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Artin Rings

In this set, A will be an Artinian ring, or simply an Artin ring.
Typically, we assume that A is a left Artin ring, but side is not
significant. We make use of both left and right modules when
discussing Artin rings.
The main aspects we will treat are:

The Jacobson radical of A
Semi-simplicity
Wedderburn theorem
Major classes of examples: division rings, group rings
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Examples: Matrix rings

Let K be a field and A the ring of n × n matrices over K.
This is the premier example. Any of its subrings B which is
a K vector subspace is also Artinian.
Among the subrings, a noteworthy is given by the upper
triangular matrices  a b c

0 d e
0 0 f


One can also form matrix rings with entries in other matrix
rings...
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More examples: Artin algebras

Given a field K and a K-vector space V with a basis
{e1, . . . ,en}, an algebra structure on V is given by specifying a
product rule

ei · ej =
∑

k

cijkek ,

with cijk ∈ K (the structure constants).

The cijk must satisfy certain relations to accommodate the
axioms for an algebra. Thus, to have a unit, say, e1 must satisfy
e1ei = ei , that means c1ij = 1.
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The commutativity axiom will translate as

cijk = cjik .

The most demanding is the associative axiom: to have
ei(ejek ) = (eiej)ek , It translates into

∑
mn

cimncjkn =
∑
mn

cijncnkm
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For a field K and a group G, the group ring of G over K is the
vector space k[G] with a basis indexed by G:

′∑
σ∈G

aσσ

The associative axiom follows from the group law. If G is finite,
K[G] is Artinian.

Earlier, in our discussion of field theory, we met a more delicate
ring, the twisted group ring: L/K an extension of Galois group
G, and L[G]. Note differences...
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Radical of a Ring

If A is a ring with 1, we have several classes of interesting
ideals. For example: there are maximal left ideals, maximal
right ideals, two-sided maximal ideals. They are usually very
distinct.
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Proposition
For any left ideal I TFAE:

1 1 + a is left invertible ∀a ∈ I.
2 If M is a finitely generated left A-module and M = IM, then

M = 0.
3 I ⊆

⋂
P all maximal left ideals.

Proof. (1)⇒ (2): Let M = (m1, . . . ,mr ), with r as small as
possible. Then

m1 = a1m1 + a2m2 + · · ·+ ar mr , ai ∈ I
(1− a1)m1 = a2m2 + · · ·+ ar mr ,

and since 1− a1 is invertible, m1 ∈ (m2, . . . ,mr ), a
contradiction.
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(2)⇒ (3): Let P be a maximal left ideal and set M = A/P. M is
a simple module, so IM = 0 (and I ⊂ P), or IM = M. In this
case, M = 0, which is a contradiction.

(3)⇒ (1): For a ∈ I, the ideal A(1 + a) cannot be contained in
any maximal left ideal P as a ∈ P. Thus A(1 + a) = A.

Example: An ideal I is nil if for each a ∈ I, an = 0 for some n
(that may depend on a), while I is nilpotent if In = 0 for some
n. If an = 0,

(1 + a + · · ·+ an−1)(1− a) = 1,

so nil ideals satisfy the conditions above.
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Annihilators

Let A be a ring, and M a left A-module. We will make use of the
following constructions of annihilators:

If a ∈ A, its left annihilator is the set L = {r ∈ A : ra = 0}.
Note that L is a left ideal.
If m ∈ M, its annihilator is the set L = {r ∈ A : rm = 0}.
Note that L is a left ideal.
The annihilator of M is the set

L = {r ∈ A : rm = 0, ∀m ∈ M}.

Note A · L · A ·M = A · L ·M = 0, so L is a two-sided ideal.
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Cute reversal

Proposition
Let I be a left ideal such that 1 + a has a left inverse for all
a ∈ I. Then 1 + a has a right inverse.

Proof. Let a ∈ I and let b be a left inverse of 1 + a

b(1 + a) = 1 = b + ba
1− b = ba ∈ I, therefore 1− (1− b) has a left inverse

cb = 1 therefore

c(b(1 + a)) = c = 1 + a



Artin Rings Assignment #15 Semisimple Modules Assignment #16 Wedderburn Theorem Division Rings Assignment #17

Primitive ideals

Definition
Let A be a ring with 1.

1 A left module M is faithful if its annihilator ann M = 0.
2 A is primitive if there is a simple, faithful module.
3 The ideal I is left primitive if I is two-sided and A/I is (left)

primitive.

For example, V = Kn is a left module over the matrix ring
A = HomK(V,V). V is faithful [check] and simple [check]. Thus
0 is a left primitive ideal of A.
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Primitive ideals

Proposition
Every left maximal ideal P contains a left primitive ideal.

Proof.
Let I be the annihilator of A/P. I is a two-sided ideal and A/P
is a left, faithful A/I-module.
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Proposition
A left primitive ideal I is the intersection of the left maximal
ideals containing it.

Recall that if M is a left A-module, the annihilator ann M is a
two-sided ideal, and for m ∈ M, ann (m) is a left ideal.

Proof.
Let M be a faithful, simple left A/I-module. Note

I =
⋂

06=m∈M

ann (m).

For 0 6= m ∈ M, Am = M. Let P be the annihilator of m. P is a
left maximal ideal as A/P is simple and I ⊂ M.
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Jacobson radical

Proposition
For any ring A, let

1 J1 =
⋂

P1, left primitive ideals;
2 J2 =

⋂
P2, maximal left ideals;

3 J1 =
⋂

P3, maximal right ideals.
Then J1 = J2 = J3. This ideal is called the Jacobson radical of
A, and will be denoted by J(A).
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Jacobson radical of an Artin ring

Theorem
If A is a left Artin ring, then J(A) is nilpotent.

Proof. Consider the descending chain

J ⊇ J2 ⊇ · · · ⊇ Jk = Jk+1 = · · · set L = Jk .

From L = L2 we are going to argue L = 0. If L 6= 0, pick I a
minimal left nonzero ideal such that LI 6= 0. Thus there is u ∈ I
such that Lu 6= 0, so since L = L2, Lu = I.

This means that u = su, for s ∈ L, so (1− s)u = 0, whence
u = 0 since 1− s is invertible.
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Local algebras of endomorphisms

Here is a minor research topic. Let R be a Noetherian local ring
of maximal ideal m and let E be a finitely generated R-module.
We now treat conditions for the algebra Λ = HomR(E ,E) to
have a unique two-sided maximal ideal.
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Proposition
Let (R,m) be a Noetherian local ring and let E be a finitely
generated R-module.

1 If E has no free summand, then the image of E∗ ⊗E in Λ is
a two-sided ideal contained in the Jacobson radical.

2 Moreover if R is a Gorenstein ring and E is a module of
syzygies of perfect module R/I, then Λ is a local algebra.
In particular Λ will be a local algebra when I is generated
by a regular sequence.
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Proof

Proof. The action of Λ on E∗ ⊗ E is as follows. For h ∈ Λ,
(f ⊗ e)h = f ◦ h⊗ e and h(f ⊗ e) = f ⊗ h(e).

Let I be the identity of Λ. To prove that

h = I +
n∑

i=1

fi ⊗ ei

is invertible, note that for each e ∈ E ,

h(e) = e +
n∑

i=1

fi(e)ei ∈ e + mE ,

since fi(e) ∈ m as E has no free summand. From the
Nakayama Lemma, it follows that h is a surjective
endomorphism, and therefore must be invertible.
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Payoff

Let A be a left Artin ring. Will now discuss the following
properties of A:

Semi-simple A-modules
Semi-simple Artin ring
Left Artin⇒ right Artin
Left Artin⇒ left Noetherian
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Assignment #15

1 Let Tn be the set of upper triangular matrices over the field
K. Describe all the maximal left ideals of Tn and its
Jacobson radical.
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Semisimple Modules

Definition
Let A be a ring and M a left A-module. M is semisimple if

M =
⊕
i∈I

Mi , Mi simple.

Besides vector spaces, what are they? Their properties...
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Summands

A submodule L of A is a direct summand if there another
submodule L′ ⊂ A such that

A = L + L′, L ∩ L′ = 0.

Another way: There exists a homomorphism ϕ : A→ L
such that ϕ(x) = x for x ∈ L. ϕ is called a projection. We
can take L′ = ker (ϕ) for summand.
Yet another way: There exists a homomorphism f : A→ A,
with f ◦ f = f and f(A) = L.
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Characterization of semisimple modules

Proposition
An A-module M is semisimple iff every submodule is a direct
summand.

Proof. Suppose M =
⊕

i∈I Mi , Mi simple, and let L be a
submodule.

For each subset J ⊆ I, write MJ =
⊕

i∈J Mi . Let J be a
maximum subset of I such that L ∩MJ = 0. We claim that

M = L⊕MJ .

Let i ∈ I \ J,

(MJ + Mi) ∩ L 6= 0 ⇒ (MJ + L) ∩Mi 6= 0

Thus (MJ + L) ∩Mi = Mi , so MJ + A = M.
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Conversely, suppose every submodule of M is a direct
summand. Note that every submodule inherits the property: If
L0 ⊂ L ⊂ M and L0 is a direct summand of M then it is also a
direct summand of L.

Claim: Every nonzero submodule B of M contains a nonzero
simple submodule. Let 0 6= b ∈ B and C a maximal submodule
of B such that b /∈ C.

B = C ⊕ D

Claim: D is simple. Otherwise there is 0 6= E ( D, and
D = E ⊕ F , and so B = C ⊕ E ⊕ F , in particular b = c + e + f .
But then we cannot have b ∈ C ⊕ E and b ∈ C ⊕ F .
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Let {Mi : i ∈ I} be a maximal family of simple submodules of M
and such that L =

∑
i∈I Mi is a direct sum.

Since L is a direct summand of M, M = L⊕ B. If B is nonzero,
by the argument above, it contains a nonzero simple
submodule, that contradicts the choice of I, thus

M =
⊕
i∈I

Mi .

Corollary
If M is semisimple, then any submodule or factor module are
semisimple.



Artin Rings Assignment #15 Semisimple Modules Assignment #16 Wedderburn Theorem Division Rings Assignment #17

Semisimple Rings

Theorem
Let A be a ring. TFAE

1 A is left semisimple (as a module over itself);
2 A is left Artinian and J(A) = 0;
3 A is left Artinian and I2 6= 0 for every minimal left ideal;
4 Every nonzero left A-module is semisimple;
5 Every left A-module is projective;
6 Every left A-module is injective.
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A technical point

Proposition
Let A be a ring and I a left ideal. Then

1 I is a direct summand iff I = Ax, x2 = x.
2 A minimal left ideal I of A is a direct summand iff I2 6= 0.

Proof. (1) If I ⊕ J = A,

1 = x + y x ∈ I, y ∈ J so for all z ∈ I
z = zx + zy zy ∈ I ∩ J therefore zy = 0

Thus I = Ax , x2 = x .
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Conversely, if I = Ax , x2 = x , 1 = x + (1− x),
A = Ax ⊕ A(1− x) and Ax ∩ A(1− x) = 0.

(2) If I2 6= 0 there is x ∈ I such that Ix 6= 0, and therefore
Ax = Ix = I since I is minimal.
In particular, x = zx for some z ∈ I. Let J be the annihilator of
x , J = {r ∈ A : rx = 0}. From x = zx , that is 1− z ∈ J. Thus

1 = z + (1− z)⇒ A = I + J and I ∩ J = I, or I ∩ J = 0

But J ∩ I = I is not possible as Ix 6= 0. Thus

A = I ⊕ J
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Proof of Theorem

(1) A is left semisimple (as a module over itself)⇒ (2) A is left
Artinian and J(A) = 0

Suppose A = ⊕i Ii , Ii simple left ideal. In particular

1 = x1 + · · ·+ xn,

for finitely many indices. This shows the family {Ii} is finite:

z = zx1 + · · ·+ zxn, ∀z ∈ A
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Thus A has a composition series

0 ⊂ I1 ⊂ I1 ⊕ I2 ⊂ · · · ⊂ I1 ⊕ · · · ⊕ In = A,

in particular it has both chain conditions.

Moreover, if J(A) 6= 0 it cannot be a direct summand of A since
it is nilpotent.
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(2) A is left Artinian and J(A) = 0⇒ (3) A is left Artinian and
I2 6= 0 for every minimal left ideal

A cannot have nilpotent ideals as J(A) = 0, thus every nonzero
minimal left ideal I has I2 6= 0.
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(3) A is left Artinian and I2 6= 0 for every minimal left ideal⇒ (4)
Every nonzero left A-module is semisimple

We first show that A is semisimple.
If I1 is a minimal left ideal, A = I1 ⊕ J1. If J1 is simple we are
done. If not, left I2 be a nonzero minimal left ideal ⊂ J1 (use
Artinian condition). I2 is a direct summand of J1, J1 = I2 ⊕ J2. In
this manner we get a chain J1 ) J2 ) · · · that must stop. The
corresponding Ii give a decomposition of A.

For any module M there is a surjection of a free module
F = ⊕Aei → M. The kernel L is a submodule of the semisimple
module F , so L is a direct summand and F = L⊕M. It follows
that M is also semisimple.

The other equivalencies uses this argument.
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Consequences

Theorem
If A is left Artinian then A is left Noetherian.

Proof. If J(A) = 0, A is semisimple, and as we remarked, A
has a composition series, in particular has both chain
conditions.

If Jn = 0 for n > 0, consider the tower

0 = Jn ( Jn−1 ( · · · ( J ( A

Its factors, J i/J i+1 are Artinian modules over the semisimple
ring A/J. Thus each has a composition series, whence A has a
composition series as well.

Scholium
A is left Artinian iff A is right Artinian.
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Semisimple rings versus Simple rings

Let A be a semisimple ring,

A = I1 ⊕ · · · ⊕ In, Ii minimal left ideal

Proposition
Every simple left A-module M is isomorphic to one of the ideals
Ii , in particular there are only a finite number of isomorphism
classes of simple left modules.

Proof. Since AM = M, we must have IiM 6= 0 for some Ii .
Because M is simple, IiM = M. We claim that Ii ' M. Let
m ∈ M such that Iim 6= 0.
Define the mapping ϕ : Ii → M by ϕ(x) = xm. ϕ is a nonzero
homomorphism of left modules, and since Ii and M are simple,
ϕ is an isomorphism.
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This leads to the following relationships amongst the Ii :

1 If Ii ' Ij , then

Ii = I2
i ' Ii Ij = Ij = I2

j , while Ii 6' Ij
Ii Ij = 0⇒ (Ij Ii)2 = 0⇒ Ij Ii = 0 since A is semisimple

2 We can write A as a direct product of semisimple rings

A = A1 × · · · × Ar ,

such that each Ak is semisimple and all simple
Ak -modules are isomorphic.
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Simple Artin Rings

Theorem
Let A be a semisimple Artin ring such that all simple left
modules are isomorphic. Then A is a simple ring, that is 0 and
A are the only two-sided ideals.

Proof.
Let A = I1 ⊕ · · · ⊕ In be a simple decomposition of A. We have
that Ii Ij = Ij for any pair Ii , Ij .

If L is a nonzero two-sided ideal, LIi 6= 0 for some Ii . Since Ii is
minimal, LIi = Ii and thus Ii ⊆ L since L is a right ideal.

Therefore, from Ij = Ii Ij ⊂ L, and so L = A.
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Maschke’s Theorem

Theorem
Let G be a finite group and A = K[G] its group ring over the
field K. Then A is semisimple iff char K does not divide |G|.

Proof. Suppose the order of G is not divisible by the
characteristic of K. We are going to argue that every left
A-module is semisimple.

Let M be a left A-module and L a submodule. We will
prove that L is a direct summand.
As a K-vector subspace of M, there is direct summand
decomposition M = L⊕ L′. Denote by f : M → L the
corresponding K-homomorphism: f is surjective and
f(m) = m for m ∈ L.



Artin Rings Assignment #15 Semisimple Modules Assignment #16 Wedderburn Theorem Division Rings Assignment #17

Maschke’s Cont’d

Now we modify f into a A-linear homomorphism

ϕ(m) =
1
|G|

∑
σ∈G

σ−1f(σm).

If m ∈ L, as L is a submodule, σm ∈ L, so
σ−1f(σm) = σ−1σm = m, and ϕ(m) = m.
It is easy to verify that for any τ ∈ G and m ∈ M,

ϕ(τm) = τϕ(m),

and ϕ is A-linear, as desired.
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Maschke’s Cont’d

Now suppose |G| is divisible by char KK . Consider the element

x =
∑
σ∈G

σ 6= 0

It satisfies

x2 = |G|x = 0.

Thus the nonzero ideal I = Ax is nilpotent (note that x lies in
the center of A), so A is not semisimple.
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Assignment #16

Let V be a finite dimensional vector space over the field K.
Prove the following assertions about the matrix ring
A = HomK(V,V):

A has no two-sided ideal 6= 0,A.
If I is a left ideal, then there is a unique subspace W such
that

I = {f ∈ A : f(w) = 0 ∀w ∈W}.

If I is a right ideal, then there is a unique subspace W such
that

I = {f ∈ A : f(v) ∈W ∀v ∈ V}.
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Wedderburn Theorem

Proposition
Let A be a ring and e an idempotent such that AeA = A.
Denote by D the subring eAe. Then M = Ae is a right
D-module and

A ' HomD(MD,MD).

Proof. We define the following homomorphism
f : A→ HomD(MD,MD): For a ∈ A, and m ∈ M, f(a)(m) = am.

1 f is one-to-one: Otherwise aM = 0 that is aAe = 0 and
therefore aAeA = aA = 0, so a = 0 as A has 1.

2 f is onto: Since AeA = A, there is an equation

1 =
∑

i

aiebi , ai ,bi ∈ A.
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Proof Cont’d

Thus for any m = me ∈ M and ϕ ∈ HomD(M,M), we have

ϕ(m) = ϕ(1 ·m) = ϕ(
∑

i

aiebim)

=
∑

i

ϕ[(aie)(ebi)(me)] =
∑

i

ϕ(aie)(ebime)

=
∑

i

[ϕ(aie)ebi ]m and thus

ϕ = f(
∑

i

(ϕ(aie)ebi)).
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Wedderburn Theorem

Theorem
Let A be a simple ring with 1 with a minimal left ideal I 6= 0.
Then A is isomorphic to a matrix ring over a division ring.

Proof. Since A is simple, I2 6= 0, so I2 = I since I is minimal.
Thus I = Ix for x ∈ I.

There is an element z ∈ I such that x = zx . Thus from
z = z(1− z) + z2, z(1− z) ∈ I ∩ L, L the annihilator of x . Since
I is minimal, I ∩ L is either zero or I. In both cases we have a
contradiction.

This means that I is generated by an idempotent, which we will
call e. We take this ideal as M in the Proposition.
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Proof of Theorem

1 We already have a ring isomorphism A ' HomD(MD,MD),
D = eAe.

2 We must prove that eAe is a division ring. If
0 6= eae ∈ eAe, then eae ∈ Aeeae = Ae, since Ae is
minimal.

3 Therefore there is b ∈ A such that beeae = e, that is
ebe · eae = e, which shows that every nonzero element of
eAe is invertible.
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Hamilton Quaternions

Let H be the set of complex matrices of the form

q =

[
z1 z2
−z2 z1

]
, z1, z2 ∈ C.

To prove that H is a division ring, ETS:

1 H is a vector space over R: clear.
2 H is closed under multiplication: check.
3 The axioms will follow, inherited from matrix multiplication

rules, and the fact that if 0 6= q ∈ H is invertible so for each
such quaternion multiplication q′ → qq′ is surjective.
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Characterization

Theorem
H is the only non-commutative, finite dimensional division ring
over R.

Proof.
Let D be a division ring which is finite dimensional over R.
Let F a maximal commutative R-subalgebra of D.
F is a field, so may be identified to C.
View D as left vector space over C, and define the linear
transformation

T(x) = xi , x ∈ D

Note that T2 = −I, so T is diagonalizable, of eigenvalues
±i .
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Proof Cont’d

The eigenspaces are

D+ = {x ∈ D : xi = ix}
D− = {x ∈ D : xi = −ix}

D+ = C. If x , y ∈ D−, xy ∈ D+.
If D− = 0, D = C, which is against the hypothesis, so if
0 6= α ∈ D−, multiplication by α : D− → D+ is an
isomorphism.
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We claim that α2 ∈ R and α2 < 0.
R[α] is a field and contains α2. Since

α2 ∈ C ∩ R[α] = R

if α2 > 0, α2 would have 3 square roots in R[α] (including
two in R).
Therefore there is j ∈ D− such that j2 = −1.
Now define k = ij . It follows that D has an R-basis
{1, i , j , k}, with i2 = j2 = k2 = −1, ij = −ji , jk = −kj ,
ik = −ki , the standard relations that determine H.
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Finite Division Rings

Theorem (Wedderburn)
A finite division ring D is a field.

Proof. Let K be the center of D. K is a field of characteristic p
and cardinality q ≥ 2. Thus D is a (left) vector space over K so
that the cardinality of D is qn. We argue that K = D.

For each 0 6= a ∈ D its centralizer
N(a) = {x ∈ D : xa = ax} is a subdivision ring containing
K and a.
If a ∈ D \ K, then N(a)∗ is the centralizer of a in the group
D∗ and

[D∗ : N(a)∗] =
qn − 1
qr − 1

, 1 ≤ r < n, r |d .
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Proof Cont’d

By the class equation,

qn − 1 = q − 1 +
∑

r

qn − 1
qr − 1

, 1 ≤ r < n, r |n.

For each primitive nroot ζ of 1 in C, |q − ζ| > |q − 1| (as
|q2 − 1| > |q − 1|2) therefore gn(q) > q − 1 where gn(x) is
the nth cyclotomic polynomial.
To contradict the class equation, for each r < n that divides
n, the polynomial fr (x) = xn−1

xr−1 lies in Z[x] and is divisible
by gr (x), with fr (x) = gr (x)h(x), h(x) ∈ Z[x].
Thus for each r gr (q) divides fr (q) in Z, whence
gn(q)|q − 1, a contradiction.
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Assignment #17

1 Let G be the symmetric group S3 and A the group ring
C[G]. Prove that

C[G] ' M2(C)× C× C.

2 If G is a finite group and K a field, let Z be the center of
K[G]. Find a basis of Z as a K-vector space in terms of the
conjugacy classes of G.
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