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Rings and Modules

Composition laws

A composition on a set X is a function assigning to pairs of
elements of X an element of X,

(a,b) — f(a, b).

That is a function of two variables on X with values in X.
It is nicely represented in a composition table

f(a, b)

*

* | ¥ | X | ¥

* Q| % | =~
X | K| K| *

We represent it also as

X x X -5 X



Rings and Modules

Example: Abelian group

An abelian group is a set G with a composition law denoted ‘+’
GxG—G,

abeG, a+beG

satisfying the axioms
e associative Va,b,c € G, (a+b)+c=a+(b+c)
e commutative Va,be G, a+b=b+a
e existence of O

JOe G suchthatVa a+O=a

e existence of inverses
YVaeG dbeG suchthata+b=0

This element is unique and denoted —a.



Rings and Modules

Rings

Aring R is a set with two composition laws, called ‘addition’
and ‘multiplication’, say + and x: Va, b € R have compositions
a+ band a x b. (The second composition is also written a - b,
or simply ab.)

e (R,+) is an abelian group

e (R, x): multiplication is associative, and distributive over +,
thatis Va,b,c € R,

(ab)c = a(bc), ab=ba, a(b+c)=ab+ac



Rings and Modules

e existence of identity: 9e € R such that

Vac R exa=axe=a

e If ab= bafor all a,b € R, the ring is called commutative

There is a unique identity element e, usually we denote it by 1:

/ / /

e=ee =ee=¢€



Rings and Modules

Rings and Modules

A ring R is a set with two composition laws + and x satisfying

@ {R,+} is an abelian group

@ associative axiom : For a,b,c € R,
ax(bxc)=(axb)xc

@ distributive axioms: For a,b,c € R,
ax(b+c)=axb+axcand(a+b)xc=axc+bxc

@ existence of 1: there is e € R such that for a € R,
axe=exa=a

@ Ifaxb=>bxaforall a,be R,ring is called commutative



Rings and Modules

Class Surprise Quiz!

What is your favorite ring?

To qualify, your answer must be different—very different—from
that given by a classmate!
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More composition laws

Other composition laws take pairs [or triples,...] of sets: such as
a function assigning to pairs of elements of Y and X an element
of X,

(a,b) — f(a,b).

It is represented in a composition table

b

f(a, b)

*

* | Q| * | =~
¥ | ¥ | ¥ | *
¥ | ¥ | ¥ | *

We representitalsoas Y x X t.ox

Typically we place requirements on f, such as
f(a,b+c) =f(a,b)+1f(ac)
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Modules

If Ris aring, a left R-module M is a set
@ {M,+} is an abelian group and equipped with a mapping
(R, M) — M, (a, m) — am such that
@ associative axiom : Fora,b € R, c € M, a(bc) = (a x b)c
@ distributive axiom: Forae R, b,c € M, a(b+ c) = ab+ ac
@ If 1 istheidentity of R, 1ic=cforallce M



Rings and Modules

Submodules, quotient modules, homomorphisms

@ If Ris aring and A and B are left R-modules, a group
homomorphism f: A — B is a R-homomorphism if

f(ax) = af(x), ac€ R, xecA

@ A subgroup C of the R-module A is a submodule if the
inclusion mapping C — A is a homomorphism. If C is a
submodule, the quotient group A/C is an R-module

o Iff: A— Bis a homomorphism of R-modules,
K =ker (f) = {x € A: f(x) = 0} is a submodule of A, and
E = {f(a) : a € A} is a submodule of B.

@ There is a canonical isomorphism of R-modules A/K ~ E



Rings and Modules

Direct sums and products

Let R be aring and {M,, : a € I} be a family of modules.

@ direct sum M = @, M, is the set of (m,, : « € /), almost all
m, = 0,. Addition and multiplication by elements of R is
component wise, for instance

(ma) + (na) = (ma + na)

@ direct product M =[], M, is the set of (m, : a € ).
Addition and multiplication by elements of R is component
wise, for instance

a(my) = (amy)



Rings and Modules

Generators of a module

@ If Ais an R-module, a subset S C Ais a set of generators
of Aifforaec Athereare sy,...,8,in Sand r; € R such
that

a=ns +: -+ msn

o If Sis finite, A is said to be finitely generated
@ If S={s}, Ais said to be cyclic



Rings and Modules

Free modules

Let R be aring and X a set. The free R-module with basis
indexed by X:

Fx=€PRx, R«~R

xeX

If X ={1,2,...,n},

R" ={(a1,...,an), aj€ R}
Sete; =(1,0,...,0), ..., e, =(0,0,...,1),

(ay,a0,...,an) = arey + -+ anén



Rings and Modules

Finitely generated module

Let X be a set and A an R-module. For any (set) mapping
o : X — A there is a (unique) module homomorphism

f:Fx=EPRex — A

xeX

such that f(ex) = p(x).

Proposition
An R-module A is finitely generated iff there is a surjection

f.R" A,

for some n € N.
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Chain Conditions

Chain Conditions

Let R be aring and let M be a left (right) R-module and denote
by X the set of R-submodules of M ordered by inclusion.

A chain of submodules is a sequence
AlCAC---CAC---

or
Bi2B 2 2By

The first is called ascending, the other descending.



Chain Conditions

Noetherian Module

Definition

M is a Noetherian (Artinian) module if every ascending
(descending) chain of submodules is stationary, that is
An = An1 = ... from a certain point on.

R is a left (right) Noetherian(Artinian) ring if the ascending
(descending) chains of left (right) ideals are stationary.




Chain Conditions

Example

o ¢l

is a right (but not left) Noetherian ring.

o x]

is a left (but not right) Artinian ring.
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Example: Sides may matter

Here is an example (J. Dieudonné) of a left Noetherian that is
not right Noetherian.

Let A be the ring generated by x and y, Z[x, y], such that

yx =0and yy =0, and let R be the subring Z[x]. That is, R is
the ring of polynomials in x over Z (therefore R is Noetherian).
A is the R-module

A = R+Ry

in particular A is a Noetherian left R-module, thus it is a left
Noetherian ring.

Let / be the subgroup of A generated by {x"y, n > 0}. Since
Ix = ly =0, | is a right ideal and thus any system of right
R-generators of / is also a system of Z generators. But / is not
finitely generated over Z



Chain Conditions

Maximal/Minimal Condition

Definition

M is an R-module with the Maximal Condition (Minimal
Condition) if every subset S of X (set of submodules ordered
by inclusion) contains a maximum submodule (minimum
submodule).

Proposition

Let M be an R-module. Then
@ M is Noetherian iff M has the Maximal Condition.
©Q M is Artinian iff M has the Minimal Condition.

| \




Chain Conditions

Let S be a set of submodules of M. If S contains no maximal
element, we can build an ascending chain

Al CAC---CAC---

contradicting the assumption that M is Noetherian. The
converse has a similar proof.

Example: If R = Z, Z is a Noetherian module, while for every
prime number p, Zp~ /Z is Artinian.



Chain Conditions

Composition Series

Let M be an R-module satisfying both chain conditions. Then
there exists a chain of submodules

OcMycMc---CcM_1CcM;=M

such that each factor M;/M;_+ is a simple module.

v

Such sequences are called composition series of length n. The
existence of one such series is equivalent to M being both
Noetherian and Artinian.

Theorem (Jordan-Holder)

All composition series of a module M have the same length
(called the length of M and denoted A\(M)).




Chain Conditions

Noetherian Module

Proposition

M is a Noetherian R-module iff every submodule is finitely
generated.

Proof.

Suppose M is Noetherian. Let us deny. Let A be a submodule of M
and assume it is not finitely generated. It would permit the
construction of an increasing sequence of submodules of A,

(a1) Cc (a1,@) C--- C (a1, @2,...,8n) C -,

ant1 € A\ (a1,-..,an).

Conversely if Ay C A, C --- is an increasing sequence of
submodules, let B = Uj>1A; is a submodule and therefore

B = (by,...,bm). Each b; € A,, for some n;. If n = max{n;},
An=Anp1=---. O




Chain Conditions

Proposition
Let R be a ring and

0-A--B % c-o0

be a short exact sequence of R-modules (that is, fis1-1, g is
onto and Image f = kerg). Then B is Noetherian (Artinian) iff A
and C are Noetherian (Artinian).




Chain Conditions

Corollary

If R is a Noetherian (Artinian) ring, then any finitely generated
R-module is Noetherian (Artinian).
By the proposition, any f.g. free R-module F = R& --- @ Ris

Noetherian (Artinian). A f.g. R-module is a quotient of a f.g.
free R-module. Ol

v




Chain Conditions

Let B; C B, C --- be an ascending sequence of submodules of
B. Applying g to it gives an ascending sequence
dg(By) € g(Bz) C --- of submodules of C.

There is also an ascending sequence of submodules of A by
setting A, = f71(B)).

There is n such that both sequences are stationary from that
point on: g(B,) = g(Bpy1) = --- and

f1(Bn) =1 (Bny1) = -

It follows easily that B, = B, 1 = - -.
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Assignment #6

Assignment #6

Define the following composition laws (¢ and ®) on the set Z:

@ ForabeZ,setadb:=a+b+1
@ ForabeZ,setawb:=ab+a+b=(a+1)(b+1)—-1
Call the integers with these two operations Z (read red
integers). With proofs, answer the questions:
Q IsZ aring?
@ If Zis aring, is it isomorphic to Z?
© Define similarly Q: is it a field?
© List all that goes wrong.
©@ Which generalizations occur to you?



Assignment #6

Class discussion

Let us prove the following characterization of Noetherian
modules over commutative rings:

Definition

Let M be a module over the commutative ring R.The set / of
elements x € R such that xm = 0 for all m € M is an ideal
called the annihilator of M, | = ann M.

| \

Proposition

M is a Noetherian module if and only if M is finitely generated
and R/ann M is a Noetherian ring.




Assignment #6

If a module M is generated by {my, ..., m,} define the following
mapping

f:-R—Mao---aM, f(r)=(mq,...,rmp)

n copies

verify that
@ fis a homomorphism, of kernel ann M
@ Form the appropriate embedding of R/ann M into the direct
sum of the M’s to argue one direction
@ Use, for the other direction, that M is also a module over
the ring R/ann M
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Quotient rings

Let / be a two-sided proper ideal of the R and denote by R//
the corresponding cosets {a+ /: a € R}.

The quotient ring R/! is defined by the operations:

(a+ N+ (b+1) = (a+b)+1
(a+h)x(b+1) = ab+1

This is a source to many new rings



Assignment #6
Examples

Zy =17/(2)
Zo[x]/(x®*+x+1)=Fy
C= ]R[x]/(x2 +1)

Zyo = R=Z[i]/(1 + 3i)

(2)cZ
(X2 4 x+1) C Zs[x]
(x2+1) C R[x]

(1 + 3i) c Z][i]

¢l



Assignment #6

Z[i/(1+3i) ~Z/(10)

Consider the homomorphism ¢ : Z — Z[i] — R = Z[i]/(1 + 3i)
induced by the embedding of Z in Z[i]. We claim that ¢ is a
surjection of kernel 10Z:

1+43i=0=i(1+3)=0=i-3=0=i=3
a-+ bi = a+ 3b= g is surjection

For nin kernel of ¢,
n = z(1+43i)=(a+ bi)(1+31)
= (a—3b)+(Ba+b)i =b=-3a
——

=0
= 10a



Assignment #6

Circle ring

Let R = R[x, y]/(x? + y2 — 1): the circle ring
@ Consider the natural homomorphism
f:R[x,y] — Rcost,sint], f(x)=cost f(y)=-sint

R[cos t,sin t] is the ring of trigonometric polynomials.
@ f(x?> 4 y? — 1) = 0 so there is an induced surjection

¢ R[x,y]/(x* + y? — 1) — R[cos t,sin ]

@ is an isomorphism because: (i) R[cos t,sin {] is an infinite
dimensional R-vector space (why?); for any ideal L larger
than (x2 + y2 — 1), R[x, y]/L is a finite dimensional
R-vector space (why?).



Assignment #6

@ The circle ring R = R[cos t, sin t] contains as a subring
S = R|cos t]. Sis isomorphic to a polynomial ring over R.
As an S-module, R is generated by two elements

R=S-1+S-sint
@ R as a R-vector space has basis

{sinnt,cosnt, necZ}



Assignment #6

R[x, y]/(xy)

Exercise: Prove that

Rlx, y1/(xy) = {(p(x), a(y)) : p(0) = q(0))}

Hint: Consider the homomorphism

v RX, y1/(xy) = Rlx, y1/(y) x Rx, y]/(X)

pla+(xy)) = (a+(y)a+(x)
Check that ¢ is one-one and determine its image.



Assignment #6

Integral domains

Let R be a commutative ring

@ u € Risaunitifthereis v € R such that uv =1

@ ac Ris azerodivisor if there is 0 # b € R such that
ab=20

@ ac Ris nilpotent if there is n € N such that 8”7 = 0

@ Ris an integral domain if 0 is the only zero divisor, in other
words, if a, b € R are not zero, then ab # 0.
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Prime Ideals

Studying a commutative ring

R

T

prime ideals of R morphisms ¢ : R — S



Prime Ideals

Prime Ideals

Definition
Let R be a commutative ring. An ideal P of Ris prime if P # R
and whenever a-be Pthenaec Porb e P.

Equivalently:

@ AR/Pis an integral domain
@ Ifland Jareidealsand /-JCc Pthen/ c PorJC P



Prime Ideals

Prime ideals arise in issues of factorization and very
importantly:

Proposition

Letp : R — S be a homomorphism of commutative ring. If S is
an integral domain, then P = ker () is a prime ideal. More
generally, if S is an arbitrary commutative ring and Q is a prime
ideal, then P = »~1(Q) is a prime ideal of R.

Proof. Inspect the diagram

R N S

| |

R/P = s/Q



Prime Ideals

Exercise

Consider the homomorphism of rings

o Klx.y,2] — K
x —
y — t
z > P

Let P be the kernel of this morphism. Note that x3 — yz, y? — xz
and z2 — x?y liein P.

Task: Prove that P is generated by these 3 polynomials.
Task: Describe the prime ideals of the ring

R = CIx,y1/(y2 — x(x — 1)(x — 2)).



Prime Ideals

Multiplicative Sets

Definition
A subset S of a commutative ring is multiplicative if S # 0 and if
r,se Sthenr-se S.

@ If Pis aprimeideal of R, S = R\ P is a multiplicative set.
@ If /is a proper ideal of R, then

S={1+a:acl}

is a multiplicative set.



Prime Ideals

Formation of Prime Ideals

Proposition

Let S be a multiplicative set and P an ideal maximum with
respect SN P = (). Then P is a prime ideal.

Proof. Deny: leta,b ¢ P, ab € P.

Consider the ideals P + Ra and P + Rb. They are both larger
than P and therefore meet S:

xX+pay+agbeS, x,yeP
Multiplying we get
(x +pa)(y + gb) = xy + xgb+ ygb+ pgab € SN P,

a contradiction.



Prime Ideals

Every proper ideal | of a commutative ring is contained in a
prime ideal.

Proof. Let S = {1}. Among all proper ideals / C J pick one that
is maximum with respect being disjoint relative to S (use Zorn’s
Lemma; no need if R is Noetherian).



Prime Ideals

Primary Ideal

Definition
Let R be a commutative ring. An ideal Q of R is primary if

Q # R and whenever a- b € Q then a € Q or some power
b" € Q.

Example: Q = (x2,y) C R = k[x,y], or (p") C Z.
This is a far-reaching generalization of the notion of primary
ideals of Z



Prime Ideals

Radical of an Ideal

Definition
Let / be an ideal of the commutative ring R. The radical of / is

the set
Vi={xeR:x"el somen=n(x)}.

Proposition
V1 is an ideal.
lfa,be VI, am el b"e I then

(a+b)m = " <m+/.7— 1>a’b’ el

/
i+j=m+n—1

sincei > morj> n.



Prime Ideals

If I is a proper ideal of R,

Vi= ﬂ P, I CP P prime ideal.

Deny it: Let x € (P \ V1, that is for all n, x" ¢ I.

The set {x", n € N} defines a multiplicative set S disjoint from /.
By a previous proposition, there is a prime P D I disjoint from
S, a contradiction. N
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Assignment #7

Assignment #7

A Boolean ring is a ring R such that x> = x for all x € R. For
instance, an arbitrary direct product of copies of Z/(2). If Ris a
Boolean ring:

@ Prove that R is commutative and that for every prime ideal
P, R/P is afield.

© Prove that every finitely generated ideal / of R is principal
(Hint: check that in a boolean ring, a + b — ab is a multiple
of both a and b).

© If Ris finite, show that R is a finite direct product of copies

of Z/(2).



Assignment #7

Idempotents

Proposition

Let R be a commutative ring and 0 # e € R satisfy e = €.
Then there is a decomposition R into the direct product of rings
R~ Rex R(1—e).

Proof.

@ Foranyxe R, x=xe+x(1—¢e),so Re+ R(1 —¢e)=R.
Furthermore if a € Ren R(1 — e), then a is annihilated by
1 — e and e, respectively. This means that
R = Re® R(1 — e) as modules.

© Since Re- R(1 — e) =0, we can view R = Re® R(1 — e)
as R = Re x R(1 — e). Note that e is the identity in the ring
Re,and 1 —ein R(1 —e).
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Primary Decomposition

Emmy Noether (1882-1935)

http://upload /e5/Noether.jpg




Primary Decomposition

Irreducible Ideal/Module

Definition
The ideal / of the commutative ring R is irreducible if

I=dNnL=1=J or [=L.




Primary Decomposition

Primary Decomposition

Theorem (Emmy Noether)

Every proper ideal | of a Noetherian ring R has a finite
decomposition
I=Q1NnQnN---NQny,

with Q; primary.

To prove her theorems, Emmy Noether often proved a special
case and derive the more general assertion, or proved a more
general assertion and specialize.



Primary Decomposition

Irreducible decomposition

The ideal / of the commutative ring R is irreducible if

[=dNnL=I1=J or =1L

Theorem (Emmy Noether)

Every proper ideal | of a Noetherian ring R has a finite
decomposition

I=JiNndon---Ndp,

with J; irreducible. Moreover, every irreducible ideal J of R is
primary.




Primary Decomposition

Famous Proof

Proof. Deny the existence of the decomposition of / as a finite
intersection of irreducible ideals. Among all such ideals, denote
by (keep the notation) / a maximum one.

l'is not irreducible, so there is

I=dJdnL,

with J and L properly larger. But then each admits finite
decompositions as intersection of irreducible ideals. Combining
we get a contradiction.



Primary Decomposition

Irreducible = Primary

@ Deny that proper irreducible ideals of Noetherian rings are
primary. Let / be maximum such: Thereis a,b € R, ab € |,
a¢land b” ¢ [forallneN.

© Consider the chain
{reR:brel}=1:bCl:b?PC---Cl:b"CI:p"

that becomes stationary at / : b" = [ : b1,
© Define J =1:b"and L = (/,b"). Both ideals are larger
than I. We claimthat I = Jn L.

Qlixednl, x=u+rm",uel Then b"'x = b"u+ rb?" € |,
so rb" € | and therefore x € I.



Primary Decomposition

Irredundant Primary Decomposition

A refinement in the primary decomposition
I=QiNnQnN---NQy

arises as follows. Suppose two of the Q; have the same radical,
say vQ; = V@ = P. Then it easy to check that Q; N Qs is
also P-primary. So collecting the Q; with the same radical:

Theorem (Emmy Noether)

Every proper ideal | of a Noetherian ring R has a finite
decomposition

I=QiNQnNn---NQp,

with Q; primary ideals of distinct radicals. This decomposition is
called irredundant.

v

It is known which Q; are unique and which are not.
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David Hilbert (1862-1943)

David Hilbert

David Hilbert

(1862 - 1943)

Mathematician
Algebraist

Geometrist
Number Theorist
Physicist
Analyst
Philosopher

Genius
And modest too...

"Physics is much too hard for physicists." - Hilbert, 1912



Hilbert Basis Theorem

—

Theorem (HBT)
If R is Noetherian then R[x] is Noetherian.

@ If Ris Noetherian and xi, ..., x, is a set of independent
indeterminates, then R|[x1, ..., x5] is Noetherian.
Q Z[xy,...,xn] is Noetherian.

Q If kis afield, then k[xy, ..., X,] is Noetherian.



Finitely Generated Algebras

If R is a commutative ring, a finitely generated R-algebra Sis a
homomorphic image of a ring of polynomials,

S = R[xq,...,Xn]/L. If Ris Noetherian, S is Noetherian as well.
This is useful in many constructions.

If /'is an R-ideal, the Rees algebra of / is the subring of R([{]
generated by all at, a € /. It it denoted by S = R[/f]. In general,
subrings of Noetherian rings may not be Noetherian but Rees
algebras are:

Exercise: If R is Noetherian, for every ideal I, R[/f] is
Noetherian.



Proof of the HBT

Suppose the R[x]-ideal / is not finitely generated. Let
0 # f1(x) € I be a polynomial of smallest degree,

fi(x) = a;x¥ + lower degree terms.

Since | # (f1(x)), let &(x) € I\ (fi(x)) of least degree. In this
manner we get a sequence of polynomials

fi(x) = aix% + lower degree terms,

F() € I\ (B(X),. ., fia(X), h<da<d<---

SetJ = (ay,a,...,)=(a1,a,...,am) C R



Let fry1(X) = @myq X9+ + lower degree terms. Then

m
ami1 =Y _Sia, SER

Consider
— g — E:SX%M af(x

g(x) € I\ (fi(x),...,fm(x)), but deg g(x) < deg fn.1(x), which
is a contradiction.



Power Series Rings

Another construction over a ring R is that of the power series

ring R[[x]]:
f(x) =) ax", g(x)=>_ bpx"
n>0 n>0
with addition component wise and multiplication the Cauchy
operation

10g0) = h(x) = h(x) =3 cmx"
Ch = Z ajbn_;

i+j=n
If R is Noetherian then R|[[x]] is Noetherian.




Proposition
A commutative ring R is Noetherian iff every prime ideal is
finitely generated.

Proof. If R is not Noetherian, there is an ideal / maximum with
the property of not being finitely generated (Zorn’s Lemma).
We assume [/ is not prime, that is there exist a, b ¢ / such that
ab e I.



The ideals (/,a) and / : a are both larger than / and therefore
are finitely generated:

(I-a = (a,...,an)
(lbay = (by,...,bm,a), bjecl

Claim: | = (by,...,bm,aay,...,aan)

lfcel,

m
c = Zc,-b,-+ra, rel:a
i—1



R[[x]] is Noetherian

Proof. Let P be a prime ideal of R[[x]]. Setp = PN R.pisa
prime ideal of R and therefore it is finitely generated.

Denote by p[[x]] = pR[[x]] the ideal of R[[x]] generated by the
elements of p. It consists of the power series with coefficients in
p and R([[x]]/p[[x]] is the power series ring R/p[[x]].

We have the embedding
P" = P/p[[x]] — (R/p)I[X]]

P’ is a prime ideal of R/p[[x]] and P’ N R/p = 0. It will suffice to
show that P’ is finitely generated.



We have reduced the proof to the case of a prime ideal
P C R[[x]] and PN R = (0).

If x € P, P =(x) and we are done.
Forf(x)=ay+aix+---€ P,letd = (by,...,bm) C R be the
ideal generated by all ag,

f; = b; + higher terms € P.
Claim: P = (f{,...,fn).

Fromay =), sfo)b,-, we write

f(x) - > s =xn =hePr.
i



We repeat with h and write
f(x)=>" sOf; + x > st +x%g, geP.
i i

Iterating we obtain

1) = Y (s +5{Vx + 57067 ;.

i
i
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Assignment #8

Do 2 problems.
@ Show that the kernel of the homomorphism (K is a field)

¢ Klx,y, 2] — K[t],

defined by o(x) = 13, o(y) = t* and p(z) = 12, is
generated by the polynomials

2

X2 —yz,y? — xz,2° — x?y.

© Let R be a Noetherian ring and let / be an R—ideal. Show
that the number of prime ideals P minimal over / is finite.
(Hint. primary decomposition helps.)

© Describe all rings Z ¢ R c Q (Hint: For each R, consider
the set of primes p of Z that blowup in R, that is, pR = R).

Q Let o : M — M be an endomorphism of a R-module.
Prove that if M is Noetherian (resp. Artinian) and ¢ is
surjective (resp. injective) then ¢ is an isomorphism.



e Homework



@ Find the kernel of the homomorphism (K is a field)

¢ Klx,y, 2] — K[t],

defined by o(x) = t*, p(y) = ° and ¢(z) = t’. What do
you think is true in general?

@ Show that R = C[x, y]/(y? — x(x — 1)(x — 2))is a
Dedekind domain. [Show that y? — x(x — 1)(x — 2) is
irreducible, use the Nullstellensatz to describe the maximal
ideals of R, and show that for each such ideal P, Rp is a
discrete valuation domain.]

© If Ris a Dedekind domain, prove that for each nonzero
ideal /, R/l is a principal ideal ring. Derive from this the
fact that every ideal of R can be generated by 2 elements.

© Show that an invertible ideal of a local integral domain is
principal.



@ Modules of Fractions



Modules of Fractions

Let R be a commutative ring, M an R-module and S C R a
multiplicative system.

On the set M x S define the following relation:
(a,r) ~(b,s) = 3dte S:tlas—br)=0
Why define it in this manner instead of the usual as = br?

Proposition
~ is an equivalence relation.

We focus on the properties of the set S~ M of equivalence
classes. Actually, this is the initial step in the construction of a
remarkable functor.



Properties

Proposition

Let R be a commutative ring, M an R-module and S C R a
multiplicative system. Denote the equivalence class of (a,r) in
S~'M by (a,r) (or simply (a,r) or even a/r).

@ The following operation is well-defined

(a,r)+ (b,s) = (sa+ rb,rs),

and endows S—'M with a structure of abelian group.

© /f0 ¢ S, this construction applied to R x S gives rise to a
ring structure on S~' R with multiplication
(X,I’) -(y,s) = (Xy,fS).

@ For(x,r) € S'R and(a,s) € S~'M, the operation

(x,r) - (a,s) = (xa, rs) defines an S~ R-module structure
An Q—1p




Module/Ring of Fractions

SR s called the ring of fractions of R relative to S. ltis a
refinement (due to Grell or Krull) of the classical formation of
the field of fractions of an integral domain.

S~"M is called the module of fractions of M relative to S.

Another step:

Proposition

If o : M — N is a homomorphism of R-modules, a
homomorphism of S~'R modules S~'¢ : ST'M — S~'N is
defined by

(57 '0)(a 8) = (p(a), 9)-




Functorial Properties

This construction is a functor from the category of R-modules
to the category of S~ R-modules:

M ~ S'm

‘| s

N ~ SN

Proposition

Ifo:M— Nandvy: N— P are R-homomorphisms of
R-modules, then

Q S (Yoyp)=8TyYoS Ty
Q S (idM) = I'd371M.




Short Exact Sequences

Proposition
Let R be aring, S C R a multiplicative set and

0-A-LB%Cc-0
a short exact sequence of R-modules. Then
051451518595 1c 0

is a short exact sequence of S~ R-modules. In other words,
M ~~ S~'M is an exact functor.




The submodules of S—'M

Proposition
Let L' be a S~'R-submodule of S—'M. Let

L={me M:forsomese S (m,s)el.

Then L is a submodule of M and S='L = L.

Corollary

If M is a Noetherian (Artinian) R-module, then S='M is a
Noetherian (Artinian) S~' R-module.

| A

A\




The ideals of S 'R

According to the above, the proper ideals of S~1R are of the
form
S'l={a/s:acl seS, InS=10}

In the special case of S = R\ p, for a prime ideal p, one uses
the notation M, for the module of fractions and R, for the ring of
fractions.

If R =7 and p = (2), Z) consists of all rational numbers m/n,
with n odd. Its ideals are ordered. The largest proper ideal is
m = 272y and the others

Zigy2m2m? 2m® .. 2 (0)



Tool

If R is a commutative ring and S is a multiplicative set, then for
any two submodules A and B of M,

ST (AnB)=S"'AnS'B.

The intersection AN B can be defined by the exact sequence

0->ANB—A®B-2A+B—0,

where ¢(a,b) = a— b.

Now apply the fact that formation of modules of fractions is an
exact functor. m




Local Ring

Proposition

Let S be a multiplicative set of R. The ideal L of S~'R is prime
iff L= S~1, for some prime | ideal of R with IN S = (.

Proof. Suppose / is as above. If a/r - b/s € S|,

(ab,rs) ~ (c,t)force I, r,s,t € S. By definition, thereisu € S
such that u(tab — rsc) = 0. Since SN/ =1, tab— rsc € | and
therefore tab € I. Thus ab € land so a € / or b € I. Therefore
(a,r)or(b,s) e S7'I.

The prime ideals of R, have the form P = Q,,, where Q is an
ideal of R contained in p.




Local Ring

A commutative ring R is a local ring if it has a unique maximal
ideal.

If k is a field, R = k[[x]], the ring of formal power series in x
over k is a local ring. Its unique maximal ideal is m = (x).

If R is a commutative ring and P a prime ideal, the ring of
fractions Rp is a local ring called the localization of R at P.




The Prime Spectrum of a Ring

Definition
Let R be a commutative ring (with 1). The set of prime ideals of
R is called the prime spectrum of R, and denoted Spec (R).

Spec (Z) = {(0),(2), (3), ...}, the ideals generated by the prime
integers and 0.

Proposition

For each set | C R, set

V(I)={p € Spec(R) : I C p}.

These subsets are the closed sets of a topology on Spec (R).

Note that V(/) = V(I'), where I is the ideal of R generated by /.



Zariski Topology

Proof. This follows from the properties of the construction of

the V(/):
V(1) 0
V(0) = Spec(R)
v(iind) = V(Hu V()
V) = V().



Suppose Ao, Ao, ..., R, are commutative rings and
R = Ry x Ry x --- x Ry is their direct product. Observe:

QIf1=e +e+---+ep 6 cA;,then R = Re;j and
€€ = Qifi#j

© Because of eje; = 0 for i # j, if P is a prime ideal of R and
some e; ¢ P then the other e; € P. This shows
P=R; x---x P;jx---x Rp, where P;is a prime ideal of

Ri, R/P = R;j/P;
© Spec(R) = Spec(Ry) U - -- U Spec(Ry)
Q In particular, if Ry = R, = --- = R, = K, K a field, the

Spec(R) is a set of n points with the discrete topology.



Irreducible Representation

Proposition
Let | be an ideal of the Noetherian ring R and let

I=Q1NnQnN---NQny,
be a primary representation. Then
V() = V(P)UV(P)U---U V(Pp),

where the Pj’ are the minimal primes amongst the \/ Qj, is the
unique irreducible representation of V(I).




Proposition

If R is a commutative ring, Spec (R) is quasi-compact. (Not
necessarilly Hausdorff.)

Let {D(/,)} be an open cover of X
X=JD(l)=>lu=D(1).

This means that there is a finite sum

n n
Z I, = R, and therefore X = U D(l,)-
1 i=1




Proposition

If o : R — S is a homomorphism of commutative rings
(p(1R) = 1g), then the mapping

® : Spec (S) — Spec (R),

given by (Q) = ¢~ '(Q), is continuous.

If D(/) is an open set of Spec (R), ¢~ (D(/)) = D(IS).




0 Assignment #9



Assignment #9

Do 1 problem.
For the ring R = Z[T]
@ Describe (with proofs) its prime ideals, that is the points of
Spec (R).
© Describe (with proofs) its maximal ideals, that is the closed
points of Spec (R).
© Let X be a compact, Hausdorff space and denote by A the
ring of real continuous functions on X.
e If M is a maximal ideal of A prove that there is a point p € X
such that M = {f(x) € A : f(p) = 0}.
@ Prove that there is a homeomorphism of topological spaces
X ~ MaxSpec(A).



@ Integral Extensions



Integral Extensions

Let R — S be commutative rings.

Definition

s € Sis integral over R if there is an equation

s"+ap_18" ' +...+as+a=0aeR.

Proposition

s € S is integral over R if and only if the subring R[s] of S
generated by s is a finitely generated R-module.




Would like to prove [as done first by Weierstrass] that if syand
S» in S are integral over R then

@ Sy + S is integral over R;
@ 5¢5» is integral over R.

The key to their proof is the fact that both s; + s, and sys, are
elements of the subring R[s1, sp] which is finitely generated as
an R-module

Rls1,s2] = Y Rsish,
ij

where i and j are bounded by the degrees of the equations
satisfied by s; and so.



Integrality Criterion

Proposition

Let M be a finitely generated R-module and S = R|[u] a ring
such that uM c M. If M is a faithful S-module then u is integral
over R.

Proof. Let x4, ..., x, be a set of R-generators of M. we have a
set of relations with a; € R

uxy = ay1Xy+---+ aipXn

UXp = amXy+---+ apnXn



Cayley-Hamilton

That is

0 = (ann —u)xg+---+amXn
0 = apXxy+-+(am— U)xn

Which we rewrite in matrix form

a1 —u - ap X1 0

ant ©r+ dpp— U Xn 0



Thus
(adj A)A[x] = detA - [x] = O.

This means that det A annihilates each generator x; of M and
therefore detA = 0.

But
det A = +u" + lower powers of U with coefficients in R

This shows that v is integral over R.



Principle of Specialization

Why are we allowed to write adj A - A = det A - | when the
entries of A lie in a commutative ring?

If T =Z[x;, 1 <i,j < n]is aring of polynomials in the
indeterminates xj;, and use them as the entries of a matrix B,
certainly the formula adj B - B = detB - | makes sense since T
lies in a field.

Now define a ring homomorphism ¢ : T — R, with ¢(x;) the
corresponding entry in A, to get the desired equality.



In our application, M = R[sy, s2] and u is either sy + S, or 515y,
and certainly M is faithful since 1 € M.

If R — S are commutative rings, and s1, So, . . ., Sp are integral
over R, then any element of R[sy, ..., Sp| Is integral over R.
Moreover, if T is the set of elements of S integral over R, T is a
subring. It is called the integral closure of R in S.

Definition
If T =S, Sis called an integral extension of R.




Transitivity

Proposition

If R — S; — S, are commutative rings with Sy integral over R
and S, integral over Sy, then S, is integral over R.

Proof. Let u € S, be integral over S;
U+ s, U™+ +s5u+5 =0, s€ES.
It suffices to observe that
M= Rlu,sp_1,...,51,S0]

is a finitely generated R-module.



Another use of the Cayley-Hamilton theorem is the following
property of surjective epimorphims of modules:

Let R be a commutative ring and M a finitely generated R. If
¢ : M — M is a surjective R-module homomorphism, then ¢ is
an isomorphism.

Proof. We first turn M into a module over the ring of
polynomials S = R[{] by setting t - m = o(m) for m € M.

The assumption means that tM = M. Using the proof of
Cayley-Hamilton, we have



taj1 —1 --- taip Xq 0

tan‘] et tann - 1 Xn 0
Which implies that det A annihilates M. Since
detA = +1 + (1),

it is clear that t - m £ 0 for m #£ 0, that is ¢ is one-to-one.



Jacobson Radical

Definition
Let R be a commutative ring. Its Jacobson radical is the
intersection () Q of all maximal (proper) ideals.

Example: If Ris a local ring, its Jacobson radical is its unique
maximal ideal m.

If R = Z, or R = Kk[t], polynomial ring over the field k, then (0)
is the Jacobson radical: from the infinity of prime elements.



Proposition
The Jacobson radical J of R is the set

J' ={a€e R:1+ra isinvertible forall r € R}.

Proof. If a € J, then 1 + ra cannot be contained in any proper
maximal ideal, that is it must be invertible.
Conversely, if a € J', suppose a does not belong to the maximal
ideal Q. Therefore

(a,Q)=R

which means there is an equationra+qg=1,qg € Q,and q
would be invertible.



Nakayama Lemma

Theorem (Nakayama Lemma)

Let M be a finitely generated R module and J its Jacobson
radical. If

M= JM,
then M = 0.

Proof. If M is cyclic, this is clear: M = (x) implies x = ux for
some u € J, so that (1 — u)x = 0, which implies x = 0 since
1 — uis invertible.

We are going to argue by induction on the minimal number of
generators of M. Suppose M = (xq,..., Xp). By assumption
X1 € JM, that is we can write

X1 = U1Xy + UoXo + -+ + UpXpn, Uj € J.



Which we rewrite as

(1= th)xs = UpXp + -+ + UnXp
This shows that x; € J(xz, ..., Xn), and therefore
M= (Xz,...,Xn).

Corollary

Let M be a finitely generated R module and N a submodule. If
M= N + JM then M = N.

Apply the Nakayama Lemma to the quotient module M/N

M/N = N+ JM/N = J(M/N).




Let R be a commutative ring and M a finitely generated
R-module. If for some ideal I, IM = M, then (1 + a)M = 0 for
someac |.
If M =(xq,...,Xn), from the proof of Cayley-Hamilton, there are
ajel
air—1 - a X1 0
: : : =1|: | =Ax]=0.
an‘] o ann - 1 Xn 0
Which implies that det A annihilates M. Since
detA=+1+a, aecl done O




Let R be a commutative ring and | a finitely generated ideal.
Then | = P2 if and only if | is generated by an idempotent, that is
| =Re, e =e.

If (1+a)/=0,/c(a)and & = a. O




@ Integral Morphisms



Integral Morphisms

Let ¢ : R — S an injective homomorphism of commutative
rings.

Theorem (Lying-Over Theorem)

If S is integral over R then for each p € Spec (R) there is
P € Spec (S) such thatp = PN R, that is the morphism

Spec (S) — Spec (R)

is surjfective.




Proposition

If S is integral over R and T is a multiplicative set of R, then
TS is integral over T~'R.

Let s/t € T—'S. s satisfies an equation

s"+a,_ 18" '+...+as+a =0, acR
Then
(/D" +an_1/t(s/t)" "+ -+ a;/t" s/t + ap/t" = 0,

ai/t""e T'R.




Proof of Lying-Over

Suppose p € Spec (R). Consider the integral extension

The maximal ideal of R, is m = pA,,.
Claim: mS, # S,.

Otherwise we would have
1 € mSp

n
1 = > asi/t, aem s€S teR\p

i=1



Q Set S’ =R,[si,...,8n]

@ S'is afinitely generated R,-module with S’ = mS’. By
Nakayama Lemma, S’ = 0.

© Since mS, # S,,, it is contained in a prime ideal P’ of S;. In
particular, PN R, = m.

@ Since P’ = P, for some P € Spec (S), it is clear that
PN R =p, as desired.



Going-Up Theorem

Let R — S be an integral extension of commutative rings. Let
p1 C p2 be prime ideals of R and suppose Py is a prime ideal of
S such that Py N R = py. Then there is a prime ideal Py C P, of
S such that P, N R = po.

Proof. Consider the diagram

R — S

i i

Ripr =  S/P
Now apply the Lying-Over theorem to the integral extension
Fa’/p1 — S/P1 .



Going-Down Theorem

? Is there

Theorem (?Going-Down Theorem)

Let R — S be an integral extension of commutative rings. Let
p1 C p2 be prime ideals of R and suppose P is a prime ideal of
S such that P, N R = po. Then there is a prime ideal Py C P, of
S such that Py N R = p;.

Yes, but needs additional assumptions. Proof uses some basic
Galois theory.



@ Assignment #10



Assignment #10

Let R — S be an integral extension. Prove the following
assertions:

@ If Rand S are integral domains and one of them is a field,
then the other is also a field.

© Equivalently: Let P € Spec (S) and p € Spec (R) and
PN R =p. Then P is maximal iff p is maximal.



Q@ TakeHome #1



TakeHome #1

Do 5 problems.

Describe [with proof] a method to construct a regular
pentagon with ruler and compass.

Show that if n > 3, then x2" + x + 1 is reducible over Zo.
Describe (with proofs) the maximal ideals of R = Z[T], that
is the closed points of Spec (R). Achtung: Pay attention to
polynomials such as aT — 1.

Let R = K[x1,..., Xn,...], the ring of polynomials in a
countable set of indeterminates over the field k. Prove that
every ideal of R admits a countable number of generators.
Find the kernel of the homomorphism (K is a field)

¢ Klx,y, 2] — K],

defined by o(x) = t4, o(y) = t° and ¢(z) = t'.
¢ :Q/Z — Q/Z is a one-one group homomorphim, prove it
i< onto (You mav want to look at the action on the nrimarv
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