Math 552: Abstract Algebra II

Wolmer V. Vasconcelos

Set 2
Spring 2009

Outline

(1) Rings and Modules

2. Chain Conditions

3 Assignment \#6
4 Prime Ideals
5. Assignment \#7

6 Primary Decomposition
7 Intro Noetherian Rings
8. Assignment \#8

9 Homework
10 Modules of Fractions
(11) Assignment \#9

12 Integral Extensions
13 Integral Morphisms
14) Assignment \#10

15 TakeHome \#1

Composition laws

A composition on a set \mathbb{X} is a function assigning to pairs of elements of \mathbb{X} an element of \mathbb{X},

$$
(a, b) \mapsto \mathbf{f}(a, b)
$$

That is a function of two variables on \mathbb{X} with values in \mathbb{X}. It is nicely represented in a composition table

\mathbf{f}	$*$	b	$*$
$*$	$*$	$*$	$*$
a	$*$	$\mathbf{f}(a, b)$	$*$
$*$	$*$	$*$	$*$

We represent it also as

$$
\mathbb{X} \times \mathbb{X} \xrightarrow{\mathbf{f}} \mathbb{X}
$$

Example: Abelian group

An abelian group is a set \mathbf{G} with a composition law denoted ' + '

$$
\begin{gathered}
\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G} \\
a, b \in \mathbf{G}, \quad a+b \in \mathbf{G}
\end{gathered}
$$

satisfying the axioms

- associative $\forall a, b, c \in \mathbf{G}, \quad(a+b)+c=a+(b+c)$
- commutative $\forall a, b \in \mathbf{G}, \quad a+b=b+a$
- existence of O

$$
\exists O \in \mathbf{G} \quad \text { such that } \forall a \quad a+O=a
$$

- existence of inverses

$$
\forall a \in \mathbf{G} \quad \exists b \in \mathbf{G} \quad \text { such that } a+b=0
$$

This element is unique and denoted $-a$.

Rings

A ring R is a set with two composition laws, called 'addition' and 'multiplication', say + and $\times: \forall a, b \in R$ have compositions $a+b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply $a b$.)

- $(R,+)$ is an abelian group
- (R, \times) : multiplication is associative, and distributive over + , that is $\forall a, b, c \in R$,

$$
(a b) c=a(b c), \quad a b=b a, \quad a(b+c)=a b+a c
$$

- existence of identity: $\exists e \in R$ such that

$$
\forall a \in R \quad e \times a=a \times e=a
$$

- If $a b=b a$ for all $a, b \in R$, the ring is called commutative

There is a unique identity element e, usually we denote it by 1 :

$$
e=e e^{\prime}=e^{\prime} e=e^{\prime}
$$

Rings and Modules

A ring R is a set with two composition laws + and \times satisfying

- $\{R,+\}$ is an abelian group
- associative axiom : For $a, b, c \in R$, $a \times(b \times c)=(a \times b) \times c$
- distributive axioms: For $a, b, c \in R$, $a \times(b+c)=a \times b+a \times c$ and $(a+b) \times c=a \times c+b \times c$
- existence of 1: there is $e \in R$ such that for $a \in R$, $a \times e=e \times a=a$
- If $a \times b=b \times a$ for all $a, b \in R$, ring is called commutative

Class Surprise Quiz!

What is your favorite ring?
To qualify, your answer must be different-very different-from that given by a classmate!

More composition laws

Other composition laws take pairs [or triples,...] of sets: such as a function assigning to pairs of elements of \mathbf{Y} and \mathbb{X} an element of \mathbb{X},

$$
(a, b) \mapsto \mathbf{f}(a, b)
$$

It is represented in a composition table

\mathbf{f}	$*$	b	$*$
$*$	$*$	$*$	$*$
\mathbf{a}	$*$	$\mathbf{f}(a, b)$	$*$
$*$	$*$	$*$	$*$

We represent it also as $\mathbf{Y} \times \mathbb{X} \xrightarrow{\mathbf{f}} \mathbb{X}$
Typically we place requirements on f, such as
$\mathbf{f}(a, b+c)=\mathbf{f}(a, b)+\mathbf{f}(a, c)$

Modules

If R is a ring, a left R-module M is a set

- $\{M,+\}$ is an abelian group and equipped with a mapping $(R, M) \rightarrow M,(a, m) \rightarrow a m$ such that
- associative axiom : For $a, b \in R, c \in M, a(b c)=(a \times b) c$
- distributive axiom: For $a \in R, b, c \in M, a(b+c)=a b+a c$
- If 1 is the identity of $R, 1 c=c$ for all $c \in M$

Submodules, quotient modules, homomorphisms

- If R is a ring and A and B are left R-modules, a group homomorphism $\mathbf{f}: A \rightarrow B$ is a R-homomorphism if

$$
f(a x)=a f(x), \quad a \in R, \quad x \in A .
$$

- A subgroup C of the R-module A is a submodule if the inclusion mapping $C \rightarrow A$ is a homomorphism. If C is a submodule, the quotient group A / C is an R-module
- If $\mathbf{f}: A \rightarrow B$ is a homomorphism of R-modules, $K=\operatorname{ker}(\mathbf{f})=\{x \in A: \mathbf{f}(x)=0\}$ is a submodule of A, and $E=\{\mathbf{f}(a): a \in A\}$ is a submodule of B.
- There is a canonical isomorphism of R-modules $A / K \simeq E$

Direct sums and products

Let R be a ring and $\left\{M_{\alpha}: \alpha \in I\right\}$ be a family of modules.

- direct sum $M=\bigoplus_{\alpha} M_{\alpha}$ is the set of ($m_{\alpha}: \alpha \in I$), almost all $m_{\alpha}=0_{\alpha}$. Addition and multiplication by elements of R is component wise, for instance

$$
\left(m_{\alpha}\right)+\left(n_{\alpha}\right)=\left(m_{\alpha}+n_{\alpha}\right)
$$

- direct product $M=\prod_{\alpha} M_{\alpha}$ is the set of ($m_{\alpha}: \alpha \in I$). Addition and multiplication by elements of R is component wise, for instance

$$
a\left(m_{\alpha}\right)=\left(a m_{\alpha}\right)
$$

Generators of a module

- If A is an R-module, a subset $S \subset A$ is a set of generators of A if for $a \in A$ there are s_{1}, \ldots, s_{n} in S and $r_{i} \in R$ such that

$$
a=r_{1} s_{1}+\cdots+r_{n} s_{n}
$$

- If S is finite, A is said to be finitely generated
- If $S=\{s\}, A$ is said to be cyclic

Free modules

Let R be a ring and X a set. The free R-module with basis indexed by X :

$$
F_{X}=\bigoplus_{x \in X} R_{x}, \quad R_{x} \simeq R
$$

If $X=\{1,2, \ldots, n\}$,

$$
R^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in R\right\}
$$

Set $e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)$,

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} e_{1}+\cdots+a_{n} e_{n}
$$

Finitely generated module

Proposition

Let X be a set and A an R-module. For any (set) mapping $\varphi: X \longrightarrow A$ there is a (unique) module homomorphism

$$
\mathbf{f}: F_{X}=\bigoplus_{x \in X} R e_{x} \longrightarrow A
$$

such that $\mathbf{f}\left(e_{X}\right)=\varphi(x)$.

Proposition

An R-module A is finitely generated iff there is a surjection

$$
\mathbf{f}: R^{n} \longrightarrow A
$$

for some $n \in \mathbb{N}$.

Outline

Chain Conditions

Let R be a ring and let M be a left (right) R-module and denote by X the set of R-submodules of M ordered by inclusion.

A chain of submodules is a sequence

$$
A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{n} \subseteq \cdots
$$

or

$$
B_{1} \supseteq B_{2} \supseteq \cdots \supseteq B_{n} \supseteq \cdots
$$

The first is called ascending, the other descending.

Noetherian Module

Definition

M is a Noetherian (Artinian) module if every ascending (descending) chain of submodules is stationary, that is $A_{n}=A_{n+1}=\ldots$ from a certain point on.
R is a left (right) Noetherian(Artinian) ring if the ascending (descending) chains of left (right) ideals are stationary.

Example

$$
\left[\begin{array}{ll}
\mathbb{Z} & \mathbb{Q} \\
0 & \mathbb{Q}
\end{array}\right]
$$

is a right (but not left) Noetherian ring.

$$
\left[\begin{array}{ll}
\mathbb{Q} & \mathbb{R} \\
0 & \mathbb{R}
\end{array}\right]
$$

is a left (but not right) Artinian ring.

Example: Sides may matter

Here is an example (J. Dieudonné) of a left Noetherian that is not right Noetherian.

Let \mathbf{A} be the ring generated by x and $y, \mathbb{Z}[x, y]$, such that $y x=0$ and $y y=0$, and let R be the subring $\mathbb{Z}[x]$. That is, R is the ring of polynomials in x over \mathbb{Z} (therefore R is Noetherian).
A is the R-module

$$
\mathbf{A}=R+R y
$$

in particular \mathbf{A} is a Noetherian left R-module, thus it is a left Noetherian ring.

Let I be the subgroup of \mathbf{A} generated by $\left\{x^{n} y, n \geq 0\right\}$. Since $l x=l y=0, l$ is a right ideal and thus any system of right R-generators of I is also a system of \mathbb{Z} generators. But l is not finitely generated over \mathbb{Z}

Maximal/Minimal Condition

Definition

M is an R-module with the Maximal Condition (Minimal
Condition) if every subset S of X (set of submodules ordered by inclusion) contains a maximum submodule (minimum submodule).

Proposition

Let M be an R-module. Then
(1) M is Noetherian iff M has the Maximal Condition.
(2) M is Artinian iff M has the Minimal Condition.

Proof

Let S be a set of submodules of M. If S contains no maximal element, we can build an ascending chain

$$
A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{n} \subsetneq \cdots
$$

contradicting the assumption that M is Noetherian. The converse has a similar proof.

Example: If $R=\mathbb{Z}, \mathbb{Z}$ is a Noetherian module, while for every prime number $p, \mathbb{Z}_{p^{\infty}} / \mathbb{Z}$ is Artinian.

Composition Series

Proposition

Let M be an R-module satisfying both chain conditions. Then there exists a chain of submodules

$$
0 \subset M_{1} \subset M_{2} \subset \cdots \subset M_{n-1} \subset M_{n}=M
$$

such that each factor M_{i} / M_{i-1} is a simple module.
Such sequences are called composition series of length n. The existence of one such series is equivalent to M being both Noetherian and Artinian.

Theorem (Jordan-Holder)

All composition series of a module M have the same length (called the length of M and denoted $\lambda(M)$).

Noetherian Module

Proposition

M is a Noetherian R-module iff every submodule is finitely generated.

Proof.

Suppose M is Noetherian. Let us deny. Let A be a submodule of M and assume it is not finitely generated. It would permit the construction of an increasing sequence of submodules of A,

$$
\left(a_{1}\right) \subset\left(a_{1}, a_{2}\right) \subset \cdots \subset\left(a_{1}, a_{2}, \ldots, a_{n}\right) \subset \cdots,
$$

$a_{n+1} \in A \backslash\left(a_{1}, \ldots, a_{n}\right)$.
Conversely if $A_{1} \subseteq A_{2} \subseteq \cdots$ is an increasing sequence of submodules, let $B=\cup_{i \geq 1} A_{i}$ is a submodule and therefore $B=\left(b_{1}, \ldots, b_{m}\right)$. Each $b_{i} \in A_{n_{i}}$ for some n_{i}. If $n=\max \left\{n_{i}\right\}$, $A_{n}=A_{n+1}=\cdots$.

SES

Proposition

Let R be a ring and

$$
0 \rightarrow A \xrightarrow{\mathbf{f}} B \xrightarrow{\mathbf{g}} C \rightarrow 0
$$

be a short exact sequence of R-modules (that is, \mathbf{f} is $1-1, \mathbf{g}$ is onto and Image $\mathbf{f}=\operatorname{ker} \mathbf{g}$). Then B is Noetherian (Artinian) iff A and C are Noetherian (Artinian).

Corollary

If R is a Noetherian (Artinian) ring, then any finitely generated R-module is Noetherian (Artinian).

Proof.

By the proposition, any f.g. free R-module $F=R \oplus \cdots \oplus R$ is Noetherian (Artinian). A f.g. R-module is a quotient of a f.g. free R-module.

Proof

Let $B_{1} \subseteq B_{2} \subseteq \cdots$ be an ascending sequence of submodules of
B. Applying \mathbf{g} to it gives an ascending sequence $\mathbf{g}\left(B_{1}\right) \subseteq \mathbf{g}\left(B_{2}\right) \subseteq \cdots$ of submodules of C.

There is also an ascending sequence of submodules of A by setting $A_{i}=\mathbf{f}^{-1}\left(B_{i}\right)$.
There is n such that both sequences are stationary from that point on: $\mathbf{g}\left(B_{n}\right)=\mathbf{g}\left(B_{n+1}\right)=\cdots$ and
$\mathbf{f}^{-1}\left(B_{n}\right)=\mathbf{f}^{-1}\left(B_{n+1}\right)=\cdots$.
It follows easily that $B_{n}=B_{n+1}=\cdots$.

Outline

(1) Rings and Modules
2. Chain Conditions
(3) Assignment \#6
(4) Prime Ideals

5 Assignment \#7
6 Primary Decomposition
(7) Intro Noetherian Rings

8 Assignment \#8
9 Homework
10) Modules of Fractions

11 Assignment \#9
12 Integral Extensions
(13) Integral Morphisms

14 Assignment \#10
15 TakeHome \#1

Assignment \#6

Define the following composition laws (\oplus and \otimes) on the set \mathbb{Z} :

- For $a, b \in \mathbb{Z}$, set $a \oplus b:=a+b+1$
- For $a, b \in \mathbb{Z}$, set $a \otimes b:=a b+a+b=(a+1)(b+1)-1$

Call the integers with these two operations \mathbb{Z} (read red integers). With proofs, answer the questions:
(1) Is \mathbb{Z} a ring?
(2) If \mathbb{Z} is a ring, is it isomorphic to \mathbb{Z} ?
(3) Define similarly \mathbb{Q} : is it a field?
(9) List all that goes wrong.
(0) Which generalizations occur to you?

Class discussion

Let us prove the following characterization of Noetherian modules over commutative rings:

Definition

Let M be a module over the commutative ring R. The set I of elements $x \in R$ such that $x m=0$ for all $m \in M$ is an ideal called the annihilator of $M, I=$ ann M.

Proposition

M is a Noetherian module if and only if M is finitely generated and $R /$ ann M is a Noetherian ring.

Hints

If a module M is generated by $\left\{m_{1}, \ldots, m_{n}\right\}$ define the following mapping

$$
\mathbf{f}: R \longrightarrow \underbrace{M \oplus \cdots \oplus M}_{\mathrm{n} \text { copies }}, \quad \mathbf{f}(r)=\left(r m_{1}, \ldots, r m_{n}\right)
$$

verify that

- \mathbf{f} is a homomorphism, of kernel ann M
- Form the appropriate embedding of $R /$ ann M into the direct sum of the M's to argue one direction
- Use, for the other direction, that M is also a module over the ring $R /$ ann M

Quotient rings

Let I be a two-sided proper ideal of the R and denote by R / I the corresponding cosets $\{a+l: a \in R\}$.

The quotient ring R / I is defined by the operations:

$$
\begin{aligned}
(a+l)+(b+l) & =(a+b)+l \\
(a+l) \times(b+l) & =a b+l
\end{aligned}
$$

This is a source to many new rings

Examples

$$
\begin{aligned}
(2) \subset \mathbb{Z} & \Rightarrow \mathbb{Z}_{2}=\mathbb{Z} /(2) \\
\left(x^{2}+x+1\right) \subset \mathbb{Z}_{2}[x] & \Rightarrow \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)=\mathbf{F}_{4} \\
\left(x^{2}+1\right) \subset \mathbb{R}[x] & \Rightarrow \mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right) \\
(1+3 i) \subset \mathbb{Z}[i] & \Rightarrow \mathbb{Z}_{10}=R=\mathbb{Z}[i] /(1+3 i)
\end{aligned}
$$

$\mathbb{Z}[i] /(1+3 i) \simeq \mathbb{Z} /(10)$

Consider the homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}[i] \rightarrow R=\mathbb{Z}[i] /(1+3 i)$ induced by the embedding of \mathbb{Z} in $\mathbb{Z}[i]$. We claim that φ is a surjection of kernel 10Z:

$$
\begin{gathered}
1+3 i \equiv 0 \Rightarrow i(1+3 i) \equiv 0 \Rightarrow i-3 \equiv 0 \Rightarrow i \equiv 3 \\
a+b i \equiv a+3 b \Rightarrow \varphi \text { is surjection }
\end{gathered}
$$

For n in kernel of φ,

$$
\begin{aligned}
n & =z(1+3 i)=(a+b i)(1+31) \\
& =(a-3 b)+\underbrace{(3 a+b) i}_{=0} \Rightarrow b=-3 a \\
& =10 a
\end{aligned}
$$

Circle ring

Let $R=\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$: the circle ring

- Consider the natural homomorphism
$\mathbf{f}: \mathbb{R}[x, y] \longrightarrow \mathbb{R}[\cos t, \sin t], \quad \mathbf{f}(x)=\cos t, \mathbf{f}(y)=\sin t$
$\mathbb{R}[\cos t, \sin t]$ is the ring of trigonometric polynomials.
- $\mathbf{f}\left(x^{2}+y^{2}-1\right)=0$ so there is an induced surjection

$$
\varphi: \mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right) \rightarrow \mathbb{R}[\cos t, \sin t]
$$

- φ is an isomorphism because: (i) $\mathbb{R}[\cos t, \sin t]$ is an infinite dimensional \mathbb{R}-vector space (why?); for any ideal L larger than $\left(x^{2}+y^{2}-1\right), \mathbb{R}[x, y] / L$ is a finite dimensional \mathbb{R}-vector space (why?).
- The circle ring $R=\mathbb{R}[\cos t, \sin t]$ contains as a subring $S=\mathbb{R}[\cos t]$. S is isomorphic to a polynomial ring over \mathbb{R}. As an S-module, R is generated by two elements

$$
R=S \cdot 1+S \cdot \sin t
$$

- R as a \mathbb{R}-vector space has basis
$\{\sin n t, \cos n t, \quad n \in \mathbb{Z}\}$

$\mathbb{R}[x, y] /(x y)$

Exercise: Prove that

$$
\mathbb{R}[x, y] /(x y) \simeq\{(p(x), q(y)): p(0)=q(0))\}
$$

Hint: Consider the homomorphism

$$
\begin{gathered}
\varphi: \mathbb{R}[x, y] /(x y) \rightarrow \mathbb{R}[x, y] /(y) \times \mathbb{R}[x, y] /(x) \\
\varphi(a+(x y))=(a+(y), a+(x))
\end{gathered}
$$

Check that φ is one-one and determine its image.

Integral domains

Let R be a commutative ring

- $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- $a \in R$ is a zero divisor if there is $0 \neq b \in R$ such that $a b=0$
- $a \in R$ is nilpotent if there is $n \in \mathbb{N}$ such that $a^{n}=0$
- R is an integral domain if 0 is the only zero divisor, in other words, if $a, b \in R$ are not zero, then $a b \neq 0$.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
(4) Prime Ideals
(5. Assignment \#7

6 Primary Decomposition
7 Intro Noetherian Rings
8. Assignment \#8

9 Homework
10 Modules of Fractions
(11) Assignment \#9

12 Integral Extensions
13 Integral Morphisms
(14) Assignment \#10

15 TakeHome \#1

Studying a commutative ring

Prime Ideals

Definition

Let R be a commutative ring. An ideal P of R is prime if $P \neq R$ and whenever $a \cdot b \in P$ then $a \in P$ or $b \in P$.

Equivalently:

- R / P is an integral domain
- If I and J are ideals and $I \cdot J \subset P$ then $I \subset P$ or $J \subset P$

Prime ideals arise in issues of factorization and very importantly:

Proposition

Let $\varphi: R \rightarrow S$ be a homomorphism of commutative ring. If S is an integral domain, then $P=\operatorname{ker}(\varphi)$ is a prime ideal. More generally, if S is an arbitrary commutative ring and Q is a prime ideal, then $P=\varphi^{-1}(Q)$ is a prime ideal of R.

Proof. Inspect the diagram

Exercise

Consider the homomorphism of rings

$$
\begin{aligned}
\varphi: k[x, y, z] & \rightarrow k[t] \\
x & \rightarrow t^{3} \\
y & \rightarrow t^{4} \\
z & \rightarrow t^{5}
\end{aligned}
$$

Let P be the kernel of this morphism. Note that $x^{3}-y z, y^{2}-x z$ and $z^{2}-x^{2} y$ lie in P.

Task: Prove that P is generated by these 3 polynomials.
Task: Describe the prime ideals of the ring

$$
R=\mathbb{C}[x, y] /\left(y^{2}-x(x-1)(x-2)\right) .
$$

Multiplicative Sets

Definition

A subset S of a commutative ring is multiplicative if $S \neq \emptyset$ and if $r, s \in S$ then $r \cdot s \in S$.

- If P is a prime ideal of $R, S=R \backslash P$ is a multiplicative set.
- If I is a proper ideal of R, then

$$
S=\{1+a: a \in l\}
$$

is a multiplicative set.

Formation of Prime Ideals

Proposition

Let S be a multiplicative set and P an ideal maximum with respect $S \cap P=\emptyset$. Then P is a prime ideal.

Proof. Deny: let $a, b \notin P, a b \in P$.
Consider the ideals $P+R a$ and $P+R b$. They are both larger than P and therefore meet S :

$$
x+p a, y+q b \in S, \quad x, y \in P
$$

Multiplying we get

$$
(x+p a)(y+q b)=x y+x q b+y q b+p q a b \in S \cap P
$$

a contradiction.

Corollary

Every proper ideal I of a commutative ring is contained in a prime ideal.

Proof. Let $S=\{1\}$. Among all proper ideals $I \subseteq J$ pick one that is maximum with respect being disjoint relative to S (use Zorn's Lemma; no need if R is Noetherian).

Primary Ideal

Definition

Let R be a commutative ring. An ideal Q of R is primary if $Q \neq R$ and whenever $a \cdot b \in Q$ then $a \in Q$ or some power $b^{n} \in Q$.

Example: $Q=\left(x^{2}, y\right) \subset R=k[x, y]$, or $\left(p^{n}\right) \subset \mathbb{Z}$. This is a far-reaching generalization of the notion of primary ideals of \mathbb{Z}

Radical of an Ideal

Definition

Let I be an ideal of the commutative ring R. The radical of I is the set

$$
\sqrt{I}=\left\{x \in R: x^{n} \in I \quad \text { some } n=n(x)\right\} .
$$

Proposition

\sqrt{I} is an ideal.

Proof.

If $a, b \in \sqrt{I}, a^{m} \in I, b^{n} \in I$, then

$$
(a+b)^{m+n-1}=\sum_{i+j=m+n-1}\binom{m+n-1}{i} a^{i} b^{j} \in I
$$

since $i \geq m$ or $j \geq n$.

Proposition

If I is a proper ideal of R,

$$
\sqrt{I}=\bigcap P, \quad I \subseteq P \quad P \text { prime ideal. }
$$

Proof.

Deny it: Let $x \in \bigcap P \backslash \sqrt{I}$, that is for all $n, x^{n} \notin I$.
The set $\left\{x^{n}, n \in \mathbb{N}\right\}$ defines a multiplicative set S disjoint from I. By a previous proposition, there is a prime $P \supset I$ disjoint from S, a contradiction.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
4. Prime Ideals
(5) Assignment \#7
6. Primary Decomposition

7 Intro Noetherian Rings
8 Assignment \#8
(9 Homework
10 Modules of Fractions
11 Assignment \#9
(12) Integral Extensions

13 Integral Morphisms
14 Assignment \#10
(15) TakeHome \#1

Assignment \#7

A Boolean ring is a ring R such that $x^{2}=x$ for all $x \in R$. For instance, an arbitrary direct product of copies of $\mathbb{Z} /(2)$. If R is a Boolean ring:
(1) Prove that R is commutative and that for every prime ideal $P, R / P$ is a field.
(2) Prove that every finitely generated ideal $/$ of R is principal (Hint: check that in a boolean ring, $a+b-a b$ is a multiple of both a and b).
(3) If R is finite, show that R is a finite direct product of copies of $\mathbb{Z} /(2)$.

Idempotents

Proposition

Let R be a commutative ring and $0 \neq e \in R$ satisfy $e=e^{2}$. Then there is a decomposition R into the direct product of rings $R \simeq R e \times R(1-e)$.

Proof.

(1) For any $x \in R, x=x e+x(1-e)$, so $R e+R(1-e)=R$. Furthermore if $a \in R e \cap R(1-e)$, then a is annihilated by $1-e$ and e, respectively. This means that $R=R e \oplus R(1-e)$ as modules.
(2) Since $R e \cdot R(1-e)=0$, we can view $R=R e \oplus R(1-e)$ as $R=R e \times R(1-e)$. Note that e is the identity in the ring $R e$, and $1-e$ in $R(1-e)$.

Outline

(1) Rings and Modules

2 Chain Conditions
3. Assianment \#6
4. Prime Ideals
5. Assignment \#7

6 Primary Decomposition
(7) Intro Noetherian Rings

8 Assignment \#8
9 Homework
t0) Modules of Fractions
11 Assignment \#9
12 Integral Extensions
(13) Integral Morphisms

14 Assignment \#10
15 TakeHome \#1

Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg

Irreducible Ideal/Module

Definition

The ideal $/$ of the commutative ring R is irreducible if

$$
I=J \cap L \Rightarrow I=J \quad \text { or } \quad I=L .
$$

Primary Decomposition

Theorem (Emmy Noether)

Every proper ideal I of a Noetherian ring R has a finite decomposition

$$
I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}
$$

with Q_{i} primary.
To prove her theorems, Emmy Noether often proved a special case and derive the more general assertion, or proved a more general assertion and specialize.

Irreducible decomposition

Definition

The ideal $/$ of the commutative ring R is irreducible if

$$
I=J \cap L \Rightarrow I=J \quad \text { or } \quad I=L .
$$

Theorem (Emmy Noether)

Every proper ideal I of a Noetherian ring R has a finite decomposition

$$
I=J_{1} \cap J_{2} \cap \cdots \cap J_{n},
$$

with J_{i} irreducible. Moreover, every irreducible ideal J of R is primary.

Famous Proof

Proof. Deny the existence of the decomposition of $/$ as a finite intersection of irreducible ideals. Among all such ideals, denote by (keep the notation) I a maximum one.
l is not irreducible, so there is

$$
I=J \cap L,
$$

with J and L properly larger. But then each admits finite decompositions as intersection of irreducible ideals. Combining we get a contradiction.

Irreducible \Rightarrow Primary

(1) Deny that proper irreducible ideals of Noetherian rings are primary. Let / be maximum such: There is $a, b \in R, a b \in I$, $a \notin I$ and $b^{n} \notin I$ for all $n \in \mathbb{N}$.
(2) Consider the chain

$$
\{r \in R: b r \in I\}=I: b \subseteq I: b^{2} \subseteq \cdots \subseteq I: b^{n} \subseteq I: b^{n+1}
$$

that becomes stationary at $I: b^{n}=I: b^{n+1}$.
(3) Define $J=I: b^{n}$ and $L=\left(I, b^{n}\right)$. Both ideals are larger than I. We claim that $I=J \cap L$.
(9) If $x \in J \cap L, x=u+r b^{n}, u \in I$. Then $b^{n} x=b^{n} u+r b^{2 n} \in I$, so $r b^{n} \in I$ and therefore $x \in I$.

Irredundant Primary Decomposition

A refinement in the primary decomposition

$$
I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}
$$

arises as follows. Suppose two of the Q_{i} have the same radical, say $\sqrt{Q_{1}}=\sqrt{Q_{2}}=P$. Then it easy to check that $Q_{1} \cap Q_{2}$ is also P-primary. So collecting the Q_{i} with the same radical:

Theorem (Emmy Noether)

Every proper ideal I of a Noetherian ring R has a finite decomposition

$$
I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n},
$$

with Q_{i} primary ideals of distinct radicals. This decomposition is called irredundant.

It is known which Q_{i} are unique and which are not.

Outline

(1) Rings and Modules

2 Chain Conditions
3. Assignment \#6
4. Prime Ideals

5 Assignment \#7
6 Primary Decomposition
(7) Intro Noetherian Rings
(8) Assignment \#8

9 Homework
10 Modules of Fractions
(11) Assignment \#9

12 Integral Extensions
13 Integral Morphisms
(14) Assignment \#10

15 TakeHome \#1

David Hilbert (1862-1943)

And modest too...
"Physics is much too hard for physicists." - Hilbert, 1912

Hilbert Basis Theorem

Theorem (HBT)

If R is Noetherian then $R[x]$ is Noetherian.
(1) If R is Noetherian and x_{1}, \ldots, x_{n} is a set of independent indeterminates, then $R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.
(2) $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.
(3) If k is a field, then $k\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.

Finitely Generated Algebras

If R is a commutative ring, a finitely generated R-algebra S is a homomorphic image of a ring of polynomials, $S=R\left[x_{1}, \ldots, x_{n}\right] / L$. If R is Noetherian, S is Noetherian as well. This is useful in many constructions.
If $/$ is an R-ideal, the Rees algebra of $/$ is the subring of $R[t]$ generated by all $a t, a \in I$. It it denoted by $S=R[t t]$. In general, subrings of Noetherian rings may not be Noetherian but Rees algebras are:

Exercise: If R is Noetherian, for every ideal $I, R[t]$ is Noetherian.

Proof of the HBT

Suppose the $R[x]$-ideal / is not finitely generated. Let $0 \neq f_{1}(x) \in I$ be a polynomial of smallest degree,

$$
f_{1}(x)=a_{1} x^{d_{1}}+\text { lower degree terms. }
$$

Since $I \neq\left(f_{1}(x)\right)$, let $f_{2}(x) \in \Lambda \backslash\left(f_{1}(x)\right)$ of least degree. In this manner we get a sequence of polynomials

$$
\begin{gathered}
f_{i}(x)=a_{i} x^{d_{i}}+\text { lower degree terms }, \\
f_{i}(x) \in ハ \backslash\left(f_{1}(x), \ldots, f_{i-1}(x)\right), \quad d_{1} \leq d_{2} \leq d_{3} \leq \ldots
\end{gathered}
$$

Set $J=\left(a_{1}, a_{2}, \ldots,\right)=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \subseteq R$

Let $f_{m+1}(x)=a_{m+1} x^{d_{m+1}}+$ lower degree terms. Then

$$
a_{m+1}=\sum_{i=1}^{m} s_{i} a_{i}, \quad s_{i} \in R .
$$

Consider

$$
\mathbf{g}(x)=f_{m+1}-\sum_{i=1}^{m} s_{i} x^{d_{m+1}-d_{i}} f_{i}(x)
$$

$\mathbf{g}(x) \in I \backslash\left(f_{1}(x), \ldots, f_{m}(x)\right)$, but $\operatorname{deg} \mathbf{g}(x)<\operatorname{deg} f_{m+1}(x)$, which is a contradiction.

Power Series Rings

Another construction over a ring R is that of the power series ring $R[[x]]$:

$$
\mathbf{f}(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \mathbf{g}(x)=\sum_{n \geq 0} b_{n} x^{n}
$$

with addition component wise and multiplication the Cauchy operation

$$
\begin{aligned}
\mathbf{f}(x) \mathbf{g}(x)=\mathbf{h}(x) & =\mathbf{h}(x)=\sum_{n \geq 0} c_{n} x^{n} \\
c_{n} & =\sum_{i+j=n} a_{i} b_{n-i}
\end{aligned}
$$

Theorem

If R is Noetherian then $R[[x]]$ is Noetherian.

Proposition

A commutative ring R is Noetherian iff every prime ideal is finitely generated.

Proof. If R is not Noetherian, there is an ideal / maximum with the property of not being finitely generated (Zorn's Lemma). We assume I is not prime, that is there exist $a, b \notin I$ such that $a b \in I$.

The ideals (I, a) and I : a are both larger than I and therefore are finitely generated:

$$
\begin{aligned}
(I: a) & =\left(a_{1}, \ldots, a_{n}\right) \\
(I, a) & =\left(b_{1}, \ldots, b_{m}, a\right), \quad b_{i} \in I
\end{aligned}
$$

Claim: $I=\left(b_{1}, \ldots, b_{m}, a a_{1}, \ldots, a a_{n}\right)$
If $c \in I$,

$$
c=\sum_{i=1}^{m} c_{i} b_{i}+r a, \quad r \in I: a
$$

$R[[x]]$ is Noetherian

Proof. Let P be a prime ideal of $R[[x]]$. Set $\mathfrak{p}=P \cap R$. \mathfrak{p} is a prime ideal of R and therefore it is finitely generated.

Denote by $\mathfrak{p}[[x]]=\mathfrak{p} R[[x]]$ the ideal of $R[[x]]$ generated by the elements of \mathfrak{p}. It consists of the power series with coefficients in \mathfrak{p} and $R[[x]] / \mathfrak{p}[[x]]$ is the power series ring $R / \mathfrak{p}[[x]]$.
We have the embedding

$$
P^{\prime}=P / \mathfrak{p}[[x]] \hookrightarrow(R / \mathfrak{p})[[x]]
$$

P^{\prime} is a prime ideal of $R / \mathfrak{p}[[x]]$ and $P^{\prime} \cap R / \mathfrak{p}=0$. It will suffice to show that P^{\prime} is finitely generated.

We have reduced the proof to the case of a prime ideal $P \subset R[[x]]$ and $P \cap R=(0)$.
If $x \in P, P=(x)$ and we are done.
For $\mathbf{f}(x)=a_{0}+a_{1} x+\cdots \in P$, let $J=\left(b_{1}, \ldots, b_{m}\right) \subset R$ be the ideal generated by all a_{0},

$$
\mathbf{f}_{i}=b_{i}+\text { higher terms } \in P .
$$

Claim: $P=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$.
From $a_{0}=\sum_{i} s_{i}^{(0)} b_{i}$, we write

$$
\mathbf{f}(x)-\sum_{i} s_{i}^{(0)} \mathbf{f}_{i}=x \mathbf{h} \quad \Rightarrow \mathbf{h} \in P .
$$

We repeat with \mathbf{h} and write

$$
\mathbf{f}(x)=\sum_{i} s_{i}^{(0)} \mathbf{f}_{i}+x \sum_{i} s_{i}^{(1)} \mathbf{f}_{i}+x^{2} \mathbf{g}, \quad \mathbf{g} \in P
$$

Iterating we obtain

$$
\mathbf{f}(x)=\sum_{i}\left(s_{i}^{(0)}+s_{i}^{(1)} x+s_{i}^{(2)} x^{2}+\cdots\right) \mathbf{f}_{i} .
$$

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
(4) Prime Ideals

5 Assignment \#7
6 Primary Decomposition
7 Intro Noetherian Rings
8 Assignment \#8
($)$ Homework
10 Modules of Fractions
11 Assignment \#9
(12) Integral Extensions

13 Integral Morphisms
14 Assignment \#10
15 TakeHome \#1

Assignment \#8

Do 2 problems.
(1) Show that the kernel of the homomorphism (\mathbf{K} is a field)

$$
\varphi: \mathbf{K}[x, y, z] \longrightarrow \mathbf{K}[t]
$$

defined by $\varphi(x)=t^{3}, \varphi(y)=t^{4}$ and $\varphi(z)=t^{5}$, is generated by the polynomials

$$
x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y
$$

(2) Let R be a Noetherian ring and let I be an R-ideal. Show that the number of prime ideals P minimal over l is finite. (Hint: primary decomposition helps.)
(3) Describe all rings $\mathbb{Z} \subset R \subset \mathbb{Q}$ (Hint: For each R, consider the set of primes p of \mathbb{Z} that blowup in R, that is, $p R=R$).
(4) Let $\varphi: M \longrightarrow M$ be an endomorphism of a R-module. Prove that if M is Noetherian (resp. Artinian) and φ is surjective (resp. injective) then φ is an isomorphism.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
(4) Prime Ideals

5 Assignment \#7
6 Primary Decomposition
7) Intro Noetherian Rings
8. Assignment \#8
(9) Homework
(10) Modules of Fractions

11 Assignment \#9
12 Integral Extensions
(13) Integral Morphisms

14 Assignment \#10
15 TakeHome \#1

Homework

(1) Find the kernel of the homomorphism (\mathbf{K} is a field)

$$
\varphi: \mathbf{K}[x, y, z] \longrightarrow \mathbf{K}[t],
$$

defined by $\varphi(x)=t^{4}, \varphi(y)=t^{5}$ and $\varphi(z)=t^{7}$. What do you think is true in general?
(2) Show that $R=\mathbb{C}[x, y] /\left(y^{2}-x(x-1)(x-2)\right)$ is a Dedekind domain. [Show that $y^{2}-x(x-1)(x-2)$ is irreducible, use the Nullstellensatz to describe the maximal ideals of R, and show that for each such ideal P, R_{P} is a discrete valuation domain.]
(3) If R is a Dedekind domain, prove that for each nonzero ideal $I, R / I$ is a principal ideal ring. Derive from this the fact that every ideal of R can be generated by 2 elements.
(9) Show that an invertible ideal of a local integral domain is principal.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
4. Prime Ideals

5 Assignment \#7
6 Primary Decomposition
7 Intro Noetherian Rings
8. Assignment \#8

9 Homework
(10) Modules of Fractions
11) Assignment \#9

12 Integral Extensions
13 Integral Morphisms
14. Assignment \#10

15 TakeHome \#1

Modules of Fractions

Let R be a commutative ring, M an R-module and $S \subseteq R$ a multiplicative system.

On the set $M \times S$ define the following relation:

$$
(a, r) \sim(b, s) \Leftrightarrow \exists t \in S: t(a s-b r)=0
$$

Why define it in this manner instead of the usual $a s=b r$?

Proposition

~ is an equivalence relation.
We focus on the properties of the set $S^{-1} M$ of equivalence classes. Actually, this is the initial step in the construction of a remarkable functor.

Properties

Proposition

Let R be a commutative ring, M an R-module and $S \subseteq R$ a multiplicative system. Denote the equivalence class of (a, r) in $S^{-1} M$ by $\overline{(a, r)}$ (or simply (a, r) or even a / r).
(1) The following operation is well-defined

$$
\overline{(a, r)}+\overline{(b, s)}=\overline{(s a+r b, r s)},
$$

and endows $S^{-1} M$ with a structure of abelian group.
(2) If $0 \notin S$, this construction applied to $R \times S$ gives rise to a ring structure on $S^{-1} R$ with multiplication
$\overline{(x, r)} \cdot \overline{(y, s)}=\overline{(x y, r s)}$.
(3) For $\overline{(x, r)} \in S^{-1} R$ and $\overline{(a, s)} \in S^{-1} M$, the operation $\overline{(x, r)} \cdot \overline{(a, s)}=\overline{(x a, r s)}$ defines an $S^{-1} R$-module structure on $S^{-1} M$.

Module/Ring of Fractions

$S^{-1} R$ is called the ring of fractions of R relative to S. It is a refinement (due to Grell or Krull) of the classical formation of the field of fractions of an integral domain.
$S^{-1} M$ is called the module of fractions of M relative to S.
Another step:

Proposition

If $\varphi: M \rightarrow N$ is a homomorphism of R-modules, a homomorphism of $S^{-1} R$ modules $S^{-1} \varphi: S^{-1} M \rightarrow S^{-1} N$ is defined by

$$
\left(S^{-1} \varphi\right)(a, s)=(\varphi(a), s)
$$

Functorial Properties

This construction is a functor from the category of R-modules to the category of $S^{-1} R$-modules:

Proposition

If $\varphi: M \rightarrow N$ and $\psi: N \rightarrow P$ are R-homomorphisms of R-modules, then
(1) $S^{-1}(\psi \circ \varphi)=S^{-1} \psi \circ S^{-1} \varphi$.
(2) $S^{-1}\left(i d_{M}\right)=i d_{S^{-1} M}$.

Short Exact Sequences

Proposition

Let R be a ring, $S \subseteq R$ a multiplicative set and

$$
0 \rightarrow A \xrightarrow{\mathbf{f}} B \xrightarrow{\mathbf{g}} C \rightarrow 0
$$

a short exact sequence of R-modules. Then

$$
0 \rightarrow S^{-1} A \xrightarrow{S^{-1}} S^{-1} B \xrightarrow{S^{-1} \mathbf{g}} S^{-1} C \rightarrow 0
$$

is a short exact sequence of $S^{-1} R$-modules. In other words, $M \rightsquigarrow S^{-1} M$ is an exact functor.

The submodules of $S^{-1} M$

Proposition

Let L^{\prime} be a $S^{-1} R$-submodule of $S^{-1} M$. Let

$$
L=\left\{m \in M: \text { for some } s \in S \quad(m, s) \in L^{\prime} .\right.
$$

Then L is a submodule of M and $S^{-1} L=L^{\prime}$.

Corollary

If M is a Noetherian (Artinian) R-module, then $S^{-1} M$ is a Noetherian (Artinian) $S^{-1} R$-module.

The ideals of $S^{-1} R$

According to the above, the proper ideals of $S^{-1} R$ are of the form

$$
S^{-1} I=\{a / s: a \in I \quad s \in S, \quad I \cap S=\emptyset .\}
$$

In the special case of $S=R \backslash \mathfrak{p}$, for a prime ideal \mathfrak{p}, one uses the notation $M_{\mathfrak{p}}$ for the module of fractions and $R_{\mathfrak{p}}$ for the ring of fractions.

If $R=\mathbb{Z}$ and $\mathfrak{p}=(2), \mathbb{Z}_{(2)}$ consists of all rational numbers m / n, with n odd. Its ideals are ordered. The largest proper ideal is $\mathfrak{m}=2 \mathbb{Z}_{(2)}$ and the others

$$
\mathbb{Z}_{(2)} \supsetneq \mathfrak{m} \supsetneq \mathfrak{m}^{2} \supsetneq \mathfrak{m}^{3} \supsetneq \cdots \supsetneq(0)
$$

Tool

Proposition

If R is a commutative ring and S is a multiplicative set, then for any two submodules A and B of M,

$$
S^{-1}(A \cap B)=S^{-1} A \cap S^{-1} B .
$$

Proof.

The intersection $A \cap B$ can be defined by the exact sequence

$$
0 \rightarrow A \cap B \longrightarrow A \oplus B \xrightarrow{\varphi} A+B \rightarrow 0,
$$

where $\varphi(a, b)=a-b$.
Now apply the fact that formation of modules of fractions is an exact functor.

Local Ring

Proposition

Let S be a multiplicative set of R. The ideal L of $S^{-1} R$ is prime iff $L=S^{-1} I$, for some prime I ideal of R with $I \cap S=\emptyset$.

Proof. Suppose I is as above. If $a / r \cdot b / s \in S^{-1} I$, $(a b, r s) \sim(c, t)$ for $c \in I, r, s, t \in S$. By definition, there is $u \in S$ such that $u(t a b-r s c)=0$. Since $S \cap I=\emptyset, t a b-r s c \in I$ and therefore $t a b \in I$. Thus $a b \in I$ and so $a \in I$ or $b \in I$. Therefore (a, r) or $(b, s) \in S^{-1} l$.

Corollary

The prime ideals of $R_{\mathfrak{p}}$ have the form $P=Q_{\mathfrak{p}}$, where Q is an ideal of R contained in \mathfrak{p}.

Local Ring

Definition

A commutative ring R is a local ring if it has a unique maximal ideal.

Example

If k is a field, $R=k[[x]]$, the ring of formal power series in x over k is a local ring. Its unique maximal ideal is $\mathfrak{m}=(x)$.

Definition

If R is a commutative ring and P a prime ideal, the ring of fractions R_{P} is a local ring called the localization of R at P.

The Prime Spectrum of a Ring

Definition

Let R be a commutative ring (with 1). The set of prime ideals of R is called the prime spectrum of R, and denoted $\operatorname{Spec}(R)$.
$\operatorname{Spec}(\mathbb{Z})=\{(0),(2),(3), \ldots\}$, the ideals generated by the prime integers and 0.

Proposition

For each set $I \subset R$, set

$$
V(I)=\{\mathfrak{p} \in \operatorname{Spec}(R): I \subset \mathfrak{p}\}
$$

These subsets are the closed sets of a topology on $\operatorname{Spec}(R)$.
Note that $V(I)=V\left(I^{\prime}\right)$, where I^{\prime} is the ideal of R generated by I.

Zariski Topology

Proof. This follows from the properties of the construction of the $V(I)$:

$$
\begin{aligned}
V(1) & =\emptyset \\
V(0) & =\operatorname{Spec}(R) \\
V(I \cap J) & =V(I) \cup V(J) \\
\bigcap_{\alpha} V\left(I_{\alpha}\right) & =V\left(\bigcup_{\alpha} I_{\alpha}\right) .
\end{aligned}
$$

Example

Suppose $R_{2}, R_{2}, \ldots, R_{n}$ are commutative rings and $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ is their direct product. Observe:
(1) If $1=e_{1}+e_{2}+\cdots+e_{n}, e_{i} \in R_{i}$, then $R_{i}=R e_{i}$ and $e_{i} e_{j}=0$ if $i \neq j$
(2) Because of $e_{i} e_{j}=0$ for $i \neq j$, if P is a prime ideal of R and some $e_{i} \notin P$ then the other $e_{j} \in P$. This shows $P=R_{1} \times \cdots \times P_{i} \times \cdots \times R_{n}$, where P_{i} is a prime ideal of $R_{i}, R / P=R_{i} / P_{i}$
(3) $\operatorname{Spec}(R)=\operatorname{Spec}\left(R_{1}\right) \cup \cdots \cup \operatorname{Spec}\left(R_{n}\right)$
(9) In particular, if $R_{1}=R_{2}=\cdots=R_{n}=\mathbf{K}, \mathbf{K}$ a field, the $\operatorname{Spec}(R)$ is a set of n points with the discrete topology.

Irreducible Representation

Proposition

Let I be an ideal of the Noetherian ring R and let

$$
I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n},
$$

be a primary representation. Then

$$
V(I)=V\left(P_{1}^{\prime}\right) \cup V\left(P_{2}^{\prime}\right) \cup \cdots \cup V\left(P_{m}^{\prime}\right),
$$

where the P_{j}^{\prime} are the minimal primes amongst the $\sqrt{Q_{i}}$, is the unique irreducible representation of $V(I)$.

Morphisms

Proposition

If R is a commutative ring, $\operatorname{Spec}(R)$ is quasi-compact. (Not necessarilly Hausdorff.)

Proof.

Let $\left\{D\left(I_{\alpha}\right)\right\}$ be an open cover of X

$$
X=\bigcup_{\alpha} D\left(I_{\alpha}\right)=\sum_{\alpha} I_{\alpha}=D(1) .
$$

This means that there is a finite sum

$$
\sum_{1}^{n} I_{\alpha_{i}}=R, \quad \text { and therefore } X=\bigcup_{i=1}^{n} D\left(I_{\alpha_{i}}\right)
$$

Proposition

If $\varphi: R \rightarrow S$ is a homomorphism of commutative rings
$\left(\varphi\left(1_{R}\right)=1_{S}\right)$, then the mapping

$$
\Phi: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R),
$$

given by $\Phi(Q)=\varphi^{-1}(Q)$, is continuous.

Proof.

If $D(I)$ is an open set of $\operatorname{Spec}(R), \varphi^{-1}(D(I))=D(I S)$.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
4. Prime Ideals

5 Assignment \#7
6 Primary Decomposition
7 Intro Noetherian Rings
8 Assignment \#8
9 Homework
10 Modules of Fractions
(11) Assignment \#9
(12) Integral Extensions

13 Integral Morphisms
14 Assignment \#10
15 TakeHome \#1

Assignment \#9

Do 1 problem.
For the ring $R=\mathbb{Z}[\mathbf{T}]$
(1) Describe (with proofs) its prime ideals, that is the points of Spec (R).
(2) Describe (with proofs) its maximal ideals, that is the closed points of Spec (R).

- Let \mathbb{X} be a compact, Hausdorff space and denote by \mathbf{A} the ring of real continuous functions on \mathbb{X}.
- If M is a maximal ideal of \mathbf{A} prove that there is a point $p \in \mathbb{X}$ such that $M=\{\mathbf{f}(\mathbf{x}) \in \mathbf{A}: \mathbf{f}(p)=0\}$.
- Prove that there is a homeomorphism of topological spaces $\mathbb{X} \approx \operatorname{MaxSpec}(\mathbf{A})$.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
4. Prime Ideals

5 Assignment \#7
6. Primary Decomposition
(7) Intro Noetherian Rings
8. Assignment \#8

9 Homework
(10) Modules of Fractions
(1) Assignment \#9
(12) Integral Extensions
(13) Integral Morphisms

14 Assignment \#10
15 TakeHome \#1

Integral Extensions

Let $R \hookrightarrow S$ be commutative rings.

Definition

$s \in S$ is integral over R if there is an equation

$$
s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}=0, \quad a_{i} \in R
$$

Proposition

$s \in S$ is integral over R if and only if the subring $R[s]$ of S generated by s is a finitely generated R-module.

Would like to prove [as done first by Weierstrass] that if s_{1} and s_{2} in S are integral over R then

- $s_{1}+s_{2}$ is integral over R;
- $s_{1} s_{2}$ is integral over R.

The key to their proof is the fact that both $s_{1}+s_{2}$ and $s_{1} s_{2}$ are elements of the subring $R\left[s_{1}, s_{2}\right]$ which is finitely generated as an R-module

$$
R\left[s_{1}, s_{2}\right]=\sum_{i, j} R s_{1}^{i} s_{2}^{j}
$$

where i and j are bounded by the degrees of the equations satisfied by s_{1} and s_{2}.

Integrality Criterion

Proposition

Let M be a finitely generated R-module and $S=R[u]$ a ring such that $u M \subset M$. If M is a faithful S-module then u is integral over R.

Proof. Let x_{1}, \ldots, x_{n} be a set of R-generators of M. we have a set of relations with $a_{i j} \in R$

$$
\begin{aligned}
u x_{1} & =a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
& \vdots \\
u x_{n} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

Cayley-Hamilton

That is

$$
\begin{aligned}
0 & =\left(a_{11}-u\right) x_{1}+\cdots+a_{1 n} x_{n} \\
& \vdots \\
0 & =a_{n 1} x_{1}+\cdots+\left(a_{n n}-u\right) x_{n}
\end{aligned}
$$

Which we rewrite in matrix form

$$
\left[\begin{array}{lll}
a_{11}-u & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}-u
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right]=\mathbf{A}[\mathbf{x}]=O .
$$

Thus

$$
(\operatorname{adj} \mathbf{A}) \mathbf{A}[\mathbf{x}]=\operatorname{det} \mathbf{A} \cdot[\mathbf{x}]=\mathbf{O} .
$$

This means that $\operatorname{det} \mathbf{A}$ annihilates each generator x_{i} of M and therefore $\operatorname{det} \mathbf{A}=0$.

But
$\operatorname{det} \mathbf{A}= \pm u^{n}+$ lower powers of u with coefficients in R
This shows that u is integral over R.

Principle of Specialization

Why are we allowed to write $\operatorname{adj} \mathbf{A} \cdot \mathbf{A}=\operatorname{det} \mathbf{A} \cdot I$ when the entries of \mathbf{A} lie in a commutative ring?

If $T=\mathbb{Z}\left[x_{i j}, 1 \leq i, j \leq n\right]$ is a ring of polynomials in the indeterminates $x_{i j}$, and use them as the entries of a matrix \mathbf{B}, certainly the formula adj $\mathbf{B} \cdot \mathbf{B}=\operatorname{det} \mathbf{B} \cdot \mathbf{I}$ makes sense since T lies in a field.

Now define a ring homomorphism $\phi: T \rightarrow R$, with $\phi\left(x_{i j}\right)$ the corresponding entry in \mathbf{A}, to get the desired equality.

In our application, $M=R\left[s_{1}, s_{2}\right]$ and u is either $s_{1}+s_{2}$ or $s_{1} s_{2}$, and certainly M is faithful since $1 \in M$.

Corollary

If $R \hookrightarrow S$ are commutative rings, and $s_{1}, s_{2}, \ldots, s_{n}$ are integral over R, then any element of $R\left[s_{1}, \ldots, s_{n}\right]$ is integral over R. Moreover, if T is the set of elements of S integral over R, T is a subring. It is called the integral closure of R in S.

Definition

If $T=S, S$ is called an integral extension of R.

Transitivity

Proposition

If $R \hookrightarrow S_{1} \hookrightarrow S_{2}$ are commutative rings with S_{1} integral over R and S_{2} integral over S_{1}, then S_{2} is integral over R.

Proof. Let $u \in S_{2}$ be integral over S_{1}

$$
u^{n}+s_{n-1} u^{n-1}+\cdots+s_{1} u+s_{0}=0, \quad s_{i} \in S_{1} .
$$

It suffices to observe that

$$
M=R\left[u, s_{n-1}, \ldots, s_{1}, s_{0}\right]
$$

is a finitely generated R-module.

Surjections

Another use of the Cayley-Hamilton theorem is the following property of surjective epimorphims of modules:

Theorem

Let R be a commutative ring and M a finitely generated R. If $\varphi: M \rightarrow M$ is a surjective R-module homomorphism, then φ is an isomorphism.

Proof. We first turn M into a module over the ring of polynomials $S=R[t]$ by setting $t \cdot m=\varphi(m)$ for $m \in M$.

The assumption means that $t M=M$. Using the proof of Cayley-Hamilton, we have

$$
\left[\begin{array}{lll}
t a_{11}-1 & \cdots & t a_{1 n} \\
\vdots & \ddots & \vdots \\
t a_{n 1} & \cdots & t a_{n n}-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right]=\mathbf{A}[\mathbf{x}]=0 .
$$

Which implies that $\operatorname{det} \mathbf{A}$ annihilates M. Since

$$
\operatorname{det} \mathbf{A}= \pm 1+t \mathbf{f}(t)
$$

it is clear that $t \cdot m \neq 0$ for $m \neq 0$, that is φ is one-to-one.

Jacobson Radical

Definition

Let R be a commutative ring. Its Jacobson radical is the intersection $\bigcap Q$ of all maximal (proper) ideals.

Example: If R is a local ring, its Jacobson radical is its unique maximal ideal \mathfrak{m}.

If $R=\mathbb{Z}$, or $R=k[t]$, polynomial ring over the field k, then (0) is the Jacobson radical: from the infinity of prime elements.

Proposition

The Jacobson radical J of R is the set

$$
J^{\prime}=\{a \in R: 1+r a \quad \text { is invertible for all } r \in R\} .
$$

Proof. If $a \in J$, then $1+r a$ cannot be contained in any proper maximal ideal, that is it must be invertible.
Conversely, if $a \in J^{\prime}$, suppose a does not belong to the maximal ideal Q. Therefore

$$
(a, Q)=R
$$

which means there is an equation $r a+q=1, q \in Q$, and q would be invertible.

Nakayama Lemma

Theorem (Nakayama Lemma)

Let M be a finitely generated R module and J its Jacobson radical. If

$$
M=J M,
$$

then $M=0$.
Proof. If M is cyclic, this is clear: $M=(x)$ implies $x=u x$ for some $u \in J$, so that $(1-u) x=0$, which implies $x=0$ since $1-u$ is invertible.
We are going to argue by induction on the minimal number of generators of M. Suppose $M=\left(x_{1}, \ldots, x_{n}\right)$. By assumption $x_{1} \in J M$, that is we can write

$$
x_{1}=u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{n} x_{n}, \quad u_{i} \in J .
$$

Which we rewrite as

$$
\left(1-u_{1}\right) x_{1}=u_{2} x_{2}+\cdots+u_{n} x_{n}
$$

This shows that $x_{1} \in J\left(x_{2}, \ldots, x_{n}\right)$, and therefore $M=\left(x_{2}, \ldots, x_{n}\right)$.

Corollary

Let M be a finitely generated R module and N a submodule. If $M=N+J M$ then $M=N$.

Proof.

Apply the Nakayama Lemma to the quotient module M / N

$$
M / N=N+J M / N=J(M / N) .
$$

Scholium

Let R be a commutative ring and M a finitely generated R-module. If for some ideal I, IM $=M$, then $(1+a) M=0$ for some $a \in I$.

Proof.

If $M=\left(x_{1}, \ldots, x_{n}\right)$, from the proof of Cayley-Hamilton, there are $a_{i j} \in I$

$$
\left[\begin{array}{lll}
a_{11}-1 & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]=\mathbf{A}[\mathbf{x}]=0 .
$$

Which implies that $\operatorname{det} \mathbf{A}$ annihilates M. Since $\operatorname{det} \mathbf{A}= \pm 1+a, \quad a \in I$, done

Corollary

Let R be a commutative ring and I a finitely generated ideal. Then $I=I^{2}$ if and only if I is generated by an idempotent, that is $I=R e, e^{2}=e$

Proof.

If $(1+a) I=0, I \subset(a)$ and $a^{2}=a$.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
4. Prime Ideals

5 Assignment \#7
6 Primary Decomposition
(7) Intro Noetherian Rings
8. Assignment \#8

9 Homework
(10) Modules of Fractions

11 Assignment \#9
12 Integral Extensions
(13) Integral Morphisms
14) Assignment \#10

15 TakeHome \#1

Integral Morphisms

Let $\varphi: R \rightarrow S$ an injective homomorphism of commutative rings.

Theorem (Lying-Over Theorem)

If S is integral over R then for each $\mathfrak{p} \in \operatorname{Spec}(R)$ there is
$P \in \operatorname{Spec}(S)$ such that $\mathfrak{p}=P \cap R$, that is the morphism

$$
\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)
$$

is surjective.

Proposition

If S is integral over R and T is a multiplicative set of R, then $T^{-1} S$ is integral over $T^{-1} R$.

Proof.

Let $s / t \in T^{-1} S$. s satisfies an equation

$$
s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}=0, \quad a_{i} \in R
$$

Then

$$
(s / t)^{n}+a_{n-1} / t(s / t)^{n-1}+\cdots+a_{1} / t^{n-1} s / t+a_{0} / t^{n}=0
$$

$a_{i} / t^{n-i} \in T^{-1} R$.

Proof of Lying-Over

Suppose $\mathfrak{p} \in \operatorname{Spec}(R)$. Consider the integral extension $R_{\mathfrak{p}} \hookrightarrow S_{\mathfrak{p}}$.
The maximal ideal of $R_{\mathfrak{p}}$ is $\mathfrak{m}=\mathfrak{p} R_{\mathfrak{p}}$.
Claim: $\mathfrak{m} S_{\mathfrak{p}} \neq S_{\mathfrak{p}}$.
Otherwise we would have

$$
\begin{aligned}
1 & \in \mathfrak{m} S \mathfrak{p} \\
1 & =\sum_{i=1}^{n} a_{i} s_{i} / t_{i}, \quad a_{i} \in \mathfrak{m}, s_{i} \in S, t_{i} \in R \backslash \mathfrak{p}
\end{aligned}
$$

(1) Set $S^{\prime}=R_{\mathrm{p}}\left[s_{1}, \ldots, s_{n}\right]$.
(2) S^{\prime} is a finitely generated $R_{\mathfrak{p}}$-module with $S^{\prime}=\mathfrak{m} S^{\prime}$. By Nakayama Lemma, $S^{\prime}=0$.
(3) Since $\mathfrak{m} S_{\mathfrak{p}} \neq S_{\mathfrak{p}}$, it is contained in a prime ideal P^{\prime} of $S_{\mathfrak{p}}$. In particular, $P^{\prime} \cap R_{\mathfrak{p}}=\mathfrak{m}$.
(1) Since $P^{\prime}=P_{\mathfrak{p}}$ for some $P \in \operatorname{Spec}(S)$, it is clear that $P \cap R=\mathfrak{p}$, as desired.

Going-Up Theorem

Theorem

Let $R \hookrightarrow S$ be an integral extension of commutative rings. Let $\mathfrak{p}_{1} \subsetneq \mathfrak{p}_{2}$ be prime ideals of R and suppose P_{1} is a prime ideal of S such that $P_{1} \cap R=\mathfrak{p}_{1}$. Then there is a prime ideal $P_{1} \subsetneq P_{2}$ of S such that $P_{2} \cap R=\mathfrak{p}_{2}$.

Proof. Consider the diagram

Now apply the Lying-Over theorem to the integral extension

$$
R / \mathfrak{p}_{1} \hookrightarrow S / P_{1} .
$$

Going-Down Theorem

? Is there
Theorem (?Going-Down Theorem)
Let $R \hookrightarrow S$ be an integral extension of commutative rings. Let $\mathfrak{p}_{1} \subsetneq \mathfrak{p}_{2}$ be prime ideals of R and suppose P_{2} is a prime ideal of S such that $P_{2} \cap R=\mathfrak{p}_{2}$. Then there is a prime ideal $P_{1} \subsetneq P_{2}$ of S such that $P_{1} \cap R=\mathfrak{p}_{1}$.

Yes, but needs additional assumptions. Proof uses some basic Galois theory.

Outline

(1) Rings and Modules

2 Chain Conditions
3 Assignment \#6
(4) Prime Ideals

5 Assignment \#7
6 Primary Decomposition
7 Intro Noetherian Rings
8. Assignment \#8

9 Homework
(10) Modules of Fractions

11 Assignment \#9
12 Integral Extensions
13 Integral Morphisms

14 Assignment \#10

(15) TakeHome \#1

Assignment \#10

Let $R \hookrightarrow S$ be an integral extension. Prove the following assertions:
(1) If R and S are integral domains and one of them is a field, then the other is also a field.
(2) Equivalently: Let $P \in \operatorname{Spec}(S)$ and $\mathfrak{p} \in \operatorname{Spec}(R)$ and $P \cap R=\mathfrak{p}$. Then P is maximal iff \mathfrak{p} is maximal.

Outline

(1) Rings and Modules

2 Chain Conditions
3. Assianment \#6

4 Prime Ideals
5 Assignment \#7
6 Primary Decomposition
7 Intro Noetherian Rings
8 Assignment \#8
9 Homework
10 Modules of Fractions
11 Assignment \#9
12. Integral Extensions
(13) Integral Morphisms

14 Assignment \#10
15 TakeHome \#1

TakeHome \#1

Do 5 problems.

- Describe [with proof] a method to construct a regular pentagon with ruler and compass.
- Show that if $n \geq 3$, then $x^{2^{n}}+x+1$ is reducible over \mathbb{Z}_{2}.
- Describe (with proofs) the maximal ideals of $R=\mathbb{Z}[\mathbf{T}]$, that is the closed points of $\operatorname{Spec}(R)$. Achtung: Pay attention to polynomials such as $\mathbf{a T}-1$.
- Let $R=k\left[x_{1}, \ldots, x_{n}, \ldots\right]$, the ring of polynomials in a countable set of indeterminates over the field k. Prove that every ideal of R admits a countable number of generators.
- Find the kernel of the homomorphism (\mathbf{K} is a field)

$$
\varphi: \mathbf{K}[x, y, z] \longrightarrow \mathbf{K}[t]
$$

defined by $\varphi(x)=t^{4}, \varphi(y)=t^{5}$ and $\varphi(z)=t^{7}$.

- $\varphi: \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ is a one-one group homomorphim, prove it is onto. (You mav want to look at the action on the primary

