Artin Rings Assignment #15 Semisimple Modules Assignment #16 Wedderburn Theorem Division Rings Assignmen

Math 552: Abstract Algebra II

Wolmer V. Vasconcelos

Set 4

Spring 2009

Outline

1 Artin Rings

- 2 Assignment #15
- 3 Semisimple Modules
- Assignment #16
- **5** Wedderburn Theorem
- 6 Division Rings
- Assignment #17

Artin Rings

In this set, **A** will be an Artinian ring, or simply an Artin ring. Typically, we assume that **A** is a left Artin ring, but side is not significant. We make use of both left and right modules when discussing Artin rings.

The main aspects we will treat are:

- The Jacobson radical of A
- Semi-simplicity
- Wedderburn theorem
- Major classes of examples: division rings, group rings

Examples: Matrix rings

- Let K be a field and A the ring of n × n matrices over K. This is the premier example. Any of its subrings B which is a K vector subspace is also Artinian.
- Among the subrings, a noteworthy is given by the upper triangular matrices

One can also form matrix rings with entries in other matrix rings...

More examples: Artin algebras

Given a field **K** and a **K**-vector space **V** with a basis $\{e_1, \ldots, e_n\}$, an algebra structure on **V** is given by specifying a product rule

$$e_i \cdot e_j = \sum_k c_{ijk} e_k,$$

with $c_{ijk} \in \mathbf{K}$ (the structure constants).

The c_{ijk} must satisfy certain relations to accommodate the axioms for an algebra. Thus, to have a unit, say, e_1 must satisfy $e_1e_i = e_i$, that means $c_{1ij} = 1$.

The commutativity axiom will translate as

$$c_{ijk} = c_{jik}.$$

The most demanding is the **associative axiom**: to have $e_i(e_ie_k) = (e_ie_j)e_k$, It translates into

$$\sum_{mn} c_{imn} c_{jkn} = \sum_{mn} c_{ijn} c_{nkm}$$

For a field **K** and a group **G**, the group ring of **G** over **K** is the vector space k[G] with a basis indexed by **G**:

The associative axiom follows from the group law. If **G** is finite, $\mathbf{K}[\mathbf{G}]$ is Artinian.

Earlier, in our discussion of field theory, we met a more delicate ring, the **twisted group ring**: L/K an extension of Galois group **G**, and L[G]. Note differences...

Radical of a Ring

If **A** is a ring with 1, we have several classes of interesting ideals. For example: there are maximal left ideals, maximal right ideals, two-sided maximal ideals. They are usually very distinct.

Proposition

For any left ideal I TFAE:

- **1** + *a* is left invertible $\forall a \in I$.
- 2 If M is a finitely generated left **A**-module and M = IM, then M = 0.
- $I \subseteq \bigcap P all maximal left ideals.$

Proof. (1) \Rightarrow (2): Let $M = (m_1, \dots, m_r)$, with *r* as small as possible. Then

$$m_1 = a_1 m_1 + a_2 m_2 + \cdots + a_r m_r, \quad a_i \in I$$

 $(1 - a_1)m_1 = a_2 m_2 + \cdots + a_r m_r,$

and since $1 - a_1$ is invertible, $m_1 \in (m_2, ..., m_r)$, a contradiction.

(2) \Rightarrow (3): Let *P* be a maximal left ideal and set $M = \mathbf{A}/P$. *M* is a simple module, so IM = 0 (and $I \subset P$), or IM = M. In this case, M = 0, which is a contradiction.

(3) \Rightarrow (1): For $a \in I$, the ideal $\mathbf{A}(1 + a)$ cannot be contained in any maximal left ideal *P* as $a \in P$. Thus $\mathbf{A}(1 + a) = \mathbf{A}$.

Example: An ideal *I* is **nil** if for each $a \in I$, $a^n = 0$ for some *n* (that may depend on *a*), while *I* is **nilpotent** if $I^n = 0$ for some *n*. If $a^n = 0$,

$$(1 + a + \cdots + a^{n-1})(1 - a) = 1,$$

so nil ideals satisfy the conditions above.

Annihilators

Let **A** be a ring, and M a left **A**-module. We will make use of the following constructions of annihilators:

- If $a \in A$, its left annihilator is the set $L = \{r \in A : ra = 0\}$. Note that *L* is a left ideal.
- If $m \in M$, its annihilator is the set $L = \{r \in \mathbf{A} : rm = 0\}$. Note that *L* is a left ideal.
- The annihilator of *M* is the set

$$L = \{r \in \mathbf{A} : rm = 0, \forall m \in M\}.$$

Note $\mathbf{A} \cdot L \cdot \mathbf{A} \cdot M = \mathbf{A} \cdot L \cdot M = 0$, so *L* is a two-sided ideal.

Cute reversal

Proposition

Let I be a left ideal such that 1 + a has a left inverse for all $a \in I$. Then 1 + a has a right inverse.

Proof. Let $a \in I$ and let *b* be a left inverse of 1 + a

$$b(1+a) = 1 = b + ba$$

$$1-b = ba \in I, \text{ therefore } 1 - (1-b) \text{ has a left inverse}$$

$$cb = 1 \text{ therefore}$$

$$c(b(1+a)) = c = 1 + a$$

Primitive ideals

Definition

Let **A** be a ring with 1.

- A left module M is **faithful** if its annihilator ann M = 0.
- A is primitive if there is a simple, faithful module.
- The ideal *I* is left primitive if *I* is two-sided and A/*I* is (left) primitive.

For example, $\mathbf{V} = \mathbf{K}^n$ is a left module over the matrix ring $\mathbf{A} = \operatorname{Hom}_{\mathbf{K}}(\mathbf{V}, \mathbf{V})$. **V** is faithful [check] and simple [check]. Thus 0 is a left primitive ideal of **A**.

Primitive ideals

Proposition

Every left maximal ideal P contains a left primitive ideal.

Proof.

Let *I* be the annihilator of \mathbf{A}/P . *I* is a two-sided ideal and \mathbf{A}/P is a left, faithful \mathbf{A}/I -module.

Proposition

A left primitive ideal I is the intersection of the left maximal ideals containing it.

Recall that if *M* is a left **A**-module, the annihilator ann *M* is a two-sided ideal, and for $m \in M$, ann (m) is a left ideal.

Proof.

Let *M* be a faithful, simple left A/I-module. Note

$$V = \bigcap_{0 \neq m \in M} \operatorname{ann}(m).$$

For $0 \neq m \in M$, $\mathbf{A}m = M$. Let *P* be the annihilator of *m*. *P* is a left maximal ideal as \mathbf{A}/P is simple and $I \subset M$.

Jacobson radical

Proposition

For any ring A, let

- **1** $J_1 = \bigcap P_1$, left primitive ideals;
- 2 $J_2 = \bigcap P_2$, maximal left ideals;
- 3 $J_1 = \bigcap P_3$, maximal right ideals.

Then $J_1 = J_2 = J_3$. This ideal is called the Jacobson radical of **A**, and will be denoted by $J(\mathbf{A})$.

Jacobson radical of an Artin ring

Theorem

If **A** is a left Artin ring, then $J(\mathbf{A})$ is nilpotent.

Proof. Consider the descending chain

$$J \supseteq J^2 \supseteq \cdots \supseteq J^k = J^{k+1} = \cdots$$
 set $L = J^k$.

From $L = L^2$ we are going to argue L = 0. If $L \neq 0$, pick *I* a minimal left nonzero ideal such that $LI \neq 0$. Thus there is $u \in I$ such that $Lu \neq 0$, so since $L = L^2$, Lu = I.

This means that u = su, for $s \in L$, so (1 - s)u = 0, whence u = 0 since 1 - s is invertible.

Local algebras of endomorphisms

Here is a minor research topic. Let *R* be a Noetherian local ring of maximal ideal \mathfrak{m} and let *E* be a finitely generated *R*-module. We now treat conditions for the algebra $\Lambda = \operatorname{Hom}_{R}(E, E)$ to have a unique two-sided maximal ideal.

Proposition

Let (R, \mathfrak{m}) be a Noetherian local ring and let E be a finitely generated R-module.

- If E has no free summand, then the image of E^{*} ⊗ E in ∧ is a two-sided ideal contained in the Jacobson radical.
- Moreover if R is a Gorenstein ring and E is a module of syzygies of perfect module R/I, then Λ is a local algebra. In particular Λ will be a local algebra when I is generated by a regular sequence.

Proof

Proof. The action of Λ on $E^* \otimes E$ is as follows. For $\mathbf{h} \in \Lambda$, $(f \otimes e)\mathbf{h} = f \circ \mathbf{h} \otimes e$ and $\mathbf{h}(f \otimes e) = f \otimes \mathbf{h}(e)$.

Let I be the identity of Λ . To prove that

$$\mathbf{h} = \mathbf{I} + \sum_{i=1}^{n} f_i \otimes \boldsymbol{e}_i$$

is invertible, note that for each $e \in E$,

$$\mathbf{h}(\boldsymbol{e}) = \boldsymbol{e} + \sum_{i=1}^{n} f_i(\boldsymbol{e}) \boldsymbol{e}_i \in \boldsymbol{e} + \mathfrak{m}\boldsymbol{E},$$

since $f_i(e) \in \mathfrak{m}$ as *E* has no free summand. From the Nakayama Lemma, it follows that **h** is a surjective endomorphism, and therefore must be invertible.

Payoff

Let **A** be a left Artin ring. Will now discuss the following properties of **A**:

- Semi-simple A-modules
- Semi-simple Artin ring
- Left Artin ⇒ right Artin
- Left Artin ⇒ left Noetherian

Outline

Assignment #17

Let *T_n* be the set of upper triangular matrices over the field
 K. Describe all the maximal left ideals of *T_n* and its Jacobson radical.

Outline

Artin Rings Assignment #15 3 Semisimple Modules Assignment #16 Wedderburn Theorem Assignment #17

Semisimple Modules

Definition

Let **A** be a ring and *M* a left **A**-module. *M* is semisimple if

$$M = \bigoplus_{i \in I} M_i$$
, M_i simple.

Besides vector spaces, what are they? Their properties...

 A submodule *L* of *A* is a **direct summand** if there another submodule *L*' ⊂ *A* such that

$$A = L + L', \quad L \cap L' = 0.$$

- Another way: There exists a homomorphism φ : A → L such that φ(x) = x for x ∈ L. φ is called a projection. We can take L' = ker (φ) for summand.
- Yet another way: There exists a homomorphism f : A → A, with f ∘ f = f and f(A) = L.

Characterization of semisimple modules

Proposition

An **A**-module *M* is semisimple iff every submodule is a direct summand.

Proof. Suppose $M = \bigoplus_{i \in I} M_i$, M_i simple, and let *L* be a submodule.

For each subset $J \subseteq I$, write $M_J = \bigoplus_{i \in J} M_i$. Let J be a maximum subset of I such that $L \cap M_J = 0$. We claim that

$$M = L \oplus M_J.$$

Let $i \in I \setminus J$,

$$(M_J + M_i) \cap L \neq 0 \Rightarrow (M_J + L) \cap M_i \neq 0$$

Thus $(M_J + L) \cap M_i = M_i$, so $M_J + A = M$.

Conversely, suppose every submodule of *M* is a direct summand. Note that every submodule inherits the property: If $L_0 \subset L \subset M$ and L_0 is a direct summand of *M* then it is also a direct summand of *L*.

Claim: Every nonzero submodule *B* of *M* contains a nonzero simple submodule. Let $0 \neq b \in B$ and *C* a maximal submodule of *B* such that $b \notin C$.

$$B = C \oplus D$$

Claim: *D* is simple. Otherwise there is $0 \neq E \subsetneq D$, and $D = E \oplus F$, and so $B = C \oplus E \oplus F$, in particular b = c + e + f. But then we cannot have $b \in C \oplus E$ and $b \in C \oplus F$. Let $\{M_i : i \in I\}$ be a maximal family of simple submodules of M and such that $L = \sum_{i \in I} M_i$ is a direct sum.

Since *L* is a direct summand of *M*, $M = L \oplus B$. If *B* is nonzero, by the argument above, it contains a nonzero simple submodule, that contradicts the choice of *I*, thus

$$M=\bigoplus_{i\in I}M_i.$$

Corollary

If M is semisimple, then any submodule or factor module are semisimple.

Semisimple Rings

Theorem

Let A be a ring. TFAE

- A is left semisimple (as a module over itself);
- **2** A is left Artinian and J(A) = 0;
- **(3)** A is left Artinian and $l^2 \neq 0$ for every minimal left ideal;
- Every nonzero left A-module is semisimple;
- Every left A-module is projective;
- Every left A-module is injective.

A technical point

Proposition

Let A be a ring and I a left ideal. Then

• I is a direct summand iff I = Ax, $x^2 = x$.

3 A minimal left ideal I of **A** is a direct summand iff $l^2 \neq 0$.

Proof. (1) If $I \oplus J = \mathbf{A}$,

$$1 = x + y \quad x \in I, y \in J \text{ so for all } z \in I$$
$$z = zx + zy \quad zy \in I \cap J \text{ therefore } zy = 0$$

Thus I = Ax, $x^2 = x$.

Conversely, if
$$I = Ax$$
, $x^2 = x$, $1 = x + (1 - x)$,
 $A = Ax \oplus A(1 - x)$ and $Ax \cap A(1 - x) = 0$.

(2) If $I^2 \neq 0$ there is $x \in I$ such that $Ix \neq 0$, and therefore Ax = Ix = I since I is minimal.

In particular, x = zx for some $z \in I$. Let J be the annihilator of $x, J = \{r \in \mathbf{A} : rx = 0\}$. From x = zx, that is $1 - z \in J$. Thus

$$1 = z + (1 - z) \Rightarrow A = I + J$$
 and $I \cap J = I$, or $I \cap J = 0$

But $J \cap I = I$ is not possible as $Ix \neq 0$. Thus

$$\mathbf{A} = I \oplus J$$

Proof of Theorem

(1) **A** is left semisimple (as a module over itself) \Rightarrow (2) **A** is left Artinian and $J(\mathbf{A}) = 0$

Suppose $\mathbf{A} = \bigoplus_i I_i$, I_i simple left ideal. In particular

$$1 = x_1 + \cdots + x_n,$$

for finitely many indices. This shows the family $\{I_i\}$ is finite:

$$z = zx_1 + \cdots + zx_n, \quad \forall z \in \mathbf{A}$$

Thus A has a composition series

$$0 \subset I_1 \subset I_1 \oplus I_2 \subset \cdots \subset I_1 \oplus \cdots \oplus I_n = \mathbf{A},$$

in particular it has both chain conditions.

Moreover, if $J(\mathbf{A}) \neq 0$ it cannot be a direct summand of **A** since it is nilpotent.

(2) **A** is left Artinian and $J(\mathbf{A}) = 0 \Rightarrow$ (3) **A** is left Artinian and $I^2 \neq 0$ for every minimal left ideal

A cannot have nilpotent ideals as $J(\mathbf{A}) = 0$, thus every nonzero minimal left ideal *I* has $I^2 \neq 0$.

(3) **A** is left Artinian and $l^2 \neq 0$ for every minimal left ideal \Rightarrow (4) Every nonzero left **A**-module is semisimple

We first show that **A** is semisimple.

If I_1 is a minimal left ideal, $\mathbf{A} = I_1 \oplus J_1$. If J_1 is simple we are done. If not, left I_2 be a nonzero minimal left ideal $\subset J_1$ (use Artinian condition). I_2 is a direct summand of J_1 , $J_1 = I_2 \oplus J_2$. In this manner we get a chain $J_1 \supseteq J_2 \supseteq \cdots$ that must stop. The corresponding I_i give a decomposition of \mathbf{A} .

For any module *M* there is a surjection of a free module $F = \bigoplus \mathbf{A} e_i \rightarrow M$. The kernel *L* is a submodule of the semisimple module *F*, so *L* is a direct summand and $F = L \oplus M$. It follows that *M* is also semisimple.

The other equivalencies uses this argument.

Consequences

Theorem

If **A** is left Artinian then **A** is left Noetherian.

Proof. If $J(\mathbf{A}) = 0$, **A** is semisimple, and as we remarked, **A** has a composition series, in particular has both chain conditions.

If $J^n = 0$ for n > 0, consider the tower

$$0 = J^n \subsetneq J^{n-1} \subsetneq \cdots \subsetneq J \subsetneq \mathbf{A}$$

Its factors, J^i/J^{i+1} are Artinian modules over the semisimple ring \mathbf{A}/J . Thus each has a composition series, whence **A** has a composition series as well.

Scholium

A is left Artinian iff A is right Artinian.

Semisimple rings versus Simple rings

Let **A** be a semisimple ring,

$$\mathbf{A} = I_1 \oplus \cdots \oplus I_n, \quad I_i \text{ minimal left ideal}$$

Proposition

Every simple left **A**-module M is isomorphic to one of the ideals I_i , in particular there are only a finite number of isomorphism classes of simple left modules.

Proof. Since AM = M, we must have $I_iM \neq 0$ for some I_i . Because *M* is simple, $I_iM = M$. We claim that $I_i \simeq M$. Let $m \in M$ such that $I_im \neq 0$. Define the mapping $\varphi : I_i \to M$ by $\varphi(x) = xm$. φ is a nonzero homomorphism of left modules, and since I_i and *M* are simple, φ is an isomorphism. This leads to the following relationships amongst the I_i :

• If $I_i \simeq I_j$, then

$$I_i = I_i^2 \simeq I_i I_j = I_j = I_j^2, \text{ while } I_i \not\simeq I_j$$
$$I_i I_j = 0 \Rightarrow (I_j I_i)^2 = 0 \Rightarrow I_j I_i = 0 \text{ since } \mathbf{A} \text{ is semisimple}$$

We can write A as a direct product of semisimple rings

$$\mathbf{A} = \mathbf{A}_1 \times \cdots \times \mathbf{A}_r,$$

such that each A_k is semisimple and all simple A_k -modules are isomorphic.

Simple Artin Rings

Theorem

Let **A** be a semisimple Artin ring such that all simple left modules are isomorphic. Then **A** is a simple ring, that is 0 and **A** are the only two-sided ideals.

Proof.

Let $\mathbf{A} = I_1 \oplus \cdots \oplus I_n$ be a simple decomposition of \mathbf{A} . We have that $I_i I_j = I_j$ for any pair I_i, I_j .

If *L* is a nonzero two-sided ideal, $LI_i \neq 0$ for some I_i . Since I_i is minimal, $LI_i = I_i$ and thus $I_i \subseteq L$ since *L* is a right ideal.

Therefore, from $I_i = I_i I_i \subset L$, and so $L = \mathbf{A}$.

Maschke's Theorem

Theorem

Let **G** be a finite group and $\mathbf{A} = \mathbf{K}[G]$ its group ring over the field **K**. Then **A** is semisimple iff char **K** does not divide $|\mathbf{G}|$.

Proof. Suppose the order of **G** is not divisible by the characteristic of **K**. We are going to argue that every left **A**-module is semisimple.

- Let *M* be a left **A**-module and *L* a submodule. We will prove that *L* is a direct summand.
- As a K-vector subspace of *M*, there is direct summand decomposition *M* = *L* ⊕ *L'*. Denote by **f** : *M* → *L* the corresponding K-homomorphism: **f** is surjective and **f**(*m*) = *m* for *m* ∈ *L*.

Maschke's Cont'd

Now we modify f into a A-linear homomorphism

$$\varphi(m) = \frac{1}{|\mathbf{G}|} \sum_{\sigma \in \mathbf{G}} \sigma^{-1} \mathbf{f}(\sigma m).$$

• If $m \in L$, as *L* is a submodule, $\sigma m \in L$, so $\sigma^{-1}\mathbf{f}(\sigma m) = \sigma^{-1}\sigma m = m$, and $\varphi(m) = m$.

• It is easy to verify that for any $\tau \in \mathbf{G}$ and $m \in M$,

$$\varphi(\tau m) = \tau \varphi(m),$$

and φ is **A**-linear, as desired.

Maschke's Cont'd

Now suppose $|\mathbf{G}|$ is divisible by char KK. Consider the element

$$\mathbf{x} = \sum_{\sigma \in \mathbf{G}} \sigma \
eq \mathbf{0}$$

It satisfies

$$x^2 = |\mathbf{G}|x = 0.$$

Thus the nonzero ideal $I = \mathbf{A}x$ is nilpotent (note that x lies in the center of **A**), so **A** is not semisimple.

Outline

- 2 Assignment #15
- 3 Semisimple Modules
- Assignment #16
- **5** Wedderburn Theorem
- 6 Division Rings
- Assignment #17

Assignment #16

Let V be a finite dimensional vector space over the field K. Prove the following assertions about the matrix ring $\mathbf{A} = \operatorname{Hom}_{\mathbf{K}}(\mathbf{V}, \mathbf{V})$:

- A has no two-sided ideal \neq 0, A.
- If I is a left ideal, then there is a unique subspace W such that

$$I = \{ \mathbf{f} \in \mathbf{A} : \mathbf{f}(w) = \mathbf{0} \quad \forall w \in \mathbf{W} \}.$$

 If I is a right ideal, then there is a unique subspace W such that

$$I = \{ \mathbf{f} \in \mathbf{A} : \mathbf{f}(v) \in \mathbf{W} \quad \forall v \in \mathbf{V} \}.$$

Outline

- 🚺 Artin Rings
- 2 Assignment #15
- 3 Semisimple Modules
- Assignment #16
- **5** Wedderburn Theorem
- 6 Division Rings
- Assignment #17

Wedderburn Theorem

Proposition

Let **A** be a ring and e an idempotent such that AeA = A. Denote by **D** the subring eAe. Then M = Ae is a right **D**-module and

 $\mathbf{A} \simeq \operatorname{Hom}_{\mathbf{D}}(M_{\mathbf{D}}, M_{\mathbf{D}}).$

Proof. We define the following homomorphism

- $f : A \rightarrow Hom_D(M_D, M_D)$: For $a \in A$, and $m \in M$, f(a)(m) = am.
 - **f** is one-to-one: Otherwise aM = 0 that is aAe = 0 and therefore aAeA = aA = 0, so a = 0 as **A** has 1.
 - **2 f** is onto: Since AeA = A, there is an equation

$$1=\sum_i a_i eb_i, \quad a_i, b_i \in \mathbf{A}.$$

Proof Cont'd

Thus for any $m = me \in M$ and $\varphi \in \operatorname{Hom}_{\mathbf{D}}(M, M)$, we have

$$\varphi(m) = \varphi(\mathbf{1} \cdot m) = \varphi(\sum_{i} a_{i}eb_{i}m)$$

$$= \sum_{i} \varphi[(a_{i}e)(eb_{i})(me)] = \sum_{i} \varphi(a_{i}e)(eb_{i}me)$$

$$= \sum_{i} [\varphi(a_{i}e)eb_{i}]m \text{ and thus}$$

$$\varphi = \mathbf{f}(\sum_{i} (\varphi(a_{i}e)eb_{i})).$$

Wedderburn Theorem

Theorem

Let **A** be a simple ring with 1 with a minimal left ideal $I \neq 0$. Then **A** is isomorphic to a matrix ring over a division ring.

Proof. Since **A** is simple, $l^2 \neq 0$, so $l^2 = l$ since *l* is minimal. Thus l = lx for $x \in l$.

There is an element $z \in I$ such that x = zx. Thus from $z = z(1 - z) + z^2$, $z(1 - z) \in I \cap L$, *L* the annihilator of *x*. Since *I* is minimal, $I \cap L$ is either zero or *I*. In both cases we have a contradiction.

This means that I is generated by an idempotent, which we will call e. We take this ideal as M in the Proposition.

Proof of Theorem

- We already have a ring isomorphism $\mathbf{A} \simeq \operatorname{Hom}_{\mathbf{D}}(M_{\mathbf{D}}, M_{\mathbf{D}}),$ $\mathbf{D} = e\mathbf{A}e.$
- We must prove that *e*A*e* is a division ring. If
 0 ≠ *eae* ∈ *e*A*e*, then *eae* ∈ A*eeae* = A*e*, since A*e* is minimal.
- Solution Therefore there is b ∈ A such that beeae = e, that is ebe · eae = e, which shows that every nonzero element of eAe is invertible.

Outline

- 🚺 Artin Rings
- 2 Assignment #15
- 3 Semisimple Modules
- Assignment #16
- **5** Wedderburn Theorem
- 6 Division Rings
- Assignment #17

Hamilton Quaternions

Let H be the set of complex matrices of the form

$$q = \left[egin{array}{cc} z_1 & z_2 \ -\overline{z_2} & \overline{z_1} \end{array}
ight], \quad z_1, z_2 \in \mathbb{C}.$$

To prove that **H** is a division ring, ETS:

- **1** H is a vector space over \mathbb{R} : clear.
- It is closed under multiplication: check.
- 3 The axioms will follow, inherited from matrix multiplication rules, and the fact that if 0 ≠ q ∈ H is invertible so for each such quaternion multiplication q' → qq' is surjective.

Characterization

Theorem

H is the only non-commutative, finite dimensional division ring over \mathbb{R} .

Proof.

- Let D be a division ring which is finite dimensional over ℝ.
 Let F a maximal commutative ℝ-subalgebra of D.
- **F** is a field, so may be identified to \mathbb{C} .
- View D as left vector space over C, and define the linear transformation

$$\mathbf{T}(x) = xi, x \in \mathbf{D}$$

• Note that $T^2 = -I$, so T is diagonalizable, of eigenvalues $\pm i$.

The eigenspaces are

$$D^+ = \{x \in D : xi = ix\}$$

 $D^- = \{x \in D : xi = -ix\}$

•
$$\mathbf{D}^+ = \mathbb{C}$$
. If $x, y \in \mathbf{D}^-$, $xy \in \mathbf{D}^+$

 If D⁻ = 0, D = C, which is against the hypothesis, so if 0 ≠ α ∈ D⁻, multiplication by α : D⁻ → D⁺ is an isomorphism.

- We claim that $\alpha^2 \in \mathbb{R}$ and $\alpha^2 < 0$.
- $\mathbb{R}[\alpha]$ is a field and contains α^2 . Since

$$\alpha^2 \in \mathbb{C} \cap \mathbb{R}[\alpha] = \mathbb{R}$$

if $\alpha^2 > 0$, α^2 would have 3 square roots in $\mathbb{R}[\alpha]$ (including two in \mathbb{R}).

- Therefore there is $j \in \mathbf{D}^-$ such that $j^2 = -1$.
- Now define k = ij. It follows that **D** has an \mathbb{R} -basis $\{1, i, j, k\}$, with $i^2 = j^2 = k^2 = -1$, ij = -ji, jk = -kj, ik = -ki, the standard relations that determine **H**.

Finite Division Rings

Theorem (Wedderburn)

A finite division ring **D** is a field.

Proof. Let **K** be the center of **D**. **K** is a field of characteristic p and cardinality $q \ge 2$. Thus **D** is a (left) vector space over **K** so that the cardinality of **D** is q^n . We argue that $\mathbf{K} = \mathbf{D}$.

- For each $0 \neq a \in \mathbf{D}$ its centralizer $N(a) = \{x \in \mathbf{D} : xa = ax\}$ is a subdivision ring containing **K** and *a*.
- If a ∈ D \ K, then N(a)* is the centralizer of a in the group D* and

$$[\mathbf{D}^* : N(a)^*] = \frac{q^n - 1}{q^r - 1}, \quad 1 \le r < n, \quad r | d.$$

Proof Cont'd

By the class equation,

$$q^n - 1 = q - 1 + \sum_r \frac{q^n - 1}{q^r - 1}, \quad 1 \le r < n, \quad r \mid n.$$

- For each primitive *n*root ζ of 1 in \mathbb{C} , $|q \zeta| > |q 1|$ (as $|q^2 1| > |q 1|^2$) therefore $\mathbf{g}_n(q) > q 1$ where $\mathbf{g}_n(\mathbf{x})$ is the *n*th cyclotomic polynomial.
- To contradict the class equation, for each r < n that divides n, the polynomial $\mathbf{f}_r(\mathbf{x}) = \frac{\mathbf{x}^n 1}{\mathbf{x}^r 1}$ lies in $\mathbb{Z}[\mathbf{x}]$ and is divisible by $\mathbf{g}_r(\mathbf{x})$, with $\mathbf{f}_r(\mathbf{x}) = \mathbf{g}_r(\mathbf{x})\mathbf{h}(\mathbf{x})$, $\mathbf{h}(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$.
- Thus for each $r \mathbf{g}_r(q)$ divides $\mathbf{f}_r(q)$ in \mathbb{Z} , whence $\mathbf{g}_n(q)|q-1$, a contradiction.

Outline

- 🚺 Artin Rings
- 2 Assignment #15
- 3 Semisimple Modules
- Assignment #16
- **5** Wedderburn Theorem
- 6 Division Rings
- Assignment #17

Assignment #17

Let G be the symmetric group S₃ and A the group ring C[G]. Prove that

$$\mathbb{C}[\mathbf{G}] \simeq M_2(\mathbb{C}) \times \mathbb{C} \times \mathbb{C}.$$

If G is a finite group and K a field, let Z be the center of K[G]. Find a basis of Z as a K-vector space in terms of the conjugacy classes of G.