## Math 552: Abstract Algebra II

### Wolmer V. Vasconcelos

Set 5

Spring 2009

# Outline

| 1  | Intro to Homological Algebra |
|----|------------------------------|
| 2  | Assignment #18               |
| 3  | The Hom Functor              |
| 4  | Projective Resolutions       |
| 5  | Assignment #19               |
| 6  | Hilbert Syzygy Theorem       |
| 7  | Assignment #20               |
| 8  | Multilinear Algebra          |
| 9  | Tensor Products of Modules   |
| 10 | Assignment #21               |
| 11 | Hilbert Functions            |
| 12 | Assignment #22               |
| 13 | TakeHome #2                  |

## Intro to Homological Algebra

Let *R* be a ring. We are going to examine some of the objects of the category M(R) of left *R*-modules and their homomorphisms.

We have studied very few classes of modules—with two notable exceptions:

- Modules over PIDs or Dedekind domins
- Modules over semisimple rings

Even for these modules, we have yet to examine in some detail the morphisms between these modules.

# **Big Picture**

We will focus on rings such as  $R = k[x_1, ..., x_d]$ , rings of polynomials in d > 1 indeterminates over a field k.

The following modules will me significant:

Modules of syzygies: Those that occur as modules of relations

$$0 \rightarrow M \longrightarrow R^n \longrightarrow E \rightarrow 0$$

 Graded modules: Modules with a decomposition as k-vector spaces

$$M = \bigoplus_{n \in \mathbb{Z}} M_n, \quad x_i \cdot M_n \subset M_{n+1}$$

They have interesting numerical functions attached (the Hilbert function of *M*)  $H_M(n) := \dim_k M_n$ 

## **Free modules**

### Definition

A free module *F* is a module  $F = \bigoplus_{\alpha} R_{\alpha}$ ,  $R_{\alpha} \simeq R$ . In other words, there is a set  $\{e_{\alpha}\}$  of elements in *F* such that every  $v \in F$  has a unique representation  $v = r_{\alpha_1}e_{\alpha_1} + \cdots + r_ne_{\alpha_n}$ ,  $r_i \in R$ .

They are characterized by the following:

### Proposition

Given any mapping  $\varphi : \{e_{\alpha}\} \to A$ , where A is an R-module, there exists a unique homomorphism  $\mathbf{f} : F \to A$  such that  $\mathbf{f}(e_{\alpha}) = \varphi(e_{\alpha})$ .

**Proof.** Set 
$$f(\sum_{\alpha} r_{\alpha} e_{\alpha}) = \sum_{\alpha} r_{\alpha} \varphi(e_{\alpha})$$
.

## Homomorphisms

(

Let  $\mathbf{f}: A \rightarrow B$  be a homomorphism of R-modules. Recall

A complex of *R*-modules is a sequence of *R*-modules and homomorphisms

$$\mathbb{F}: \cdots \longrightarrow F_n \xrightarrow{\mathbf{f}_n} F_{n-1} \xrightarrow{\mathbf{f}_{n-1}} F_{n-2} \longrightarrow \cdots$$

such that  $\mathbf{f}_{n-1} \circ \mathbf{f}_n = 0$  for each *n*. This condition means that image  $\mathbf{f}_n \subset \ker(\mathbf{f}_{n-1})$  for each *n*. If one has equality, the complex is said to be exact. (A variation of terminology is *acyclic*, which we will clarify later.)

## **Short Exact Sequences**

SES are the exact complexes of the form

$$0 \to A \xrightarrow{\mathbf{f}} B \xrightarrow{\mathbf{g}} C \to 0$$

**f** is 1-1, **g** is onto and Image  $\mathbf{f} = \ker \mathbf{g}$ . They are the basic components of longer exact complexes: The exact complex

$$0 \to A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \stackrel{h}{\longrightarrow} D \to 0$$

is a concatenation of the two SES

$$0 \to A \xrightarrow{\mathbf{f}} B \longrightarrow \text{image } \mathbf{g} \to 0, \quad 0 \to \ker(\mathbf{h}) \longrightarrow C \xrightarrow{\mathbf{h}} D \to 0$$

glued by the equality image  $\mathbf{g} = \ker \mathbf{h}$ .

# Syzygies

Let *A* be an *R*-module and  $\{m_{\alpha}\}$  a set of elements of *A*-possibly a set of generators. Using the same index set, let *F* be a free *R*-module with a basis  $\{e_{\alpha}\}$ . Define a mapping  $\mathbf{f}: F \to A$  by setting  $\mathbf{f}(e_{\alpha}) = m_{\alpha} \in A$ .

### Definition

An element  $\sum_{\alpha} r_{\alpha} e_{\alpha}$  is called a relation or a syzygy of the  $m_{\alpha}$  if  $\sum_{\alpha} r_{\alpha} m_{\alpha} = 0$ . The set of all these relations is a submodule of *F*, the kernel of **f**.

## **Free presentation**

Let *E* be an *R*-module generated by the set  $\{u_i\}$ ,  $1 \le i \le n$ . Let *F* be a free module with basis  $\{e_i\}$ ,  $1 \le i \le n$ . Let *L* be the module of syzygies  $\{v = (r_1e_1 + \cdots + r_ne_n)\}$ . If  $v_1, \ldots, v_m$  is a set of generators of *L*, we have a complex

$$R^m \stackrel{\mathbf{A}}{\longrightarrow} R^n \longrightarrow E o 0,$$

where **A** is an  $m \times n$  matrix

$$\mathbf{A} = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{bmatrix},$$

whose rows are the coordinates of the  $v_j$ . *E* is coded by **A**. Can the properties of *E* be derived directly from **A**?

## **Projective modules**

### Definition

An *R*-module *P* is projective if *P* a direct summand of a free *R*-module *F*,  $F \simeq P \oplus Q$ .

$$\textcircled{0} \text{ Let } R = \mathbb{Z} \times \mathbb{Z} \text{ and } P = \mathbb{Z} \oplus (O) \text{ and } Q = (O) \oplus \mathbb{Z}.$$

 $P \cong P \oplus Q$ 

Note that P is not R-free

## **Properties**

If P<sub>α</sub> is a family of projective modules, then P = ⊕<sub>α</sub> P<sub>α</sub> is projective: For each α there is P<sub>α</sub> ⊕ Q<sub>α</sub> ≃ F<sub>α</sub>, a free *R*-module. Setting Q = ⊕<sub>α</sub> Q<sub>α</sub> we have

$$P \oplus Q \simeq \bigoplus_{\alpha} F_{\alpha}.$$

 If *P* is projective, there is a free *R*-module *G* such that *P* ⊕ *G* ≃ *G*: Setting

$$G = Q \oplus P \oplus Q \oplus P \oplus \cdots \simeq F \oplus F \oplus \cdots$$

gives  $P \oplus G \simeq G$ 

# Characterization of projective modules

## Proposition

An *R*-module *E* is projective iff whenever there is a surjection  $\mathbf{f} : M \longrightarrow E \rightarrow 0$ , there exists a homomorphism  $\mathbf{h} : E \longrightarrow M$  such that the composite  $\mathbf{f} \circ \mathbf{h}$  is the identity  $\mathbf{I}$  of *E*.

### Proof.

- Suppose  $E \oplus Q \simeq F = \bigoplus Re_{\alpha}$ ,  $Re_{\alpha} \simeq R$ . Note that each  $e_{\alpha} = p_{\alpha} + q_{\alpha}$ ,  $p_{\alpha} \in E$ ,  $q_{\alpha} \in Q$ .
- Since **f** is surjective, for each  $p_{\alpha}$  there is  $m_{\alpha} \in M$  such that  $\mathbf{f}(m_{\alpha}) = p_{\alpha}$ .
- Because *F* is free, we can define a map **g** : *F* → *M* such that **g**(*e*<sub>α</sub>) = *m*<sub>α</sub>.
- If we let **h** be the restriction of **g** to its submodule *E*, we have the forward implication.

For the converse, pick a surjection  $\mathbf{f} : F \longrightarrow E \rightarrow 0$ , where *F* is a free *R*-module. The existence of  $\mathbf{h} : E \longrightarrow F$  such that  $\mathbf{f} \circ \mathbf{h} = \mathbf{I}_E$  easily shows that if we set  $P = \mathbf{h}(E)$  and  $Q = \ker(\mathbf{f})$ , then

•  $P \simeq E$ , as **h** is one-one onto

• 
$$F = P + Q$$

• 
$$P \cap Q = (O)$$

• Therefore  $F = P \oplus Q \simeq E \oplus Q$ 

## **3-Sphere**

$$R = \mathbb{R}[x, y, z]/(x^2 + y^2 + z^2 - 1) = \mathbb{R}[u, v, w], \quad u^2 + v^2 + w^2 = 1$$
$$f : R^3 \longrightarrow R, \quad f(a, b, c) = au + bv + cw$$

• 
$$f(u, v, w) = u^2 + v^2 + w^2 = 1$$
, so f is surjective

- Since *R* is free, sequence splits, that is  $R^3 \simeq R \oplus \ker(\mathbf{f})$
- T = ker (f) consists of the elements (a, b, c) ∈ R<sup>3</sup> such that au + bv + cw = 0, i.e. of the vectors (a, b, c) perpendicular to (u, v, w)
- Discuss the picture!

# **Dedekind domains**

Let *R* be an integral domain of field of fractions K. The ideals of *R* are part of an important class of *R*-submodules of K:

### Definition

A submodule *L* of **K** is fractionary if there is  $0 \neq d \in R$  such that  $dL \subset R$ .

- This means that  $L = d^{-1}Q$ , where Q is an ideal of R.
- **2** K is not fractionary, unless R = K.

The sum and the product of fractionary ideals is fractionary. Another operation is

### Definition

The quotient of two fractionary ideals is

$$L_1: L_2 = \{x \in \mathbf{K} : xL_2 \subset L_1\}.$$

In particular

$$\boldsymbol{R}: \boldsymbol{L} = \{\boldsymbol{x} \in \boldsymbol{\mathsf{K}} : \boldsymbol{x} \boldsymbol{L} \subset \boldsymbol{R}\}.$$

 $L_1$  is said to be invertible if there is a fractionary ideal  $L_2$  such that  $L_1 \cdot L_2 = R$ .

## **Invertible Ideals**

## Proposition

If L is an invertible ideal of R, then L is a finitely generated R-module.

### Proof.

The equality  $L \cdot L' = R$  means that there are  $x_i \in L$ ,  $y_i \in L'$ ,  $1 \le i \le n$ , such that

$$1 = x_1 y_1 + \cdots + x_n y_n.$$

Thus for any  $x \in L$ ,

$$x = (xy_1)x_1 + \cdots + (xy_n)x_n$$

which shows that  $L_1 = (x_1, \ldots, x_n)$  since all  $xy_i \in R$ .

### Proposition

Let R be an integral domain and L an invertible ideal. Then L is a projective R-module.

#### Proof.

Let  $L = (x_1, ..., x_n)$  and  $L' = (y_1, ..., y_n)$  with  $L \cdot L' = R$  and  $x_1y_1 + \cdots + x_ny_n = 1$ . We use this data to show that *L* is a direct summand of a free *R*-module. Define the maps

$$\varphi: \mathbf{R}^n \to L, \varphi(\mathbf{e}_i) = \mathbf{x}_i,$$

$$\phi: L \to R^n, \quad \phi(x) = xy_1e_1 + \cdots + xy_ne_n, \quad x \in L$$

Observe:  $\varphi \circ \phi : L \to L$  is the identity of *L*.

# **Circle ring**

Let  $R = \mathbb{R}[\cos t, \sin t]$ , the ring of trigonometric polynomials.

$$(1 - \cos t, \sin t) \cdot (1 + \cos t, \sin t)$$
  
=  $(1 - \cos^2 t, (1 - \cos t) \sin t, (1 + \cos t) \sin t, \sin^2 t)$   
=  $\sin t(\sin t, 1 - \cos t, 1 + \cos t, \sin t)$   
=  $(\sin t)$ 

Thus  $(1 - \cos t, \sin t)$  is invertible, hence projective. In fact every ideal of *R* is invertible.

# **Injective modules**

### Definition

An *R*-module *E* is injective if for any diagram of modules and homomorphims

with **g** injective, there is a homomorphism  $\mathbf{h} : B \to E$  such  $\mathbf{f} = \mathbf{h} \circ \mathbf{g}$ .

Note that this says that "homomorphisms into *E* can be extended."

It is hard to test. The next results cuts down on the task.

## **Baer Test**

#### Theorem

An R-module E is injective if for any diagram of modules and homomorphims

g <sup>></sup> R

with **g** injective, there is a homomorphism  $\mathbf{h} : B \to E$  such  $\mathbf{f} = \mathbf{h} \circ \mathbf{g}$ .

**Proof.** Suppose we have a mapping  $\mathbf{f} : A \to E$  from the submodule  $A \hookrightarrow B$  we seek to extend it to a mapping  $\mathbf{h} : B \to E$ . The assumption is that this is possible whenever A is as ideal of B = R.

## Proof cond'd

- We are going to argue that if A ≠ B, we can extend
  f : A → E to a larger submodule A ⊊ A' ⊆ B, f' : A' → E.
- Then we use a simple application of Zorn's Lemma to build an extension  $\mathbf{g}: B \to E$ .
- Let b ∈ B \ A and let I = {r ∈ R : rb ∈ A}. I is a left ideal of R.
- Let use see how **f** induces a homomorphism  $\varphi : I \rightarrow E$ . For  $r \in I$ , define

$$\varphi(r) = \mathbf{f}(rb)$$

Let φ' be an extension of φ : I → E to φ' : R → E. Note that for any r ∈ I, φ(r) = φ'(r · 1) = rφ'(1).

• Define 
$$\mathbf{f}' : \mathbf{A} + \mathbf{Rb} \to \mathbf{E}$$
 by

$$\mathbf{f}'(\mathbf{a}+\mathbf{sb}) = \mathbf{f}(\mathbf{a})+\mathbf{s}\varphi'(\mathbf{1})$$

- We claim that f' is well defined: If x = a + sb = a' + s'b we must show the value f'(x) is independent of the representation.
- The equality gives (s − s')b = a' − a ∈ A so s − s' ∈ I and the assertion follows.
- Zorn's: Consider the set of pairs (C, f') where f' : C → E where f' extends f. This set is partially ordered. etc

# $\mathbb{Z}$ -modules

#### Theorem

Any injective  $\mathbb{Z}$ -module E is divisible (and conversely).

### Proof.

- Recall that an abelian group *E* is **divisible** if for  $x \in E$  and  $0 \neq n$  there is  $y \in E$  with x = ny.
- 2 Let *E* be an injective  $\mathbb{Z}$ -module. If  $x \in E$ , for any integer *n* there is a group homomorphism  $\mathbf{f} : (n) \to E$  with  $\mathbf{f}(n) = x$ .
- **Output** Denote by  $\mathbf{g}: (n) \to \mathbb{Z}$  the natural inclusion
- **(**) Since *E* is injective, let  $\mathbf{h} : \mathbb{Z} \to E$  such that  $\mathbf{f} = \mathbf{h} \circ \mathbf{g}$
- **5**  $x = \mathbf{f}(n) = \mathbf{h}(\mathbf{g}(n)) = \mathbf{h}(n \cdot 1) = n\mathbf{h}(1)$ , that is  $x = n\mathbf{h}(1)$

#### Corollary

A  $\mathbb{Z}$ -module is injective iff it is divisible.

## The ring of dual numbers

Let *k* be a field and  $R = k[x]/(x^2)$ . *R* is a ring which is a *k*-vector space of dimension two, with basis which we denote 1 and *u*, with  $u^2 = 0$ .

Let us show that as a module over itself, *R* is injective.

- We are going to use Baer Test. Observe that *R* has only 3 ideals: (0), (*x*) and *R*. Given a morphism from one of them, **f** : *I* → *R*, we must show it can be extended to a morphism **g** : *R* → *R*.
- If l = 0 or l = R, there is nothing to do, so we assume l = (x). If  $\mathbf{f} = 0$ , there is nothing to do.
- If  $\mathbf{f} \neq 0$ , the image of  $\mathbf{f} : (x) \rightarrow R$  is also (x), so  $\mathbf{f}(x) = rx$ ,  $r \in k$ .
- This shows that **g** can be taken as multiplcation by *r*

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 Multilinear Algebra Assignment #21 **Hilbert Functions** Assignment #22

## Assignment #18

Do one of the two problems.

- Prove that for any nonzero integer n, the ring R = Z/(n) is injective as an R-module. (We refer to this property by saying that R is self-injective.)
- Let *R* be an integral domain and *E* an injective *R*-module. Prove that the torsion submodule *T* of *E* is also injective.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** 3 Assignment #19 Hilbert Syzygy Theorem Assignment #20 Multilinear Algebra Assignment #21 Assignment #22

# The Hom Functor

Let *R* be a ring with 1. We denote by mod(R) the category of left *R*-modules. In most cases we assume *R* commutative.

- Let *E* be a left *R*-module. If *A* is an *R*-module we set  $\operatorname{Hom}_R(E, A)$  for the abelian group of all *R*-homomorphisms  $\mathbf{f} : E \to A$ . (If *R* is commutative,  $\operatorname{Hom}_R(E, A)$  is an *R*-module.)
- For example, if E = R,  $\operatorname{Hom}_R(R, A) \simeq A$ ,
- $\operatorname{Hom}_{R}(E, A \oplus B) \simeq \operatorname{Hom}_{R}(E, A) \oplus \operatorname{Hom}_{R}(E, B).$
- Many properties of this construction mimic what is done with vector spaces. Achtung: Hom<sub>Z</sub>(Z/(2), Z) = 0

## **Properties of Hom**

• If  $\varphi : \mathbf{A} \rightarrow \mathbf{B}$ , there is a group homomorphism

 $\varphi_* : \operatorname{Hom}_R(E, A) \to \operatorname{Hom}_R(E, B), \quad \varphi_*(f) = \varphi \circ f$ 

• We also write 
$$\varphi_* = \operatorname{Hom}(\varphi)$$

• 
$$\varphi_*(\mathbf{f}_1 + \mathbf{f}_2) = \varphi_*(\mathbf{f}_1) + \varphi_*(\mathbf{f}_2)$$

- If φ is the identity of A, I : A → A, then φ<sub>\*</sub> is identity of Hom<sub>R</sub>(E, A)
- If  $A \xrightarrow{\varphi} B \xrightarrow{\phi} C$  then  $(\phi \circ \varphi)_* = \varphi_* \circ \phi_*$

## **Exactness and Hom**

#### Proposition

Let R be a ring and E an R-module.

Then E is projective iff the functor Hom<sub>R</sub>(E, ·) is exact, that is for any SES of R-modules

$$0 \rightarrow A \longrightarrow B \longrightarrow C \rightarrow 0,$$

the complex

 $0 \to \operatorname{Hom}_{R}(E,A) \longrightarrow \operatorname{Hom}_{R}(E,B) \longrightarrow \operatorname{Hom}_{R}(E,C) \to 0$ 

is exact.

 $0 \to \operatorname{Hom}_{R}(C, E) \longrightarrow \operatorname{Hom}_{R}(B, E) \longrightarrow \operatorname{Hom}_{R}(A, E) \to 0$ 

is exact.

## **Exactness and Hom**

### Proposition

Let R be a ring and E an R-module.

• Then E is projective iff for each surjection  $B \longrightarrow C \rightarrow 0$ , the induced mapping

$$\operatorname{Hom}_{R}(E,B) \longrightarrow \operatorname{Hom}_{R}(E,C) \rightarrow 0$$

is also a surjection.

② Similarly, E is injective iff for each injection 0 → A → B, the induced mapping

$$\operatorname{Hom}_{R}(B, E) \longrightarrow \operatorname{Hom}_{R}(A, E) \rightarrow 0$$

is a surjection.

## **Exactness and Hom cont'd**

#### Proposition

Let R be a ring and E an R-module.

Then E is projective iff the functor Hom<sub>R</sub>(E, ·) is exact, that is for any SES of R-modules

$$0 \rightarrow A \longrightarrow B \longrightarrow C \rightarrow 0,$$

the complex

 $0 \to \operatorname{Hom}_{R}(E,A) \longrightarrow \operatorname{Hom}_{R}(E,B) \longrightarrow \operatorname{Hom}_{R}(E,C) \to 0$ 

is exact.

 $0 \to \operatorname{Hom}_{R}(C, E) \longrightarrow \operatorname{Hom}_{R}(B, E) \longrightarrow \operatorname{Hom}_{R}(A, E) \to 0$ 

is exact.

## Adjointness

Let us briefly discuss a tool that produces injective modules galore. It has many other uses that will be left untouched.

Let *A* be an *R*-module [say right *R*-module]. *A* being an abelian group, then for any abelian group *E* we may consider  $\operatorname{Hom}_{\mathbb{Z}}(A, E)$ . We make some observations about this abelian group:

 Hom<sub>ℤ</sub>(A, E) has a natural structure of a left *R*-module: For r ∈ *R* and f ∈ Hom<sub>ℤ</sub>(A, E) define

$$(r \cdot \mathbf{f})(a) = \mathbf{f}(ar)$$

• For any left *R*-module *B*,

 $\operatorname{Hom}_{R}(B, \operatorname{Hom}_{\mathbb{Z}}(R, E)) = \operatorname{Hom}_{\mathbb{Z}}(B, E)$ 

### Proposition

Let E be an injective  $\mathbb{Z}$ -module. Then  $\operatorname{Hom}_{\mathbb{Z}}(R, E)$  is a left [and right] injective R-module.

Proof. According to the observation above,

$$\operatorname{Hom}_{R}(B, \operatorname{Hom}_{\mathbb{Z}}(R, E)) = \operatorname{Hom}_{\mathbb{Z}}(B, E)$$

Since *E* is an injective  $\mathbb{Z}$ -module, the  $\mathbb{Z}$ -functor  $\operatorname{Hom}_{\mathbb{Z}}(\cdot, E)$  is exact, so the *R*-functor  $\operatorname{Hom}_{R}(\cdot, \operatorname{Hom}_{\mathbb{Z}}(R, E))$  is exact, hence the assertion.
### Characterization of injective modules

#### Proposition

An *R*-module *E* is injective iff whenever there is an embedding  $\mathbf{f} : E \longrightarrow M$ , there exists a homomorphism  $\mathbf{h} : M \longrightarrow E$  such that the composite  $\mathbf{h} \circ \mathbf{f}$  is the identity  $\mathbf{I}$  of *E*.

This is represented by the commutative diagram

$$E \xrightarrow{g^{f}} M$$

This is a special case of the definition of injective module. To prove the converse one first shows

#### Theorem

Every R-module A embeds into an injective module  $A \hookrightarrow E$ .

We first prove a very special case:

#### Theorem

Every abelian group A can be embedded into a divisible abelian group.

**Proof.** Let  $F = \bigoplus \mathbb{Z} e_{\alpha}$  be a free abelian group mapping onto A, so  $A \simeq F/L$ . Next embed F into the  $\mathbb{Q}$ -vector space  $G = \bigoplus \mathbb{Q} e_{\alpha}$ .

*G* is a divisible group and so is its homomorphic image G/L. But we have

$$A\simeq F/L \hookrightarrow G/L.$$

#### Theorem

Every R-module A embeds into an injective module  $A \hookrightarrow E$ .

#### Proof.

- First, embed A into a divisible abelian group,  $\varphi : A \hookrightarrow D$ .
- We claim that A embeds into Hom<sub>ℤ</sub>(R, D), which by the adjointness observation is an injective R-module.
- For each  $x \in A$  define  $\mathbf{f}(x) \in \operatorname{Hom}_{\mathbb{Z}}(R, D)$  by the rule  $\mathbf{f}(x)(r) = \varphi(rx)$ .
- It is clear that f is an *R*-module homomorphism and is 1-1 (as f(x)(1) = φ(x)).

### **Injective Resolution**

We can iterate the process of embedding a module into an injective module:

- Let *A* be an *R*-module, and  $0 \rightarrow A \xrightarrow{f_0} E_0$  an embedding with  $E_0$  injective.
- Set  $A_1 = E_0/f_0(A)$  and let  $0 \to A_1 \xrightarrow{f_1} E_1$  an embedding with  $E_1$  injective.
- Iteration leads to the exact complex

$$0 \to A \longrightarrow E_0 \longrightarrow E_1 \longrightarrow \cdots,$$

called an injective resolution of A.

If R = Z, after the first embedding 0 → A → E<sub>0</sub>, we already have an injective resolution since A<sub>1</sub> is a divisible abelian group.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor Projective Resolutions** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** Assignment #21 **Hilbert Functions** Assignment #22

### **Projective Resolution**

Let R be a ring and M an R-module. One of the most fruitful way to study M is to build the following structure:

$$O \to K \xrightarrow{\alpha} F = R^n \xrightarrow{\varphi} M \to 0, \quad K = \ker(\varphi)$$

with F a free (projective) module. This complex is called a free (projective) presentation of M.

We can build a free presentation of K itself

$$O \to L \longrightarrow G = R^m \stackrel{\beta}{\longrightarrow} K \to 0, \quad K = \ker(\beta)$$

and composing  $\mathbf{f} = \alpha \circ \beta$  get the acyclic complex where  $\mathbf{f}$  can be represented by a  $n \times m$  matrix with entries in R

$$R^{m} \stackrel{\mathbf{f}}{\longrightarrow} R^{n} \longrightarrow M \to 0$$

### Example

Let R = k[x, y], k a field, and M = (x, y), the ideal generated by x, y. A free presentation consists of the mapping

$$R^2 o (x, y), \quad (a, b) o ax + by, \quad a, b \in R$$

- The kernel *K* consists of {(*a*, *b*) : *ax* + *by* = 0} or *ax* = -*by*,
- This implies that a = yc and b = xd and therefore c = -d because x and y are prime elements
- Thus the kernel consists of elements c(y, −x), c ∈ R and therefore

$$O \rightarrow R \xrightarrow{\mathbf{f}} R^2 \longrightarrow (x, y) \rightarrow O, \quad \mathbf{f}(1) = (y, -x)$$

### Example

A more interesting example is  $M = (x, y, z) \subset R = k[x, y, z]$ . The full free presentation (meaning what) of *M* is the complex

$$0 \to R \xrightarrow{\mathbf{f}_2} R^3 \xrightarrow{\mathbf{f}_1} R^3 \xrightarrow{\varphi} M \to 0,$$

with maps (represented by matrices)

$$\mathbf{f}_1 = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}, \quad \mathbf{f}_2 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

This is another instance of a complex known as the Koszul complex

### Example

Another kind of resolution is illustrated by the example:  $M = (xy, xz, yz) \subset R = k[x, y, z]$ 

$$0 \to R^2 \stackrel{\mathbf{f}}{\longrightarrow} R^3 \stackrel{\varphi}{\longrightarrow} M \to 0$$

where

$$\mathbf{f} = \begin{bmatrix} z & 0\\ -y & y\\ 0 & -x \end{bmatrix}$$

This is an instance of a complex known as the Hilbert-Burch complex

### **Complexes from matrices**

Many complexes of free modules are associated to matrices **A** with entries in a ring R. Let us discuss one that goes back to Hilbert.

Let *R* be an integral domain [think a polynomial ring] and let **A** be an  $(n - 1) \times n$  matrix with entries in *R* [for convenience we make n = 3]:

$$\mathbf{A} = \left[ egin{array}{ccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array} 
ight]$$

Let  $\Delta_1$ ,  $\Delta_2$  and  $\Delta_3$  be the minors (with signs) of the columns. For instance,  $\Delta_1 = a_{12}a_{23} - a_{13}a_{22}$ .

We are going to find some of the syzygies of  $\Delta_1, \Delta_2, \Delta_3$ :  $b_1\Delta_1 + b_2\Delta_2 + b_3\Delta_3 = 0$ 

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = a_{11}\Delta_1 + a_{12}\Delta_2 + a_{12}\Delta_3 = 0$$

Thus the row vectors of **A** are syzygies of  $(\Delta_1, \Delta_2, \Delta_3)$ . Let **B** be the column matrix of the  $\Delta$ 's.

# With the matrices **A** and **B** [note that $\mathbf{BA} = 0$ ], we form the complex:

$$0 \to R^2 \stackrel{\textbf{A}}{\longrightarrow} R^3 \stackrel{\textbf{B}}{\longrightarrow} R \longrightarrow R/(\Delta_1, \Delta_2, \Delta_3) \to 0$$

#### Theorem

If R is a UFD this complex is exact iff  $gcd(\Delta_1, \Delta_2, \Delta_3) = 1$ .

### **Hilbert-Burch**

#### Theorem

Let R = k[x, y]. Then for any ideal  $I = (a_1, ..., a_n)$  with gcd(I) = 1 there exists an  $(n - 1) \times n$  matrix **A** with entries in R such that its maximal minors  $\Delta_i = a_i$ .

This means that if we map the free *R*-module  $R^n$  onto  $(a_1, \ldots, a_n)$ 

$$Re_1 \oplus \cdots Re_n \xrightarrow{\varphi} I, \quad \varphi(e_i) = a_i,$$

the kernel of  $\varphi$  is generated by n - 1 vectors,  $v_i = (d_{1,i}, \dots, d_{n-1,i})$  and the  $a_i$  are the cofactors of the matrix  $\mathbf{A} = [d_{ij}]$ .

### Return to an important example

#### Example

Let **V** be a finite dimensional vector space over the field k, and let

 $\varphi:\mathbf{V}\longrightarrow\mathbf{V}$ 

be a linear transformation. Define a  $k[\mathbf{x}]$ -module structure **M** by declaring

$$\mathbf{x} \cdot \mathbf{v} = \varphi(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbf{V}.$$

More generally, for a polynomial f(x), define

$$\mathbf{f}(\mathbf{x})\mathbf{v} = \mathbf{f}(\varphi)(\mathbf{v}).$$

We denote this module by  $\mathbf{V}_{\varphi}$ .

## The Syzygies of V $_{\varphi}$

Pick a *k*-basis  $u_1, \ldots, u_n$  for **V**, so that  $\varphi = [c_{ij}]$ . Let us determine a free presentation for **V**<sub> $\varphi$ </sub>

$$0 \longrightarrow K \longrightarrow Re_1 \oplus \cdots \oplus Re_n \longrightarrow \mathbf{V}_{\varphi} \rightarrow 0, \quad e_i \rightarrow u_i.$$

Let us determine the module K. If

$$\mathbf{v} = (\mathbf{f}_1(\mathbf{x}), \dots, \mathbf{f}_n(\mathbf{x})),$$
$$\sum_{i=1}^n \mathbf{f}_i(\varphi)(u_i) = \mathbf{0}.$$

For instance, from

$$\varphi(u_i) = \mathbf{x} u_i = \sum c_{ij} u_j,$$

we have that the rows of the matrix lie in K

$$[C_{ij}] - \mathbf{XI} = \begin{bmatrix} c_{11} - \mathbf{X} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} - \mathbf{X} & \cdots & c_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} - \mathbf{X} \end{bmatrix}$$

#### Proposition

K is generated by the rows of  $\varphi - \mathbf{x}\mathbf{I}$ .

**Proof.** Let  $v = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x})) \in L$ . We argue that v is a linear combination (with coefficients in R) of the rows of  $\varphi - \mathbf{xI}$ .

- If all the f<sub>i</sub>(x) constants, ∑<sub>i</sub> f<sub>i</sub>u<sub>i</sub> = 0 means that f<sub>i</sub> = 0, since the u<sub>i</sub> are k-linearly independent.
- We induct on sup{deg(f<sub>i</sub>)} and on the number of components of this degree. Say deg(f<sub>1</sub>) = sup{deg(f<sub>i</sub>)}. Divide f<sub>1</sub> by c<sub>11</sub> x, f<sub>1</sub> = q(c<sub>11</sub> x) + r,

$$(\mathbf{f}_1,\ldots,\mathbf{f}_n)-\mathbf{q}(c_{11}-\mathbf{x},\ldots,c_{1n})=(\mathbf{g}_1,\ldots,\mathbf{g}_n)=u.$$

Note that *u* has fewer terms, if any, of degree  $\geq \deg(\mathbf{f}_1)$ .

#### Proposition

If k is a field and  $\varphi : V \simeq k^n \to V$  is a linear transformation, the  $R = k[\mathbf{x}]$ -module  $V_{\varphi}$  has for a matrix representation **f**, a free  $k[\mathbf{x}]$ -resolution

$$O 
ightarrow R^n \stackrel{\mathbf{f}}{\longrightarrow} R^n \longrightarrow V_{arphi} 
ightarrow O,$$

where  $\mathbf{f} = \varphi - \mathbf{x} \mathbf{I}_n$ .

# **Projective/Free Resolutions**

#### Definition

Let R be a ring and M an R-module. A free resolution of M is an acyclic complex

$$\cdots \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0,$$

where the  $F_i$  are free *R*-modules. If we replace free by projective, we call the complex a projective resolution of *M*.

**Example:** Let  $R = \mathbb{Z}/(4)$  and  $M = R/(2) = \mathbb{Z}/(2)$ . The free resolution of *M* is the infinite complex

$$\cdots R \rightarrow \cdots \rightarrow R \rightarrow R \rightarrow M \rightarrow 0$$

where all maps  $R \rightarrow R$  are multiplication by 2.

### **Examples**

 If R = k, a field, then any k-module M is a vector space, so its free resolution is (n = dim<sub>k</sub> M)

$$0 \to R^n \longrightarrow M \to 0$$

• 
$$R = \mathbb{Z}$$
, for abelian group  $M$ ,

$$0 \to R^m \longrightarrow R^n \longrightarrow M \to 0,$$

*m* and *n* appropriate cardinals.

• R = k[x, y] and M = R/(x, y)

$$0 \to R \longrightarrow R^2 \longrightarrow R \longrightarrow M \to 0$$

### **Projective Resolutions**

We would like to use the length of these complexes as a form of **dimension** for the module. It is more convenient to consider the case of acyclic complexes

$$0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

where  $P_i$  is projective for i < n. To make sense, we must compare it to another complex

$$0 \rightarrow Q_n \rightarrow Q_{n-1} \rightarrow \cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow M \rightarrow 0,$$

where  $Q_i$  is projective for i < n.

**Question:** How are  $P_n$  and  $Q_n$  related? We will focus on the case n = 1.

### **Fibre Products**

#### Definition

Let  $\mathbf{f} : A \to C$  and  $\mathbf{g} : B \to C$  be homomorphims of *R*-modules. The fiber product of  $\mathbf{f}$  and  $\mathbf{g}$  is the submodule of  $A \times B$ 

$$A \times_C B = \{(x, y) : \mathbf{f}(x) = \mathbf{g}(y)\}.$$

## **Schanuel Lemma**

#### Proposition

Let M be an R-module and

$$0 \to K \longrightarrow P \stackrel{f}{\longrightarrow} M \to 0, \quad 0 \to L \longrightarrow Q \stackrel{g}{\longrightarrow} M \to 0$$

be projective presentations of M. Then

$$K \oplus Q \simeq L \oplus P.$$

**Proof.** Consider the projection  $\varphi : P \times_M Q \to P$  into the first component. For each  $x \in P$  there is  $y \in Q$  such that  $\mathbf{f}(x) = \mathbf{g}(y)$  since both maps  $\mathbf{f}$  and  $\mathbf{g}$  are surjective. This implies that  $\varphi$  is also surjective. Note that  $(x, y) \in \ker(\varphi) \simeq L : x = 0$  and thus  $\mathbf{f}(x) = \mathbf{g}(y) = 0$ . Since P is projective,  $\varphi$  will split:

$$P \otimes_M Q \simeq P \oplus L$$

#### Corollary

Let

$$0 \rightarrow K \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

$$0 \rightarrow L \rightarrow Q_{n-1} \rightarrow \cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow M \rightarrow 0,$$

be acyclic complexes with  $P_i$ ,  $Q_i$  projective modules for i < n. Then

 $K \oplus Q_{n-1} \oplus P_{n-2} \oplus Q_{n-3} \oplus \cdots \simeq L \oplus P_{n-1} \oplus Q_{n-2} \oplus P_{n-} \oplus \cdots$ 

In particular, if K is projective, then L is projective as well.

## **Projective dimension**

#### Definition

The projective dimension of an R-module M is the length n of the shortest acyclic complex

$$0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

with  $0 \neq P_i$  projective for all i, or  $\infty$ . It is written proj. dim.<sub>*B*</sub>*M*.

### **Modules of Polynomials**

Let R be a commutative ring and M an R-module. We define the module of polynomials with coefficients in M:

$$M[x] = \bigoplus_{n \ge 0} M_n, \quad M_n = M$$

made into an R[x]-module by the rule

$$x \cdot M_n \subset M_{n+1}$$
.

It is convenient to write  $M_n = M \otimes x^n$ . We make this construction into a functor from the category  $\mathcal{M}(R)$  to the category  $\mathcal{M}(R[x])$  as follows: If  $\mathbf{f} : M \to N$ 

$$\mathbf{f}': \mathbf{M}[\mathbf{x}] \to \mathbf{N}[\mathbf{x}], \quad \mathbf{f}'(\mathbf{m} \otimes \mathbf{x}^n) = \mathbf{f}(\mathbf{m}) \otimes \mathbf{x}^n$$

# **Properties**

### Proposition

The functor  $\mathbf{T}: M \to M[x]$  has the following properties:

- If M is a projective R-module, then T(M) = M[x] is a projective R[x]-module.
- 2 If  $0 \rightarrow A \longrightarrow B \longrightarrow C \rightarrow 0$  is a SES of R-modules, then

$$0 \to \mathbf{T}(A) \longrightarrow \mathbf{T}(B) \longrightarrow \mathbf{T}(C) \to 0$$

is a SES of R[x]-modules.

**Achtung:** If *E* is an injective *R*-module, T(E) is not an injective R[x]-module. It is not divisible by *x*, for one.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 5 **Hilbert Syzygy Theorem** Assignment #20 **Multilinear Algebra** Assignment #21 Assignment #22

### Assignment #19

Do one problem.

- Let R = k[x, y]. For each integer n, find the free resolution of the ideal I = (x, y)<sup>n</sup>.
- Write a brief essay on: If E is an injective R-module, what is an injective resolution of the R[x]-module E[x] like?

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 6 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** Assignment #21 Assignment #22

# Hilbert Syzygy Theorem

#### Theorem

If  $R = k[x_1, ..., x_n]$ , then the module  $M = R/(x_1, ..., x_n)$  has projective dimension n. Moreover, every R-module has projective dimension at most n.

- This result opened the way to lots of mathematics. It became a driver for Homological Algebra and Algebraic Geometry, later to Computational Algebra.
- We make a short study if the subject.

# **Glodal dimension**

#### Definition

The global dimension of the ring R is

global dim  $R = d(R) = \max\{ \text{ proj dim}_R M, \text{ for all } R - \text{modules} \}.$ 

• 
$$d(\mathbb{Z}) = 1$$
,  $d(k) = 0$ , for k a field.

If *d*(*R*) is finite, we say that *R* is *regular*. As a measure of size, *d*(*R*) is too strict. For most rings, *d*(*R*) = ∞ simply because some module has infinite projective dimension. For this reason, it is often necessary to consider in the definition above only those modules with finite projective resolutions.

# Hilbert Syzygy Theorem

#### Theorem

Let R[x] denote the ring of polynomials in one indeterminate over R. Then

$$d(R[x]) = d(R) + 1.$$
 (1)

In particular, for a field k, the ring of polynomials  $k[x_1, ..., x_n]$  has global dimension n, while the ring  $\mathbb{Z}[x_1, ..., x_n]$  has global dimension n + 1.

### Proof

We begin with a useful observation. For a given R[x]-module M consider the sequence

$$0 \to R[x] \otimes_R M \stackrel{\psi}{\longrightarrow} R[x] \otimes_R M \stackrel{\varphi}{\longrightarrow} M \to 0,$$

where

$$\psi(x^n \otimes e) = x^n \otimes xe - x^{n+1} \otimes e,$$
  
 
$$\varphi(x^n \otimes e) = x^n \cdot e.$$

It is a straightforward verification that this sequence of R[x]-modules and homomorphisms is exact.

• Let M be an R-module and let

$$0 \rightarrow P_r \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \rightarrow 0$$

be a projective resolution. Since R[x] is R-free, tensoring–**Explain**–the complex with R[x] yields an R[x]–projective resolution of  $R[x] \otimes_R M$ , and proj dim<sub>R[x]</sub> ( $R[x] \otimes_R M$ )  $\leq$  proj dim<sub>R</sub> M.

• Suppose now that *M* is an *R*[*x*]–module, view it as an *R*–module and use it in the sequence: by elementary considerations we obtain,

 $\operatorname{proj\,dim}_{R[x]} M \leq 1 + \operatorname{proj\,dim}_{R[x]} (R[x] \otimes_R M) \leq 1 + \operatorname{proj\,dim}_R M,$ 

which shows that

 $d(R[x]) \leq d(R) + 1.$ 

• For the reverse inequality, we argue as follows. Any R-module M can be made into an R[x]-module by defining f(x)e = f(0)e, for  $e \in M$ . With this structure, we claim that

proj dim<sub>$$R[x]  $M$  = proj dim <sub>$R$</sub>   $M$  + 1.$$</sub>

 From the observation above, we already have that the left hand side cannot exceed the right hand side of the expression. To prove equality, we use induction on n = proj dim<sub>R</sub> M.
- If n = 0, that is, if M is R-projective, then M cannot be R[x]-projective, since it is annihilated by x, which is a regular element of R[x].
- If n > 0, map a free *R*-module *F* onto *M*,

$$0 \rightarrow K \longrightarrow F \longrightarrow M \rightarrow 0,$$

proj dim<sub>*R*</sub> K = n - 1 and by induction proj dim<sub>*R*[*x*]</sub> K = n. Since proj dim<sub>*R*[*x*]</sub> F = 1, by the preceding case, proj dim<sub>*R*[*x*]</sub> M = n + 1, unless, possibly, n = 1. To deal with this last case, map a free R[x]-module G over M with kernel L. The assumption to be contradicted is that L is R[x]-projective. Since xM = 0,  $xG \subset L$ , and the exact sequence

$$0 \rightarrow L/xG \rightarrow G/xG \longrightarrow M \rightarrow 0$$

says that L/xG is *R*-projective. But we also have the exact sequence

$$0 \rightarrow xG/xL \longrightarrow L/xL \longrightarrow L/xG \rightarrow 0,$$

and therefore xG/xL is *R*-projective. Since  $xG/xL \simeq G/L \simeq M$ , we get the desired contradiction.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** Assignment #21 **Hilbert Functions** Assignment #22

### Assignment #20

*R* = *k*[*x*, *y*], the polynomial ring in 2 indeterminates over the field *k*. Prove that different powers of (*x*, *y*) cannot be isomorphic. Prove also that (*x*, *y*) cannot be isomorphic to (*x*, *y* − 1).

You may need

**Lemma:** Let I, J be two ideals of the integral domain R of field of fractions **K**. Then

$$\operatorname{Hom}_{R}(I,J) = \{q \in \mathsf{K} : qI \subset J\}.$$

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** 8 Assignment #21 **Hilbert Functions** Assignment #22

### **Multilinear functions**

# What is this? We have studied linear functions on vector spaces/modules

 $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W},$ 

$$\mathbf{T}(au+bv)=a\mathbf{T}(u)+b\mathbf{T}(v).$$

A bilinear function is an extension of the product operation

$$(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{x}\mathbf{y}.$$

Note that it is additive in 'each variable', e.g.

$$\mathbf{x}(\mathbf{y}_1 + \mathbf{y}_2) = \mathbf{x}\mathbf{y}_1 + \mathbf{x}\mathbf{y}_2$$

$$(\mathbf{x}_1 + \mathbf{x}_2)\mathbf{y} = \mathbf{x}_1\mathbf{y} + \mathbf{x}_2\mathbf{y}$$

We want to examine functions like these whose sources and targets are vector spaces/modules. For example, the function **B** is bilinear if

 $\mathbf{B}: \mathbf{V} \times \mathbf{V} \rightarrow \mathbf{W},$ 

is linear in each variable

$$B(u_1 + u_2, v) = B(u_1, v) + B(u_2, v), \quad B(au, v) = aB(u, v)$$

$$B(u, v_1 + v_2) = B(u, v_1) + B(u, v_2), \quad B(u, av) = aB(u, v)$$

You can define trilinear, and generally multilinear in the same manner:  $\mathbf{B}(v_1, v_2, ..., v_n)$ , linear in each variable.

Let us begin with a beautiful example: Let  $\mathbf{V} = \mathbf{F}^2$  be a plane. For every pair of vectors u = (a, b), v = (c, d), define

$$\mathbf{B}(u,v) = ad - bc.$$

You can check easily that **B** is a bilinear function from  $\mathbf{F}^2$  into **F**. For example,  $\mathbf{B}(u, v_1 + v_2) = \mathbf{B}(u, v_1) + \mathbf{B}(u, v_2)$ .

This particular function is called **the 2-by-2 determinant**: det(u, v) It has many uses in Mathematics.

Another example, on this same space, is

$$\mathbf{C}(u,v) = ac + bd.$$

#### This one is called a **dot or scalar product**.

B(u, v) and C(u, v) read different info about the pair of vectors u, v as we shall see.

Another well-known bilinear transformation  $\mathbf{F}^3 \times \mathbf{F}^3 \rightarrow \mathbf{F}^3$  is the following: For u = (a, b, c), v = (d, e, f),

$$(u, v) \rightarrow u \land v = (bf - ce, -af + cd, ae - bd)$$

This function is called the **exterior**, or **vector** product of  $F^3$ .

When  $\mathbf{F} = \mathbb{R}$ , it has many useful properties geometric used in Physics [in Mechanics, Electricity, Magnetism]. Partly this arises because

$$u \wedge v \perp u \quad \& \perp v$$

and its magnitude says something about the parallelogram defined by u and v.

There are two main classes of multilinear functions. Say **B** is *n*-linear, that is it has *n* input cells and is linear in each separately: **B**( $v_1, ..., v_n$ ).

B is symmetric: If you exchange the contents of two cells

$$\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n)=\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n)$$

causes no change. Like the dot product above.

B is skew-symmetric or alternating: If

$$\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_i=\mathbf{v},\ldots,\mathbf{v}_j=\mathbf{v},\ldots,\mathbf{v}_n)=\mathbf{0}$$

whenever two cells have the same content. Like the determinant above.

Let  $\mathbf{M}_n(\mathbf{F})$  be the vector space of all  $n \times n$  matrices over the field  $\mathbf{F}$ . Consider the **trace** function on  $\mathbf{A} \in \mathbf{M}_n(\mathbf{F})$ ,  $\mathbf{A} = [a_{ij}]$ :

$$\mathsf{trace}([a_{ij}]) = \sum_{i=1}^n a_{ii}$$

Now define the function

T(A, B) = trace(AB)

 ${\bf T}$  is clearly a bilinear function. It is a good exercise (do it) to show that

```
trace(AB) = trace(BA)
```

so T is symmetric

### Here is a variation that will appear later

$$\mathbf{T}(\mathbf{A},\mathbf{B}) = \mathbf{trace}(\mathbf{A}\mathbf{B}^t),$$

where  $\mathbf{B}^t$  denotes the **transpose** of **B**.

### **Question:** On the same space $\mathbf{M}_n(\mathbf{F})$ , define

$$\mathsf{total}([a_{ij}]) = \sum_{i,j} a_{ij}$$

It is clear that

$$S(A, B) = total(AB)$$

is a bilinear function.

Is it **symmetric**?

### Proposition

If B is an alternating multilinear function, then

$$\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n) = -\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n),$$

that is, switching two variables changes the sign of the function.

#### Proof.

For convenience we assume  $\mathbf{B}(u, v)$  has two variables. We must show that  $\mathbf{B}(v, u) = -\mathbf{B}(u, v)$ . By definition, we have

$$\mathbf{B}(u+v, u+v) = 0, \text{ which we expand} \\ = \mathbf{B}(u, u) + \mathbf{B}(u, v) + \mathbf{B}(v, u) + \mathbf{B}(v, v)$$

Notice that the first and fourth summands are zero. Thus B(u, v) + B(v, u) = 0, as desired.

Here are some additional properties.

#### Proposition

The set **M** of all n–linear functions on the vector space V with values in **W** is a vector space. The subsets **S** and **K** of symmetric and alternating functions are subspaces.

#### Proof.

If  $\mathbf{B}_1$  and  $\mathbf{B}_2$  are (say) symmetric bilinear functions,

$$(c_1\mathbf{B}_1 + c_2\mathbf{B}_2)(u, v) = c_1\mathbf{B}_1(u, v) + c_2\mathbf{B}_2(u, v) = c_1\mathbf{B}_1(v, u) + c_2\mathbf{B}_2(v, u),$$

which shows that any linear combination of  $\mathbf{B}_1$  and  $\mathbf{B}_2$  is symmetric. The argument is similar for alternating functions.

If **B** is bilinear and  $2 \neq 0$ , we could do as in an early exercise:

$$\mathbf{B}(u,v) = \frac{\mathbf{B}(u,v) + \mathbf{B}(v,u)}{2} + \frac{\mathbf{B}(u,v) - \mathbf{B}(v,u)}{2}$$

that shows that every bilinear function is a [unique] sum of a symmetric and an alternating bilinear function.

It is very easy to create multilinear functions, at least general functions and symmetric ones. Here are a couple of approaches:

• Let  $f_1, f_2$  and  $f_3$  be linear functions on  $V = F^3$ . Now define

$$\mathbf{T}: \mathbf{V}^3 \to \mathbf{F}, \quad \mathbf{T}(v_1, v_2, v_3) := \mathbf{f}_1(v_1)\mathbf{f}_2(v_2)\mathbf{f}_3(v_3).$$

T is clearly trilinear

 Let T be a trilinear function on F<sup>3</sup>. We get a symmetric function S by 'mixing up' [symmetrizing] T:

$$\begin{aligned} \mathbf{S}(v_1, v_2, v_3) &:= & \mathbf{T}(v_1, v_2, v_3) + \mathbf{T}(v_2, v_1, v_3) + \mathbf{T}(v_1, v_3, v_2) \\ &+ & \mathbf{T}(v_3, v_1, v_2) + \mathbf{T}(v_2, v_3, v_1) + \mathbf{T}(v_3, v_2, v_1) \end{aligned}$$

If **T** is already symmetric,  $\mathbf{S} = 6\mathbf{T}$ .

#### Let us begin to see what makes the determinant important:

### Proposition

The vector space **K** of all skew-symmetric bilinear functions on  $\mathbf{F}^2$  with values in **F** has a basis which is the 2-by-2 determinant function.

#### Proof.

- Let  $e_1 = (1,0)$ ,  $e_2 = (0,1)$  be the standard basis of  $F^2$ .
- Given any two vectors  $u, v \in \mathbf{F}^2$ , we can write  $u = ae_1 + be_2$ ,  $v = ce_1 + de_2$ .
- 3 If  $\mathbf{B} \in \mathbf{K}$ , expand  $\mathbf{B}(u, v) = \mathbf{B}(ae_1 + be_2, ce_1 + de_2)$ :

 $ac\mathbf{B}(e_1, e_1) + ad\mathbf{B}(e_1, e_2) + bc\mathbf{B}(e_2, e_1) + bd\mathbf{B}(e_2, e_2)$ 

- 3 Note that the first and fourth terms are zero and  $\mathbf{B}(e_1, e_2) = -\mathbf{B}(e_2, e_1)$ . It gives
- **5**  $\mathbf{B}(u, v) = (ad bc)\mathbf{B}(e_1, e_2) = \mathbf{B}(e_1, e_2) \det(u, v)$



Area of parallelogram defined by *u* and *v* is det(v, u) = ad - bc

**Exercise 1:** Prove that the space of all symmetric bilinear functions of  $\mathbf{F}^2$  has dimension 3. Note that the space of linear functions

 $T:F^2\times F^2\to F$ 

has dimension 4. [This is the dual space of  $\mathbf{F}^2 \times \mathbf{F}^2 = \mathbf{F}^4$ ]. Since bilinear functions are **linear**, the space of symmetric bilinear functions is a subspace and therefore has dimension at most 4. You must show that it has a basis of 3 functions.



If **V** is a vector space of dimension n, and **S** and **K** are the spaces of symmetric and skew-symmetric bilinear functions, prove that

dim **S** = 
$$\binom{n+1}{2}$$
  
dim **K** =  $\binom{n}{2}$ 

### Important Observation

A quick way to get new multilinear functions from old ones is the following:

If  $\bm{B}:\bm{V}\times\bm{V}\to\bm{W}$  is a bilinear transformation, and  $\bm{T}:\bm{W}\to\bm{Z}$  is a linear transformation, the composite

 $\textbf{T} \circ \textbf{B}: \textbf{V} \times \textbf{V} \rightarrow \textbf{Z}$ 

$$\mathsf{T} \circ \mathsf{B}(u, v) = \mathsf{T}(\mathsf{B}(u, v))$$

is a bilinear transformation. We want to argue that there is a bilinear map

$$\mathbf{B}_0: \mathbf{V} imes \mathbf{V} o \mathbf{W}_0$$

such that for any bilinear map  $\bm{B}:\bm{V}\times\bm{V}\to\bm{W}$  there is a a unique linear map  $\bm{f}:\bm{W}_0\to\bm{W}$  such that

$$\bm{B}=\bm{f}\circ\bm{B}_0$$

### Universal



The most famous bilinear (multi also) is called the **tensor product**,

$$egin{array}{lll} {\sf B}: {\sf V} imes {\sf V} 
ightarrow {\sf V} \otimes {\sf V}, \ (u,v) 
ightarrow u \otimes v \end{array}$$

We will develop this in greater generality.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra Tensor Products of Modules** 9 Assignment #21 Assignment #22

## **Tensor Products of Modules**

### Definition

Let *R* be a ring. If *A* is a right *R*-module, *B* a left *R*-module, and *M* an abelian group, then an *R*-bilinear mapping is a function  $\mathbf{f} : A \times B \to M$  such that for all  $a, a' \in A, b, b' \in B$ , and  $r \in R$ 

$$\begin{array}{rcl} {\rm f}(a+a',b) &=& {\rm f}(a,b)+{\rm f}(a',b) \\ {\rm f}(a,b+b') &=& {\rm f}(a,b)+{\rm f}(a,b') \\ {\rm f}(ar,b) &=& {\rm f}(a,rb) \end{array}$$

An example is the multiplication in the ring *R*.

If we followup a bilinear mapping  $\mathbf{f} : A \times B \to C$  with a linear mapping  $\mathbf{g} : C \to D$ , we get a bilinear mapping  $\mathbf{g} \circ \mathbf{f} : A \times B \to D$ .

### Definition

The tensor product of *A* and *B* (as above) is an abelian group  $A \otimes_R B$  and a *R*-bilinear function  $\mathbf{g} : A \times B \to A \otimes_R B$  that solves the following universal problem



Universal means that given the bilinear mapping **f** there exists a unique additive mapping  $\mathbf{f}'$  such that  $\mathbf{f} = \mathbf{f}' \circ \mathbf{g}$ .

The elements of  $A \otimes_B B$  are written  $\sum_{i=1}^n a_i \otimes b_i$ 

# Examples

- $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[x] = \mathbb{C}[x]$
- Let A = k[x] and B = k[y] and consider the bilinear mapping

$$k[x] \times k[y] \rightarrow k[x, y]$$
  
 $(\mathbf{f}(x), \mathbf{g}(y)) \rightarrow \mathbf{f}(x)\mathbf{g}(y)$ 

It gives rise to a surjection (actually an isomorphism of algebras)

$$k[x] \otimes_k k[y] \to k[x, y]$$

• More generally:

$$k[x_1,\ldots,x_n]\otimes_k k[y_1,\ldots,y_m]=k[x_1,\ldots,x_n,y_1,\ldots,y_m]$$

# **Existence of Tensor Products**

#### Theorem

The tensor product of a right R-module A and a left R-module B exists.

**Proof.** Let *F* be the free abelian group with basis  $A \times B$ , and let *L* be the subgroup generated the all (ar, b) - (a, rb) (if *R* is commutative, we add the relations r(a, b) - (ra, b))

$$(a, b + b') - (a, b) - (a, b'), \quad (a + a', b) - (a, b) - (a', b)$$

Set  $A \otimes_R B = F/L$ , and denote by  $\mathbf{g} : A \times B \to A \otimes_R B$  the natural mapping  $\mathbf{g}(a, b) = (a, b) + L$ . It is easy to verify that:

- g is a bilinear mapping
- ② Given a bilinear mapping h : A × B → M it defines a linear mapping f : F → M. Since g is a bilinear mapping, f vanishes on the generators of L, so defines the bilinear mapping g : F/L → M. It follows that the universal

### Uniqueness of tensor products

#### Theorem

Any two tensor products of A and B are isomorphic.

Suppose there is another group *X* and a map  $\mathbf{f} : A \times B \to X$  is a tensor product of *A* and *B*. This gives two diagrams



Now set  $\phi = \mathbf{f}' \circ \mathbf{g}'$  and consider the diagram



where  $\beta$  works with either I or  $\phi$ . By the universality, I =  $\phi$ .

### $\otimes$ as a functor

#### Theorem

Let  $\mathbf{f} : A \to A'$  and  $\mathbf{g} : B \to B'$  be *R*-maps of right and left *R*-modules, resp. There is a unique homomorphism  $A \otimes_R B \to A' \otimes_R B'$  with  $a \otimes b \to \mathbf{f}(a) \otimes \mathbf{g}(b)$ .

#### Proof.

The function  $A \times B \to A \otimes_R B$  defined by  $(a, b) \to \mathbf{f}(a) \otimes \mathbf{g}(b)$  is clearly bilinear. Use universality to finish.

This map is denoted  $\mathbf{f} \otimes \mathbf{g}$ : the tensor product of  $\mathbf{f}$  and  $\mathbf{g}$ 

### **Right exactness**

#### Theorem

#### Let

$$0 \to A \stackrel{\textbf{f}}{\longrightarrow} B \stackrel{\textbf{g}}{\longrightarrow} C \to 0$$

be an exact sequence of left *R*-modules. Then for any right *R*-module *M*, the following sequence of abelian groups is exact [right exact]

$$M \otimes_R A \xrightarrow{\mathsf{I} \otimes \mathsf{f}} M \otimes_R B \xrightarrow{\mathsf{I} \otimes \mathsf{g}} M \otimes_R C \to 0.$$

# **Examples**

To make things simpler, we assume that *R* is a commutative ring. In this case  $A \otimes_R B$  acquires also the structure of an *R*-module by defining  $r(a \otimes b) = ra \otimes b$  (=  $a \otimes rb$ ).

- $R \otimes A \simeq A$
- $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$
- If *R* is a commutative ring, then *A* ⊗ *B* ≃ *B* ⊗ *A* Z/(*a*) ⊗<sub>*R*</sub> Z/(*b*) ≃ Z/(gcd(*a*, *b*))
   See next result.

# **Useful tool**

### Proposition

If I is an ideal and M an R-module, then  $R/I \otimes M \simeq M/IM$ .

**Proof.** Consider the natural SES  $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ . Tensoring with *M* we obtain the acyclic complex

$$I\otimes M\stackrel{\varphi}{\to} R\otimes M \to R/I\otimes M \to 0$$

We make use of the isomorphism  $R \otimes M \simeq M$  so that the image of  $\varphi$  is the submodule *IM* of *M*. By the right exactness,  $M/IM \simeq R/I \otimes M$ .

Illustrate how to use this to calculate the tensor product  $M \otimes N$  of any two f.g. modules over a PID.
## The tensor algebra

Let *R* be a commutative ring and *A* an *R*-module. Now we are going to introduce the tensor algebra of *A*. First a number of quick observations:

• If *A*, *B* and *C* are *R*-modules, there is a canonical isomorphism

$$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$$

One way to prove this is first define  $A \otimes B \otimes B$  (no parentheses) as a universal target for trilinear maps from  $A \times B \times C$  by generators and relations. Then show that both  $A \otimes (B \otimes C)$  and  $(A \otimes B) \otimes C$  satisfy the universal condition.

## Tensor algebra of a module

Let A be an R-module and set

$$T_n(A) = \underbrace{A \otimes \cdots \otimes A}_{\text{n factors}}$$

Set  $T_0(A) = R$  and

$$T(A) = \bigoplus_{n \ge 0} T_n(A)$$

It is clear to define a product that endows T(A) with an algebra structure:

$$(a_1 \otimes \cdots \otimes a_m) \cdot (b_1 \otimes \cdots \otimes b_n) = a_1 \otimes \cdots \otimes a_m \otimes b_1 \cdots \otimes b_n$$

This is the tensor algebra of A.

# Algebras

### Definition

Let *R* be a commutative ring and *A* a ring not necessarily with 1 nor commutative. *A* is an *R*-algebra if *A* a *R*-bimodule and ra = ar for all  $r \in R$ ,  $a \in A$ .

- Any ring A is naturally a  $\mathbb{Z}$ -algebra
- The tensor algebra *T*(*A*) of an *R*-module is one of the core examples.
- We will consider two kinds of algebras: commutative and skew-commutative: algebras with the property that a<sup>2</sup> = 0 for all a ∈ A. This condition implies-but it is not always equivalent-that ab = -ba for a, b ∈ A:

$$0 = (a + b)(a + b) = a^2 + ab + ba + b^2$$

## **Graded algebra**

Let R be a ring and A an R-algebra. We say that A is a graded R-algebra if

$$A = igoplus_{n \in \mathbb{Z}} A_n, \quad A_m \cdot A_n \subset A_{m+n}$$

- Polynomials rings  $R[x_1, \ldots, x_n]$  are major examples.
- The elements *x* ∈ *A<sub>n</sub>* are called *n*-forms or homogeneous of degree *n*.
- We usually assume  $A_n = 0$  if n < 0. A notable exception is  $A = k[x, x^{-1}]$ , the ring of Laurent polynomials.

## Homogeneous ideals

### Definition

An ideal *I* of a graded algebra is said to be homogeneous if  $I = \bigoplus_{n \in \mathbb{Z}} I_n$ ,  $I_n \subset A_n$ .

They are handy way to produce new graded algebras:

$$A/I = \bigoplus_n A_n/I_n$$

#### Proposition

An ideal I of a graded algebra A is homogeneous iff I s generated by a set  $\{\mathbf{f}_{\alpha}\}$  of homogeneous forms  $\mathbf{f}_{\alpha}$ .

Proof. Left to reader/listener.

## **Graphs and Ideals**

Let  $G = \{V, E\}$  be a graph of vertex set  $V = \{v_1, ..., v_n\}$  and edge set *E*. We will associate to *G* a graded algebra.

- Let R = k[x<sub>1</sub>,..., x<sub>n</sub>], one indeterminate to each vertex. To the edge {v<sub>i</sub>, v<sub>j</sub>}, we associate the monomial x<sub>i</sub>x<sub>j</sub>. The edge ideal of G is the ideal I(G) generated by all x<sub>i</sub>x<sub>i</sub>'s.
- *I*(*G*) is a homogeneous ideal. One expects the graded algebra *R*/*I*(*G*) to reflect properties of the graph. For example, describe the minimal primes of *I*(*G*) in graph theoretic info.

## Basic property of the tensor algebra

#### Theorem

Given an R-module A, and R-algebra S, and a homomorphim  $\mathbf{f} : A \to S$  there is a unique R-algebra homomorphim  $\mathbf{g} : T(A) \to S$  such that the restriction of  $\mathbf{g}$  to  $T_1(A)$  coincides with  $\mathbf{f}$ .

#### Proof.

For each  $n \in \mathbb{N}$ , there is *n*-linear mapping

$$(a_1,\ldots,a_n) \rightarrow \mathbf{f}(a_1)\cdots \mathbf{f}(a_n) \in S, \quad a_i \in A$$

which we extend to a homomorphism

$$\mathbf{g}_n: T_n(A) \to S$$

The  $\mathbf{g}_n$  patch into the homomorphism  $\mathbf{g}$ .

# **Functorial Property**

#### Theorem

Let  $\mathbf{f} : A \to B$  be a homomorphism of modules over the commutative ring R. Then there is a natural (meaning what?) ring homomorphism  $T(\mathbf{f}) : T(A) \to T(B)$  of their tensor algebras.

**Proof.** It is enough to consider the commutative diagram (explain)



$$T(\mathbf{f})(\mathbf{a}_1 \otimes \cdots \otimes \mathbf{a}_n) = \mathbf{f}(\mathbf{a}_1) \otimes \cdots \otimes \mathbf{f}(\mathbf{a}_n)$$

If **V** is the *k*-vector space  $k^n$ , then

$$T(\mathbf{V}) = k \langle x_1, \ldots, x_n \rangle$$

Its elements are linear combinations with coefficients in k of the words

$$w = y_1 y_2 \cdots y_m$$

where the  $y_i$  are symbols from the alphabet  $\{x_1, \ldots, x_n\}$ . Multiplication of words is by concatenation. Note that  $T(\mathbf{V})$  is a graded algebra.

## Super algebra

- Let  $R = k \langle x, y \rangle$ . This is a graded algebra,  $R = \bigoplus_{n \ge 0} R_n$ .
- Let *I* be the two-sided ideal generated by the element xy yx 1. Because this element is not homogeneous,  $\mathbf{W} = R/I$  is not a graded algebra.
- However we can organize *R* as *R* = *R*<sub>even</sub> ⊕ *R*<sub>odd</sub>, and these components behave as homogeneous ones, for example *R*<sub>even</sub> · *R*<sub>odd</sub> ⊂ *R*<sub>odd</sub>.
- For this 'grading' of R, xy yx 1 is even (so homogeneouus). The algebra R/I is the (a) Weyl algebra.
- Discuss why it is remarkable.

## Symmetric algebra of a module

Let *R* be a commutative ring, *A* an *R*-module, *S* a commutative *R*-algebra and **f** : *A* → *S* a homomorphism of *R*-modules. according to the preceding theorem, there is a homomorphism of *R*-algebras

$$\mathbf{g}:T(A)
ightarrow S$$

that extends **f** (Recall that  $T(A)_1 = A$ ).

• Since S is commutative,

$$\mathbf{g}(a \otimes b) = \mathbf{f}(a)\mathbf{f}(b) = \mathbf{f}(b)\mathbf{f}(a) = \mathbf{g}(b \otimes a)$$

so all tensors  $a \otimes b - b \otimes a$  lie in the kernel of **g**.

Let *I* be the two-sided ideal of T(A) generated by all  $a \otimes b - b \otimes$ ,  $a, b \in A$ . Note that *I* is a graded T(A)-ideal

$$I = I_0(=0) + I_1(=0) + I_2 + I_3 + \cdots + I_n + \cdots$$
  
 $I_n \subset T(A)_n.$ 



Note that **h** is universally defined.

### Definition

The algebra T(A)/I is called the symmetric algebra of A and denoted  $S_R(A)$ . Since  $I = \oplus I_n$ ,

$$S_R(A) = \bigoplus S_n(A) = \bigoplus T_n(A)/I_n.$$

The component  $S_n(A)$  is called the nth symmetric power of A.

**Example:** Let **V** be the *k*-vector space  $k^n$ . Then  $S_k(\mathbf{V}) = k[x_1, \dots, x_n]$ .

# **Functorial Property**

#### Theorem

Let  $\mathbf{f} : A \to B$  be a homomorphism of modules over the commutative ring R. Then there is a natural (meaning what?) ring homomorphism  $S(\mathbf{f}) : S(A) \to S(B)$  of their symmetric algebras.

**Proof.** It is enough to consider the commutative diagram (explain)



$$S(\mathbf{f})(a_1\cdots a_n)=\mathbf{f}(a_1)\cdots \mathbf{f}(a_n)$$

## Exterior algebra of a module

Let *A* be an *R*-module and let T(A) be its tensor algebra. Let *I* be the ideal of T(A) generated by all elements of the form  $a \otimes a$ .

*I* is a homogeneous ideal of *T*(*A*): *I*<sub>0</sub> = *I*<sub>1</sub> = 0, *I*<sub>2</sub> is the submodule of *A* ⊗ *A* generated by all *a* ⊗ *a*, *a* ∈ *A*.

$$\bullet I_3 = T_1 \cdot I_2 + I_2 \cdot T_1$$

• 
$$I_n = \sum_{r \le n-2} T_r \cdot I_2 \cdot T_{n-r-2}$$

### Definition

Let A be an R-module. The exterior algebra of A is

$$\bigwedge_{R}(A) = \bigoplus_{n \ge 0} \bigwedge^{n}(A) = \bigoplus T(A)/I.$$

- $\wedge^0(A) = R$  and  $\wedge^1(A) = A$
- $\wedge^n(A)$  is called the *n*th exterior power of *A*.
- Its elements are linear combinations of  $v_1 \wedge v_2 \cdots \wedge v_n$ .

## **Properties**

### Proposition

If A generated by n elements, then  $\bigwedge^{n}(A)$  is a cyclic module (possibly O), and  $\bigwedge^{m}(A) = 0$  for m > n.

**Proof.** Suppose  $A = (x_1, ..., x_n)$ . Then any element of *A* is a linear combination

$$v = \sum_{i} r_{i} x_{i}$$

$$v_{1} \wedge v_{2} \wedge \cdots \wedge v_{m} =$$

$$\sum_{i} r_{1i} x_{i} \wedge \sum_{i} r_{2i} \wedge \cdots \wedge \sum_{i} r_{mi} x_{i} =$$

$$\sum_{i} r_{1i_{1}} r_{2i_{2}} \cdots r_{mi_{m}} x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}$$

In the expression

$$\sum r_{1i_1}r_{2i_2}\cdots r_{mi_m}x_{i_1}\wedge x_{i_2}\wedge\cdots\wedge x_{i_m}$$

- If m > n, at least two of the x<sub>i</sub> are equal, so the wedge product is zero.
- If m = n and the  $x_{i_j}$  are distinct, the products are all equal to  $\pm x_1 \wedge x_2 \wedge \cdots \wedge x_n$ . Collecting the signs we have

$$v_1 \wedge \cdots \wedge v_n = \det(\mathbf{A})x_1 \wedge \cdots \wedge x_n$$

where **A** is the matrix  $\mathbf{A} = [r_{ij}]$ .

# **Functorial Property**

#### Theorem

Let  $\mathbf{f} : A \to B$  be a homomorphism of modules over the commutative ring R. Then there is a natural (meaning what?) ring homomorphism  $\bigwedge(\mathbf{f}) : \bigwedge(A) \to \bigwedge(B)$  of their exterior algebras.

**Proof.** It is enough to consider the commutative diagram (explain)



$$\bigwedge(\mathbf{f})(a_1\wedge\cdots\wedge a_n)=\mathbf{f}(a_1)\wedge\cdots\wedge\mathbf{f}(a_n)$$

One consequence:

$$\bigwedge (\mathbf{f} \circ \mathbf{g}) = \bigwedge \mathbf{f} \circ \bigwedge \mathbf{g}$$

For example, if  $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ , then  $\wedge^n \mathbf{f} = \det \mathbf{f}$ .

The formula above asserts

$$\det(\mathbf{f}\circ\mathbf{g})=\det\mathbf{f}\cdot\det\mathbf{g}$$

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** Assignment #21 10 Assignment #22

## Assignment #21

 Let *R* be a (commutative) local ring of maximal ideal m. If *A* and *B* are finitely generated *R*–modules, prove that

$$\nu(\mathbf{A}\otimes_{\mathbf{R}}\mathbf{B})=\nu(\mathbf{A})\cdot\nu(\mathbf{B}),$$

where  $\nu(\cdot)$  is the numerical function that gives the minimal number of generators of modules.

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 **Multilinear Algebra** Assignment #21 **Hilbert Functions** Assignment #22

## **Graded modules**

- Let R = k[x<sub>1</sub>,..., x<sub>d</sub>] be the ring of polynomials over the field k. We denote by R<sub>n</sub> the vector space of homogeneous polynomials of degree n.
- A graded *R*-module *M* is a module with a decomposition  $M = \bigoplus_{n \in \mathbb{Z}} M_n$  such that  $R_m M_n \subset M_{m+n}$ .
- The premier example is *R* itself. Others are the ideals generated by homogeneous elements.
- This is a very fruitful setting: explain

### Proposition

Let  $R = k[x_1, ..., x_d]$ , k a field, and let M be a graded R-module. A submodule  $E \subset M$  is graded iff E is generated by homogeneous elements.

Concretely, if  $z_1, \ldots, z_m$  are homogeneous elements of  $M = \bigoplus M_i$ , with  $z_j$  of degree  $d_j$ , that is  $z_j \in M_{d_j}$ , they generate the module  $E = \bigoplus E_n$ , whose elements of degree *n* are the linear combinations

$$x = r_1 z_1 + \cdots + r_m z_m, \quad r_i \in R_{n-d_i}$$

For example, if  $I = (x^2 + y^2, x^3 + x^2y)$ , then

$$I_n = \{a \cdot (x^2 + y^2) + b \cdot (x^3 + x^2 y)\}$$

where *a* and *b* homogeneous of degrees n - 2 and n - 3, resp.

## **Properties**

For the remainder of this discussion,  $R = k[x_1, \ldots, x_d]$ .

### Proposition

If M is a finitely generated graded R-module then each component  $M_n$  is a k-vector space of finite dimension.

### Proof.

• First consider the case M = R. Then  $M_n$  is the vector space of all homogeneous polynomials of degree n. A basis for this space is the set of monomials

$$x_1^{e_1} \cdot x_2^{e_2} \cdots x_d^{e_d}, \quad e_1 + e_2 + \cdots + e_d = n.$$

The cardinality of this set is

$$\binom{d+n-1}{d-1.}$$

 If *M* is a module generated by the homogeneous elements *z*<sub>1</sub>,..., *z<sub>m</sub>*, with deg(*z<sub>i</sub>*) = *d<sub>i</sub>*, then *M<sub>n</sub>* is given by the linear combinations

$$r_1z_1+\cdots+r_mz_m, \quad r_i\in R_{n-d_i}.$$

Since each R<sub>j</sub> is a finite dimensional vector space, it follows that dim<sub>k</sub> M<sub>n</sub> < ∞.</li>

Question: Is this fact a gift?

## Homogeneous homomorphisms

### Definition

Let  $R = k[x_1, ..., x_d]$  and let  $\mathbf{f} : M \to N$  be a homomorphism of graded modules. We say that  $\mathbf{f}$  is homogeneous of degree r if

$$\mathbf{f}: M_n \to N_{n+r}, \quad \forall n.$$

If **a** is a homogeneous polynomial of degree r, then multiplication by **a** defines a homogeneous homomorphism of degree r,

$$R \rightarrow R$$
,  $u \rightarrow au$ 

If  $\mathbf{f} : M \to N$  is homogeneous (of degree r), then  $K = \ker \mathbf{f}$  and coker  $\mathbf{f} = N/\mathbf{f}(M) = C$  are graded.

In each degree there is an exact sequence of vector spaces

$$0 \rightarrow K_{n-r} \rightarrow M_{n-r} \rightarrow N_n \rightarrow C_n \rightarrow 0$$

## Hilbert function of a graded module

### Definition

Let M be a finitely generated graded R-module. The function

 $H_M(n) = \dim_k M_n$ 

is the Hilbert function of *M*.

$$H_R(n) = \binom{d+n-1}{d-1}$$

Let I = (x); then  $I_n = \{f \cdot x : f \in R_{n-1}\}$ . Thus  $I_n \simeq R_{n-1}$ , and so

$$H_l(n) = \binom{d+n-2}{d-1}$$

### Definition

Let M be a finitely generated graded R-module. The formal Laurent power series

$$\mathcal{P}_{\mathcal{M}}(\mathbf{t}) = \sum_{n \in \mathbb{Z}} \dim_k M_n \mathbf{t}^n$$

is the Hilbert-Poincaré series of M. It is also called the generating series of M.

$$P_R(\mathbf{t}) = \sum_{n \in \mathbb{Z}} \binom{d+n-1}{d-1} \mathbf{t}^n = \frac{1}{(1-\mathbf{t})^d}$$

- If R = k (0 variables),  $M = \bigoplus_n M_n$  is a finite dimensional graded vector space. So  $H_M(n) = 0$  for  $n \gg 0$ , and  $P_M(\mathbf{t})$  is a polynomial.
- If  $z_1, \ldots, z_m$  are the homogeneous generators of *M*, since

$$M_n = \{\sum_i r_i z_i, \quad \deg(r_i) + \deg(z_i) = n\},\$$

 $M_n = 0$  for  $n < \inf\{\deg(z_i)\}$ . Thus  $H_M(n) = 0$  for  $0 \gg n$ , and  $P_M(\mathbf{t})$  has only finitely many terms in negative degrees.

## Example

- Let R = k[x, y, z] and I = (xy, yz, zx) and set M = R/I.
   Let us determine the Hilbert-Poincaré series of M.
- Consider the homogeneous homomorphism of *M* induced by multiplication by *x*. This gives rise, in each degree, to the exact sequence of vector spaces

$$0 \to K_{n-1} \longrightarrow M_{n-1} \to M_n \longrightarrow C_n \to 0,$$

where K is the kernel and C is the cokernel of the multiplication by x.

• 
$$C = R/(x, I) = k[y, z]/(yz)$$
 and  $K = (I : x)/I = (y, z)/I$ .

## Example cont'd

This gives the exact sequence

$$0 \rightarrow R/I/(y,z)/I = R/(y,z)[-1] = k[x][-1] \rightarrow R/I \rightarrow k[y,z]/(yz) \rightarrow 0$$

### This gives the equality of Hilbert series

$$P_{R/I}(\mathbf{t}) = P_{k[x][-1]}(\mathbf{t}) + P_{k[y,z]/(yz)}(\mathbf{t}).$$

• 
$$P_{k[x]}(t) = \frac{1}{1-t}$$
 and  $P_{k[x][-1]}(t) = \frac{t}{1-t}$ 

• 
$$P_{k[y,z]/(yz)} = \frac{1-t^2}{(1-t)^2} = \frac{1+t}{1-t}$$
.  
•  $P_{R/l}(\mathbf{t}) = \frac{1+2t}{1-t}$ .



۲

• We denote dim  $M_n = m_n$ , etc, so we have the equality  $k_{n-1} - m_{n-1} + m_n - c_n = 0$ .

# **Big theorem**

#### Theorem

Let M be a finitely generated graded R-module. Then

**1** There exists a polynomial  $\mathcal{H}(\mathbf{x})$  such that

 $H_M(n) = \mathcal{H}(n), \quad n \gg 0.$ 

2  $P_M(\mathbf{t})$  is a rational function of the form

$$\mathcal{P}_{\mathcal{M}}(\mathbf{t}) = \frac{\mathbf{h}(\mathbf{t},\mathbf{t}^{-1})}{(1-\mathbf{t})^d},$$

where  $h(t, t^{-1})$  is a polynomial with integer coefficients.

**Proof.** The proof is long but instructive. We will introduce various notions along the way.
Let us recall:

Proposition

Let k be a field and

$$0 \rightarrow V_n \longrightarrow V_{n-1} \longrightarrow \cdots \longrightarrow V_2 \longrightarrow V_1 \rightarrow 0$$

be an exact complex of finite dimensional vector spaces. Then

$$\sum_{i=1}^n (-1)^i \operatorname{dim} V_i = 0.$$

**Proof.** This is a direct consequence of the case n = 3: If

$$0 \to V_3 \longrightarrow V_2 \longrightarrow V_1 \to 0$$

is exact, then dim  $V_2 = \dim V_1 + \dim V_3$ .

## Proof

- The proof will be by induction on the number of *d* of variables of  $R = k[x_1, ..., x_d]$ . If d = 0,  $M_n = 0$  for  $n \gg 0$ , so that  $H_M(n) = 0$  and  $P_M(\mathbf{t}) = \mathbf{h}(\mathbf{t}, \mathbf{t}^{-1})$  for some polynomial  $\mathbf{h}$ .
- For the induction step, consider the following sequence defined by multiplication by *x*<sub>d</sub>:

$$0 \to K \longrightarrow M \stackrel{\varphi}{\longrightarrow} M \longrightarrow C = M/x_d M \to 0, \quad \varphi(z) = x_d z.$$

•  $\varphi$  maps  $M_{n-1}$  to  $M_n$ . Its kernel is a graded submodule of M,

$$K = \{z \in M : x_d z = 0\}$$

 Observe that K and C are annihilated by x<sub>d</sub>, so they are (graded) modules over k[x<sub>1</sub>,..., x<sub>d-1</sub>]. Consider the exact sequence of vector spaces

$$0 \to K_{n-1} \longrightarrow M_{n-1} \longrightarrow M_n \longrightarrow C_n \to 0.$$

By the usual property,

$$\dim K_{n-1} - \dim M_{n-1} + \dim M_n - \dim C_n = 0$$

We denote the dimensions by small numbers so that

$$k_{n-1} - m_{n-1} + m_n - c_n = 0$$

multiply by **t**<sup>*n*</sup> and add the formal power series to get

$$\sum_{n} k_{n-1} \mathbf{t}^n - \sum_{n} m_{n-1} \mathbf{t}^n + \sum_{n} m_n \mathbf{t}^n - \sum_{n} c_n \mathbf{t}^n = 0$$

That is

$$\mathbf{t} P_{\mathcal{K}}(\mathbf{t}) - \mathbf{t} P_{\mathcal{M}}(\mathbf{t}) + P_{\mathcal{M}}(\mathbf{t}) - P_{\mathcal{C}}(\mathbf{t}) = \mathbf{0}$$

so that

$$P_M(\mathbf{t}) = rac{P_C(\mathbf{t}) - \mathbf{t}P_K(\mathbf{t})}{1 - \mathbf{t}}$$

Since both  $P_{\mathcal{K}}(\mathbf{t})$  and  $P_{\mathcal{C}}(\mathbf{t})$  are rational functions of the form  $\frac{\mathbf{f}(\mathbf{t},\mathbf{t}^{-1})}{(1-\mathbf{t})^{d-1}}$ , we have the second assertion of the theorem.

The proof that the Hilbert function  $H_M(n)$  agrees with a polynomial for  $n \gg 0$  uses simple calculus: Consider the Taylor expansion

$$\frac{1}{(1-t)^d} = \sum_n \binom{d+n-1}{d-1} \mathbf{t}^n$$

and from the representation  $P_M(\mathbf{t}) = \frac{\mathbf{h}(\mathbf{t}, \mathbf{t}^{-1})}{(1-\mathbf{t})^d}$ , write

$$\mathbf{h}(\mathbf{t},\mathbf{t}^{-1}) = \sum_{j=-r}^{j=s} a_j \mathbf{t}^j$$

Taking into account that  $H_M(n)$  is the coefficient of  $\mathbf{t}^n$  in the expansion of  $P_M(\mathbf{t})$  we have for  $n \ge s$ 

$$H_M(n) = \sum_{j=-r}^{j=s} a_j \binom{d+n-j-1}{d-1}$$

This is a polynomial of degree  $\leq d - 1$  in the index *n*. Its coefficients are important invariants of *M*.

#### Example

Let  $R = k[x_1, x_2, x_3]$ , and let *I* be the ideal generated by the monomials  $x_1x_2, x_1x_3, x_2x_3$ . Set M = R/I.

 $0 \to (x_3, I)/I \to R/I \to R/(x_3, I) \to 0, \ (x_3, I)/I \simeq R/(x_1, x_2)[-1] = k[x_3][-1]$ 

A calculation gives  $(R/(x_3, I) = k[x_1, x_2]/(x_1x_2))$ 

$$P_{R/I}(\mathbf{t}) = P_{k[x_1, x_2]/(x_1 x_2)}(\mathbf{t}) + P_{k[x_3][-1]}(\mathbf{t})$$
  
=  $\frac{1 - \mathbf{t}^2}{(1 - \mathbf{t})^2} + \frac{\mathbf{t}}{1 - \mathbf{t}}$   
=  $\frac{1 + 2\mathbf{t}}{1 - t}$   
 $H_{R/I}(n) = 3, n \ge 1.$ 

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 Multilinear Algebra Assignment #21 **Hilbert Functions** Assignment #22

#### Assignment #22

• Let  $\mathbf{K}_n$  be the complete graph on *n* vertices labeled by the indeterminates  $x_1, \ldots, x_n$ . Let  $I_n$  be the ideal of the ring  $R = k[x_1, \ldots, x_n]$  (*k* a field) corresponding to it. ( $\mathbf{K}_n$  is just a reminder that to each graph there is an attached ideal.)  $I_n$  is generated by all the monomials  $x_i x_j$ ,  $i \neq j$ . Find the Hilbert functions of the graded modules  $I_n$  and  $R/I_n$ .

# Outline

Intro to Homological Algebra Assignment #18 **The Hom Functor** Assignment #19 Hilbert Syzygy Theorem Assignment #20 Multilinear Algebra Assignment #21 Assignment #22 TakeHome #2

### TakeHome #2

#### Do 5 Problems.

- Let G be the dihedral group D₄. Find the decomposition of the group ring C[G] into simple rings.
- Prove that any ideal *I* of a Dedekind domain can be generated by 1.5 elements, that is *I* = (*a*, *b*), with *a* being any nonzero element.
- Let *R* be a commutative ring. If  $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$  is an isomorphism of *R*-modules, prove that m = n.
- Let I = (x, y) be an invertible ideal of the integral domain R. Prove that I<sup>2</sup> can be generated by x<sup>2</sup> and y<sup>2</sup> (i.e. no need to use xy). Can you generalize (any invertible ideal and any power)?

- Let *R* be a commutative ring and let *f*(*x*) and *g*(*x*) be nonzero polynomials (elements of *R*[*x*]) such that *f*(*x*)*g*(*x*) = 0. Prove that there is a nonzero element *r* ∈ *R* such that *rf*(*x*) = 0.
- Show that Q[x] and Q[x, y] are isomorphic as abelian groups but not as rings.
- Let *R* be a commutative ring and assume the ideal *I* is contained in the set theoretic union of 3 prime ideals

 $I \subset P \cup Q \cup M$ .

Show that I must be contained in one of them.