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Rings in L.A.

Several modules over rings occur in Linear Algebra. We will
develop the theory of finitely generated modules over certain
rings and apply it to L.A.

Example
Let V be a finite dimensional vector space over the field k , and
let

ϕ : V −→ V

be a linear transformation. Define a k [x]-module structure M by
declaring

x · v = ϕ(v), ∀v ∈ V.
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More generally, for a polynomial f(x), define

f(x)v = f(ϕ)(v).

We denote this module by Vϕ. If φ is another linear
transformation of V, similarly we get a module Vφ.

Although Vϕ and Vφ are the same vector space, as
k [x]-modules they may not be isomorphic.
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Proposition
Let A and B be n × n matrices over k and denote by VA and VB
the corresponding k [x]-modules defined on V = kn. Then VA
and VB are isomorphic k [x]-modules iff A and B are similar,
that is if there is an invertible matrix S such that A = S−1BS.

Proof. If S : VA ' VB is an isomorphism of k [x]-modules, it
must hold:

1 S : VA −→ VB is an isomorphism of vector spaces, that is
S is invertible, and

2 S(x · v) = x · (S(v)), that is S(A(v)) = B(S(v)), that is

SA = BS, or A = S−1BS

For the converse, read the equations backwards.
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We will use this setup to solve
1 Given A and B as above, decide whether A ∼ B.

2 Describe the vector space

{B ∈ Mn(k) : AB = BA}

3 Many other questions are answered.
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Modules over PIDs

Let R be a PID and M a finitely generated R-module,
M = (u1, . . . ,un), i.e. every u ∈ M can be written

u = r1u1 + · · ·+ rnun, ri ∈ R.

Examples are free R-modules, M = Rn, or

M = R/(d1)⊕ · · · ⊕ R/(dn).
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Free Presentation

Definition
A free presentation of M is a surjective R-module
homomorphism

ϕ : Rn = Re1 ⊕ · · · ⊕ Ren → M, ϕ(ei) = ui .

The kernel of ϕ is the submodule

L = {(a1, . . . ,an) ∈ Rn :
∑

aiui = 0}.

L is finitely generated (being a submodule of the Noetherian
module Rn), and Rn/L ' M.

L is called the module of relations of the ai , or a module of
syzygies of M.
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L has a set of generators

v1 = (a11, . . . ,a1n)

...
vm = (am1, . . . ,amn)

which can be conveniently coded by the matrix

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn
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A is associated to the basis {e1, . . . ,en} of Rn and the
generators {v1, . . . , vm} of L. We are going to change the two
sets to make the quotient module Rn/M nice.
Consider elementary row operations on A, with the exception of
dividing a row or column by a non-unit of R.

For example, adding c times the first row to the second,
has the effect of replacing the generator v2 → v2 + cv1,
which does not change L. Similar effects for the other row
operators.
The interpretations of the column operations is the usual.
For example, adding d times column 1, c1, to column
c2 → c2 + dc1, gives the representations of the vectors vi
in terms of the basis {e′1 = e1 − de2,e2,e3, . . . ,en}.
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Key Observation

Proposition
Let R be an Euclidean domain. Given a matrix A with entries in
R, there exists a sequence of elementary row and column
operations such that

A 


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
· · · · · · · · · · · · · · ·


where d1|d2|d3| · · · . Furthermore, the ideals (di) are unique.

Remark
The same assertion holds for general PID’s with one extra
operation allowed (details soon).
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Example

[
2 4 6
5 3 0

]
−→

[
2 0 0
5 −7 −15

]
−→

[
2 0 0
1 −7 −15

]
[

1 −7 −15
0 14 30

]
−→

[
1 0 0
0 14 30

]
−→

[
1 0 0
0 2 0

]
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Proof

1 We induct on the size of the matrix A.
2 The proof of termination comes from the fact that the

division algorithm of R can place the gcd d1 of all the
entries of A in the position (1,1).

3 Now row and column operations are performed so that
combined with those in step (1) give

A A′ =


d1 0 · · · 0
0
... B
0


4 This also shows that d1|d2|d3| · · · .
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Uniqueness

The uniqueness of the (di) comes from an additional
observation.

1 The uniqueness of (d1) comes directly from the
construction.

2 To prove that of (d2), we prove that (d1d2) is unique. This
follows from the fact that just as every elementary
operation leaves unchanged the gcd of the entries of the
matrix, it also leaves unchanged the gcd of all 2× 2 minors
of A (or, more generally, of all r × r minors).
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Structure Theorem for Modules over PID

Given a module M = Rn/L, there is a basis e1,e2, . . . ,en of Rn,
and a set of generators of L,

d1e1,d2e2, . . . ,dnen.

This implies

M ' (Re1/d1Re1)⊕· · ·⊕ (Ren/dnRen) ' R/(d1)⊕· · ·⊕R/(dn).

Some of the di = 1, and R/(di) = 0, or di = 0, and R/(di) ' R.
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Theorem
Every finitely generated module M over a PID R is isomorphic
to

R/(d1)⊕ · · · ⊕ R/(dn),

where d1|d2|d3| · · · . The ideals (di) are uniquely determined, in
particular the number r of di = 0, is uniquely determined (called
torsionfree rank of M),

M ' Rr ⊕ T ,

where T has a nonzero annihilator. The ideals (di) are called
the rational invariants of M.



Rings in L.A. Assignment #11 Hilbert Nullstellensatz Noether Normalization Assignment #12 Invertible Ideals Dedekind Domains Homework Assignment #13 Commutative Artinian Rings Assignment #14

There is just one point to add: For a PID, the gcd(a,b) is the
generator of the ideal (a,b), that is

d = ra + sb, (r , s) = (1).

This means that there exists α, β such that rα+ sβ = 1.
Thus, if we have a matrix of relations A: if we have two rows
v1, v2, an equivalent set of relations with v ′1, v

′
2 replacing v1, v2 is

v ′1 = rv1 + sv2

v ′2 = αv1 − βv2

The first coordinate of v ′1 is the gcd of the first coordinates of v1
and v2.
Such operations on columns give rise to basis changes in Rn.
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The return of Vϕ

Let us go back to a linear transformation

ϕ : V = kn −→ kn

and determine the structure of Vϕ.

Pick a k -basis u1, . . . ,un for V, so that ϕ = [cij ]. Let us
determine a free presentation for Vϕ

0 −→ L −→ Re1 ⊕ · · · ⊕ Ren −→ Vϕ → 0, ei → ui .
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The Syzygies of Vϕ

Let us determine the module L. If

v = (f1(x), . . . , fn(x)),

n∑
i=1

fi(ϕ)(ui) = 0.

For instance, from

ϕ(ui) = xui =
∑

cijuj ,

we have that the rows of the matrix lie in L

[cij ]− xI =


c11 − x c12 · · · c1n

c21 c22 − x · · · c2n
...

...
...

...
cn1 cn2 · · · cnn − x
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Proposition
L is generated by the rows of ϕ− xI.

Proof. Let v = (f1(x), . . . , fn(x)) ∈ L. We argue that v is a linear
combination (with coefficients in R) of the rows of ϕ− xI.

If all the fi(x) constants,
∑

i fiui = 0 means that fi = 0,
since the ui are k -linearly independent.
We induct on sup{deg(fi)} and on the number of
components of this degree. Say deg(f1) = sup{deg(fi)}.
Divide f1 by c11 − x, f1 = q(c11 − x) + r ,

(f1, . . . , fn)− q(c11 − x, . . . , c1n) = (g1, . . . ,gn) = u.

Note that u has fewer terms, if any, of degree ≥ deg(f1).
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Structure of Vϕ

It comes out of the algorithm

ϕ− xI −→


d1(x)

d2(x)
. . .

dn(x)


Corollary
If di(x), 1 ≤ i ≤ n, are the rational invariants of Vϕ

1 det(ϕ− xI) = (unit)d1(x) · · · dn(x).
2 [Cayley-Hamilton Theorem] .
3 dn(x) is the minimal polynomial of ϕ.
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Example

V = k2, 1/2 ∈ k , ϕ =

[
1 2
3 4

]
[

1− x 2
3 4− x

]
→
[

(1− x)/2 1
3 4− x

]
→
[

1 (1− x)/2
4− x 3

]
[

1 0
0 3− (4− x)(1− x)/2

]
→
[

1 0
0 x2 − 5x − 2

]
Vϕ = k [x]/(x2 − 5x− 2).
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Scholium
Every square matrix A with entries in a field is similar to its
transpose.

Proof. The rational invariants of VA are determined from the
gcd’s of the minors of A− xI. But these are the same as the
minors of

At − xI = (A− xI)t .
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Commuting Matrices

Let ϕ be a linear trasformation of V = kn. Consider the set of
linear transformations of V that commute with ϕ,

C(ϕ) = {φ ∈ Mn(k) : φϕ = ϕφ}.

We already interpreted such φ as a k [x]-module
homomorphism of Vϕ, that is, as an element of

C(ϕ) = Homk [x](Vϕ,Vϕ).

We use the structure of Vϕ to determine this module.
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Lemma
If M = M1 ⊕M2 ⊕ · · · ⊕Mn, then

HomR(M,M) =
⊕

1≤i,j≤n

HomR(Mi ,Mj).

Theorem
For r = k [x], if M = Vϕ = R/(d1(x))⊕ · · · ⊕ R/(dn(x)), then

C(ϕ) =
⊕

1≤i,j≤n

HomR(R/(di(x)),R/(dj(x))).

The terms HomR(R/(di(x)),R/(dj(x))) are easy to determine
since one of the d(x) divides the other.
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Let us consider some special cases.
Suppose the minimal polynomial of ϕ is equal to its
characteristic polynomial. Such matrices are called
derogatory. This means that d1 = · · · = dn−1 = 1, and
Vϕ = k [x]/(dn(x)). It follows that

C(ϕ) = k [x]/(dn(x)),

which says that every endomorphism is a polynomial in ϕ,
φ = g(ϕ).
Suppose that there are two summands,
M = R/(dn−1)⊕ R/(dn). We have dn−1|dn−1 to make
calculation easy. The summands in HomR(M,M) are

HomR(R/(dn−1),R/(dn−1)) = R/(dn−1)

HomR(R/(dn),R/(dn)) = R/(dn)

HomR(R/(dn−1),R/(dn)) = R/(dn−1)

HomR(R/(dn),R/(dn−1)) = R/(dn−1)
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Refinements

There are ways to enhance these decompositions that are
useful, leading to primary decompositions in the case of
modules over PID, or in the case of Vϕ to Jordan
decompositions.

They start out by applying the CRT (Chinese Remainder
Theorem) (one in a class of results called partition of the unity)
to the ring R/(d), where R is a PID and d has a primary
decomposition

d = pe1
1 · · · p

en
n .
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Historical Example

Consider 360 = 23 · 32 · 5.

gcd(72,45,40) = 1, thus

∃a,b, c ∈ Z, 1 = 72a + 45b + 40c

that is, we can find the fraction 1/360 as the combination

1
360

= a
1
5

+ b
1
8

+ c
1
9
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Primary Decomposition

Proposition
If R is a PID and

d = pe1
1 · · · p

en
n ,

then
R/(d) = R/(pe1

1 )⊕ · · · ⊕ R/(pen
n ).

Proof. Consider the elements ci = d/pei
i . Since

gcd(c1, . . . , cn) = 1, there are elements ai ∈ R such that

1 =
n∑

i=1

aici .
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Now define the homomorphism of R (check this is well defined!)

h : R/(d) −→ R/(pe1
1 )⊕ · · · ⊕ R/(pen

n ),

for u ∈ R/(d)
h(u) = (a1u, . . . ,anu).

Exercise: Prove that h is one-one & onto.
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Uniqueness–I

Theorem
Let R is a PID and A a finitely generated torsion module. If

A = W1 ⊕ · · · ⊕Wm

is a primary decomposition the Wi are uniquely determined by
A.

Proof. If W is one of the Wi then W is a direct sum of
submodules isomorphic to R/(pr ) for a unique prime p.
This shows that W is annihilated by some ps (s the largest of
the exponents r :

W = {x ∈ A : pr x = 0, some r}
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Uniqueness–II

Theorem
Let R be a PID and W a finitely generated primary R-module.
Given a decomposition

W ' R/(pe1)⊕ · · · ⊕ R/(pem),

where the exponents as listed as e1 ≥ e2 ≥ · · · ≥ em, the
sequence (e1,e2, . . . ,em) is uniquely determined by W.

Proof. Consists of the following observations:
pW is a submodule of W and W/pW is isomorphic to

W/pW ' ⊕R/(pei )/pR/(pei )

Each module R/(pe)/pR/(pe)) is isomorphic to R/(p).
Thus W/pW is a vector space of dimension m over R/(p).
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em is the smallest exponent such that pemW = 0
Note pR/(pe) ' R/(pe−1)

Consider the module pW. Its primary decomposition is

pW ' R/(pe1−1)⊕ · · · ⊕ R/(pem−1)
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Primary decomposition of Vϕ

In the cyclic decomposition

Vϕ = R/(d1)⊕ · · · ⊕ R/(dn)

we are going to replace each R/(di) by its primary
decomposition. Suppose p1, . . . ,pm are the primes that occur.
This leads to the primary decomposition of Vϕ

Vϕ = W1 ⊕ · · · ⊕Wm

where Wi is a direct sum of modules R/(paij
i ) for the same pi .
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Setting up matrix representation

Since ϕ acts as a homomorphism on Vϕ, and the Wi are
submodules

ϕ : Wi →Wi

this has the following consequence:
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Block Decomposition

The decomposition of Vϕ into a direct sum of modules
W1 ⊕ · · · ⊕Wm leads to a block decomposition for any matrix
representation of ϕ:

[ϕ] =

 [ϕ]1 · · · O
...

. . .
...

O · · · [ϕ]m


We are going to pick appropriate k -vector spaces in the
submodules.
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Jordan Block

Suppose the submodule W of Vϕ is k [x]/(x − λ)r . This means
that λ is an eigenvalue of ϕ. Let us look at one such r × r block

[ϕ]W = A = [v1| · · · |vr ] =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


A(u1) = λu1︸ ︷︷ ︸
eigenvector

, A(u2) = u1 + λu2, · · · ,A(ur ) = ur−1 + λur
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Jordan Basis

The k -vector space k [x]/(x− λ)r has many interesting bases,
for instance the residue classes of {1,x, . . . ,xr−1}.

Jordan’s claim to glory comes from picking

{v1 = 1, v2 = (x− λ), . . . , vr = (x− λ)r−1}

x(vi) = x(x− λ)i−1, i < r − 1
= (x− λ)i + λ(x− λ)i−1

= λvi + vi+1

x(vr ) = λvr

Now reverse the notation: ui = vr+1−i .
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We collect all the blocks (from the Wi ) for the same eigenvalue

 J1 O O
O J2 O
O O J3

 =



λ 1 0 0 0 0 0 0
0 λ 1 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 1 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 1 0
0 0 0 0 0 0 λ 1
0 0 0 0 0 0 0 λ
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Jordan Decomposition Theorem

Theorem
Any linear operator T whose characteristic polynomial
p(x) = ±

∏m
i=1(x − λi)

ni splits has a unique matrix representation into
blocks

[T]B =

 A1 · · · O
...

. . .
...

O · · · Am


where each Ai has a representation by Jordan λi -blocks whose
number and sizes are uniquely defined

λi 1 · · · 0
0 λi · · · 0
...

...
. . .

...
0 0 · · · λi

 .
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Assignment #11

Do any 2 problems:
For the rational tridiagonal matrix [if too laborious, do 6× 6]

ϕ =



1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1


find: (a) its rational invariants, including its minimal
polynomial; (b) the dimension of the subspace of 8× 8
matrices commuting with it.
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Let ϕ and ψ be n × n matrices with entries in a field K. If
there is an invertible matrix S over an extension field F
such that

ψ = S · ϕ · S−1,

[that is, ϕ and ψ are similar over F] show that ϕ and ψ are
similar over K.
Describe a Jordan’s canonical form theorem over the real
numbers. [Only looks vague!]
If the integer n has a prime factorization

n = pr1
1 · · · p

rm
m ,

find a ‘formula’ for the number of isoclasses of abelian
groups of order n.
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Infinitely generated modules

Let us begin with Q viewed as a Z-module.

First we find a convenient set of generators of Q: For
n ∈ N, consider the subgroup of Q given by Z 1

n! . Then

Q =
⋃
→

Z
1
n!

Now let F be a free abelian group with a basis {en}. Map
this element to 1

n! . Let L be the subgroup of F generated
by the syzygies nen − en−1,n ≥ 2.
L is a free abelian group and F/L ' Q.
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Theorem
Let R be a PID. Then any submodule of a free module is free.

Proof. Let F be a free module with basis {ei , i ∈ I}, and
suppose the index set I is well-ordered. For each i ∈ I set

Fi =
⊕
j<i

Rej ,

with F0 = 0 and Fi+1 =
⊕

j≤i Rej .
For a submodule M of F each x ∈ M ∩ Fi+1 has a unique
expression x = y + rei , where y ∈ Fi and r ∈ R. If
φi : M ∩ Fi+1 → R is defined by φi(x) = r , there is a SES

0→ M ∩ Fi −→ M ∩ Fi+1 −→ Ii → 0,

where Ii = image φi . Since Ii is projective, the sequence splits:
M ∩ Fi+1 = (M ∩ Fi)⊕ Ci , Ci ' Ii . We claim M =

⊕
i Ci .
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Proof cont’d

Claim: M = (
⋃

Ci): Since F =
⋃

Fi , each x ∈ M lies in some
Fi+1. Let ν(x) be the smallest i such that x ∈ Fi+1.
Clearly C = (

⋃
Ci) ⊂ M. If C 6= M, consider the set

{ν(x) : x ∈ M, x /∈ C} ⊂ I

Let j be the least such index and choose y ∈ M with y ∈ M \ C
and ν(y) = j . This last implies y ∈ M ∩ Fj+1, so y = b + c,
b ∈ M ∩ Fj and c ∈ Cj . Therefore b = y − c ∈ M, b /∈ C (unless
y ∈ C), and ν(b) < j , a contradiction. Hence M = C.
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Proof concl’d

To prove M =
⊕

Ci , suppose c1 + · · ·+ cn = 0, ci ∈ Cki ,
k1 < · · · < kn. Then

c1 + · · ·+ cn−1 = cn ∈ (M ∩ Fkn) ∩ Ckn = 0

It follows that cn = 0. Induction gives ci for all i .
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Class discussion

Let f(x) = f(x1, . . . , xn) be a nonconstant polynomial of
R = C[x] = C[x1, . . . , xn], n > 1.

Fact: There is c ∈ Cn such that f(c) = 0.
Task: Volunteer to the plate!
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The answer is easy when

f(x1, . . . , xn) = xd
n + g(x1, . . . , xn),

where g(x) is a polynomial of degree < d in the variable xn.
So what is the solution for the general case? One seeks a
change of variables (possibly linear)

x → y, [x] = [y]A
f(x) = f(yA) = g(y)

so that g(y) has the appropriate form.
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More generally, let f1(x), . . . , f(xm) be a set of elements of
R = C[x].

Question: What are the obstructions to finding c ∈ Cn such
that

f1(c) = f2(c) = · · · = fm(c) = 0 ?

Obviously one is: there exist g1(x), . . . ,gm(x) such that

g1(x)f1(x) + · · ·+ gm(x)fm(x) = 1

What else?
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Hilbert Nullstellensatz

Let k be a field and denote by k its algebraic closure. The
Hilbert Nullstellensatz is about qualitative results about systems
of polynomial equations.

Let fi(x1, . . . , xn) ∈ R = k [x1, . . . , xn], 1 ≤ i ≤ m, be a set of
polynomials.

Definition
The algebraic variety defined by the fi is the set

V (f1, . . . , fm) = {c = (c1, . . . , cn) ∈ k
n

: fi(c) = 0, 1 ≤ i ≤ m.}

A hypersurface is a variety defined by a single equation V (f).

Remark
If I is the ideal generated by the fi , then V (I) = V (f1, . . . , fm).
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Hilbert Nullstellensatz

Theorem
If the ideal I ⊂ R = k [x1, . . . , xn] is proper, i.e. I 6= R, then
V (I) 6= ∅.

Proof. We make two reductions.
1 Let m be a maximal ideal of R containing I. Since

V (m) ⊂ V (I), ETA that I is maximal.

2 The ring of polynomials S = k [x1, . . . , xn] is integral over
R = k [x1, . . . , xn]. By Lying-over, there is a maximal ideal
M of S such that M ∩ R = m. Since V (M) ⊂ V (m), ETA
that I is a maximal ideal and k is algebraically closed.
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Nullstellensatz

After these reductions the assertion is:

Theorem
If k is an algebraically closed field and M is a maximal ideal of
R = k [x1, . . . , xn], then there is

c = (c1, . . . , cn) ∈ kn

such that
f(c) = 0 ∀f(x) ∈ M.
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Special case: C

Consider the field F = C[x1, . . . , xn]/M.

Proposition
It is ETS that F is isomorphic to C.

Proof. Indeed, if F ' C, for each indeterminate xi its
equivalence class in k [x1, . . . , xn]/M contains some element ci
of C, that is xi − ci ∈ M. this means that

(x1 − c1, . . . , xn − cn) ⊂ M.

But (x1 − c1, . . . , xn − cn) is also a maximal ideal, therefore it is
equal to M. Clearly every polynomial of M vanishes at
c = (c1, . . . , cn). �
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Proof of C = C[x1, . . . , xn]/M

1 ETS that the extension C→ F = C[x1, . . . , xn]/M is
algebraic.

2 Observe that [F : C] is countable, F being a homomorphic
image of the countably generated vector space
C[x1, . . . , xn].

3 If F is not algebraic over C, suppose t ∈ F is
transcendental over C.

4 Consider the uncountable set {1/(t − c), c ∈ C}.
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Since they cannot be linearly independent, there are distinct ci ,
1 ≤ i ≤ m and nonzero ri ∈ C such that

r1
1

t − c1
+ · · ·+ rm

1
t − cm

= 0.

Clearing denominators gives the equality of two polynomials of
C[t ]:

r1(t − c2)(t − c3) · · · (t − cm) = (t − c1)g(t),

which is a contradiction as the ci are distinct.
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NNL: Noether Normalization Lemma

Definition
A finitely generated algebra R over a field k is a homomorphic
image of a ring of polynomials over k ,

k [x1, . . . , xn]/I ' R = k [a1, . . . ,an].

Theorem (NNL)
If R is finitely generated over k, there is a subalgebra

S = k [y1, . . . , yr ] ↪→ R

such that the yi are algebraically independent and R is integral
over S. S is called a Noether Normalization of R.
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From NN to Nullstellensatz

1 Let M be a maximal ideal of k [x1, . . . , xn], k = k . We will
show that M = (x1 − c1, . . . , xn − cn), ci ∈ k .

2 Using the NNL, let
S = k [y1, . . . , yr ] ↪→ R = k [x1, . . . , xn]/M be a Noether
normalization. Since R is a field, S is also a field, thus
r = 0.

3 This gives that S = k → R is a finite extension, so k = R.
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Another version of the Nullstellensatz

Theorem
Let I be an ideal of R = k [x1, . . . , xn] and f ∈ R a polynomial.
Then

V (I) ⊂ V (f)⇔ f ∈
√

I

that is, there is a power fr ∈ I.

Proof. In one direction it is clear.

Suppose V (I) ⊂ V (f). Consider the ideal L in the polynomial
ring with one extra variable

L = (I,1− tf) ⊂ k [x1, . . . , xn, t ].
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Since each zero of I is a zero of f, L = (I,1− tf) has no zeros.
Thus by the Nullstellensatz L = (1). This means that there is an
equation ∑

gi fi + (1− tf)g = 1, fi ∈ I,gi ,g ∈ R[t ].

Replacing t → 1/f and clearing denominators gives an equation

fr =
∑

hi fi , hi ∈ R
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Example

Let
R = k [x , y ]/(y2 − 2xy + x3)

Set y1 = x and
S = k [y1] ⊂ R

Note that y is integral over S, so R is integral over S.
Finally,

S ' k [x ]/(k [x ] ∩ (y2 − 2xy + x3)) = k [x ]
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Example

1 If R = k [x , y ]/(xy + x + y), need a preparation: change
variables x → x1, y → x1 + y1, so

xy + x + y → x1(x1 + y1) + x1 + x1 + y1 = x2
1 + x1y1 + 2x1 + y1

2 Get the NN by choosing

S = k [y1] ↪→ R = k [x , y ]/(xy + x + y).
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Proof of NN

Let R be a commutative ring and B a finitely generated
R-algebra, B = R[x1, . . . , xd ]. The expression Noether
normalization usually refers to the search-as effectively as
possible-of more amenable finitely generated R-subalgebras
A ⊂ B over which B is finite. This allows for looking at B as a
finitely generated A-module and therefore applying to it
methods from homological algebra or even from linear algebra.
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When R is a field, two such results are: (i) the classical Noether
normalization lemma, that asserts when it is possible to choose
A to be a ring of polynomials, or (ii) how to choose A to be a
hypersurface ring over which B is birational. We review these
results since their constructive steps are very useful in our
discussion of the integral closure of affine rings.
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Affine Rings

Let B = k [x1, . . . , xn] be a finitely generated algebra over a field
k and assume that the xi are algebraically dependent. Our goal
is to find a new set of generators y1, . . . , yn for B such that

k [y2, . . . , yn] ↪→ B = k [y1, . . . , yn]

is an integral extension.

Let k [X1, . . . ,Xn] be the ring of polynomials over k in n
variables; to say that the xi are algebraically dependent means
that the map

π : k [X1, . . . ,Xn]→ B, Xi 7→ xi

has non-trivial kernel, call it I.
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Assume that f is a nonzero polynomial in I,

f (X1, . . . ,Xn) =
∑
α

aαXα1
1 Xα2

2 · · ·X
αn
n ,

where 0 6= aα ∈ k and all the multi-indices α = (α1, . . . , αn) are
distinct. Our goal will be fulfilled if we can change the Xi into a
new set of variables, the Yi , such that f can be written as a
monic (up to a scalar multiple) polynomial in Y1 and with
coefficients in the remaining variables, i.e.

f = aY m
1 + bm−1Y m−1

1 + · · ·+ b1Y1 + b0, (1)

where 0 6= a ∈ k and bi ∈ k [Y2, . . . ,Yn].
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We are going to consider two changes of variables that work for
our purposes: the first one, a clever idea of Nagata, does not
assume anything about k ; the second one assumes k to be
infinite and has certain efficiencies attached to it.

The first change of variables replaces the Xi by Yi given by

Y1 = X1, Yi = Xi − X1
pi−1

for i ≥ 2,

where p is some integer yet to be chosen.
If we rewrite f using the Yi instead of the Xi , it becomes

f =
∑
α

aαYα1
1 (Y2 + Y p

1 )α2 · · · (Yn + Y pn−1

1 )αn . (2)
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Expanding each term of this sum, there will be only one term
pure in Y1, namely

aαYα1+α2p+···+αnpn−1

1 .

Furthermore, from each term in (2) we are going to get one and
only one such power of Y1. Such monomials have higher
degree in Y1 than any other monomial in which Y1 occurs. If we
choose p > sup{αi |aα 6= 0}, then the exponents
α1 + α2p + · · ·+ αnpn−1 are distinct since they have different
p-adic expansions. This provides for the required equation.
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If k is an infinite field, we consider another change of variables
that preserves degrees. It will have the form

Y1 = X1, Yi = Xi − ciX1 for i ≥ 2,

where the ci are to be properly chosen. Using this change of
variables in the polynomial f , we obtain

f =
∑
α

aαYα1
1 (Y2 + c2Y1)

α2 · · · (Yn + cnY1)
αn . (3)
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We want to make choices of the ci in such a way that when we
expand (3) we achieve the same goal as before, i.e. a form like
that in (1). For that, it is enough to work on the homogeneous
component fd of f of highest degree, in other words, we can
deal with fd alone. But

fd(Y1, . . . ,Yn) = h0(1, c2, . . . , cn)Y d
1 + h1Y d−1

1 + · · ·+ hd ,

where hi are homogeneous polynomials in k [Y2, . . . ,Yn], with
deg hi = i , and we can view h0(1, c2, . . . , cn) as a nontrivial
polynomial function in the ci . Since k is infinite, we can choose
the ci , so that 0 6= h0(1, c2, . . . , cn) ∈ k .
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Theorem (Noether Normalization)

Let k be a field and B = k [x1, . . . ,xn] a finitely generated
k-algebra; then there exist algebraically independent elements
z1, . . . , zd of B such that B is integral over the polynomial ring
A = k [z1, . . . , zd ].

Proof. We may assume that the xi are algebraically dependent.
From the preceding, we can find y1, . . . , yn in B such that

k [y2, . . . , yn] ↪→ k [y1, . . . , yn] = B

is an integral extension, and if necessary we iterate. �
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Corollary
Let k be a field and ψ : A 7→ B a k-homomorphism of finitely
generated k-algebras. If P is a maximal ideal of B then
p = ψ−1(P) is a maximal ideal of A.

Proof. Consider the embedding

A/p ↪→ B/P

of k -algebras, where by the preceding B/P is a finite
dimensional k -algebra. It follows that the integral domain A/p is
also a finite dimensional k -vector space and therefore must be
a field. �
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Assignment #12

Do Problem #2 only

1 Describe [with proofs] the prime spectrum of k [x , y ], k a
field.

2 If M is a maximal ideal of R = R[x , y ], prove that
dimR R/M is 1 or 2.
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Invertible Ideals

Let R be an integral domain of field of fractions K. The ideals of
R are part of an important class of R-submodules of K:

Definition
A submodule L of K is fractionary if there is 0 6= d ∈ R such
that dL ⊂ R.

1 This means that L = d−1Q, where Q is an ideal of R.
2 K is not fractionary, unless R = K.
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The sum and the product of fractionary ideals is fractionary.
Another operation is

Definition
The quotient of two fractionary ideals is

L1 : L2 = {x ∈ K : xL2 ⊂ L1}.

In particular
R : L = {x ∈ K : xL ⊂ R}.

L1 is said to be invertible if there is a fractionary ideal L2 such
that L1 · L2 = R.
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Invertible Ideals

Proposition
If L is an invertible ideal of R, then L is a finitely generated
R-module.

Proof.
The equality L · L′ = R means that there are xi ∈ L, yi ∈ L′,
1 ≤ i ≤ n, such that

1 = x1y1 + · · ·+ xnyn.

Thus for any x ∈ L,

x = (xy1)x1 + · · ·+ (xyn)xn

which shows that L1 = (x1, . . . , xn) since all xyi ∈ R.
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Example

Let R = Z[
√
−5], I = (3,2 +

√
−5). We claim that I is an

invertible ideal. We will also see that I is not a principal ideal.

9 = 3 · 3 = (2 +
√
−5)(2−

√
−5)

Set J = (1, 3
2+
√
−5

)

I · J = (2 +
√
−5,3,2−

√
−5) = (1) = R



Rings in L.A. Assignment #11 Hilbert Nullstellensatz Noether Normalization Assignment #12 Invertible Ideals Dedekind Domains Homework Assignment #13 Commutative Artinian Rings Assignment #14

Local Rings

Proposition
If R is a local ring, then every invertible fractionary ideal is
principal.

Proof.
Denote by m the unique maximal ideal of R. If L is invertible,
L · L′ = R, in the equation

1 = x1y1 + · · ·+ xnyn,

some product, say x1y1 /∈ m. This means that it is an invertible
element of R. Thus, for any x ∈ L,

x = (x1y1)
−1(y1x)x1,

that is L = Rx1.
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Dedekind Domains

These are important rings. The interest springs from their
sources:

Number Theory: Rings of algebraic numbers: If L is a finite
extension of Q, R is the ring of elements of L integral over
Z.
Algebraic Geometry: (Case of plane curve)
R = k [x , y ]/(f(x , y)), or its integral closure.
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Dedekind Domains

The formal definition is:

Definition
The integral domain D is a Dedekind domain if every ideal is
invertible.

D is a nice notation for D.D.’s, but we shall use plain R...
The inverse of a fractionary ideal L is denoted L−1 (it is
unique).
Of course every fractionary ideal will be invertible as well.
If R is a Dedekind domain, it is Noetherian.
Besides PID’s, what are they like?
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Properties of D.D.’s

Theorem
If R is a Dedekind domain then every nonzero prime ideal is
maximal.

Proof.
We will argue by contradiction. Let P ( Q be distinct prime
ideals. We are going to form the ring of fractions S = RQ
(Recall ...). S is a local ring and PQ and QQ are distinct prime
ideals. They are both invertible. Thus

PQ = Sa ( Sb = QQ

with a = cb, and therefore c ∈ PQ since b /∈ PQ. Thus

c = ra = b−1a,

and b−1 ∈ R, which is impossible.
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Factorization

Theorem
Let R be a Dedekind domain. Then any nonzero ideal I has a
unique factorization

I = Pe1
1 · · ·P

en
n ,

where the Pi are distinct prime idealas.

Proof. Since R is Noetherian, I has a primary decomposition

I = Q1 ∩ · · · ∩Qn,

where the Pi =
√

Qi are distinct maximal ideals.

We want to argue that the intersection is actually a product.

Definition
Two ideals J and L are co-maximal if J + L = R.



Rings in L.A. Assignment #11 Hilbert Nullstellensatz Noether Normalization Assignment #12 Invertible Ideals Dedekind Domains Homework Assignment #13 Commutative Artinian Rings Assignment #14

Lemma
If J and L are co-maximal ideals, then JL = J ∩ L.

Proof.
It is clear that JL ⊂ J ∩ L. For the converse, let x ∈ J ∩ L. Since
J + L = R, there are a ∈ J and b ∈ L such that

1 = a + b, hence

x = xa + xb, with xa, xb ∈ J ∩ L

Now we apply this to I = Q1 ∩ L, L = Q2 ∩ · · · ∩Qn. To see that
Q1 and L are co-maximal, deny. Then Q1 + L ⊆ M for some
maximal ideal M. This ideal would contain

√
Q1 and Q2 · · ·Qn.

Thus M would contain two other maximal ideals, a
contradiction.
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Primary ideals

Proposition
Let R be a Dedekind domain. If Q is a P-primary ideal, then
Q = Pe, for some e ≥ 1.

Proof.
Since the radical of Q is P, some power of P is contained in Q,
say Pe ⊆ Q, with e as small as possible. If the containement is
proper, we have

Pe ·Q−1 ( Q ·Q−1 = R.

Therefore we must have

Pe ·Q−1 ⊆ P and therefore

Pe−1 ⊆ Q which is a contradiction.



Rings in L.A. Assignment #11 Hilbert Nullstellensatz Noether Normalization Assignment #12 Invertible Ideals Dedekind Domains Homework Assignment #13 Commutative Artinian Rings Assignment #14

Corollary
If R is a Dedekind domain, the nonzero fractionary ideals form
a multiplicative group G, with the nonzero principal fractionary
forming a subgroup P. The quotient G/P is called the class
group C(R) of R. R is a PID if and only if C(R) is trivial.



Rings in L.A. Assignment #11 Hilbert Nullstellensatz Noether Normalization Assignment #12 Invertible Ideals Dedekind Domains Homework Assignment #13 Commutative Artinian Rings Assignment #14

Remarks

1 Recall that if R ⊂ S are rings, an element u ∈ S is integral
over R if it satisfies a monic equation with coefficients in R,
un + r1un−1 + · · ·+ rn = 0, ri ∈ R.

2 If every element of S that is integral over R already lies in
R, R is said to be integrally closed in S.

3 If R is a domain of field of fractions K and L is a finite
extension of K, for any u ∈ L there is an equation
un + r1un−1 + · · ·+ rn = 0, ri ∈ K. Let 0 6= d ∈ R such that
dri ∈ R (d is a common denominator of the ri .) Then
dnun + dr1dn−1un−1 + · · ·+ dnrn = 0, ri ∈ K, showing that
du is integral over R.
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Characterization of D.D.’s

Theorem
Let R be an integral domain of field of fractions K. The following
are equivalent:

1 R is a Dedekind domain.
2 R is a Noetherian ring in which every nonzero prime ideal

is maximal and R is integrally closed in K.
3 R is Noetherian and for each prime ideal P the localization

RP is a PID.

We will check the equivalences:

(1)⇔ (2)⇔ (3)
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Some remarks on localization

If R is an integral domain then

R =
⋂
P

RP , all maximal ideals P

Indeed, if x is contained in each RP ,

x = a/b, b /∈ P,

the set (an ideal) of all elements d (denominators) such
that dx ∈ R is not contained in any maximal ideal of R, so
must be R.
If each RP is integrally closed, then their intersection will
also be such: If z ∈ K is integral over R, it is also integral
over the larger RP . Thus z ∈ RP .
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Characterization of a PID with a unique maximal
ideal

Proposition
Let R be a Noetherian domain with a unique nonzero prime
ideal m. R is a PID if and only if R is integrally closed.

Proof. ETS that if R is integrally closed then m is invertible.

Let 0 6= x ∈ m. Then the radical
√

(x) of (x) is m.
Let n be the smallest integer such that mn ⊂ (x). Consider
the product

(1/x)mn−1m ⊂ R

If (1/x)mn−1m = R, m is invertible.
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If not, (1/x)mn−1m ⊂ m.
Recall the Cayley-Hamilton for modules: If E is a faithful,
finitely generated R-module and z is an element of a larger
ring such that z ·M ⊂ M, then z is integral over R.
This implies that (1/x)mn−1 is integral over R, therefore is
contained in R, since it is integrally closed, that is
mn−1 ⊂ (x), which contradicts the choice of n.
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Taylor expansion

It is useful to keep in mind the formula for the Taylor expansion
of a polynomial f(x , y) around the point (a,b)
Use the notation

bmn =
∂m+nf
∂mx∂ny

(a,b)

f(x , y) = f(a,b) + b10(x − a) + b01(y − b)

+ 1/2(b20(x − a)2 + 2b11(x − a)(y − b) + b02(y − b)2)

+ higher powers
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Elliptic curve

Let us first consider the following example,

R = C[x , y ]/(f(x , y)), f(x , y) = y2 − x(x − 1)(x − 2).

By the Nullstellensatz its maximal ideals are of the form
M = (x − α, y − β), where β2 − α(α− 1)(α− 2) = 0.
We claim that RM is a PID. Write the polynomial f(x , y) as a
combination of x − α and y − β

f(x , y) = A(x , y)(x − α) + B(x , y)(y − β)

∂f
∂x

(α, β) = A(α, β)

∂f
∂y

(α, β) = B(α, β)
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Elliptic curve cont’d

If one of the partial derivatives is not zero at (α, β), in the ring R
A(x , y) or B(x , y) are not in M, therefore one or the other is a
unit in RM so that the maximal ideal MRM is generated by y − β
or x − α:

f(x , y) = 0 = A(x , y)(x − α) + B(x , y)(y − β)

It is easy to check that the conditions always holds since the
partial derivatives are 2y and
(x − 1)(x − x) + x(x − 2) + x(x − 1).
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Volunteer please

Need someone to sketch the graph of the curve

y2 = x(x − 1)(x − 2)
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Geometric DD’s

Let f(x , y) ∈ R = C[x , y ] be an irreducible polynomial. The
algebraic variety

V (f) = {(a,b) ∈ C : f(a,b) = 0}
is called a (plane) curve.

We know that every maximal ideal of C[x , y ] is of the form
M = (x − a, y − b), for a,b ∈ C
Thus if f ∈ M is a combination of the polynomials, x − a
and y − b, f = g(x − a) + h(y − b), so f(a,b) = 0
Conversely, if f(a,b) = 0, writing the Taylor expansion of
f(x , y) at a,b) we get

f(x , y) =
∑

m+n≥0

amn(x − a)m(y − b)n, amn ∈ C

showing f ∈ (x − a, y − b).
So points in f = 0 and maximal ideals of R/(f) correspond.
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Let us determine when R/(f) is a Dedekind domain. For that
we define the ideal (Jacobian)

J(f) = (f,
∂f
∂x
,
∂f
∂y

)

Theorem
R/(f) is a Dedekind domain iff J(f) = (1).

Note what this means, if (a,b) is a point of the curve,
f(a,b) = 0, that is f ∈ M = (x − a, y − b), but because the ideal
J(f) = (1), either ∂f

∂x (a,b) 6= 0 or ∂f
∂y (a,b) 6= 0. This means

f(x , y) = 0 has a tangent at (a,b).
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Proof

We are going to prove that for every maximal ideal M of
R = C[x , y ]/(f), RM is a PID. For that, by a previous result,
it will be enough to prove that the maximal ideal MRM is
principal.
Since M is generated by the cosets of x − a and y − b for
(a,b) such that f(a,b) = 0, it will be enough to show that
x − a is a multiple of y − b in RM , or vice-versa.
We are going to make use of the fact that one of the partial
derivatives ∂f

∂x (a,b) or ∂f
∂y (a,b) is nonzero.
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Proof cont’d

Suppose ∂f
∂x (a,b) 6= 0. Let us write the Taylor expansion of

f(x , y) at (a,b) (using that f(a,b) = 0.
We collect first the terms in which x − a appears alone

(x−a) [
∂f
∂x

(a,b) + 1/2a2,0(x − a) + higher powers of (x − a)]︸ ︷︷ ︸
+(y − b)[polynomial expression in x − a and y − b]
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Since this is the coset of f(x , y), it is zero.
Note that the coefficient of x − a

∂f
∂x

(a,b) + 1/2a2,0(x − a) + higher powers of (x − a)

is a sum of an invertible element (the derivative) plus an
element of MRM , so it is an invertible element of RM .
This shows that x − a is a multiple of y − b, and therefore
MRM is a principal ideal.
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Creation of new D.D.’s

Theorem
Let R be a Dedekind domain of field of fractions K and let L a
finite extension of K. The integral closure A of R in L is a
Dedekind domain.

The main burden is to show that A is a Noetherian ring. We will
give a proof in case L is a separable extension, when one has
that A is a finitely generated R-module. To get that we replace
L by M its split closure over K, and show that the integral
closure B of R in M is a finitely generated R-module. Note that
A is an R-submodule of B.
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Noetherianess of the integral closure

Theorem
Let R be an integrally closed Noetherian domain of field of
fractions K and let L a finite Galois extension of K. The integral
closure A of R in L is a Noetherian domain.
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Proof

Let G be the Galois group of L over K. The trace is the
function u ∈ L→ T(u) =

∑
σ∈G σ(u). Since the extension

is Galois and T(u) is fixed by G, T(u) ∈ K.
If u is integral over R, there is an equation
um + c1um−1 + · · ·+ cm = 0, with ci ∈ R. Thus for any
σ ∈ G, σ(u) is also integral over R and therefore T(u) is in
K and integral over R, thus T(u) ∈ R since R is integrally
closed.
Define the quadratic form S(u, v) = T(uv) on L. S is
nondegenerate: If u 6= 0 we cannot have T(uv) = 0 for all
v , by the linear independence of automorphisms.
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Proof cont’d

Let x1, . . . , xn be a basis of L over K. By multiplying the xi
by nonzero elements of R we may assume that xi ∈ A.
Let y1, . . . , yn be a basis of L dual to the xi , that is
T(xiyj) = δij .
For u ∈ A, write u = r1y1 + · · ·+ rnyn. Then
T(uxi) = riT(xiyi) = ri . Since T(uxi) ∈ R, this shows that A
is contained in the finitely generated R-module
Ry1 + · · ·+ Ryn, and thus A is Noetherian as an R-module
and hence a Noetherian ring as well.
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Examples

The most famous example obtained in this fashion is Z[i]:
Gaussian integers. It is the integral closure of Z in Q(i).
The more general quadratic extension Q(

√
m), m a

squarefree integer is easy to examine. z = a + b
√

m,
a,b ∈ Q, is integral over Z iff 2a and a2 − b2m are integers.
Thus a is an integer (and b is integer) or a is 1/2 integer
and b also a 1/2 integer, depending on the residue class of
m mod 4.
If m = 3, A = Z[

√
3]; if m = 5, A = Z[1/2 + 1/2

√
5]; if

m = −5, A = Z[
√
−5].
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Infinitely generated modules

Theorem
Let R be a DD. Then any submodule of a free module is a
direct sum of ideals.

Done already. Recall the idea:
Proof. Let F be a free module with basis {ei , i ∈ I}, and
suppose the index set I is well-ordered. For each i ∈ I set

Fi =
⊕
j<i

Rej ,

with F0 = 0 and Fi+1 =
⊕

j≤i Rej .
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For a submodule M of F each x ∈ M ∩ Fi+1 has a unique
expression x = y + rei , where y ∈ Fi and r ∈ R. If
φi : M ∩ Fi+1 → R is defined by φi(x) = r , there is a SES

0→ M ∩ Fi −→ M ∩ Fi+1 −→ Ii → 0,

where Ii = image φi .
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To make the point clear, suppose

F = Re1 ⊕ · · · ⊕ Ren−1 ⊕ Ren = F ′ ⊕ Ren

gives 0→ M ∩ F ′ −→ M −→ Inen → 0, and therefore
M ' Inen ⊕M ∩ F ′. Now use induction.
Same in general case: Since Ii is projective (as R is a D.D.), the
sequence splits: M ∩ Fi+1 = (M ∩ Fi)⊕ Ci , Ci ' Ii .
We claim M =

⊕
i Ci . Same proof from now on
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Torsion and Torsionfree Modules

Let R be an integral domain and M an R-module. The
torsion submodule of M is the set

T (M) = {x ∈ M : rx = 0, 0 6= r ∈ R}

T (M) is a submodule of M. If T (M) = M, M is said to be a
torsion module. If T (M) = 0, M is called torsionfree.
T (M/T (M)) = 0, that is M/T (M) is torsionfree.
A set {x1, . . . , xn} ⊂ M is linearly independent if∑

i rixi = 0, ri ∈ R, implies ri = 0.
The largest cardinality of the sets of linearly independent
elements of M is the torsionfree rank of M.
A nonzero ideal I of R has torsionfree rank 1: If
0 6= x , y ∈ I, xy − yx = 0 is a relation.
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Proposition
If M is a finitely generated torsionfree module of rank n, then
there is an embedding

M ↪→ Rn.

Proof.
Let M = (y1, . . . , ym) and let {x1, . . . , xn} be a linearly
independent set of elements of M.

For each yj , we have a relation

cjyj +
∑

i

aijxi = 0, cj 6= 0

Let c =
∏

j cj and consider the elements zi = xi
c of the module

of fractions c−1M. The zi are linearly independent over R and
each generator of M is contained in the free module
(z1, . . . , zn).
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Structure of finitely generated modules

Theorem
Let R be a Dedekind domain and M a finitely generated
R-module. Then

M ' T ⊕ P,

where T is the torsion submodule of M and P = M/T is a
projective R-module. Moreover:

1 P ' R ⊕ · · · ⊕ R︸ ︷︷ ︸
free

⊕I, where I is a unique ideal up to

isomorphism.
2 T ' R/I1 ⊕ · · · ⊕ R/Im, I1 ⊆ . . . ⊆ Im, where the Ii are

uniquely defined.
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Proof

In the exact sequence 0→ T −→ M −→ M/T → 0,
P = M/T is torsionfree, so embeds into a finitely
generated free R-module (why?).

P is projective, so the sequence splits: M ' T ⊕ P.

P we know is isomorphic to a direct of ideals. One
improves this to a direct sum of a free and one ideal. This
ideal is unique up to isomorphism. We will describe it later:
it is called the determinant of the module M.

T is actually a module over a PID S derived from R.
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Homework

Assume R is a D.D.
1 Prove that for any two nonzero ideals I and J of R,

I ⊕ J ' R ⊕ IJ.
2 Prove that any ideal I of a Dedekind domain can be

generated by 1.5 elements, that is I = (a,b), with a being
any nonzero element.

3 Prove that any submodule of Rn is isomorphic to Rr ⊕ I, for
some ideal I.

4 (If we recall right) Prove that if M is a non-finitely generated
submodule of a free module, then M is free.
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Assignment #13

Do Problem #3 only

1 Let R be a D.D. and P1, . . . ,Pn a finite set of maximal
ideals and U the complement of

⋃
i Pi . Note that U is a

multiplicative set. Prove that the ring of fractions
S = U−1R is a D.D. with a finite number of maximal ideals.

2 If R is a D.D. and I is an ideal such that P1, . . . ,Pn are the
prime ideals of V (I), prove that for the ring of fractions S
above, R/I = S/IS.

3 Prove that a D.D. with finitely many primes is a PID.
4 Prove that R[cos t , sin t ] is a Dedekind domain.
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Commutative Artinian Rings

Definition
The ring R is Artinian if it has the descending chain condition
for ideals.

Besides fields, or finite rings, the simplest [yet not so simple]
examples are algebras that are finite dimensional vector
spaces over a field K.

For non-commutative rings, this chain condition can be
expressed in many forms [will explain later], but in the
commutative case they just turn out to be a special type of
Noetherian rings.
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Elementary Properties

Every prime ideal P of a commutative Artinian ring R is
maximal: The quotient R/P is a domain so ETS Artinian
domains are fields. If a 6= 0, the chain (a) ⊃ (a2) ⊃ · · ·
stabilizes at (an) = (an+1), therefore an = ran+1 so 1 = ra,
since the ring is a domain.
R has only a finite number of maximal ideals: Let
{P2,P2, . . .} be distinct maximal ideals. Form the
descending chain

P1 ⊃ P1 · P2 ⊃ P1 · P2 · P3 ⊃ · · ·

that becomes stationary at

P1 · P2 · · ·Pn = P1 · P2 · · ·Pn · Pn+1

Therefore Pn+1 contains P1 · P2 · · ·Pn, and thus Pn+1 = Pi ,
i ≤ n.
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Jacobson Radical

Theorem
Let J be the intersection of all the maximal ideals of R. Then
Jn = 0 for some integer n.

Proof.

Consider the descending chain J ⊃ J2 ⊃ · · · that stabilizes at
Jn = Jn+1. We claim that Jn = 0.

We argue by contradiction. Consider the set of nonzero ideals
L such that JnL 6= 0. Note that by assumption J is one such
ideal. Choose a minimum ideal L with this property. Now, let
x ∈ L such that Jnx 6= 0. This shows L = Rx by the minimality
hypothesis and x = ax , a ∈ Jn. This implies (1− a)x = 0 and
therefore x = 0 since 1− a is invertible, a contradiction.
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Partition of the Unity

If R is a commutative ring, a partition of the unity is an special
decomposition of the form

R = J1 + · · ·+ Jn, Ji ideals of R

Suppose I1, . . . , In is a set of a ideals that is pairwise
co-maximal, meaning Ii + Ij = R, for i 6= j . This obviously is a
partition of the unikty.

Another arises from it [check!] if we set Ji =
∏

j 6=i Ij

R = J1 + · · ·+ Jn, Ji ideals of R
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Chinese Remainder Theorem

Theorem
If Ii , i ≤ n, is a family of ideals that is pairwise co-maximal, then
for I = I1 ∩ I2 ∩ · · · ∩ In there is an isomorphism

R/I ≈ R/I1 × · · · × R/In.

Proof. Set Ji =
∏

j 6=Ij . Note that Ii + Ji = R. Since
J1 + · · ·+ Jn = R, there is an equation

1 = a1 + · · ·+ an, ai ∈ Ji

Note that for each i , ai
∼= 1 mod Ii . Define a mapping h from R

to R/I1 × · · · × R/In, by h(x) = (xa1, . . . , xan). We claim that h
is a surjective homomorphism of kernel I.
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Proof Cont’d

1 Since ai
∼= 1 mod Ii ,

h(x) = (xa1, . . . , xan) = (x1, . . . , xn)

which is clearly a homomorphism.
2 The kernel consists of the x such that x i = 0 for each i ,

that is x ∈ Ii for each i–that is, x ∈ I.
3 To prove h surjective, for u = (x1, . . . , xn), setting

x = x1a1 + · · ·+ xnan

gives h(x) = u.
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Structure of Artinian Rings

Theorem
Let R be a commutative Artinian ring, let {P1, . . . ,Pn} be the
set of its maximal ideals, J its Jacobson radical and m an
integer such that Jm = 0. Then

R ≈ R/Pm
1 × · · · × R/Pm

n .

Moreover each R/Pm
i is Noetherian.

We apply CRT to the set of ideals Pm
1 , . . . ,P

m
n to obtain the

decomposition. Now we must prove that each R/Pm
i is

Noetherian.
Note that S = R/Pm

i has a unique maximal ideal M = Pi/Pm
i ,

and that Mm = 0.
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Proof Cont’d

1 Consider the chain of ideals
R ⊃ M ⊃ M2 ⊃ Mm−1 ⊃ Mm = 0. To prove that R is
Noetherian ETS each factor module M i/M i+1 is
Noetherian. [See last step]

2 We examine the factors M i/M i+1. This module is Artinian
and is also annihilated by M. So it is actually an Artinian
R/M-vector space, so must be finite dimensional, in
particular it is a Noetherian module.

3 For example, suppose M3 = 0. M2 is annihilated by M, so
it is a R/M-vector space, so it is also a Noetherian
R-module.

4 Consider the exact sequence 0→ M2 → M → M/M2 → 0.
Both M2 and M/M2 are Noetherian, so M is Noetherian as
well. The general case is similar.
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Composition series

Theorem
If R is a commutative Artinian ring then there exists a tower of
ideals

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = R

such that for all i , Mi/Mi−1 = R/Pi for some prime ideal Pi .

Proof. Left to reader.
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Pop Quiz

Prove:

Theorem
Let K be a finite extension of Q and denote by A the integral
closure of Z is K. Then for every 0 6= n ∈ Z, A/nA is a finite
ring.

Relate |A/nA| to n and dimQ K.
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Assignment #14

Let R be a finitely generated algebra over the field K (that
is, R is a homomorphic image of a polynomial ring in
finitely many variables over K). Prove that if R is Artinian,
then dimK R <∞.
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