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• Pre-requisites: One previous algebra course, e.g. Math
551 and a few topics of Math 552.

• Textbook: See Syllabus

• webpage:www.math.rutgers.edu/(tilde)vasconce

• email : vasconce AT math.rutgers.edu

• Office hours [H228]: TF 2:4, or by arrangement
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Syllabus

Textbook: David Eisenbud, Commutative Algebra with a
view to Algebraic Geometry, Springer.
Prerequisites: Any graduate course in abstract algebra, or
permisson of the instructor
Course Description: Commutative algebra is broadly
concerned with solutions of structured sets of polynomial
and analytic equations, and the study of pathways to
methods and algorithms that facilitate the efficient
processing in large scale computations with such data.
This course will be an introduction to commutative algebra,
with applications to algebraic gometry, combinatorics and
computational algebra.
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Syllabus

1 (If needed by audience) Noetherian rings: Rings of
polynomials, Hilbert basis theorem, Dedekind domains,
Finitely generated algebras over fields, Noether
normalization, Nullstellensatz.

2 The first part of the course will treat basic notions and
results—chain conditions, prime ideals, flatness, Krull
dimension, Hilbert functions.

3 Required material from Homological Algebra–such as the
derived functors of Hom and tensor products–will be given
in class, not assumed.

4 The other half of the course will study in more detail rings
of polynomials and its geometry, and Gröbner bases. It will
open the door to computational methods in algebra (a few
will be studied). Some other applications will deal with
counting solutions of certain linear diophantine equations.
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Topics

1 Noetherian rings: Hilbert basis theorem, Artin-Rees
theorem, Krull dimension, associated primes

2 Affine algebras over fields: Noether normalization,
Nullstellensatz, finiteness of integral closure

3 Integral closure: Valuation rings, Dedekind domains,
Cohen-Seidenberg theorems

4 Homological Algebra: flatness, projective and injective
modules, the derived functions of Hom and ⊗, Koszul
complexes

5 Hilbert functions: multiplicities, Hilbert coefficients
6 Gröbner basics: Buchberger’s algorithm, calculus of

syzygies
7 Cohen-Macaulay rings: Linkage, canonical module,

Gorenstein rings
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Very Quick Intro

Let F be a field and f = {f1, . . . , fm} a set of polynomials of
F[x1, . . . , xd ]. For a diversity of reasons–algebraic,
geometric and/or computational–it is of interest to
understand the zero set V (f) (in F or in one of its
extensions). A common pathway to this goal is the
examination of the ring A = F[x1, . . . , xd ]/(f).

An important example is:

A = C[x , y ]/(y2 − x(x − 1)(x − 2))

why?
Other examples such as

A = C[x , y ]/(f1, . . . , fm)

present kind of structure: how are the fi ’s related to each
other.
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Very Quick Intro

Let F be a field. The group GLd (F) acts naturally on the
polynomial ring R = F[x1, . . . , xd ]. For a subgroup
G ⊂ GLd (F), the ring of invariants is the algebra

A = {f ∈ R|s(f ) = f , s ∈ G}
What is A like?
Let R be a Noetherian local integral domain that contains a
finite field. A = R+ is the integral closure of R in the
algebraic closure of the field of quotients of R. Why is R+

interesting?
What is a Cohen-Macaulay ring? If A = F[y1, . . . , yn] is a
finitely generated integral domain over the field F, then A is
Cohen-Macaulay if for every Noether normalization

S = F[x1, . . . , xd ] ↪→ A,

A is a free S-module.
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Chain Conditions

At the heart of CA are the chain conditions:

Let R be a ring and let M be a left (right) R-module and denote
by X the set of R-submodules of M ordered by inclusion.

A chain of submodules is a sequence

A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·

or
B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · ·

The first is called ascending, the other descending.
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Noetherian Module

Definition
M is a Noetherian (Artinian) module if every ascending
(descending) chain of submodules is stationary, that is
An = An+1 = . . . from a certain point on.

R is a left (right) Noetherian(Artinian) ring if the ascending
(descending) chains of left (right) ideals are stationary.
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Maximal/Minimal Condition

Definition
M is an R-module with the Maximal Condition (Minimal
Condition) if every subset S of X (set of submodules ordered
by inclusion) contains a maximum submodule (minimum
submodule).

Proposition
Let M be an R-module. Then

1 M is Noetherian iff M has the Maximal Condition.
2 M is Artinian iff M has the Minimal Condition.
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Proof

Let S be a set of submodules of M. If S contains no maximal
element, we can build an ascending chain

A1 ( A2 ( · · · ( An ( · · ·

contradicting the assumption that M is Noetherian. The
converse has a similar proof.
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Composition Series

Proposition
Let M be an R-module satisfying both chain conditions. Then
there exists a chain of submodules

0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M

such that each factor Mi/Mi−1 is a simple module.

Such sequences are called composition series of length n. The
existence of one such series is equivalent to M being both
Noetherian and Artinian.

Theorem (Jordan-Holder)
All composition series of a module M have the same length
(called the length of M and denoted λ(M)).
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Noetherian Module

Proposition
M is a Noetherian R-module iff every submodule is finitely
generated.

Proof.
Suppose M is Noetherian. Let us deny. Let A be a submodule of M
and assume it is not finitely generated. It would permit the
construction of an increasing sequence of submodules of A,

(a1) ⊂ (a1,a2) ⊂ · · · ⊂ (a1,a2, . . . ,an) ⊂ · · · ,

an+1 ∈ A \ (a1, . . . ,an).
Conversely if A1 ⊆ A2 ⊆ · · · is an increasing sequence of
submodules, let B = ∪i≥1Ai is a submodule and therefore
B = (b1, . . . ,bm). Each bi ∈ Ani for some ni . If n = max{ni},
An = An+1 = · · · .
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SES

Proposition
Let R be a ring and

0→ A f−→ B
g−→ C → 0

be a short exact sequence of R-modules (that is, f is 1-1, g is
onto and Image f = ker g). Then B is Noetherian (Artinian) iff A
and C are Noetherian (Artinian).
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Corollary
If R is a Noetherian (Artinian) ring, then any finitely generated
R-module is Noetherian (Artinian).

Proof.
By the proposition, any f.g. free R-module F = R ⊕ · · · ⊕ R is
Noetherian (Artinian). A f.g. R-module is a quotient of a f.g.
free R-module.
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Proof

Let B1 ⊆ B2 ⊆ · · · be an ascending sequence of submodules of
B. Applying g to it gives an ascending sequence
g(B1) ⊆ g(B2) ⊆ · · · of submodules of C.

There is also an ascending sequence of submodules of A by
setting Ai = f−1(Bi).
There is n such that both sequences are stationary from that
point on: g(Bn) = g(Bn+1) = · · · and
f−1(Bn) = f−1(Bn+1) = · · · .

It follows easily that Bn = Bn+1 = · · · .
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Class discussion

Let us prove the following characterization of Noetherian
modules over commutative rings:

Definition
Let M be a module over the commutative ring R.The set I of
elements x ∈ R such that xm = 0 for all m ∈ M is an ideal
called the annihilator of M, I = ann M.

Proposition
M is a Noetherian module if and only if M is finitely generated
and R/ann M is a Noetherian ring.
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Hints

If a module M is generated by {m1, . . . ,mn} define the following
mapping

f : R −→ M ⊕ · · · ⊕M︸ ︷︷ ︸
n copies

, f(r) = (rm1, . . . , rmn)

verify that
f is a homomorphism, of kernel ann M
Form the appropriate embedding of R/ann M into the direct
sum of the M ’s to argue one direction
Use, for the other direction, that M is also a module over
the ring R/ann M
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Quotient rings

Let I be a two-sided proper ideal of the R and denote by R/I
the corresponding cosets {a + I : a ∈ R}.

The quotient ring R/I is defined by the operations:

(a + I) + (b + I) = (a + b) + I
(a + I)× (b + I) = ab + I

This is a source to many new rings
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Examples: Quotient rings

(2) ⊂ Z ⇒ Z2 = Z/(2)

(x2 + x + 1) ⊂ Z2[x ] ⇒ Z2[x ]/(x2 + x + 1) = F4

(x2 + 1) ⊂ R[x ] ⇒ C = R[x ]/(x2 + 1)

(1 + 3i) ⊂ Z[i] ⇒ Z10 = R = Z[i]/(1 + 3i)
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Z[i ]/(1 + 3i) ' Z/(10)

Consider the homomorphism ϕ : Z→ Z[i]→ R = Z[i]/(1 + 3i)
induced by the embedding of Z in Z[i].We claim that ϕ is a
surjection of kernel 10Z:

1 + 3i ≡ 0⇒ i(1 + 3i) ≡ 0⇒ i − 3 ≡ 0⇒ i ≡ 3

a + bi ≡ a + 3b ⇒ ϕ is surjection

For n in kernel of ϕ,

n = z(1 + 3i) = (a + bi)(1 + 31)

= (a− 3b) + (3a + b)i︸ ︷︷ ︸
=0

⇒ b = −3a

= 10a
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Circle ring

Let R = R[x , y ]/(x2 + y2 − 1): the circle ring

Consider the natural homomorphism

f : R[x , y ] −→ R[cos t , sin t ], f(x) = cos t , f(y) = sin t

R[cos t , sin t ] is the ring of trigonometric polynomials.
f(x2 + y2 − 1) = 0 so there is an induced surjection

ϕ : R[x , y ]/(x2 + y2 − 1)→ R[cos t , sin t ]

ϕ is an isomorphism because: (i) R[cos t , sin t ] is an infinite
dimensional R-vector space (why?); for any ideal L larger
than (x2 + y2 − 1), R[x , y ]/L is a finite dimensional
R-vector space (why?).
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The circle ring R = R[cos t , sin t ] contains as a subring
S = R[cos t ]. S is isomorphic to a polynomial ring over R.
As an S-module, R is generated by two elements

R = S · 1 + S · sin t

R as a R-vector space has basis

{sin nt , cos nt , n ∈ Z}
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R[x , y ]/(xy)

Exercise: Prove that

R[x , y ]/(xy) ' {(p(x),q(y)) : p(0) = q(0))}

Hint: Consider the homomorphism

ϕ : R[x , y ]/(xy)→ R[x , y ]/(y)× R[x , y ]/(x)

ϕ(a + (xy)) = (a + (y),a + (x))

Check that ϕ is one-one and determine its image.
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Some terminology in studying a commutative ring

Let R be a commutative ring

u ∈ R is a unit if there is v ∈ R such that uv = 1
a ∈ R is a zero divisor if there is 0 6= b ∈ R such that
ab = 0: 2 · 3 = 0 in Z6.

a ∈ R is nilpotent if there is n ∈ N such that an = 0: 23
= 0

in Z8.
R is an integral domain if 0 is the only zero divisor, in other
words, if a,b ∈ R are not zero, then ab 6= 0.
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Prime Ideals

Definition
Let R be a commutative ring. An ideal P of R is prime if P 6= R
and whenever a · b ∈ P then a ∈ P or b ∈ P.

Equivalently:

R/P is an integral domain
If I and J are ideals and I · J ⊂ P then I ⊂ P or J ⊂ P
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Prime ideals and homomorphisms

R

wwpppppppppppp

((PPPPPPPPPPPPPP

prime ideals of R morphisms ϕ : R → S
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Prime ideals arise in issues of factorization and very
importantly:

Proposition
Let ϕ : R → S be a homomorphism of commutative ring. If S is
an integral domain, then P = ker (ϕ) is a prime ideal. More
generally, if S is an arbitrary commutative ring and Q is a prime
ideal, then P = ϕ−1(Q) is a prime ideal of R.

Proof. Inspect the diagram

R

��

ϕ−→ S

��
R/P ↪→ S/Q
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Exercise

Consider the homomorphism of rings

ϕ : k [x , y , z] → k [t ]
x → t3

y → t4

z → t5

Let P be the kernel of this morphism. Note that x3− yz, y2− xz
and z2 − x2y lie in P.

Task: Prove that P is generated by these 3 polynomials.

Task: Describe the prime ideals of the ring

R = C[x , y ]/(y2 − x(x − 1)(x − 2)).
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Multiplicative Sets

Definition
A subset S of a commutative ring is multiplicative if S 6= ∅ and if
r , s ∈ S then r · s ∈ S.

If a ∈ R, {an : n ∈ N} is a multiplicative set.

If P is a prime ideal of R, S = R \ P is a multiplicative set.

If I is a proper ideal of R, then

S = {1 + a : a ∈ I}

is a multiplicative set.
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Formation of Prime Ideals

Proposition
Let S be a multiplicative set and P an ideal maximum with
respect S ∩ P = ∅. Then P is a prime ideal.

Proof. Deny: let a,b /∈ P, ab ∈ P.

Consider the ideals P + Ra and P + Rb. They are both larger
than P and therefore meet S: there exist p,q ∈ R with

x + pa, y + qb ∈ S, x , y ∈ P

Multiplying we get

(x + pa)(y + qb) = xy + xqb + yqb + pqab ∈ S ∩ P,

a contradiction.
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Corollary
Every proper ideal I of a commutative ring is contained in a
prime ideal.

Proof. Let S = {1}. This is a multiplicative set. An ideal M is
proper if M is disjoint from S.

Among all proper ideals I ⊆ J pick one that is maximum with
respect being disjoint relative to S: How?

Let X be the set of proper ideals containing I. If {Jα} is a chain
of elements in X ,

⋃
Jα ∈ X . By Zorn’s Lemma, there are

maximum elements in X .
No need if R is Noetherian.
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Primary Ideal

Definition
Let R be a commutative ring. An ideal Q of R is primary if
Q 6= R and whenever a · b ∈ Q then a ∈ Q or some power
bn ∈ Q.

Example: Q = (x2, y) ⊂ R = k [x , y ], or (pn) ⊂ Z.
This is a far-reaching generalization of the notion of primary
ideals of Z
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Radical of an Ideal

Definition
Let I be an ideal of the commutative ring R. The radical of I is
the set √

I = {x ∈ R : xn ∈ I some n = n(x)}.

Proposition
√

I is an ideal.

Proof.

If a,b ∈
√

I, am ∈ I, bn ∈ I, then

(a + b)m+n−1 =
∑

i+j=m+n−1

(
m + n − 1

i

)
aibj ∈ I,

since i ≥ m or j ≥ n.
Clearly ra ∈

√
I for any r ∈ R.
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Proposition
If I is a proper ideal of R,

√
I =

⋂
P, I ⊆ P P prime ideal.

Proof.

Deny it: Let x ∈
⋂

P \
√

I, that is for all n, xn /∈ I.

The set {xn,n ∈ N} defines a multiplicative set S disjoint from I.
By a previous proposition, there is a prime P ⊃ I disjoint from
S, a contradiction.
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Class discussion

Let R be a commutative ring and S = R[x ] the ring of
polynomials in the indeterminate x .

If I is an R-ideal, the set of all polynomials

anxn + · · ·+ a0, ai ∈ I,

is an R[x ]-ideal Notation: I[x ] or I · R[x ].

If P is a prime ideal of R, then P[x ] is a prime ideal of R[x ].
P[x ] is the kernel of the homomorphism

ϕ : R[x ] −→ R/P[x ]

ϕ(anxn + · · ·+ a0) = anxn + · · ·+ a0,

where a is the coset a + P of R/P.
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Radical of R[x ]

Proposition
If N is the nilradical of R, then N[x ] is the nilradical of R[x ].

Proof. (One volunteer, please.)
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Idempotents

Proposition

Let R be a commutative ring and 0 6= e ∈ R satisfy e = e2.
Then there is a decomposition R into the direct product of rings
R ' Re × R(1− e).

Proof.
1 For any x ∈ R, x = xe + x(1− e), so Re + R(1− e) = R.

Furthermore if a ∈ Re ∩ R(1− e), then a is annihilated by
1− e and e, respectively. This means that
R = Re ⊕ R(1− e) as modules.

2 Since Re · R(1− e) = 0, we can view R = Re ⊕ R(1− e)
as R = Re×R(1− e). Note that e is the identity in the ring
Re, and 1− e in R(1− e).



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Outline
1 General Orientation
2 Syllabus
3 Introduction
4 Chain Conditions
5 Prime Ideals
6 Primary Decomposition
7 Noetherian Rings
8 Graded Noetherian Rings
9 Commutative Artinian Rings

10 Modules of Fractions
11 Integral Extensions
12 Dedekind Domains
13 Valuation Rings
14 Homework



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg [11/27/2008 11:52:38 AM]
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Irreducible Ideal/Module

Definition
The ideal I of the commutative ring R is irreducible if

I = J ∩ L⇒ I = J or I = L.
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Primary Decomposition

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn,

with Qi primary.

To prove her theorems, Emmy Noether often proved a special
case and derive the more general assertion, or proved a more
general assertion and specialize.
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Irreducible decomposition

Definition
The ideal I of the commutative ring R is irreducible if

I = J ∩ L⇒ I = J or I = L.

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = J1 ∩ J2 ∩ · · · ∩ Jn,

with Ji irreducible. Moreover, every irreducible ideal J of R is
primary.
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Famous Proof

Proof. Deny the existence of the decomposition of I as a finite
intersection of irreducible ideals. Among all such ideals, denote
by (keep the notation) I a maximum one.
I is not irreducible, so there is

I = J ∩ L,

with J and L properly larger. But then each admits finite
decompositions as intersection of irreducible ideals. Combining
we get a contradiction.
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Irreducible⇒ Primary

1 Deny that proper irreducible ideals of Noetherian rings are
primary. Let I be maximum such: There is a,b ∈ R, ab ∈ I,
a /∈ I and bn /∈ I for all n ∈ N.

2 Consider the chain

{r ∈ R : br ∈ I} = I : b ⊆ I : b2 ⊆ · · · ⊆ I : bn ⊆ I : bn+1

that becomes stationary at I : bn = I : bn+1.
3 Define J = I : bn and L = (I,bn). Both ideals are larger

than I. We claim that I = J ∩ L.
4 If x ∈ J ∩ L, x = u + rbn, u ∈ I. Then bnx = bnu + rb2n ∈ I,

so rbn ∈ I and therefore x ∈ I.
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Irredundant Primary Decomposition

A refinement in the primary decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn

arises as follows. Suppose two of the Qi have the same radical,
say
√

Q1 =
√

Q2 = P. Then it easy to check that Q1 ∩Q2 is
also P-primary. So collecting the Qi with the same radical:

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn,

with Qi primary ideals of distinct radicals. This decomposition is
called irredundant.

It is known which Qi are unique and which are not.
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Minimal primes

An application of this theory is:

Corollary

Let I =
⋂n

i=1 Ji be a primary decomposition of the ideal I. Then
any prime ideal P containing I contains one of the prime ideals√

Ji . In particular, there is a minimal prime P containing I.

Proof.
Since

n∏
i=1

Ji ⊂
n⋂

i=1

Ji = I ⊂ P,

P contains some Ji , and therefore
√

Ji .
The smallest among the

√
Ji are the minimal primes of I.
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Noetherian Rings

At the heart of Commutative Algebra lies the notion of a
Noetherian ring and the methods and processes that produce
such rings. We will begin with a review of the following topics:

• Chain conditions
• Hilbert basis theorem, Cohen theorem, power series
• Primary decomposition
• Artin–Rees lemma
• Filtrations and Rees algebras
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David Hilbert (1862-1943)

David Hilbert

David Hilbert 
(1862 - 1943) 
Mathematician 

Algebraist 

Topologist 

Geometrist 

Number Theorist 

Physicist 

Analyst 

Philosopher 

Genius 

And modest too... 

 

"Physics is much too hard for physicists." - Hilbert, 1912

This site is dedicated to David Hilbert, the funkiest mathematician alive.  
(Well, at least the funkiest when  he was alive. He's dead now, but he's still pretty 
funky. I don't mean funky like he smells funky, but I'm sure he does since he's been dead for 
over half a century. Of course, he was German, so the term probably wouldn't be applied to 
him. It would probably be more like funkisch. Hey, there's five years of German classes well 
spent. And he was born way before disco was king, so the term funky or funkisch probably 
wasn't used at all back then. I'm not saying that Davey wouldn't like disco. He was known to 
be a very good dancer in his time. That was mostly big band music hall stuff, but I'm sure he 
could manage to do the Hustle. And that's pretty hip for a mathematician. Not that all 
mathematicians aren't hip, mind you. I know one that even had a beer party recently. Of 
course, he did take that opportunity to gather beer tasting data in the form a block design 
using random permutations of 4-subsets of a 6-set. I'll stop now.) 

"Every boy in the streets of Gottingen understands more about four-dimensional geometry 
than Einstein. Yet, in spite of that, Einstein did the work and not the mathematicians." - 
Hilbert, 1915

http://www.math.umn.edu/~wittman/hilbert.html (1 of 2) [11/28/2008 3:43:37 PM]
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Hilbert Basis Theorem

Theorem (HBT)
If R is Noetherian then R[x ] is Noetherian.

1 If R is Noetherian and x1, . . . , xn is a set of independent
indeterminates, then R[x1, . . . , xn] is Noetherian.

2 Z[x1, . . . , xn] is Noetherian.
3 If k is a field, then k [x1, . . . , xn] is Noetherian.
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Finitely Generated Algebras

If R is a commutative ring, a finitely generated R-algebra S is a
homomorphic image of a ring of polynomials,
S = R[x1, . . . , xn]/L. If R is Noetherian, S is Noetherian as well.
This is useful in many constructions.
If I is an R-ideal, the Rees algebra of I is the subring of R[t ]
generated by all at , a ∈ I. It it denoted by S = R[It ]. In general,
subrings of Noetherian rings may not be Noetherian but Rees
algebras are:

Exercise: If R is Noetherian, for every ideal I, R[It ] is
Noetherian.
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Proof of the HBT

Suppose the R[x ]-ideal I is not finitely generated. Let
0 6= f1(x) ∈ I be a polynomial of smallest degree,

f1(x) = a1xd1 + lower degree terms.

Since I 6= (f1(x)), let f2(x) ∈ I \ (f1(x)) of least degree. In this
manner we get a sequence of polynomials

fi(x) = aixdi + lower degree terms,

fi(x) ∈ I \ (f1(x), . . . , fi−1(x)), d1 ≤ d2 ≤ d3 ≤ · · ·

Set J = (a1,a2, . . . , ) = (a1,a2, . . . ,am) ⊆ R
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Let fm+1(x) = am+1xdm+1 + lower degree terms. Then

am+1 =
m∑

i=1

siai , si ∈ R.

Consider

g(x) = fm+1 −
m∑

i=1

sixdm+1−di fi(x).

g(x) ∈ I \ (f1(x), . . . , fm(x)), but deg g(x) < deg fm+1(x), which
is a contradiction.
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Power Series Rings

Another construction over a ring R is that of the power series
ring R[[x ]]:

f(x) =
∑
n≥0

anxn, g(x) =
∑
n≥0

bnxn

with addition component wise and multiplication the Cauchy
operation

f(x)g(x) = h(x) = h(x) =
∑
n≥0

cnxn

cn =
∑

i+j=n

aibn−i

Theorem
If R is Noetherian then R[[x ]] is Noetherian.
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Proposition
A commutative ring R is Noetherian iff every prime ideal is
finitely generated.

Proof. If R is not Noetherian, there is an ideal I maximum with
the property of not being finitely generated (Zorn’s Lemma).
We assume I is not prime, that is there exist a,b /∈ I such that
ab ∈ I.
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The ideals (I,a) and I : a are both larger than I and therefore
are finitely generated:

(I : a) = (a1, . . . ,an)

(I,a) = (b1, . . . ,bm,a), bi ∈ I

Claim: I = (b1, . . . ,bm,aa1, . . . ,aan)

If c ∈ I,

c =
m∑

i=1

cibi + ra, r ∈ I : a
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R[[x ]] is Noetherian

Proof. Let P be a prime ideal of R[[x ]]. Set p = P ∩ R. p is a
prime ideal of R and therefore it is finitely generated.

Denote by p[[x ]] = pR[[x ]] the ideal of R[[x ]] generated by the
elements of p. It consists of the power series with coefficients in
p and R[[x ]]/p[[x ]] is the power series ring R/p[[x ]].

We have the embedding

P ′ = P/p[[x ]] ↪→ (R/p)[[x ]]

P ′ is a prime ideal of R/p[[x ]] and P ′ ∩ R/p = 0. It will suffice to
show that P ′ is finitely generated.
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We have reduced the proof to the case of a prime ideal
P ⊂ R[[x ]] and P ∩ R = (0).

If x ∈ P, P = (x) and we are done.
For f(x) = a0 + a1x + · · · ∈ P, let J = (b1, . . . ,bm) ⊂ R be the
ideal generated by all a0,

fi = bi + higher terms ∈ P.

Claim: P = (f1, . . . , fm).

From a0 =
∑

i s(0)
i bi , we write

f(x)−
∑

i

s(0)
i fi = xh ⇒ h ∈ P.
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We repeat with h and write

f(x) =
∑

i

s(0)
i fi + x

∑
i

s(1)
i fi + x2g, g ∈ P.

Iterating we obtain

f(x) =
∑

i

(s(0)
i + s(1)

i x + s(2)
i x2 + · · · )fi .
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Symbolic Powers

Let R be a Noetherian ring, and let P be a prime ideal.
Consider a primary decomposition of the nth power of Pn,

Pn =
m⋂

i=1

Ji .

Any prime ideal Q that ccntains Pn contains P: Thus P is
the unique minimal prime of Pn.
This means that Pn

P = (Ji)P for some i . Since (Pn)P is a
power of the maximal ideal of the localization RP , the
corresponding ideal Ji is P-primary.

Definition
The P-primary component of Pn is independent of the primary
decomposition. It is called the nth symbolic power of P: P(n).



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Example/Exercise

Let R = Q[x , y , z]. This ring has 3 types of prime ideals:
principal ideals, maximal ideals, ‘the others’. If P is any of the
two first types, P(n) = Pn. To find an example whose ordinary
and symbolic powers differs, let us consider homomorphisms
φ : R → Q[t ].
For example, let φ be defined by φ(x) = t3, φ(y) = t4 and
φ(z) = t5. The kernel is the prime ideal P generated by

P = (x3 − yz, y2 − xz, z2 − x2y)

1 Prove that P is generated by these polynomials.
2 Find P(2) and verify it is not P2.
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Graded Rings

Let R be a ring and A an R-algebra. We say that A is a graded
R-algebra if

A =
⊕
n∈Z

An, Am · An ⊂ Am+n

Polynomials rings R[x1, . . . , xn] are major examples.
The elements x ∈ An are called n-forms or homogeneous
of degree n.
We usually assume An = 0 if n < 0. A notable exception is
A = k [x , x−1], the ring of Laurent polynomials.
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Homogeneous ideals

Definition
An ideal I of a graded algebra is said to be homogeneous if
I =

⊕
n∈Z In, In ⊂ An.

They are handy way to produce new graded algebras:

A/I =
⊕

n

An/In

Proposition
An ideal I of a graded algebra A is homogeneous iff I s
generated by a set {fα} of homogeneous forms fα.

Proof. Left to reader/listener.
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Graphs and Ideals

Let G = {V ,E} be a graph of vertex set V = {v1, . . . , vn} and
edge set E . We will associate to G a graded algebra.

Let R = k [x1, . . . , xn], one indeterminate to each vertex. To
the edge {vi , vj}, we associate the monomial xixj . The
edge ideal of G is the ideal I(G) generated by all xixj ’s.
I(G) is a homogeneous ideal. One expects the graded
algebra R/I(G) to reflect properties of the graph. For
example, describe the minimal primes of I(G) in graph
theoretic info.
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Graded Noetherian Rings

One of the first ‘practical’ uses of the Hilbert basis theorem was:

Proposition
Let R =

∑
n≥0 Rn be a positively graded commutative ring and

set R+ =
∑

n>0 Rn. Then R is Noetherian if and only if R0 is
Noetherian and R+/R2

+ is a finitely generated R0–module.

Proof. Suppose the conditions on R0 and R+ hold. Since
R+/R2

+ is a direct sum of R0–modules, there exists r ∈ N such
that Rn =

∑
0<i<r RiRn−i for n ≥ r . Pick a finite set {b1, . . . ,bs}

of elements in
⋃

0<i<r Ri that generate R+/R2
+. The claim is

that R = R0[b1, . . . ,bs]. Since R1 is a direct summand of
R+/R2

+, it is finitely generated by the bj of degree 1. The next
summand, R2/R2

1 is generated by the images of the bj of
degree 2, while R2

1 is generated by the 2-products of the earlier
bj ’s.
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From the exact sequence

0→ R2
1 −→ R2 −→ R2/R2

1 → 0,

it follows that R2 consists of the degree 2 elements of
R0[b1, . . . ,bs]. We proceed in this fashion until n = r , when no
new generators are needed.

For the converse, it suffices to note that R0 = R/R+ and that
R+/R2

+ is an R–module annihilated by R+. �
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Commutative Artinian Rings

Definition
The ring R is Artinian if it has the descending chain condition
for ideals.

Besides fields, or finite rings, the simplest [yet not so simple]
examples are algebras that are finite dimensional vector
spaces over a field K.

For non-commutative rings, this chain condition can be
expressed in many forms [will explain later], but in the
commutative case they just turn out to be a special type of
Noetherian rings.
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Elementary Properties

Every prime ideal P of a commutative Artinian ring R is
maximal: The quotient R/P is a domain so ETS Artinian
domains are fields. If a 6= 0, the chain (a) ⊃ (a2) ⊃ · · ·
stabilizes at (an) = (an+1), therefore an = ran+1 so 1 = ra,
since the ring is a domain.
R has only a finite number of maximal ideals: Let
{P2,P2, . . .} be distinct maximal ideals. Form the
descending chain

P1 ⊃ P1 · P2 ⊃ P1 · P2 · P3 ⊃ · · ·

that becomes stationary at

P1 · P2 · · ·Pn = P1 · P2 · · ·Pn · Pn+1

Therefore Pn+1 contains P1 · P2 · · ·Pn, and thus Pn+1 = Pi ,
i ≤ n.
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Jacobson Radical

Theorem
Let J be the intersection of all the maximal ideals of the Artinian
ring R. Then Jn = 0 for some integer n.

Proof.
Consider the descending chain J ⊃ J2 ⊃ · · · that stabilizes at
Jn = Jn+1.

We claim that Jn = 0.
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We argue by contradiction. Consider the set of nonzero
ideals L such that JnL 6= 0. Note that by assumption J is
one such ideal.

Choose a minimum ideal L with this property. Now, let
x ∈ L such that Jnx 6= 0. This shows L = Rx by the
minimality hypothesis and x = ax , a ∈ Jn.

This implies (1− a)x = 0 and therefore x = 0 since 1− a
is invertible, a contradiction.
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Partition of the Unity

If R is a commutative ring, a partition of the unity is an special
decomposition of the form

R = J1 + · · ·+ Jn, Ji ideals of R

Suppose I1, . . . , In is a set of a ideals that is pairwise
co-maximal, meaning Ii + Ij = R, for i 6= j . This obviously is a
partition of the unity.

Another arises from it [check!] if we set Ji =
∏

j 6=i Ij

R = J1 + · · ·+ Jn, Ji ideals of R
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Chinese Remainder Theorem

Theorem
If Ii , i ≤ n, is a family of ideals that is pairwise co-maximal, then
for I = I1 ∩ I2 ∩ · · · ∩ In there is an isomorphism

R/I ≈ R/I1 × · · · × R/In.

Proof. Set Ji =
∏

j 6=i Ij . Note that Ii + Ji = R. Since
J1 + · · ·+ Jn = R, there is an equation

1 = a1 + · · ·+ an, ai ∈ Ji

Note that for each i , ai
∼= 1 mod Ii . Define a mapping h from R

to R/I1 × · · · × R/In, by h(x) = (xa1, . . . , xan). We claim that h
is a surjective homomorphism of kernel I.
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Proof Cont’d

1 Since ai
∼= 1 mod Ii ,

h(x) = (xa1, . . . , xan) = (x1, . . . , xn)

which is clearly a homomorphism.
2 The kernel consists of the x such that x i = 0 for each i ,

that is x ∈ Ii for each i–that is, x ∈ I.
3 To prove h surjective, for u = (x1, . . . , xn), setting

x = x1a1 + · · ·+ xnan

gives h(x) = u.
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Structure of Artinian Rings

Theorem
Let R be a commutative Artinian ring, let {P1, . . . ,Pn} be the
set of its maximal ideals, J its Jacobson radical and m an
integer such that Jm = 0. Then

R ≈ R/Pm
1 × · · · × R/Pm

n .

Moreover each R/Pm
i is Noetherian.

We apply CRT to the set of ideals Pm
1 , . . . ,P

m
n to obtain the

decomposition. Now we must prove that each R/Pm
i is

Noetherian.
Note that S = R/Pm

i has a unique maximal ideal M = Pi/Pm
i ,

and that Mm = 0.
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Proof Cont’d

1 Consider the chain of ideals
R ⊃ M ⊃ M2 ⊃ Mm−1 ⊃ Mm = 0. To prove that R is
Noetherian ETS each factor module M i/M i+1 is
Noetherian. [See last step]

2 We examine the factors M i/M i+1. This module is Artinian
and is also annihilated by M. So it is actually an Artinian
R/M-vector space, so must be finite dimensional, in
particular it is a Noetherian module.

3 For example, suppose M3 = 0. M2 is annihilated by M, so
it is a R/M-vector space, so it is also a Noetherian
R-module.

4 Consider the exact sequence 0→ M2 → M → M/M2 → 0.
Both M2 and M/M2 are Noetherian, so M is Noetherian as
well. The general case is similar.
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Composition series

Theorem
If R is a commutative Artinian ring then there exists a tower of
ideals

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = R

such that for all i , Mi/Mi−1 = R/Pi for some prime ideal Pi .

Proof. Left to reader.
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Modules of Fractions

Let R be a commutative ring, M an R-module and S ⊆ R a
multiplicative system.

On the set M × S define the following relation:

(a, r) ∼ (b, s)⇔ ∃t ∈ S : t(as − br) = 0

Why define it in this manner instead of the usual as = br?

Proposition
∼ is an equivalence relation.

We focus on the properties of the set S−1M of equivalence
classes. Actually, this is the initial step in the construction of a
remarkable functor.
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Properties

Proposition
Let R be a commutative ring, M an R-module and S ⊆ R a
multiplicative system. Denote the equivalence class of (a, r) in
S−1M by (a, r) (or simply (a, r) or even a/r ).

1 The following operation is well-defined

(a, r) + (b, s) = (sa + rb, rs),

and endows S−1M with a structure of abelian group.
2 If 0 /∈ S, this construction applied to R × S gives rise to a

ring structure on S−1R with multiplication
(x , r) · (y , s) = (xy , rs).

3 For (x , r) ∈ S−1R and (a, s) ∈ S−1M, the operation
(x , r) · (a, s) = (xa, rs) defines an S−1R-module structure
on S−1M.
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Module/Ring of Fractions

S−1R is called the ring of fractions of R relative to S. It is a
refinement (due to Grell or Krull) of the classical formation of
the field of fractions of an integral domain.
S−1M is called the module of fractions of M relative to S.

Another step:

Proposition
If ϕ : M → N is a homomorphism of R-modules, a
homomorphism of S−1R modules S−1ϕ : S−1M → S−1N is
defined by

(S−1ϕ)(a, s) = (ϕ(a), s).
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Functorial Properties

This construction is a functor from the category of R-modules
to the category of S−1R-modules:

M
ϕ

��

 S−1M

S−1ϕ
��

N  S−1N

Proposition
If ϕ : M → N and ψ : N → P are R-homomorphisms of
R-modules, then

1 S−1(ψ ◦ ϕ) = S−1ψ ◦ S−1ϕ.
2 S−1(idM) = idS−1M .
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Short Exact Sequences

Proposition
Let R be a ring, S ⊆ R a multiplicative set and

0→ A f−→ B
g−→ C → 0

a short exact sequence of R-modules. Then

0→ S−1A S−1f−→ S−1B
S−1g−→ S−1C → 0

is a short exact sequence of S−1R-modules. In other words,
M  S−1M is an exact functor.
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The submodules of S−1M

Proposition

Let L′ be a S−1R-submodule of S−1M. Let

L = {m ∈ M : for some s ∈ S (m, s) ∈ L′.

Then L is a submodule of M and S−1L = L′.

Corollary

If M is a Noetherian (Artinian) R-module, then S−1M is a
Noetherian (Artinian) S−1R-module.
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The ideals of S−1R

According to the above, the proper ideals of S−1R are of the
form

S−1I = {a/s : a ∈ I s ∈ S, I ∩ S = ∅.}

In the special case of S = R \ p, for a prime ideal p, one uses
the notation Mp for the module of fractions and Rp for the ring of
fractions.

If R = Z and p = (2), Z(2) consists of all rational numbers m/n,
with n odd. Its ideals are ordered. The largest proper ideal is
m = 2Z(2) and the others

Z(2) ) m ) m2 ) m3 ) · · · ) (0)
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Tool

Proposition
If R is a commutative ring and S is a multiplicative set, then for
any two submodules A and B of M,

S−1(A ∩ B) = S−1A ∩ S−1B.

Proof.
The intersection A ∩ B can be defined by the exact sequence

0→ A ∩ B −→ A⊕ B
ϕ−→ A + B → 0,

where ϕ(a,b) = a− b.

Now apply the fact that formation of modules of fractions is an
exact functor.
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Local Ring

Proposition

Let S be a multiplicative set of R. The ideal L of S−1R is prime
iff L = S−1I, for some prime I ideal of R with I ∩ S = ∅.

Proof. Suppose I is as above. If a/r · b/s ∈ S−1I,
(ab, rs) ∼ (c, t) for c ∈ I, r , s, t ∈ S. By definition, there is u ∈ S
such that u(tab − rsc) = 0. Since S ∩ I = ∅, tab − rsc ∈ I and
therefore tab ∈ I. Thus ab ∈ I and so a ∈ I or b ∈ I. Therefore
(a, r) or (b, s) ∈ S−1I.

Corollary
The prime ideals of Rp have the form P = Qp, where Q is an
ideal of R contained in p.
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Local Ring

Definition
A commutative ring R is a local ring if it has a unique maximal
ideal.

Example
If k is a field, R = k [[x ]], the ring of formal power series in x
over k is a local ring. Its unique maximal ideal is m = (x).

Definition
If R is a commutative ring and P a prime ideal, the ring of
fractions RP is a local ring called the localization of R at P.
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The Prime Spectrum of a Ring

Definition
Let R be a commutative ring (with 1). The set of prime ideals of
R is called the prime spectrum of R, and denoted Spec (R).

Spec (Z) = {(0), (2), (3), . . .}, the ideals generated by the prime
integers and 0.

Proposition
For each set I ⊂ R, set

V (I) = {p ∈ Spec (R) : I ⊂ p}.

These subsets are the closed sets of a topology on Spec (R).

Note that V (I) = V (I′), where I′ is the ideal of R generated by I.
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Zariski Topology

Proof. This follows from the properties of the construction of
the V (I):

V (1) = ∅
V (0) = Spec (R)

V (I ∩ J) = V (I) ∪ V (J)⋂
α

V (Iα) = V (
⋃
α

Iα).
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Example

Suppose R2,R2, . . . ,Rn are commutative rings and
R = R1 × R2 × · · · × Rn is their direct product. Observe:

1 If 1 = e1 + e2 + · · ·+ en, ei ∈ Ri , then Ri = Rei and
eiej = 0 if i 6= j

2 Because of eiej = 0 for i 6= j , if P is a prime ideal of R and
some ei /∈ P then the other ej ∈ P. This shows
P = R1 × · · · × Pi × · · · × Rn, where Pi is a prime ideal of
Ri , R/P = Ri/Pi

3 Spec (R) = Spec (R1) ∪ · · · ∪ Spec (Rn)

4 In particular, if R1 = R2 = · · · = Rn = K, K a field, the
Spec (R) is a set of n points with the discrete topology.
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Irreducible Representation

Proposition
Let I be an ideal of the Noetherian ring R and let

I = Q1 ∩Q2 ∩ · · · ∩Qn,

be a primary representation. Then

V (I) = V (P ′1) ∪ V (P ′2) ∪ · · · ∪ V (P ′m),

where the P ′j are the minimal primes amongst the
√

Qi , is the
unique irreducible representation of V (I).
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Morphisms

Proposition
If R is a commutative ring, Spec (R) is quasi-compact. (Not
necessarilly Hausdorff.)

Proof.
Let {D(Iα)} be an open cover of X

X =
⋃
α

D(Iα) = D(
∑
α

Iα) = D(1).

This means that there is a finite sum

n∑
1

Iαi = R, and therefore X =
n⋃

i=1

D(Iαi ).
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Proposition
If ϕ : R → S is a homomorphism of commutative rings
(ϕ(1R) = 1S), then the mapping

Φ : Spec (S)→ Spec (R),

given by Φ(Q) = ϕ−1(Q), is continuous.

Proof.

If D(I) is an open set of Spec (R), ϕ−1(D(I)) = D(IS).
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Integral Extensions

Let R ↪→ S be commutative rings.

Definition
s ∈ S is integral over R if there is an equation

sn + an−1sn−1 + · · ·+ a1s + a0 = 0, ai ∈ R.

Proposition
s ∈ S is integral over R if and only if the subring R[s] of S
generated by s is a finitely generated R-module.
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Would like to prove [as done first by Weierstrass] that if s1and
s2 in S are integral over R then

s1 + s2 is integral over R;
s1s2 is integral over R.

The key to their proof is the fact that both s1 + s2 and s1s2 are
elements of the subring R[s1, s2] which is finitely generated as
an R-module

R[s1, s2] =
∑
i,j

Rsi
1sj

2,

where i and j are bounded by the degrees of the equations
satisfied by s1 and s2.
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Integrality Criterion

Proposition
Let M be a finitely generated R-module and S = R[u] a ring
such that uM ⊂ M. If M is a faithful S-module then u is integral
over R.

Proof. Let x1, . . . , xn be a set of R-generators of M. we have a
set of relations with aij ∈ R

ux1 = a11x1 + · · ·+ a1nxn
...

uxn = an1x1 + · · ·+ annxn
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Cayley-Hamilton

That is

0 = (a11 − u)x1 + · · ·+ a1nxn
...

0 = an1x1 + · · ·+ (ann − u)xn

Which we rewrite in matrix form a11 − u · · · a1n
...

. . .
...

an1 · · · ann − u


 x1

...
xn

 =

 0
...
0

 = A[x] = O.
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Thus
(adj A)A[x] = det A · [x] = O.

This means that det A annihilates each generator xi of M and
therefore det A = 0.

But

det A = ±un + lower powers of u with coefficients in R

This shows that u is integral over R.
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Principle of Specialization

Why are we allowed to write adj A · A = det A · I when the
entries of A lie in a commutative ring?

If T = Z[xij , 1 ≤ i , j ≤ n] is a ring of polynomials in the
indeterminates xij , and use them as the entries of a matrix B,
certainly the formula adj B · B = det B · I makes sense since T
lies in a field.

Now define a ring homomorphism φ : T → R, with φ(xij) the
corresponding entry in A, to get the desired equality.
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In our application, M = R[s1, s2] and u is either s1 + s2 or s1s2,
and certainly M is faithful since 1 ∈ M.

Corollary
If R ↪→ S are commutative rings, and s1, s2, . . . , sn are integral
over R, then any element of R[s1, . . . , sn] is integral over R.
Moreover, if T is the set of elements of S integral over R, T is a
subring. It is called the integral closure of R in S.

Definition
If T = S, S is called an integral extension of R.
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Transitivity

Proposition
If R ↪→ S1 ↪→ S2 are commutative rings with S1 integral over R
and S2 integral over S1, then S2 is integral over R.

Proof. Let u ∈ S2 be integral over S1

un + sn−1un−1 + · · ·+ s1u + s0 = 0, si ∈ S1.

It suffices to observe that

M = R[u, sn−1, . . . , s1, s0]

is a finitely generated R-module.
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Surjections

Another use of the Cayley-Hamilton theorem is the following
property of surjective epimorphims of modules:

Theorem
Let R be a commutative ring and M a finitely generated R. If
ϕ : M → M is a surjective R-module homomorphism, then ϕ is
an isomorphism.

Proof. We first turn M into a module over the ring of
polynomials S = R[t ] by setting t ·m = ϕ(m) for m ∈ M.

The assumption means that tM = M. Using the proof of
Cayley-Hamilton, we have
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 ta11 − 1 · · · ta1n
...

. . .
...

tan1 · · · tann − 1


 x1

...
xn

 =

 0
...
0

 = A[x] = O.

Which implies that det A annihilates M. Since

det A = ±1 + tf(t),

it is clear that t ·m 6= 0 for m 6= 0, that is ϕ is one-to-one.
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Jacobson Radical

Definition
Let R be a commutative ring. Its Jacobson radical is the
intersection

⋂
Q of all maximal (proper) ideals.

Example: If R is a local ring, its Jacobson radical is its unique
maximal ideal m.

If R = Z, or R = k [t ], polynomial ring over the field k , then (0)
is the Jacobson radical: from the infinity of prime elements.
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Proposition
The Jacobson radical J of R is the set

J ′ = {a ∈ R : 1 + ra is invertible for all r ∈ R}.

Proof. If a ∈ J, then 1 + ra cannot be contained in any proper
maximal ideal, that is it must be invertible.
Conversely, if a ∈ J ′, suppose a does not belong to the maximal
ideal Q. Therefore

(a,Q) = R

which means there is an equation ra + q = 1, q ∈ Q, and q
would be invertible.
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Nakayama Lemma

Theorem (Nakayama Lemma)
Let M be a finitely generated R module and J its Jacobson
radical. If

M = JM,

then M = 0.

Proof. If M is cyclic, this is clear: M = (x) implies x = ux for
some u ∈ J, so that (1− u)x = 0, which implies x = 0 since
1− u is invertible.
We are going to argue by induction on the minimal number of
generators of M. Suppose M = (x1, . . . , xn). By assumption
x1 ∈ JM, that is we can write

x1 = u1x1 + u2x2 + · · ·+ unxn, ui ∈ J.
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Which we rewrite as

(1− u1)x1 = u2x2 + · · ·+ unxn

This shows that x1 ∈ J(x2, . . . , xn), and therefore
M = (x2, . . . , xn).

Corollary
Let M be a finitely generated R module and N a submodule. If
M = N + JM then M = N.

Proof.
Apply the Nakayama Lemma to the quotient module M/N

M/N = N + JM/N = J(M/N).
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Corollary
Let R be a commutative ring and M a finitely generated
R-module. If for some ideal I, IM = M, then (1 + a)M = 0 for
some a ∈ I.

Proof.
If M = (x1, . . . , xn), from the proof of Cayley-Hamilton, there are
aij ∈ I a11 − 1 · · · a1n

...
. . .

...
an1 · · · ann − 1


 x1

...
xn

 =

 0
...
0

 = A[x] = O.

Which implies that det A annihilates M. Since
det A = ±1 + a, a ∈ I, done
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Corollary
Let R be a commutative ring and I a finitely generated ideal.
Then I = I2 if and only if I is generated by an idempotent, that is
I = Re, e2 = e.

Proof.

If (1 + a)I = 0, I ⊂ (a) and a2 = a.
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Integral Morphisms

Let ϕ : R → S an injective homomorphism of commutative
rings.

Theorem (Lying-Over Theorem)
If S is integral over R then for each p ∈ Spec (R) there is
P ∈ Spec (S) such that p = P ∩ R, that is the morphism

Spec (S)→ Spec (R)

is surjective.
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Proposition
If S is integral over R and T is a multiplicative set of R, then
T−1S is integral over T−1R.

Proof.

Let s/t ∈ T−1S. s satisfies an equation

sn + an−1sn−1 + · · ·+ a1s + a0 = 0, ai ∈ R.

Then

(s/t)n + an−1/t(s/t)n−1 + · · ·+ a1/tn−1s/t + a0/tn = 0,

ai/tn−i ∈ T−1R.
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Proof of Lying-Over

Suppose p ∈ Spec (R). Consider the integral extension
Rp ↪→ Sp.

The maximal ideal of Rp is m = pRp.

Claim: mSp 6= Sp.

Otherwise we would have

1 ∈ mSp

1 =
n∑

i=1

aisi/ti , ai ∈ m, si ∈ S, ti ∈ R \ p
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1 Set S′ = Rp[s1, . . . , sn].

2 S′ is a finitely generated Rp-module with S′ = mS′. By
Nakayama Lemma, S′ = 0.

3 Since mSp 6= Sp, it is contained in a prime ideal P ′ of Sp. In
particular, P ′ ∩ Rp = m.

4 Since P ′ = Pp for some P ∈ Spec (S), it is clear that
P ∩ R = p, as desired.



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Going-Up Theorem

Theorem
Let R ↪→ S be an integral extension of commutative rings. Let
p1 ( p2 be prime ideals of R and suppose P1 is a prime ideal of
S such that P1 ∩ R = p1. Then there is a prime ideal P1 ( P2 of
S such that P2 ∩ R = p2.

Proof. Consider the diagram

R

��

↪→ S

��
R/p1 ↪→ S/P1

Now apply the Lying-Over theorem to the integral extension

R/p1 ↪→ S/P1.
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Going-Down Theorem

? Is there

Theorem (?Going-Down Theorem)
Let R ↪→ S be an integral extension of commutative rings. Let
p1 ( p2 be prime ideals of R and suppose P2 is a prime ideal of
S such that P2 ∩ R = p2. Then there is a prime ideal P1 ( P2 of
S such that P1 ∩ R = p1.

Yes, but needs additional assumptions. Proof uses some basic
Galois theory.
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Dedekind Domains

These are important rings. The interest springs from their
sources:

Number Theory: Rings of algebraic numbers: If L is a finite
extension of Q, R is the ring of elements of L integral over
Z.
Algebraic Geometry: (Case of plane curve)
R = k [x , y ]/(f(x , y)), or its integral closure.
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Dedekind Domains

The formal definition is:

Definition
The integral domain D is a Dedekind domain if every ideal is
invertible.

D is a nice notation for D.D.’s, but we shall use plain R...
The inverse of a fractionary ideal L is denoted L−1 (it is
unique).
Of course every fractionary ideal will be invertible as well.
If R is a Dedekind domain, it is Noetherian.
Besides PID’s, what are they like?
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Properties of D.D.’s

Theorem
If R is a Dedekind domain then every nonzero prime ideal is
maximal.

Proof.
We will argue by contradiction. Let P ( Q be distinct prime
ideals. We are going to form the ring of fractions S = RQ
(Recall ...). S is a local ring and PQ and QQ are distinct prime
ideals. They are both invertible. Thus

PQ = Sa ( Sb = QQ

with a = cb, and therefore c ∈ PQ since b /∈ PQ. Thus

c = ra = b−1a,

and b−1 ∈ R, which is impossible.



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Factorization

Theorem
Let R be a Dedekind domain. Then any nonzero ideal I has a
unique factorization

I = Pe1
1 · · ·P

en
n ,

where the Pi are distinct prime idealas.

Proof. Since R is Noetherian, I has a primary decomposition

I = Q1 ∩ · · · ∩Qn,

where the Pi =
√

Qi are distinct maximal ideals.

We want to argue that the intersection is actually a product.

Definition
Two ideals J and L are co-maximal if J + L = R.
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Lemma
If J and L are co-maximal ideals, then JL = J ∩ L.

Proof.
It is clear that JL ⊂ J ∩ L. For the converse, let x ∈ J ∩ L. Since
J + L = R, there are a ∈ J and b ∈ L such that

1 = a + b, hence

x = xa + xb, with xa, xb ∈ J ∩ L

Now we apply this to I = Q1 ∩ L, L = Q2 ∩ · · · ∩Qn. To see that
Q1 and L are co-maximal, deny. Then Q1 + L ⊆ M for some
maximal ideal M. This ideal would contain

√
Q1 and Q2 · · ·Qn.

Thus M would contain two other maximal ideals, a
contradiction.
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Primary ideals

Proposition
Let R be a Dedekind domain. If Q is a P-primary ideal, then
Q = Pe, for some e ≥ 1.

Proof.
Since the radical of Q is P, some power of P is contained in Q,
say Pe ⊆ Q, with e as small as possible. If the containement is
proper, we have

Pe ·Q−1 ( Q ·Q−1 = R.

Therefore we must have

Pe ·Q−1 ⊆ P and therefore

Pe−1 ⊆ Q which is a contradiction.
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Corollary
If R is a Dedekind domain, the nonzero fractionary ideals form
a multiplicative group G, with the nonzero principal fractionary
forming a subgroup P. The quotient G/P is called the class
group C(R) of R. R is a PID if and only if C(R) is trivial.
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Remarks

1 Recall that if R ⊂ S are rings, an element u ∈ S is integral
over R if it satisfies a monic equation with coefficients in R,
un + r1un−1 + · · ·+ rn = 0, ri ∈ R.

2 If every element of S that is integral over R already lies in
R, R is said to be integrally closed in S.

3 If R is a domain of field of fractions K and L is a finite
extension of K, for any u ∈ L there is an equation
un + r1un−1 + · · ·+ rn = 0, ri ∈ K. Let 0 6= d ∈ R such that
dri ∈ R (d is a common denominator of the ri .) Then
dnun + dr1dn−1un−1 + · · ·+ dnrn = 0, ri ∈ K, showing that
du is integral over R.
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Characterization of D.D.’s

Theorem
Let R be an integral domain of field of fractions K. The following
are equivalent:

1 R is a Dedekind domain.
2 R is a Noetherian ring in which every nonzero prime ideal

is maximal and R is integrally closed in K.
3 R is Noetherian and for each prime ideal P the localization

RP is a PID.

We will check the equivalences:

(1)⇔ (2)⇔ (3)



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Some remarks on localization

If R is an integral domain then

R =
⋂
P

RP , all maximal ideals P

Indeed, if x is contained in each RP ,

x = a/b, b /∈ P,

the set (an ideal) of all elements d (denominators) such
that dx ∈ R is not contained in any maximal ideal of R, so
must be R.
If each RP is integrally closed, then their intersection will
also be such: If z ∈ K is integral over R, it is also integral
over the larger RP . Thus z ∈ RP .
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Characterization of a PID with a unique maximal
ideal

Proposition
Let R be a Noetherian domain with a unique nonzero prime
ideal m. R is a PID if and only if R is integrally closed.

Proof. ETS that if R is integrally closed then m is invertible.

Let 0 6= x ∈ m. Then the radical
√

(x) of (x) is m.
Let n be the smallest integer such that mn ⊂ (x). Consider
the product

(1/x)mn−1m ⊂ R

If (1/x)mn−1m = R, m is invertible.
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If not, (1/x)mn−1m ⊂ m.
Recall the Cayley-Hamilton for modules: If E is a faithful,
finitely generated R-module and z is an element of a larger
ring such that z ·M ⊂ M, then z is integral over R.
This implies that (1/x)mn−1 is integral over R, therefore is
contained in R, since it is integrally closed, that is
mn−1 ⊂ (x), which contradicts the choice of n.
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Taylor expansion

It is useful to keep in mind the formula for the Taylor expansion
of a polynomial f(x , y) around the point (a,b)
Use the notation

bmn =
∂m+nf
∂mx∂ny

(a,b)

f(x , y) = f(a,b) + b10(x − a) + b01(y − b)

+ 1/2(b20(x − a)2 + 2b11(x − a)(y − b) + b02(y − b)2)

+ higher powers
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Elliptic curve

Let us first consider the following example,

R = C[x , y ]/(f(x , y)), f(x , y) = y2 − x(x − 1)(x − 2).

By the Nullstellensatz its maximal ideals are of the form
M = (x − α, y − β), where β2 − α(α− 1)(α− 2) = 0.
We claim that RM is a PID. Write the polynomial f(x , y) as a
combination of x − α and y − β

f(x , y) = A(x , y)(x − α) + B(x , y)(y − β)

∂f
∂x

(α, β) = A(α, β)

∂f
∂y

(α, β) = B(α, β)
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Elliptic curve cont’d

If one of the partial derivatives is not zero at (α, β), in the ring R
A(x , y) or B(x , y) are not in M, therefore one or the other is a
unit in RM so that the maximal ideal MRM is generated by y − β
or x − α:

f(x , y) = 0 = A(x , y)(x − α) + B(x , y)(y − β)

It is easy to check that the conditions always holds since the
partial derivatives are 2y and
(x − 1)(x − x) + x(x − 2) + x(x − 1).
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Volunteer please

Need someone to sketch the graph of the curve

y2 = x(x − 1)(x − 2)
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Geometric DD’s

Let f(x , y) ∈ R = C[x , y ] be an irreducible polynomial. The
algebraic variety

V (f) = {(a,b) ∈ C : f(a,b) = 0}
is called a (plane) curve.

We know that every maximal ideal of C[x , y ] is of the form
M = (x − a, y − b), for a,b ∈ C
Thus if f ∈ M is a combination of the polynomials, x − a
and y − b, f = g(x − a) + h(y − b), so f(a,b) = 0
Conversely, if f(a,b) = 0, writing the Taylor expansion of
f(x , y) at a,b) we get

f(x , y) =
∑

m+n≥0

amn(x − a)m(y − b)n, amn ∈ C

showing f ∈ (x − a, y − b).
So points in f = 0 and maximal ideals of R/(f) correspond.
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Let us determine when R/(f) is a Dedekind domain. For that
we define the ideal (Jacobian)

J(f) = (f,
∂f
∂x
,
∂f
∂y

)

Theorem
R/(f) is a Dedekind domain iff J(f) = (1).

Note what this means, if (a,b) is a point of the curve,
f(a,b) = 0, that is f ∈ M = (x − a, y − b), but because the ideal
J(f) = (1), either ∂f

∂x (a,b) 6= 0 or ∂f
∂y (a,b) 6= 0. This means

f(x , y) = 0 has a tangent at (a,b).
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Proof

We are going to prove that for every maximal ideal M of
R = C[x , y ]/(f), RM is a PID. For that, by a previous result,
it will be enough to prove that the maximal ideal MRM is
principal.
Since M is generated by the cosets of x − a and y − b for
(a,b) such that f(a,b) = 0, it will be enough to show that
x − a is a multiple of y − b in RM , or vice-versa.
We are going to make use of the fact that one of the partial
derivatives ∂f

∂x (a,b) or ∂f
∂y (a,b) is nonzero.
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Proof cont’d

Suppose ∂f
∂x (a,b) 6= 0. Let us write the Taylor expansion of

f(x , y) at (a,b) (using that f(a,b) = 0.
We collect first the terms in which x − a appears alone

(x−a) [
∂f
∂x

(a,b) + 1/2a2,0(x − a) + higher powers of (x − a)]︸ ︷︷ ︸
+(y − b)[polynomial expression in x − a and y − b]
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Since this is the coset of f(x , y), it is zero.
Note that the coefficient of x − a

∂f
∂x

(a,b) + 1/2a2,0(x − a) + higher powers of (x − a)

is a sum of an invertible element (the derivative) plus an
element of MRM , so it is an invertible element of RM .
This shows that x − a is a multiple of y − b, and therefore
MRM is a principal ideal.
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Creation of new D.D.’s

Theorem
Let R be a Dedekind domain of field of fractions K and let L a
finite extension of K. The integral closure A of R in L is a
Dedekind domain.

The main burden is to show that A is a Noetherian ring. We will
give a proof in case L is a separable extension, when one has
that A is a finitely generated R-module. To get that we replace
L by M its split closure over K, and show that the integral
closure B of R in M is a finitely generated R-module. Note that
A is an R-submodule of B.
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Exercise

Let D be a Dedekind domain of field of fractions K. Prove
that any ring R ⊂ S ⊂ K is a Dedekind domain.
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Noetherianess of the integral closure

Theorem
Let R be an integrally closed Noetherian domain of field of
fractions K and let L a finite Galois extension of K. The integral
closure A of R in L is a Noetherian domain.
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Proof

Let G be the Galois group of L over K. The trace is the
function u ∈ L→ T(u) =

∑
σ∈G σ(u). Since the extension

is Galois and T(u) is fixed by G, T(u) ∈ K.
If u is integral over R, there is an equation
um + c1um−1 + · · ·+ cm = 0, with ci ∈ R. Thus for any
σ ∈ G, σ(u) is also integral over R and therefore T(u) is in
K and integral over R, thus T(u) ∈ R since R is integrally
closed.
Define the quadratic form S(u, v) = T(uv) on L. S is
nondegenerate: If u 6= 0 we cannot have T(uv) = 0 for all
v , by the linear independence of automorphisms.
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Proof cont’d

Let x1, . . . , xn be a basis of L over K. By multiplying the xi
by nonzero elements of R we may assume that xi ∈ A.
Let y1, . . . , yn be a basis of L dual to the xi , that is
T(xiyj) = δij .
For u ∈ A, write u = r1y1 + · · ·+ rnyn. Then
T(uxi) = riT(xiyi) = ri . Since T(uxi) ∈ R, this shows that A
is contained in the finitely generated R-module
Ry1 + · · ·+ Ryn, and thus A is Noetherian as an R-module
and hence a Noetherian ring as well.
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Examples

The most famous example obtained in this fashion is Z[i]:
Gaussian integers. It is the integral closure of Z in Q(i).
The more general quadratic extension Q(

√
m), m a

squarefree integer is easy to examine. z = a + b
√

m,
a,b ∈ Q, is integral over Z iff 2a and a2 − b2m are integers.
Thus a is an integer (and b is integer) or a is 1/2 integer
and b also a 1/2 integer, depending on the residue class of
m mod 4.
If m = 3, A = Z[

√
3]; if m = 5, A = Z[1/2 + 1/2

√
5]; if

m = −5, A = Z[
√
−5].
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Infinitely generated modules

Theorem
Let R be a DD. Then any submodule of a free module is a
direct sum of ideals.

Done already. Recall the idea:
Proof. Let F be a free module with basis {ei , i ∈ I}, and
suppose the index set I is well-ordered. For each i ∈ I set

Fi =
⊕
j<i

Rej ,

with F0 = 0 and Fi+1 =
⊕

j≤i Rej .
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For a submodule M of F each x ∈ M ∩ Fi+1 has a unique
expression x = y + rei , where y ∈ Fi and r ∈ R. If
φi : M ∩ Fi+1 → R is defined by φi(x) = r , there is a SES

0→ M ∩ Fi −→ M ∩ Fi+1 −→ Ii → 0,

where Ii = image φi .
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To make the point clear, suppose

F = Re1 ⊕ · · · ⊕ Ren−1 ⊕ Ren = F ′ ⊕ Ren

gives 0→ M ∩ F ′ −→ M −→ Inen → 0, and therefore
M ' Inen ⊕M ∩ F ′. Now use induction.
Same in general case: Since Ii is projective (as R is a D.D.), the
sequence splits: M ∩ Fi+1 = (M ∩ Fi)⊕ Ci , Ci ' Ii .
We claim M =

⊕
i Ci . Same proof from now on
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Torsion and Torsionfree Modules

Let R be an integral domain and M an R-module. The
torsion submodule of M is the set

T (M) = {x ∈ M : rx = 0, 0 6= r ∈ R}

T (M) is a submodule of M. If T (M) = M, M is said to be a
torsion module. If T (M) = 0, M is called torsionfree.
T (M/T (M)) = 0, that is M/T (M) is torsionfree.
A set {x1, . . . , xn} ⊂ M is linearly independent if∑

i rixi = 0, ri ∈ R, implies ri = 0.
The largest cardinality of the sets of linearly independent
elements of M is the torsionfree rank of M.
A nonzero ideal I of R has torsionfree rank 1: If
0 6= x , y ∈ I, xy − yx = 0 is a relation.
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Proposition
If M is a finitely generated torsionfree module of rank n, then
there is an embedding

M ↪→ Rn.

Proof.
Let M = (y1, . . . , ym) and let {x1, . . . , xn} be a linearly
independent set of elements of M.

For each yj , we have a relation

cjyj +
∑

i

aijxi = 0, cj 6= 0

Let c =
∏

j cj and consider the elements zi = xi
c of the module

of fractions c−1M. The zi are linearly independent over R and
each generator of M is contained in the free module
(z1, . . . , zn).
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Structure of finitely generated modules

Theorem
Let R be a Dedekind domain and M a finitely generated
R-module. Then

M ' T ⊕ P,

where T is the torsion submodule of M and P = M/T is a
projective R-module. Moreover:

1 P ' R ⊕ · · · ⊕ R︸ ︷︷ ︸
free

⊕I, where I is a unique ideal up to

isomorphism.
2 T ' R/I1 ⊕ · · · ⊕ R/Im, I1 ⊆ . . . ⊆ Im, where the Ii are

uniquely defined.



General Orientation Syllabus Introduction Chain Conditions Prime Ideals Primary Decomposition Noetherian Rings Graded Noetherian Rings Commutative Artinian Rings Modules of Fractions Integral Extensions Dedekind Domains Valuation Rings Homework

Proof

In the exact sequence 0→ T −→ M −→ M/T → 0,
P = M/T is torsionfree, so embeds into a finitely
generated free R-module (why?).

P is projective, so the sequence splits: M ' T ⊕ P.

P we know is isomorphic to a direct of ideals. One
improves this to a direct sum of a free and one ideal. This
ideal is unique up to isomorphism. We will describe it later:
it is called the determinant of the module M.

T is actually a module over a PID S derived from R.
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Valuation Rings

Definition
An integral domain A of field of fractions K is a valuation ring of
K if for 0 6= x ∈ K, x ∈ A or x−1 ∈ A.

Examples

A: the set of all rational numbers a/b, b odd.
If k is a field and A = k [[x ]], the ring of formal power series.
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Properties of Valuation Rings

Proposition
Let A be a valuation ring of field of fractions K. Then

1 A is a local ring;
2 Any ring A ⊂ A′ ⊂ K is a valuation ring;
3 A is integrally closed;
4 If I is a finitely generated ideal of A then I is principal.

Proof. (1) Let m be the set of non-units of A. We must show
that m is an ideal. Clearly if x ∈ m and r ∈ A, rx ∈ m.

Let x , y ∈ m; must show x + y ∈ m. We may assume x , y 6= 0.
If x/y = r ∈ A,

x + y = y(r + 1) ∈ m.

If y/x ∈ A argue similarly.
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(2) Obvious.

(3) Let x ∈ K be integral over A:

xn + b1xn−1 + · · ·+ bn = 0, bi ∈ A.

If x ∈ A, NTS.
If x−1 ∈ A,

x = −(b1 + b2x−1 + · · ·+ bn(x−1)n−1) ∈ A.

(4) Enough to show that I = (x , y) is either (x) or (y): seen
above.
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Construction of Valuation Rings

Theorem
Let R be an integral domain of field of fractions K. If I is a
proper ideal of R there is a valuation ring A of K, R ⊂ A, such
that IA 6= A.

Proof. We may assume that I is a maximal ideal m. We may
also replace R by Rm, which is a local ring. We still denote by m

its maximal ideal.

We are going to produce A using Zorn’s Lemma.
Consider the set A of local rings of K of the form (R′,m′),
where R ⊂ R′, m ⊂ m′. Order these rings by

(R′,m′) ≤ (R′′,m′′)⇔ R′ ⊂ R′′,m′ ⊂ m′′

It is clear that the union of a chain (Rn,mn) of such rings is
a local ring of the same kind.
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Let (A,M) be a maximal element. We claim that A s a
valuation ring of K.

Let 0 6= x ∈ K and suppose neither x nor x−1 lies in A.
Consider the two subrings A1 = A[x ] and A2 = A[x−1] of
K.

If MA1 6= A1 (or similarly MA2 6= A2), we could localize A1
at a prime ideal containing M and obtain an extension in A
properly larger than A.
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The equalities A1 = MA1 and A2 = MA2 means that there
are equations

1 =
m∑

i=0

aix i

1 =
n∑

j=0

bjx−j

where ai ,bj ∈ M.

In each of these equations, say, we could rewrite as
1− a0 =

∑m
i=1 aix i and as 1− a0 is invertible we could

assume the summations run from 1 on.
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Thus the second equation, 1 =
∑n

j=1 bjx−j would give rise
to the equality

xm =
m∑

j=1

bjxm−j

which says that x is integral over A.

Now we appeal to the going up theorem: Since A[x ] is an
integral extension of A, MA[x ] 6= A[x ], which is a
contradiction.

One application:
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The integral closure of a domain

Theorem
Let R be an integral domain of field of fractions K. The integral
closure of R is the intersection of the valuation rings of K
containing R.

Proof. Let B be the integral closure of R and C the intersection
of the valuation rings of K that contain R.

Suppose x ∈ C \ B. Then x /∈ B[x−1]. This means that x−1 is
contained in some maximal ideal of B[x−1]. By the construction
there is a valuation ring V such that x−1V 6= V . But x ∈ V ,
which is a contradiction. �
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Homework

Find the kernel of the homomorphism (K is a field)

ϕ : K[x , y , z] −→ K[t ],

defined by ϕ(x) = t4, ϕ(y) = t5 and ϕ(z) = t7. What do
you think is true in general?
Show that R = C[x , y ]/(y2 − x(x − 1)(x − 2)) is a
Dedekind domain. [Show that y2 − x(x − 1)(x − 2) is
irreducible, use the Nullstellensatz to describe the maximal
ideals of R, and show that for each such ideal P, RP is a
discrete valuation domain.]
If R is a Dedekind domain, prove that for each nonzero
ideal I, R/I is a principal ideal ring. Derive from this the
fact that every ideal of R can be generated by 2 elements.
Show that an invertible ideal of a local integral domain is
principal.
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Let I be a finitely generated ideal of the commutative ring
R. Prove that if I2 = I, then I = Re, e2 = e.
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