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Intro to Homological Algebra

Let R be a ring. We are going to examine some of the objects
of the category M(R) of left R-modules and their
homomorphisms.

We have studied very few classes of modules–with two notable
exceptions:

Modules over PIDs or Dedekind domins

Modules over semisimple rings

Even for these modules, we have yet to examine in some detail
the morphisms between these modules.
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Big Picture

We will focus on rings such as R = k [x1, . . . , xd ], rings of
polynomials in d > 1 indeterminates over a field k .

The following modules will me significant:

Modules of syzygies: Those that occur as modules of
relations

0→ M −→ Rn −→ E → 0

Graded modules: Modules with a decomposition as
k -vector spaces

M =
⊕
n∈Z

Mn, xi ·Mn ⊂ Mn+1

They have interesting numerical functions attached (the
Hilbert function of M) HM(n) := dimk Mn



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Free modules

Definition
A free module F is a module F =

⊕
α Rα, Rα ' R. In other

words, there is a set {eα} of elements in F such that every
v ∈ F has a unique representation v = rα1eα1 + · · ·+ rneαn ,
ri ∈ R.

They are characterized by the following:

Proposition
Given any mapping ϕ : {eα} → A, where A is an R-module,
there exists a unique homomorphism f : F → A such that
f(eα) = ϕ(eα).

Proof. Set f(
∑

α rαeα) =
∑

α rαϕ(eα).
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Homomorphisms

Let f : A→ B be a homomorphism of R-modules. Recall

ker (f) = {x ∈ A : f(x) = 0}
image f = {f(x) : x ∈ A}

coker (f) = B/image f

A complex of R-modules is a sequence of R-modules and
homomorphisms

F : · · · −→ Fn
fn−→ Fn−1

fn−1−→ Fn−2 −→ · · ·

such that fn−1 ◦ fn = 0 for each n. This condition means that
image fn ⊂ ker (fn−1) for each n. If one has equality, the complex
is said to be exact. (A variation of terminology is acyclic, which
we will clarify later.)
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Short Exact Sequences

SES are the exact complexes of the form

0→ A f−→ B
g−→ C → 0

f is 1-1, g is onto and Image f = ker g. They are the basic
components of longer exact complexes: The exact complex

0→ A f−→ B
g−→ C h−→ D → 0

is a concatenation of the two SES

0→ A f−→ B −→ image g→ 0, 0→ ker (h) −→ C h−→ D → 0

glued by the equality image g = ker h.
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Syzygies

Let A be an R-module and {mα} a set of elements of
A–possibly a set of generators. Using the same index set, let F
be a free R-module with a basis {eα}. Define a mapping
f : F → A by setting f(eα) = mα ∈ A.

Definition
An element

∑
α rαeα is called a relation or a syzygy of the mα if∑

α rαmα = 0. The set of all these relations is a submodule of
F , the kernel of f.
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Free presentation

Let E be an R-module generated by the set {ui}, 1 ≤ i ≤ n. Let
F be a free module with basis {ei}, 1 ≤ i ≤ n. Let L be the
module of syzygies {v = (r1e1 + · · ·+ rnen)}. If v1, . . . , vm is a
set of generators of L, we have a complex

Rm A−→ Rn −→ E → 0,

where A is an m × n matrix

A =

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 ,
whose rows are the coordinates of the vj . E is coded by A. Can
the properties of E be derived directly from A?
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Projective modules

Definition
An R-module P is projective if P a direct summand of a free
R-module F , F ' P ⊕Q.

1 Let R = Z× Z and P = Z⊕ (O) and Q = (O)⊕ Z.
2 R ' P ⊕Q
3 Note that P is not R-free
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Properties

If Pα is a family of projective modules, then P =
⊕

α Pα is
projective: For each α there is Pα ⊕Qα ' Fα, a free
R-module. Setting Q =

⊕
α Qα we have

P ⊕Q '
⊕
α

Fα.

If P is projective, there is a free R-module G such that
P ⊕G ' G: Setting

G = Q ⊕ P ⊕Q ⊕ P ⊕ · · · ' F ⊕ F ⊕ · · ·

gives P ⊕G ' G
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Characterization of projective modules

Proposition
An R-module E is projective iff whenever there is a surjection
f : M −→ E → 0, there exists a homomorphism h : E −→ M
such that the composite f ◦ h is the identity I of E.

Proof.

Suppose E ⊕Q ' F =
⊕

Reα, Reα ' R. Note that each
eα = pα + qα, pα ∈ E , qα ∈ Q.
Since f is surjective, for each pα there is mα ∈ M such that
f(mα) = pα.
Because F is free, we can define a map g : F −→ M such
that g(eα) = mα.
If we let h be the restriction of g to its submodule E , we
have the forward implication.
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For the converse, pick a surjection f : F −→ E → 0, where F is
a free R-module. The existence of h : E −→ F such that
f ◦ h = IE easily shows that if we set P = h(E) and Q = ker (f),
then

P ' E , as h is one-one onto

F = P + Q

P ∩Q = (O)

Therefore F = P ⊕Q ' E ⊕Q
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3-Sphere

R = R[x , y , z]/(x2 + y2 + z2 − 1) = R[u, v ,w ], u2 + v2 + w2 = 1
f : R3 −→ R, f(a,b, c) = au + bv + cw

f(u, v ,w) = u2 + v2 + w2 = 1, so f is surjective

Since R is free, sequence splits, that is R3 ' R ⊕ ker (f)

T = ker (f) consists of the elements (a,b, c) ∈ R3 such that
au + bv + cw = 0, i.e. of the vectors (a,b, c) perpendicular
to (u, v ,w)

Discuss the picture!
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Dedekind domains

Let R be an integral domain of field of fractions K. The ideals of
R are part of an important class of R-submodules of K:

Definition
A submodule L of K is fractionary if there is 0 6= d ∈ R such
that dL ⊂ R.

1 This means that L = d−1Q, where Q is an ideal of R.
2 K is not fractionary, unless R = K.
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The sum and the product of fractionary ideals is fractionary.
Another operation is

Definition
The quotient of two fractionary ideals is

L1 : L2 = {x ∈ K : xL2 ⊂ L1}.

In particular
R : L = {x ∈ K : xL ⊂ R}.

L1 is said to be invertible if there is a fractionary ideal L2 such
that L1 · L2 = R.
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Invertible Ideals

Proposition
If L is an invertible ideal of R, then L is a finitely generated
R-module.

Proof.
The equality L · L′ = R means that there are xi ∈ L, yi ∈ L′,
1 ≤ i ≤ n, such that

1 = x1y1 + · · ·+ xnyn.

Thus for any x ∈ L,

x = (xy1)x1 + · · ·+ (xyn)xn

which shows that L1 = (x1, . . . , xn) since all xyi ∈ R.
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Proposition
Let R be an integral domain and L an invertible ideal. Then L is
a projective R-module.

Proof.
Let L = (x1, . . . , xn) and L′ = (y1, . . . , yn) with L · L′ = R and
x1y1 + · · ·+ xnyn = 1. We use this data to show that L is a
direct summand of a free R-module. Define the maps

ϕ : Rn → L, ϕ(ei) = xi ,

φ : L→ Rn, φ(x) = xy1e1 + · · ·+ xynen, x ∈ L

Observe: ϕ ◦ φ : L→ L is the identity of L.
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Circle ring

Let R = R[cos t , sin t ], the ring of trigonometric polynomials.

(1− cos t , sin t) · (1 + cos t , sin t)
= (1− cos2 t , (1− cos t) sin t , (1 + cos t) sin t , sin2 t)

= sin t(sin t ,1− cos t ,1 + cos t , sin t)
= (sin t)

Thus (1− cos t , sin t) is invertible, hence projective.
In fact every ideal of R is invertible.
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When are projective modules free

We already know that projective Z-modules are free.

Theorem
Let R be a local ring of maximal ideal m. Then any projective
R-module P is free.

Proof. This theorem holds true for all projective R-modules
[Kaplansky]. Here we only deal with the easy case, when P is
finitely generated.

Consider the finite dimensional R/m-vector space P/mP.
That is P = (x1, . . . , xn,mP) where the classes of xi
generate a basis of P/mP.
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By Nakayama Lemma, P = (x1, . . . , xn). Therefore there is
a surjection

0→ L −→ Rn −→ P → 0.

Since P is projective, this sequence splits,

Rn ' P ⊕ L,

so reduction modulo m gives

Rn/mRn ' P/mP ⊕ L/mL

Therefore L/mL = 0, and by Nakayama Lemma L = 0
since it is finitely generated. Thus P ' Rn.
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Graded modules

Theorem
Let (R,m) be a local ring and A a positively graded finitely
generated R-algebra,

A = A0(= R) + A1 + A2 + · · · .

If M is a finitely generated, graded, projective A-module then M
is a free A-module.

The proof is similar. Pass to the R/m-vector space

M/(m,A+)M, A+ = A1 + A2 + · · ·

Theorem (Quillen-Suslin)
If k is a field, projective modules over rings of polynomials
R = k [x1, . . . , xd ] are free.



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Projective Modules and Vector Bundles

Let R be a commutative ring and P a finitely generated
projective module.

Let p be a prime ideal. Pp is a free Rp-module. Let
x1, . . . , xn be elements of P such that their images in Pp

form a basis. [Why?]
Map Rn into P, ϕ : ei → xi . This gives rise to a exact
sequence

0→ K −→ Rn ϕ−→ P −→ C → 0.

Localizing at p gives Kp = Cp = 0, since ϕp is an
isomorphism. It follows that here is f /∈ p such that
Kf = Cf = 0.
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Vector Bundles

Theorem
Let R be a commutative ring and P a finitely presented
R-module. P is projective iff P is locally free on Spec(R), that is
for each prime ideal p there is f /∈ p such that Pf is a free
Rf -module.
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Injective modules

Definition
An R-module E is injective if for any diagram of modules and
homomorphims

A

f
��

g
// B

E

with g injective, there is a homomorphism h : B → E such
f = h ◦ g.

Note that this says that “homomorphisms into E can be
extended.”

It is hard to test. The next results cuts down on the task.
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Baer Test

Theorem
An R-module E is injective if for any diagram of modules and
homomorphims

I

f
��

g
// R

E

with g injective, there is a homomorphism h : R → E such
f = h ◦ g.

Proof. Suppose we have a mapping f : A→ E from the
submodule A ↪→ B we seek to extend it to a mapping
h : B → E . The assumption is that this is possibe whenever A
is as ideal of B = R.
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Proof cond’d

We are going to argue that if A 6= B, we can extend
f : A→ E to a larger submodule A ( A′ ⊆ B, f′ : A′ → E .

Then we use a simple application of Zorn’s Lemma to build
an extension g : B → E .

Let b ∈ B \ A and let I = {r ∈ R : rb ∈ A}. I is a left ideal of
R.

Let use see how f induces a homomorphism ϕ : I → E . For
r ∈ I, define

ϕ(r) = f(rb)



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Let ϕ′ be an extension of ϕ : I → E to ϕ′ : R → E . Note
that for any r ∈ I, ϕ(r) = ϕ′(r · 1) = rϕ′(1).

Define f′ : A + Rb → E by

f′(a + sb) = f(a) + sϕ′(1)

We claim that f′ is well defined: If x = a + sb = a′ + s′b we
must show the value f′(x) is independent of the
representation.

The equality gives (s − s′)b = a′ − a ∈ A so s − s′ ∈ I and
the assertion follows.

Zorn’s: Consider the set of pairs (C, f′) where f′ : C → E
where f′ extends f. This set is partially ordered. etc
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Z-modules

Theorem
Any injective Z-module E is divisible (and conversely).

Proof.
1 Recall that an abelian group E is divisible if for x ∈ E and

0 6= n there is y ∈ E with x = ny .
2 Let E be an injective Z-module. If x ∈ E , for any integer n

there is a group homomorphism f : (n)→ E with f(n) = x .
3 Denote by g : (n)→ Z the natural inclusion
4 Since E is injective, let h : Z→ E such that f = h ◦ g
5 x = f(n) = h(g(n)) = h(n · 1) = nh(1), that is x = nh(1)

Corollary
A Z-module is injective iff it is divisible.
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The ring of dual numbers

Let k be a field and R = k [x ]/(x2). R is a ring which is a
k -vector space of dimension two, with basis which we denote 1
and u, with u2 = 0.

Let us show that as a module over itself, R is injective.
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We are going to use Baer Test. Observe that R has only 3
ideals: (0), (x) and R. Given a morphism from one of
them, f : I → R, we must show it can be extended to a
morphism g : R → R.

If I = 0 or I = R, there is nothing to do, so we assume
I = (x). If f = 0, there is nothing to do.

If f 6= 0, the image of f : (x)→ R is also (x), so f(x) = rx ,
r ∈ k .

This shows that g can be taken as multiplcation by r
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The Hom Functor

Let R be a ring with 1. We denote by mod(R) the category of
left R-modules. In most cases we assume R commutative.

Let E be a left R-module. If A is an R-module we set
HomR(E ,A) for the abelian group of all R-homomorphisms
f : E → A. (If R is commutative, HomR(E ,A) is an
R-module.)
For example, if E = R, HomR(R,A) ' A,
HomR(E ,A⊕ B) ' HomR(E ,A)⊕ HomR(E ,B).
Many properties of this construction mimic what is done
with vector spaces. Achtung: HomZ(Z/(2),Z) = 0
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Properties of Hom

If ϕ : A→ B, there is a group homomorphism

ϕ∗ : HomR(E ,A)→ HomR(E ,B), ϕ∗(f) = ϕ ◦ f

We also write ϕ∗ = Hom(ϕ)

ϕ∗(f1 + f2) = ϕ∗(f1) + ϕ∗(f2)

If ϕ is the identity of A, I : A→ A, then ϕ∗ is identity of
HomR(E ,A)

If A
ϕ→ B

φ→ C then (φ ◦ ϕ)∗ = ϕ∗ ◦ φ∗
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Exactness and Hom

Proposition

Let R be a ring and E an R-module.

1 Then E is projective iff the functor HomR(E , ·) is exact, that is for
any SES of R-modules

0→ A −→ B −→ C → 0,

the complex

0→ HomR(E ,A) −→ HomR(E ,B) −→ HomR(E ,C)→ 0

is exact.

2 Similarly, E is injective if the complex

0→ HomR(C,E) −→ HomR(B,E) −→ HomR(A,E)→ 0

is exact.
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Exactness and Hom

Proposition
Let R be a ring and E an R-module.

1 Then E is projective iff for each surjection B −→ C → 0,
the induced mapping

HomR(E ,B) −→ HomR(E ,C)→ 0

is also a surjection.
2 Similarly, E is injective iff for each injection 0→ A −→ B,

the induced mapping

HomR(B,E) −→ HomR(A,E)→ 0

is a surjection.
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Exactness and Hom cont’d

Proposition

Let R be a ring and E an R-module.

1 Then E is projective iff the functor HomR(E , ·) is exact, that is for
any SES of R-modules

0→ A −→ B −→ C → 0,

the complex

0→ HomR(E ,A) −→ HomR(E ,B) −→ HomR(E ,C)→ 0

is exact.

2 Similarly, E is injective if the complex

0→ HomR(C,E) −→ HomR(B,E) −→ HomR(A,E)→ 0

is exact.
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Adjointness

Let us briefly discuss a tool that produces injective modules
galore. It has many other uses that will be left untouched.

Let A be an R-module [say right R-module]. A being an abelian
group, then for any abelian group E we may consider
HomZ(A,E). We make some observations about this abelian
group:

HomZ(A,E) has a natural structure of a left R-module: For
r ∈ R and f ∈ HomZ(A,E) define

(r · f)(a) = f(ar)

For any left R-module B,

HomR(B,HomZ(R,E)) = HomZ(B,E)
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Proposition
Let E be an injective Z-module. Then HomZ(R,E) is a left [and
right] injective R-module.

Proof. According to the observation above,

HomR(B,HomZ(R,E)) = HomZ(B,E)

Since E is an injective Z-module, the Z-functor HomZ(·,E) is
exact, so the R-functor HomR(·,HomZ(R,E)) is exact, hence
the assertion.
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Characterization of injective modules

Proposition
An R-module E is injective iff whenever there is an embedding
f : E −→ M, there exists a homomorphism h : M −→ E such
that the composite h ◦ f is the identity I of E.

This is represented by the commutative diagram

E

I
��

f
// M

g

~~~~
~~

~~
~

E

This is a special case of the definition of injective module. To
prove the converse one first shows
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Theorem
Every R-module A embeds into an injective module A ↪→ E.

We first prove a very special case:

Theorem
Every abelian group A can be embedded into a divisible abelian
group.

Proof. Let F =
⊕

Zeα be a free abelian group mapping onto A,
so A ' F/L. Next embed F into the Q-vector space
G =

⊕
Qeα.

G is a divisible group and so is its homomorphic image G/L.
But we have

A ' F/L ↪→ G/L.
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Theorem
Every R-module A embeds into an injective module A ↪→ E.

Proof.
First, embed A into a divisible abelian group, ϕ : A ↪→ D.
We claim that A embeds into HomZ(R,D), which by the
adjointness observation is an injective R-module.
For each x ∈ A define f(x) ∈ HomZ(R,D) by the rule
f(x)(r) = ϕ(rx).
It is clear that f is an R-module homomorphism and is 1-1
(as f(x)(1) = ϕ(x)).
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Injective Resolution

We can iterate the process of embedding a module into an
injective module:

Let A be an R-module, and 0→ A
f0−→ E0 an embedding

with E0 injective.

Set A1 = E0/f0(A) and let 0→ A1
f1−→ E1 an embedding

with E1 injective.
Iteration leads to the exact complex

0→ A −→ E0 −→ E1 −→ · · · ,

called an injective resolution of A.

If R = Z, after the first embedding 0→ A
f0−→ E0, we

already have an injective resolution since A1 is a divisible
abelian group.
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Sums and Products of Injectives

Let R be a ring and {Eα} is be a collection of injective modules:

E =
∏

Eα is injective:
This clear since a map f : A→ E is defined by a collection
fα : A→ Eα,

f (x) = (fα(x))

Therefore given an inclusion A ⊂ B and a map f from A to
E , to extend it to a map from B to E , it suffices to extend
each of the components fα mentioned above.

The situation is very different if we replace
∏

Eα by
⊕

Eα
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Characterizing Noetherianess with
injectives(Bass)

Theorem
The ring R is Noetherian iff the direct sum of a collection of
injective modules is injective.

Proof.
Suppose R is Noetherian and {Eα} is a collection of
injectives. To prove that E =

⊕
Eα is injective, we apply

Baer’s Test: If f : I → E is a map from the ideal I, we argue
that it can be extended to a map f ′ : R → E .

Since I is finitely generated, its image actually lies in the
summand E ′ = Eα1 ⊕ · · · ⊕ Eαn of E . E ′ being a direct
product of injectives, f can be extended to f ′ : R → E ′ ⊂ E .
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To prove the converse, suppose R is not Noetherian.
There is then a chain of distinct ideals

(x1) ⊂ (x1, x2) ⊂ . . . ⊂ (x1, . . . , xn) ⊂ . . .

Set In = (x1, . . . , xn) and I =
⋃

In. For each n let
gn : I/In → En be an embedding into the injective module
En.
Define a map g : I →

⊕
En as g(x) = (gn(x)). Note that

for each x ∈ I, gn(x) = 0 for almost all n, so this effectively
defines a map from I into the direct sum.
Note that g cannot be extended into a map g′ : R →

⊕
En

since g′(R) is contained in a finite direct sum of En, while
g(I) is not.
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Projective Resolution

Let R be a ring and M an R-module. One of the most fruitful
way to study M is to build the following structure:

O → K α−→ F = Rn ϕ−→ M → 0, K = ker (ϕ)

with F a free (projective) module. This complex is called a free
(projective) presentation of M.
We can build a free presentation of K itself

O → L −→ G = Rm β−→ K → 0, K = ker (β)

and composing f = α ◦ β get the acyclic complex where f can
be represented by a n ×m matrix with entries in R

Rm f−→ Rn −→ M → 0
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Example

Let R = k [x , y ], k a field, and M = (x , y), the ideal generated
by x , y . A free presentation consists of the mapping

R2 → (x , y), (a,b)→ ax + by , a,b ∈ R

The kernel K consists of {(a,b) : ax + by = 0} or
ax = −by ,
This implies that a = yc and b = xd and therefore c = −d
because x and y are prime elements
Thus the kernel consists of elements c(y ,−x), c ∈ R and
therefore

O → R f−→ R2 −→ (x , y)→ O, f(1) = (y ,−x)
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Example

A more interesting example is M = (x , y , z) ⊂ R = k [x , y , z].
The full free presentation (meaning what) of M is the complex

0→ R f2−→ R3 f1−→ R3 ϕ−→ M → 0,

with maps (represented by matrices)

f1 =

 0 −z y
z 0 −x
−y x 0

 , f2 =

 x
y
z


This is another instance of a complex known as the Koszul
complex
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Example

Another kind of resolution is illustrated by the example:
M = (xy , xz, yz) ⊂ R = k [x , y , z]

0→ R2 f−→ R3 ϕ−→ M → 0

where

f =

 z 0
−y y

0 −x


This is an instance of a complex known as the Hilbert-Burch
complex
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Complexes from matrices

Many complexes of free modules are associated to matrices A
with entries in a ring R. Let us discuss one that goes back to
Hilbert.

Let R be an integral domain [think a polynomial ring] and let A
be an (n − 1)× n matrix with entries in R [for convenience we
make n = 3]:
Let ∆1, ∆2 and ∆3 be the minors (with signs) of the columns.
For instance, ∆1 = a12a23 − a13a22.

We are going to find some of the syzygies of ∆1,∆2,∆3:
b1∆1 + b2∆2 + b3∆3 = 0
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det

 a11 a12 a13
a11 a12 a13
a21 a22 a23

 = a11∆1 + a12∆2 + a12∆3 = 0

Thus the column vectors of the transpose of

A =

[
a11 a12 a13
a21 a22 a23

]
are syzygies of (∆1,∆2,∆3).

Let B be the column matrix of the ∆’s.
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With the matrices A and B [note that BAt = 0], we form the
complex:

0→ R2 At
−→ R3 B−→ R −→ R/(∆1,∆2,∆3)→ 0

Theorem
If R is a UFD this complex is exact iff gcd(∆1,∆2,∆3) = 1.
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Hilbert-Burch

Theorem
Let R = k [x , y ]. Then for any ideal I = (a1, . . . ,an) with
gcd(I) = 1 there exists an (n − 1)× n matrix A with entries in R
such that its maximal minors ∆i = ai .

This means that if we map the free R-module Rn onto
(a1, . . . ,an)

Re1 ⊕ · · ·Ren
ϕ→ I, ϕ(ei) = ai ,

the kernel of ϕ is generated by n − 1 vectors,
vi = (d1,i , . . . ,dn−1,i) and the ai are the cofactors of the matrix
A = [dij ].
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Return to an important example

Example
Let V be a finite dimensional vector space over the field k , and
let

ϕ : V −→ V

be a linear transformation. Define a k [x]-module structure M by
declaring

x · v = ϕ(v), ∀v ∈ V.

More generally, for a polynomial f(x), define

f(x)v = f(ϕ)(v).

We denote this module by Vϕ.
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The Syzygies of Vϕ

Pick a k -basis u1, . . . ,un for V, so that ϕ = [cij ]. Let us
determine a free presentation for Vϕ

0 −→ K −→ Re1 ⊕ · · · ⊕ Ren −→ Vϕ → 0, ei → ui .

Let us determine the module K . If

v = (f1(x), . . . , fn(x)),

n∑
i=1

fi(ϕ)(ui) = 0.
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For instance, from

ϕ(ui) = xui =
∑

cijuj ,

we have that the rows of the matrix lie in K

[cij ]− xI =


c11 − x c12 · · · c1n

c21 c22 − x · · · c2n
...

...
...

...
cn1 cn2 · · · cnn − x
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Proposition
K is generated by the rows of ϕ− xI.

Proof. Let v = (f1(x), . . . , fn(x)) ∈ L. We argue that v is a linear
combination (with coefficients in R) of the rows of ϕ− xI.

If all the fi(x) constants,
∑

i fiui = 0 means that fi = 0,
since the ui are k -linearly independent.
We induct on sup{deg(fi)} and on the number of
components of this degree. Say deg(f1) = sup{deg(fi)}.
Divide f1 by c11 − x, f1 = q(c11 − x) + r ,

(f1, . . . , fn)− q(c11 − x, . . . , c1n) = (g1, . . . ,gn) = u.

Note that u has fewer terms, if any, of degree ≥ deg(f1).
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Proposition
If k is a field and ϕ : V ' kn → V is a linear transformation, the
R = k [x]-module Vϕ has for a matrix representation f, a free
k [x]-resolution

O → Rn f−→ Rn −→ Vϕ → O,

where f = ϕ− xIn.
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Projective/Free Resolutions

Definition
Let R be a ring and M an R-module. A free resolution of M is
an acyclic complex

· · · → Fn → Fn−1 → · · · → F1 → F0 → M → 0,

where the Fi are free R-modules. If we replace free by
projective, we call the complex a projective resolution of M.

Example: Let R = Z/(4) and M = R/(2) = Z/(2). The free
resolution of M is the infinite complex

· · ·R → · · · → R → R → M → 0

where all maps R → R are multiplication by 2.



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Examples

If R = k , a field, then any k -module M is a vector space, so
its free resolution is (n = dimk M)

0→ Rn −→ M → 0

R = Z, for abelian group M,

0→ Rm −→ Rn −→ M → 0,

m and n appropriate cardinals.
R = k [x , y ] and M = R/(x , y)

0→ R −→ R2 −→ R −→ M → 0
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Projective Resolutions

We would like to use the length of these complexes as a form of
dimension for the module. It is more convenient to consider
the case of acyclic complexes

0→ Pn → Pn−1 → · · · → P1 → P0 → M → 0,

where Pi is projective for i < n. To make sense, we must
compare it to another complex

0→ Qn → Qn−1 → · · · → Q1 → Q0 → M → 0,

where Qi is projective for i < n.

Question: How are Pn and Qn related? We will focus on the
case n = 1.
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Fibre Products

Definition
Let f : A→ C and g : B → C be homomorphims of R-modules.
The fiber product of f and g is the submodule of A× B

A×C B = {(x , y) : f(x) = g(y)}.
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Schanuel Lemma

Proposition
Let M be an R-module and

0→ K −→ P f−→ M → 0, 0→ L −→ Q
g−→ M → 0

be projective presentations of M. Then

K ⊕Q ' L⊕ P.

Proof. Consider the projection ϕ : P ×M Q → P into the first
component. For each x ∈ P there is y ∈ Q such that
f(x) = g(y) since both maps f and g are surjective. This implies
that ϕ is also surjective. Note that (x , y) ∈ ker (ϕ) ' L : x = 0
and thus f(x) = g(y) = 0.
Since P is projective, ϕ will split:

P ⊗M Q ' P ⊕ L
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Corollary
Let

0→ K → Pn−1 → · · · → P1 → P0 → M → 0,

0→ L→ Qn−1 → · · · → Q1 → Q0 → M → 0,

be acyclic complexes with Pi ,Qi projective modules for i < n.
Then

K ⊕Qn−1 ⊕ Pn−2 ⊕Qn−3 ⊕ · · · ' L⊕ Pn−1 ⊕Qn−2 ⊕ Pn− ⊕ · · · .

In particular, if K is projective, then L is projective as well.
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Class discussion

Consider the injective analogue of Schanuel’s Lemma:

Proposition
Let A be an R-module and

0→ A −→ E f−→ B → 0, 0→ A −→ E ′
g−→ B′ → 0

be injective presentations of A. Then

B ⊕ E ′ ' B′ ⊕ E .

Proof. (A volunteer please!)
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Projective dimension

Definition
The projective dimension of an R-module M is the length n of
the shortest acyclic complex

0→ Pn → Pn−1 → · · · → P1 → P0 → M → 0,

with 0 6= Pi projective for all i, or∞. It is written proj. dim.RM.
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Modules of Polynomials

Let R be a commutative ring and M an R-module. We define
the module of polynomials with coefficients in M:

M[x ] =
⊕
n≥0

Mn, Mn = M

made into an R[x ]-module by the rule

x ·Mn ⊂ Mn+1.

It is convenient to write Mn = M ⊗ xn. We make this
construction into a functor from the categoryM(R) to the
categoryM(R[x ]) as follows: If f : M → N

f′ : M[x ]→ N[x ], f′(m ⊗ xn) = f(m)⊗ xn
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Properties

Proposition
The functor T : M → M[x ] has the following properties:

1 If M is a projective R-module, then T(M) = M[x ] is a
projective R[x ]-module.

2 If 0→ A −→ B −→ C → 0 is a SES of R-modules, then

0→ T(A) −→ T(B) −→ T(C)→ 0

is a SES of R[x ]-modules.

Achtung: If E is an injective R-module, T(E) is not an injective
R[x ]-module. It is not divisible by x , for one.
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Exercises

Let R = k [x , y ]. For each integer n, find the free resolution
of the ideal I = (x , y)n.
Write a brief essay on: If E is an injective R-module, what
is an injective resolution of the R[x ]-module E [x ] like?
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Exercises

R = k [x , y ], the polynomial ring in 2 indeterminates over
the field k . Prove that different powers of (x , y) cannot be
isomorphic. Prove also that (x , y) cannot be isomorphic to
(x , y − 1).

You may need

Lemma: Let I, J be two ideals of the integral domain R of
field of fractions K. Then

HomR(I, J) = {q ∈ K : qI ⊂ J}.
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Graphs and Ideals

Let G = {V ,E} be a graph of vertex set V = {v1, . . . , vn} and
edge set E . We will associate to G a graded algebra.

Let R = k [x1, . . . , xn], one indeterminate to each vertex. To
the edge {vi , vj}, we associate the monomial xixj . The
edge ideal of G is the ideal I(G) generated by all xixj ’s.
I(G) is a homogeneous ideal. One expects the graded
algebra R/I(G) to reflect properties of the graph. For
example, describe the minimal primes of I(G) in graph
theoretic info.
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Multilinear functions

What is this? We have studied linear functions on vector
spaces/modules

T : V→W,

T(au + bv) = aT(u) + bT(v).
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A bilinear function is an extension of the product operation

(x,y)→ xy.

Note that it is additive in ‘each variable’, e.g.

x(y1 + y2) = xy1 + xy2

(x1 + x2)y = x1y + x2y
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We want to examine functions like these whose sources and
targets are vector spaces/modules. For example, the function B
is bilinear if

B : V× V→W,

is linear in each variable

B(u1 + u2, v) = B(u1, v) + B(u2, v), B(au, v) = aB(u, v)

B(u, v1 + v2) = B(u, v1) + B(u, v2), B(u,av) = aB(u, v)

You can define trilinear, and generally multilinear in the same
manner: B(v1, v2, . . . , vn), linear in each variable.
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Let us begin with a beautiful example: Let V = F2 be a plane.
For every pair of vectors u = (a,b), v = (c,d), define

B(u, v) = ad − bc.

You can check easily that B is a bilinear function from F2 into F.
For example, B(u, v1 + v2) = B(u, v1) + B(u, v2).

This particular function is called the 2-by-2 determinant:
det(u, v) It has many uses in Mathematics.
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Another example, on this same space, is

C(u, v) = ac + bd .

This one is called a dot or scalar product.

B(u, v) and C(u, v) read different info about the pair of vectors
u, v as we shall see.
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Another well-known bilinear transformation F3 × F3 → F3 is the
following: For u = (a,b, c), v = (d ,e, f ),

(u, v)→ u ∧ v = (bf − ce,−af + cd ,ae − bd)

This function is called the exterior, or vector product of F3.

When F = R, it has many useful properties geometric used in
Physics [in Mechanics, Electricity, Magnetism]. Partly this
arises because

u ∧ v ⊥ u & ⊥ v

and its magnitude says something about the parallelogram
defined by u and v .
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There are two main classes of multilinear functions. Say B is
n-linear, that is it has n input cells and is linear in each
separately: B(v1, . . . , vn).
B is symmetric: If you exchange the contents of two cells

B(v1, . . . , vi , . . . , vj , . . . , vn) = B(v1, . . . , vj , . . . , vi , . . . , vn)

causes no change. Like the dot product above.

B is skew-symmetric or alternating: If

B(v1, . . . , vi = v , . . . , vj = v , . . . , vn) = 0

whenever two cells have the same content. Like the
determinant above.
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Let Mn(F) be the vector space of all n × n matrices over the
field F. Consider the trace function on A ∈ Mn(F), A = [aij ]:

trace([aij ]) =
n∑

i=1

aii

Now define the function

T(A,B) = trace(AB)

T is clearly a bilinear function. It is a good exercise (do it) to
show that

trace(AB) = trace(BA)

so T is symmetric
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Here is a variation that will appear later

T(A,B) = trace(ABt ),

where Bt denotes the transpose of B.
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Question: On the same space Mn(F), define

total([aij ]) =
∑
i,j

aij

It is clear that
S(A,B) = total(AB)

is a bilinear function.

Is it symmetric?
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Proposition
If B is an alternating multilinear function, then

B(v1, . . . , vi , . . . , vj , . . . , vn) = −B(v1, . . . , vj , . . . , vi , . . . , vn),

that is, switching two variables changes the sign of the function.

Proof.
For convenience we assume B(u, v) has two variables. We
must show that B(v ,u) = −B(u, v). By definition, we have

B(u + v ,u + v) = 0, which we expand

= B(u,u) + B(u, v) + B(v ,u) + B(v , v)

Notice that the first and fourth summands are zero. Thus
B(u, v) + B(v ,u) = 0, as desired.
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Here are some additional properties.

Proposition
The set M of all n–linear functions on the vector space V with
values in W is a vector space. The subsets S and K of
symmetric and alternating functions are subspaces.

Proof.
If B1 and B2 are (say) symmetric bilinear functions,

(c1B1 + c2B2)(u, v) = c1B1(u, v) + c2B2(u, v)

= c1B1(v ,u) + c2B2(v ,u),

which shows that any linear combination of B1 and B2 is
symmetric. The argument is similar for alternating
functions.
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If B is bilinear and 2 6= 0, we could do as in an early exercise:

B(u, v) =
B(u, v) + B(v ,u)

2
+

B(u, v)− B(v ,u)

2
that shows that every bilinear function is a [unique] sum of a
symmetric and an alternating bilinear function.
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It is very easy to create multilinear functions, at least general
functions and symmetric ones. Here are a couple of
approaches:

Let f1, f2 and f3 be linear functions on V = F3. Now define

T : V3 → F, T(v1, v2, v3) := f1(v1)f2(v2)f3(v3).

T is clearly trilinear
Let T be a trilinear function on F3. We get a symmetric
function S by ‘mixing up’ [symmetrizing] T:

S(v1, v2, v3) := T(v1, v2, v3) + T(v2, v1, v3) + T(v1, v3, v2)

+ T(v3, v1, v2) + T(v2, v3, v1) + T(v3, v2, v1)

If T is already symmetric, S = 6T.
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Let us begin to see what makes the determinant important:

Proposition
The vector space K of all skew-symmetric bilinear functions on
F2 with values in F has a basis which is the 2-by-2 determinant
function.

Proof.
1 Let e1 = (1,0), e2 = (0,1) be the standard basis of F2.
2 Given any two vectors u, v ∈ F2, we can write

u = ae1 + be2, v = ce1 + de2.
3 If B ∈ K, expand B(u, v) = B(ae1 + be2, ce1 + de2):

acB(e1,e1) + adB(e1,e2) + bcB(e2,e1) + bdB(e2,e2)

4 Note that the first and fourth terms are zero and
B(e1,e2) = −B(e2,e1). It gives

5 B(u, v) = (ad − bc)B(e1,e2) = B(e1,e2) det(u, v)
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u=(c,d)

v=(a,b)

v+u=(a+c,b+d)

Area of parallelogram defined by u and v is det(v ,u) = ad − bc
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Exercise 1: Prove that the space of all symmetric bilinear
functions of F2 has dimension 3. Note that the space of linear
functions

T : F2 × F2 → F

has dimension 4. [This is the dual space of F2 × F2 = F4].
Since bilinear functions are linear, the space of symmetric
bilinear functions is a subspace and therefore has dimension at
most 4. You must show that it has a basis of 3 functions.
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Exercise 2:

If V is a vector space of dimension n, and S and K are the
spaces of symmetric and skew-symmetric bilinear functions,
prove that

dim S =

(
n + 1

2

)
dim K =

(
n
2

)
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Important Observation

A quick way to get new multilinear functions from old ones is
the following:

If B : V× V→W is a bilinear transformation, and T : W→ Z is
a linear transformation, the composite

T ◦ B : V× V→ Z

T ◦ B(u, v) = T(B(u, v))

is a bilinear transformation. We want to argue that there is a
bilinear map

B0 : V× V→W0

such that for any bilinear map B : V× V→W there is a a
unique linear map f : W0 →W such that

B = f ◦ B0
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Universal

V× V B //

B0 ""FF
FF

FF
FF

F W0 = V⊗ V

f
yyrrrrrrrrrr

W

The most famous bilinear (multi also) is called the tensor
product,

B : V× V→ V⊗ V,

(u, v)→ u ⊗ v

We will develop this in greater generality.
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Tensor Products of Modules

Definition
Let R be a ring. If A is a right R-module, B a left R-module, and
M an abelian group, then an R-bilinear mapping is a function
f : A× B → M such that for all a,a′ ∈ A, b,b′ ∈ B, and r ∈ R

f(a + a′,b) = f(a,b) + f(a′,b)

f(a,b + b′) = f(a,b) + f(a,b′)
f(ar ,b) = f(a, rb)

An example is the multiplication in the ring R.

If we follow up a bilinear mapping f : A× B → C with a linear
mapping g : C → D, we get a bilinear mapping
g ◦ f : A× B → D.
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Definition
The tensor product of A and B (as above) is an abelian group
A⊗R B and a R–bilinear function g : A× B → A⊗R B that
solves the following universal problem

A× B
g //

f ""FF
FF

FF
FF

F A⊗R B

f′{{ww
ww

ww
ww

w

M

Universal means that given the bilinear mapping f there exists a
unique additive mapping f′ such that f = f′ ◦ g.

The elements of A⊗R B are written
∑n

i=1 ai ⊗ bi



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Examples

C⊗R R[x ] = C[x ]

Let A = k [x ] and B = k [y ] and consider the bilinear
mapping

k [x ]× k [y ]→ k [x , y ]

(f(x),g(y))→ f(x)g(y)

It gives rise to a surjection (actually an isomorphism of
algebras)

k [x ]⊗k k [y ]→ k [x , y ]

More generally:

k [x1, . . . , xn]⊗k k [y1, . . . , ym] = k [x1, . . . , xn, y1, . . . , ym]
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Existence of Tensor Products

Theorem
The tensor product of a right R-module A and a left R-module
B exists.

Proof. Let F be the free abelian group with basis A× B, and let
L be the subgroup generated the all (ar ,b)− (a, rb) (if R is
commutative, we add the relations r(a,b)− (ra,b))

(a,b + b′)− (a,b)− (a,b′), (a + a′,b)− (a,b)− (a′,b)

Set A⊗R B = F/L, and denote by g : A× B → A⊗R B the
natural mapping g(a,b) = (a,b) + L. It is easy to verify that:

1 g is a bilinear mapping
2 Given a bilinear mapping h : A× B → M it defines a linear

mapping f : F → M. Since g is a bilinear mapping, f
vanishes on the generators of L, so defines the bilinear
mapping g : F/L→ M, and universality is met.
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Remark

Proposition
Let xi ∈ A, yi ∈ B be such that

∑
xi ⊗ yi = 0 in A⊗ B. Then

there exist f.g. submodules A0 of A and B0 of B, containing xi
and yi respectively, such that

∑
xi ⊗ yi = 0 in A0 ⊗ B0.

Proof. If
∑

xi ⊗ yi = 0, in A⊗ B, then
∑

(xi , yi) ∈ L, and
therefore

∑
(xi , yi) is a finite sum of generators of L like

(a,b + b′)− (a,b)− (a,b′), (a + a′,b)− (a,b)− (a′,b), r(a,b)− (ra,b)

Let A0 be the submodule of A generated by the xi and all the
first coordinates in these generators of L, and define B0
similarly. Then

∑
xi ⊗ yi = 0 as an element of A0 ⊗ B0.
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Uniqueness of tensor products

Theorem
Any two tensor products of A and B are isomorphic.

Suppose there is another group X and a map f : A× B → X is
a tensor product of A and B. This gives two diagrams

A× B
g //

f ""EE
EE

EE
EE

E A⊗R B

f′{{ww
ww

ww
ww

w

X

A× B
g //

f ""EE
EE

EE
EE

E A⊗R B

X
g′

;;wwwwwwwww

Now set φ = f′ ◦ g′ and consider the diagram
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A× B
g //

f %%JJJJJJJJJJ A⊗R B

βyyssssssssss

A⊗R B

where β works with either I or φ. By the universality, I = φ.
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The Functor ⊗

Theorem
Let f : A→ A′ and g : B → B′ be R-maps of right and left
R-modules, resp. There is a unique homomorphism
A⊗R B → A′ ⊗R B′ with a⊗ b → f(a)⊗ g(b).

Proof.
The function A× B → A⊗R B defined by (a,b)→ f(a)⊗ g(b) is
clearly bilinear. Use universality to finish.

This map is denoted f⊗ g: the tensor product of f and g
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Right exactness

Theorem
Let

0→ A f−→ B
g−→ C → 0

be an exact sequence of left R-modules. Then for any right
R-module M, the following sequence of abelian groups is exact
[right exact]

M ⊗R A I⊗f−→ M ⊗R B
I⊗g−→ M ⊗R C → 0.
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Examples

To make things simpler, we assume that R is a commutative
ring. In this case A⊗R B acquires also the structure of an
R-module by defining r(a⊗ b) = ra⊗ b (= a⊗ rb).

R ⊗ A ' A
A⊗ (B ⊕ C) ' (A⊗ B)⊕ (A⊗ C)

If R is a commutative ring, then A⊗ B ' B ⊗ A
Z/(a)⊗R Z/(b) ' Z/(gcd(a,b))
See next result.
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Useful tool

Proposition
If I is an ideal and M an R-module, then R/I ⊗M ' M/IM.

Proof. Consider the natural SES 0→ I → R → R/I → 0.
Tensoring with M we obtain the acyclic complex

I ⊗M
ϕ→ R ⊗M → R/I ⊗M → 0

We make use of the isomorphism R ⊗M ' M so that the image
of ϕ is the submodule IM of M. By the right exactness,
M/IM ' R/I ⊗M.

Illustrate how to use this to calculate the tensor product M ⊗ N
of any two f.g. modules over a PID.
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Flat Modules

Let R be a ring and N a left R-module. The functor
T : M → M ⊗R N on the category mod(R) is not exact in
general. If T is exact, then N is said to be a flat module.

Proposition
For an R-module N, TFAE:

1 N is flat.
2 If 0→ M → M → M”→ 0 is an exact sequence, the

tensored sequence 0→ M ⊗ N → M ⊗ N → M”⊗ N → 0
is an exact is exact.

3 If f : M ′ → M is injective, then f ⊗ 1 : M ′ ⊗ N → M ⊗ N is
injective.

4 If f : M ′ → M is injective and M ′,M are finitely generated,
then f ⊗ 1 : M ′ ⊗ N → M ⊗ N is injective.
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Proof

(1)⇔ (2)⇔ (3)⇐ (4): clear
(4)⇐ (3): Let f : M ′ → M be injective and let
u =

∑
xi ⊗ yi ∈ ker (f ⊗1) so that

∑
f (xi)⊗ yi = 0 in M ⊗N.

Let M ′0 be the submodule of M ′ generated by the xi and let
u0 =

∑
xi ⊗ yi ∈ M ′0 ⊗ N. By the construction of tensor

products, there exists a finitely generated submodule M0 of
M containing f (M ′0) and such that

∑
f (xi)⊗ yi = 0 as an

element of M0 ⊗ N.
If f0 : M ′0 → M0 is the restriction of f , this means f ⊗ 1 is
injective. Since (f0 ⊗ 1)(u0) = 0, this means u0 = 0 and
therefore u = 0.
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Tensor Power of a Module

Theorem
Given an R-module A, and R-algebra S, and a homomorphim
f : A→ S there is a unique R-algebra homomorphim
g : T (A)→ S such that the restriction of g to T1(A) coincides
with f.

Proof.
For each n ∈ N, there is n-linear mapping

(a1, . . . ,an)→ f(a1) · · · f(an) ∈ S, ai ∈ A

which we extend to a homomorphism

gn : Tn(A) = A⊗ · · · ⊗ A︸ ︷︷ ︸
n

→ S

The gn patch into the homomorphism

g : T (A) =
⊕

n

Tn(A)→ S
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Functorial Property

Theorem
Let f : A→ B be a homomorphism of modules over the
commutative ring R. Then there is a natural (meaning what?)
ring homomorphism T (f) : T (A)→ T (B) of their tensor
algebras.

Proof. It is enough to consider the commutative diagram
(explain)

A

��

f // B

��
T (A)

T (f)
// T (B)

T (f)(a1 ⊗ · · · ⊗ an) = f(a1)⊗ · · · ⊗ f(an)
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If V is the k -vector space kn, then

T (V) = k〈x1, . . . , xn〉

Its elements are linear combinations with coefficients in k of the
words

w = y1y2 · · · ym

where the yi are symbols from the alphabet {x1, . . . , xn}.
Multiplication of words is by concatenation.
Note that T (V) is a graded algebra.
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Super algebra

Let R = k〈x , y〉. This is a graded algebra, R = ⊕n≥0Rn.
Let I be the two-sided ideal generated by the element
xy − yx − 1. Because this element is not homogeneous,
W = R/I is not a graded algebra.
However we can organize R as R = Reven ⊕ Rodd, and
these components behave as homogeneous ones, for
example Reven · Rodd ⊂ Rodd.
For this ‘grading’ of R, xy − yx − 1 is even (so
homogeneouus). The algebra R/I is the (a) Weyl algebra.
Discuss why it is remarkable.
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Symmetric algebra of a module

Let R be a commutative ring, A an R-module, S a
commutative R-algebra and f : A→ S a homomorphism of
R-modules. According to the preceding theorem, there is a
homomorphism of R-algebras

g : T (A)→ S

that extends f (Recall that T (A)1 = A).
Since S is commutative,

g(a⊗ b) = f(a)f(b) = f(b)f(a) = g(b ⊗ a)

so all tensors a⊗ b − b ⊗ a lie in the kernel of g.
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Let I be the two-sided ideal of T (A) generated by all
a⊗ b − b⊗, a,b ∈ A. Note that I is a graded T (A)-ideal

I = I0(= 0) + I1(= 0) + I2 + I3 + · · ·+ In + · · ·

In ⊂ T (A)n.

T (A)

$$IIIIIIIII

g // S

T (A)/I
h

<<yyyyyyyyy

Note that h is universally defined.
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Definition
The algebra T (A)/I is called the symmetric algebra of A and
denoted SR(A). Since I = ⊕In,

SR(A) =
⊕

Sn(A) =
⊕

Tn(A)/In.

The component Sn(A) is called the nth symmetric power of A.

Example: Let V be the k -vector space kn. Then
Sk (V) = k [x1, . . . , xn].



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

Functorial Property

Theorem
Let f : A→ B be a homomorphism of modules over the
commutative ring R. Then there is a natural (meaning what?)
ring homomorphism S(f) : S(A)→ S(B) of their symmetric
algebras.

Proof. It is enough to consider the commutative diagram
(explain)

A

��

f // B

��
S(A)

S(f)
// S(B)

S(f)(a1 · · · an) = f(a1) · · · f(an)
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Exterior algebra of a module

Let A be an R-module and let T (A) be its tensor algebra. Let I
be the ideal of T (A) generated by all elements of the form
a⊗ a.

I is a homogeneous ideal of T (A): I0 = I1 = 0, I2 is the
submodule of A⊗ A generated by all a⊗ a, a ∈ A.
I3 = T1 · I2 + I2 · T1

In =
∑

r≤n−2 Tr · I2 · Tn−r−2
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Definition
Let A be an R-module. The exterior algebra of A is

∧
R

(A) =
⊕
n≥0

n∧
(A) =

⊕
T (A)/I.

∧0(A) = R and ∧1(A) = A
∧n(A) is called the nth exterior power of A.
Its elements are linear combinations of v1 ∧ v2 · · · ∧ vn.
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Properties

Proposition

If A generated by n elements, then
∧n(A) is a cyclic module

(possibly O), and
∧m(A) = 0 for m > n.

Proof. Suppose A = (x1, . . . , xn). Then any element of A is a
linear combination

v =
∑

i

rixi

v1 ∧ v2 ∧ · · · ∧ vm =∑
i

r1ixi ∧
∑

i

r2i ∧ · · · ∧
∑

i

rmixi =

∑
r1i1r2i2 · · · rmimxi1 ∧ xi2 ∧ · · · ∧ xim
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In the expression∑
r1i1r2i2 · · · rmimxi1 ∧ xi2 ∧ · · · ∧ xim

If m > n, at least two of the xi are equal, so the wedge
product is zero.
If m = n and the xij are distinct, the products are all equal
to ±x1 ∧ x2 ∧ · · · ∧ xn. Collecting the signs we have

v1 ∧ · · · ∧ vn = det(A)x1 ∧ · · · ∧ xn

where A is the matrix A = [rij ].
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Functorial Property

Theorem
Let f : A→ B be a homomorphism of modules over the
commutative ring R. Then there is a natural (meaning what?)
ring homomorphism

∧
(f) :

∧
(A)→

∧
(B) of their exterior

algebras.

Proof. It is enough to consider the commutative diagram
(explain)

A

��

f // B

��∧
(A) ∧

(f)
//
∧

(B)

∧
(f)(a1 ∧ · · · ∧ an) = f(a1) ∧ · · · ∧ f(an)
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One consequence: ∧
(f ◦ g) =

∧
f ◦
∧

g

For example, if f : Rn → Rn, then ∧nf = det f.

The formula above asserts

det(f ◦ g) = det f · det g
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Exercise

Let R be a (commutative) local ring of maximal ideal m. If
A and B are finitely generated R–modules, prove that

ν(A⊗R B) = ν(A) · ν(B),

where ν(·) is the numerical function that gives the minimal
number of generators of modules.
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Syzygy Theorems

Let R be a ring and mod(R) the category of R-modules. A
syzygy theorem is a statement about the projective dimensions
of the modules in a subset/subcategory of mod(R). Each of
these has shed light on the structure of R.

Here are some versions:

The supremum of all proj dim RM for all R-modules

The supremum of all proj dim RM for all cyclic R-modules

The supremum of all proj dim RM for all R-modules of finite
projective dimension

The supremum of all proj dim RM for all finitely generated
R-modules of finite projective dimension
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Let us borrow some results from future notes to illustrate
properties of these numbers.
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McCoy’s Theorem

The following result describes how a finite free resolution is
anchored on its left end.

Theorem (McCoy Theorem)

Let R be a commutative ring and ϕ : Rm → Rn be a
homomorphism of free R–modules. Denote by I the ideal
generated by the m ×m minors of a matrix representation of ϕ.
Then ϕ is injective if and only if 0 : I = 0. In particular, if (R,m)
is a local ring, 0 : m 6= 0, and all entries of ϕ lie in m, then ϕ is
not injective.

Proof. If v = (a1, . . . ,am) is a nonzero vector in the kernel of ϕ,
by Cramer rule it follows that I is annihilated by ai for each i .
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Proof of McCoy’s Theorem

For the converse, denote by It (ϕ) the ideal generated by the
t × t minors of ϕ. We may assume that for some t ≤ m,
0 : It−1(ϕ) = 0 and 0 : It (ϕ) 6= 0. If t = 1, for any annihilator r of
I1(ϕ), we have ϕ(rRm) = 0, so we may take t ≥ 2.

Consider the system of linear equations

a11x1 + a12x2 + · · ·+ a1mxm = 0
...

an1x1 + an2x2 + · · ·+ anmxm = 0.

Let 0 6= r ∈ 0 : It (ϕ); we may assume that r does not annihilate
one minor of size t − 1, say the upper-left minor of size t − 1.
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A nonzero solution can be now obtained: set
xt+1 = · · · = xm = 0, and let xi , for i ≤ t , be the minor defined
by the i th column of the upper-left (t − 1)× t submatrix. Then
r · (x1, . . . , xm) solves the first t − 1 equations by Cramer rule,
and the remaining equations because r · It (ϕ) = 0. �
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Example

Let R be a Noetherian local ring with maximal ideal m, and let
M be a finitely generated R-module of projective dimension 1.
We can then arrange a resolution of M,

0→ Rm ϕ−→ Rn −→ M → 0

where n is the minimal number of generators of M, which
implies that the entries of a matrix representation of ϕ lie in m.

Corollary
If 0 : m 6= 0 m = 0. In particular, there are no finitely generated
non-free modules of finite projective dimension.

A special case is that of local Artinian ring when m is nilpotent.
Actually, for these rings there is no restriction on the generation
type.
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Example

Example
Let R = Z/(4) and M = R/(2) = Z/(2). The free resolution of
M is the infinite complex

· · ·R → · · · → R → R → M → 0

where all maps R → R are multiplication by 2.
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Example

Let R be a ring and x a non-nilpotent, non-unit element of R.
Let M = Rx be the ring of fractions. M is not a finitely
generated R. It is generated by the fractions {1/xn,n ≥ 0}.
A free resolution of M is given as follows. Let F be a countably
generated free R-module on the basis {en,n ≥ 0}. Mapping
en → 1/xn, the set of elements {fn = xen+1 − en,n ≥ 0} is a
generating set for the module of syzygies [check] and thus M
has a free resolution

0→ F → F → M → 0.
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Hilbert Syzygy Theorem

Theorem
If R = k [x1, . . . , xn], then the module M = R/(x1, . . . , xn) has
projective dimension n. Moreover, every R-module has
projective dimension at most n.

This result opened the way to lots of mathematics. It
became a driver for Homological Algebra and Algebraic
Geometry, later to Computational Algebra.

We make a short study if the subject.
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Glodal dimension

Definition
The global dimension of the ring R is

global dim R = d(R) = max{ proj dimR M, for all R–modules}.

d(Z) = 1, d(k) = 0, for k a field.

If d(R) is finite, we say that R is regular. As a measure of
size, d(R) is too strict. For most rings, d(R) =∞ simply
because some module has infinite projective dimension.
For this reason, it is often necessary to consider in the
definition above only those modules with finite projective
resolutions.
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Hilbert Syzygy Theorem

Theorem

Let R[x ] denote the ring of polynomials in one indeterminate
over R. Then

d(R[x ]) = d(R) + 1. (1)

In particular, for a field k, the ring of polynomials k [x1, . . . , xn]
has global dimension n, while the ring Z[x1, . . . , xn] has global
dimension n + 1.
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Some Properties of Modules of Finite Projective
Dimension

Proposition
Given a short exact sequence of R-modules

0→ A→ B → C → 0,

there is an exact sequence of complexes

0 // F //

��

G //

��

H

��

// 0

0 // A // B // C // 0

such that F→ A, G→ B and H→ C are projective resolutions.
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Proof

The construction starts by choosing projective presentations of
A and C

0 // F0 //

f0
��

G0 = F0 ⊕ H0 // H0

h0
��

// 0

0 // A ϕ
// B

ψ
// C // 0

Since H0 is projective and ψ is surjective, there is h′0 : H0 → B
such that h′0ψ = h0.
Now define g0 : F0 ⊕ H0 → B by g0(x , y) = f0(x) + h′0(y). The
resulting diagram is commutative.
By the snake lemma, we have a SES to restart the construction

0→ ker (f0)→ ker (g0)→ ker (h0)→ 0.
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0

��

0

��

0

��
0 // ker (fn) //

��

ker (gn)

%%KKKKKKKKKK
//

��

ker (hn) //

��

0

0 // Fn
//

��

Gn
//

��

Hn
//

��

0

...

��

...

��

...

��
0 // F0 //

��

G0
//

��

H0 //

��

0

0 // A // B // C // 0
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SES

Corollary
Given a short exact sequence of R-modules

0→ A→ B → C → 0,

if two of the modules have finite projective dimensions, so will
the third. More precisely,

proj. dim. B ≤ max{proj. dim. A, proj. dim. C}
proj. dim. A ≤ max{proj. dim. B, proj. dim. C − 1}
proj. dim. C ≤ max{proj. dim. A + 1, proj. dim. B}
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Proof of HST

We begin with a useful observation. For a given R[x ]–module
M consider the sequence

0→ R[x ]⊗R M
ψ−→ R[x ]⊗R M

ϕ−→ M → 0,

where

ψ(xn ⊗ e) = xn ⊗ xe − xn+1 ⊗ e,
ϕ(xn ⊗ e) = xn · e.

It is a straightforward verification that this sequence of
R[x ]–modules and homomorphisms is exact.
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Let M be an R–module and let

0→ Pr −→ · · · −→ P1 −→ P0 −→ M → 0

be a projective resolution. Since R[x ] is R-free,
tensoring–Explain–the complex with R[x ] yields an
R[x ]–projective resolution of R[x ]⊗R M, and
proj dimR[x ] (R[x ]⊗R M) ≤ proj dimR M.
Suppose now that M is an R[x ]–module, view it as an
R–module and use it in the sequence: by elementary
considerations we obtain,

proj dimR[x ] M ≤ 1+proj dimR[x ] (R[x ]⊗RM) ≤ 1+proj dimR M,

which shows that

d(R[x ]) ≤ d(R) + 1.
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For the reverse inequality, we argue as follows. Any
R–module M can be made into an R[x ]–module by
defining f (x)e = f (0)e, for e ∈ M. With this structure, we
claim that

proj dimR[x ] M = proj dimR M + 1.

From the observation above, we already have that the left
hand side cannot exceed the right hand side of the
expression. To prove equality, we use induction on
n = proj dimR M.
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If n = 0, that is, if M is R–projective, then M cannot be
R[x ]–projective, since it is annihilated by x , which is a
regular element of R[x ].
If n > 0, map a free R–module F onto M,

0→ K −→ F −→ M → 0,

proj dimR K = n − 1 and by induction proj dimR[x ] K = n.
Since proj dimR[x ] F = 1, by the preceding case,
proj dimR[x ] M = n + 1, unless, possibly, n = 1.
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To deal with this last case, map a free R[x ]–module G over M
with kernel L. The assumption to be contradicted is that L is
R[x ]–projective. Since xM = 0, xG ⊂ L, and the exact
sequence

0→ L/xG→ G/xG −→ M → 0

says that L/xG is R-projective. But we also have the exact
sequence

0→ xG/xL −→ L/xL −→ L/xG→ 0,

and therefore xG/xL is R–projective. Since xG/xL ' G/L ' M,
we get the desired contradiction.
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Exercises

Prove that any ideal I of a Dedekind domain can be
generated by 1.5 elements, that is I = (a,b), with a being
any nonzero element.
Let R be a commutative ring. If f : Rn → Rm is an
isomorphism of R-modules, prove that m = n.
Let I = (x , y) be an invertible ideal of the integral domain
R. Prove that I2 can be generated by x2 and y2 (i.e. no
need to use xy ). Can you generalize (any invertible ideal
and any power)?
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Let R be a commutative ring and let f (x) and g(x) be
nonzero polynomials (elements of R[x ]) such that
f (x)g(x) = 0. Prove that there is a nonzero element r ∈ R
such that rf (x) = 0.
Show that Q[x ] and Q[x , y ] are isomorphic as abelian
groups but not as rings.
Let R be a commutative ring and assume the ideal I is
contained in the set theoretic union of 3 prime ideals

I ⊂ P ∪Q ∪M.

Show that I must be contained in one of them.
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Chain Complexes

Let R be a ring. A chain complex of R-modules is a sequence
of R-modules Ei and module homomorphisms fi : Ei → Ei+1
E = {Ei , fi}, with fi+1 ◦ fi = 0:

· · · −→ Ei+1
fi+1−→ Ei

fi−→ Ei−1
fi−1−→ · · ·

The submodule Zi(E) = ker (fi) is the module of i-cycles;
The submodule Bi(E) = fi+1(Ei+1) is the module of
i-boundaries;
The module Hi(E) = Zi(E)/Bi(E) is the i th homology
module of E . If Hi(E) = 0 ∀i , the chain complex is said to
be exact.
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Hilbert-Burch complex

Many complexes of free modules are associated to matrices A
with entries in a ring R. Let us discuss one that goes back to
Hilbert.

Let R be an integral domain [think a polynomial ring] and let A
be an (n − 1)× n matrix with entries in R [for convenience we
make n = 3]:

A =

[
a11 a12 a13
a21 a22 a23

]
Let ∆1, ∆2 and ∆3 be the minors (with signs) of the columns.
For instance, ∆1 = a12a23 − a13a22.
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det

 a11 a12 a13
a11 a12 a13
a21 a22 a23

 = a11∆1 + a12∆2 + a12∆3 = 0

Thus the row vectors of A are syzygies of (∆1,∆2,∆3).
Let B be the column matrix of the ∆’s.
With the matrices A and B [note that BA = 0], we form the
complex:

0→ R2 A−→ R3 B−→ R −→ R/(∆1,∆2,∆3)→ 0

Theorem
If R is a UFD this complex is exact iff gcd(∆1,∆2,∆3) = 1.
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Co-Chain Complexes/Shifts
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Chain Maps

Let E = {Ei , ∂i} and F = {Fi , ∂
′} be chain complexes. A chain

mapping
f : E −→ F

is collection f = {fi} of module homomorphisms such that the
diagrams

Ei+1

fi+1
��

∂i // Ei

fi
��

Fi+1
∂′i

// Fi

commute. That is

∂′i ◦ fi+1 = fi ◦ ∂i , ∀i
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Homotopy equivalent chain maps

Definition
Two chain maps f,g : E → F are homotopy equivalent if there is
a mapping h = (hi) : E → F

· · · // Ei+1

��

h

}}{{
{{

{{
{{

{

∂i // Ei

h

}}{{
{{

{{
{{

��

// · · ·
h

��~~
~~

~~
~~

· · · // Fi+1
∂′i

// Fi
// · · ·

such that
f− g = ∂′h + h∂.
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Proposition
If two chain maps f,g : E → F are homotopy equivalent, they
induce the same map in homology

H(f) = H(g) : H∗(E)→ H∗(E).

Proof.
ETS that the chain map f− g induces the zero mapping in
homology. We can replace f by f− g and g by the zero chain
mapping.

Let h be a homotopy equivalence between f and 0. Let x be a
cycle of E ; we argue that f(x) is a boundary of F :

f(x) = ∂′(h(x)) + h(∂(x)) = ∂′(h(x)).
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Proposition
Let F and G be two complexes

· · · −→ Fi
ϕi−→ Fi−1 −→ · · · −→ F1

ϕ1−→ F0

· · · −→ Gi
ψi−→ Gi−1 −→ · · · −→ G1

ψ1−→ G0

and let M = cokerϕ1 = H0(F) and N = cokerψ1 = H0(G). If the
modules Fi are projective and G is acyclic, then any map
β : M → N is the map induced be a chain map α : F → G, and
α is determined by β up to homotopy.
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Proof

F1
ϕ1 // F0

ϕ0 //

α0

��

M

β

��
G1

ψ1 // G0
ψ0 // N

The existence and homotopy uniqueness of α are proved
by induction.

The existence of α: Since G0 maps onto N, the composite
F0 → M → N may be lifted to a map α0 : F0 → G0.

Note that α0ϕ1 maps F1 to kerψ0 : G0 → N, so α0ϕ1 has a
lifting α1 : F1 → G1. Continue to get the full chain map α
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Homotopy uniqueness: If α and α′ are two lifts, it is enough
to show that the trivial lifting α− α′ of 0 is homotopically
trivial. We change notation, assume β = 0.

We claim that αi = hi−1ϕi + ψi+1hi for maps hi : Fi → Gi+1.
Since α0 induces 0: cokerϕ1 → cokerψ1, it takes F0 into
image ψ1.

Thus there is a lifting h0 : F0 → G1 such that ψ1h0 = α0.
Now

ψ1(h0ϕ1 − α1) = α0ϕ1 − ψ1α1 = 0

so h0ϕ1 − α1 maps into kerψ1 = im ψ2. Since F1 is
projective, we can lift this to a map h1 : F1 → G2. And so
on...
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Properties of chain maps

Here are some observations:

fi(Zi(E)) ⊂ Zi(F)

fi(Bi(E)) ⊂ Bi(F)

Consequently f defines a sequence

H(fi) : Hi(E) −→ Hi(F)

This construction is functorial (Explain).
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Exact Sequence of Chain Complexes

Consider the diagram where the columns are chain complexes
and the rows are short exact sequences and the squares are
commutative:

0 // Ai+1

∂i+1
��

fi+1 // Bi+1

∂′i+1
��

gi+1 // Ci+1

∂′′i+1
��

// 0

0 // Ai

∂i
��

fi // Bi

∂′i
��

gi // Ci

∂′′i
��

// 0

0 // Ai−1
fi−1 // Bi−1

gi−1 // Ci−1 // 0

We are going to make some observations. We already know
that there are collections of maps

H∗(A) −→ H∗(B) −→ H∗(C)
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Connecting Homomorphism

We are going to extract from this diagram, a sequence of
homomorphisms

hi : Hi(C)→ Hi−1(A)

called the connecting homomorphism.

Let z be a cycle in Ci , ∂′′(z) = 0. Since gi is surjective,
there is b ∈ Bi with gi(b) = z.

The commutativity of the squares implies that
0 = ∂′′(z) = ∂′′(gi(b)) = gi−1(∂′(b)).

Thus ∂′(b) = fi−1(a) for some a ∈ Ai−1.

To sum: For i ≥ 1 hi : Hi(C)→ Hi−1(A)
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Homology Exact Sequence

Theorem
Let

0→ E f−→ F g−→ G → 0

be a short exact sequence of chain complexes and chain
mappings. Then there is an exact sequence

Hi (E)
Hi (f)→ Hi (F)

Hi (g)→ Hi (G)
hi→ Hi−1(E)

Hi−1(f)→ Hi−1(F)
Hi−1(g)→ Hi−1(G)

where the hi are the connecting homomorphisms.
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Example: Class discussion

Proposition
Consider the commutative diagram with exact rows

0 // A

f
��

// B
g

��

// C

h
��

// 0

0 // A′ // B′ // C′ // 0

There is an exact sequence

0→ ker (f )→ ker (g)→ ker (h)→ coker (f )→ coker (g)→ coker (h)→ 0.
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Exercise

Exercise

Let A f−→ B
g−→ C be module homomorphisms. Show that

there is an exact sequence

0→ ker (f )→ ker (gf )→ ker (g)→ coker (f )→ coker (gf )→ coker (g)→ 0.
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Derived Functors

We are going to define the derived functors of ⊗ and Hom.

Let M be an R-module. Given a short exact sequence of
R-modules,

0→ A→ B → C → 0,

tensoring with M, or applying HomR(M, ·), gives rise to
complexes

A⊗M → B ⊗M → C ⊗M → 0,

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C),

which we seek to extend.
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Derived Functors

Proposition
Given a short exact sequence of R-modules

0→ A→ B → C → 0,

there is an exact sequence of complexes

0 // F //

��

G //

��

H

��

// 0

0 // A // B // C // 0

such that F→ A, G→ B and H→ C are projective resolutions.
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Derived Functors

The construction starts by choosing projective presentations of
A and C

0 // F0 //

f0
��

G0 = F0 ⊕ H0 // H0

h0
��

// 0

0 // A ϕ
// B

ψ
// C // 0

Since H0 is projective and ψ is surjective, there is h′0 : H0 → B
such that h′0ψ = h0.
Now define g0 : F0 ⊕ H0 → B by g0(x , y) = f0(x) + h′0(y). The
resulting diagram is commutative.
By the snake lemma, we have a SES to restart the construction

0→ ker (f0)→ ker (g0)→ ker (h0)→ 0.
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0

��

0

��

0

��
0 // ker (fn) //

��

ker (gn)

%%KKKKKKKKKK
//

��

ker (hn) //

��

0

0 // Fn
//

��

Gn
//

��

Hn
//

��

0

...

��

...

��

...

��
0 // F0 //

��

G0
//

��

H0 //

��

0

0 // A // B // C // 0
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Derived Functors

Corollary
Given a short exact sequence of R-modules

0→ A→ B → C → 0,

if two of the modules have finite projective dimensions, so will
the third. More precisely,

proj. dim. B ≤ max{proj. dim. A, proj. dim. C}
proj. dim. A ≤ max{proj. dim. B, proj. dim. C − 1}
proj. dim. C ≤ max{proj. dim. A + 1, proj. dim. B}
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Derived Functors
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Definition of Left-Derived Functors

Definition
Suppose F is a right–exact functor on the category of R–modules. If
A is an R–module, let

P : · · · −→ Pi
ϕi−→ Pi−1 −→ · · · −→ P1

ϕ1−→ P0

be a projective resolution of A, and define the i th left–derived functor
of F to be LiF (A) = HiFP, where FP is the complex

FP : · · · −→ FPi
Fϕi−→ FPi−1 −→ · · · −→ FP1

Fϕ1−→ FP0,

the result of applying F to P.
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Properties of Derived Functors

Proposition
The left–derived functors of F are independent of the choice of
resolution and have the following properties :
(a) L0F = F.
(b) If A is a projective module, then LiF (A) = 0 for all i > 0.
(c) For every short exact sequence

0 −→ A u−→ B v−→ C −→ 0,

there is a long exact sequence as shown:
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Long homology sequence of left-derived functors

· · · → Li+1FC → LiFA→ LiFB → LiFC → · · ·

· · · → L1FC → L0FA→ L0FB → L0FC → 0
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Proposition
(d) The connecting homomorphisms δi in the long exact

sequence are natural : That is if

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

α

y β

y γ

y
0 −−−−→ A′ −−−−→ B′ −−−−→ C′ −−−−→ 0

is a commutative diagram with exact rows, then the
diagrams

Li+1FC
δi+1−−−−→ LiFA

Li+1Fγ
y yLi Fα

Li+1FC′ −−−−→
δi

LiFA′
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(a) To show that L0FA = F (A), just use the right–exactness of
F : From the definition

L0FA = H0(· · · → FP1 → FP0),

we get L0FA = coker (FP1 → FP0) = FA.

(b) This is immediate from the independence of resolution,
since if A is projective then we may take as projective resolution
the complex

· · · 0→ 0→ A.

(c) This is immediate from the construction of projective
resolutions for SES and the long homology sequence.
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(d) Form the projective resolutions of each of the two short
exact sequences as seen. The maps α, β, and γ lift to
comparison maps betwen these resolutions. If we use these
maps of resolutions to define the maps LiF (α) and LiF (β), then
the verification of the commutativity of the diagram in part (d) is
easy. �
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Definition of Right-Derived Functors

If F is a left-exact functor, we define the right-derived functors
R iF of F : If A is a module, we let

Q : Q0 → Q−1 → · · ·

be an injective resolution of A, and set

R iF (A) = H−i(FQ),

where FQ is the complex

FQ : 0→ FQ0 → FQ−1 → · · · .
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Tor

Definition
Let M be an R-module. The left-derived functors of the functor
F (·) = M ⊗R (·) are denoted

LiF (A) = TorR
i (M,A).
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Ext

Definition
Let M be an R-module. The right-derived functors of the functor
F (·) = HomR(M, ·) are denoted

R iF (A) = Exti R(M,A).

There are also derived functors for the contravariant functor
HomR(·,N). They are denoted by Exti R(A,N).
The red Ext and the black Ext are naturally isomorphic:

Theorem
If M and N are R-modules, there is a canonical isomorphism

Exti R(M,N) ' Exti R(M,N).
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Finiteness

Theorem
If R is a Noetherian ring and M,N are finitely generated
R-modules, then for all i , ExtiR(M,N) and TorR

i (M,N) are finitely
generated R-modules.

Proof. Let P = {Pn} → M be a projective resolution of M using
f.g. projective modules [use Noetherianess]. The homology
modules of the complexes of f.g. modules

P⊗ N = {Pn ⊗ N}
Hom(P,N) = {Hom(Pn,N)}

are finitely generated.
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Vanishing

Theorem
Let R be a Noetherian ring.

1 A f.g. R-module M has projective dimension ≤ r iff
TorR

r+1(M,N) = 0 for all f.g. generated [or cyclic]
R-modules N.

2 Moreover, if (R,m) is a local ring, it sufices that
TorR

r+1(M,R/m) = 0.
3 An R-module M has projective dimension ≤ r iff

Extr+1
R (M,N) = 0 for all R-modules N. If M is f.g. it suffices

to take N f.g., and if R is a local ring it suffices to take
N = R/m.

4 An R-module N has injective dimension ≤ r iff
Extr+1

R (M,N) = 0 for all cyclic R-modules M.
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Let us prove that Torr+1(R/m,M) = 0 implies proj dim M ≤ r :

A minimal presentation of M is a SES
0→ K → Rm → M → 0, where K ⊂ mRm. Use Nakayama
lemma to get it: m = dim M/mM.

A minimal free resolution of M is a projective resolution F

· · · → Fn
fn→ Fn−1 → · · · → F0 → M → 0

where all entries of matrix fn lie in m.

Tensoring F with R/m gives a complex where all maps are
trivial, so Torn(R/m,M) = Fn ⊗ R/m.
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Finiteness

Theorem
Let R be a Noetherian local ring and M a finitely generated
R-module. If x ∈ m is M-regular, then

proj dim M/xM = 1 + proj. dim M.

Proof. Consider the exact sequence
0→ M x→ M → M/xM → 0. For a finitely generated R-module
N, we write the long homology exact sequence of Hom(·,N):

ExtrR(M/xM,N)→ ExtrR(M,N)
x→ ExtrR(M,N)→ Extr+1

R (M/xM,N)→ Extr+1
R (M,N)

If proj dim M = r , Extr+1
R (M,N) = 0 for all N but ExtrR(M,N) 6= 0

for some f.g. module N.
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The exact sequence above implies that there is an embedding

ExtrR(M,N)/xExtrR(M,N) ↪→ Extr+1
R (M/xM,N).

By Nakayama Lemma the submodule cannot be zero, and thus
Extr+1

R (M/xM,N) 6= 0.

The rest of the proof is clear.
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Finiteness

The situation is distinct for the injective dimension:

Theorem
Let R be a Noetherian local ring and M a finitely generated
R-module. If x ∈ m is M-regular, then

inj dim M/xM = inj. dim M.

Proof. Consider the exact sequence
0→ M x→ M → M/xM → 0. For a finitely generated R-module
N, we write the long homology exact sequence of Hom(N, ·):

ExtrR(N,M)
x→ ExtrR(N,M)→ ExtrR(N,M/xM)→ Extr+1

R (N,M)

If inj dim M = r , Extr+1
R (N,M) = 0 for all N but ExtrR(M,N) 6= 0

for some f.g. module N.
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The exact sequence above implies that there is an embedding
ExtrR(M,N)/xExtrR(M,N) ↪→ ExtrR(M/xM,N). By Nakayama
Lemma the submodule cannot be zero, and thus
Extr+1

R (M/xM,N) 6= 0.
The rest of the proof is clear.

Achtung: This suggests that all nonzero f.g. modules of finite
injective dimnsion have the same injective dimension...
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Ext and Depth

Definition
Let M be a finitely generated module and I a proper ideal such
that M/IM 6= 0 [automatic if R is a local ring]. The I-depth of M
is the length of the longest M-regular sequence contained in I

Proposition
Let M be a finitely generated module and I a proper ideal such
that M/IM 6= 0 [automatic if R is a local ring]. Then

I-depth of M = inf{i : ExtiR(R/I,M) 6= 0.}
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Ext and Depth: Proof

If I consists of zero divisors of M, I is contained in one
element in Ass (M), say p. As R/p ↪→ M, and there is a
surjection R/I → R/p. there is a nonzero homomorphism

R/I → R/p→ M

that is, HomR(R/I,M) 6= 0.
Conversely, the non-vanishing of this module of
homomorphisms implies that Im = 0 for some 0 6= m ∈ M.
Suppose x ∈ I is M-regular. We apply the functor
Hom(R/I, ·) to the SES

0→ M x→ M → M = M/xM → 0



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

First observe that multiplication by x defines the null
mapping on all Exti(R/I, ·).
The homology sequence of derived functors gives SES of
the type

0→ Hom(R/I,M)→ Hom(R/I,M)→ Ext1(R/I,M)→ 0

0→ Ext1(R/I,M)→ Ext1(R/I,M)→ Ext2(R/I,M)→ 0

The assertion follows by induction.
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Important Properties

Corollary
If x ∈ I is M-regular, then

I-depth of M = 1 + I-depth of M/xM.

Corollary
If M/IM 6= 0 all maximal regular M-sequences in I have the
same length.
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Depth of a Module

Definition
Let (R,m) be a Noetherian local ring. For any f.g. R-mdule M,
the depth of M is the length of the longest regular M-sequence
contained in m.

Proposition
Let M be a finitely generated module of the local ring (R,m).
Then

depth M = inf{r : ExtrR(R/m,M) 6= 0}.
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Change of Rings: Rees Theorems

Theorem
Let R be a commutative ring and x be a regular element of R.
Set R = R/(x). If x is regular on the module A and xB = 0,
then

1 ExtnR(B,A) ' Extn−1
R

(B,A/xA);

2 ExtnR(A,B) ' Extn
R

(A/xA,B).
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Koszul Complexes

We give here a discussion of what is likely the most useful
complex in commutative algebra. It permits the introduction of
various measures of size for ideals and modules.
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Exterior algebra of a module

Let A be an R-module and let T (A) be its tensor algebra. Let I
be the ideal of T (A) generated by all elements of the form
a⊗ a.

I is a homogeneous ideal of T (A): I0 = I1 = 0, I2 is the
submodule of A⊗ A generated by all a⊗ a, a ∈ A.
I3 = T1 · I2 + I2 · T1

In =
∑

r≤n−2 Tr · I2 · Tn−r−2
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Definition
Let A be an R-module. The exterior algebra of A is

∧
R

(A) =
⊕
n≥0

n∧
(A) =

⊕
T (A)/I.

∧0(A) = R and ∧1(A) = A
∧n(A) is called the nth exterior power of A.
Its elements are linear combinations of v1 ∧ v2 · · · ∧ vn.
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Properties

Proposition

If A generated by n elements, then
∧n(A) is a cyclic module

(possibly O), and
∧m(A) = 0 for m > n.

Proof. Suppose A = (x1, . . . , xn). Then any element of A is a
linear combination

v =
∑

i

rixi

v1 ∧ v2 ∧ · · · ∧ vm =∑
i

r1ixi ∧
∑

i

r2i ∧ · · · ∧
∑

i

rmixi =

∑
r1i1r2i2 · · · rmimxi1 ∧ xi2 ∧ · · · ∧ xim
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In the expression∑
r1i1r2i2 · · · rmimxi1 ∧ xi2 ∧ · · · ∧ xim

If m > n, at least two of the xi are equal, so the wedge
product is zero.
If m = n and the xij are distinct, the products are all equal
to ±x1 ∧ x2 ∧ · · · ∧ xn. Collecting the signs we have

v1 ∧ · · · ∧ vn = det(A)x1 ∧ · · · ∧ xn

where A is the matrix A = [rij ].
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Functorial Property

Theorem
Let f : A→ B be a homomorphism of modules over the
commutative ring R. Then there is a natural (meaning what?)
ring homomorphism

∧
(f) :

∧
(A)→

∧
(B) of their exterior

algebras.

Proof. It is enough to consider the commutative diagram
(explain)

A

��

f // B

��∧
(A) ∧

(f)
//
∧

(B)

∧
(f)(a1 ∧ · · · ∧ an) = f(a1) ∧ · · · ∧ f(an)
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One consequence: ∧
(f ◦ g) =

∧
f ◦
∧

g

For example, if f : Rn → Rn, then ∧nf = det f.

The formula above asserts

det(f ◦ g) = det f · det g
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Tensor Product of Complexes

Let E = {Ei , fi , i ≥ 0} and F = {Fi ,gi , i ≥ 0} be two complexes.
Their tensor product is the complex G = {Gi ,hi , i ≥ 0},

Gi+1 =
⊕

j+k=i+1

Ej ⊗ Fk
hi+1−→ Gi =

⊕
j+k=i

Ej ⊗ Fk

hi+1(xj ⊗ yk ) = fj(xj)⊗ yk + (−1)kxj ⊗ gk (yk )
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Suppose E1
f

−→ E0 and F1

g
−→ F0 are complexes. Then their

tensor product is

E1 ⊗ F1 → E1 ⊗ F0 ⊕ E0 ⊗ F1 → E0 ⊗ F0

with the map above.
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Koszul Complex

Let E be an R–module and denote by
∧

(E) the exterior
algebra of E . Given an element ϕ ∈ HomR(E ,R), one defines a
mapping ∂ on

∧
(E), given in degree r by

∂(e1 ∧ · · · ∧ er ) =
r∑

i=1

(−1)i−1ϕ(ei)(e1 ∧ · · · ∧ êi ∧ · · · ∧ er ).

∂ sends ∧r E to ∧r−1E , and it is easy to see that ∂2 = 0.
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We will refer to the complex

K = K(E , ϕ) = {
∧

(E), ∂}

as the Koszul complex associated to E and ϕ. For an
R–module M, we can attach coefficients to K(E , ϕ) by forming
the chain complex K(E , ϕ; M) = K(E , ϕ)⊗R M.
A consequence of the definition of ∂ is that, if ω and ω′ are
homogeneous elements of

∧
(E), of degrees p and q,

respectively, then

∂(ω ∧ ω′) = ∂(ω) ∧ ω′ + (−1)pω ∧ ∂(ω′).

This implies that the cycles Z (K) form a subalgebra of K, and
that the boundaries B(K) form a two–sided ideal of Z (K). Thus
the homology of the complex, H(K), inherits a structure of
R–algebra.
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Proposition

H(K(E , ϕ; M)) is annihilated by the ideal ϕ(E).

Proof. If M ' R, it suffices to note that if e ∈ E and ω ∈ Zr (K),
then ∂(e ∧ ω) = ϕ(e)ω. The same argument holds when
coefficients are attached. �
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Since H0(K(E , ϕ; M)) = M/ϕ(E)M, the main problem of the
elementary theory of these complexes is to find criteria for the
vanishing of the higher homology modules. The most satisfying
setting is the case when E is a free R–module,
E ' Rn = Re1 ⊕ · · · ⊕ Ren: Setting xi = ϕ(ei)

0→ R = Kn
fn→ Kn−1 → · · · → K1 → K0 = R → R/ϕ(Rn)→ 0

fn(e1 ∧ · · · ∧ en) =
n∑

i=1

(−1)i−1xi(e1 ∧ · · · ∧ êi ∧ · · · ∧ en)
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Such complexes are more interesting when ϕ(Rn) is a proper
ideal of R. It is convenient to consider the elements xi = ϕ(ei)
and view K(Rn, ϕ) as the (graded) tensor product of n Koszul
complexes associated to maps of the kind R x−→ R. That is, if
we denote such a complex by K(x), we have

K(Rn, ϕ) = K(x1)⊗ · · · ⊗K(xn).

We will denote such complex by K(x1, . . . , xn), or K(x), with
x = {x1, . . . , xn}.
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The complex for n = 3:

K(x , y , z) = K(x)⊗K(y)⊗K(z)

0→ R
f3−→ R3 f2−→ R3 f1−→ R → 0

f1 =

 x
y
z

 , f2 =

 0 −z y
z 0 −x
−y x 0

 , f3 =
[

x y z
]

Some of the homology modules:

H0(K) = R/(x , y , z), H3(K) = ann (x , y , z)



Intro to Homological Algebra The Hom Functor Projective Resolutions Multilinear Algebra Tensor Products of Modules Tensor Product of Algebras Hilbert Syzygy Theorem Homology of Chain Complexes Derived Functors Calculations Koszul Complexes

The complex for n = 3 with coeficients in a module M

K = K(x , y , z; M) = K(x)⊗K(y)⊗K(z)⊗M

0→ R ⊗M
f3−→ R3 ⊗M f2−→ R3 ⊗M f1−→ R ⊗M → 0

f1 =

 x
y
z

 , f2 =

 0 −z y
z 0 −x
−y x 0

 , f3 =
[

x y z
]

Some of the homology modules:

H0(K) = M/(x , y , z)M, H3(K) = ann M(x , y , z) = {m ∈ M : (x , y , z)m = 0}
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Vanishing of Koszul homology

The vanishing of the homology modules of K(x; M) has the
following module theoretic explanation.

Proposition (Grade–Sensitivity of Koszul Complexes)

Let R be a Noetherian ring, and let x = {x1, . . . , xn} be a
sequence of elements generating the ideal I. Let M be a finitely
generated R–module with M 6= IM, K(x; M) be the
corresponding Koszul complex and let q be the largest integer
for which Hq(K(x; M)) 6= 0. Then all maximal M–regular
sequences in I have length equal to n − q.

Proof. Note that since H0(K(x; M)) = M/IM, and the complex
K(x; M) has length n, 0 ≤ q ≤ n.
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We use descending induction on q. From the definition of
K(x; M), Hn(K(x; M)) consists of the elements of M which are
annihilated by I. If this module is nonzero we are done. If not,
that is q < n, the ideal I is not contained in any associated
prime of M and therefore there is a ∈ I which is a regular
element on M.

Consider the short exact sequence induced by multiplication by
a,

0→ M a−→ M −→ M/aM → 0.

Tensoring it with the complex of free modules K(x), we get the
exact sequence of Koszul complexes,

0→ K(x; M)
a−→ K(x; M) −→ K(x; M/aM)→ 0.
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In homology we get the long exact sequence,

Hq+1(K(x; M))→ Hq+1(K(x; M/aM))→ Hq(K(x; M))
a→ Hq(K(x; M)).

From the definition of q, we obtain Hi(K(x; M/aM)) = 0 for
i > q + 1. We have seen that Hq(K(x; M)) is annihilated by I,
and thus aHq(K(x; M)) = 0. Taken together we have

Hq+1(K(x; M/aM)) ' Hq(K(x; M)),

from which an easy induction suffices to complete the proof. �
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The last equality in the proof shows also:

Corollary

If a = a1, . . . ,an−q is a maximal regular sequence on M
contained in I, then

Hq(K(x; M)) = (aM : I)/aM.
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Depth

Definition
Let I be an ideal of a Noetherian ring R, and let M be a finitely
generated R–module. The I–depth of M is the length of a
maximal regular sequence on M contained in I. If R is a local
ring and I is the maximal ideal (in which case the condition
M/IM 6= 0 is automatically satisfied by Nakayama lemma), the
I–depth of M is called the depth of M. If M = R, the I–depth of
R is called the grade of I, and denoted grade I.

Heuristically, grade I is a measure of the number of independent
‘indeterminates’ that may be found in I.
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Corollary

Let I be an ideal contained in the Jacobson radical of the
Noetherian ring R, and let

0→ E −→ F −→ G→ 0

be an exact sequence of finitely generated R–modules. Then

If I–depth F < I–depth G, then I–depth E = I–depth F ;

If I–depth F > I–depth G, then I–depth E = I–depth G + 1;

If I–depth F = I–depth G, then I–depth E ≥ I–depth G.
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Proof. Let K(x) be the Koszul complex on a set x of generators
of I. Tensoring the exact sequence of modules with K(x) gives
the exact sequence of chain complexes,

0→ K(x; E) −→ K(x; F ) −→ K(x; G)→ 0.

The assertions will follow from a scan of the long homology
exact sequence and the interpretation of depth given in the
previous proposition. �

The next result is the basis for several inductive arguments with
ordinary Koszul complexes.
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Proposition

Let C be a chain complex and let F = {F1,F0} be a chain
complex of free modules concentrated in degrees 1 and 0.
Then for each integer q ≥ 0 there is an exact sequence

0→ H0(Hq(C)⊗ F) −→ Hq(C⊗ F) −→ H1(Hq−1(C)⊗ F)→ 0.

Proof. Construct the exact sequence of chain complexes

0→ F̂0
f−→ F g−→ F̂1 → 0,

(F̂0)0 = F0

(F̂0)1 = 0

(F̂1)0 = 0

(F̂1)1 = F1,

and f and g are the obvious injection and surjection mappings.
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Tensoring with C and writing the homology exact sequence, we
get

Hq+1(C⊗F̂1)
∂→ Hq(C⊗F̂0)→ Hq(C⊗F)→ Hq(C⊗F̂1)

∂→ Hq−1(C⊗F̂0),

where the connecting homomorphism ∂ is up to a sign the
differentiation of F tensored with Hq(C). Noting that
Hq+1(C⊗ F̂1) = Hq(C)⊗ F1, and Hq(C⊗ F̂0) = Hq(C)⊗ F0, we
obtain the desired exact sequence. �
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Rigidity

Theorem (Rigidity of the Koszul Complex)
Let x = {x1, . . . , xn} be a sequence of elements contained in
the Jacobson radical of R, and let M be a finitely generated
module. If Hq(K(x; M)) = 0, then Hi(K(x; M)) = 0 for i ≥ q.
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Rigidity–Proof

Proof. Denote y = {x1, . . . , xn−1}, and a = xn. In previous
Proposition, set C = K(y; M), F = K(a), so that
C⊗ F = K(x; M). For each i ≥ 0, we have the exact sequence

0→ H0(Hi (K(y; M))⊗K(a))→ Hi (K(x; M))→ H1(Hi−1(K(y; M))⊗K(a))→ 0.

If Hq(K(x; M)) = 0, then

H0(Hq(K(y; M))⊗K(a)) = Hq(K(y; M))/aHq(K(y; M)) = 0,

which by Nakayama lemma implies Hq(K(y; M)) = 0. Inducting
on n, we get

Hi(K(y; M)) = 0 for i ≥ q.

Taking this into the exact sequence gives that Hi(K(x; M)) = 0
for i ≥ q. �
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Koszul complex and Hilbert syzygy theorem

Let k be a ring and R = k [x1, . . . , xn] and let M be an R-module
that is k -projective. Let us describe a canonical R-projective
resolution of M.

Let S = R⊗k R ' k [x1, . . . , xn; y1, . . . , yn]; note that we can see
S as an R-algebra in two different ways: left or right
multiplication.

The polynomials z = z1 = x1 − y1, . . . , zn = xn − yn, of S form a
S-regular sequence and S/(z1, . . . , zn) = R. Therefore K(z; S)
is a S-projective resolution of R
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0→ ∧nSn → · · · → ∧1Sn → S → R→ 0

This complex can be seen as a complex of free R-modules (on
the right or on the left) that splits completely, on either side.
Using the right structure, tensoring it with M over R gives an
exact sequence

0→ ∧nSn⊗RM → · · · → ∧1Sn⊗RM → S⊗RM → R⊗RM = M → 0
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Observe that the i th component of the complex is

∧iSn ⊗R M = (S ⊗R M)(n
i ) = (R⊗k R⊗R M)(n

i ) = (R⊗k M)(n
i )

which is a projective R-module, since M is k -projective.

Theorem (HST, proof number 17)
If R = k [x1, . . . , xn], S = R⊗k R and M is an R-module that is
projective over k, then the Koszul complex

K(z; S)⊗R M

is a projective R-resolution of M.
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Application

Let k be a field, R = k [x1, . . . , xn] and set K = K(z; S).

Corollary
Let P

· · · → Pr → · · · → P1 → P0 → M → 0

be an exact complex of R-modules. Then

· · · → Pr ⊗K→ · · · → P1 ⊗K→ P0 ⊗K→ M ⊗K→ 0

is a projective resolution of the complex P.
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