
Filtrations and Rees Algebras Krull Dimension Rings of Polynomials Homework Finitely Generated Algebras Noether Normalization Associated Primes Homework Regular Sequences

Outline

1 Filtrations and Rees Algebras

2 Krull Dimension

3 Rings of Polynomials

4 Homework

5 Finitely Generated Algebras

6 Noether Normalization

7 Associated Primes

8 Homework

9 Regular Sequences



Filtrations and Rees Algebras Krull Dimension Rings of Polynomials Homework Finitely Generated Algebras Noether Normalization Associated Primes Homework Regular Sequences

Filtrations and Rees Algebras

Definition
A filtration of a ring R is a family F of subgroups Fi of R
indexed by some set S. The most useful kinds are indexed by
an ordered monoid S and are multiplicative

Fi · Fj ⊂ Fi+j , i , j ∈ S.

They tend to be either increasing or decreasing, that is Fi ⊂ Fj
if i < j or conversely.
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Definition
The Rees algebra of F is the graded ring

R(F) :=
⊕
i∈S

Fi ,

with natural addition and multiplication. If the filtration is
decreasing, there is another algebra attached to it, the
associated graded ring

grF (R) :=
⊕
i∈S

Fi/F>i ,

with F>i =
⋃

j>i Fj . If the filtration is increasing, the associated
graded ring is defined similarly by changing the sign of i .
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Some algebras of interest arise from special filtrations of a
commutative ring, multiplicative decreasing N–filtrations
F = {Rn, n ∈ N} of R where each Rn is an ideal of R, and

Rm · Rn ⊂ Rm+n.

Its Rees algebra can be coded as a subring of the polynomial
ring

R(F) =
∑
n∈N

Rntn ⊂ R[t ].

In addition to the associated graded ring as above, we also
have the extended Rees algebra

Re(F) = R(F)[t−1] =
∑
n∈N

Rntn ⊂ R[t , t−1].
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A major example is the I–adic filtration of an ideal I,
Rn = In, n ≥ 0. Its Rees algebra, which will be denoted by
R[It ], has its significance centered on the fact that it provides
an algebraic realization for the classical notion of blowing–up a
variety along a subvariety, and plays an important role in the
birational study of algebraic varieties, particularly in the study of
desingularization.
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Another filtration is the one associated to the symbolic powers
I(n) of the ideal I. If I is a prime ideal, its nth symbolic power is
the I–primary component of In. (There is a more general
definition if I is not prime.) Its Rees algebra

R(I) :=
∑
n≥0

I(n)tn,

the symbolic Rees algebra of I, also represents a blowup,
inherits more readily the divisorial properties of R, but has its
usefulness limited because it is not always Noetherian.
The presence of Noetherianess in R(I) is loosely linked to the
number of equations necessary to define set–theoretically the
subvariety V (I). In turn, the lack of Noetherianess of certain
cases has been used to construct counterexamples to Hilbert’s
14th Problem.
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Artin–Rees Lemma

This is a backbone of commutative algebra of nearly the same
pedigree as Hilbert results in the 1870’s papers.

Theorem (Artin-Rees Lemma)

Let R be a Noetherian ring and let I and J be two ideals. There
exists an integer c such that for all n ≥ c the following equality
holds

J ∩ In = In−c(J ∩ Ic). (1)
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Proof. Let a1, . . . ,an be a generating set of the ideal I and
consider the R-subalgebra of the ring of polynomials A = R[t ],

B = R[a1t , . . . ,ant ].

Since R is Noetherian and B is finitely generated, B is also
Noetherian.
Grading A in the usual fashion, B is a graded subalgebra, the
Rees algebra of I:

B = R + It + I2t2 + · · ·+ Intn + · · · .
Define Ln = J ∩ In and set

L = L0 + L1t + L2t2 + · · ·+ Lntn + · · · .

L is clearly a homogeneous ideal of B, so there is a finite set of
forms that generates it,

L = (b1td1 , . . . ,bstds).
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In
L = (b1td1 , . . . ,bstds),

let c = sup{d1, . . . ,ds}; for n ≥ c, we must have

Ln =
s∑

i=1

In−di bi ,

from which the assertion

J ∩ In = In−c(J ∩ Ic)

follows.
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Krull Intersection Theorem

Theorem

Let R be a Noetherian ring and let I be an ideal of R. If

L =
⋂
n≥1

In,

then L = I · L. In particular, if I is contained in the Jacobson
radical of R, then ⋂

n≥1

In = 0.

Proof. It suffices to put J = L in the Artin-Rees Lemma. The
second assertion follows from Nakayama lemma:



Filtrations and Rees Algebras Krull Dimension Rings of Polynomials Homework Finitely Generated Algebras Noether Normalization Associated Primes Homework Regular Sequences

Theorem (Nakayama Lemma)
Let M be a finitely generated R module and J its Jacobson
radical. If M = JM, then M = 0.

Remark
Actually, using the Nakayama lemma one can give another
description of L. Consider the multiplicative set
S = {1 + a, a ∈ I}. In the ring S−1R the ideal S−1I is contained
in the Jacobson radical. Thus the equality S−1L = S−1I · S−1L
implies (by Nakayama lemma) that S−1L = 0. This means that
there is x ∈ I such that (1 + x)L = 0.
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Remark
The theorem above applies equally to modules; more precisely,
if M is a finitely generated R–module, then

L =
⋂
n≥1

InM,

satisfies L = I · L.
This can be readily seen by making use of the idealization trick,
consisting in giving the direct sum S = R ⊕M a ring structure
by decreeing

(a, x) · (b, y) = (a · b,a · y + b · x).

Now one applies the theorem to the ring S and its ideal I ⊕M.
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Another important use of the Artin–Rees lemma is to the
identification of two topologies defined by the powers of an ideal
I. If M is a finitely generated module over a Noetherian ring R,
then the family of submodules {InM | ∀n ≥ 0} defines a system
of neighborhoods of 0 ∈ M. If N ⊂ M is a submodule, there are
two topologies defined on N, the induced one, {InM ∩ N}, and
its own I-adic topology. The Artin-Rees lemma identifies them.
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Krull Dimension

The notion of dimension of a ring R is totally influenced by
geometry, being given by lengths of chains of closed irreducible
sets of its prime spectrum Spec(R). The great advantage here
lies in the fact that such sets are each determined by a unique
prime ideal,

p0 ⊂ p1 ⊂ · · · ⊂ pn.

These are ideals that can be manipulated nicely, which will
provide for many numerical estimates of lengths of chains of
prime ideals.
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• Codimension of ideals
• Systems of parameters
• Determinantal ideals
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Codimension of Ideals

We introduce a measure of size for Noetherian rings and its
ideals. Its justification lies on Theorem 10. A more numerical
approach passes through the theory of Hilbert functions. There
exists a method based on ordinary field theory that is good
enough for most of our purposes that will be treated later.
Some far-fetched arcane of homological algebra also serves
this need to size up rings.

Definition

Let R be a Noetherian ring and let p be a prime ideal.
The codimension or height of p is the supremum of the
lengths of the chains of prime ideals contained in p.
The height of an ideal I is the infimum of the heights of its
minimal primes. The Krull dimension of R is the supremum
of the heights of its prime ideals.
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This definition can also be extended to modules. Given a
finitely generated module M over a Noetherian R, its dimension
dim M is the supremum of all dim R/p, where p runs through
the set of associated primes of M.
This dimension equals the dimension of the ring R/I, where I is
the annihilator of M. The height codim M of this ideal is called
the codimension of M.

There is also a notion of codimension of an algebra,
A = k [x1, . . . , xn]/I: it is the codimension of the ideal I provided
it does not contain any form of degree 1.
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Krull Principal Ideal Theorem: PIT

The following result is central to the abstract theory of
Noetherian rings. It is the bedrock on which many of its
concepts are built. For its reach, its proofs tend to be
surprisingly short. We will follow the treatment of
Eisenbudbook.
The reader is advised to read the lively discussion on
dimension in Eisenbudbook.

Theorem

Let R be a Noetherian ring, x a non-unit of R and let m be a
minimal prime ideal over (x). Then height m ≤ 1.
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Proof

We keep in mind the following diagram:

m

���������������

BBBBBBBB

p

�
�
�
�
�
�
�

(x)

111111111111111

q

~~~~~~~~

(0)
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Our assumption says that there are no prime ideals between
(x) and m.

m

���������������

BBBBBBBB

p

�
�
�
�
�
�
�

(x)

111111111111111

q

~~~~~~~~

(0)
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We will want to argue that if p and q are prime ideals, the
situation described in the diagram cannot occur. By
localizing R at m, we can assume R to be a local ring with
m as its maximal ideal.
Consider the chain (x) + p(n), where p is the prime ideal as
in this diagram, and p(n) is the nth symbolic power of p.
This is a descending chain of ideals, all of which contain
(x). Since R/(x) is a Noetherian ring with a single prime
ideal, it must be Artinian.
This means that for some n ∈ Z+ we have that

p(n) ⊂ (x) + p(n+1).
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Therefore any a ∈ p(n) can be written as a = rx + b where
r ∈ R and b ∈ p(n+1); since p(n+1) ⊂ p(n) we have that
a− b = rx ∈ p(n). However x 6∈ p since m is minimal over
(x) and r is in p(n), and thus we have

p(n) ⊂ xp(n) + p(n+1). (2)

Since R is a local ring, we can apply Nakayama lemma to
(2) and conclude that

p(n) = p(n+1). (3)
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Localizing at p, this equality becomes

pn
p = pn+1

p . (4)

We can apply Nakayama lemma to (4), and get that the
maximal ideal pRp of Rp is nilpotent, and therefore p cannot
properly contain another prime. �
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Krull Theorem

This theorem has the following fuller form.

Theorem

Let R be a Noetherian ring and let m be a minimal prime ideal
over (x1, . . . , xn). Then height m ≤ n.

A consequence of this result is that prime ideals of Noetherian
rings have finite height and thus Spec(R) satisfies the
descending chain condition. In particular if R is a local ring then
dim R <∞.
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Proof

The picture the proof:

m

zzzzzzzzzzzzzzzzzzzz

KKKKKKKKKKKK

p
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�
�
�
�
�
�

(x1, y2, . . . , yn)

DDDDDDDDDDDDDDDDDDD

q

tttttttttt

(y2, . . . , yn)
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We may assume that R is a local ring with m as its maximal
ideal. Let p be any prime ideal with no other prime between
itself and m.
It will be enough to show that p is a minimal prime over an ideal
generated by n − 1 elements.

We have that one of the xi , say x1, does not belong to p.
Consider the ideal (p, x1); the ring R/(p, x1) is Artinian, since
the only maximal ideal is the image of m. Therefore there exists
an integer s such that

ms ⊂ (p, x1).
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In particular all the s-th powers of the xi are contained in (p, x1);
thus we can find yi ∈ p and ai ∈ R such that

xs
i = yi + aix1,

for i = 2, . . . ,n. We claim that p is minimal over (y2, . . . , yn).
Note that m is minimal over (x1, y2, . . . , yn). Suppose there
exists a prime ideal, say q, between p and (y2, . . . , yn) and view
this diagram in the ring R/(y2, . . . , yn), we have a situation that
would contradict Krull’s PIT. �
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Systems of Parameters

From the proof of Krull’s theorem we restate what essentially is
a converse:

Theorem

Let R be a Noetherian ring and let p be a prime ideal of height
r . Then p is a minimal prime over an ideal (x1, . . . , xr )
generated by r elements.

The set {x1, . . . , xr} is called a system of parameters for p. In
the case of a local ring R, a system of parameters for its
maximal ideal is also called a system of parameters of R.
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Example

Let R = k [[x1, . . . , xn]] be the ring of formal power series over
the field k .

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn)

is a chain of prime ideals of R,

dim R ≥ n.

By Krull PIT, dim R ≤ n.
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Rings of Polynomials

Proposition

Let R be a Noetherian ring and let P be a prime ideal of the
polynomial ring R[x ], and set p = R ∩P. Then

height P =

{
height p, if P = pR[x ],
height p + 1, otherwise
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Proof

Proof. It is clear that if p is a prime ideal of R, then pR[x ] is the
kernel of the canonical homomorphism

ψ : R[x ] 7→ (R/p)[x ],

and is therefore a prime ideal of R[x ]. If follows that if

p0 ⊂ p1 ⊂ · · · ⊂ ps

is a chain of primes of R. Then

p0R[x ] ⊂ p1R[x ] ⊂ · · · ⊂ psR[x ]

is a chain of primes of R[x ] of the same length, which shows
that

height p ≤ height pR[x ].
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To prove the reverse inequality, we may localize at p without
affecting the height of the prime ideals p and pR[x ]. Let
(x1, . . . , xs) be a system of parameters for p. By definition there
exists an integer m such that pmRp ⊂ (x1, . . . , xs)Rp, from which
it is clear that pmR[x ]p ⊂ (x1, . . . , xs)R[x ]p, and thus by Krull’s
PIT, height pR[x ]p ≤ s, which takes care of the first assertion.
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Suppose now P is not an extended prime of R[x ], that is
p = P ∩ R, P 6= pR[x ]. This means that height P ≥ height p + 1.
We may again localize at p, so that for simplicity of notation,
assume that (R, p) is a local ring. We then have the embedding

P/pR[x ] ↪→ R[x ]/pR[x ] = (R/p)[x ]

into a principal ideal domain. Therefore P/pR[x ] is going to be
generated by a single element, or equivalently

P = (f , pR[x ]).
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Clearly P is minimal over (x1, . . . , xs, f ), hence by Krull’s PIT

heightR[x ] P ≤ 1 + s = 1 + heightR p,

as desired. �
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Dimension of Polynomial Rings

Theorem

Let R be a Noetherian ring and let x1, . . . , xn be a set of
independent indeterminates over R. Then

dim R[x1, . . . , xn] = dim R + n.

In particular if R is a field k, then

dim k [x1, . . . , xn] = n.
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Codimension of Determinantal Ideals

Let R be a Noetherian ring and let ϕ be a m × n matrix with
entries in R:

ϕ =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 .
Estimating the sizes of the ideal It(ϕ) generated by all t × t
minors of ϕ is important for many of our constructions.

Krull PIT is the case of a matrix [a1,a2, . . . ,an]
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Eagon-Northcott Formula

The classical bound for the sizes EN(m,n; t) of these ideals is
the theorem of Eagon and Northcott:

Theorem

The ideals It(ϕ) satisfy

height It(ϕ) ≤ EN(m,n; t) = (m − t + 1)(n − t + 1), (5)

where equality is reached when ϕ is a generic matrix in m · n
indeterminates.
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Proof

We only prove the first assertion, leaving the rest to the reader.
The case t = 1 is Krull’s PIT, so that we may assume t ≥ 2.
Denote I = It(ϕ) and let p be a minimal prime of I. Localizing at
p we may assume that R is a local ring and denote still by p its
maximal ideal; it is enough to show that dim R ≤ EN(m,n; t).
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If one of the entries of ϕ is a unit, say a11 is an invertible
element of R, through a series of elementary row and column
operations the matrix ϕ can be transformed into a matrix

1 0 · · · 0
0
... ϕ′

0

 .

Since t > 1, it is clear that It(ϕ) = It−1(ϕ
′). We induct on t ,

which means that all the entries of ϕ may be assumed to lie in
the maximal ideal of R.
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Consider now the matrix

ψ =

 a11 + x · · · a1n
...

. . .
...

am1 · · · amn

 ,
where x is an indeterminate over R and let L = It(ψ).
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Since t > 1, note that L ⊂ pR[x ], so in particular
height L ≤ dim R. On the other hand, (L, x) = (I, x), from
which we claim that L is pR[x ]–primary.

Otherwise there would exist a minimal prime Q of L
properly contained in pR[x ]. But then, in the ring R[x ]/Q,
the image of (p, x) would be a maximal ideal of
codimension at least two, but minimal over the principal
ideal generated by the image of x .
This would contradict Krull PIT. We may now localize at
pR[x ] and decrement t .
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Homework

1 Give an example of a Noetherian ring of infinite Krull
dimension.

2 Give an example of a commutative ring R of dimension 1
such that dim R[x ] = 3.
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Finitely Generated Algebras

Let k be a field. A finitely generated k -algebra is a
homomorphic image of a ring of polynomials over k ,

R = k [x1, . . . , xn]/I

Apply our theory of Krull dimension to R and relate it to
another notion of dimension.

This is connected to another topic.
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Do polynomials have roots?

Let f(x) = f(x1, . . . , xn) be a nonconstant polynomial of
R = C[x] = C[x1, . . . , xn], n > 1.

Fact: There is c ∈ Cn such that f(c) = 0.
The answer is easy when

f(x1, . . . , xn) = xd
n + g(x1, . . . , xn),

where g(x) is a polynomial of degree < d in the variable xn.
So what is the solution for the general case? One seeks a
change of variables (possibly linear)

x → y, [x] = [y]A
f(x) = f(yA) = g(y)

so that g(y) has the appropriate form.
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More generally, let f1(x), . . . , fm(x) be a set of elements of
R = C[x].

Question: What are the obstructions to finding c ∈ Cn such
that

f1(c) = f2(c) = · · · = fm(c) = 0 ?

Obviously one is: there exist g1(x), . . . ,gm(x) such that

g1(x)f1(x) + · · ·+ gm(x)fm(x) = 1

What else?
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Hilbert Nullstellensatz

Let k be a field and denote by k its algebraic closure. The
Hilbert Nullstellensatz is about qualitative results about systems
of polynomial equations.

Let fi(x1, . . . , xn) ∈ R = k [x1, . . . , xn], 1 ≤ i ≤ m, be a set of
polynomials.

Definition
The algebraic variety defined by the fi is the set

V (f1, . . . , fm) = {c = (c1, . . . , cn) ∈ k
n

: fi(c) = 0, 1 ≤ i ≤ m.}

A hypersurface is a variety defined by a single equation V (f).

Remark
If I is the ideal generated by the fi , then V (I) = V (f1, . . . , fm).



Filtrations and Rees Algebras Krull Dimension Rings of Polynomials Homework Finitely Generated Algebras Noether Normalization Associated Primes Homework Regular Sequences

Hilbert Nullstellensatz

Theorem
If the ideal I ⊂ R = k [x1, . . . , xn] is proper, i.e. I 6= R, then
V (I) 6= ∅.

Proof. We make two reductions.
1 Let m be a maximal ideal of R containing I. Since

V (m) ⊂ V (I), ETA that I is maximal.

2 The ring of polynomials S = k [x1, . . . , xn] is integral over
R = k [x1, . . . , xn]. By Lying-over, there is a maximal ideal
M of S such that M ∩ R = m. Since V (M) ⊂ V (m), ETA
that I is a maximal ideal and k is algebraically closed.
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Nullstellensatz

After these reductions the assertion is:

Theorem
If k is an algebraically closed field and M is a maximal ideal of
R = k [x1, . . . , xn], then there is

c = (c1, . . . , cn) ∈ kn

such that
f(c) = 0 ∀f(x) ∈ M.
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Special case: C

Consider the field F = C[x1, . . . , xn]/M.

Proposition
It is ETS that F is isomorphic to C.

Proof. Indeed, if F ' C, for each indeterminate xi its
equivalence class in k [x1, . . . , xn]/M contains some element ci
of C, that is xi − ci ∈ M. this means that

(x1 − c1, . . . , xn − cn) ⊂ M.

But (x1 − c1, . . . , xn − cn) is also a maximal ideal, therefore it is
equal to M. Clearly every polynomial of M vanishes at
c = (c1, . . . , cn). �
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Proof of C = C[x1, . . . , xn]/M

1 ETS that the extension C→ F = C[x1, . . . , xn]/M is
algebraic.

2 Observe that [F : C] is countable, F being a homomorphic
image of the countably generated vector space
C[x1, . . . , xn].

3 If F is not algebraic over C, suppose t ∈ F is
transcendental over C.

4 Consider the uncountable set {1/(t − c), c ∈ C}.
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Since they cannot be linearly independent, there are distinct ci ,
1 ≤ i ≤ m and nonzero ri ∈ C such that

r1
1

t − c1
+ · · ·+ rm

1
t − cm

= 0.

Clearing denominators gives the equality of two polynomials of
C[t ]:

r1(t − c2)(t − c3) · · · (t − cm) = (t − c1)g(t),

which is a contradiction as the ci are distinct.
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NNL: Noether Normalization Lemma

Definition
A finitely generated algebra R over a field k is a homomorphic
image of a ring of polynomials over k ,

k [x1, . . . , xn]/I ' R = k [a1, . . . ,an].

Theorem (NNL)
If R is finitely generated over k, there is a subalgebra

S = k [y1, . . . , yr ] ↪→ R

such that the yi are algebraically independent and R is integral
over S. S is called a Noether Normalization of R.
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From NNL to Nullstellensatz

1 Let M be a maximal ideal of k [x1, . . . , xn], k = k . We will
show that M = (x1 − c1, . . . , xn − cn), ci ∈ k .

2 Using the NNL, let
S = k [y1, . . . , yr ] ↪→ R = k [x1, . . . , xn]/M be a Noether
normalization. Since R is a field, S is also a field, thus
r = 0.

3 This gives that S = k → R is a finite extension, so k = R.



Filtrations and Rees Algebras Krull Dimension Rings of Polynomials Homework Finitely Generated Algebras Noether Normalization Associated Primes Homework Regular Sequences

Another version of the Nullstellensatz

Theorem
Let I be an ideal of R = k [x1, . . . , xn] and f ∈ R a polynomial.
Then

V (I) ⊂ V (f)⇔ f ∈
√

I

that is, there is a power fr ∈ I.

Proof. In one direction it is clear.

Suppose V (I) ⊂ V (f). Consider the ideal L in the polynomial
ring with one extra variable

L = (I,1− tf) ⊂ k [x1, . . . , xn, t ].
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Since each zero of I is a zero of f, L = (I,1− tf) has no zeros.
Thus by the Nullstellensatz L = (1). This means that there is an
equation ∑

gi fi + (1− tf)g = 1, fi ∈ I,gi ,g ∈ R[t ].

Replacing t → 1/f and clearing denominators gives an equation

fr =
∑

hi fi , hi ∈ R
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Example

Let
R = k [x , y ]/(y2 − 2xy + x3)

Set y1 = x and
S = k [y1] ⊂ R

Note that y is integral over S, so R is integral over S.
Finally,

S ' k [x ]/(k [x ] ∩ (y2 − 2xy + x3)) = k [x ]
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Example

1 If R = k [x , y ]/(xy + x + y), need a preparation: change
variables x → x1, y → x1 + y1, so

xy + x + y → x1(x1 + y1) + x1 + x1 + y1 = x2
1 + x1y1 + 2x1 + y1

2 Get the NN by choosing

S = k [y1] ↪→ R = k [x , y ]/(xy + x + y).
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Proof of NN

Let R be a commutative ring and B a finitely generated
R-algebra, B = R[x1, . . . , xd ]. The expression Noether
normalization usually refers to the search-as effectively as
possible-of more amenable finitely generated R-subalgebras
A ⊂ B over which B is finite. This allows for looking at B as a
finitely generated A-module and therefore applying to it
methods from homological algebra or even from linear algebra.
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When R is a field, two such results are: (i) the classical Noether
normalization lemma, that asserts when it is possible to choose
A to be a ring of polynomials, or (ii) how to choose A to be a
hypersurface ring over which B is birational. We review these
results since their constructive steps are very useful in our
discussion of the integral closure of affine rings.
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Affine Rings

Let B = k [x1, . . . , xn] be a finitely generated algebra over a field
k and assume that the xi are algebraically dependent. Our goal
is to find a new set of generators y1, . . . , yn for B such that

k [y2, . . . , yn] ↪→ B = k [y1, . . . , yn]

is an integral extension.

Let k [X1, . . . ,Xn] be the ring of polynomials over k in n
variables; to say that the xi are algebraically dependent means
that the map

π : k [X1, . . . ,Xn]→ B, Xi 7→ xi

has non-trivial kernel, call it I.
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Assume that f is a nonzero polynomial in I,

f (X1, . . . ,Xn) =
∑
α

aαXα1
1 Xα2

2 · · ·X
αn
n ,

where 0 6= aα ∈ k and all the multi-indices α = (α1, . . . , αn) are
distinct. Our goal will be fulfilled if we can change the Xi into a
new set of variables, the Yi , such that f can be written as a
monic (up to a scalar multiple) polynomial in Y1 and with
coefficients in the remaining variables, i.e.

f = aY m
1 + bm−1Y m−1

1 + · · ·+ b1Y1 + b0, (6)

where 0 6= a ∈ k and bi ∈ k [Y2, . . . ,Yn].
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We are going to consider two changes of variables that work for
our purposes: the first one, a clever idea of Nagata, does not
assume anything about k ; the second one assumes k to be
infinite and has certain efficiencies attached to it.

The first change of variables replaces the Xi by Yi given by

Y1 = X1, Yi = Xi − X1
pi−1

for i ≥ 2,

where p is some integer yet to be chosen.
If we rewrite f using the Yi instead of the Xi , it becomes

f =
∑
α

aαYα1
1 (Y2 + Y p

1 )α2 · · · (Yn + Y pn−1

1 )αn . (7)
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Expanding each term of this sum, there will be only one term
pure in Y1, namely

aαYα1+α2p+···+αnpn−1

1 .

Furthermore, from each term in (7) we are going to get one and
only one such power of Y1. Such monomials have higher
degree in Y1 than any other monomial in which Y1 occurs. If we
choose p > sup{αi |aα 6= 0}, then the exponents
α1 + α2p + · · ·+ αnpn−1 are distinct since they have different
p-adic expansions. This provides for the required equation.
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If k is an infinite field, we consider another change of variables
that preserves degrees. It will have the form

Y1 = X1, Yi = Xi − ciX1 for i ≥ 2,

where the ci are to be properly chosen. Using this change of
variables in the polynomial f , we obtain

f =
∑
α

aαYα1
1 (Y2 + c2Y1)

α2 · · · (Yn + cnY1)
αn . (8)
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We want to make choices of the ci in such a way that when we
expand (8) we achieve the same goal as before, i.e. a form like
that in (6). For that, it is enough to work on the homogeneous
component fd of f of highest degree, in other words, we can
deal with fd alone. But

fd(Y1, . . . ,Yn) = h0(1, c2, . . . , cn)Y d
1 + h1Y d−1

1 + · · ·+ hd ,

where hi are homogeneous polynomials in k [Y2, . . . ,Yn], with
deg hi = i , and we can view h0(1, c2, . . . , cn) as a nontrivial
polynomial function in the ci . Since k is infinite, we can choose
the ci , so that 0 6= h0(1, c2, . . . , cn) ∈ k .
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Theorem (Noether Normalization)

Let k be a field and B = k [x1, . . . ,xn] a finitely generated
k-algebra; then there exist algebraically independent elements
z1, . . . , zd of B such that B is integral over the polynomial ring
A = k [z1, . . . , zd ].

Proof. We may assume that the xi are algebraically dependent.
From the preceding, we can find y1, . . . , yn in B such that

k [y2, . . . , yn] ↪→ k [y1, . . . , yn] = B

is an integral extension, and if necessary we iterate. �
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Corollary
Let k be a field and ψ : A 7→ B a k-homomorphism of finitely
generated k-algebras. If P is a maximal ideal of B then
p = ψ−1(P) is a maximal ideal of A.

Proof. Consider the embedding

A/p ↪→ B/P

of k -algebras, where by the preceding B/P is a finite
dimensional k -algebra. It follows that the integral domain A/p is
also a finite dimensional k -vector space and therefore must be
a field. �
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