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Artin Rings

Artin Rings

In this set, A will be an Artinian ring, or simply an Artin ring.
Typically, we assume that A is a left Artin ring, but side is not
significant. We make use of both left and right modules when
discussing Artin rings.
The main aspects we will treat are:

@ The Jacobson radical of A

@ Semi-simplicity

@ Wedderburn theorem

@ Major classes of examples: division rings, group rings



Artin Rings

Examples: Matrix rings

@ Let K be afield and A the ring of n x n matrices over K.
This is the premier example. Any of its subrings B which is
a K vector subspace is also Artinian.

@ Among the subrings, a noteworthy is given by the upper
triangular matrices

@ One can also form matrix rings with entries in other matrix
rings...
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Artin Rings

More examples: Artin algebras

Given a field K and a K-vector space V with a basis
{e1,...,en}, an algebra structure on V is given by specifying a
product rule

€ & = Z Cijk €k »
k

with ¢jx € K (the structure constants).

The cjx must satisfy certain relations to accommodate the
axioms for an algebra. Thus, to have a unit, say, e; must satisfy
e1e; = e;, that means ¢y;; = 1.



The commutativity axiom will translate as
Ciik = Giik-

The most demanding is the associative axiom: to have
ei(ejex) = (eje))ex, It translates into

Z CimnCjkn = Z CiinCnkm
mn mn



For a field K and a group G, the group ring of G over K is the
vector space k[G] with a basis indexed by G:

/
Z a,o

ocG

The associative axiom follows from the group law. If G is finite,
K[G] is Artinian.

Earlier, in our discussion of field theory, we met a more delicate
ring, the twisted group ring: L/K an extension of Galois group
G, and L[G]. Note differences...



Artin Rings

Radical of a Ring

If Ais a ring with 1, we have several classes of interesting
ideals. For example: there are maximal left ideals, maximal
right ideals, two-sided maximal ideals. They are usually very
distinct.



Proposition
For any left ideal | TFAE:
Q 1+ ais leftinvertible Va € I.

© If M is a finitely generated left A-module and M = IM, then
M =0.

© /C NP all maximal left ideals.

Proof. (1) = (2): Let M = (my, ..., m,), with r as small as
possible. Then

m = am+am+---+am, acecl
(1—a)m = amp+---+amy,
and since 1 — ay is invertible, my € (mo,...,m;), a

contradiction.



(2) = (3): Let P be a maximal left ideal and set M = A/P. M is
a simple module, so IM =0 (and I C P), or IM = M. In this
case, M = 0, which is a contradiction.

(3) = (1): For a € I, the ideal A(1 + a) cannot be contained in
any maximal left ideal P as a € P. Thus A(1 + a) = A.

Example: Anideal /is nil if for each a € /, a" = 0 for some n
(that may depend on a), while / is nilpotent if /" = 0 for some
n. Ifa" =0,

A+a+---+a" H(1-a=1,

so nil ideals satisfy the conditions above.



Artin Rings

Annihilators

Let A be aring, and M a left A-module. We will make use of the
following constructions of annihilators:

@ If ac A, its left annihilator is the set L = {r € A: ra= 0}.
Note that L is a left ideal.

@ If me M, its annihilator is the set L = {r € A: rm = 0}.
Note that L is a left ideal.

@ The annihilator of M is the set
L={reA:rm=0,Vme M}.

Note A-L-A-M=A-L-M=0, so Lis atwo-sided ideal.



Artin Rings

Cute reversal

Proposition

Let | be a left ideal such that 1 + a has a left inverse for all
ac l. Then1 + a has a right inverse.

Proof. Let a € / and let b be a left inverse of 1 4 a

b(1+a) = 1=b+ba
1—b = bacl, therefore1 — (1 — b) has a left inverse
cb = 1 therefore
cb(1+a)) = c=1+a



Artin Rings

Primitive ideals

Let A be a ring with 1.
@ A left module M is faithful if its annihilator ann M = 0.
© A s primitive if there is a simple, faithful module.

© The ideal / is left primitive if / is two-sided and A// is (left)
primitive.

For example, V = K" is a left module over the matrix ring
A = Homg(V, V). Vis faithful [check] and simple [check]. Thus
0 is a left primitive ideal of A.



Artin Rings

Primitive ideals

Proposition
Every left maximal ideal P contains a left primitive ideal.

Let / be the annihilator of A/P. I is a two-sided ideal and A/P
is a left, faithful A//-module. O




Proposition

A left primitive ideal | is the intersection of the left maximal
ideals containing it.

Recall that if M is a left A-module, the annihilator ann M is a
two-sided ideal, and for m € M, ann (m) is a left ideal.

Let M be a faithful, simple left A//-module. Note
I = ﬂ ann (m).
0#meM

For0 # me M, Am = M. Let P be the annihilator of m. Pis a
left maximal ideal as A/P is simple and /| C M. O




Artin Rings

Jacobson radical

Proposition

For any ring A, let
Q@ J; =\ P;, Ileftprimitive ideals;
©Q J, =[P, maximal leftideals;
©Q J; = P;, maximal right ideals.

Then J; = J» = J3. This ideal is called the Jacobson radical of
A, and will be denoted by J(A).




Artin Rings

Jacobson radical of an Artin ring

If A is a left Artin ring, then J(A) is nilpotent.

Proof. Consider the descending chain
JOSLD DS =g = set L= K

From L = [? we are going to argue L = 0. If L # 0, pick / a
minimal left nonzero ideal such that L/ = 0. Thus thereis u € |
such that Lu # 0, so since L = L2, Lu = |.

This means that u = su, for s € L, so (1 — s)u = 0, whence
u = 0since 1 — sis invertible.



Artin Rings

Local algebras of endomorphisms

Here is a minor research topic. Let R be a Noetherian local ring
of maximal ideal m and let E be a finitely generated R-module.
We now treat conditions for the algebra A = Hompg(E, E) to
have a unique two-sided maximal ideal.



Let (R, m) be a Noetherian local ring and let E be a finitely
generated R-module.

@ If E has no free summand, then the image of E* @ E in \ is
a two-sided ideal contained in the Jacobson radical.

© Moreover if R is a Gorenstein ring and E is a module of
syzygies of perfect module R/, then A\ is a local algebra.
In particular \ will be a local algebra when | is generated
by a regular sequence.




Artin Rings

Proof

Proof. The action of Aon E* ® E is as follows. For h € A,
(feelh=foh®eandh(f®e)=fxh(e).

Let I be the identity of A. To prove that
n
h=1+> fioe
i=1
is invertible, note that for each e € E,
n
h(e) = e+ f(e)ei € e+ mE,
i=1

since fi(e) € m as E has no free summand. From the
Nakayama Lemma, it follows that h is a surjective
endomorphism, and therefore must be invertible.



Artin Rings

Payoff

Let A be a left Artin ring. Will now discuss the following
properties of A:

@ Semi-simple A-modules

@ Semi-simple Artin ring

@ Left Artin = right Artin

@ Left Artin = left Noetherian
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Assignment #15

@ Let T, be the set of upper triangular matrices over the field
K. Describe all the maximal left ideals of T, and its
Jacobson radical.
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Semisimple Modules

Semisimple Modules

Definition
Let A be aring and M a left A-module. M is semisimple if

M= @ M;, M, simple.

iel

Besides vector spaces, what are they? Their properties...



Semisimple Modules

Summands

@ A submodule L of A is a direct summand if there another
submodule L’ c A such that

A=L+L, Lnl =0.

@ Another way: There exists a homomorphism ¢ : A — L
such that ¢(x) = x for x € L. ¢ is called a projection. We
can take L’ = ker (¢) for summand.

@ Yet another way: There exists a homomorphism f: A — A,
with fo f = f and f(A) = L.



Semisimple Modules

Characterization of semisimple modules

Proposition

An A-module M is semisimple iff every submodule is a direct
summand.

Proof. Suppose M = @, M;, M; simple, and let L be a
submodule.

For each subset J C /, write M; = ;. , M;. Let J be a
maximum subset of / such that L N M, = 0. We claim that

M=LaoM,.
Letie I\ J,
(My+M)NL#A0 = (My+L)NnM;#0
Thus (My+ L)NnM; = M;,so M; +A= M.



Semisimple Modules

Conversely, suppose every submodule of M is a direct
summand. Note that every submodule inherits the property: If
Lo c L c Mand Ly is a direct summand of M then itis also a
direct summand of L.

Claim: Every nonzero submodule B of M contains a nonzero
simple submodule. Let 0 # b € B and C a maximal submodule
of Bsuchthat b ¢ C.

B = CeD

Claim: D is simple. Otherwise there is 0 # E C D, and
D=EsoF,andso B=C® E® F,inparticular b=c+ e+ .
But then we cannothave be C@ Eandbe C @ F.



Semisimple Modules

Let {M; : i € I} be a maximal family of simple submodules of M
and such that L = 3, M; is a direct sum.

Since L is a direct summand of M, M = L @ B. If B is nonzero,
by the argument above, it contains a nonzero simple
submodule, that contradicts the choice of /, thus

M= M.

iel

If M is semisimple, then any submodule or factor module are
semisimple.




Semisimple Modules

Semisimple Rings

Let A be aring. TFAE
@ A is left semisimple (as a module over itself);
© A is left Artinian and J(A) = 0;
© A is left Artinian and 7 # 0 for every minimal left ideal;
©Q Every nonzero left A-module is semisimple;
@ Every left A-module is projective;
Q Every left A-module is injective.




Semisimple Modules

A technical point

Proposition

Let A be aring and | a left ideal. Then
@ | is a direct summand iff | = Ax, x% = x.
© A minimal left ideal | of A is a direct summand iff I? % 0.

Proof. (1) If 1@ J = A,

1=x+y xel,yed soforallzel
z=zx+2zy zyelnd thereforezy =0

Thus / = Ax, x2 = x.



Semisimple Modules

Conversely, if | = Ax, x> = x, 1 = x + (1 — x),
A=Ax®A(1—x)and AxNA(1-x)=0.

(2) If I £ 0 there is x € I such that Ix # 0, and therefore

Ax = Ix = I since | is minimal.

In particular, x = zx for some z € /. Let J be the annihilator of
x,J={reA:rx=0}. From x = zx, thatis 1 — z € J. Thus

1=z4+(1-2)= A=I/+J andINnd=1lorINd=0
But JN /= Ilis not possible as Ix # 0. Thus

A = IapJd



Semisimple Modules

Proof of Theorem

(1) Ais left semisimple (as a module over itself) = (2) A is left
Artinian and J(A) =0

Suppose A = @;l;, I; simple left ideal. In particular
1T = Xg+- + X,
for finitely many indices. This shows the family {/;} is finite:

Z=ZX1+---+2xp, VzeA



Semisimple Modules

Thus A has a composition series
Ochchoebc---che---ol,=A,

in particular it has both chain conditions.

Moreover, if J(A) # 0 it cannot be a direct summand of A since
it is nilpotent.



Semisimple Modules

(2) Ais left Artinian and J(A) = 0 = (3) A is left Artinian and
I? 0 for every minimal left ideal

A cannot have nilpotent ideals as J(A) = 0, thus every nonzero
minimal left ideal / has /2 # 0.



Semisimple Modules

(3) A is left Artinian and /2 # 0 for every minimal left ideal = (4)
Every nonzero left A-module is semisimple

We first show that A is semisimple.

If /1 is a minimal left ideal, A = I; & J;. If J; is simple we are
done. If not, left I, be a nonzero minimal left ideal C J; (use
Artinian condition). k is a direct summand of J;, J1 = b & Jb. In
this manner we get a chain J; 2 J» 2 - - - that must stop. The
corresponding /; give a decomposition of A.

For any module M there is a surjection of a free module

F = ®Ae; — M. The kernel L is a submodule of the semisimple
module F, so L is a direct summand and F = L & M. It follows
that M is also semisimple.

The other equivalencies uses this argument.



Semisimple Modules

Consequences

If A is left Artinian then A is left Noetherian. l

Proof. If J(A) = 0, A is semisimple, and as we remarked, A
has a composition series, in particular has both chain
conditions.

If J7= 0 for n > 0, consider the tower
0=J"¢cJ"'C...CJCA

lts factors, J'/J"*1 are Artinian modules over the semisimple
ring A/J. Thus each has a composition series, whence A has a
composition series as well.

_

A is left Artinian iff A is right Artinian.



Semisimple Modules

Semisimple rings versus Simple rings

Let A be a semisimple ring,

A = L& - -®lp, [ minimal left ideal

Proposition

Every simple left A-module M is isomorphic to one of the ideals
l;, in particular there are only a finite number of isomorphism
classes of simple left modules.

Proof. Since AM = M, we must have ;M # 0 for some |,.
Because M is simple, ;M = M. We claim that /; ~ M. Let

m € M such that ;m # 0.

Define the mapping ¢ : I — M by ¢(x) = xm. ¢ is a nonzero
homomorphism of left modules, and since /; and M are simple,
@ is an isomorphism.



Semisimple Modules

This leads to the following relationships amongst the /;:
Q If /i ~ I, then

li=F~1ll=1l=/F whiel#|
lili=0= ([i)?=0= [l; =0 since A is semisimple
© We can write A as a direct product of semisimple rings
A = A x---xA,

such that each A, is semisimple and all simple
Ak-modules are isomorphic.



Semisimple Modules

Simple Artin Rings

Theorem
Let A be a semisimple Artin ring such that all simple left

modules are isomorphic. Then A is a simple ring, that is 0 and
A are the only two-sided ideals.

LetA=/ & --® I, be a simple decomposition of A. We have
that /;; = I; for any pair [, /;.

If L is a nonzero two-sided ideal, L/; # 0 for some [;. Since /; is
minimal, L/; = [; and thus /; C L since L is a right ideal.

Therefore, from /; = [;[; C L, and so L = A. ]

.




Semisimple Modules

Maschke’s Theorem

Let G be a finite group and A = K[G] its group ring over the
field K. Then A is semisimple iff char K does not divide |G|.

Proof. Suppose the order of G is not divisible by the
characteristic of K. We are going to argue that every left
A-module is semisimple.

@ Let M be a left A-module and L a submodule. We will
prove that L is a direct summand.

@ As a K-vector subspace of M, there is direct summand
decomposition M = L & L. Denote by f: M — L the
corresponding K-homomorphism: f is surjective and
f(m)=mforme L.



Semisimple Modules

Maschke’s Cont'd

@ Now we modify f into a A-linear homomorphism

o(m) = |é|20_1f(0m).

ocG

@ IfmeL,as Lis asubmodule,cme L, so
o~ (oem) = o~ lom=m, and p(m) = m.
@ ltis easy to verify that forany 7 € Gand m e M,

p(rm) = Tp(m),

and ¢ is A-linear, as desired.



Semisimple Modules

Maschke’s Cont'd

Now suppose |G| is divisible by char KK. Consider the element

It satisfies

Thus the nonzero ideal / = Ax is nilpotent (note that x lies in
the center of A), so A is not semisimple.
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Assignment #16

Assignment #16

Let V be a finite dimensional vector space over the field K.
Prove the following assertions about the matrix ring
A = Homg(V,V):

@ A has no two-sided ideal # 0, A.

@ If /is a left ideal, then there is a unique subspace W such
that
I={fcA:f(w)=0 VYwe W}

@ If /is aright ideal, then there is a unique subspace W such
that
I={fcA:f(v)eW VveV}
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Wedderburn Theorem

Wedderburn Theorem

Proposition

Let A be a ring and e an idempotent such that AeA = A.
Denote by D the subring eAe. Then M = Ae is a right
D-module and

A~ HomD(MD, MD)

Proof. We define the following homomorphism
f: A — Homp(Mp, Mp): Forac A, and m e M, f(a)(m) = am.
@ fis one-to-one: Otherwise aM = 0 that is aAe = 0 and
therefore aAeA = aA =0,soa= 0 as A has 1.
@ fis onto: Since AeA = A, there is an equation

1= Z a,-eb,-, a;, b,‘ cA.
i



Wedderburn Theorem
Proof Cont’d

Thus for any m = me € M and ¢ € Homp(M, M), we have
p(m) =p(1-m) = Za,ebm
= Zcp[(a, (eb;)(me)] = ng (aje)(ebjme)

= Z[gp aje)eblm and thus
i

p = 1O _(s(ae)eby)).

i



Wedderburn Theorem

Wedderburn Theorem

Let A be a simple ring with 1 with a minimal left ideal | #£ 0.
Then A is isomorphic to a matrix ring over a division ring.

Proof. Since A is simple, I? # 0, so > = I since | is minimal.
Thus I = Ix for x € I.

There is an element z € | such that x = zx. Thus from
z=2z(1-2)+ 2% z(1 — z) € IN L, L the annihilator of x. Since
/'is minimal, / N L is either zero or /. In both cases we have a
contradiction.

This means that / is generated by an idempotent, which we will
call e. We take this ideal as M in the Proposition.



Wedderburn Theorem

Proof of Theorem

@ We already have a ring isomorphism A ~ Homp(Mp, Mp),
D = eAe.

© We must prove that eAe is a division ring. If
0 # eae € eAe, then eae € Aeeae = Ae, since Aeis
minimal.

© Therefore there is b € A such that beeae = e, that is
ebe - eae = e, which shows that every nonzero element of
eAce is invertible.



Division Rings

Outline

@ Division Rings



Division Rings

Hamilton Quaternions

Let H be the set of complex matrices of the form

Z1 2o
= _ = z1,20 € C.
q |:_Z2 Z :|7 1,42

To prove that H is a division ring, ETS:

@ H is a vector space over R: clear.
© H is closed under multiplication: check.

© The axioms will follow, inherited from matrix multiplication
rules, and the fact that if 0 £ g € H is invertible so for each
such quaternion multiplication ¢ — qq’ is surjective.



Division Rings

Characterization

H is the only non-commutative, finite dimensional division ring
over R.

Proof.
@ Let D be a division ring which is finite dimensional over R.
Let F a maximal commutative R-subalgebra of D.
@ Fis a field, so may be identified to C.
@ View D as left vector space over C, and define the linear
transformation

T(x) = xi, xeD

@ Note that T? = —I, so T is diagonalizable, of eigenvalues
+i.



Division Rings

Proof Cont'd

@ The eigenspaces are

D = {xeD:xi=ix}
D™ = {xeD:xi=—-ix}

e D"=C.Ifx,yeD,xyeD".

e If D~ =0, D = C, which is against the hypothesis, so if
0 # o € D, multiplication by o : D~ — D™ is an
isomorphism.



@ We claim that o® € R and o? < 0.
@ R[a] is a field and contains o?. Since

o® € CNR[a] =R

if «® > 0, o would have 3 square roots in R[«] (including
two in R).
@ Therefore there is j € D~ such that 2 = —1.

@ Now define k = jj. It follows that D has an R-basis
{1,1,], k}, with ?=j? =k =—1,ij = —ji, jk = —kKj,
ik = —ki, the standard relations that determine H.



Division Rings

Finite Division Rings

Theorem (Wedderburn)
A finite division ring D is a field.

Proof. Let K be the center of D. K is a field of characteristic p
and cardinality g > 2. Thus D is a (left) vector space over K so
that the cardinality of D is g". We argue that K = D.

@ For each 0 # a € D its centralizer
N(a) = {x € D : xa = ax} is a subdivision ring containing

K and a.
@ If ae D\ K, then N(a)« is the centralizer of ain the group
D* and
q" -
[D*: N(a)*] = g1 1<r<n, r|d.



Division Rings

Proof Cont'd

@ By the class equation,
q"—1:q—1+z:7qn_1 1<r<n, rln
- qr_17 — Y *

@ For each primitive nroot ( of 1inC, |g —¢| > |g— 1| (as
|g? — 1] > |q — 1]?) therefore g,(q) > g — 1 where gn(X) is
the nth cyclotomic polynomial.

@ To contradict the class equation, for each r < n that divides

n, the polynomial f;(x) = ;‘(7:11 lies in Z[x] and is divisible

by g-(x), with f,(x) = g,(x)h(x), h(x) € Z[x].
@ Thus for each r g,(q) divides f,(q) in Z, whence
dn(q)|g — 1, a contradiction.
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Assignment #17

@ Let G be the symmetric group S and A the group ring
C[G]. Prove that

C[G] ~ M,(C) x C x C.

© If Gis a finite group and K a field, let Z be the center of
K[G]. Find a basis of Z as a K-vector space in terms of the
conjugacy classes of G.
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