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• Pre-requisites: One previous algebra course, e.g. Math
551

• Textbook: See Syllabus

• webpage:www.math.rutgers.edu/(tilde)vasconce

• email : vasconce AT math.rutgers.edu

• Office hours [H228]: T 12:4, or by arrangement
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General Syllabus

• Fields: Galois Theory
• Solving Algebraic Equations
• Finitely Generated Algebras
• Rings in Linear Algebra
• Chain Conditions
• Noetherian Rings
• Structure of Artinian Rings
• The X-Topic
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Syllabus

Math 552 Course description. It follows the same organization
as the current Math 551.

Text: Jacobson, ”Basic Algebra”, Volumes 1 and 2, second
edition. Note: These volumes are out of print. Students
may be able to obtain used copies online (be sure it is the
second edition) through addall.com or other websites. In
the fall, photocopies will be available for purchase.
Prerequisites: Any standard course in abstract algebra for
undergraduates and/or Math 551.
Topics: This is the continuation of Math 551, aimed at an
exploration of many fundamental algebraic structures.
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Topics

1 Galois Theory: Finite algebraic extensions, resolutions of
equations by radicals (and without radicals).

2 Noetherian rings: Rings of polynomials, Hilbert basis
theorem, Dedekind domains, Finitely generated algebras
over fields, Noether normalization, Nullstellensatz.

3 Basic Module Theory: Projective and injective modules,
resolutions, baby homological algebra, Hilbert syzygy
theorem.

4 Artin Rings: Radical of a ring, semisimple rings, division
rings, Artin-Wedderburn theorem.
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Evariste Galois (1811-1832)

Galois Portraits

Evariste Galois

   

A drawing done in 1848 from memory by 
Evariste's brother 

  

A bigger picture 

 

http://www-history.mcs.st-and.ac.uk/PictDisplay/Galois.html (1 of 2) [11/23/2008 11:17:09 AM]
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Fields

F: field

Keep in mind basic examples: Q, Z2, Q(i), R, C, R(x), and 17
zillion others...



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Fields: How to study them?

Two basic strategies:

• Look for relationships

• Enrich the environment with new structures

Let F be a field. Its nature is sometimes revealed when we
attempt to enlarge it, or seek its subfields:

K ⊂ F ⊂ L

We must treat ways to find K’s [Groups] and L’s [Equations],
and mix them up [Galois Theory].
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Definition
Let K ⊂ F be fields. The degree of F over K is the vector space
dimension dimK F. It is denoted

[F : K].

If K ⊂ F are fields, we say that F is an extension of K. More
precisely, if [F : K] is finite, we speak of a finite
extension–otherwise we say the extension is infinite.
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This is the vector space dimension: [C : R] = 2

• u ∈ L: Algebraic/Transcendental?

F(u) is the smallest subfield of L containing F and u e.g. Q(π)
or C(x), x an indeterminate or how about Q(π + exp 1)?
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Like Lagrange...

Theorem
If K ⊂ F ⊂ L is a tower of fields then

[L : K] = [L : F] · [F : K]

.

Reminds you of Lagrange’s Theorem? Even same notation.

It will be enough to prove:
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Lemma
If {ui , i ∈ I}, {vj , j ∈ J} are vector spaces bases of F/K and
L/F, then

{uivj , i ∈ I, j ∈ J}

is a basis of L/K.

Proof.
Note that every element of L is uniquely written (finite sum)
w =

∑
j bjvj , bj ∈ F. Expanding each bj in the basis {ui},

bj =
∑

i aijui , aij ∈ K, and substituting

w =
∑

ij

aijuivj .

This shows the uivj span L over K, while reversing the
expansions show they are linearly independent.
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Suppose [F : K] = n <∞

• Very few subspaces K ⊂ V ⊂ F can be fields

• If u ∈ F the elements

1,u,u2, . . . ,un

must be linearly dependent

a0 + a1u + · · ·+ anun = 0,

ai ∈ K, some nonzero, that is, u is algebraic.
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dim VK <∞

If V is an integral domain then it is a field: If 0 6= u ∈ V pick
lowest degree equation

a0 + a1u + · · ·+ amum = 0,0 6= a0,

gives

u−1 = −a0
−1(a1 + a2u + · · ·+ amum−1) ∈ V.

Alternatively, 0 6= u ∈ V defines an injective linear
transformation of a finite dimensional vector space

v ∈ V 7→ u · v ∈ V,

which must be surjective, so for some v0 ∈ V, we must
have u · v0 = 1.
K ⊂ F is an algebraic extension if every u ∈ F is algebraic
over K
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Towers of Algebraic Extensions

Theorem
If K ⊂ F ⊂ L is a tower of algebraic extensions then L is
algebraic over K

Proof. Let u ∈ L be algebraic over F:

un =
n−1∑
i=0

aiui , ai ∈ F

Each ai is algebraic over K so we have equations of the form

adi
i =

di−1∑
j=0

cija
j
i , cij ∈ K
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Let V be the K–subspace of L spanned by all ‘monomials’ in
u,a0,a1, . . . ,an−1.

We make two claims about V:

• V is a ring: clear

• V is a finite dimensional vector space over K: just use the
relations above to reduce number of required monomials

By a previous observation V is an algebraic extension. �
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Algebraic Closure

Corollary
If K ⊂ F is a field extension, the set of all elements of F which
are algebraic over K is a field.

Proof. If u and v are elements of F which are algebraic over K,
then the set

V = K[uiv j ]

is an integral domain which is a finite dimensional vector space
over K. �

Definition
The set of all elements of F which are algebraic over K is a field
called the algebraic closure of K in F.



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Doing arithmetic in a field

The proof above hints at how to carry arithmetic in a field. Let
us illustrate more. Suppose F is an extension of K and there is
u ∈ F so that every other element v is a linear combination over
K of powers of u. [Right off this implies that only a bounded
number of powers are needed: why?] We can also frame this
using a representation

ϕ : K[x ] −→ F, x 7→ u

This is a surjective ring morphism so its kernel must be
generated by an irreducible polynomial

f (x) = xn + an−1xn−1 + · · ·+ a0, n > 0 ai ∈ K
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As a consequence every element of F is represented by g(u),
for a unique polynomial g(x) of degree < n. The addition
g(u) + h(u) is cheap, but the multiplication

g(u) · h(u) = r(u),

may require long division [which is not always cheap]

g(x)h(x) = q(x)f (x) + r(x),deg r(x) < deg f (x)

Reciprocals also use long division: If g(u) 6= 0,

gcd(f (x),g(x)) = 1,

so there is

a(x)g(x) + b(x)f (x) = 1, deg a(x) < n

(g(u))−1 = a(u)
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Exercises

Exercise 1: How would you ‘rationalize’

(
√

2 +
√

3 +
√

5 +
√

7)−1

Exercise 2: Let K be a field, x an indeterminate over it and
u = f (x)

g(x) a rational fraction with gcd(f (x),g(x)) = 1. Then

[K(x) : K(u)] = max{deg f (x),deg g(x)}.

x is a root of the polynomial (with coefficients in K(u))

f (T )− ug(T ),

so the extension is finite. Show that this polynomial is
irreducible.

Exercise 3: Is it possible to find a subfield K ⊂ R with
[R : K] <∞?
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Existence of roots

Theorem
If

f (x) = anxn + · · ·+ a1x + a0 ∈ K[x ]

is an irreducible polynomial there is an extension F of K with a
root of it.

Proof. Set F = K[t ]/(f (t)), t some fresh indeterminate. Set u
for the residue class of t . The elements of F are g(u),
deg g(x) < n. Note f (u) = 0. �
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Remarks

•If [F : K] is prime, there are no intermediate extensions

•If F = Q( 3
√

5), [F : Q] = 3 and Q( 3
√

5) = Q( 3
√

25)

•Usually difficult to find the degree of a finite extension. Very
hard to decide whether an extension is algebraic. For example,
consider R over Q: The algebraic real numbers are roots of the
irreducible polynomials of Q[x ], which can be ‘listed’ along with
their roots, in particular they are countable. Thus almost all real
numbers are transcendental.
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Ruler and Compass Constructions

The set of all complex numbers that are algebraic over Q are
called the algebraic numbers: Q. Since C is algebraically
closed, Q is the algebraic closure of Q.

Q has many interesting subfields (and subrings). One of these
is the set L of the coordinates of all points in the plane obtained
from any construction with ruler and compass. These
numbers are said to be constructible.

Theorem
Let L be a field. That is if c,d ∈ L, then c ± d , cd ∈ L and if
0 6= d, c/d ∈ L. Moreover

√
c ∈ L.
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Square roots
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The Delphic Problems

What is a constructible algebraic number?

1 Trisection of the Angle: Trisect, say, the angle of 60◦

2 Duplication of the Unit Cube: Construct 3
√

2

3 Quadrature of the Unit Circle: Construct π
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Constructability Criterion

Theorem
If c is a constructible number then

[Q(c) : Q] = 2n.

If two lines a1x + b1y = c1 and a2x + b2y = c2 have
coefficients in the field K, their intersection [if there is one]
(x , y) have x , y ∈ K.
If the line ax + by = c and the circle
(x − x0)2 + (y − y0)2 = r2 have coefficients in the field K,
their intersection [if there is one] (x , y) have x , y ∈ K(

√
c),

c ∈ K.
If the circles (x − x1)2 + (y − y1)2 = r2

1 and
(x − x2)2 + (y − y2)2 = r2

2 have coefficients in the field K,
their intersection [if there is one] (x , y) have x , y ∈ K(

√
c),

c ∈ K.
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There is a converse, which we will see when we discuss Galois
Theory.

• Duplication of the Cube: z = 3
√

2 is not constructible since
the polynomial x3 − 2 is irreducible by Eisenstein’s.
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• Trisection of the Angle: Let z = cos 20◦. Finding z amounts
to trisecting 60◦.

From the trigonometric formula,

cos 3α = 4 cos3 α− 3 cosα

we have the equation of z

8z3 − 6z − 1 = 0, or x3 − 3x − 1 = 0, x = z/2.

This is an irreducible polynomial since any rational root had to
be ±1, which is not the case.
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Regular Polygons

Let n ≥ 3. Which n-regular polygons can be constructed with
ruler and compass? That is, which complex number z, with

zn = 1 z i 6= 1, i < n

can be constructed?
According to the theorem, the minimal polynomial of such z
must satisfy

[Q(z) : Q] = 2r .

Theorem (Gauss)
z is constructible if and only if n = 2mp1 · · · ps, where pi are
Fermat primes, that is, p = 22r

+ 1 for some r .
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Proof

The minimal polynomials of elements such as ε = e2πi/n are
called cyclotomic polynomial qn(x). If n = p prime,

qp(x) =
xp − 1
x − 1

= xp−1 + xp−2 + · · ·+ x + 1.

Since {z ∈ C : zn = 1} is a cyclic group of order n, its
generators are Pn = {εi : gcd(i ,n) = 1}. If n = pr1

1 · · · p
rs
s , the

cardinality of Pn is given by the value of the Möbius function,

ψ(n) =
s∏
1

(pri
i − pri−1).

Similarly, we can collect for each d |n, the set Pd of roots of
order d .
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The assertion of the theorem follows from the fact that

ψ(n) = 2c ⇒
n = 2mp1 · · · pr , pi = 2si + 1,

and as pi is prime, si = 2mi .
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Remark about cyclotomic polynomial

Proposition
For each natural number n,

qn(x) =
∏
σ∈Pn

(x − σ)

is an irreducible polynomial of Q[x ].

Proof. We prove this by induction on n. Note that
q1(x) = x − 1, q2(x) = x + 1, q3(x) = x2 + x + 1. From∏

d |n

qd (x) = xn − 1

it follows (by induction) the product of the qd (x), d < n, is a
monic polynomial of Q[x ]. qn(x) being a quotient of two monic
polynomials of Q[x ], by long division qn(x) ∈ Q[x ].
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To prove that qn(x) is irreducible over Q, since it is a monic
polynomial of Z[x ], ETS that it is irreducible over Z.

The case n = p prime,

qp(x) =
xp − 1
x − 1

so that by changing variables, x = t + 1

qp(t + 1) =
(t + 1)p − 1

t
= tp−1 + ptp−2 + · · ·+ p,

where are the other coeficients,
(p

i

)
, are divisible by p. Applying

Eisenstein’s, it follows that qp(x) is irreducible.
We send you to look up the proof in your favorite source for
factorization.
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Galois Theory

Let F,L be two extensions of K. The structure we are going to
examine are the K–morphisms

ϕ : F −→ L

Of interest is when ϕ is an isomorphism and of particular
interest is when further F = L: The set of all ϕ form a group, the
Galois group of F over K. It is written as AutK(F) or GalK(F).
Galois Theory is the study of the relationships between GalK(F)
and the set of intermediate subextensions of F/K.
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Building Field Isomorphisms

It is rooted [sorry for the joke] on the following observation: Let

ϕ : F→ L

be a field isomorphism and let f (x) =
∑

i aix i be a polynomial
with coefficients in F. If α ∈ F is a root of f (x) then ϕ(α) is a
root of the polynomial

∑
i ϕ(ai)x i .

Suppose f (x) is an irreducible polynomial over the field F and α
and β are roots of f (x) in two field extensions L1 and L2.
(Contrary to popular belief, a polynomial of degree n may have
lots of roots–what is not allowed is more than n roots in a same
field.) We then have an isomorphism

ϕ : F(α)→ F(β), ϕ(α) = β.

This is because both extensions are isomorphic to

F[x ]/(f (x))
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Galois Correspondence

Let F/K be a field extension of Galois group G = GalK(F).

1 If H is a subgroup of G the elements

H ′ = {r ∈ F | σ(r) = r ∀σ ∈ H}

is a subextension
K ⊂ H ′ ⊂ F

2 Conversely, if L is an intermediate subextension of F/K,
the elements

L′ = {σ ∈ G | σ(s) = s ∀s ∈ L}

is a subgroup of G.

These ‘priming’ operations are called ‘Galois correspondence’.
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Properties

1′ = F
F′ = 1
K′ = G
G′ = ?

H < J ⇒ J ′ ⊂ H ′

L ⊂ M ⇒ M ′ < L′

H < H ′′ ? =

L ⊂ L′′ ? =

To clarify ?:
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Galois Extension

Definition
L/K is a Galois extension if

G′ = K.

If H = H ′′, we say that H is a closed subgroup. Similarly, if
L = L′′, L is a closed extension. (Observe that ‘priming’ is
order-reversing.)

What is this all about?
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Big Theorem

Theorem
If F is a finite dimensional Galois extension of K, priming gives
a one-one correspondence. More precisely:

1 [H : J] = [J ′ : H ′] and [M : L] = [L′ : M ′], in particular
|G| = [F : K].

2 F is Galois over any intermediate extension E of Galois
group E ′, but E is Galois over K iff E ′ is normal; in this
case G/E ′ = GalK(E).

How good is this? It already tells us many things, but it would
be better if we knew what are Galois extensions! (Meaning:
How they occur.) We will come to this soon, let us get started
with the proof. It can be organized as two technical lemmas.
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Lemma 1

Lemma
Let F/K be a field extension and L ⊂ M be intermediate fields.
If M : L is finite, then

[L′ : M ′] ≤ [M : L].

In particular, if [F : K] <∞ then |GalK(F)| ≤ [F : K].

Proof. Set n = [M : L] (will argue by induction, ok if n = 1.) If
L ⊂ N ⊂ M are distinct subextensions, we make use of

[M : L] = [M : N] · [N : L]

[L′ : M ′] = [N ′ : M ′] · [L′ : N ′]
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We may assume that M = L(u), where u the root of a
polynomial f (x) of degree n. Note that if σM ′ is a coset of L′, for
any of its elements σα,

σα(u) = σ(u).

Since σ(u) is a root of f (x) (in F), we have at most n values for
it. In particular, if σ1(u) = σ2(u), σ1, σ2 ∈ L′, then they lie in the
same coset relative to M ′.
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Lemma 2

Lemma
Let F/K be a field extension and H < J be subgroups of
GalK(F). If [J : H] is finite, then

[H ′ : J ′] ≤ [J : H].

Proof. Set [J : H] = n and assume [H ′ : J ′] > n. Let
u1, . . . ,un+1 ∈ H ′ be linearly independent over J ′. Let
τ1, . . . , τn ∈ J be a complete set of representatives of cosets of
H in J. Consider the system of n homogeneous linear
equations in n + 1 unknowns (in F):
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τ1(u1)x1 + τ1(u2)x2 + · · ·+ τ1(un+1)xn+1 = 0
τ2(u1)x1 + τ2(u2)x2 + · · ·+ τ2(un+1)xn+1 = 0

...
τn(u1)x1 + τn(u2)x2 + · · ·+ τn(un+1)xn+1 = 0
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There exists in F a nonzero solution. Among all such pick one
with as many zeros as possible; change the notation (order of
the τi ) so that this solution has the form

(a1, . . . ,ar ,0, . . . ,0), ai 6= 0 a1 = 1.

If all ai ∈ H ′, since one of the coset representatives τi ∈ J, we
would have a nontrivial linear relation among the ui with
coefficients in H ′ (when the ui are linearly independent over
H ′). Say then a2 /∈ H ′ and so for some τ = τj , τj(a2) 6= a2.
Apply τ to the system of equations and note that ττ1, . . . , ττn is
just a permutation of the cosets and the new equations are a
permutation of the old equations and thus

(1, τ(a2), . . . , τ(ar ),0, . . . ,0)

is also a solution. Subtracting we get a ‘shorter’ nontrivial
solution, contradiction. �
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Proof of the Theorem

1 [H : J] = [J ′ : H ′] and [M : L] = [L′ : M ′], in particular
|G| = [F : K].

2 F is Galois over any intermediate extension E of Galois
group E ′, but E is Galois over K iff E ′ is normal; in this
case G/E ′ = GalK(E).

Proof. Let K ⊂ L ⊂ F be an intermediate extension. By the first
and then by the second lemma,

[L : K] ≥ [K′ : L′] ≥ [L′′ : K′′]

Since F/K is a Galois extension, K = K′′. As L ⊂ L′′, the
inequality of the degrees forces L = L′′–thus every intermediate
extension is closed.
We also have [F : K] ≥ [K′ : F′] = [G : 1], so G is a finite group
and we can now use the second lemma followed by the first to
get H = H ′′, that is, every subgroup is closed.
This establishes the claim about the 1-1 correspondence.
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Note that
E ′ = GalE (F)

The second assertion follows since E ′′ = E for every
subextension: so F is Galois over E .
For the final assertion, we need a new notion, that of a stable
subextension K ⊂ E ⊂ F: If σ ∈ G = GalK(F), then σ(E) ⊂ E .
This means that if E is stable, the restriction is well defined and
therefore we get a group homomorphism (and therefore E ′ is a
normal subgroup)

E ′ /G = GalK(F)→ H = GalK(E).

Also

[G : E ′] ≤ [H : 1] ≤ [E : K] = [K′ : E ′] = [G′ : E ′],

and we have actually have a surjective isomorphism. Thus E/K
is a Galois extension.
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Conversely: E ′ /G means that if σ ∈ G, α ∈ H for v ∈ E

σ−1ασ(v) = v ,

and thus
α(σ(v)) = σ(v) ∀α ∈ H

and
α(v) ∈ E

and thus E is stable. �
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Assignment #1

(Just warm-up, don’t hand in.) Let k ⊂ F be a field
extension. Show that if u ∈ F is algebraic of odd degree
over k , then so is u2 and k(u) = k(u2).
Let F be the extension of Q obtained by adjoining u =

√
2

and
√

5, F = Q[
√

2,
√

5]. What is [F : Q] and what is the
inverse of 1 +

√
2 +
√

5 (rationalized)?
Let K be a field and let x be an indeterminate over K.
Describe GalK(K(x)).
(Challenge to class: show in class if someone succeeds.)
Find a method (by any method) to join any two points in a
plane using exclusively a short ruler. (Say the two points
are further away than the length of the ruler.)
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Last Class ... and Today

Let L/K be a field extension and the group G = GalK(L) of
K-automorphisms of L (called the Galois group of L/K).

We consider the relationship between the subextensions
K ⊂ F ⊂ L and subgroups H ⊂ G:

F −→ F′ = {s ∈ G : s(x) = x , ∀x ∈ F}
H −→ H ′ = {x ∈ L : s(x) = x , s ∈ H}

The key technical facts about this operation (priming) are:

If F1 ⊂ F2 is finite, [F′1 : F′2] ≤ [F2 : F1]

If H1 ⊂ H2 are subgroups and [H2 : H1] is finite, then
[H ′1 : H ′2] ≤ [H2 : H1]
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Galois Extension

Definition
L/K is a Galois extension if

G′ = K.

This means: If x ∈ L \ K, there is s ∈ G such that s(x) 6= x .

If L is (finite) Galois over K, lots of things happen:

Priming is involutive in both directions, H ′′ = H and F′′ = F.
In particular L is Galois over F.
F however is only Galois over K if F′ is (iff) a normal
subgroup of G.
L is Galois over K iff |G| = [L : K]
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Proving an extension is Galois

Let L be a finite extension of K, of Galois group G. To check L
is Galois over K:

It is obviously difficult to apply the definition: for u ∈ L \ K
find s ∈ G such that s(u) 6= u.
Instead, given u we try to build s in stages: first find an
intermediate extension K ⊂ K(u) and a homomorphism

s1 : K(u) −→ L, s1(u) 6= u

Extend s1 to a homomorphism s : L −→ L
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Recognizing a Galois Extension

1 F/K is Galois iff |GalK(F)| = [F : K]
2 If F/K is Galois and u ∈ F with (monic) minimal polynomial

f (x), then all the roots of f (x) are distinct and lie in F: If
σ ∈ G = GalK(F) then σ(u) is also a root of f (x). Let
u1, . . . ,un be these distinct images of u and consider the
polynomial with coefficients in F

g(x) = (x − u1)(x − u2) · · · (x − un).

Note that any σ ∈ G acting on the coefficients of g(x)
leaves them fixed–and therefore they all lie in K. Thus
g(x) | f (x) and g(x) = f (x).

3 If F/K is Galois then there is a polynomial f (x) ∈ K[x ]
whose roots u1, . . . ,un in some extension field of K are
distinct and F = K[u1, . . . ,un].
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Splitting Fields & Separable Extensions

What are Galois extensions really like?

Definition
Let K be a field and let f(x) be a (monic) polynomial over K. A
splitting field of f(x) is a minimal extension F of K in which f(x)
decomposes completely

f(x) = (x − u1)(x − u2) · · · (x − un), ui ∈ F.

Minimal means that the ui generate F:

F = K[u1, . . . ,un]

Note that there may be several.
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Theorem
Splitting fields of polynomials over a field exist and are unique
up to isomorphism.

Proof.
Given a field K and polynomial f(x), we have already
described how to find a root for f(x): If g(x) is an
irreducible factor of f(x) over K, in F = K[t ]/(g(t)), u the
residue class of t is a root of g(x), g(u) = 0, and therefore
of f(x).
f(x) = (x − u)h(x).
We go on until all irreducible factors of f(x) (in the new
fields) have degree 1. If we ensure not to add anything
extra, we get a splitting field.

This can be more controlled as follows.
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Suppose L is another splitting field. Let g(x) be an irreducible
factor of f(x) in K[x ].
Let u1 (resp. v1) be a root of g(x) in F (resp. in L). We have
isomorphisms

F ⊃ K[u1] ' K[x ]/(g(x)) ' K[v1] ⊂ L

which we aim to extend K[u1]
σ' K[v1] to an isomorphism L ' F.

Let h(x) be an irreducible factor of g(x) over K[u1]. Applying σ
to h(x) gives an irreducible factor of g(x) over K[v1].
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Iterating leads to the isomorphism of the towers:

K ' K
K[u1] ' K[v1]

K[u1,u2] ' K[v1, v2]

...
K[u1, . . . ,un] ' K[v1, . . . , vn]

F ' L
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Separable Polynomial

Let k = Z/(p), let x , y be indeterminates over k and set

K = k(xp, yp) ⊂ k(x , y) = F

Then [F : K] = p2 and tp − xp ∈ K[t ] is an irreducible
polynomial with a root u = x of multiplicity p.

If g(x) ∈ K[x ] is a polynomial with a double root u in an
extension K ⊂ F,

g(x) = (x − u)2h(x)

Thus u is a root of g(x) and g′(x).



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Separable Extension

Definition
A polynomial f(x) ∈ K[x ] is separable if it does not have
multiple roots. An extension K ⊂ F is separable if for all u ∈ F
its minimal polynomial is separable.
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Characterization of Galois Extensions

Theorem
Let K ⊂ F be a finite extension. The following conditions are
equivalent:

1 F is a Galois extension of K.

2 F is separable over K and a splitting field over K.

3 F is the splitting field of a separable polynomial over K.
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Proof(s)

• F Galois over K⇒ F separable over K and a splitting field.

Let G = GalK(F). For u ∈ F, let {σ1(u), . . . , σr (u)} be the
distinct images of u under the action of G. Set

g(x) = (x − σ1(u)) · · · (x − σr (u))

= x r − (σ1(u) + · · ·+ σr (u))x r−1 + · · ·
+ (−1)r (σ1(u) · · ·σr (u))

This polynomial is invariant under G: σ(g(x)) = g(x). Thus its
coefficients lie in K (Galois hypothesis). This proves that every
element of F satisfies a polynomial equation with distinct roots,
all lying in F.
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• F is the splitting field of a separable polynomial over K⇒ F is
Galois over K.

Let F = K[u1, . . . ,ur ], fi(x) minimal polynomial of ui , separable.
Let f(x) = f1(x) · · · fr (x).

Will show that
|GalK(F)| = [F : K],

which is enough to assure that F is Galois over K.
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If f(x) factors completely over K, F = K, and we are done.

Let g(x) be an irreducible factor of f(x), with deg g(x) = r ≥ 2.
Let u be a root of g(x) in F and set L = K[u], [L : K] = r .

Let H = L′ ⊂ G = GalK(F). Note that [G : H] is the number of
images of u under automorphisms of F/K. But every one of the
r distinct roots of g(x) is such an image by our discussion of
splitting fields on how to building its automorphisms.
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We have then
[G : H] = r = [L : K]

Since H = GalL(F), by induction we have that |H| = [F : L].
Finally, by Lagrange’s we have

|G| = [G : H] · |H| = [F : L] · [L : K] = [F : K].
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C is algebraically closed

Theorem
C is algebraically closed.

Proof. Let u be an element algebraic over C; u is also
algebraic over R. Let f(x) be its minimal polynomial over R and
let F be a splitting field

R ⊂ C ⊂ F.

We are going to argue that f is a quadratic polynomial. It will
suffice to prove the theorem.
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F is Galois over R. Let G = GalR(F) and denote by H its
2-Sylow subgroup.

F ↔ 1
H ′ ↔ H
R ↔ G

Recall:

[F : H ′] = [H : 1] = 2n

[H ′ : R] is odd
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R has no extension of degree odd (by the intermediate
value theorem of Calculus).

Thus G = H, |G| = 2n. Since G is solvable, there exists a
tower of subgroups

(1) / H1 / H2 / · · · / Hn = G,

[Hi : Hi−1] = 2

and a corresponding tower of quadratic extensions

R ⊂ F1 ⊂ · · · ⊂ Fn = F,

and therefore n = 1, that is F ' C.
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Assignment #2

1 (Hand in) If c ∈ C and [Q(c) : Q] = 2r , prove that c can be
constructed with ruler and compass. [This is a bit of
reverse engineering.] (You may have to assume more, like
what?)

2 (Done in classs) Determine the Galois group of R over Q.
3 (For thinking) Guess what is the Galois group of all the

constructible numbers is.



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Outline
1 General Orientation
2 Syllabus
3 Fields and Galois Theory
4 Ruler and Compass Constructions
5 Galois Theory
6 Assignment #1
7 Last Class ... and Today
8 Splitting Fields
9 Assignment #2

10 Finite Fields
11 Galois Group of an Equation
12 Assignment #3
13 Radical Extensions
14 Assignment #4
15 Assignment #5
16 Trace and Norm



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Finite Fields

Let F be a finite field. Its prime field is Fp = Z/(p) for some
prime p. Let [F : Fp] = n. Then

|F| = pn.

The set F \ {0} = F• is the multiplicative group of F,
|F•| = pn − 1.

This numerical data will determine F.
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Proposition

If |F| = pn, then F consists of the roots of xpn − x.

Proof.
Since the group F• has order pn − 1, its elements satisfy
upn−1 = 1.
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Construction of Finite Fields

Corollary
For every prime p and natural number n there is a (unique) field
F of cardinality pn.

Proof.

Let F be the splitting field of xpn − x over Fp. Let S be the set of
roots of this polynomial in F. We claim that F = S. It suffices to
note that S is a ring: for α and β in S,

(α + β)pn
= αpn

+ βpn
= α + β

and similarly for the product. The uniqueness comes for the
uniqueness (up to isos) of the splitting field.
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Finite groups

Proposition
For a field F, if G is a finite subgroup of the multiplicative group
F• then G is cyclic.

Proof.
By the FTAG, G is a direct product of cyclic groups,

G = C1 × · · · × Cn,

where the order of Ci divides the order of Ci+1.

This means that if d = |Cn|, ud = 1 for all u ∈ G.

But the equation xd = 1 in F has at most d roots. This implies
n = 1, that is G is cyclic.
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Representation

One important issue is how to represent the elements of a field
in terms of simpler data. In the case of a finite field F of
cardinality pn one approach is the following: Since F• is a cyclic
group of order pn − 1, for each choice of a generator u we have

ur · us = ur+s

ur + us = uf(r ,s)

where f(r , s) ≤ pn − 1 if ur + us 6= 0. In other terms, it is easy to
build the multiplication table of F, but difficult to build its addition
table.

Knowing such a function, which depends on the choice of u,
would make arithmetic amenable.
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Galois Group

Since F is entirely determined by its order q = pn, we denote it
by Fq. Let us determine its Galois group.

The mapping

f : F→ F, f(a) = ap

has the properties

f(a + b) = f(a) + f(b), f(ab) = f(a)f(b).

Since it is injective and F is finite, f is an isomorphism of f that
is the identity on Fp = Z/(p).

Theorem
GalFp (F) ' Z/(n) and is generated by f. (This isomorphism is
called the Frobenius mapping.)
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Proof.
Note that f has order n, since this is the smallest integer s such
that fs(a) = aps

= a for all a ∈ F.

Thus
|GalFp (F)| ≥ n = [F : Fp].

But one always has ≤, so = holds. In particular F is a Galois
extension of Fp.
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Simple Extensions

Definition
The extension K ⊂ F is simple if F = K(u).

An example is a transcendental extension K(x).
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Theorem
A finite extension K ⊂ F is simple if and only if the number of
intermediate extensions

K ⊂ L ⊂ F

is finite.

Proof. Suppose the number of intermediate extensions is finite.
Pick an element u ∈ F so that [K(u) : K] is largest.

If K is a finite field, F is also finite and we have seen that they
are simple. So assume K is infinite.
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If v ∈ F \ K(u), consider the set of extensions

{K(u + av), a ∈ K}.

By the Pigeonhole Principle, two of these extensions coincide

L = K(u + av) = K(u + bv), a 6= b.

This means that (u + av)− (u + bv) = (a− b)v ∈ L, and
u, v ∈ L, which is a contradiction.

Conversely, if F = K(u), let f(x) be the minimal polynomial of u
over K. For every intermediate field K ⊂ L ⊂ F, the minimal
polynomial of u over L is a factor g(x) of f(x).
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g(x) = ar x r + · · ·+ a0, ai ∈ L.

Let L0 = K[ar , . . . ,a0]. Note that

[F : L0] ≤ r = [F : L],

so L = L0.

In other words, L is completely determined by g(x) and
vice-versa.

Thus the irreducible factors of f(x) ∈ F[x ] are in 1-1
correspondence with the intermediate extensions.
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Corollary
If F is a Galois extension of K, then F = K(u).

Proof.
By Galois correspondence, the intermediate fields are uniquely
coded by the (finitely many) subgroups of GalK(F).

Corollary
If K ⊂ F is an algebraic extension and F = K(u) then any
intermediate extension K ⊂ L ⊂ F is simple.
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Purely Transcendental Extensions

These are the extensions of a field K of the form
F = K(x1, . . . , xn) where the xi are independent indeterminates
over K. They are full of difficult questions, except when n = 1,
that we discuss now. Set F = K(t).

If u ∈ F \ K, u = f(t)/g(t), f(t),g(t) ∈ K[t ], with
gcd(f(x),g(x)) = 1. If max{deg f(x),g(x)} = n,

f(t) = a0 + a1t + · · ·+ antn

g(t) = b0 + b1t + · · ·+ bntn

an − ubn 6= 0 shows that K(t) is algebraic over K(u),
[K(t) : K(u)] ≤ n.
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Proposition
With these notations, [K(t) : K(u)] = n and the minimal
polynomial of t over K(u) divides f(x ,u) = f(x)− ug(x).

Proof. Set f(x , y) = f(x)− yg(x) ∈ K[x , y ].
1 This is a linear polynomial over K[x ] and since

gcd(f(x),g(x)) = 1, it is irreducible.
2 Since t is algebraic over K(u), u must be transcendental

over K. Then K[x , y ] ' K[x ,u] under the
K[x ]-homomorphism that maps y to u. Therefore f(x ,u) is
irreducible in K[x ,u] and thus f(x ,u) is irreducible over
K(u).

3 Since f(t ,u) = f(t)− ug(t) = 0, f(x ,u) is a multiple over
KK (u) of the minimal polynomial of t over K(u). Hence
[K(t) : K(u)] is the degree in x of f(x ,u), that is n.
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Galois group of K(t) over K

1 Any automorphism σ of K(t) over K, according to the
Proposition, must be defined by

σ(t) =
at + b
ct + d

, ad − bc 6= 0

2 σ(t) = t iff a = d , and b = c = 0.

3 It follows that

GalK(K(t)) = GL2(K)/H, H = {aI,a 6= 0}
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Luroth Theorem

Theorem
If F = K(t) is a transcendental extension, then any intermediate
extension L is transcendental, L = K(u).

Proof. Let v ∈ L \ K. Then t is algebraic over K(v) and thus
over L.

1 Let f(x) be the minimal polynomial of t over L,
f(x) = xn + k1xn−1 + · · ·+ kn, ki ∈ L

2 Since t is not algebraic over K, some ki ∈ L \ K. We claim
that L = K(u), u = ki .

3 We write u = g(t)h(t)−1, gcd(g(t),h(t)) = 1,
max{deg(g(t)),deg(h(t))} = m. We know that
[K(t) : K(u)] = m ≥ n.

4 t is a root of g(x)− uh(x) and therefore we have
q(x) ∈ L[x ] such that

g(x)− uh(x) = q(x)f(x)
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Cont’d

1 Write ki = ci(t)/c0(t)−1, ci(t) ∈ K[t ],
gcd(c0(t), c1(t), . . . , cn(t)0 = 1, and clear the denominators
of f(x) to write it as a primitive polynomial

f(x , t) = c0(t)xn + c1(t)xn−1 + · · ·+ cn(t) ∈ K[x , t ]

2 The x-degree of f(x , t) is n, while its t–degree is ≥ m
(because of the choice of u = ki ).

3 If we replace u = g(t)h(t)−1 in g(x)− uh(x) = q(x)f(x),
we see that f(x , t) divides g(t)h(x)− g(t)h(x) in K(t)[x ].

4 Since f(x , t) and g(x)h(t)− g(t)h(x) are in K[x , t ] and
f(x , t) is primitive, there is q(x , t) ∈ K[x , t ] such that

g(x)h(t)− g(t)h(x) = q(x , t)f(x , t).
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g(x)h(t)− g(t)h(x) = q(x , t)f(x , t).

Now we check that the t-degree of LHS is ≤ m, while the
t-degree of f(x , t) is ≥ m. Thus q(x , t) ∈ K[x ].

Then the RHS is primitive as a polynomial in x , and so is the
LHS.

By symmetry the LHS is primitive as a polynomial in t , thus
q ∈ K.

Then f(x , t) has the same x-degree and t-degree, so m = n.
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Galois Group of an Equation

Let f(x) ∈ K[x ], and let U = {u1, . . . ,un} a full set of roots of
f(x) in some field. Consider the splitting field F = K[u1, . . . ,un].

Definition
GalK(L) is the Galois group of f(x) over K. Notation: GalK(f(x)).

For each σ ∈ G,

U 7→ {σ(u1), . . . , σ(un)}

defines a permutation of U. The construction gives an injective
homomorphism of G into Sn.
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Remark: If f(x) is irreducible and separable, for any two roots
u1 and u2, there is an isomorphism σ ∈ g = GalK(f(x)) such
that

σ(u1) = u2.

This means that G is a transitive subgroup of Sn.
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Let f(x) be an irreducible, separable polynomial over K and let
{u1, . . . ,un} be its roots, F = K[u1, . . . ,un]. Let

∆ =
∏
i<j

(ui − uj).

Definition

D = ∆2 is the discriminant of f(x) over F.

If f(x) = x2 + bx + c,

D = (u1 − u2)2 = (u1 + u2)2 − 4u1u2 = b2 − 4c
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Proposition
Let G ↪→ Sn be the embedding above. Then

1 With ∆ =
∏

i<j(ui − uj), for σ ∈ G, σ(∆) = ±∆ according
whether σ is an even/odd permutation.

2 D = ∆2 ∈ K.

Proof. Note that σ(∆) = ±∆, so σ(D) = D.Since G is Galois,
D ∈ K.

Corollary
G ⊂ An ⇔ ∆ ∈ K, that is D is a square in K.
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Cubics

Let us apply these observations to polynomials of low degree.

Let f(x) ∈ K[x ] be a separable, irreducible cubic polynomial and
let G be its Galois group. Then:

G =

{
S3, ∆ /∈ K
A3, otherwise
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Quartics

Let f(x) ∈ K[x ] be a separable, irreducible quartic polynomial,
let F be its splitting field and let G be its Galois group. Now
there are several more choices for G since S4 has several
transitive subgroups:

G =


S4
A4
V
2-Sylow subgroup, there are 3 ' D4
Z4
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The key subgroup is
V = {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.

Let u1,u2,u3,u4 be the roots of f(x). Set

α = u1u2 + u3u4

β = u1u3 + u2u4

γ = u1u4 + u2u3

These elements are fixed exactly by G ∩V and we have [this is
a Lemma] that GalK(K(α, β, γ)) = G/G ∩ V .
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Let us argue that if s ∈ G \ V , then s moves one of the α, β, γ.
For instance if s = (12), and

s(u1u3 + u2u4) = u1u3 + u2u4 = u2u3 + u1u4 ⇒
u2(u3 − u4) = u1(u3 − u4) ⇒ u2 = u1 or u3 = u4

which is a contradiction.

The other possibilities are handled similarly: it suffices to check
coset representatives of V , still takes time.
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If f(x) = x4 + bx3 + cx2 + dx + e, the polynomial

g(y) = (y−α)(y−β)(y−γ) = y3−cy2−(bd−4e)y−b2e+4ce−d2

is called the resolvent cubic of f(x).

It may help first changing variables: x → x = t − b/4 (char
6= 2), f(t) = t4 + c′t2 + d ′t + e′ (write f(x) = x4 + cx2 + dx + e

0 = u1 + u2 + u3 + u4

c = u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4

−d = u1u2u3 + u1u2u4 + u2u3u4 + u1u3u4

e = u1u2u3u4

Write α + β + γ, αβ + αγ + βγ and αβγ in terms of c,d ,e.
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Theorem
Let [K(α, β, γ) : K] = m. Then

1 m = 6⇔ G = S4.
2 m = 3⇔ G = A4.
3 m = 1⇔ G = V.
4 m = 2 (Suppose f(x) is irreducible). Since K(α, β, γ) is the

splitting field of a cubic, m = 1,2,3,6. We also have
m = [K(α, β, γ) : K] = |G/G ∩ V |.
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Consider the Galois correspondence diagram

F

��

// (1)

K(α, β, γ)

m
��

// V ∩G

K // G
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The implications⇒ will follow from the next calculations.

If G = A4, G ∩ V = V and m = |A4/V | = 3.
If G = S4, G ∩ V = V and m = |S4/V | = 6.
If G = V , G ∩ V = V and m = |V/V | = 1.
If G = D4, G ∩ V = V and m = |D4/V | = 2.
If G = Z4, G is generated by a 4-cycle, so its square is in
V . Thus |G ∩ V | = 2 and therefore m = |Z4/Z4 ∩ V | = 2.
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Quintics

Let f(x) = x5 − 6x + 3 ∈ Q[x ].This polynomial has the following
properties:

1 f(x) is irreducible over Q: by Eisenstein’s
2 f′(x) = 5x4 − 6 has two roots.
3 Examining graph gives that f(x) has 3 real roots and a pair

of complex conjugate roots.
4 As a subgroup of S5, G has order divisible by 5 because of

item (1), and therefore by Sylow contains a cycle σ of order
5. In view of (3), G has a cycle τ of order 2.
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Proposition
If p is prime and a subgroup of H of Sp contains a cycle of
order p and another of order 2, then H = Sp.

Applying to our case,

GalQ(x5 − 6x + 3) = S5.
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Tschirnhaus Transformation

Given a quintic

f(x) = x5 + ax4 + bx3 + cx2︸ ︷︷ ︸+dx + e,

there are transformations, some linear, which we used to get rid
of a, some quadratic, that permit to study an equivalent quintic
without the terms indicated. This is a theorem of Bring-Jerrand.
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Assignment #3

1 Prove that over any field K, x3 − 3x + 1 is either irreducible
or splits over K.

2 Prove that in a finite field F, every element is a sum of two
squares.

3 Give the addition and multiplication tables for the field F4.
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Radical Extensions

Let
f(x) = a0xn + a1xn−1 + · · ·+ a0 = 0, ai ∈ K,

and let u be a root in some extension field. By an explicit
solution by radical we mean

u = h(a0,a1, . . . ,an)

where h is a rational function over K involving root extractions.

For n = 1,2 is classical, for n = 3,4 the solution is due to
Tartaglia, Cardano and Ferrari. For n = 5, Abel proved the
impossibility and the explanation for n ≥ 5 is a crowning
achievement of Galois.
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Cardano’s Formula

y3 + ay2 + by + c = 0. If char 6= 3, the substitution y = x − a/3
gives the equivalent equation

x3 + px + q = 0, p = b − a3/3, q = c + (2a3 − 9ab)/27

Now substitute x = u + v :

(u + v)3 + p(u + v) + q = (u3 + v3 + q) + (u + v)(3uv + p) = 0

Cardano’s trick: Choosing 3uv + p = 0 gives two equations

u3 + v3 = −q
u3v3 = −p3/27

Thus u3 and v3 are roots of the quadratic

t2 + qt − p3/27 = 0
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If char 6= 2, we use the quadratic formula to get

x = u + v =
3

√
−q +

√
q2/4 + p3/27 +

3

√
−q −

√
q2/4 + p3/27

There seems to be too many roots with the various choices of
the cubic roots.
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Radical Extensions

Definition
Let F be a finite extension. F is a radical extension of K if there
exist u1, . . . ,un ∈ F such that F = K[u1, . . .un] and a set of
positive integers r1, . . . , rn such that

ur1
1 ∈ K

ur2
2 ∈ K[u1]

...
urn

n ∈ K[u1, . . . ,un−1]

Remark: If one of these exponents ri is a composite number,
ri = r · s, we can write uri

i = ((ui)
r )s, and therefore replace the

ui by another set of elements in which all the exponents are
prime. We assume this from now on.
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Main Theorem for Radical Extensions

Theorem
Let F be a radical extension of a field K. For any intermediate
extension

K ⊂ M ⊂ F

GalK(M)

is solvable.

See how powerful this is: If L is an algebraic extension of K,
and u ∈ L is to be obtained by a sequence of rational
operations plus root extractions, then GalK(K(u)) must be
solvable.
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Recall

For a group G, the commutator subgroup G(1) is the subgroup
generated by all aba−1b−1, a,b ∈ G.

G is solvable if some iterate

G(n) = (Gn−1)(1) = (1)

This is equivalent to the existence of a chain of subgroups

(1) /G1 /G2 / · · · /Gm /G,

such that Gi+1/Gi is abelian.
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Facts

1 If H ⊂ G and G is solvable, then H is solvable.

2 The alternating group An is solvable for n ≤ 4, but simple
(therefore not solvable) for n ≥ 5.

3 H /G, then G is solvable iff H and G/H are solvable.
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Proof: Preparatory Steps

1 K ⊂ M ⊂ F radical: Let G = GalK(M) and set K ⊂ K0 = G′.

2 Then G = GalK0(M), so we may assume that M is Galois
over K–after we replace K by K0 as

F = K0[u1, . . . ,un]

3 Replace F by F0 the splitting field of all of the minimal
polynomials of all the ui . F0 is also a radical extension.

4 We are going to assume char zero although the theorem
holds in all chars.
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Proof: Change of Setting

Set G = GalK0(F0) and G = GalK0(M). Note that

M′ /G, G = G/M′

so ETS G is solvable.
M = K[u1, . . . ,un], all ri prime, char 0.
M splitting field.
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Lemma 1

Lemma
Let p be a prime number and L the splitting field of xp − 1 over
K. Then GalK(L) is abelian.

Proof. If char = p, xp − 1 = (x − 1)p and L = K.

1 If char 6= p, xp − 1 is a separable polynomial.

2 If ε 6= 1 is one of its roots, it must have order p, so the other
roots 6= 1 are εi , 0 < i < p.

3 L = K[ε] and any two automorphisms σ(ε) = εi , τ(ε) = εj ,
so that

τ(σ(ε)) = εij

from which it follows that they commute.



General Orientation Syllabus Fields and Galois Theory Ruler and Compass Constructions Galois Theory Assignment #1 Last Class ... and Today Splitting Fields Assignment #2 Finite Fields Galois Group of an Equation Assignment #3 Radical Extensions Assignment #4 Assignment #5 Trace and Norm

Lemma 2

Lemma
Suppose xn − 1 factors completely over K and let L be the
splitting field of xn − a, a ∈ K. Then GalK(L) is abelian.

Proof. If u is a root of xn − a, the other roots are uε, where
εn = 1. Thus L = K[u].

Two elements of Galois group are specified by σ(u) = uε,
εn = 1, and τ(u) = uη, ηn = 1.

Therefore τ(σ(u)) = uεη = σ(τ(u)). �
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Proof by Diagramming

Set M = K[u1, . . . ,un]. If up
1 ∈ K, let K0 be the splitting field of

xp − 1, and set M1 = K0[u1] = K[ε,u1] and

M0 = M[ε] = K[ε,u1, . . . ,un] = M1[u2, . . . ,un]

M0

%%JJJJJJJJJJ
Galois
��~~

~~
~~

~~
// M1

��
M

our G Galois   A
AA

AA
AA

A K0 = K(ε)

Galois, abelianyyssssssssss

K
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End of Proof of Galois Theorem

1 It is enough to prove that GalK(M0) is solvable since M is
Galois over K.

Let G̃ = GalK(ε)(M0)

2 M0 is radical over M1 = K0[u1] and therefore the Galois
group H is solvable by induction on n.

3 Since M1 is Galois and abelian over K0, and K0 is Galois
and abelian over K.

4 Thus GalK(M1) is solvable. Therefore G̃ and G along with it
are solvable.
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Assignment #4

Let K be a subfield of R and f ∈ K[x ] an irreducible quartic.
If f has exactly two real roots, show that the Galois group
of f is S4 or D4.
Determine the Galois group of x4 + 3x3 + 3x − 2 over Q, or
more simply x4 + 1 over Q.
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Assignment #5

Pick two problems.

1 Show that if n ≥ 3, then x2n
+ x + 1 is reducible over Z2.

2 Let F be a field extension of K. Prove the statement: If
u ∈ F is separable over K and v ∈ F is purely inseparable
over K then K(u, v) = K(u + v) and if uv 6= 0, then
K(u, v) = K(uv).

3 Prove: If F is a finite extension of Q then it contains only a
finite number of roots of 1.

4 Prove that if F is a radical extension of K and L is an
intermediate extension then F is a radical extension of L.
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Trace and Norm

Definition
Let K ⊂ L be a finite extension of Galois group G.

1 The trace of L over K is the function
u ∈ L→ T(u) =

∑
σ∈G σ(u).

2 The norm of L over K is the function
u ∈ L→ N(u) =

∏
σ∈G σ(u).

Both T(u) and N(u) are fixed elements. These functions play
many roles, from the study of the structure of cyclic extensions
to ring theory in general.
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Linear Independence of Automorphisms

We are going to examine some properties of the K-linear
transformations of L of the form

h = a1σ1 + · · ·+ anσn, ai ∈ L, σi ∈ G.

Definition
The set L[G] of all linear transformations as h is a ring, called
the twisted group ring of G over L.

Note the action:
(aσ)(bτ)(x) = (aσ)(bτ(x)) = aσ(b)(στ)(x)

The ring L[G] is a left L-vector space. It is also a left
K-vector space
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Dedekind Theorem

Theorem (Dedekind)
The elements σ1, . . . , σn are linearly independent over L.

Proof. Suppose there is a nontrivial dependence relation in
distinct σi

a1σ1 + · · ·+ anσn = 0,

with n as small as possible.

Note that n > 1 and ai 6= 0.
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Since n > 1, there is a ∈ L such that σ1(a) 6= σ2(a). Applying
the relation to ax , x an arbitrary element of L, gives rise to
another relation

a1σ1 + · · ·+ anσn = 0,
a1σ1(a)σ1 + · · ·+ anσn(a)σn = 0.

Multiplying the first relation (on the left) by σ1(a) and
subtracting from the second relation gives

a2(σ2(a)− σ1(a))σ2 + · · ·+ an(σn(a)− σ1(a))σn = 0,

which is a nontrivial relation of shorter length, a contradiction.
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Structure of L[G]

It is an immediate consequence that if xi is a basis of L over K,
then the elements xiσj are linearly independent over K.

Proof.
Suppose ∑

ij

cijxiσj = 0, cij ∈ K

Then ∑
j

(
∑

i

cijxi)σj = 0 ⇒ by Previous theorem

∑
i

cijxi = 0 ∀j ⇒ cij = 0.
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Theorem
If L is a Galois extension over K, there is an isomorphism
L[G] ≈ HomK(L,L).

Proof.
Since |G| = [L : K], the ring of matrices HomK(L,L), and its
subring (subspace) L[G] have the same dimension as vector
spaces over K.
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Cyclic Extensions

Definition
An extension L of a field K is called cyclic [resp. abelian] if L is
a Galois extension and G(L/K) is cyclic [resp. abelian].

A basic tool to study these extensions is:

Theorem
Let L be a cyclic extension field of K of degree n, σ a generator
of G and u ∈ L. Then

1 T(u) = 0 if and only if u = v − σ(v) for some v ∈ L.
2 (Hilbert’s 90) N(u) = 1 if and only if u = vσ(v)−1 for some

v ∈ L.

Proof. The forward assertions follow directly from the definition
of trace and norm.
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Proof

Suppose T(u) = 0. Now we choose w ∈ L such that
T(w) = 1 as follows. By the linear independence of
automorphisms, there exists z ∈ L such that

0 6= 1z + σz + σ2z + · · ·+ σn−1z = T(z).

As T(z) ∈ K, setting w = zT(z)−1, we have T(w) = 1.
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Proof Cont’d

Set

v = uw + (u + σu)(σw) + (u + σu + σ2u)(σ2w) +

· · · +(u + σu + · · ·+ σn−2u)(σn−2w)

Since T(u) = 0, setting u = −σu − σ2u − · · · − σn−1u in the
last equation, shows that

v − σv = uw + uσ(uw) + · · ·+ uσn−1w
= uT(w) = u1 = u.
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Proof of Hilbert’s 90th

Suppose N(u) = 1. By the linear independence of
automorphisms, there exists y ∈ L such that

0 6= v = uy + (uσu)σy + (uσuσ2u)σ2y +

· · · +(uσu · · ·σn−1u)σn−1y .

The last summand is N(u)σn−1y = σn−1y , making it easy
to verify that u−1v = σv , hence

u = v(σv)−1
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Cyclic Extension

Theorem
Let K be a field of characteristic p 6= 0. L is a cyclic extension of
degree p iff L is a splitting field over K of a polynomial
xp − x− a ∈ K[x]. In this case L = K(u) where u is a root of
xp − x− a.

Proof. If σ is the generator of the cyclic group G(L/K),

T(1) =
∑

i

σi(1) = p.1 = 0

By part (1), of the theorem, there exists v ∈ L such that
1 = v − σv . Setting u = −v , we have σu = u + 1, and thus
u /∈ K. Since there are no intermediate extensions, L = K(u).

Finally, u = σpu = (u + 1)p = up + 1. This implies that
σ(up − u) = up − u, which shows that up − u = a ∈ K. Thus u
satisfies the equation xp − x− a = 0.
Look up the converse.
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Cyclic Extension

Corollary
If K is a field of characteristic p 6= 0 and xp − x− a ∈ K[x], then
xp − x− a is either irreducible or splits in k[x].
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