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Composition laws

A composition on a set X is a function assigning to pairs of
elements of X an element of X,

(a,b) 7→ f(a,b).

That is a function of two variables on X with values in X.
It is nicely represented in a composition table

f ∗ b ∗
∗ ∗ ∗ ∗
a ∗ f(a,b) ∗
∗ ∗ ∗ ∗

We represent it also as

X× X f−→ X
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Example: Abelian group

An abelian group is a set G with a composition law denoted ‘+’

G×G→ G,

a,b ∈ G, a + b ∈ G

satisfying the axioms
• associative ∀a,b, c ∈ G, (a + b) + c = a + (b + c)

• commutative ∀a,b ∈ G, a + b = b + a
• existence of O

∃O ∈ G such that ∀a a + O = a

• existence of inverses

∀a ∈ G ∃b ∈ G such that a + b = O

This element is unique and denoted −a.
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Rings

A ring R is a set with two composition laws, called ‘addition’
and ‘multiplication’, say + and ×: ∀a,b ∈ R have compositions
a + b and a× b. (The second composition is also written a · b,
or simply ab.)

• (R,+) is an abelian group

• (R,×): multiplication is associative, and distributive over +,
that is ∀a,b, c ∈ R,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity: ∃e ∈ R such that

∀a ∈ R e × a = a× e = a

• If ab = ba for all a,b ∈ R, the ring is called commutative

There is a unique identity element e, usually we denote it by 1:

e = ee′ = e′e = e′
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Rings and Modules

A ring R is a set with two composition laws + and × satisfying

{R,+} is an abelian group
associative axiom : For a,b, c ∈ R,
a× (b × c) = (a× b)× c
distributive axioms: For a,b, c ∈ R,
a× (b + c) = a× b + a× c and (a + b)× c = a× c + b× c
existence of 1: there is e ∈ R such that for a ∈ R,
a× e = e × a = a
If a× b = b × a for all a,b ∈ R, ring is called commutative
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Class Surprise Quiz!

What is your favorite ring?

To qualify, your answer must be different–very different–from
that given by a classmate!
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More composition laws

Other composition laws take pairs [or triples,...] of sets: such as
a function assigning to pairs of elements of Y and X an element
of X,

(a,b) 7→ f(a,b).

It is represented in a composition table

f ∗ b ∗
∗ ∗ ∗ ∗
a ∗ f(a,b) ∗
∗ ∗ ∗ ∗

We represent it also as Y× X f−→ X

Typically we place requirements on f, such as
f(a,b + c) = f(a,b) + f(a, c)
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Modules

If R is a ring, a left R-module M is a set

{M,+} is an abelian group and equipped with a mapping
(R,M)→ M, (a,m)→ am such that
associative axiom : For a,b ∈ R, c ∈ M, a(bc) = (a× b)c
distributive axiom: For a ∈ R, b, c ∈ M, a(b + c) = ab + ac
If 1 is the identity of R, 1c = c for all c ∈ M
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Submodules, quotient modules, homomorphisms

If R is a ring and A and B are left R-modules, a group
homomorphism f : A→ B is a R-homomorphism if

f(ax) = af(x), a ∈ R, x ∈ A.

A subgroup C of the R-module A is a submodule if the
inclusion mapping C → A is a homomorphism. If C is a
submodule, the quotient group A/C is an R-module
If f : A→ B is a homomorphism of R-modules,
K = ker (f) = {x ∈ A : f(x) = 0} is a submodule of A, and
E = {f(a) : a ∈ A} is a submodule of B.
There is a canonical isomorphism of R-modules A/K ' E
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Direct sums and products

Let R be a ring and {Mα : α ∈ I} be a family of modules.

direct sum M =
⊕

α Mα is the set of (mα : α ∈ I), almost all
mα = 0α. Addition and multiplication by elements of R is
component wise, for instance

(mα) + (nα) = (mα + nα)

direct product M =
∏
α Mα is the set of (mα : α ∈ I).

Addition and multiplication by elements of R is component
wise, for instance

a(mα) = (amα)
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Generators of a module

If A is an R-module, a subset S ⊂ A is a set of generators
of A if for a ∈ A there are s1, . . . , sn in S and ri ∈ R such
that

a = r1s1 + · · ·+ rnsn

If S is finite, A is said to be finitely generated
If S = {s} , A is said to be cyclic
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Free modules

Let R be a ring and X a set. The free R-module with basis
indexed by X :

FX =
⊕
x∈X

Rx , Rx ' R

If X = {1,2, . . . ,n},

Rn = {(a1, . . . ,an), ai ∈ R}

Set e1 = (1,0, . . . ,0), ..., en = (0,0, . . . ,1),

(a1,a2, . . . ,an) = a1e1 + · · ·+ anen
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Finitely generated module

Proposition
Let X be a set and A an R-module. For any (set) mapping
ϕ : X −→ A there is a (unique) module homomorphism

f : FX =
⊕
x∈X

Rex −→ A

such that f(ex ) = ϕ(x).

Proposition
An R-module A is finitely generated iff there is a surjection

f : Rn −→ A,

for some n ∈ N.
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Chain Conditions

Let R be a ring and let M be a left (right) R-module and denote
by X the set of R-submodules of M ordered by inclusion.

A chain of submodules is a sequence

A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·

or
B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · ·

The first is called ascending, the other descending.
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Noetherian Module

Definition
M is a Noetherian (Artinian) module if every ascending
(descending) chain of submodules is stationary, that is
An = An+1 = . . . from a certain point on.

R is a left (right) Noetherian(Artinian) ring if the ascending
(descending) chains of left (right) ideals are stationary.
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Example

[
Z Q
0 Q

]
is a right (but not left) Noetherian ring.[

Q R
0 R

]
is a left (but not right) Artinian ring.
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Example: Sides may matter

Here is an example (J. Dieudonné) of a left Noetherian that is
not right Noetherian.

Let A be the ring generated by x and y , Z[x , y ], such that
yx = 0 and yy = 0, and let R be the subring Z[x ]. That is, R is
the ring of polynomials in x over Z (therefore R is Noetherian).
A is the R-module

A = R + Ry

in particular A is a Noetherian left R-module, thus it is a left
Noetherian ring.

Let I be the subgroup of A generated by {xny ,n ≥ 0}. Since
Ix = Iy = 0, I is a right ideal and thus any system of right
R-generators of I is also a system of Z generators. But I is not
finitely generated over Z
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Maximal/Minimal Condition

Definition
M is an R-module with the Maximal Condition (Minimal
Condition) if every subset S of X (set of submodules ordered
by inclusion) contains a maximum submodule (minimum
submodule).

Proposition
Let M be an R-module. Then

1 M is Noetherian iff M has the Maximal Condition.
2 M is Artinian iff M has the Minimal Condition.
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Proof

Let S be a set of submodules of M. If S contains no maximal
element, we can build an ascending chain

A1 ( A2 ( · · · ( An ( · · ·

contradicting the assumption that M is Noetherian. The
converse has a similar proof.

Example: If R = Z, Z is a Noetherian module, while for every
prime number p, Zp∞/Z is Artinian.
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Composition Series

Proposition
Let M be an R-module satisfying both chain conditions. Then
there exists a chain of submodules

0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M

such that each factor Mi/Mi−1 is a simple module.

Such sequences are called composition series of length n. The
existence of one such series is equivalent to M being both
Noetherian and Artinian.

Theorem (Jordan-Holder)
All composition series of a module M have the same length
(called the length of M and denoted λ(M)).
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Noetherian Module

Proposition
M is a Noetherian R-module iff every submodule is finitely
generated.

Proof.
Suppose M is Noetherian. Let us deny. Let A be a submodule of M
and assume it is not finitely generated. It would permit the
construction of an increasing sequence of submodules of A,

(a1) ⊂ (a1,a2) ⊂ · · · ⊂ (a1,a2, . . . ,an) ⊂ · · · ,

an+1 ∈ A \ (a1, . . . ,an).
Conversely if A1 ⊆ A2 ⊆ · · · is an increasing sequence of
submodules, let B = ∪i≥1Ai is a submodule and therefore
B = (b1, . . . ,bm). Each bi ∈ Ani for some ni . If n = max{ni},
An = An+1 = · · · .
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SES

Proposition
Let R be a ring and

0→ A f−→ B
g−→ C → 0

be a short exact sequence of R-modules (that is, f is 1-1, g is
onto and Image f = ker g). Then B is Noetherian (Artinian) iff A
and C are Noetherian (Artinian).
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Corollary
If R is a Noetherian (Artinian) ring, then any finitely generated
R-module is Noetherian (Artinian).

Proof.
By the proposition, any f.g. free R-module F = R ⊕ · · · ⊕ R is
Noetherian (Artinian). A f.g. R-module is a quotient of a f.g.
free R-module.



Rings and Modules Chain Conditions Assignment #6 Prime Ideals Assignment #7 Primary Decomposition Intro Noetherian Rings Assignment #8 Homework Modules of Fractions Assignment #9 Integral Extensions Integral Morphisms Assignment #10 TakeHome #1

Proof

Let B1 ⊆ B2 ⊆ · · · be an ascending sequence of submodules of
B. Applying g to it gives an ascending sequence
g(B1) ⊆ g(B2) ⊆ · · · of submodules of C.

There is also an ascending sequence of submodules of A by
setting Ai = f−1(Bi).
There is n such that both sequences are stationary from that
point on: g(Bn) = g(Bn+1) = · · · and
f−1(Bn) = f−1(Bn+1) = · · · .

It follows easily that Bn = Bn+1 = · · · .
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Assignment #6

Define the following composition laws (⊕ and ⊗) on the set Z:

For a,b ∈ Z, set a⊕ b := a + b + 1
For a,b ∈ Z, set a⊗ b := ab + a + b = (a + 1)(b + 1)− 1

Call the integers with these two operations Z (read red
integers). With proofs, answer the questions:

1 Is Z a ring?
2 If Z is a ring, is it isomorphic to Z?
3 Define similarly Q: is it a field?
4 List all that goes wrong.
5 Which generalizations occur to you?
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Class discussion

Let us prove the following characterization of Noetherian
modules over commutative rings:

Definition
Let M be a module over the commutative ring R.The set I of
elements x ∈ R such that xm = 0 for all m ∈ M is an ideal
called the annihilator of M, I = ann M.

Proposition
M is a Noetherian module if and only if M is finitely generated
and R/ann M is a Noetherian ring.
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Hints

If a module M is generated by {m1, . . . ,mn} define the following
mapping

f : R −→ M ⊕ · · · ⊕M︸ ︷︷ ︸
n copies

, f(r) = (rm1, . . . , rmn)

verify that
f is a homomorphism, of kernel ann M
Form the appropriate embedding of R/ann M into the direct
sum of the M ’s to argue one direction
Use, for the other direction, that M is also a module over
the ring R/ann M
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Quotient rings

Let I be a two-sided proper ideal of the R and denote by R/I
the corresponding cosets {a + I : a ∈ R}.

The quotient ring R/I is defined by the operations:

(a + I) + (b + I) = (a + b) + I
(a + I)× (b + I) = ab + I

This is a source to many new rings
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Examples

(2) ⊂ Z ⇒ Z2 = Z/(2)

(x2 + x + 1) ⊂ Z2[x ] ⇒ Z2[x ]/(x2 + x + 1) = F4

(x2 + 1) ⊂ R[x ] ⇒ C = R[x ]/(x2 + 1)

(1 + 3i) ⊂ Z[i] ⇒ Z10 = R = Z[i]/(1 + 3i)
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Z[i ]/(1 + 3i) ' Z/(10)

Consider the homomorphism ϕ : Z→ Z[i]→ R = Z[i]/(1 + 3i)
induced by the embedding of Z in Z[i].We claim that ϕ is a
surjection of kernel 10Z:

1 + 3i ≡ 0⇒ i(1 + 3i) ≡ 0⇒ i − 3 ≡ 0⇒ i ≡ 3

a + bi ≡ a + 3b ⇒ ϕ is surjection

For n in kernel of ϕ,

n = z(1 + 3i) = (a + bi)(1 + 31)

= (a− 3b) + (3a + b)i︸ ︷︷ ︸
=0

⇒ b = −3a

= 10a
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Circle ring

Let R = R[x , y ]/(x2 + y2 − 1): the circle ring

Consider the natural homomorphism

f : R[x , y ] −→ R[cos t , sin t ], f(x) = cos t , f(y) = sin t

R[cos t , sin t ] is the ring of trigonometric polynomials.
f(x2 + y2 − 1) = 0 so there is an induced surjection

ϕ : R[x , y ]/(x2 + y2 − 1)→ R[cos t , sin t ]

ϕ is an isomorphism because: (i) R[cos t , sin t ] is an infinite
dimensional R-vector space (why?); for any ideal L larger
than (x2 + y2 − 1), R[x , y ]/L is a finite dimensional
R-vector space (why?).
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The circle ring R = R[cos t , sin t ] contains as a subring
S = R[cos t ]. S is isomorphic to a polynomial ring over R.
As an S-module, R is generated by two elements

R = S · 1 + S · sin t

R as a R-vector space has basis

{sin nt , cos nt , n ∈ Z}
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R[x , y ]/(xy)

Exercise: Prove that

R[x , y ]/(xy) ' {(p(x),q(y)) : p(0) = q(0))}

Hint: Consider the homomorphism

ϕ : R[x , y ]/(xy)→ R[x , y ]/(y)× R[x , y ]/(x)

ϕ(a + (xy)) = (a + (y),a + (x))

Check that ϕ is one-one and determine its image.
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Integral domains

Let R be a commutative ring

u ∈ R is a unit if there is v ∈ R such that uv = 1
a ∈ R is a zero divisor if there is 0 6= b ∈ R such that
ab = 0
a ∈ R is nilpotent if there is n ∈ N such that an = 0
R is an integral domain if 0 is the only zero divisor, in other
words, if a,b ∈ R are not zero, then ab 6= 0.
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Studying a commutative ring

R

wwpppppppppppp

((PPPPPPPPPPPPPP

prime ideals of R morphisms ϕ : R → S
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Prime Ideals

Definition
Let R be a commutative ring. An ideal P of R is prime if P 6= R
and whenever a · b ∈ P then a ∈ P or b ∈ P.

Equivalently:

R/P is an integral domain
If I and J are ideals and I · J ⊂ P then I ⊂ P or J ⊂ P
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Prime ideals arise in issues of factorization and very
importantly:

Proposition
Let ϕ : R → S be a homomorphism of commutative ring. If S is
an integral domain, then P = ker (ϕ) is a prime ideal. More
generally, if S is an arbitrary commutative ring and Q is a prime
ideal, then P = ϕ−1(Q) is a prime ideal of R.

Proof. Inspect the diagram

R

��

ϕ−→ S

��
R/P ↪→ S/Q
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Exercise

Consider the homomorphism of rings

ϕ : k [x , y , z] → k [t ]
x → t3

y → t4

z → t5

Let P be the kernel of this morphism. Note that x3− yz, y2− xz
and z2 − x2y lie in P.

Task: Prove that P is generated by these 3 polynomials.

Task: Describe the prime ideals of the ring

R = C[x , y ]/(y2 − x(x − 1)(x − 2)).
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Multiplicative Sets

Definition
A subset S of a commutative ring is multiplicative if S 6= ∅ and if
r , s ∈ S then r · s ∈ S.

If P is a prime ideal of R, S = R \ P is a multiplicative set.
If I is a proper ideal of R, then

S = {1 + a : a ∈ I}

is a multiplicative set.
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Formation of Prime Ideals

Proposition
Let S be a multiplicative set and P an ideal maximum with
respect S ∩ P = ∅. Then P is a prime ideal.

Proof. Deny: let a,b /∈ P, ab ∈ P.

Consider the ideals P + Ra and P + Rb. They are both larger
than P and therefore meet S:

x + pa, y + qb ∈ S, x , y ∈ P

Multiplying we get

(x + pa)(y + qb) = xy + xqb + yqb + pqab ∈ S ∩ P,

a contradiction.
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Corollary
Every proper ideal I of a commutative ring is contained in a
prime ideal.

Proof. Let S = {1}. Among all proper ideals I ⊆ J pick one that
is maximum with respect being disjoint relative to S (use Zorn’s
Lemma; no need if R is Noetherian).
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Primary Ideal

Definition
Let R be a commutative ring. An ideal Q of R is primary if
Q 6= R and whenever a · b ∈ Q then a ∈ Q or some power
bn ∈ Q.

Example: Q = (x2, y) ⊂ R = k [x , y ], or (pn) ⊂ Z.
This is a far-reaching generalization of the notion of primary
ideals of Z
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Radical of an Ideal

Definition
Let I be an ideal of the commutative ring R. The radical of I is
the set √

I = {x ∈ R : xn ∈ I some n = n(x)}.

Proposition
√

I is an ideal.

Proof.

If a,b ∈
√

I, am ∈ I, bn ∈ I, then

(a + b)m+n−1 =
∑

i+j=m+n−1

(
m + n − 1

i

)
aibj ∈ I,

since i ≥ m or j ≥ n.
Clearly ra ∈

√
I for any r ∈ R.
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Proposition
If I is a proper ideal of R,

√
I =

⋂
P, I ⊆ P P prime ideal.

Proof.

Deny it: Let x ∈
⋂

P \
√

I, that is for all n, xn /∈ I.

The set {xn,n ∈ N} defines a multiplicative set S disjoint from I.
By a previous proposition, there is a prime P ⊃ I disjoint from
S, a contradiction.
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Assignment #7

A Boolean ring is a ring R such that x2 = x for all x ∈ R. For
instance, an arbitrary direct product of copies of Z/(2). If R is a
Boolean ring:

1 Prove that R is commutative and that for every prime ideal
P, R/P is a field.

2 Prove that every finitely generated ideal I of R is principal
(Hint: check that in a boolean ring, a + b − ab is a multiple
of both a and b).

3 If R is finite, show that R is a finite direct product of copies
of Z/(2).



Rings and Modules Chain Conditions Assignment #6 Prime Ideals Assignment #7 Primary Decomposition Intro Noetherian Rings Assignment #8 Homework Modules of Fractions Assignment #9 Integral Extensions Integral Morphisms Assignment #10 TakeHome #1

Idempotents

Proposition

Let R be a commutative ring and 0 6= e ∈ R satisfy e = e2.
Then there is a decomposition R into the direct product of rings
R ' Re × R(1− e).

Proof.
1 For any x ∈ R, x = xe + x(1− e), so Re + R(1− e) = R.

Furthermore if a ∈ Re ∩ R(1− e), then a is annihilated by
1− e and e, respectively. This means that
R = Re ⊕ R(1− e) as modules.

2 Since Re · R(1− e) = 0, we can view R = Re ⊕ R(1− e)
as R = Re×R(1− e). Note that e is the identity in the ring
Re, and 1− e in R(1− e).
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Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg [11/27/2008 11:52:38 AM]
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Irreducible Ideal/Module

Definition
The ideal I of the commutative ring R is irreducible if

I = J ∩ L⇒ I = J or I = L.
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Primary Decomposition

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn,

with Qi primary.

To prove her theorems, Emmy Noether often proved a special
case and derive the more general assertion, or proved a more
general assertion and specialize.
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Irreducible decomposition

Definition
The ideal I of the commutative ring R is irreducible if

I = J ∩ L⇒ I = J or I = L.

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = J1 ∩ J2 ∩ · · · ∩ Jn,

with Ji irreducible. Moreover, every irreducible ideal J of R is
primary.
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Famous Proof

Proof. Deny the existence of the decomposition of I as a finite
intersection of irreducible ideals. Among all such ideals, denote
by (keep the notation) I a maximum one.
I is not irreducible, so there is

I = J ∩ L,

with J and L properly larger. But then each admits finite
decompositions as intersection of irreducible ideals. Combining
we get a contradiction.
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Irreducible⇒ Primary

1 Deny that proper irreducible ideals of Noetherian rings are
primary. Let I be maximum such: There is a,b ∈ R, ab ∈ I,
a /∈ I and bn /∈ I for all n ∈ N.

2 Consider the chain

{r ∈ R : br ∈ I} = I : b ⊆ I : b2 ⊆ · · · ⊆ I : bn ⊆ I : bn+1

that becomes stationary at I : bn = I : bn+1.
3 Define J = I : bn and L = (I,bn). Both ideals are larger

than I. We claim that I = J ∩ L.
4 If x ∈ J ∩ L, x = u + rbn, u ∈ I. Then bnx = bnu + rb2n ∈ I,

so rbn ∈ I and therefore x ∈ I.



Rings and Modules Chain Conditions Assignment #6 Prime Ideals Assignment #7 Primary Decomposition Intro Noetherian Rings Assignment #8 Homework Modules of Fractions Assignment #9 Integral Extensions Integral Morphisms Assignment #10 TakeHome #1

Irredundant Primary Decomposition

A refinement in the primary decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn

arises as follows. Suppose two of the Qi have the same radical,
say
√

Q1 =
√

Q2 = P. Then it easy to check that Q1 ∩Q2 is
also P-primary. So collecting the Qi with the same radical:

Theorem (Emmy Noether)
Every proper ideal I of a Noetherian ring R has a finite
decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qn,

with Qi primary ideals of distinct radicals. This decomposition is
called irredundant.

It is known which Qi are unique and which are not.
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David Hilbert (1862-1943)

David Hilbert

David Hilbert 
(1862 - 1943) 
Mathematician 

Algebraist 

Topologist 

Geometrist 

Number Theorist 

Physicist 

Analyst 

Philosopher 

Genius 

And modest too... 

 

"Physics is much too hard for physicists." - Hilbert, 1912

This site is dedicated to David Hilbert, the funkiest mathematician alive.  
(Well, at least the funkiest when  he was alive. He's dead now, but he's still pretty 
funky. I don't mean funky like he smells funky, but I'm sure he does since he's been dead for 
over half a century. Of course, he was German, so the term probably wouldn't be applied to 
him. It would probably be more like funkisch. Hey, there's five years of German classes well 
spent. And he was born way before disco was king, so the term funky or funkisch probably 
wasn't used at all back then. I'm not saying that Davey wouldn't like disco. He was known to 
be a very good dancer in his time. That was mostly big band music hall stuff, but I'm sure he 
could manage to do the Hustle. And that's pretty hip for a mathematician. Not that all 
mathematicians aren't hip, mind you. I know one that even had a beer party recently. Of 
course, he did take that opportunity to gather beer tasting data in the form a block design 
using random permutations of 4-subsets of a 6-set. I'll stop now.) 

"Every boy in the streets of Gottingen understands more about four-dimensional geometry 
than Einstein. Yet, in spite of that, Einstein did the work and not the mathematicians." - 
Hilbert, 1915

http://www.math.umn.edu/~wittman/hilbert.html (1 of 2) [11/28/2008 3:43:37 PM]
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Hilbert Basis Theorem

Theorem (HBT)
If R is Noetherian then R[x ] is Noetherian.

1 If R is Noetherian and x1, . . . , xn is a set of independent
indeterminates, then R[x1, . . . , xn] is Noetherian.

2 Z[x1, . . . , xn] is Noetherian.
3 If k is a field, then k [x1, . . . , xn] is Noetherian.
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Finitely Generated Algebras

If R is a commutative ring, a finitely generated R-algebra S is a
homomorphic image of a ring of polynomials,
S = R[x1, . . . , xn]/L. If R is Noetherian, S is Noetherian as well.
This is useful in many constructions.
If I is an R-ideal, the Rees algebra of I is the subring of R[t ]
generated by all at , a ∈ I. It it denoted by S = R[It ]. In general,
subrings of Noetherian rings may not be Noetherian but Rees
algebras are:

Exercise: If R is Noetherian, for every ideal I, R[It ] is
Noetherian.
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Proof of the HBT

Suppose the R[x ]-ideal I is not finitely generated. Let
0 6= f1(x) ∈ I be a polynomial of smallest degree,

f1(x) = a1xd1 + lower degree terms.

Since I 6= (f1(x)), let f2(x) ∈ I \ (f1(x)) of least degree. In this
manner we get a sequence of polynomials

fi(x) = aixdi + lower degree terms,

fi(x) ∈ I \ (f1(x), . . . , fi−1(x)), d1 ≤ d2 ≤ d3 ≤ · · ·

Set J = (a1,a2, . . . , ) = (a1,a2, . . . ,am) ⊆ R
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Let fm+1(x) = am+1xdm+1 + lower degree terms. Then

am+1 =
m∑

i=1

siai , si ∈ R.

Consider

g(x) = fm+1 −
m∑

i=1

sixdm+1−di fi(x).

g(x) ∈ I \ (f1(x), . . . , fm(x)), but deg g(x) < deg fm+1(x), which
is a contradiction.
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Power Series Rings

Another construction over a ring R is that of the power series
ring R[[x ]]:

f(x) =
∑
n≥0

anxn, g(x) =
∑
n≥0

bnxn

with addition component wise and multiplication the Cauchy
operation

f(x)g(x) = h(x) = h(x) =
∑
n≥0

cnxn

cn =
∑

i+j=n

aibn−i

Theorem
If R is Noetherian then R[[x ]] is Noetherian.
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Proposition
A commutative ring R is Noetherian iff every prime ideal is
finitely generated.

Proof. If R is not Noetherian, there is an ideal I maximum with
the property of not being finitely generated (Zorn’s Lemma).
We assume I is not prime, that is there exist a,b /∈ I such that
ab ∈ I.
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The ideals (I,a) and I : a are both larger than I and therefore
are finitely generated:

(I : a) = (a1, . . . ,an)

(I,a) = (b1, . . . ,bm,a), bi ∈ I

Claim: I = (b1, . . . ,bm,aa1, . . . ,aan)

If c ∈ I,

c =
m∑

i=1

cibi + ra, r ∈ I : a
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R[[x ]] is Noetherian

Proof. Let P be a prime ideal of R[[x ]]. Set p = P ∩ R. p is a
prime ideal of R and therefore it is finitely generated.

Denote by p[[x ]] = pR[[x ]] the ideal of R[[x ]] generated by the
elements of p. It consists of the power series with coefficients in
p and R[[x ]]/p[[x ]] is the power series ring R/p[[x ]].

We have the embedding

P ′ = P/p[[x ]] ↪→ (R/p)[[x ]]

P ′ is a prime ideal of R/p[[x ]] and P ′ ∩ R/p = 0. It will suffice to
show that P ′ is finitely generated.
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We have reduced the proof to the case of a prime ideal
P ⊂ R[[x ]] and P ∩ R = (0).

If x ∈ P, P = (x) and we are done.
For f(x) = a0 + a1x + · · · ∈ P, let J = (b1, . . . ,bm) ⊂ R be the
ideal generated by all a0,

fi = bi + higher terms ∈ P.

Claim: P = (f1, . . . , fm).

From a0 =
∑

i s(0)
i bi , we write

f(x)−
∑

i

s(0)
i fi = xh ⇒ h ∈ P.
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We repeat with h and write

f(x) =
∑

i

s(0)
i fi + x

∑
i

s(1)
i fi + x2g, g ∈ P.

Iterating we obtain

f(x) =
∑

i

(s(0)
i + s(1)

i x + s(2)
i x2 + · · · )fi .
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Assignment #8

Do 2 problems.
1 Show that the kernel of the homomorphism (K is a field)

ϕ : K[x , y , z] −→ K[t ],

defined by ϕ(x) = t3, ϕ(y) = t4 and ϕ(z) = t5, is
generated by the polynomials

x3 − yz, y2 − xz, z2 − x2y .
2 Let R be a Noetherian ring and let I be an R–ideal. Show

that the number of prime ideals P minimal over I is finite.
(Hint: primary decomposition helps.)

3 Describe all rings Z ⊂ R ⊂ Q (Hint: For each R, consider
the set of primes p of Z that blowup in R, that is, pR = R).

4 Let ϕ : M −→ M be an endomorphism of a R-module.
Prove that if M is Noetherian (resp. Artinian) and ϕ is
surjective (resp. injective) then ϕ is an isomorphism.
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Homework

1 Find the kernel of the homomorphism (K is a field)

ϕ : K[x , y , z] −→ K[t ],

defined by ϕ(x) = t4, ϕ(y) = t5 and ϕ(z) = t7. What do
you think is true in general?

2 Show that R = C[x , y ]/(y2 − x(x − 1)(x − 2)) is a
Dedekind domain. [Show that y2 − x(x − 1)(x − 2) is
irreducible, use the Nullstellensatz to describe the maximal
ideals of R, and show that for each such ideal P, RP is a
discrete valuation domain.]

3 If R is a Dedekind domain, prove that for each nonzero
ideal I, R/I is a principal ideal ring. Derive from this the
fact that every ideal of R can be generated by 2 elements.

4 Show that an invertible ideal of a local integral domain is
principal.
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Modules of Fractions

Let R be a commutative ring, M an R-module and S ⊆ R a
multiplicative system.

On the set M × S define the following relation:

(a, r) ∼ (b, s)⇔ ∃t ∈ S : t(as − br) = 0

Why define it in this manner instead of the usual as = br?

Proposition
∼ is an equivalence relation.

We focus on the properties of the set S−1M of equivalence
classes. Actually, this is the initial step in the construction of a
remarkable functor.
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Properties

Proposition
Let R be a commutative ring, M an R-module and S ⊆ R a
multiplicative system. Denote the equivalence class of (a, r) in
S−1M by (a, r) (or simply (a, r) or even a/r ).

1 The following operation is well-defined

(a, r) + (b, s) = (sa + rb, rs),

and endows S−1M with a structure of abelian group.
2 If 0 /∈ S, this construction applied to R × S gives rise to a

ring structure on S−1R with multiplication
(x , r) · (y , s) = (xy , rs).

3 For (x , r) ∈ S−1R and (a, s) ∈ S−1M, the operation
(x , r) · (a, s) = (xa, rs) defines an S−1R-module structure
on S−1M.
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Module/Ring of Fractions

S−1R is called the ring of fractions of R relative to S. It is a
refinement (due to Grell or Krull) of the classical formation of
the field of fractions of an integral domain.
S−1M is called the module of fractions of M relative to S.

Another step:

Proposition
If ϕ : M → N is a homomorphism of R-modules, a
homomorphism of S−1R modules S−1ϕ : S−1M → S−1N is
defined by

(S−1ϕ)(a, s) = (ϕ(a), s).
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Functorial Properties

This construction is a functor from the category of R-modules
to the category of S−1R-modules:

M
ϕ

��

 S−1M

S−1ϕ
��

N  S−1N

Proposition
If ϕ : M → N and ψ : N → P are R-homomorphisms of
R-modules, then

1 S−1(ψ ◦ ϕ) = S−1ψ ◦ S−1ϕ.
2 S−1(idM) = idS−1M .
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Short Exact Sequences

Proposition
Let R be a ring, S ⊆ R a multiplicative set and

0→ A f−→ B
g−→ C → 0

a short exact sequence of R-modules. Then

0→ S−1A S−1f−→ S−1B
S−1g−→ S−1C → 0

is a short exact sequence of S−1R-modules. In other words,
M  S−1M is an exact functor.
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The submodules of S−1M

Proposition

Let L′ be a S−1R-submodule of S−1M. Let

L = {m ∈ M : for some s ∈ S (m, s) ∈ L′.

Then L is a submodule of M and S−1L = L′.

Corollary

If M is a Noetherian (Artinian) R-module, then S−1M is a
Noetherian (Artinian) S−1R-module.



Rings and Modules Chain Conditions Assignment #6 Prime Ideals Assignment #7 Primary Decomposition Intro Noetherian Rings Assignment #8 Homework Modules of Fractions Assignment #9 Integral Extensions Integral Morphisms Assignment #10 TakeHome #1

The ideals of S−1R

According to the above, the proper ideals of S−1R are of the
form

S−1I = {a/s : a ∈ I s ∈ S, I ∩ S = ∅.}

In the special case of S = R \ p, for a prime ideal p, one uses
the notation Mp for the module of fractions and Rp for the ring of
fractions.

If R = Z and p = (2), Z(2) consists of all rational numbers m/n,
with n odd. Its ideals are ordered. The largest proper ideal is
m = 2Z(2) and the others

Z(2) ) m ) m2 ) m3 ) · · · ) (0)
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Tool

Proposition
If R is a commutative ring and S is a multiplicative set, then for
any two submodules A and B of M,

S−1(A ∩ B) = S−1A ∩ S−1B.

Proof.
The intersection A ∩ B can be defined by the exact sequence

0→ A ∩ B −→ A⊕ B
ϕ−→ A + B → 0,

where ϕ(a,b) = a− b.

Now apply the fact that formation of modules of fractions is an
exact functor.
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Local Ring

Proposition

Let S be a multiplicative set of R. The ideal L of S−1R is prime
iff L = S−1I, for some prime I ideal of R with I ∩ S = ∅.

Proof. Suppose I is as above. If a/r · b/s ∈ S−1I,
(ab, rs) ∼ (c, t) for c ∈ I, r , s, t ∈ S. By definition, there is u ∈ S
such that u(tab − rsc) = 0. Since S ∩ I = ∅, tab − rsc ∈ I and
therefore tab ∈ I. Thus ab ∈ I and so a ∈ I or b ∈ I. Therefore
(a, r) or (b, s) ∈ S−1I.

Corollary
The prime ideals of Rp have the form P = Qp, where Q is an
ideal of R contained in p.
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Local Ring

Definition
A commutative ring R is a local ring if it has a unique maximal
ideal.

Example
If k is a field, R = k [[x ]], the ring of formal power series in x
over k is a local ring. Its unique maximal ideal is m = (x).

Definition
If R is a commutative ring and P a prime ideal, the ring of
fractions RP is a local ring called the localization of R at P.
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The Prime Spectrum of a Ring

Definition
Let R be a commutative ring (with 1). The set of prime ideals of
R is called the prime spectrum of R, and denoted Spec (R).

Spec (Z) = {(0), (2), (3), . . .}, the ideals generated by the prime
integers and 0.

Proposition
For each set I ⊂ R, set

V (I) = {p ∈ Spec (R) : I ⊂ p}.

These subsets are the closed sets of a topology on Spec (R).

Note that V (I) = V (I′), where I′ is the ideal of R generated by I.
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Zariski Topology

Proof. This follows from the properties of the construction of
the V (I):

V (1) = ∅
V (0) = Spec (R)

V (I ∩ J) = V (I) ∪ V (J)⋂
α

V (Iα) = V (
⋃
α

Iα).
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Example

Suppose R2,R2, . . . ,Rn are commutative rings and
R = R1 × R2 × · · · × Rn is their direct product. Observe:

1 If 1 = e1 + e2 + · · ·+ en, ei ∈ Ri , then Ri = Rei and
eiej = 0 if i 6= j

2 Because of eiej = 0 for i 6= j , if P is a prime ideal of R and
some ei /∈ P then the other ej ∈ P. This shows
P = R1 × · · · × Pi × · · · × Rn, where Pi is a prime ideal of
Ri , R/P = Ri/Pi

3 Spec(R) = Spec(R1) ∪ · · · ∪ Spec(Rn)

4 In particular, if R1 = R2 = · · · = Rn = K, K a field, the
Spec(R) is a set of n points with the discrete topology.
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Irreducible Representation

Proposition
Let I be an ideal of the Noetherian ring R and let

I = Q1 ∩Q2 ∩ · · · ∩Qn,

be a primary representation. Then

V (I) = V (P ′1) ∪ V (P ′2) ∪ · · · ∪ V (P ′m),

where the P ′j are the minimal primes amongst the
√

Qi , is the
unique irreducible representation of V (I).
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Morphisms

Proposition
If R is a commutative ring, Spec (R) is quasi-compact. (Not
necessarilly Hausdorff.)

Proof.
Let {D(Iα)} be an open cover of X

X =
⋃
α

D(Iα) =
∑
α

Iα = D(1).

This means that there is a finite sum

n∑
1

Iαi = R, and therefore X =
n⋃

i=1

D(Iαi ).
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Proposition
If ϕ : R → S is a homomorphism of commutative rings
(ϕ(1R) = 1S), then the mapping

Φ : Spec (S)→ Spec (R),

given by Φ(Q) = ϕ−1(Q), is continuous.

Proof.

If D(I) is an open set of Spec (R), ϕ−1(D(I)) = D(IS).
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Assignment #9

Do 1 problem.
For the ring R = Z[T]

1 Describe (with proofs) its prime ideals, that is the points of
Spec (R).

2 Describe (with proofs) its maximal ideals, that is the closed
points of Spec (R).

3 Let X be a compact, Hausdorff space and denote by A the
ring of real continuous functions on X.

If M is a maximal ideal of A prove that there is a point p ∈ X
such that M = {f(x) ∈ A : f(p) = 0}.
Prove that there is a homeomorphism of topological spaces
X ≈ MaxSpec(A).
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Integral Extensions

Let R ↪→ S be commutative rings.

Definition
s ∈ S is integral over R if there is an equation

sn + an−1sn−1 + · · ·+ a1s + a0 = 0, ai ∈ R.

Proposition
s ∈ S is integral over R if and only if the subring R[s] of S
generated by s is a finitely generated R-module.
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Would like to prove [as done first by Weierstrass] that if s1and
s2 in S are integral over R then

s1 + s2 is integral over R;
s1s2 is integral over R.

The key to their proof is the fact that both s1 + s2 and s1s2 are
elements of the subring R[s1, s2] which is finitely generated as
an R-module

R[s1, s2] =
∑
i,j

Rsi
1sj

2,

where i and j are bounded by the degrees of the equations
satisfied by s1 and s2.
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Integrality Criterion

Proposition
Let M be a finitely generated R-module and S = R[u] a ring
such that uM ⊂ M. If M is a faithful S-module then u is integral
over R.

Proof. Let x1, . . . , xn be a set of R-generators of M. we have a
set of relations with aij ∈ R

ux1 = a11x1 + · · ·+ a1nxn
...

uxn = an1x1 + · · ·+ annxn
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Cayley-Hamilton

That is

0 = (a11 − u)x1 + · · ·+ a1nxn
...

0 = an1x1 + · · ·+ (ann − u)xn

Which we rewrite in matrix form a11 − u · · · a1n
...

. . .
...

an1 · · · ann − u


 x1

...
xn

 =

 0
...
0

 = A[x] = O.
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Thus
(adj A)A[x] = det A · [x] = O.

This means that det A annihilates each generator xi of M and
therefore det A = 0.

But

det A = ±un + lower powers of u with coefficients in R

This shows that u is integral over R.
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Principle of Specialization

Why are we allowed to write adj A · A = det A · I when the
entries of A lie in a commutative ring?

If T = Z[xij , 1 ≤ i , j ≤ n] is a ring of polynomials in the
indeterminates xij , and use them as the entries of a matrix B,
certainly the formula adj B · B = det B · I makes sense since T
lies in a field.

Now define a ring homomorphism φ : T → R, with φ(xij) the
corresponding entry in A, to get the desired equality.
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In our application, M = R[s1, s2] and u is either s1 + s2 or s1s2,
and certainly M is faithful since 1 ∈ M.

Corollary
If R ↪→ S are commutative rings, and s1, s2, . . . , sn are integral
over R, then any element of R[s1, . . . , sn] is integral over R.
Moreover, if T is the set of elements of S integral over R, T is a
subring. It is called the integral closure of R in S.

Definition
If T = S, S is called an integral extension of R.
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Transitivity

Proposition
If R ↪→ S1 ↪→ S2 are commutative rings with S1 integral over R
and S2 integral over S1, then S2 is integral over R.

Proof. Let u ∈ S2 be integral over S1

un + sn−1un−1 + · · ·+ s1u + s0 = 0, si ∈ S1.

It suffices to observe that

M = R[u, sn−1, . . . , s1, s0]

is a finitely generated R-module.
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Surjections

Another use of the Cayley-Hamilton theorem is the following
property of surjective epimorphims of modules:

Theorem
Let R be a commutative ring and M a finitely generated R. If
ϕ : M → M is a surjective R-module homomorphism, then ϕ is
an isomorphism.

Proof. We first turn M into a module over the ring of
polynomials S = R[t ] by setting t ·m = ϕ(m) for m ∈ M.

The assumption means that tM = M. Using the proof of
Cayley-Hamilton, we have
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 ta11 − 1 · · · ta1n
...

. . .
...

tan1 · · · tann − 1


 x1

...
xn

 =

 0
...
0

 = A[x] = O.

Which implies that det A annihilates M. Since

det A = ±1 + tf(t),

it is clear that t ·m 6= 0 for m 6= 0, that is ϕ is one-to-one.
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Jacobson Radical

Definition
Let R be a commutative ring. Its Jacobson radical is the
intersection

⋂
Q of all maximal (proper) ideals.

Example: If R is a local ring, its Jacobson radical is its unique
maximal ideal m.

If R = Z, or R = k [t ], polynomial ring over the field k , then (0)
is the Jacobson radical: from the infinity of prime elements.
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Proposition
The Jacobson radical J of R is the set

J ′ = {a ∈ R : 1 + ra is invertible for all r ∈ R}.

Proof. If a ∈ J, then 1 + ra cannot be contained in any proper
maximal ideal, that is it must be invertible.
Conversely, if a ∈ J ′, suppose a does not belong to the maximal
ideal Q. Therefore

(a,Q) = R

which means there is an equation ra + q = 1, q ∈ Q, and q
would be invertible.
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Nakayama Lemma

Theorem (Nakayama Lemma)
Let M be a finitely generated R module and J its Jacobson
radical. If

M = JM,

then M = 0.

Proof. If M is cyclic, this is clear: M = (x) implies x = ux for
some u ∈ J, so that (1− u)x = 0, which implies x = 0 since
1− u is invertible.
We are going to argue by induction on the minimal number of
generators of M. Suppose M = (x1, . . . , xn). By assumption
x1 ∈ JM, that is we can write

x1 = u1x1 + u2x2 + · · ·+ unxn, ui ∈ J.
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Which we rewrite as

(1− u1)x1 = u2x2 + · · ·+ unxn

This shows that x1 ∈ J(x2, . . . , xn), and therefore
M = (x2, . . . , xn).

Corollary
Let M be a finitely generated R module and N a submodule. If
M = N + JM then M = N.

Proof.
Apply the Nakayama Lemma to the quotient module M/N

M/N = N + JM/N = J(M/N).
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Scholium
Let R be a commutative ring and M a finitely generated
R-module. If for some ideal I, IM = M, then (1 + a)M = 0 for
some a ∈ I.

Proof.
If M = (x1, . . . , xn), from the proof of Cayley-Hamilton, there are
aij ∈ I a11 − 1 · · · a1n

...
. . .

...
an1 · · · ann − 1


 x1

...
xn

 =

 0
...
0

 = A[x] = O.

Which implies that det A annihilates M. Since
det A = ±1 + a, a ∈ I, done
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Corollary
Let R be a commutative ring and I a finitely generated ideal.
Then I = I2 if and only if I is generated by an idempotent, that is
I = Re, e2 = e.

Proof.

If (1 + a)I = 0, I ⊂ (a) and a2 = a.
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Integral Morphisms

Let ϕ : R → S an injective homomorphism of commutative
rings.

Theorem (Lying-Over Theorem)
If S is integral over R then for each p ∈ Spec (R) there is
P ∈ Spec (S) such that p = P ∩ R, that is the morphism

Spec (S)→ Spec (R)

is surjective.
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Proposition
If S is integral over R and T is a multiplicative set of R, then
T−1S is integral over T−1R.

Proof.

Let s/t ∈ T−1S. s satisfies an equation

sn + an−1sn−1 + · · ·+ a1s + a0 = 0, ai ∈ R.

Then

(s/t)n + an−1/t(s/t)n−1 + · · ·+ a1/tn−1s/t + a0/tn = 0,

ai/tn−i ∈ T−1R.
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Proof of Lying-Over

Suppose p ∈ Spec (R). Consider the integral extension
Rp ↪→ Sp.

The maximal ideal of Rp is m = pRp.

Claim: mSp 6= Sp.

Otherwise we would have

1 ∈ mSp

1 =
n∑

i=1

aisi/ti , ai ∈ m, si ∈ S, ti ∈ R \ p
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1 Set S′ = Rp[s1, . . . , sn].

2 S′ is a finitely generated Rp-module with S′ = mS′. By
Nakayama Lemma, S′ = 0.

3 Since mSp 6= Sp, it is contained in a prime ideal P ′ of Sp. In
particular, P ′ ∩ Rp = m.

4 Since P ′ = Pp for some P ∈ Spec (S), it is clear that
P ∩ R = p, as desired.
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Going-Up Theorem

Theorem
Let R ↪→ S be an integral extension of commutative rings. Let
p1 ( p2 be prime ideals of R and suppose P1 is a prime ideal of
S such that P1 ∩ R = p1. Then there is a prime ideal P1 ( P2 of
S such that P2 ∩ R = p2.

Proof. Consider the diagram

R

��

↪→ S

��
R/p1 ↪→ S/P1

Now apply the Lying-Over theorem to the integral extension

R/p1 ↪→ S/P1.
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Going-Down Theorem

? Is there

Theorem (?Going-Down Theorem)
Let R ↪→ S be an integral extension of commutative rings. Let
p1 ( p2 be prime ideals of R and suppose P2 is a prime ideal of
S such that P2 ∩ R = p2. Then there is a prime ideal P1 ( P2 of
S such that P1 ∩ R = p1.

Yes, but needs additional assumptions. Proof uses some basic
Galois theory.
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Assignment #10

Let R ↪→ S be an integral extension. Prove the following
assertions:

1 If R and S are integral domains and one of them is a field,
then the other is also a field.

2 Equivalently: Let P ∈ Spec (S) and p ∈ Spec (R) and
P ∩ R = p. Then P is maximal iff p is maximal.
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TakeHome #1

Do 5 problems.
Describe [with proof] a method to construct a regular
pentagon with ruler and compass.
Show that if n ≥ 3, then x2n

+ x + 1 is reducible over Z2.
Describe (with proofs) the maximal ideals of R = Z[T], that
is the closed points of Spec (R). Achtung: Pay attention to
polynomials such as aT− 1.
Let R = k [x1, . . . , xn, . . .], the ring of polynomials in a
countable set of indeterminates over the field k . Prove that
every ideal of R admits a countable number of generators.
Find the kernel of the homomorphism (K is a field)

ϕ : K[x , y , z] −→ K[t ],

defined by ϕ(x) = t4, ϕ(y) = t5 and ϕ(z) = t7.
ϕ : Q/Z→ Q/Z is a one-one group homomorphim, prove it
is onto. (You may want to look at the action on the primary
components.)


	Rings and Modules
	Chain Conditions
	Assignment #6 
	Prime Ideals
	Assignment #7
	Primary Decomposition
	Intro Noetherian Rings
	Assignment #8
	Homework
	Modules of Fractions
	Assignment #9
	Integral Extensions
	Integral Morphisms
	Assignment #10
	TakeHome #1

