = lim←−An. Define dB and dC .

The exact sequence of inverse systems define the diagram
of exact sequences

0 // A

dA

��

// B

dB

��

// C

dC

��

// 0

0 // A // B // C // 0
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By the snake lemma, it gives an exact sequence

0→ ker dA → ker dB → ker dC → coker dA → coker dB → coker dC → 0.

To complete the proof, to show that dA is surjective one
observes that it suffices to solve inductively the equations

xn − θn+1(xn+1) = an

for xn ∈ An, given an ∈ An
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Corollary

Let 0→ G′ −→ G
p−→ G′′ → 0 be an exact sequence of groups.

Let G have the topology defined by a sequence {Gn} of
subgroups, and give G′,G′′ the induced topologies, i.e. by the
sequences {G′ ∩Gn}, {pGn}. The following is exact

0→ Ĝ′ −→ Ĝ −→ Ĝ′′ → 0

Proof. Apply the previous proposition to

0→ G′/G′ ∩Gn → G/Gn → G′′/pGn → 0.



Modules of Finite Projective Dimension Regular Local Rings Cohen–Macaulay Rings and Modules The Main Rings Hilbert Functions Completions Monomial Ideals Toolkit

Applying this to G′ = Gn, then G/Gn has the discrete topology,
so Ĝ′′ = G′′.

Corollary

Ĝ′ is a subgroup of Ĝ and Ĝ/Ĝn = G/Gn.

Proposition̂̂G = Ĝ.

Definition

If G ' Ĝ, we say G is complete.
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I-adic Topology

If I ⊂ R, the ideals {In} define the I-adic topology of R: the
ring operations are continuous. R is a topological ring.

If
⋂

In = 0, the topology is Hausdorff.

The completion R̂ of R is a topological ring, φ : R→ R̂ is a
continuous homomorphism of kernel

⋂
In.

If M is an R-module, the I-adic topology of M is defined by
the submodules {InM}.
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Example
Let I ⊂ R. For any u ∈ I and units an ∈ R,

cn = a0 + a1u + · · ·+ anun

are Cauchy sequences.

R = Z, I = (p), p prime. Then Ẑ is the ring of p-adic integers:

∞∑
n=0

anpn, 0 ≤ an ≤ p − 1.

We have pn → 0 as n→∞.
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Artin–Rees Lemma

This is a backbone of commutative algebra of nearly the same
pedigree as Hilbert results in the 1870’s papers.

Theorem (Artin-Rees Lemma)

Let R be a Noetherian ring and let I and J be two ideals. There
exists an integer c such that for all n ≥ c the following equality
holds

J ∩ In = In−c(J ∩ Ic). (8)
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Proof. Let a1, . . . ,an be a generating set of the ideal I and
consider the R-subalgebra of the ring of polynomials A = R[t ],

B = R[a1t , . . . ,ant ].

Since R is Noetherian and B is finitely generated, B is also
Noetherian.
Grading A in the usual fashion, B is a graded subalgebra, the
Rees algebra of I:

B = R + It + I2t2 + · · ·+ Intn + · · · .
Define Ln = J ∩ In and set

L = L0 + L1t + L2t2 + · · ·+ Lntn + · · · .

L is clearly a homogeneous ideal of B, so there is a finite set of
forms that generates it,

L = (b1td1 , . . . ,bstds ).
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In
L = (b1td1 , . . . ,bstds ),

let c = sup{d1, . . . ,ds}; for n ≥ c, we must have

Ln =
s∑

i=1

In−di bi ,

from which the assertion

J ∩ In = In−c(J ∩ Ic)

follows.
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Krull Intersection Theorem

Theorem

Let R be a Noetherian ring and let I be an ideal of R. If

L =
⋂
n≥1

In,

then L = I · L. In particular, if I is contained in the Jacobson
radical of R, then ⋂

n≥1

In = 0.

Proof. It suffices to put J = L in the Artin-Rees Lemma. The
second assertion follows from Nakayama lemma:
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Theorem (Nakayama Lemma)
Let M be a finitely generated R module and J its Jacobson
radical. If M = JM, then M = 0.

Remark
Actually, using the Nakayama lemma one can give another
description of L. Consider the multiplicative set
S = {1 + a, a ∈ I}. In the ring S−1R the ideal S−1I is contained
in the Jacobson radical. Thus the equality S−1L = S−1I · S−1L
implies (by Nakayama lemma) that S−1L = 0. This means that
there is x ∈ I such that (1 + x)L = 0.
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Remark
The theorem above applies equally to modules; more precisely,
if M is a finitely generated R–module, then

L =
⋂
n≥1

InM,

satisfies L = I · L.
This can be readily seen by making use of the idealization trick,
consisting in giving the direct sum S = R ⊕M a ring structure
by decreeing

(a, x) · (b, y) = (a · b,a · y + b · x).

Now one applies the theorem to the ring S and its ideal I ⊕M.
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Another important use of the Artin–Rees lemma is to the
identification of two topologies defined by the powers of an ideal
I. If M is a finitely generated module over a Noetherian ring R,
then the family of submodules {InM | ∀n ≥ 0} defines a system
of neighborhoods of 0 ∈ M. If N ⊂ M is a submodule, there are
two topologies defined on N, the induced one, {InM ∩ N}, and
its own I-adic topology. The Artin-Rees lemma identifies them.
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Completion

Proposition
Let R be a Noetherian ring, I an R-ideal and
0→ A −→ B −→ C → 0 be an exact sequence of f.g.
R-modules. Then there is an exact sequence

0→ Â −→ B̂ −→ Ĉ → 0

for their I-adic completion. In other words, completion is an
exact functor on the category of f.g. R-modules.
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Corollary
For any f.g. R-module M,

M̂ ' M ⊗ R̂.

In particular, R̂ is a flat R-module.

Proof. Clearly R̂ = R⊗ R̂. If M is a f.g. R-module, there is a
free presentation

Rm −→ Rn −→ M → 0
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There is a commutative diagram of exact rows

R̂⊗ Rm //

��

R̂⊗ Rn //

��

R̂⊗M //

��

0

R̂m // R̂n // M̂ // 0

Since the two vertical maps on the left are isomorphisms,
R̂⊗M ' M̂ also.
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Associated Graded Rings/Modules
Let R be a Noetherian ring and M a finitely generated
R-module. A descending filtration of M is a sequence of
submodulesM = {Mi , i ≥ 0}

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn ⊃ Mn+1 ⊃ · · ·

Definition
The associated graded module ofM is the module⊕

n≥0

Mn/Mn+1.
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Associated Graded Rings/Modules

Definition
Let I be an R-ideal and M an R-module. The I-adic filltration of
M is {Mn,Mn = InM}. The module

gr I(M) =
⊕
n≥0

Mn/Mn+1

is its associated graded module.

If M = R, G = gr I(R) is a ring and gr I(M) is a
gr I(R)-module.

If R is a Noetherian ring, then G is a Noetherian ring and
gr I(M) is a finitely generated G-module.
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Example

Example
If R = k [[x1, . . . , xd ]], I = (x1, . . . , xd ),

gr I(R) = k [x1, . . . , xd ].
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Functorial Properties

If ϕ : M → N is a module homomorphism,
ϕn : mnM → mnN, and induces a homogeneous
homomorphism

gr (ϕ) : gr I(M)→ gr I(N), gr (ϕ)n : mnM/mn+1M → mnN/mn+1N

If 0→ P
φ→ M

ϕ→ N → 0 is a SES, the following is a
complex exact on the right

0→ gr I(P)
gr (φ)−→ gr I(M)

gr (ϕ)−→ gr I(N)→ 0

ker (gr (φ)) =
⊕

n φ
−1(mnM) ∩mnP/mn+1P

ker (gr (ϕ)) =
⊕

n ϕ
−1(mnN) ∩mnM/mn+1M
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Noetherianess

Definition
Let M be an A–module. A chain

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · ,

where the Mn are submodules of M , is called a filtration of M , and
denoted by (Mn).

It is an I–filtration if IMn ⊆ Mn+1 for all n, and a stable I–filtration
if IMn = Mn+1 for all sufficiently large n. Thus, (InM) is a stable
I–filtration.
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Lemma
If (Mn) and (M ′n) are stable I–filtration of M, then they have
bounded difference: that is, there exists an integer n0 such that
Mn+n0 ⊆ M ′n and M ′n+n0

⊆ Mn for all n ≥ 0. Hence all stable
I–filtrations determine the same topology on M, namely the
I–topology.

Proof. Enough to take M ′n = InM. Since IMn ⊆ Mn+1 for all n,
we have InM ⊆ Mn; also IMn = Mn+1 for all n ≥ n0 say, hence
Mn+n0 = InMn0 ⊆ InM. �
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Let A be a Noetherian ring and I an ideal and let (Mn) be an
I-filtration. Set

A∗ = A⊕ I ⊕ I2 ⊕ · · ·
M∗ = M0 ⊕M1 ⊕M2 ⊕ · · ·

M∗ is an A∗-module.

Lemma
Let A be a Noetherian ring, M a finitely generated A–module,
(Mn) an I–filtration of M. Then the following are equivalent :

(i) M∗ is a finitely generated A∗–module.
(ii) The filtration (Mn) is stable.
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Proof. Each Mn is finitely generated, hence so is each

Qn =
n⊕

r=0

Mr : this is a subgroup of M∗ but not (in general) an

A∗–submodule. However, it generated one, namely

M∗ = M0 ⊕ · · · ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ · · · ⊕ Ir Mn ⊕ · · · .

Since Qn is finitely generated as an A–module, M∗n is finitely
generated as an A∗–module. The M∗n form an ascending chain,
whose union is M∗. Since A∗ is Noetherian, M∗ is finitely
generated as an A∗–module if and only if the chain stops, i.e.,
M∗ = M∗n0

for some n0 if and only if Mn0+r = Ir Mn0 for all r > 0 if
and only if the filtration is stable. �
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Proposition (10.15)

If A is Noetherian, Â its I–adic completion, then
(i) Î = ÂI ' Â⊗A I ;

(ii) În = (̂I)n;

(iii) In/In+1 ' În/̂In+1;

(iv) Î is contained in the Jacobson radical of Â.
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Proof. Since A is Noetherian, I is finitely generated. implies
that the map

Â⊗A I → Î,

whose image is ÂI, is an isomorphism. This proves (i). Now
apply (i) to In and we deduce that

În = ÂIn = (ÂI)n = (̂I)n.

From the above, we now deduce

A/In ' Â/̂In

from which (iii) follows by taking quotients. By (ii) we see that Â
is complete for its Î–topology. Hence for any x ∈ Î

(1− x)−1 = 1 + x + x2 + · · ·

converges in Â, so that 1− x is a unit. This implies that Î is
contained in the Jacobson radical of Â. �
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Proposition
Let A be a Noetherian local ring, m its maximal ideal. Then the
m–adic completion Â of A is a local ring with maximal ideal m̂.

Proof. By the previous proposition (iii), we have Â/m̂ ' A/m,
hence Â/m̂ is a field and so m̂ is a maximal ideal. By (iv) of the
same proposition, it follows that m̂ is the Jacobson radical of Â
and so is the unique maximal ideal. Thus Â is a local ring. �
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Proposition
Let A be a Noetherian ring, I an ideal of A. Then

(i) GI(A) is Noetherian;

(ii) GI(A) and G Î(Â) are isomorphic as graded rings ;
(iii) if M is a finitely generated A–module and (Mn) is a stable

I–filtration of M, then G(M) is a finitely generated graded
GI(A)–module.
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Proof. (i) Since A is Noetherian, I is finitely generated, say by
x1, . . . , xs. Let x i be the image of xi in I/I2, then
G(A) = (A/I)[x1, . . . , xs]. Since A/I is Noetherian, G(A) is
Noetherian by the Hilbert basis theorem.

(ii) In/In+1 ' În/̂In+1 by (10.15)(iii).

(iii) There exists n0 such that Mn0+r = Ir Mn0 for all r ≥ 0, hence
G(M) is generated by

⊕
n≤n0

Gn(M). Each Gn(M) = Mn/Mn+1 is

Noetherian and annihilated by I, hence is a finitely generated
A/I–module, hence

⊕
n≤n0

Gn(M) is generated by a finite number

of elements (as an A/I–module), hence G(M) is finitely
generated as a G(A)–module. �
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Lemma (10.23)
Let φ : A→ B be a homomorphism of filtered group, i.e.,
φ(An) ⊆ Bn, and let G(φ) : G(A)→ G(B), φ̂ : Â→ B̂ be the
induced homomoprhisms of the associated graded and
completed groups. Then

(i) G(φ) injective⇒ φ̂ is injective.
(ii) G(φ) surjective⇒ φ̂ is surjective.
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Proof. Consider the commutative diagram of eact sequnces

0 −−−−→ An/An+1 −−−−→ A/An+1 −−−−→ A/An −−−−→ 0yGn(φ)

yαn+1

yαn

0 −−−−→ Bn/Bn+1 −−−−→ B/Bn+1 −−−−→ B/Bn −−−−→ 0

This gives the exact sequnce

0→ ker (Gn(φ))→ ker (αn+1)→ ker (αn)→ coker (Gn(φ))

→ coker (αn+1)→ coker (αn)→ 0.

From this we see, by induction on n, that ker (αn) = 0 (case (i))
or coker (αn) = 0 (case (ii)). Moreover in case (ii) we also have
ker (αn+1)→ ker (αn) surjective. Taking the inverse limit of the
homomorphisms αn and applying a previous proposition, the
lemma follows. �
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Proposition (10.24)
Let A be a ring, I an ideal of A, M an A–module, (Mn) an
I–filtration of M. Suppose that A is complete in the I–topology
and that M is Hausdorff in its filtration topology (i.e., that⋂
n

Mn = 0. Suppose also that G(M) is a finitely generated

G(A)–module. Then M is a finitely generated A–mdoule.
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Proof. Pick a finite set of generators of G(M), and split them up
into their homogeneous components, say ξi (1 ≤ i ≤ ν) where
ξi has degree say n(i), and is therefore the image of say
xi ∈ Mn(i). Let F i be the module A with the stable I-filtration

given by F i
k = Ik+n(i) and put F =

r⊕
i=1

Fi . Then mapping the

generator 1 of each F i to xi defines a homomorphism

φ : F → M

of filtered groups, and G(φ) : G(F )→ G(M) is a
homomorphism of G(A)–modules. By construction it is
surjective. Hence by (10.23) (ii) φ̂ is surjective.
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Consider now the diagram

F
φ−−−−→ M

α

y yβ
F̂ −−−−→

φ̂
M̂

Since F is free and A = Â it follows that α is an isomorphism.
Since M is Hausdorff β is injective. The surjectivity of φ̂ thus
implies the surjectivity of φ, and this means that x1, . . . , xr
generated M as an A–module. �
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Corollary (10.25)
With the hypotheses of (10.24), if G(M) is a Noetherian
G(A)–module, then M is a Noetherian A–module.

Proof. We have to show that every submodule M ′ of M is
finitely generated. Let M ′n = M ′ ∩Mn; then (M ′n) is an I–filtration
of M ′ and the embedding M ′n → Mn gives rise to an injective
homomorphism M ′n/M ′n+1 → Mn/Mn+1, hence to an embedding
of G(M ′) in G(M). Since G(M) is Noetherian, G(M ′) is finitely
generated; also M ′ is Hausdorff, since

⋂
M ′n ⊆

⋂
Mn = 0;

hence by (10.24), M ′ is finitely generated. �
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Theorem
If A is a Noetherian ring, I an ideal of A, then the I–completion
Â of A is Noetherian.

Proof. By (10.22), we know that

GI(A) = G Î(Â)

is Noetherian. Now apply (10.25) to the complete ring Â, taking
M = Â (filtered by În, and so Hausdorff). �
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Corollary
If A is a Noetherian ring, the power series ring
B = A[[X1, . . . ,Xn]] in n variables is Noetherian. In particular,
k [[X1, . . . ,Xn]] (k a field) is Noetherian.

Proof. A[X1, . . . ,Xn] is Noetherian by the Hilbert basis theorem,
and B is its completion for the (X1, . . . ,Xn)–adic topology. �
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Monomial Ideals

The settings for computations that we will consider are rings of
polynomials

R = Rn(k) = k [x1, . . . , xn],

where k is a finite field or a finite extension of Q, or in a few
cases, rings where coding can be done as efficiently as with
those basic fields.

The problems themselves are concerned with affine rings over
k – and are therefore adequately modeled by an ideal of some
Rn(k) – or by a subring of Rn(k):
• R/I, I ⊂ R
• k [f1, . . . , fm], fi ∈ R.
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Topics

• Polynomial rings and their orderings
• Division algorithms
• Buchberger algorithm
• Computation of syzygies
• Computation of Hilbert functions

The treatment here is only intended to sketch out basic
concepts and algorithms and point out its capabilities, focusing
instead on the interface between the algorithms and algebra
itself. It will become clear that this interfacing takes place over
an open set not just a thin layer of activities.
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Gröbner Basics

Division algorithms are key tools for processing in rings of
polynomials. The most straightforward of these is probably
pseudo–division. It consists in a minor modification of ordinary
long division of polynomials in one variable with coefficients in a
field.
For more general coefficients, it works as follows: Let f (x) and
g(x) be elements of R[x ],

f (x) = ar x r + · · ·+ a0, ar 6= 0.

If deg g(x) = s ≥ r , then there are polynomials q(x),p(x) such
that

as−r+1
r g(x) = p(x)f (x) + q(x), deg q(x) < deg f (x).
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Division Algorithms

Let R = k [x1, . . . , xd ] and I = {f1, . . . , fn} be a collection of
polynomials.

Question: For f ∈ R, how to find canonical? representations

f =
∑

n

gi fi + r

d = 1: Long division

deg fi = deg f = 1: Gaussian algorithm

Classical approach: Convert to linear algebra (Grete
Hermann)

fi monomial: Sweet method
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Polynomial Rings, Monomials, Orderings and
Weight Vectors

Let k be a field, and let R be the polynomial ring k [x1, . . . , xn].
Suppose I is an ideal of R given by a set {f1, . . . , fm} of
generators. The study of the ring R/I is helped by the
knowledge of canonical bases for the k–vector space R/I. The
purpose of division algorithms in R is to provide us with such
bases.

Let us fix a ring of polynomials R = k [x1, . . . , xn] over a field k .
Denote by M the set of all monomials

xα = xα1
1 · · · x

αn
n (9)

(including 1). M is a multiplicative monoid isomorphic to the
additive monoid Nn.
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Given an element f ∈ R, it is written

f =
∑
α∈Nn

cαxα

in a manner that facilitates the processing under multiplication
or division. This is usually achieved by picking orders on M that
are compatible with multiplication.

Definition
An admissible partial order T is a partial order >T on M with
the property
• m >T 1 for any non constant monomial m;
• If m1 >T m2 and m3 ∈M then m1 ·m3 >T m2 ·m3.

If >T is a total order we say that it is a term order (or term
ordering or even a monomial ordering).
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A basic example of a term ordering is the lexicographic order
(lex for short):

m1 = xa1
1 · · · x

an
n >lex xb1

1 · · · x
bn
n = m2

if
a1 = b1, · · · ,ar−1 = br−1,ar > br , for 1 ≤ r ≤ n.
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Product of Orderings

More general term orderings arise by combining several
admissible partial orders through their lexicographic product of
orderings. If T1, . . . ,Ts are such partial orders, the product
order

T = T1 ×lex T2 ×lex · · · ×lex Ts

is defined as above

m1 >T m2 ⇐⇒ m1 =T1 m2, . . . ,m1 =Tr−1 m2,m1 >Tr m2, for 1 ≤ r ≤ s.
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Degree Orderings

Among term orderings noteworthy are those that place
emphasis on the degrees of the polynomials. They are
obtained as the product of deg, the total degree partial order,
and T2 another partial order. For instance, if T2 is lex, their
product is the so–called graded lexicographic ordering:

(a1, . . . ,an) < (b1, . . . ,bn)⇔
first nonzero entry of (

∑
bi −

∑
ai ,b1 − a1, . . . ,bn − an) is positive.
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Particularly striking properties are enjoyed by the reverse
lexicographic order, defined by changing the last requirement
above to: the last nonzero entry is negative. Macaulay
introduced it in his fundamental studies on Hilbert functions.
Bayer and Stillman have discovered many of its interesting
properties and incorporated its efficiencies into their Macaulay
program.

As these examples already indicate, it is necessary to consider
more general partial orderings of M as constituent blocks for
term orderings. A simple mechanism is to embed the monoid
Nn into a real vector space V : each element w ∈ V ∗ (the dual
of V ) induces a partial order on M, compatible with its
composition law, by

xa < xb ⇔ w(a) < w(b). (10)

We refer to w as a weight vector.
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Initial Ideals

Orderings are the means to pass back and forth between the
monoid of all monomials and Nn. We define the homomorphism

log : M −→ Nn,

by
log(xa1

1 · · · x
an
n ) = (a1, . . . ,an).

Let us fix, for our discussion, a term order which we denote
simply by >.
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If f =
∑

α cαxα ∈ R, the support of f is the subset of Nn

supp(f ) = { α | cα 6= 0},

while the Newton polytope of f is the convex hull of supp(f ).

If 0 6= f ∈ R, f = C(f ) ·M(f ) +
∑

aiMi , where M(f ) is the highest
monomial that occurs in the representation of f ; 0 6= C(f ) is its
leading coefficient; the product L(f ) = C(f ) ·M(f ) is the leading
term or initial term in(f ) of f . We define log(f ) = log(M(f )).
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A more common notation is to denote the leading coefficient of
f by

lc(f ) = cβ, β = max{ α ∈ supp(f )},

in(f ) = xβ is the initial monomial and lt(f ) = cβ · xβ is the
leading term of f :
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f = cβ · xβ +
∑

ci · xαi , cβ 6= 0, β > αi

lt(f ) = lc(f ) · in(f )

log(f )

6

C
C
C
CO

?
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For a nonzero ideal I, define log(I) to be the union of log(f ),
0 6= f ∈ I. This defines a sub–monoid of Nn, stable under the
addition of quadrants:

log(I) = log(I) + Nn.

By the Hilbert basis theorem there are finitely many elements
g1, . . . ,gr in I so that

log(I) =
⋃

(log(gi) + Nn), 1 ≤ i ≤ r .

Definition
The initial ideal of I for the term order > is the ideal

in>(I) = (xa, for all a ∈ log(I)). (11)
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The ideal in>(I) is highly dependent on the chosen ordering;
once > is fixed, the ideal is denoted simply by in(I).

Definition
The set {g1, . . . ,gr} of elements of I is a Gröbner basis if

in(I) = (in(g1), . . . , in(gr )). (12)
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Normal Form Representation

We begin to use the notion of orderings for the study of arbitrary
ideals. The discussion assumes the choice of a term order.

A first simple observation–but still of great significance–is that
the images of the monomials

xa where a ∈ Nn \ log(I) = ∆I ,

form a basis for the k–vector space R/I. They are the standard
monomials associated to the Gröbner basis. The Gröbner basis
G is said to be reduced if

supp(f − lt(f )) ⊂ ∆I , ∀f ∈ G.
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Definition
For a given f ∈ R, the unique polynomial

NormalForm(f ) =
∑

caxa, (13)

where each xa is a standard monomial, such that

f − NormalForm(f ) ∈ I,

is the normal form of f with respect to the chosen ordering.
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Macaulay Theorem

We have the following fundamental fact:

Theorem (Macaulay Theorem)

Given an ideal I there exists a monomial ideal in(I) such that
the set B = {xa /∈ in(I)} is a basis of R/I. More concretely, the
mapping

NormalForm : R/I −→ R/in(I) (14)

is an isomorphism of k-vector spaces.
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Division Algorithms

The setting in this section is a ring of polynomials
R = k [x1, . . . , xn] over a computable field. We sketch out
Buchberger algorithm.

Definition
Let R be a ring and let I be an ideal generated by
F = {f1, . . . , fm}. The syzygies of the fi ’s are the tuples
(r1, . . . , rm) ∈ Rm such that

m∑
i=1

ri fi = 0.
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The simplest of all syzygies are Koszul syzygies,

f · g − g · f = 0,

where f ,g are elements of the ring R. A refinement is

A · g − B · f = 0,

if f = A · h, g = B · h, where h is a common divisor. For larger
sets of elements this step will be further refined using the
division that Gröbner bases permit.
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Taken together the syzygies of the set F form a submodule of
Rm, the module of syzygies of the fi ’s. When another set of
generators for I is chosen, the corresponding module of
syzygies is closely related to the first in a manner originally
observed by Fitting.

When the fi ’s are monomials, the module of syzygies of F is
generated by Koszul relations. For more general sets F , we are
going to use this as a tool to get the syzygies of appropriate
sets of generators of the ideal (F ).
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There are other notions of syzygies associated to the set F , of
which we recall two. First, consider a homomorphism

ϕ : k [T1, . . . ,Tm] 7→ R, ϕ(Ti) = fi .

I = ker (ϕ) is the ideal of algebraic syzygies of the fi ’s. A more
general notion, useful in the theory of blowup algebras, deals
with mappings such as ϕ but with a different source:

ϕ : k [x1, . . . , xr ,T1, . . . ,Tm] 7→ R, ϕ(Ti) = fi ,

where k [x1, . . . , xr ] ⊂ R. It is surprising that ultimately all these

kinds of syzygies are going to be dealt with in the same
manner.
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Buchberger Algorithm

Here one seeks to divide a polynomial g by a finite collection
f1, . . . , fm of polynomials,

g =
m∑

i=1

hi fi + remainder, (15)

in which ‘remainder’ has some appropriate minimizing property.

The following deceptively simple statement embodies the
efficacy of Gröbner bases as the generating set of choice for an
ideal of a polynomial ring.
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Proposition
Let I be an ideal of R and let > be a term ordering of R. A set

{g1, . . . ,gr} ⊂ I,

is a Gröbner basis of I with respect to > if and only if every
nonzero element of I can be written as

f =
∑

aigi , with log(f ) ≥ log(aigi).

In particular, a Gröbner basis of I is a generating set for I.

The proof is contained in the very definition of the Gröbner
basis. Note the close parallel with the Euclidean algorithm in
the ring k [t ] and the elements of Gaussian elimination.
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The previous proposition is a basis for solving several general
questions about the ideal I, particularly the membership
problem. There remains to find such bases. This results from
the following analysis due to Buchberger.

Let I be defined by a generating set F = {f1, . . . , fm}. One must
have a criterion to decide whether
log(F ) = {log(f1), . . . , log(fm)} generates log(I), and if not, a
device to add new elements to the fi ’s. These steps come
together in the same argument.
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Reduction

We begin with the observation on how to add a possible new
generator to F . Let f be a nonzero element of I. If in(f ) is not a
multiple of any of the in(fi)’s, one has a new generator.
However, even if in(f ) is already a multiple of a in(fi), f may still
contribute a new generator. To see this, suppose that the
leading monomial M(f ) of f is divisible by the leading monomial
M(fi) of fi , and pick q ∈ R such that log(f − qfi) < log(f ). It is
also usual to effect this operation on the next largest monomial
of f which does not belong to the span of the M(fi)’s. On
iterating we end up with an element

g = f −
∑

i

ai fi ,

with the property that g = 0 or log(g) is not divisible by log(F ).
In either case we say that f reduces to g relative to F .
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If g = 0, f is ignored; otherwise adding log(g) to the submonoid
of Nn generated by the log(fi)’s gives rise to a larger
submonoid. The Hilbert basis theorem guarantees that such
additions cannot go on forever.
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S–resultant

The issue is how to pick appropriate elements of I. The basic
step goes to the core of both the Euclidean and Gaussian
algorithms. It is embodied in the notion of the (resultant)
S–polynomial attached to two polynomials f ,g ∈ R: If M(f ) and
M(g) are their leading monomials, set

S(f ,g) := ag · f − (C(f )/C(g)) · bf · g, (16)

where ag ·M(f ) = bf ·M(g) is the least common multiple of
M(f ) and M(g). The collections of such objects have a very
natural place in the theory of Taylor resolutions.
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The Buchberger algorithm is made up of the following result
and the scheme that follows to produce the required elements.

Theorem

A set of generators F = {f1, . . . , fm} of the ideal I is a Gröbner
basis of I if and only if the S–polynomial S(fi , fj) of each pair
(fi , fj) of elements of F reduces to 0 with respect to F .

Proof. The proof of the necessity is clear. For the converse, let
f be an element of I. We may assume that f is its own normal
form with respect to F . Let f =

∑
j hj fj , and consider the

log(hj fj)’s (for hj 6= 0). log(f ) cannot be equal to one of the
log(hj fj), as it is already in normal form. This means that there
must be some cancelling out at the top monomial occurring in
the products hj fj .
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More precisely, suppose

M(h1) ·M(f1) = M(h2) ·M(f2) = · · · = M(hk ) ·M(fk )

are the top monomials that occur in the right hand side of the
representation of f . Their cancelling out means that the vector
of leading terms

(L(h1), . . . ,L(hk ))

is a syzygy of
(L(f1), . . . ,L(fk )).
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But it is an elementary fact that such relations are combinations
of the syzygies of pairs {C(fr )M(fr ),C(fs)M(fs)}. This means
that we have a representation

f =
∑

j

h′j fj +
∑

arsS(fr , fs),

where log(h′j fj) < log(h1f1). An easy induction completes the
proof. �
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Proposition (Buchberger Algorithm)
Let F = {f1, . . . , fm} be a set of generators of the ideal I, and let
>T be a term order for M.

G : = F.
B : = {(f1, f2) | f1, f2 ∈ F , and f1 6= f2}.
while B 6= ∅ do

(f1, f2) : = a pair in B
B : = B \ {f1, f2}
g : = normal form of S(f1, f2) with respect to G
if g 6= 0, then

B : = B ∪ {(g, h) | h ∈ G}
G : = G ∪ {g}
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Example
Let R = k [x , y , z] be a polynomial ring over a field k with the
reverse lexicographic ordering and let f1 = y4 − x2z2,
f2 = x3 − y2z and f3 = xy − z2. Applying the algorithm in this
setting gives the reduced Gröbner basis for the ideal I
generated by the fi ’s:

f1, f2, f3, xz5−z6, yz5−z6, y2z3−xz4, y3z−x2z2, x2z3−xz4.
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Example
Let R = k [x1 . . . , x8] be a polynomial ring over a field k and let
G be the bipartite graph
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Let k [G] be the k -subring of R spanned by the set of
monomials fij = xixj so that xi is adjacent to xj and let P(G) be
the toric ideal of k [G], that is, P(G) is the kernel of the graded
homomorphism

ϕ : B = k [tij ] −→ k [G], induced by ϕ(tij) = fij .

P(G) is a Cohen-Macaulay prime ideal of codimension 5,
whose generators are determined by the edge cycles contained
in the graph: to the cycle

{α1, β1, . . . , αs, βs}, associate the binomial Tα1 · · ·Tαs−Tβ1 · · ·Tβs .
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If the terms in B are ordered by the reverse lexicographical
ordering

t14 > t23 > t12 > t56 > t37 > t26 > t34 > t78 > t15 > t48 > t67 > t58,

then a reduced Gröbner basis for P(G) is

h1 = t15t48 − t14t58, h5 = t14t26t78 − t12t48t67, h9 = t26t78t15 − t12t67t58
h2 = t37t26 − t23t67, h6 = t14t56t37 − t34t15t67, h10 = t56t37t48 − t34t67t58
h3 = t12t56 − t26t15, h7 = t23t78t15 − t12t37t58, h11 = t56t78 − t67t58
h4 = t14t23 − t12t34, h8 = t23t56t48 − t26t34t58, h12 = t34t78 − t37t48.
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A curious feature here is that this basis is actually shorter than
a ‘natural’ basis provided by all the edge cycles.
Consider the ideal I = (h1,h2,h3,h4,h12). Notice that I is a
complete intersection because the leading terms of the hi ’s are
relatively prime and therefore {h1,h2,h3,h4,h12} is a Gröbner
basis for I.
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The theoretical cost of these computations can be staggering,
doubly exponential in the number of variables. This feature was
already present in the classical analysis of the cost of
computation in polynomial ideal theory by Grete Hermann. On
the other hand, the dynamic behavior of Buchberger algorithm
benefits from the average cost of the computation (linear in the
number of variables). Furthermore, unlike the classical
methods that had to work out always from a worst case
assumption, Gröbner bases algorithms are eminently
programmable.
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Except for a few cases, it is impossible to predict what the
normal form of the S–polynomial of two elements will look like.
One of the exceptions, exhibited in the examples above, is that
of an ideal generated by binomials: all polynomials in the
process will be binomials. But even here, the worst case
complexity is not any better.
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Computation of Syzygies

Let R = k [x1, . . . , xn] be the ring of polynomials over a field k
and let I be an ideal given by a set {f1, . . . , fm} of generators. In
concrete situations, these generators carry along many mutual
relationships. Furthermore, they were likely obtained in a
‘natural’ setting.
There are several strategies adapted for computation of the
properties of the ring R/I:
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• Transformation of the object into another with similar
numerical data (Hilbert Functions).
• Comparison of objects by looking at their syzygies.

Broadly, it is simpler to study an algebraic object M when it
is free: the methods typical of linear algebra may be
imported. Lacking freeness, one uses a presentation

K −→ F −→ M→ 0,

where F is a free object; M is equally well coded by the
relations K. Typical examples are the (linear) relations of a
set of generators of a module of an R–module or the
(algebraic) relations of the generators of an affine
k–algebra.
• Classical and modern elimination theory.
• Factorization techniques.
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Gröbner Bases and Syzygies

Here we just outline how the first–order syzygies of an ideal
I = (F ) = (f1, . . . , fn) may be determined in principle. The
generators are going to be taken as ordered, and we write one
of its syzygies as a column vector v ∈ Rn such that F · v = 0.
Let G = {g1, . . . ,gm} be a Gröbner basis of I. For each pair of
polynomials {gi ,gj} in G the S–polynomial S(gi ,gj) has a
reduction

S(gi ,gj) = ajgi − aigj =
m∑

k=1

hkgk , (17)

Buchberger Theorem.
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In particular the vector 

h1
...

hi − aj
...

hj + ai
...

hm


(18)

is a syzygy of G. The following elementary fact ([Schreyer]) is
extremely useful.

Theorem

The syzygies of G are generated by the vectors (18).

Proof. We leave its proof to the reader. �
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Assembling the Syzygies

It is necessary to convert the syzygies of a Gröbner basis G
into the syzygies of the basis F from which it was derived. It
involves the two matrices that convert one set of generators
into the other. The following observations were kindly pointed
out to us by H.-G. Gräbe.
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Denote by

F = (f1, . . . , fn)

G = (g1, . . . ,gs).

the ordered given generators and the computed Gröbner basis
of a module Q, respectively. This gives rise to two transition
matrices A and B

G = F · A
F = G · B,

the first of which is obtained in the execution of the Buchberger
algorithm, while the other is the representation of the elements
of F by the normal form algorithm.
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The syzygies of F are the column vectors v ∈ Rm such that
F · v = 0. The module of syzygies of G is that described above,
and at issue is how to convert from one module to the other.

Proposition
If SG is a basis for the syzygies of G then the columns of[

E − A · B A · SG
]

is a basis for the syzygies of F , with E the n × n identity matrix.

Proof. The columns of this matrix are clearly syzygies of F .
Conversely, if F · v = 0, then B · v ∈ SG. In this case

v = (E − A · B) · v + A · B · v
⊂ column space(E − A · B) + column space(A · SG),

which proves the assertion. �
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Gröbner Bases over Rings

If k is a ring and R = k [x1, . . . , xn], any term ordering < on the
monomials xα permits the development of several aspects of
Gröbner bases techniques to this extended setting. We recall
here some aspects.

Let us fix a term order. Let I be an ideal of R and denote by
in(I) the ideal of all leading terms of elements of I.

Definition
A Gröbner basis of I is a family of polynomials

hα = fα + lower order terms ∈ I,

whose leading terms fα span in(I).
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If R is Noetherian, the ideal in(I) will be finitely generated.
However, if I is finitely generated but R is not Noetherian then
in(I) may well be not finitely generated.
Unlike the field case, we now must keep track of the full leading
term instead of just the leading monomial. If fα, α ∈ Σ is a set of
monomials that generates in(I), the leading coefficients of the
fα’s now play an important role. There are significant similarities
and contrasts, of which we consider a few cases.

Proposition

Suppose that the leading coefficients of the fα’s are all 1. Then
R/I is a free k–module with a basis given by the standard
monomials.
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Computation of Gröbner Bases

There are two instances when the computation over Gröbner
bases over R[T] can be dealt with much in the same manner as
the case of a field.

Suppose k is a field, R = k [x], A = R[T], and < is a product
term order for monomials of A so that xi < Tj . If I is an ideal of
A = R[T], and we consider associated Gröbner bases G1 and
G2, the first when only the order on the monomials on the Tj ’s
are taken into account and the other when all monomials are
considered.

G1 = {gα(x)Tα + lower order terms, α ∈ Σ}
G2 = {xβTγ + lower order terms, (β, γ) ∈ Σ′}.

It is clear that we can obtain a Gröbner basis equivalent to G1
by arranging each polynomial in G2 in the distributed form with
respect to the Tj ’s.
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A different kind of difficulty is that of a ring such as R = Z. Here
it is clear that Buchberger algorithm will produce a Gröbner
basis provided that in the course of taking the S–resultant of
pairs of polynomials, say f = aTα + · · · and g = bTβ + · · · , one
sets S(f ,g) = c · f − d · g, where

c =
b

gcd(a,b)
Tγ d =

a
gcd(a,b)

Tδ,

so that α + γ = β + δ and supp(γ) ∩ supp(δ) = ∅.
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Hilbert Functions

Let A = k [x1, . . . , xn]/I be a graded ring over the field k and
denote by HA(t) its Hilbert function. The key to the computation
of HA(t) is Macaulay Theorem: If < is a term ordering and
I′ = in(I) is the corresponding initial ideal, then HA(t) = HA′(t),
where A′ = k [x1, . . . , xn]/I′.

We indicate some of the known approaches to find the coding
of Hilbert functions by Hilbert–Poincaré series of algebras
defined by monomial ideals. The more delicate points of these
strategies, the aspects that must be carefully assembled to
obtain optimization of coding, will not be treated here.
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Suppose I = (m1, . . . ,mr ), where the mi are monomials in the
indeterminates x1, . . . , xn. A theoretical approach is via Taylor
resolutions, and derives the Hilbert–Poincaré series directly
from the projective resolution of R/I. But this resolution can
have as many as 2r terms, which militates against its use if r is
large.
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Example: Monomials of Degree Two

We illustrate the kind of assemblage that takes place by
considering a very straightforward case.

The usual path has been to “filter” the graded module R/I by
other graded modules. Let us indicate this by treating one
example in great detail. Suppose the monomials mi are of
degree two and square-free. The monomials model a graph G
whose vertex set is {x1, . . . , xn}, and whose edges are {xk , x`}
if xkx` is one of the mi ; the algebra R/I is denoted k [G]. Adding
variables to the monomial ideal corresponds to considering
graphs with isolated vertices.

Let us derive the Hilbert–Poincaré series of k [G] in terms of
series for graphs with fewer vertices.
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Proposition
Let G be a graph, and PG(t) the Hilbert–Poincaré series of the
associated ring k [G]. For any vertex x ∈ V (G) = {x1, . . . , xn}
we have

PG(t) = PG−x (t) +
t

1− t
PG−N(x)−x (t)

with
P∅(t) = 1.

Here G − x denotes the graph obtained from G by deleting the
vertex x , and G − N(x)− x the graph from which x and all its
neighbors N(x) have been deleted.
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Proof. Let I = {m1, . . . ,ms, xi1xn, . . . , xik xn} where the
xi1 , . . . , xik are the neighbors of the vertex xn and the m1, . . . ,ms
are the remaining edges. We write I = (xnL, J), where
L = {xi1 , . . . , xik} and J = {m1, . . . ,ms}.
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From the exact sequence

0→ (xn, J)/I −→ R/I −→ R/(xn, J)→ 0,

since I : xn = (L, J), we obtain the exact sequence

0→ R/(L, J)(−1) −→ k [G] −→ k [G − xn]→ 0

from which we have the equality of series

PG(t) = t · PR/(L,J)(t) + PG−xn (t).

Finally, note that xn is not a vertex of the graph represented by
(L, J), so that

R/(L, J) = k [G − N(xn)− xn][xn],

and therefore

PR/(L,J)(t) =
1

1− t
· Pk [G−N(xn)−xn](t),

to complete the proof. �
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This device may also be used for more general ideals, like
those generated by squarefree monomials of arbitrary degrees.
For example, if ∆ is a simplicial complex and x is one of its
vertices, and

∆ = x ∗∆1 ∪∆2

is a disjoint decomposition, then one has an exact sequence

0→ k [∆1 ∪∆2][−1] −→ k [∆] −→ k [∆2]→ 0,

of face rings, with a corresponding relation of their Hilbert
functions.
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General Monomials

Given a monomial ideal I and a monomial f there is the exact
sequence

0→ R/(I : f )(−d) −→ R/I −→ R/(I, f )→ 0,

where d = deg f . It follows that

PR/I(t) = PR/(I,f )(t) + tdPR/(I : f )(t).

The researchers have an abbreviated notation for these series:

〈I〉 = 〈I, f 〉+ td〈I : f 〉.

Here are two approaches that have been used. They further
differ in the way that corner cases are handled.
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(a) (Bayer-Stillman) The equality above can be used
backwards: If J is an ideal and J = (I, f ), then

〈J〉 = 〈I〉 − td〈I : f 〉,

where both I and I : f have fewer generators that J. This is
the approach that was originally implemented in Macaulay.

(b) (Bigatti-Caboara-Robbiano) In this approach, used in
CoCoA, f is chosen to be a variable that occurs in the
monomials: R/(I, f ) is defined over fewer variables, while
the ideal I : f is given as follows. If I = (fL, J), and f does
not occur in the monomials of J, then I : f = (L, J).
Taking for f the highest power of a variable xn that occur in
the monomials strips that variable from all monomials of
I : f , but may complicate the handling of (I, f ), except when
the degree is very low.
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Toolkit

In this section we treat some fundamental devices to
manipulate ideals of rings of polynomials to form new rings and
to set up the conditions to help ascertain the presence of
certain properties in rings, modules and their morphisms.

• Nuts and bolts
• Rings of endomorphisms
• Noether normalization
• Fitting ideals
• Integral extensions
• Flatness and Cohen–Macaulayness testing
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Elimination techniques have been in the forefront of
applications of Gröbner bases to ideal theory from very early.
The required adjunction of new variables is often very natural
and appealing despite the potential threat of combinatorial
explosion.

There are related two operations with ideals which are
pervasive in the constructions. They are:
• The formation of ideal quotients,

I : J = { x ∈ R | x · J ⊂ I }
in a ring of polynomials R
• The construction of the ring of endomorphisms HomR(I, I)

of an ideal I in an affine domain R.
Their key role occurs since (i) through I : J one perturbs the
primary decomposition of I in a reasonably controlled form, and
(ii) HomR(I, I) leads to a new algebra which is an integral
extension of R. They represent basic manipulations with the
functor Ext of homological algebra.
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Another major process, necessary to study morphisms of rings,
is Noether normalization. It provides a baseline, adequate for
Gröbner basis computation, from which to convert problems
into others that may be amenable to linear algebra techniques.
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Elimination Techniques

Elimination Theory is concerned with the determination of the
image of a morphism between algebraic varieties

ϕ : Y 7→ X .

Its computational aspect consists in the development of
techniques to solve the following problem. Given a
homomorphism of rings

ψ : A 7→ B,

and an ideal L ⊂ B, determine the ideal

I = ψ−1(L) ⊂ A.

Strictly speaking these two formulations are not equivalent
except under conditions controlled by the fundamental:
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Elimination Techniques

Theorem (Main Theorem of Elimination Theory)
Let R be a Noetherian ring and let Pn

R be a projective space
over Spec(R). The projection

p : Pn
R 7→ Spec(R)

is a closed mapping.

In actual practice, A and B are affine rings and the issue is to
find a description of the image of the corresponding morphism
of affine varieties. The most important case is that of a ring B
which is a polynomial ring over A, B = A[T] = A[T1, . . . ,Tm].
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Elimination Techniques

Let R be the polynomial ring k [x1, . . . , xn], let t be an
indeterminate over R, and put B = R[t ]. Let I be an ideal of B.
The technique of elimination of variables is based on the
following:

Proposition

Let T be an ordering of the variables such that t >T xa for any
monomial in the xi ’s. Let F be a Gröbner basis of I. Then F ∩R
is a Gröbner basis of I ∩ R.

Proof. Follows immediately from the division algorithm. �
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Elimination Techniques

Replacing t 7→ T in the Gröbner basis calculation, the full set T
can be eliminated. Alternatively the Ti can be successively
eliminated.

Corollary
If I and J are two ideals of R, then I ∩ J can be computed.

Proof. To apply the Proposition, we must show how I ∩ J can
be obtained as the contraction of some ideal L ⊂ R[t ].
We claim that if t is a new variable, then
I ∩ J = (I · t , J · (1− t)) ∩ R. Indeed, if a ∈ I ∩ J, then

a = at + (1− t)a.

On the other hand, any element of (I · t , J · (1− t)) ∩ R,

b =
∑

aihi(t)t+
∑

bjgj(t)(1−t), ai ∈ I, bj ∈ J, hi(t),gj(t) ∈ R[t ],

evaluates to itself if t 7→ 0 or t 7→ 1, but it is mapped into J in
one case and into I in the other. �
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The ability to compute syzygies gives a distinct advantage in
carrying out the ideal theoretic operations mentioned earlier.
For instance, the computation of the intersection of two ideals
I = (a1, . . . ,am) and J = (b1, . . . ,bn) is now handled as that of
finding the syzygies of the matrix[

1 a1 · · · am 0 · · · 0
1 0 · · · 0 b1 · · · bn

]
.

The desired intersection is the ideal generated by the entries at
(1, · · · )
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Corollary (Radical Membership)

If f ∈ R and I is an ideal, then f ∈
√

I can be decided.

Proof. If t is a variable, and R is any commutative ring, then
f ∈
√

I if and only if (I,1− tf ) = R[t ]. (Details left as an
exercise.) �
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Homomorphisms of Affine Rings

A k–homomorphism

ψ : A = k [x1, . . . , xs]/(f1, . . . , fm) 7→ B = k [y1, . . . , yr ]/J,

of two affine k–algebras is the assignment

xi 7→ gi(y1, . . . , yr ) ∈ k [y1, . . . , yr ], i = 1, . . . , s

such that fj(g1, . . . ,gs) ∈ J, for all i .
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Image of a Morphism

Another application of elimination is to determine the image of
a mapping between affine spaces. Let φ : Ar 7→ As be a
polynomial mapping between two affine spaces defined over a
field k . Denote by I the ideal of all polynomials
h(Y1, . . . ,Ys) ∈ k [Y1, . . . ,Ys] that vanish on the image of φ:

{x ∈ k r | h(φ1(x), . . . , φs(x)) = 0}.
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Proposition

Let k be an infinite field and let φ be as above. Then

I = (Yi − φi(X ), i = 1, . . . , s) ∩ k [Y ].

Proof. For h(Y ) ∈ I we have

h(Y1, . . . ,Ys) = h(φ1(X ) + (Y1 − φ1(X )), . . . , φs(X ) + (Ys − φs(X )))

= h(φ1(X ), . . . , φs(X )) +
∑

i

hi(X ,Y )(Yi − φi(X )).

In one direction the assertion follows since h(φ1(X ), . . . , φs(X ))
vanishes identically. The converse is clear. �
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More generally, suppose φ : V 7→W is a morphism of affine
subvarieties of Ar and As respectively.

Proposition

Let IV and IW denote the ideals defining V and W. Then
(a) The image of V lies in W if and only if h(φ(x)) = 0 for any

h ∈ IW .
(b) The closure of the image of V is defined by the ideal

I = (IV + (Yi − φi(X ), i = 1, . . . , s)) ∩ k [Y ].

Proof. We leave the verifications to the reader.
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Example
A motivation for deciding the membership question in rings of
polynomials is provided by the following formulation by D. Bayer
of the 4-color question. LetM be a map made up of the regions
Ri , i ∈ A, that we want to color with, say, 4 colors. The ‘colors’
we use will be the four roots of 1. In the ring of polynomials

R = k [xi , i ∈ A],

let I be the ideal generated by all fi = x4
i − 1 and the

polynomials
hij = x3

i + x2
i xj + xix2

j + x3
j ,

associated to each neighboring pair of regions Ri ,Rj . Noting
that hij only vanishes along with fi , fj when the roots of these
polynomials are chosen to be distinct, it follows from the
Nullstellensatz that I 6= R if and only ifM is 4-colorable.
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Regular Elements and Ideal Quotients

Two of the most common manipulations with ideals concern the
underlying primary decompositions.

Definition
Given two ideals I and J of a ring R, the ideal quotient of I by J
is the ideal

I : J = {r ∈ R | r · J ⊂ I}.

It will figure prominently in our constructions, so that we must
have several ways to find it.
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Proposition
An element f ∈ R is regular modulo the ideal I if and only if one
of the following conditions hold in R[t ]:
(a) ((I · t , (1− t) · f ) ∩ R) · f−1 = I.
(b) (I,1− f · t) ∩ R = I.

The first formula computes I : Rf , whereas the second
determines

I : 〈f 〉 =
⋃
n≥1

(I : Rf n).
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Perhaps the most direct approach is: If J = (a1, . . . ,an), it can
be computed as

I : J =
n⋂

i=1

(I : ai).

An alternative is the following construction.

Proposition
Let t be a variable over the ring R and let

f = a1 + a2t + · · ·+ antn−1.

Then
I : J = (I · R[t ] : f ) ∩ R.
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Saturation

Definition
Let I and J be two ideal of the ring R. The saturation of I with
respect to J is the limit ideal quotient

I : 〈J〉 = I : J∞ =
⋃
k

(I : Jk ).
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Proposition
Let f be the polynomial defined above and let y be a fresh
variable. Then

I : J∞ = ((I, y − f ) : y∞) ∩ R.
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Comparison of Ideals

One of the most common tasks faced is that of comparing two
ideals I and J for containment. It is usually set up by assuming
I ⊂ J, after replacing J 7→ I + J. Since several systems have
implemented the quotient of ideals operation,

I = J ⇐⇒ I : J = (1). (19)

When I and J are homogeneous ideals, one can also just
compare their Hilbert functions:

I = J ⇔ HR/I(t) = HR/J(t)⇔ HI(t) = HJ(t).
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