# Math 552: Abstract Algebra II 

Wolmer V. Vasconcelos

Set 4
Spring 2009

## Outline

(2) Assignment \#15
(3) Semisimple Modules
(4) Assignment \#16Wedderburn TheoremDivision RingsAssignment \#17

## Artin Rings

In this set, $\mathbf{A}$ will be an Artinian ring, or simply an Artin ring. Typically, we assume that $\mathbf{A}$ is a left Artin ring, but side is not significant. We make use of both left and right modules when discussing Artin rings.
The main aspects we will treat are:

- The Jacobson radical of A
- Semi-simplicity
- Wedderburn theorem
- Major classes of examples: division rings, group rings


## Examples: Matrix rings

- Let $\mathbf{K}$ be a field and $\mathbf{A}$ the ring of $n \times n$ matrices over $\mathbf{K}$. This is the premier example. Any of its subrings $\mathbf{B}$ which is a $\mathbf{K}$ vector subspace is also Artinian.
- Among the subrings, a noteworthy is given by the upper triangular matrices

$$
\left[\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right]
$$

- One can also form matrix rings with entries in other matrix rings...


## More examples: Artin algebras

Given a field $\mathbf{K}$ and a $\mathbf{K}$-vector space $\mathbf{V}$ with a basis $\left\{e_{1}, \ldots, e_{n}\right\}$, an algebra structure on $\mathbf{V}$ is given by specifying a product rule

$$
e_{i} \cdot e_{j}=\sum_{k} c_{i j k} e_{k},
$$

with $c_{i j k} \in \mathbf{K}$ (the structure constants).
The $c_{i j k}$ must satisfy certain relations to accommodate the axioms for an algebra. Thus, to have a unit, say, $e_{1}$ must satisfy $e_{1} e_{i}=e_{i}$, that means $c_{1 i j}=1$.

## The commutativity axiom will translate as

$$
c_{i j k}=c_{j i k} .
$$

The most demanding is the associative axiom: to have $e_{i}\left(e_{j} e_{k}\right)=\left(e_{i} e_{j}\right) e_{k}$, It translates into

$$
\sum_{m n} c_{i m n} C_{j k n}=\sum_{m n} c_{i j n} C_{n k m}
$$

For a field $\mathbf{K}$ and a group $\mathbf{G}$, the group ring of $\mathbf{G}$ over $\mathbf{K}$ is the vector space $\mathbf{k}[\mathbf{G}]$ with a basis indexed by $\mathbf{G}$ :

$$
\sum_{\sigma \in \mathbf{G}}^{\prime} a_{\sigma} \sigma
$$

The associative axiom follows from the group law. If $\mathbf{G}$ is finite, $\mathbf{K}[\mathbf{G}]$ is Artinian.

Earlier, in our discussion of field theory, we met a more delicate ring, the twisted group ring: $\mathbf{L} / \mathbf{K}$ an extension of Galois group $\mathbf{G}$, and $\mathbf{L}[\mathbf{G}]$. Note differences...

## Radical of a Ring

If $\mathbf{A}$ is a ring with 1 , we have several classes of interesting ideals. For example: there are maximal left ideals, maximal right ideals, two-sided maximal ideals. They are usually very distinct.

## Proposition

For any left ideal I TFAE:
(1) $1+a$ is left invertible $\forall a \in I$.
(2) If $M$ is a finitely generated left A-module and $M=I M$, then $M=0$.
(3) $I \subseteq \cap P$ all maximal left ideals.

Proof. (1) $\Rightarrow(2)$ : Let $M=\left(m_{1}, \ldots, m_{r}\right)$, with $r$ as small as possible. Then

$$
\begin{aligned}
m_{1} & =a_{1} m_{1}+a_{2} m_{2}+\cdots+a_{r} m_{r}, \quad a_{i} \in I \\
\left(1-a_{1}\right) m_{1} & =a_{2} m_{2}+\cdots+a_{r} m_{r}
\end{aligned}
$$

and since $1-a_{1}$ is invertible, $m_{1} \in\left(m_{2}, \ldots, m_{r}\right)$, a contradiction.
$(2) \Rightarrow(3)$ : Let $P$ be a maximal left ideal and set $M=\mathbf{A} / P . M$ is a simple module, so $I M=0$ (and $I \subset P$ ), or $I M=M$. In this case, $M=0$, which is a contradiction.
$(3) \Rightarrow(1)$ : For $a \in I$, the ideal $\mathbf{A}(1+a)$ cannot be contained in any maximal left ideal $P$ as $a \in P$. Thus $\mathbf{A}(1+a)=\mathbf{A}$.

Example: An ideal $I$ is nil if for each $a \in I, a^{n}=0$ for some $n$ (that may depend on a), while $I$ is nilpotent if $I^{n}=0$ for some $n$. If $a^{n}=0$,

$$
\left(1+a+\cdots+a^{n-1}\right)(1-a)=1
$$

so nil ideals satisfy the conditions above.

## Annihilators

Let $\mathbf{A}$ be a ring, and $M$ a left A-module. We will make use of the following constructions of annihilators:

- If $a \in \mathbf{A}$, its left annihilator is the set $L=\{r \in \mathbf{A}: r a=0\}$. Note that $L$ is a left ideal.
- If $m \in M$, its annihilator is the set $L=\{r \in \mathbf{A}: r m=0\}$. Note that $L$ is a left ideal.
- The annihilator of $M$ is the set

$$
L=\{r \in \mathbf{A}: r m=0, \forall m \in M\} .
$$

Note $\mathbf{A} \cdot L \cdot \mathbf{A} \cdot M=\mathbf{A} \cdot L \cdot M=0$, so $L$ is a two-sided ideal.

## Cute reversal

## Proposition

Let I be a left ideal such that $1+$ a has a left inverse for all $a \in I$. Then $1+a$ has a right inverse.

Proof. Let $a \in I$ and let $b$ be a left inverse of $1+a$

$$
\begin{aligned}
b(1+a) & =1=b+b a \\
1-b & =b a \in I, \quad \text { therefore } 1-(1-b) \text { has a left inverse } \\
c b & =1 \text { therefore } \\
c(b(1+a)) & =c=1+a
\end{aligned}
$$

## Primitive ideals

## Definition

Let $\mathbf{A}$ be a ring with 1 .
(1) A left module $M$ is faithful if its annihilator ann $M=0$.
(2) A is primitive if there is a simple, faithful module.
(3) The ideal $I$ is left primitive if $/$ is two-sided and $\mathbf{A} / I$ is (left) primitive.

For example, $\mathbf{V}=\mathbf{K}^{n}$ is a left module over the matrix ring $\mathbf{A}=\operatorname{Hom}_{\mathbf{K}}(\mathbf{V}, \mathbf{V})$. $\mathbf{V}$ is faithful [check] and simple [check]. Thus 0 is a left primitive ideal of $\mathbf{A}$.

## Primitive ideals

## Proposition

Every left maximal ideal P contains a left primitive ideal.

## Proof.

Let I be the annihilator of $\mathbf{A} / P$. $I$ is a two-sided ideal and $\mathbf{A} / P$ is a left, faithful $\mathbf{A} / I$-module.

## Proposition

A left primitive ideal I is the intersection of the left maximal ideals containing it.

Recall that if $M$ is a left A-module, the annihilator ann $M$ is a two-sided ideal, and for $m \in M$, ann $(m)$ is a left ideal.

## Proof.

Let $M$ be a faithful, simple left A/I-module. Note

$$
I=\bigcap_{0 \neq m \in M} \operatorname{ann}(m) .
$$

For $0 \neq m \in M, \mathbf{A} m=M$. Let $P$ be the annihilator of $m$. $P$ is a left maximal ideal as $\mathbf{A} / P$ is simple and $I \subset M$.

## Jacobson radical

## Proposition

For any ring $\mathbf{A}$, let
(1) $J_{1}=\cap P_{1}$, left primitive ideals;
(2) $J_{2}=\cap P_{2}, \quad$ maximal left ideals;
(3) $J_{1}=\cap P_{3}$, maximal right ideals.

Then $J_{1}=J_{2}=J_{3}$. This ideal is called the Jacobson radical of A, and will be denoted by $J(\mathbf{A})$.

## Jacobson radical of an Artin ring

## Theorem

If $\mathbf{A}$ is a left Artin ring, then $J(\mathbf{A})$ is nilpotent.
Proof. Consider the descending chain

$$
J \supseteq J^{2} \supseteq \cdots \supseteq J^{k}=J^{k+1}=\cdots \quad \text { set } L=J^{k} .
$$

From $L=L^{2}$ we are going to argue $L=0$. If $L \neq 0$, pick $/$ a minimal left nonzero ideal such that $L I \neq 0$. Thus there is $u \in I$ such that $L u \neq 0$, so since $L=L^{2}, L u=I$.

This means that $u=s u$, for $s \in L$, so $(1-s) u=0$, whence $u=0$ since $1-s$ is invertible.

## Local algebras of endomorphisms

Here is a minor research topic. Let $R$ be a Noetherian local ring of maximal ideal $\mathfrak{m}$ and let $E$ be a finitely generated $R$-module. We now treat conditions for the algebra $\Lambda=\operatorname{Hom}_{R}(E, E)$ to have a unique two-sided maximal ideal.

## Proposition

Let $(R, \mathfrak{m})$ be a Noetherian local ring and let $E$ be a finitely generated $R$-module.
(1) If $E$ has no free summand, then the image of $E^{*} \otimes E$ in $\wedge$ is a two-sided ideal contained in the Jacobson radical.
(2) Moreover if $R$ is a Gorenstein ring and $E$ is a module of syzygies of perfect module $R / I$, then $\wedge$ is a local algebra. In particular $\wedge$ will be a local algebra when I is generated by a regular sequence.

## Proof

Proof. The action of $\Lambda$ on $E^{*} \otimes E$ is as follows. For $\mathbf{h} \in \Lambda$, $(f \otimes e) \mathbf{h}=f \circ \mathbf{h} \otimes e$ and $\mathbf{h}(f \otimes e)=f \otimes \mathbf{h}(e)$.

Let I be the identity of $\Lambda$. To prove that

$$
\mathbf{h}=\mathbf{I}+\sum_{i=1}^{n} f_{i} \otimes \boldsymbol{e}_{i}
$$

is invertible, note that for each $e \in E$,

$$
\mathbf{h}(e)=e+\sum_{i=1}^{n} f_{i}(e) e_{i} \in e+\mathfrak{m} E
$$

since $f_{i}(e) \in \mathfrak{m}$ as $E$ has no free summand. From the Nakayama Lemma, it follows that $\mathbf{h}$ is a surjective endomorphism, and therefore must be invertible.

## Payoff

Let $\mathbf{A}$ be a left Artin ring. Will now discuss the following properties of $\mathbf{A}$ :

- Semi-simple A-modules
- Semi-simple Artin ring
- Left Artin $\Rightarrow$ right Artin
- Left Artin $\Rightarrow$ left Noetherian


## Outline

## (1) Artin Rings

(2) Assignment \#15
(3) Semisimple Modules
(4) Assignment \#16Wedderburn TheoremDivision RingsAssignment \#17

## Assignment \#15

(1) Let $T_{n}$ be the set of upper triangular matrices over the field K. Describe all the maximal left ideals of $T_{n}$ and its Jacobson radical.

## Outline

Assignment \#15(3) Semisimple Modules
(4) Assignment \#16Wedderburn TheoremDivision RingsAssignment \#17

## Semisimple Modules

## Definition

Let $\mathbf{A}$ be a ring and $M$ a left $\mathbf{A}$-module. $M$ is semisimple if

$$
M=\bigoplus M_{i}, \quad M_{i} \text { simple }
$$

Besides vector spaces, what are they? Their properties...

## Summands

- A submodule $L$ of $A$ is a direct summand if there another submodule $L^{\prime} \subset A$ such that

$$
A=L+L^{\prime}, \quad L \cap L^{\prime}=0
$$

- Another way: There exists a homomorphism $\varphi: A \rightarrow L$ such that $\varphi(x)=x$ for $x \in L$. $\varphi$ is called a projection. We can take $L^{\prime}=\operatorname{ker}(\varphi)$ for summand.
- Yet another way: There exists a homomorphism f:A $\rightarrow A$, with $\mathbf{f} \circ \mathbf{f}=\mathbf{f}$ and $\mathbf{f}(A)=L$.


## Characterization of semisimple modules

## Proposition

An A-module $M$ is semisimple iff every submodule is a direct summand.

Proof. Suppose $M=\bigoplus_{i \in I} M_{i}, M_{i}$ simple, and let $L$ be a submodule.

For each subset $J \subseteq I$, write $M_{J}=\bigoplus_{i \in J} M_{i}$. Let $J$ be a maximum subset of $I$ such that $L \cap M_{J}=0$. We claim that

$$
M=L \oplus M_{J} .
$$

Let $i \in I \backslash J$,

$$
\left(M_{J}+M_{i}\right) \cap L \neq 0 \Rightarrow\left(M_{J}+L\right) \cap M_{i} \neq 0
$$

Thus $\left(M_{J}+L\right) \cap M_{i}=M_{i}$, so $M_{J}+A=M$.

Conversely, suppose every submodule of $M$ is a direct summand. Note that every submodule inherits the property: If $L_{0} \subset L \subset M$ and $L_{0}$ is a direct summand of $M$ then it is also a direct summand of $L$.

Claim: Every nonzero submodule $B$ of $M$ contains a nonzero simple submodule. Let $0 \neq b \in B$ and $C$ a maximal submodule of $B$ such that $b \notin C$.

$$
B=C \oplus D
$$

Claim: $D$ is simple. Otherwise there is $0 \neq E \subsetneq D$, and $D=E \oplus F$, and so $B=C \oplus E \oplus F$, in particular $b=c+e+f$. But then we cannot have $b \in C \oplus E$ and $b \in C \oplus F$.

Let $\left\{M_{i}: i \in I\right\}$ be a maximal family of simple submodules of $M$ and such that $L=\sum_{i \in I} M_{i}$ is a direct sum.

Since $L$ is a direct summand of $M, M=L \oplus B$. If $B$ is nonzero, by the argument above, it contains a nonzero simple submodule, that contradicts the choice of $I$, thus

$$
M=\bigoplus_{i \in I} M_{i}
$$

## Corollary

If $M$ is semisimple, then any submodule or factor module are semisimple.

## Semisimple Rings

## Theorem

Let $\mathbf{A}$ be a ring. TFAE
(1) A is left semisimple (as a module over itself);
(2) $\mathbf{A}$ is left Artinian and $J(\mathbf{A})=0$;
(3) A is left Artinian and $I^{2} \neq 0$ for every minimal left ideal;
(4) Every nonzero left A-module is semisimple;
(5) Every left A-module is projective;
(6) Every left A-module is injective.

## A technical point

## Proposition

Let $\mathbf{A}$ be a ring and I a left ideal. Then
(1) I is a direct summand iff $I=\mathbf{A} x, x^{2}=x$.
(2) A minimal left ideal I of $\mathbf{A}$ is a direct summand iff $I^{2} \neq 0$.

Proof. (1) If $I \oplus J=\mathbf{A}$,

$$
\begin{array}{ccl}
1=x+y & x \in I, y \in J & \text { so for all } z \in I \\
z=z x+z y & z y \in I \cap J & \text { therefore } z y=0
\end{array}
$$

Thus $I=\mathbf{A} x, x^{2}=x$.

Conversely, if $I=\mathbf{A} x, x^{2}=x, 1=x+(1-x)$,
$\mathbf{A}=\mathbf{A} x \oplus \mathbf{A}(1-x)$ and $\mathbf{A} x \cap \mathbf{A}(1-x)=0$.
(2) If $I^{2} \neq 0$ there is $x \in I$ such that $I x \neq 0$, and therefore $\mathbf{A} x=I x=I$ since $l$ is minimal.
In particular, $x=z x$ for some $z \in I$. Let $J$ be the annihilator of
$x, J=\{r \in \mathbf{A}: r x=0\}$. From $x=z x$, that is $1-z \in J$. Thus

$$
1=z+(1-z) \Rightarrow \mathbf{A}=I+J \text { and } I \cap J=I, \text { or } I \cap J=0
$$

But $J \cap I=I$ is not possible as $I x \neq 0$. Thus

$$
\mathbf{A}=I \oplus J
$$

## Proof of Theorem

(1) $\mathbf{A}$ is left semisimple (as a module over itself) $\Rightarrow(2) \mathbf{A}$ is left Artinian and $J(\mathbf{A})=0$

Suppose $\mathbf{A}=\oplus_{i} l_{i}, l_{i}$ simple left ideal. In particular

$$
1=x_{1}+\cdots+x_{n},
$$

for finitely many indices. This shows the family $\left\{I_{i}\right\}$ is finite:

$$
z=z x_{1}+\cdots+z x_{n}, \quad \forall z \in \mathbf{A}
$$

Thus A has a composition series

$$
0 \subset I_{1} \subset I_{1} \oplus I_{2} \subset \cdots \subset I_{1} \oplus \cdots \oplus I_{n}=\mathbf{A},
$$

in particular it has both chain conditions.
Moreover, if $J(\mathbf{A}) \neq 0$ it cannot be a direct summand of $\mathbf{A}$ since it is nilpotent.
(2) $\mathbf{A}$ is left Artinian and $J(\mathbf{A})=0 \Rightarrow(3) \mathbf{A}$ is left Artinian and $I^{2} \neq 0$ for every minimal left ideal

A cannot have nilpotent ideals as $J(\mathbf{A})=0$, thus every nonzero minimal left ideal $/$ has $I^{2} \neq 0$.
(3) $\mathbf{A}$ is left Artinian and $I^{2} \neq 0$ for every minimal left ideal $\Rightarrow$ (4) Every nonzero left A-module is semisimple

We first show that $\mathbf{A}$ is semisimple.
If $I_{1}$ is a minimal left ideal, $\mathbf{A}=I_{1} \oplus J_{1}$. If $J_{1}$ is simple we are done. If not, left $l_{2}$ be a nonzero minimal left ideal $\subset J_{1}$ (use Artinian condition). $I_{2}$ is a direct summand of $J_{1}, J_{1}=I_{2} \oplus J_{2}$. In this manner we get a chain $J_{1} \supsetneq J_{2} \supsetneq \cdots$ that must stop. The corresponding $l_{i}$ give a decomposition of $\mathbf{A}$.

For any module $M$ there is a surjection of a free module $F=\oplus \mathbf{A} e_{i} \rightarrow M$. The kernel $L$ is a submodule of the semisimple module $F$, so $L$ is a direct summand and $F=L \oplus M$. It follows that $M$ is also semisimple.

The other equivalencies uses this argument.

## Consequences

## Theorem

If $\mathbf{A}$ is left Artinian then $\mathbf{A}$ is left Noetherian.
Proof. If $J(\mathbf{A})=0, \mathbf{A}$ is semisimple, and as we remarked, $\mathbf{A}$ has a composition series, in particular has both chain conditions.

If $J^{n}=0$ for $n>0$, consider the tower

$$
0=J^{n} \subsetneq J^{n-1} \subsetneq \cdots \subsetneq J \subsetneq \mathbf{A}
$$

Its factors, $J^{i} / J^{i+1}$ are Artinian modules over the semisimple ring $\mathbf{A} / J$. Thus each has a composition series, whence $\mathbf{A}$ has a composition series as well.

## Scholium

$\mathbf{A}$ is left Artinian iff $\mathbf{A}$ is right Artinian.

## Semisimple rings versus Simple rings

Let $\mathbf{A}$ be a semisimple ring,
$\mathbf{A}=I_{1} \oplus \cdots \oplus I_{n}, \quad I_{i}$ minimal left ideal

## Proposition

Every simple left A-module M is isomorphic to one of the ideals $I_{i}$, in particular there are only a finite number of isomorphism classes of simple left modules.

Proof. Since $\mathbf{A} M=M$, we must have $l_{i} M \neq 0$ for some $I_{i}$. Because $M$ is simple, $l_{i} M=M$. We claim that $l_{i} \simeq M$. Let $m \in M$ such that $l_{i} m \neq 0$.
Define the mapping $\varphi: I_{i} \rightarrow M$ by $\varphi(x)=x m$. $\varphi$ is a nonzero homomorphism of left modules, and since $l_{i}$ and $M$ are simple, $\varphi$ is an isomorphism.

This leads to the following relationships amongst the $l_{i}$ :
(1) If $I_{i} \simeq I_{j}$, then

$$
\begin{array}{r}
I_{i}=l_{i}^{2} \simeq I_{i} l_{j}=I_{j}=l_{j}^{2}, \quad \text { while } I_{i} \not 千 I_{j} \\
I_{i} I_{j}=0 \Rightarrow\left(I_{j} l_{i}\right)^{2}=0 \Rightarrow I_{j} l_{i}=0 \quad \text { since } \mathbf{A} \text { is semisimple }
\end{array}
$$

(2) We can write $\mathbf{A}$ as a direct product of semisimple rings

$$
\mathbf{A}=\mathbf{A}_{1} \times \cdots \times \mathbf{A}_{r},
$$

such that each $\mathbf{A}_{k}$ is semisimple and all simple $\mathbf{A}_{k}$-modules are isomorphic.

## Simple Artin Rings

## Theorem

Let A be a semisimple Artin ring such that all simple left modules are isomorphic. Then $\mathbf{A}$ is a simple ring, that is 0 and A are the only two-sided ideals.

## Proof.

Let $\mathbf{A}=I_{1} \oplus \cdots \oplus I_{n}$ be a simple decomposition of $\mathbf{A}$. We have that $l_{i} l_{j}=l_{j}$ for any pair $l_{i}, l_{j}$.

If $L$ is a nonzero two-sided ideal, $L I_{i} \neq 0$ for some $I_{i}$. Since $I_{i}$ is minimal, $L I_{i}=l_{i}$ and thus $I_{i} \subseteq L$ since $L$ is a right ideal.

Therefore, from $I_{j}=I_{i} I_{j} \subset L$, and so $L=\mathbf{A}$.

## Maschke's Theorem

## Theorem

Let $\mathbf{G}$ be a finite group and $\mathbf{A}=\mathbf{K}[G]$ its group ring over the field $\mathbf{K}$. Then $\mathbf{A}$ is semisimple iff char $\mathbf{K}$ does not divide $|\mathbf{G}|$.

Proof. Suppose the order of $\mathbf{G}$ is not divisible by the characteristic of $\mathbf{K}$. We are going to argue that every left A-module is semisimple.

- Let $M$ be a left $\mathbf{A}$-module and $L$ a submodule. We will prove that $L$ is a direct summand.
- As a K-vector subspace of $M$, there is direct summand decomposition $M=L \oplus L^{\prime}$. Denote by $\mathbf{f}: M \rightarrow L$ the corresponding $\mathbf{K}$-homomorphism: $\mathbf{f}$ is surjective and $\mathbf{f}(m)=m$ for $m \in L$.


## Maschke's Cont'd

- Now we modify finto a A-linear homomorphism

$$
\varphi(m)=\frac{1}{|\mathbf{G}|} \sum_{\sigma \in \mathbf{G}} \sigma^{-1} \mathbf{f}(\sigma m)
$$

- If $m \in L$, as $L$ is a submodule, $\sigma m \in L$, so $\sigma^{-1} \mathbf{f}(\sigma m)=\sigma^{-1} \sigma m=m$, and $\varphi(m)=m$.
- It is easy to verify that for any $\tau \in \mathbf{G}$ and $m \in M$,

$$
\varphi(\tau m)=\tau \varphi(m)
$$

and $\varphi$ is A-linear, as desired.

## Maschke's Cont'd

Now suppose $|\mathbf{G}|$ is divisible by char $K K$. Consider the element

$$
x=\sum_{\sigma \in \mathbf{G}} \sigma \neq 0
$$

It satisfies

$$
x^{2}=|\mathbf{G}| x=0 .
$$

Thus the nonzero ideal $I=\mathbf{A} x$ is nilpotent (note that $x$ lies in the center of $\mathbf{A}$ ), so $\mathbf{A}$ is not semisimple.

## Outline

(2) Assignment \#15
(3) Semisimple Modules
4. Assignment \#16Wedderburn TheoremDivision RingsAssignment \#17

## Assignment \#16

Let $\mathbf{V}$ be a finite dimensional vector space over the field $\mathbf{K}$.
Prove the following assertions about the matrix ring
$\mathbf{A}=\operatorname{Hom}_{\mathbf{K}}(\mathbf{V}, \mathbf{V})$ :

- A has no two-sided ideal $\neq 0, \mathbf{A}$.
- If $I$ is a left ideal, then there is a unique subspace $\mathbf{W}$ such that

$$
I=\{\mathbf{f} \in \mathbf{A}: \mathbf{f}(w)=0 \quad \forall w \in \mathbf{W}\} .
$$

- If $I$ is a right ideal, then there is a unique subspace $\mathbf{W}$ such that

$$
I=\{\mathbf{f} \in \mathbf{A}: \mathbf{f}(v) \in \mathbf{W} \quad \forall v \in \mathbf{V}\} .
$$

## Outline

Assignment \#15Semisimple Modules(4) Assignment \#16
(5) Wedderburn Theorem
(6) Division RingsAssignment \#17

## Wedderburn Theorem

## Proposition

Let $\mathbf{A}$ be a ring and e an idempotent such that $\mathbf{A e} \mathbf{A}=\mathbf{A}$.
Denote by $\mathbf{D}$ the subring eAe. Then $M=\mathbf{A e}$ is a right D-module and

$$
\mathbf{A} \simeq \operatorname{Hom}_{\mathbf{D}}\left(M_{\mathbf{D}}, M_{\mathbf{D}}\right)
$$

Proof. We define the following homomorphism
$\mathbf{f}: \mathbf{A} \rightarrow \operatorname{Hom}_{\mathbf{D}}\left(M_{\mathbf{D}}, M_{\mathbf{D}}\right):$ For $\boldsymbol{a} \in \mathbf{A}$, and $m \in M, \mathbf{f}(a)(m)=a m$.
(1) $\mathbf{f}$ is one-to-one: Otherwise $a M=0$ that is $a \mathbf{A} e=0$ and therefore $a \mathbf{A} e \mathbf{A}=a \mathbf{A}=0$, so $a=0$ as $\mathbf{A}$ has 1 .
(2) $\mathbf{f}$ is onto: Since $\mathbf{A e A}=\mathbf{A}$, there is an equation

$$
1=\sum_{i} a_{i} e b_{i}, \quad a_{i}, b_{i} \in \mathbf{A} .
$$

## Proof Cont'd

Thus for any $m=m e \in M$ and $\varphi \in \operatorname{Hom}_{D}(M, M)$, we have

$$
\begin{aligned}
\varphi(m)=\varphi(1 \cdot m) & =\varphi\left(\sum_{i} a_{i} e b_{i} m\right) \\
& =\sum_{i} \varphi\left[\left(a_{i} e\right)\left(e b_{i}\right)(m e)\right]=\sum_{i} \varphi\left(a_{i} e\right)\left(e b_{i} m e\right) \\
& =\sum_{i}\left[\varphi\left(a_{i} e\right) e b_{i}\right] m \text { and thus } \\
\varphi & =\mathbf{f}\left(\sum_{i}\left(\varphi\left(a_{i} e\right) e b_{i}\right)\right) .
\end{aligned}
$$

## Wedderburn Theorem

## Theorem

Let $\mathbf{A}$ be a simple ring with 1 with a minimal left ideal $I \neq 0$. Then $\mathbf{A}$ is isomorphic to a matrix ring over a division ring.

Proof. Since $\mathbf{A}$ is simple, $I^{2} \neq 0$, so $I^{2}=I$ since $I$ is minimal. Thus $I=I x$ for $x \in I$.

There is an element $z \in I$ such that $x=z x$. Thus from $z=z(1-z)+z^{2}, z(1-z) \in I \cap L, L$ the annihilator of $x$. Since $I$ is minimal, $I \cap L$ is either zero or $I$. In both cases we have a contradiction.

This means that $I$ is generated by an idempotent, which we will call $e$. We take this ideal as $M$ in the Proposition.

## Proof of Theorem

(1) We already have a ring isomorphism $\mathbf{A} \simeq \operatorname{Hom}_{\mathbf{D}}\left(M_{\mathbf{D}}, M_{\mathrm{D}}\right)$, $\mathbf{D}=e \mathbf{A} e$.
(2) We must prove that $e \mathbf{A e}$ is a division ring. If $0 \neq e a e \in e A e$, then eae $\in \mathbf{A e e a e}=\mathbf{A e}$, since $\mathbf{A e}$ is minimal.
(3) Therefore there is $b \in \mathbf{A}$ such that beeae $=e$, that is $e b e \cdot e a e=e$, which shows that every nonzero element of $e \mathrm{~A} e$ is invertible.

## Outline

 <br> Assignment \#15}(3) Semisimple Modules
(4) Assignment \#16Wedderburn Theorem
6 Division Rings
(7) Assignment \#17

## Hamilton Quaternions

Let $\mathbf{H}$ be the set of complex matrices of the form

$$
q=\left[\begin{array}{rr}
z_{1} & z_{2} \\
-\overline{z_{2}} & \overline{z_{1}}
\end{array}\right], \quad z_{1}, z_{2} \in \mathbb{C} .
$$

To prove that $\mathbf{H}$ is a division ring, ETS:
(1) H is a vector space over $\mathbb{R}$ : clear.
(2) H is closed under multiplication: check.
(3) The axioms will follow, inherited from matrix multiplication rules, and the fact that if $0 \neq q \in \mathbf{H}$ is invertible so for each such quaternion multiplication $q^{\prime} \rightarrow q q^{\prime}$ is surjective.

## Characterization

## Theorem

$\mathbf{H}$ is the only non-commutative, finite dimensional division ring over $\mathbb{R}$.

## Proof.

- Let $\mathbf{D}$ be a division ring which is finite dimensional over $\mathbb{R}$. Let $\mathbf{F}$ a maximal commutative $\mathbb{R}$-subalgebra of $\mathbf{D}$.
- $\mathbf{F}$ is a field, so may be identified to $\mathbb{C}$.
- View $\mathbf{D}$ as left vector space over $\mathbb{C}$, and define the linear transformation

$$
\mathbf{T}(x)=x i, \quad x \in \mathbf{D}
$$

- Note that $\mathbf{T}^{2}=-\mathbf{I}$, so $\mathbf{T}$ is diagonalizable, of eigenvalues $\pm i$.


## Proof Cont'd

- The eigenspaces are

$$
\begin{aligned}
& \mathbf{D}^{+}=\{x \in \mathbf{D}: x i=i x\} \\
& \mathbf{D}^{-}=\{x \in \mathbf{D}: x i=-i x\}
\end{aligned}
$$

- $\mathbf{D}^{+}=\mathbb{C}$. If $x, y \in \mathbf{D}^{-}, x y \in \mathbf{D}^{+}$.
- If $\mathbf{D}^{-}=0, \mathbf{D}=\mathbb{C}$, which is against the hypothesis, so if $0 \neq \alpha \in \mathbf{D}^{-}$, multiplication by $\alpha: \mathbf{D}^{-} \rightarrow \mathbf{D}^{+}$is an isomorphism.
- We claim that $\alpha^{2} \in \mathbb{R}$ and $\alpha^{2}<0$.
- $\mathbb{R}[\alpha]$ is a field and contains $\alpha^{2}$. Since

$$
\alpha^{2} \in \mathbb{C} \cap \mathbb{R}[\alpha]=\mathbb{R}
$$

if $\alpha^{2}>0, \alpha^{2}$ would have 3 square roots in $\mathbb{R}[\alpha]$ (including two in $\mathbb{R}$ ).

- Therefore there is $j \in \mathbf{D}^{-}$such that $j^{2}=-1$.
- Now define $k=i j$. It follows that $\mathbf{D}$ has an $\mathbb{R}$-basis $\{1, i, j, k\}$, with $i^{2}=j^{2}=k^{2}=-1, i j=-j i, j k=-k j$, $i k=-k i$, the standard relations that determine $\mathbf{H}$.


## Finite Division Rings

## Theorem (Wedderburn)

## A finite division ring $\mathbf{D}$ is a field.

Proof. Let $\mathbf{K}$ be the center of $\mathbf{D}$. $\mathbf{K}$ is a field of characteristic $p$ and cardinality $q \geq 2$. Thus $\mathbf{D}$ is a (left) vector space over $\mathbf{K}$ so that the cardinality of $\mathbf{D}$ is $q^{n}$. We argue that $\mathbf{K}=\mathbf{D}$.

- For each $0 \neq \mathbf{a} \in \mathbf{D}$ its centralizer $N(a)=\{x \in \mathbf{D}: x a=a x\}$ is a subdivision ring containing $\mathbf{K}$ and a.
- If $\boldsymbol{a} \in \mathbf{D} \backslash \mathbf{K}$, then $N(a) *$ is the centralizer of $a$ in the group D* and

$$
\left[\mathbf{D}^{*}: N(a)^{*}\right]=\frac{q^{n}-1}{q^{r}-1}, \quad 1 \leq r<n, \quad r \mid d .
$$

## Proof Cont'd

- By the class equation,

$$
q^{n}-1=q-1+\sum_{r} \frac{q^{n}-1}{q^{r}-1}, \quad 1 \leq r<n, \quad r \mid n .
$$

- For each primitive nroot $\zeta$ of 1 in $\mathbb{C},|q-\zeta|>|q-1|$ (as $\left|q^{2}-1\right|>|q-1|^{2}$ ) therefore $\mathbf{g}_{n}(q)>q-1$ where $\mathbf{g}_{n}(\mathbf{x})$ is the $n$th cyclotomic polynomial.
- To contradict the class equation, for each $r<n$ that divides $n$, the polynomial $\mathbf{f}_{r}(\mathbf{x})=\frac{\mathbf{x}^{n}-1}{\mathbf{x}^{r}-1}$ lies in $\mathbb{Z}[\mathbf{x}]$ and is divisible by $\mathbf{g}_{r}(\mathbf{x})$, with $\mathbf{f}_{r}(\mathbf{x})=\mathbf{g}_{r}(\mathbf{x}) \mathbf{h}(\mathbf{x}), \mathbf{h}(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$.
- Thus for each $r \mathbf{g}_{r}(q)$ divides $\mathbf{f}_{r}(q)$ in $\mathbb{Z}$, whence $\mathbf{g}_{n}(q) \mid q-1$, a contradiction.


## Outline

Assignment \#15(3) Semisimple Modules
(4) Assignment \#16Wedderburn Theorem
(6) Division Rings
(7) Assignment \#17

## Assignment \#17

(1) Let $\mathbf{G}$ be the symmetric group $S_{3}$ and $\mathbf{A}$ the group ring $\mathbb{C}[\mathbf{G}]$. Prove that

$$
\mathbb{C}[\mathbf{G}] \simeq M_{2}(\mathbb{C}) \times \mathbb{C} \times \mathbb{C} .
$$

(2) If $\mathbf{G}$ is a finite group and $\mathbf{K}$ a field, let $\mathbf{Z}$ be the center of $\mathbf{K}[\mathbf{G}]$. Find a basis of $\mathbf{Z}$ as a $\mathbf{K}$-vector space in terms of the conjugacy classes of $\mathbf{G}$.

