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Matrix Representation

We first discuss how to represent some [look at the caveat]
linear transformations T : V→W by matrices. Think of V and W
as Rn or Cn. It is a process akin to representing vectors by
coordinates. Recall that if v ∈ V and B = v1, . . . , vn is a basis of
V, we have a unique expression

v = x1v1 + · · ·+ xnvn.

We say that the xi are the coordinates of v with respect to B.
We write as

[v ]B =

 x1
...

xn

 .
If C = {w1, . . . ,wm} is a basis of W, we would like to find the

coordinates of T(v) in the basis C

[T(v)]C =

 ?

 .
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Matrix Representation

In other words, if v = x1v1 + · · ·+ xnvn,

T(v) = y1w1 + · · ·+ ymwm,

we want to describe the yi in terms of the xj . The process will
be called a matrix representation. It comes about as follows:∑

yiwi = T (
∑

xjvj) =
∑

xjT(vj)

Thus if we have the coordinates of the T(vj),

T(vj) =

 a1j
...

anj


we have  y1

...
ym

 =
∑

xj

 a1j
...

anj


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More pictorially

[T(v)]C =

 y1
...

ym

 =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 x1

...
xn

 = [T]CB · [v ]B

The n ×m matrix
[T]CB

is called the matrix representation of T relative to the bases B
of V and C of W.
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Quickly: Once bases v1, . . . , vn and w1, . . . ,wm have been

chosen, T is represented by[
aij
]

where the entries come from

T(vj) =
m∑

i=1

aijwi .
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Example

Recall the transpose operation on a square matrix A: if aij is the
(i , j)-entry of A, the (i , j)-entry of At is aji . This is a linear
transformation T on the space Mn(F):

(A + B)t = At + Bt , (cA)t = cAt .

Let us find its matrix representation on M2(F). This space has
the basis

v1 =

[
1 0
0 0

]
, v2 =

[
0 1
0 0

]
, v3 =

[
0 0
1 0

]
, v4 =

[
0 0
0 1

]
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Since

T(v1) = v1, T(v2) = v3, T(v3) = v2, T(v4) = v4,

the matrix representation of transposing is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Let R3[x ] be the space of real polynomials of degree at most 3
and T the differentiation operator.

A basis here are the polynomials 1, x , x2, x3. The
corresponding matrix representation is

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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Eigenvalues: Motivation

Consider the following differential equations (or systems of)

y ′ = ay , a ∈ R

y ′′ + ay ′ + by = 0, a,b ∈ R

[
y ′1
y ′2

]
=

[
10y1 + 3y2

3y1 + 2y2

]

Question: What are their resemblances? Which ones can we
solve directly?
They are equations, or systems, of linear differential equations
with constant coefficients.
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The first equation, y ′ = ay , is the easiest to deal with: y = ceat

is the general solution.

We will argue that the others, with a formulation using vectors
and matrices, have the same kind of solution. Let us do the last
one first. Set

Y =

[
y1
y2

]
, Y′ =

[
y ′1
y ′2

]
, A =

[
10 3

3 2

]

Now observe:
Y′ = AY.

Question: This looks like y ′ = ay , which has y = ceat for
solution. You should be tempted to expect the solution to be

Y = CetA.

What is etA, the exponential of the matrix tA? What could it
be?
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Let us turn to the second order D.E.

y ′′ + ay ′ + by = 0

If we set z1 = y and z2 = y ′ = z ′1,
z ′2 = y ′′ = −ay ′ − by = −bz1 − az2 which can be written in
matrix formulation as

Z =

[
z1
z2

]
, Z′ =

[
z ′1
z ′2

]
, A =

[
0 −b
1 −a

]
We get

Z′ = AZ,

as above Z = CetA if we could make sense of then exponential
of a matrix.
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We return to this–promise–for the moment just think the
possibility:

The function ex has a power series expansion

ex = 1 + x +
x2

2
+ · · ·+ xn

n!
+ · · ·

If we replace x by the square matrix A (and 1 by I), we get

eA = I + A +
A2

2
+ · · ·+ An

n!
+ · · · ,

We just must make sure that a theory of series of makes sense.
The answer will be sure. Think about the adjustments to be
made.
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Just for fun let us calculate the exponential of A =

[
1 1
0 1

]
.

A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
, An =

[
1 n
0 1

]
 1 + 1 + 1/2 + · · ·+ 1/n! + · · · 1 + 1 + 2 · 1/2 + · · ·+ n · 1/n! + · · ·︸ ︷︷ ︸

=e
0 1 + 1/2 + · · ·+ 1/n! + · · ·


eA =

[
e e
0 e

]
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Convergence of eA

That

eA = I + A +
A2

2
+ · · ·+ An

n!
+ · · ·

makes sense is due to the power of n!:
Suppose A = [aij ] is m ×m and that the absolute value of its
entries |aij | ≤ r .This implies that the entries of A2

|
m∑

k=1

aikakj | ≤ mr2

Similarly one finds that the entries of An are bounded by

mn−1rn
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This implies that the series in any entry of eA is bounded by the
series

∞∑
n=0

mn−1rn

n!

that is convergent [e.g. use ratio test].

This proves eA makes sense since the series in each of its
entries is absolutely convergent.
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Let us show a long application:

det(eA) = eTrace(A)

This is obvious if A is a diagonal matrix,

A =

 a 0 0
0 b 0
0 0 c

 , eA =

 ea 0 0
0 eb 0
0 0 ec

 , det(eA) = ea+b+c ,

but in general...
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Sweet representation of a linear transformation

Let V be a finite dimensional vector space and

T : V→ V

a linear transformation.
Question: Is there a basis B = {v1, . . . , vn} of V so that the
matrix representation

[T]B

is as ‘simple’ [e.g. with plenty of 0’s] as possible?
Answer: Well... but for the most ‘interesting’ matrices the
answer is YES.
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Invariant subspace

Let V be a finite dimensional vector space and

T : V→ V

a linear transformation.
If W ⊂ V is a subspace, it is of interest to know whether for
w ∈W its image T(w) ∈W. Clearly this will not happen often.

Definition
W is a T-invariant subspace if T(W) ⊂W. That is, the
restriction of (the function) T to W is a linear transformation of it.
We denote the restriction of T to W by TW.
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Let us see what this implies for the matrix representation of T.
Let B = {w1, . . . ,wr} be a basis of W, and complete it to a
basis of V

A = {w1, . . . ,wr , vr+1, . . . , vn}.

Since T(wi) ∈W, it is a linear combination of the first r vectors,
the first r columns of the matrix is

[T]A =

[
[TW]B ∗ · · · ∗

O(n−r)×r ∗ · · · ∗

]

[T]A =


a b ∗ · · · ∗
c d ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 ∗ · · · ∗


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Blocks

Suppose T is a L.T. of vector space V with a basis
A = v1, . . . , vr , vr+1, . . . , vn. Suppose T(vi) for i ≤ r , is a linear
combination of the first r basis vectors, and T(vi) for i > r , is a
linear combination of the last n − r basis vectors.
Claim: The matrix representation has the block format

[T]A =

[
r × r O

O (n − r)× (n − r)

]
This can be refined to more than two blocks. The extreme case
is when all blocks are 1× 1. The representation is then said to
be diagonal.
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Eigenvector

The extreme case of an invariant subspace is one of the top 5
notions of L.A.:

Definition
An eigenvector of the linear transformation T is a nonzero
vector v such that

T(v) = λ · v .

The scalar λ is called the (corresponding) eigenvalue.

Means: The line Fv is an invariant subspace of T. Note that v
must be nonzero, but that λ could be zero. Observe who
cames first: eigenvector→ eigenvalue.
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To keep in mind:

v 6= O, T(v) = λv

Note: Any nonzero multiple of v is also an eigenvector [with the
same eigenvalue]

av 6= 0 T(av) = aT(v) = aλv = λ(av)

The subspace spanned by v is invariant under T
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Examples

• One of the most important L.T. of Mathematics is T := d
dt .

(On the appropriate V.S.) Its eigenvectors are

d
dt

(f (t)) = λ · f (t),

that is f (t) = eλt and its nonzero scalar multiples ceλt .
• Let T be the identity L.T. I. Then any nonzero vector is a

eigenvector. Same property for the [null] O mapping.
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• For an angle 0 < α < π, let

T(x , y) = (x cosα + y sinα,−x sinα + y cosα)

This is a rotation in the plane by α degrees. Clearly there is
no nonzero vector v in the real plane R2 that is aligned with
T(v).
• Let T be the L.T. 

1 0 0

0 2 0

0 0 0


Its eigenvectors are (and their nonzero multiples)

T(i) = 1 · i , T(j) = 2 · j , T(k) = 0 · k
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If T is a linear transformation of F2 with a matrix representation

A =

[
0 1
0 0

]
,

we know that

A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
Thus, if

A(v) = λv , v 6= 0

A(A(v)) = A2(v) = O = A(λv) = λ(A(v)) = λ2v

so λ = 0 since v 6= O.
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Let V be the vector space of all n× n real matrices, and let T be
the transformation

T(A) = At

T is a linear transformation. If A 6= O is one of its eigenvectors,

At = λA

So, transposing again we get

A = (At )t = λAt = λ2A

(λ2 − 1)A = O

This means that λ = ±1
If λ = 1, A is symmetric
If λ = −1, A is skew-symmetric
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Question:

Given a n-by-n matrix A [usually representing some linear
transformation T], how are the eigenvectors to be found?
Although the eigenvalues come after the eigenvectors, in
some approaches they will appear first. Look at the following
analysis: Av = λv , for v 6= O means that

(A− λIn)v = O,

Conclusion: v is a nonzero vector of the nullspace of A− λIn
and therefore rank(A− λIn) < n. This in turn means that

det(A− λIn) = 0.
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Characteristic polynomial of a matrix

Definition
The characteristic polynomial of the n-by-n matrix A = [aij ] is
the polynomial

p(x) = det(A− x In) = det

 a11 − x · · · a1n
...

. . .
...

an1 · · · ann − x

 .
The equation p(x) = 0 is called the characteristic equation.

Observe that det(A− x In) is a polynomial of degree n,

det(A− x In) = (−1)nxn + cn−1xn−1 + · · ·+ c0.
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The characteristic polynomial of A =

[
10 3

3 2

]
is

det
[

10− x 3
3 2− x

]
= (10− x)(2− x)− 9 = x2 − 12x + 11

Its roots are

λ =
12±

√
122 − 4× 11

2
= 6± 5
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With the eigenvalues in hand we solve for the eigenvectors.

λ = 11: Will determine the nullspace of A− 11I2

[
10− 11 3 0

3 2− 11 0

]
→
[
−1 3 0
0 0 0

]
v1 =

[
3
1

]
λ = 1: Will determine the nullspace of A− I2[

10− 1 3 0
3 2− 1 0

]
→
[

3 1 0
0 0 0

]
v2 =

[
1
−3

]
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Let us Verify that it will work out for any real symmetric matrix

A =

[
a b
b c

]
The characteristic polynomial is

det
[

a− x b
b c − x

]
= (a−x)(c−x)−b2 = x2−(a+c)x+ac−b2,

whose roots are

λ =
a + c ±

√
(a + c)2 − 4(ac − b2)

2

Incredibly (?) the quantity under the sign is (a− c)2 + 4b2 ≥ 0,
so either there are two distinct real roots or a = c, b = 0. In
both cases the matrix is diagonalizable.
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A different kind is the rotation Rα by α degrees in the plane R2:[
cosα − sinα
sinα cosα

]
. Its characteristic polynomial is

det
[

cosα− x − sinα
sinα cosα− x

]
= (cosα−x)2+sin2 α = x2−(2 cosα)x+1.

Its roots are

λ =
2 cosα±

√
4 cos2 α− 4
2

,

which is not real unless α = 0, π.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

We already know that rotations 0 < α < π have no real

eigenvalues. Let us try α = π/2 anyway: A =

[
0 1
−1 0

]
. The

characteristic polynomial is x2 + 1, so the (complex)
eigenvalues are λ = ±i .

λ = i : Will determine the nullspace of A− i I2[
−i 1 0
−1 −i 0

]
→
[
−i 1 0
0 0 0

]
, v1 =

[
1
i

]
λ = −i : Will determine the nullspace of A + i I2[

i 1 0
−1 i 0

]
→
[

i 1 0
0 0 0

]
, v2 =

[
1
−i

]
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Proposition
Let A be a n-by-n matrix over the field F. A scalar λ ∈ F is an
eigenvalue for some eigenvector v ∈ Fn iff λ is a root of the
polynomial det(A− x In).

Proof.
We have already observed that if Av = λv , v 6= 0, then λ is a
root of the char polynomial. Conversely, if det(A− λIn) = 0,
then rank(A− λIn) < n. This implies, by the dimension formula,
that the nullspace of A− λIn 6= O. Any nonzero vector in this
nullspace will satisfy

Av = λv .
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Corollary
The number of distinct eigenvalues of the n-by-n matrix A is at
most n. (The set of eigenvalues of a matrix–or of a linear
transformation is called its spectrum).
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Characteristic polynomial of a linear
transformation

It seems that we have only defined the characteristic
polynomial for matrices. Suppose T is a L.T. If we have two
bases A, B of the vector space, we have two representations

A = [T]A, B = [T]B

and therefore we have, apparently, two possibly different
polynomials

det(A− x In), det(B− x In).

But we proved that A and B are related: There is an invertible
matrix P such that B = P−1AP. Now observe
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det(B− x In) = det(P−1AP− x In) = det(P−1AP− P−1x InP)

= det(P−1(A− x In)P)

= det(P−1) det(A− x In) det(P)

= det(A− x In)

Conclusion: The characteristic polynomial is the same for all
representations of T.
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Eigenspaces

Definition
If λ is an eigenvalue of A, the nullspace of A− λIn, denoted by
Eλ, is called the eigenspace associated to λ.

Observe that Eλ is invariant under A: If v ∈ Eλ then Av ∈ Eλ.
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Polynomials and their roots

If f (x) = anxn + · · ·+ a0 is a polynomial of degree n, with
coefficients in the field F a root is a scalar r such that f (r) = 0.
It is a hard problem to find r .

Proposition
If f (x) and g(x) are two polynomials, then there exist
polynomials q(x) and r(x) where

f (x) = q(x)g(x) + r(x),

where r(x) = 0 or degree r(x) < degree g(x).

q(x) is called the quotient, and r(x) the remainder of the
division of f (x) by g(x). They are found by the long division
algorithm.
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Corollary
If r is a root of the nonzero polynomial f (x), then
f (x) = (x − r)q(x), where deg q(x) = deg f (x)− 1. As a
consequence, a polynomial f (x) of degree n has at most n
roots.

Proof.
Any other root s of f (x) satisfies

f (s) = q(s)(s − r) = 0,

so q(s) = 0 since s − r 6= 0.
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Algebraic multiplicity of a root

If f (x) = anxn + · · ·+ a0 is a nonzero polynomial and r is one of
its roots,

f (x) = (x − r)g(x).

It may occur that r is a root of g(x), g(x) = (x − r)h(x). As the
degrees of the quotients decrease, we eventually have

f (x) = (x − r)sq(x), q(r) 6= 0.

Definition
We say that r is a root of f (x) of order or multiplicity s.
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Multiplicities of an eigenvalue

Let λ be an eigenvalue of the matrix A. There are two notions
of multiplicity associated to λ:

If λ is a root of order s of the characteristic polynomial
det(A− x In), we say that λ has algebraic multiplicity s.
If the eigenspace Eλ has dimension t , we say that λ has
geometric multiplicity t .
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Proposition
For any eigenvalue λ of a matrix A,

algebraic multiplicity ≥ geometric multiplicity.

Proof.
Assume v1, . . . , vt is a basis of Eλ, and we use it as the
beginning of a basis for the whole vector space, the
representation of the L.T. has the block format[

λIt B
O C

]
, det(A− x In) = (λ− x)t det(C− x In−t ).
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Properties of eigenvalues

Let A be a square matrix.
1 If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2:

A2(v) = A(A(v)) = A(λv) = λA(v) = λλv = λ2v .

2 More generally, if g(x) is a polynomial (e.g. x2 − 2x + 1)
then

g(A)(v) = g(λ)v , (A2 − 2A + I)(v) = (λ2 − 2λ+ 1)(v).

3 If A is invertible, A−1(v) = 1
λv .
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1 If p(x) = det(A− x In) = (−1)nxn + · · ·+ a0 is the
characteristic polynomial of A, then a0 = det(A). Plug in
x = 0 in p(x).

2 If λ1, . . . , λn are the eigenvalues of A, then

det(A) = λ1 · λ2 · · ·λn.

In the decomposition of p(x),

p(x) = (−1)n(x − λ1) · · · (x − λn),

plug in x = 0 and use the observation above.
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Complex Numbers

1 If the field is the complex number filed C, any polynomial
f (x) ∈ C[x ] factors completely

f (x) = an(x − r1) · · · (x − rn)

As a consequence, the eigenvalues of a complex matrix
always exist in the field.

2 If A is a real matrix, its characteristic polynomial
p(x) = det(A− x In) is a real polynomial and always have a
full set λ1, . . . , λn of complex eigenvalues, some of which
may be real.
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1 If λ = a + bi , is a complex root of f (x), f (λ) = 0, observe
that

f (a + bi) = 0⇒ f (a− bi) = 0,

because all coefficients of f (x) are real.Let us explain: Say

7(a + bi)3 − 2(a + bi)2 + 117(a + bi) + π = 0.

Complex conjugation, a + bi → a + bi = a− bi has the
property: z1z2 = z1 · z2. But if z1, say, is real (like the
coefficients of the polynomial), z1 = z1, so they are not
affected by changing all a + bi into a− bi . So if one is a
root, so will be the other.

2 Thus the complex conjugate a− bi of an eigenvalue a + bi
is also an eigenvalue: So complex eigenvalues of a real
matrix occur in pairs.
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Groups

Let G be a finite group. There are many injective
homomorphisms

ϕ : G→ GLn(C)

Thus we have many ways to view G as a group of linear
transformations. It helps a lot to know

Theorem
Every T ∈ G is diagonalizable.

You should ask how come, when being diagonalizable is kind of
dicey.
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Linear independence of eigenvectors

Let T be a L.T. (or matrix). Suppose there is a basis made up of
eigenvectors, say B = {v1, . . . , vn}, T(vi) = λivi . The
corresponding matrix representation is

[T]B =

 λ1 · · · 0
...

. . .
...

0 · · · λn


This is not always possible: Let A =

[
0 1
0 0

]
whose

characteristic polynomial is x2. There is just one eigenvalue,
λ = 0. But the corresponding eigenspace E0 has for basis[

1
0

]
. We do not have a basis of eigenvectors, so A is not

diagonalizable.
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Let us explore what is needed to have a basis of eigenvectors.

Proposition
Let T be a linear transformation and let v1, . . . , vr be a set of
eigenvectors of T, associated to distinct eigenvalues λ1, . . . , λr .
Then the vi are linearly independent.
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Proof. Suppose c1v1 + · · ·+ cr vr = O. Using induction on r , we
are going to show that all ci = 0. We are going to multiply the
equation by λ1 and apply T to it to obtain the following two
equations:

λ1(c1v1 + · · ·+ cr vr ) = λ1c1v1 + · · ·+ λ1cr vr = 0
T(c1v1 + · · ·+ cr vr ) = λ1c1v1 + · · ·+ λr cr vr = 0

If we subtract one from the other we get the shorter equation,

(λ2 − λ1)c2︸ ︷︷ ︸ v2 + · · ·+ (λr − λ1)cr︸ ︷︷ ︸ vr = 0

By the induction hypothesis, all ci(λi − λ1) = 0, for i > 1. Since
λi 6= λ1, this means ci = 0 for i > 1. Finally, since v1 6= 0 this
will imply c1 = 0 as well.
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Let λ1, . . . , λr be the set of eigenvalues of T, and let
Eλ1 , . . . ,Eλr be the corresponding set of eigenspaces. For each
of these we pick a basis Bi . For simplicity, take 3 eigenvalues
and assume the bases chosen for the 3 eigenspaces are

{u1,u2,u3}, {v1, v2}, {w1,w2}

Claim: These 7 vectors are linearly independent. Suppose

a1u1 + a2u2 + a3u3︸ ︷︷ ︸
u

+ b1v1 + b2v2︸ ︷︷ ︸
v

+ c1w1 + c2w2︸ ︷︷ ︸
w

= 0,

which we write as 1 · u + 1 · v + 1 ·w = 0. Note that if u 6= 0 it is
an eigenvector (and v and w as well), by the Proposition,
u = v = w = 0, and then that a1 = · · · = c2 = 0, by the linear
independence of the respective bases.
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Theorem
Let A be a n-by-n matrix with n eigenvalues (maybe repeated).
Then A is diagonalizable iff for every eigenvalue its geometric
multiplicity is equal to its algebraic multiplicity.

Proof. Let λ1, . . . , λr be the set of DISTINCT eigenvalues of A,
and let Eλ1 , . . . ,Eλr be the corresponding set of eigenspaces.
We have the equalities∑

i

geom. mult. of λi =
∑

i

dim Eλi∑
i

alg. mult. of λi = n.

Since alg. mult. of λi ≥ geom. mult. of λi , if equality for each
i holds, the previous discussion shows that we can have a
basis of eigenvectors by collecting bases in the Eλi . The
converse is clear.
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Corollary
Let A be a n-by-n matrix with n distinct eigenvalues. Then A is
diagonalizable.

Theorem
Let A be a n-by-n matrix. A is invertible iff λ = 0 is not an
eigenvalue.

Proof.
A is invertible iff it is one-one: A(v) 6= 0 · v if v 6= O.
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Let A be a n-by-n matrix and assume B = {v1, . . . , vn} is a
basis made up of its eigenvectors, A(vi) = λivi . The matrix

P = [v1| · · · |vn]

is invertible since the vi form a basis. Claim:

P−1AP = D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


To prove we apply D to the standard basis e1, . . . ,en. Note that
P(e1) = v1. For instance

D(e1) = P−1(A(P(e1))) = P−1(A(v1)) = P−1(λ1v1) = λ1P−1(v1) = λ1e1



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Note that if A is diagonalizable, that is there is an invertible
matrix P such that P−1AP = D (= diagonal), a host of related
matrices are also diagonalizable:

1 Any power of A is diagonalizable (let us do square):

D2 = (P−1AP)(P−1AP) = P−1A PP−1︸ ︷︷ ︸
I

AP = P−1A2P

and certainly D2 is diagonal.
2 If A is invertible [and diagonalizable!] its inverse A−1 is

also diagonalizable:

D−1 = (P−1AP)−1 = P−1A−1 (P−1)
−1︸ ︷︷ ︸ = P−1A−1P

3 If g(x) is any polynomial and A is diagonalizable, then
g(A) is diagonalizable (check).
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Diagonalization Summary

Let A be a n-by-n matrix for which we want to find a possible
diagonalization.

1 Find the characteristic polynomial p(x) = det(A− x In).
Rating: Routine, if at times long.

2 Decompose p(x) and collect factors

p(x) = (−1)n(x − λ1)m1 · · · (x − λr )mr

Rating: Very Hard
3 For each λi find dim Eλi and check it is mi . Rating:

Gaussian elim

Comment: This is kind of vague. We need predictions. That is:
Guarantees that certain kinds of matrices are diagonalizable.
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Examples

Example: Let A be the real matrix 2 1 1
0 1 2
0 0 c

 ,
where c is some number.
(a) What are the eigenvalues of A?
(b) If c 6= 1,2, why is A diagonalizable? What happens when
c = 1 or c = 2?

Answer: (a) The characteristic polynomial is

det(A− x I3) = (2− x)(1− x)(c − x),

whose roots are the eigenvalues: 1,2, c.

(b) If c 6= 1,2, there are [automatically] 3 independent
eigenvectors and therefore the matrix is diagonalizable.
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If c = 1 or c = 2, it may go either way [diagonalizable or not] so
we must check further to see whether the geometric
multiplicities are equal or not to the algebraic multiplicities. For
c = 1: The nullspace of A− I3 1 1 1

0 0 2
0 0 1


is generated by  −1

1
0


and A is not diagonalizable.
Doing likewise for c = 2 will again show that A is not
diagonalizable.
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Example:

Given the real matrix

A =

 2 0 3
0 2 0
3 0 5

 A− x I3 =

 2− x 0 3
0 2− x 0
3 0 5− x


(a) Find its characteristic polynomial.
(b) Find its eigenvalues.
(c) Explain why A is diagonalizable. [You do not have to find the
eigenvectors to answer.]

Answer: (a) To find det(A− x I3), we expand along the second
column

det(A−x I3) = (2−x)((2−x)(5−x)−9) = (2−x)(x2−7x + 1).
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(b) Use the quadratic formula to find the roots of the factor
x2 − 7x + 1:

7±
√

49− 4
2

=
7± 3

√
5

2
Together with 2 these roots are the eigenvalues.

(c) Since the 3 eigenvalues are distinct, we have a basis of
eigenvectors for R3 and A is diagonalizable.
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Chaos

Let λ be an eigenvalue of the matrix A: Av = λv . To find v 6= 0
we find the nullspace of A− λIn.
Suppose a mistake was made and instead of λ we have λ+ ε.
If this value is not an eigenvalue the nullspace of

A− (λ+ ε)In

is O, not a vector ‘close’ to v . What to do?



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Some stability

Question: Assume A admits a basis of eigenvectors. How can
we find one, or more eigenvectors, if we cannot solve the
characteristic equation? Here is a popular technique. Let
u ∈ Rn picked at random [?]. We know that

u = u1 + u2 + · · ·+ ur , Aui = λiui

where the ui belong to different eigenspaces. Of course, the
right hand of this equality is invisible to us. Let us assume
|λ1| > |λi |, i > 1. Observe what happens when we apply A
repeatedly to u:

An(u) = λn
1u1︸︷︷︸+λn

2u2 + · · ·+ λn
r ur

The growth in the coordinates of An(u) is coming from λn
1u1.
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If we compare the two vectors

An(u) = λn
1u1︸︷︷︸+λn

2u2 + · · ·+ λn
r ur

An+1(u) = λn+1
1 u1︸ ︷︷ ︸+λn+1

2 u2 + · · ·+ λn+1
r ur

It will follow that

lim
n

||An+1(u)||
||An(u)||

= |λ1|,

more precisely: If we set vn = An(u)
||An(u)|| , then

A(vn) ' λ1vn, n� 0.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Let us re-visit a problem and solve it in two different ways: It is
the system of differential equations

Y =

[
y1
y2

]
, Y′ =

[
y ′1
y ′2

]
, A =

[
10 3

3 2

]
, Y′ = AY.

Earlier we found the eigenvalues and bases for the
eigenspaces:

λ = 11 : v1 =

[
3
1

]
, λ = 1 : v2 =

[
1
−3

]
If we change the coordinates

Z =

[
z1
z2

]
, Y =

[
3 1
1 −3

]
︸ ︷︷ ︸

P

Z

Now observe:

Z′ = P−1Y′ = P−1AY = (P−1AP)Z =

[
11 0
0 1

]
Z.
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This is a system that is easy to solve

z ′1 = 11z1 → z1 = c1e11x

z ′2 = z2 → z2 = c2ex

From which we get the solution

Y =

[
3 1
1 −3

] [
c1e11x

c2ex

]
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Another solution

Let Y′ = AY be a system of differential equations in the variable
t . If it is just y ′ = ay , the solution would be y = ceat :

y = ceta = c(1 + ta + t2 a2

2
+ · · ·+ tn an

n!
+ · · · )

Let us try the same with a matrix. If we replace a by the square
matrix A (and 1 by I), we get

etA = I + tA + t2 A2

2
+ · · ·+ tn An

n!︸ ︷︷ ︸+ · · ·

Note that the derivative of the nth term is

ntn−1 An

n! = A(tn−1 An−1

(n−1)!), and thus if Y = etA then Y′ = AY.
We just must make sure that a theory of series makes sense
and taking derivatives of these expressions makes sense.
At the end we will also put in a constant: Y = etAY0.
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The expression we wrote above for etA is actually a set of 22

series, one for each cell (i , j) of the 2-by-2 matrix. That is, when
we consider the sum of the terms

tn An

n!

we observe that convergence, for one, comes from the fact that
the n! factor grows much faster than the entries An

(i,j). Let us
give an example. Suppose A is a 2-by-2 diagonal matrix with
11 and 1 on the diagonal. An is also diagonal with entries 11n

nd 1n. Adding the series would give the matrix[
e11t 0

0 et

]
=

[
1 + 11t + 1/2(11t)2 + · · · 0

0 1 + t + 1/2t2 + · · ·

]
Not only this is a nice computation, but tells us the same would
work whenever A is a diagonal matrix. Let us show how it
would work when A diagonalizable.
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Let us show how compute etA if A = PDP−1, with D diagonal.

Noting that
An = PDnP−1,

we have

etA =
∑ tn

n!
An =

∑ tn

n!
PDnP−1

= P(
∑ tn

n!
Dn)P−1

= PetDP−1

Exercise: det eA = eTrace (A) . (This is beautiful because while
we have a great deal of trouble with eA, its determinant is easy!)



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Theorem
The solution of the differential equation Y′ = AY is

Y = etAC,

for some constant vector C.

Observe where the constant goes. If you set t = 0, Y0 = C, that
is the components of C are the initial condition: y1(0), y2(0).

Clearly the method will work for matrices of any size.

If A is diagonalizable we know how to compute etA. If not ...
also!
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Homework #6

1 Let A be a 3× 3 real matrix with entries 0,±1. Determine
how large det A can be. Care to consider the 4×4 version?

2 Prove that for any real n × n matrix A, det(eA) = etrace(A):
First prove for A upper triangular, and then use the fact that
there are complex matrices P and B such that
P−1AP = B, where B is upper triangular.
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Metric properties of vector spaces

Let V be a vector space over the field F. We want to develop a
geometry for V. For that, it is helpful to have a notion of
distance, or length. We will transport and then extend
numerous constructions of ordinary geometry and their
calculus.

We will restrict ourselves to the cases of F = R, or F = C. In
the case of C, we use the standard notation for the complex
conjugate of the complex number z = a + bi

z = a− bi .

Some of its properties are:

zz = a2 + b2

z1 + z2 = z1 + z2

z1 · z2 = z1 · z2
1
z

=
z

z · z
, z 6= 0
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For certain operations, like solving polynomial equations, the
polar representation of complex numbers

a + bi = r(cos θ + i sin θ), r =
√

a2 + b2, tan θ =
a
b

is useful.For instance,

√
i = ±(cosπ/2+i sinπ/2)1/2 = ±(cosπ/4+i sinπ/4) = ±

√
2

2
(1+i).
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Inner product space

An inner product vector space V is a V.S. over R or C with a
mapping

V× V→ F, (u, v)→ 〈u, v〉 = u · v ∈ F

satisfying certain conditions. Let us give an example to guide
us in what is needed. Let V = Rn and define a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi

Note the properties: bi-additive ; v · v is a non-negative real
number, so we can use

√
v · v to define the magnitude of v .

Question: Could we use the same formula to define an inner
product for Cn? Well... (i) · (i) would be −1. Of course the
formula still defines a nice bilinear mapping but would not meet
our need.
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Dot product

Definition
An inner product vector space is a vector space with a mapping

V× V→ F, (u, v)→ u · v ∈ F

satisfying:
1 (u1 + u2) · v = u1 · v + u2 · v
2 (cu) · v = c(u · v)

3 u · v = v · u
4 u · u > 0 if u 6= O

The better notation for this product is

u · v = 〈u, v〉
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Examples

Of course, the example above of Rn is the grandmother of all
examples. Let us modify it a bit to get an example for Cn: a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi .

Note the properties: additive ; v · v is a non-negative real
number

v · v =
n∑

i=1

aiai

so we can use
√

v · v to define the magnitude of v . Note the
lack of full symmetry.
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Example of Function Space

Let us give an example from left field: Let V be the vector space
of all real continuous functions on the interval [a,b], and define
for f (t),g(t) ∈ V,

〈f (t),g(t)〉 = f (t) · g(t) =

∫ b

a
f (t)g(t)dt .

An important case: If m,n are integers,

〈sin nt , cos mt〉 =

∫ 2π

0
sin nt cos mt dt = 0

〈sin nt , sin mt〉 =

∫ 2π

0
sin nt sin mt dt = 0, m 6= n

〈cos nt , cos mt〉 =

∫ 2π

0
cos nt cos mt dt = 0, m 6= n

〈sin nt , sin nt〉 =

∫ 2π

0
sin2 nt dt = π, n 6= 0
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Example: Mn(F)

Let V = Mn(F) be the V.S. of all n-by-n matrices. For any such
matrix A = [aij ] define the adjoint of A (unfortunately we have
already used the word for a very different notion!) to be the
matrix

A∗ = [aji ],

that is, we transpose A and take the complex conjugate of each
entry. Define the product (Frobenius product)

〈A,B〉 = trace(AB∗) =
∑

i

(AB∗)ii .

It is clear that this product has the properties of an inner
product. We just check the positivity condition:

〈A,A〉 = trace(AA∗) =
∑

i

(AA∗)ii

=
∑

i

∑
j

aijaij =
∑
i,j

|aij |2 ≥ 0
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Proposition
If V is an inner product space, the following hold:

1 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉
2 〈u, cv〉 = c〈u, v〉
3 〈u,O〉 = 〈O, v〉 = 0
4 〈u,u〉 = 0 iff u = O
5 〈u, v〉 = 〈u,w〉 for all u ∈ V then v = w

Proof of 1: Note

〈u, v + w〉 = 〈v + w ,u〉 = 〈v ,u〉+ 〈w ,u〉
= 〈v ,u〉+ 〈w ,u〉 = 〈u, v〉+ 〈u,w〉
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Length of a vector

Definition
Let V, 〈·, ·〉 be an inner product space. If v ∈ V, the length or
norm of v is the real number ||v || =

√
〈v , v〉.

If V = Cn, v = (a, . . . ,an),

||v || =

[
n∑

i=1

|ai |2
]1/2

If V is the space of real continuous functions on [0,1] and inner
product is that we defined previously,

||f (t)||2 =

∫ 1

0
f (t)2dt .
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Framework for Geometry

The following assertions permits the construction of
‘recognizable’ objects in any inner product space:

Theorem
If V is an inner product space, then for all u, v ∈ V

1 [Cauchy-Schwarz Inequality]

|〈u, v〉| ≤ ||u|| · ||v ||

2 [Triangle Inequality]

||u + v || ≤ ||u||+ ||v ||.
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The Cauchy-Schwarz Inequality will allow the introduction of
angles and its trigonometry in V, while the Triangle Inequality
will lead to many constructions extending those we are familiar
with in 2- and 3-space.
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Proofs of CSI and ∆-Inequality

To prove Cauchy-Schwarz Inequality: Note that for ANY c ∈ F,
v 6= O

0 ≤ ||u − cv ||2 = 〈u − cv ,u − cv〉 = 〈u,u − cu〉 − c〈v ,u − cv〉
= 〈u,u〉 − c〈u, v〉 − c〈v ,u〉+ cc〈v , v〉

If we set c = 〈u,v〉
〈v ,v〉 the inequality becomes

0 ≤ 〈u,u〉 − |〈u, v〉|
2

||v ||2
,

which proves the assertion.
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For the ∆-inequality: Consider

||u + v ||2 = 〈u + v ,u + v〉 = 〈u,u〉+ 〈u, v〉+ 〈v ,u〉+ 〈v , v〉
= ||u||2 + (〈u, v〉+ 〈u, v〉) + ||v ||2 = ||u||2 + 2<〈u, v〉+ ||v ||2

≤ ||u||2 + 2|〈u, v〉|+ ||v ||2

≤ ||u||2 + 2||u|| · ||v ||+ ||v ||2 by C-S inequality

= (||u||+ ||v ||)2.

We used that for any complex number z = a + bi , its real part
<z = a ≤ |z| =

√
a2 + b2.
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Example

To illustrate the power of the axiomatic method, compare the
proof above [which holds for ALL examples] with the work
needed to check the inequalities just the case of the following
example: ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
[

n∑
i=1

|ai |2
]1/2 [ n∑

i=1

|bi |2
]1/2

[
n∑

i=1

|ai + bi |2
]1/2

≤

[
n∑

i=1

|ai |2
]1/2

+

[
n∑

i=1

|bi |2
]1/2
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Angles and Distances

Equipped with these results, we can define angles and
distances, with many of the usual properties, in any inner
product space. For example, for a real inner product space, the
Cauchy-Schwarz inequality says that for any two [will assume
nonzero] vectors u, v ,

〈u, v〉 ≤ ||u|| · ||v ||,

that is
−1 ≤ 〈u, v〉

||u|| · ||v ||
≤ 1

This means that the ratio can be identified to the cosine, cosα,
of a unique angle 0 ≤ α ≤ π: So we can write

〈u, v〉 = ||u|| · ||v || cosα

and say that α is the angle between the vectors u and v .
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An important relationship between two vectors u, v is when
〈u, v〉 = 0: We then say that u and v are orthogonal or
perpendicular. One notation for this situation is:

u ⊥ v

The distance between the vectors u, v is defined by

dist(u, v) = ||u − v || = 〈u − v ,u − v〉1/2

One of its properties follow from the triangle inequality: If
u, v ,w are three vectors

dist(u,w) ≤ dist(u, v) + dist(v ,w).
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Properties

These notions have numerous consequences. Let us begin
with:

Proposition
Let v1, . . . , vn be nonzero vectors of the inner product space V.
If vi ⊥ vj for i 6= j , then these vectors are linearly independent.

Proof.
Suppose we have a linear combination

c1v1 + c2v2 + · · ·+ cnvn = O.

We claim all ci = 0. To prove, say c1 = 0, take the inner product
of the linear combination with v1:

c1 〈v1, v1〉︸ ︷︷ ︸
6=0

+c2 〈v2, v1〉︸ ︷︷ ︸
=0

+ · · ·+ cn 〈vn, v1〉︸ ︷︷ ︸
=0

= 〈O, v1〉 = 0.

This shows that c1 = 0. A similar argument would show ci = 0
for any i .
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A vector v of length ||v || = 1 is called a unit vector. They are
easy to find: given a nonzero vector u, v = u

||u|| is a unit vector.

A set of vectors v1, . . . , vn is said to be orthonormal if vi ⊥ vj ,
for i 6= j and ||vi || = 1 for any i . Of course, a good example are
the ordinary coordinate vectors of 3-space.
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Proposition
Let V be an inner product space with an orthonormal basis
v1, . . . , vn. Then for any v ∈ V,

v = c1v1 + · · ·+ cnvn,

where ci = 〈v , vi〉. The ci are called the Fourier coefficients of v
relative to the basis.

Proof.
To get ci , it suffices to form the inner product of v with vi :

〈v , vi〉 = ci〈vi , vi〉 = ci ,

since 〈vi , vi〉 = 1 and all other 〈vj , vi〉 = 0.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Matrix representation

Orthonormal bases are also useful in finding the matrix
representation of a L.T. T : V→ V:

Let A = {v1, . . . , vn} be such a basis. Then [T]A = [aij ] where
aij are the coefficients in the expression

T(vj) = a1jv1 + · · ·+ aijvi + · · ·+ anjvn

To select aij it suffices to ‘dot’ with vi

〈T(vj), vi〉 = a1j 〈v1, vi〉︸ ︷︷ ︸
=0

+ · · ·+ aij 〈vi , vi〉︸ ︷︷ ︸
=1

+ · · ·+ anj 〈vn, vi〉︸ ︷︷ ︸
=0

[T]A = [〈T(vj), vi〉]
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Parallelogram Law

Exercise: If u, v are vectors of an inner product space V, verify
the parallelogram law:

||u + v ||2 + ||u − v ||2 = 2(||u||2 + ||v ||2).

Draw a picture to illustrate this equality.
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Things to come

1 We will prove that every finite-dimensional vector space W
of an inner product space V has an orthonormal basis.

2 This will allow us to express the distance from a vector
v ∈ V to the subspace W. For instance, if

Ax = b

is a consistent system of linear equations, that is, if there is
some solution Ax0 = b, we know that the solution set is the
set

x0 + N(A),

where N(A) is the nullspace of A. Now we will be able to
find the solution of smallest length, if need be.
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Let us show how to obtain an orthonormal basis of a vector
space from an arbitrary basis A = {u1, . . . ,un}.

If n = 1, w1 = u1
||u1|| is the answer.

Assume now that we have a basis of two vectors u1,u2. We
need to find two nonzero vectors v1, v2 in the span of u1,u2 so
that v1 ⊥ v2. We use a projection trick: we set v1 = u1 and look
for c so that

v2 = u2 − cu1 ⊥ v1,

that is
〈v2, v1〉 = 〈u2, v1〉 − c〈u1, v1〉 = 0

c =
〈u2, v1〉
〈v1, v1〉

Observe that v1, v2 have same span as u1,u2. Now replace vi
by vi/||vi ||.
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uw

v

v − w ⊥ u

w = Projection of v along u
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Projection formula

If L is a line defined by the vector u 6= O and v is another vector,

w =
〈v ,u〉
〈u,u〉

u

is the projection of v along L or u.

Proposition
v − w is perpendicular to L and the smallest distance from v to
any vector of L is ||v − w ||.

Proof.
We have already seen that v − w ⊥ v . If cu is a vector of L, the
square distance from v to cu is (v − w ⊥ L, so will use
Pythagorean Theorem)

||v − cu||2 = ||(v − w) + (w + cu)||2 = ||v − w ||2 + ||w + cu||2︸ ︷︷ ︸
≥0

.
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Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another
basis [Gram–Schmidt process]:

1 Input: A = {u1, . . . ,un} given basis
2 Set v1 = u1

3 Compute v2, . . . , vn successively, one at a time, by

vi = ui −
( ui · v1

v1 · v1

)
v1 −

( ui · v2

v2 · v2

)
v2 − · · · −

( ui · vi−1

vi−1 · vi−1

)
vi−1︸ ︷︷ ︸

4 Set wi = vi
||vi ||

5 Output: B = {w1, . . . ,wn} is an orthonormal basis.
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Hadamard’s Inequality

Let A be a matrix whose columns form a basis {u1,u2, . . . ,un}
of Rn (put n = 3 for simplicity)

A = [u1 | u2 | u3]

Now consider the matrix

B = [v1 | v2 | v3] = [u1 | u2 − a1u1 | u3 − b1u1 − b2u2]

where the coefficients are chosen for that the v ′i s are
perpendicular to one another. Note that B is obtained from A by
adding scalar multiples of columns to another, so

det(A) = det(B).

Furthermore, for each i

||vi || ≤ ||ui ||

by the projection formula.
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Let us calculate det(A)2:

det(A)2 = det(B)2 = det(B) det(Bt )

= det[v1 | v2 | v3] det[v1 | v2 | v3]t

=

 〈v1, v1〉 0 0
0 〈v2, v2〉 0
0 0 〈v3, v3〉


=

∏
〈vi , vi〉
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Theorem (Hadamard)
For any square real matrix A = [u1, . . . ,un],

|det(A)|2 ≤
n∏

i=1

〈ui ,ui〉.

For instance, if A is a 4× 4 whose entries are 0,1,−1, its
column vectors have length at most 2, so that det(A) ≤ 16.
According to Joe, there is a such a matrix.
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General Projection Formula

Proposition
Let W be a subspace with an orthonormal basis
A = {u1, . . . ,un}. For any vector v, the vector of W

w = projW(v) = 〈v ,u1〉u1 · · ·+ 〈v ,un〉un

is the projection of v onto W. It has the following properties
1 v −w is perpendicular to any vector of W. (We say that it is

perpendicular to W)
2 ||v − w || is the shortest distance from v to W.

The proof is like above.
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Orthogonal Complement

If W is a subspace of an inner product space V, its orthogonal
complement W⊥ is the set of all vectors v that are
perpendicular to each vector w of W. In ordinary 3-space R3,
the z-axis is the orthogonal complement of the xy -plane.

Proposition

W⊥ is a subspace of V.

Proof.

Clearly O ∈W⊥. If v1, v2 ∈W⊥, for any vector w ∈W

〈c1v1 + c2v2,w〉 = c1〈v1,w〉+ c2〈v2,w〉 = O,

so W⊥ passes the subspace test.
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Example

Let A be an m × n real matrix. The nullspace of A is the set of
all n-tuples x such that

Ax = 0.

This means that the nullspace is the orthogonal complement of
the row space of A:

N(A) = row space⊥.

Similarly, the left nullspace of A, left N(A), are the m-tuples y
such that

yA = O

that is the orthogonal complement of the column space of A.
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These observations suggest several properties of the ⊥
operation:

1 Let V be a vector space with a basis e1, . . . ,en. If W is
spanned by u1, . . . ,um, W⊥ is the set of all vectors
x1e1 + · · ·+ xnen such that

x1〈e1,ui〉+ · · ·+ xn〈en,ui〉 = 0, i = 1, . . . ,m.

Thus we find W by solving a system of linear equations.
2 W ∩W⊥ = (O).
3 dim W + dim W⊥ = dim V︸ ︷︷ ︸
4 (W⊥)⊥ = W



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Proposition

dim W + dim W⊥ = dim V.

Proof.
Let u1, . . . ,um be an orthonormal basis of W. We define a
mapping T : V→ V as follows

T(v) = 〈v ,u1〉u1 + · · ·+ 〈v ,um〉um.

T is clearly a linear transformation: This is the orthogonal
projection of V onto W. Its range R(T) is W. Its nullspace N(T)
is the set of vectors v such that 〈v ,ui〉 = 0 for each ui . This is
precisely W⊥. From the dimension formula

dim V = dim R(T) + dim N(T) = dim W + dim W⊥.
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Homework #7

1 Let G be a finite subgroup of GLn(C). Prove that every
T ∈ G is diagonalizable.

2
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If V is a vector space over the field F, a linear functional is a
linear transformation

f : V −→ F.

For example, if V = Fn and a = [a1, . . . ,an] is a matrix, then for
every column vector v ∈ Fn, the function

v −→ a · v

is a linear functional. In fact, every linear functional f has this
description.

Inner product spaces, finite/infinite dimensional have a natural
method to define linear functionals. Let us exploit it.
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Let V be an inner product space. If u ∈ V, the mapping

f : V→ F, f(v) = 〈v ,u〉
is a linear functional. Observe that if 〈v ,u〉 = 〈v ,w〉, for all v ,
then 〈v ,u − w〉 = 0 and therefore u = w .

Proposition
If V is a finite-dimensional inner product space, for every linear
functional f on V, there is a unique vector u such that
f(v) = 〈v ,u〉 for all v ∈ V.

Proof.
Let v1, . . . , vn be an orthonormal basis of V, and let

u = f(v1)v1 + · · ·+ f(vn)vn.

Note that for each vj , 〈vj ,u〉 = f(vj) = f(vj), so the functionals
defined by u and f agree on each basis vector, so are
equal.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Adjoint of a Linear Transformation

Let T be a L.T. of the inner product space V. We are going to
build another L.T. associated to T, which will be called the
adjoint of T. It is the parent [or child] of the transpose!

Fix the vector u ∈ V. Consider the mapping v → 〈T(v),u〉. This
is a linear functional. According to the previous Proposition,
there is a unique w such that

〈T(v),u〉 = 〈v ,w〉, ∀v ∈ V.

We set w = S(u). This gives a function S : V→ V. It is routine
to check that if w1 = S(u1) and w2 = S(u2), then
S(u1 + u2) = w1 + w2, and also S(cu) = cS(u). This L.T. is
denoted T∗ and termed the adjoint of T.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Proposition
Let T be a L.T. and let A = [aij ] be its matrix representation
relative to the orthonormal basis v1, . . . , vn. Then the matrix
representation of the adjoint T∗ is At = [aji ], the conjugate
transpose of A.

Proof.
To find the matrix representation [bij ] of T∗ we write
T∗(vj) =

∑
i bijvi , so that

bij = 〈vi ,T∗(vj)〉 = 〈T(vi), vj〉 = aji ,

as desired.
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Problem

Given 3 (or more) points P1 = (x1, y1), P2 = (x2, y2),
P3 = (x3, y3) in R2, find the best fit line (what does this mean?):

�
�
�
�
�
�
�
�
�
�
�
�3

rP1

r
P2

P3r



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Y = at + b, Yi = ati + b, error = |Yi − yi |

t y Y
t1 y1 Y1
...

...
...

tn yn Yn

E = Square Error =
n∑

i=1

|Yi − yi |2 =
n∑

i=1

|ati + b − yi |2

Problem: Find a and b so that the square error is as small as
possible. To answer, we first write the problem in vector
notation.
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y =

 y1
...

ym

 , A =

 t1 1
...

...
tm 1

 , x =

[
a
b

]

E = ||y− Ax||2

We are going to do much better: Given a m × n matrix A and a
vector y ∈ Fm, we are going to find a vector x0 ∈ Fn such that

||y− Ax0||2 ≤ ||y− Ax||2

for all x ∈ Fn
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We know that the answer to this will be affirmative: Let W be
the range of A, that is the set of all vectors Ax, for x ∈ Fn.
There is a vector w ∈W, that is w = Ax0 such that

||y− Ax0||2 ≤ ||y− Ax||2.

The issue is how to find x0 more explicitly. For this we use the
notion of the adjoint of a linear transformation:

T : Fn → Fm, T∗ : Fm → Fn

〈T(u), v〉m = 〈u,T∗(v)〉n
To derive the desired formula (known as the projection formula)
we need two properties of T∗.
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Proposition
Let A be an m × n complex matrix and A∗ its adjoint (conjugate
transpose). Then

1 rank(A) = rank(A∗A).
2 If rank(A) = n then A∗A is invertible.

Proof.
It will suffice to show that A and A∗A have the same nullspace.
Why?
If A∗A(x) = 0, then for all z ∈ Fn

0 = 〈A∗A(x), z〉n = 〈Ax, (A∗)∗z〉m = 〈Ax,Az〉m =

so Ax = O by choosing z = x.

The second assertion now follows: Since A∗A is an n × n
matrix of rank n, it is invertible.
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Projection Formula

Theorem
Let A be an m × n complex matrix and let y ∈ Fm. Then there
exists x0 ∈ Fn such that A∗A(x0) = A∗y and
||Ax0 − y|| ≤ ||Ax− y|| for all x ∈ Fn. If A has rank n then

x0 = (A∗A)−1A∗y.

Proof.
Since Ax0 − y is perpendicular to the range of A,

0 = 〈Ax,Ax0 − y〉m = 〈x,A∗(Ax0 − y)〉 = 〈x, ((A∗A)x0 − A∗y)〉

for all x ∈ Fn. Thus (A∗A)x0 − A∗y = 0 and therefore

x0 = (A∗A)−1A∗y,

that completes the proof.
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Illustration

A =


1 1
2 1
3 1
4 1

 , rank(A) = 2, y =


2
3
5
7



A∗A =

[
1 2 3 4
1 1 1 1

]
1 1
2 1
3 1
4 1

 =

[
30 10
10 4

]

(A∗A)−1 =
1
20

[
4 −10

−10 30

]
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x0 =

[
a
b

]
=

1
20

[
4 −10

−10 30

] [
1 2 3 4
1 1 1 1

]
2
3
5
7

 =

[
1.7

0

]

Answer: The least squares line is

y = 1.7t

The error is
E = ||Ax0 − y||2 = 0.3
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The method is very general: Suppose we are given a number
of points and we want to fit a quadratic polynomial

Y = at2 + bt + c

to the data.

A =

 t2
1 t1 1
...

...
...

t2
n tn 1

 x0 =

 a
b
c

 , y =

 y1
...

yn


Now rank(A) = 3 if there are 3 distinct values of t .
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Shortest solution

We are going to find the shortest solution of a consistent
system of equations (m × n)

Ax = b.

This will be a solution u such that ||u|| is minimal. The
argument will also show that u is unique.

Let x0 be a special solution and denote by N(A) the nullspace
of A. The solution set is

x0 + N(A) = {xo + v , v ∈ N(A)}.

To pick out of this set the vector x0 + v of smallest length, note
that ||x0 + v || is the distance from x0 to −v . So we have our
answer: Pick for −v the projection w of x0 into N(A). Then
s = x0 − w is the desired solution:
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--�
�
�
�
�
�
�
�
��6

N(A)w

x0

x0 − w ⊥ N(A)

w = Projection of x0 along N(A)
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One algorithm for the shortest solution

1 Find an orthonormal basis u1, . . . ,ur for N(A)

2 Determine the projection w of x0 onto N(A):

w =
r∑

i=1

〈x0,ui〉ui

3 x0 − w is the shortest solution of Ax = b
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This solution requires the calculation of the projection of x0 into
N(A). Let us discuss another, more direct, approach. If
v ∈ N(A), A(v) = O,

0 = 〈x,A(v)〉 = 〈A∗(x),u〉

which means v ⊥ A∗(x) = 0 for all x. This means that the range
of A∗, R(A∗), is contained in the orthogonal complement N(A)⊥

of N(A). By the dimension formula we have N(A)⊥ = R(A∗).

Summary: The minimal vector s satisfies

As = b, s ∈ R(A∗)

That is, pick any solution of

AA∗y = b,

and set
s = A∗y.
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Homework #9

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23
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Today

1 Normal Operators (TT∗ = T∗T): real symmetric/skew
symmetric

2 Hermitian Operator
3 Unitary Operator (TT∗ = I = T∗T): Orthogonal
4 Spectral Theorem
5 Goodies: Applications
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Interesting diagonalizable operators

We are going to show a class of linear transformations that are
diagonalizable. It will include the class represented by real
symmetric matrices.
Let T : V→ V be a L.T. of a complex inner product space. We
have defined the adjoint T∗ of T as the L.T. with the property

〈T(u), v〉 = 〈u,T∗(v)〉, ∀u, v ∈ V.

Let us compare the eigenvalues and eigenvectors of T and T∗:
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Proposition

If λ is an eigenvalue of T then λ is an eigenvalue of T∗.

Proof: Suppose T(u) = λu, u 6= O. Then for any v ∈ V,

0 = 〈O, v〉 = 〈(T− λI)(u), v〉 = 〈u, (T− λI)∗(v)〉
= 〈u, (T∗ − λI)(v)〉

This says that O 6= u ⊥ range(T∗ − λI), so the range of T∗ − λI
is not the whole of V, which implies nullspace of T∗ − λI 6= O.
This means that λ is an eigenvalue of T∗.



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Let us use this result to decide when a L.T. T of an inner
product space V admits a basis A such that

[T]A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 ,
that is, T admits a matrix representation that is upper triangular.

Note that the characteristic polynomial has all of its roots in the
field

det(T− x I) = (a11 − x)(a22 − x) · · · (ann − x),

that is the characteristic polynomial splits. Recall that this is
always the case when the field is C.
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Theorem (Schur)
Let T be a L.T. of the inner product space V. If the characteristic
polynomial of T splits, then V admits an orthonormal basis A
such that [T]A is upper triangular.

Proof: We will argue by induction on dim V = n. If n = 1, the
assertion is obvious. Let us assume that the assertion holds for
dimension n − 1. By the Proposition above, we know that T∗

has one eigenvalue λ. Let u be a unit vector so that
T∗(u) = λu, and set W for the subspace spanned by u. We
claim that W⊥ is T-invariant: If v ∈W⊥

〈T(v),u〉 = 〈v ,T∗(u)〉 = 〈v , λu〉
= λ〈v ,u〉 = 0

So T(v) ∈W⊥.
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We also have dim W + dim W⊥ = dim V = n, so
dim W⊥ = n − 1. Now we apply the induction hypothesis to the
restriction of T to W⊥: Let v1, . . . , vn−1 be an orthonormal basis
of W⊥ for which the restriction of T is upper triangular. If we add
to the vi the vector u, we get the orthonormal basis
A = v1, . . . , vn−1,u. The matrix representation

[T]A =


a1n

[T]W⊥
...
...

0 0 · · · ann

 ,
which has the desired form.
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Normal operator

Observe that if there is an orthonormal basis A of eigenvectors
of T, [T]A is a diagonal matrix, and since [T∗]A = [T]∗A, this
matrix is also diagonal. Since diagonal matrices commute, we
have TT∗ = T∗T.

Definition
A linear transformation T of an inner product space is normal if
TT∗ = T∗T.

Example: If A is a symmetric real matrix, A∗ = At = A, so A
commutes with itself! Skew-symmetric real matrices, A∗ = −A,
are also normal.
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Theorem
If T is a normal operator (TT∗ = T∗T) of a complex inner vector
space V, then there is an orthonormal basis of eigenvectors of
T. (The converse was proved already so this is a
characterization of normal operators.)

This is an important result, it has many useful consequences.
To prove it we shall need some properties of normal operators.
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Proposition
Let T be a normal operator (TT∗ = T∗T) of the inner vector
space V. Then:

1 ||T(u)|| = ||T∗(u)|| for every u ∈ V.
2 T− cI is normal for every c ∈ F.
3 If T(u) = λu then T∗(u) = λu.
4 If λ1 and λ2 are distinct eigenvalues of T with

corresponding eigenvectors u1 and u2, then u1 ⊥ u2.

Proof: 1. For any vector u ∈ V,

||T(u)||2 = 〈T(u),T(u)〉 = 〈T∗T(u),u〉 = 〈TT∗(u),u〉
= 〈T∗(u),T∗(u)〉 = ||T∗(u)||2

2. (T− cI)(T∗ − cI) = (T∗ − cI)(T− cI) : check
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3. Suppose T(u) = λu. Let U = T− λI. Then U(u) = 0 so by 2.
U is normal and by 1. U∗(u) = 0. That is T∗(u) = λu.

4. Let λ1 and λ2 be distinct eigenvalues of T with corresponding
eigenvectors u1 and u2. Then by 3.

λ1〈u1,u2〉 = 〈λ1u1,u2〉 = 〈T(u1),u2〉 = 〈u1,T∗(u2)〉

= 〈u1, λ2u2〉 = λ2〈u1,u2〉.

Since λ1 6= λ2, 〈u1,u2〉 = 0.
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We are now in position to prove that a normal operator T admits
an orthonormal basis v1, v2, . . . , vn of eigenvectors. We already
know, by Schur theorem, that there is an orthonormal basis for
which the matrix representation is upper triangular a11 a12 a13

0 a22 a23
0 0 a33


We want to show that the off-diagonal elements are 0, that is,
all the vi are eigenvectors. [For simplicity we take n = 3] Note
that T(v1) = a11v1, so v1 is an eigenvector. To show v2 is an
eigenvector notice that

T(v2) = a12v1 + a22v2

We must show a12 = 0.
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T(v2) = a12v1 + a22v2

We must show a12 = 0:

a12 = 〈T(v2), v1〉 = 〈v2,T∗(v1)〉 = 〈v2,a11v1〉 = a11〈v2, v1〉 = 0

as desired. Now with v1, v2 eigenvectors, we show that
a13 = a23 = 0. We consider

T(v3) = a13v1 + a23v2 + a33v3

The proof is similar: For instance

a23 = 〈T(v3), v2〉 = 〈v3,T∗(v2)〉 = 〈v3,a22v2〉 = a22〈v3, v2〉 = 0
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We have already remarked that real symmetric matrices,
A = At , are normal. It turns out that complex symmetric
matrices are not always normal. Truly the complex cousins of
real symmetric matrices are called:

Definition
Let T be a linear operator of the inner product space V. T is
called self-adjoint (Hermitian) if T = T∗.

A =

[
2 3 + 5i

3− 5i 6

]
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Lemma
Let T be a self-adjoint linear operator of the inner product space
V. Then

1 Every eigenvalue is real.
2 If V is a real vector space then the characteristic

polynomial splits.

Proof: 1. Suppose T(u) = λu, u 6= O. By a previous result,
T∗(u) = λu. Since T = T∗, λ is real.

2. Let n = dim V, B an orthonormal basis of V and A = [T]B.
Then A is self-adjoint. Let TA be the linear operator of Cn

defined by TA(u) = Au for all u ∈ Cn.
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Note that TA is self-adjoint because [TA]C = A, where C is the
standard (orthonormal) basis of Cn. So the eigenvalues of TA
are real. Since the characteristic polynomial of TA is equal to
the characteristic polynomial of A, which is equal to the
characteristic of T, the characteristic polynomial of T splits.
What we are saying is the following: Let A be a n× n symmetric
real matrix and employ it to define a L.T. of the complex vector
space Cn

T = TA : Cn → Cn, T(u) = A(u).

Note det(T− x I) = det(A− x I).
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First Main Theorem of the Course

Theorem
Let T be a linear operator on the finite-dimensional inner
product space V. Then T is self-adjoint if and only if there exists
an orthonormal basis of V consisting of eigenvectors of T.
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Unitary Operators

Definition
A linear operator T of the inner product space V is called
unitary if TT∗ = T∗T = I. If V is a real inner product space, T is
called orthogonal.

The rotation operator

T(x , y) = (x cosα + y sinα,−x sinα + y cosα)

is a major example.

If A is a complex n-by-n matrix and AA∗ = A∗A = I, the column
vectors of A form an orthonormal basis of Cn.
We now develop quickly some basic properties of these
operators.
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Theorem
Let T be a linear operator of the finite-dimensional inner product
space V. TFAE:

1 T is an unitary operator: TT∗ = T∗T = I.
2 〈T(u),T(v)〉 = 〈u, v〉 for all u, v ∈ V.
3 For every orthonormal basis B = v1, . . . , vn of V,

T(v1), . . . ,T(vn) is also an orthonormal basis of V.
4 For some orthonormal basis B = v1, . . . , vn of V,

T(v1), . . . ,T(vn) is also an orthonormal basis of V.
5 ||T(u)|| = ||u|| for every u ∈ V.

Proof. 1⇒ 2,3,4,5: (Other⇒ LTR)

〈u, v〉 = 〈T∗T(u), v〉 = 〈T(u), (T∗)∗(v)〉 = 〈T(u),T(v)〉.

δij = 〈vi , vj〉 = 〈T(vi),T(vj)〉.
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Properties of unitary operators

Let T be an unitary operator of the inner product space V.
1 The eigenvalues of T have length 1: If T(u) = λu,

〈u,u〉 = 〈T(u),T(u)〉 = 〈λu, λu〉 = λλ〈u,u〉

and thus λλ = 1.
2 If A is a matrix representation of T,
|det(A)| = 1:det(A) det(A∗) = 1

3 If T is orthogonal, det(A) = ±1.
4 If T and U are unitary operators, then T∗ and T ◦ U are also

unitary operators.
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Orthogonal operators of R2

We have already mentioned rotations, Rα. Let us analyze the
possibilities. Let

A =

[
a b
c d

]
= [v1|v2] ||v1|| = ||v2|| = 1, v1 ⊥ v2

be an orthogonal matrix. This means

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0

We can set a = cosα, c = sinα and b = cosβ,d = sinβ so that

ab + cd = cosα cosβ + sinα sinβ = cos(α− β) = 0.

This means that α− β = ±π/2. The two possibilities lead to

Rα =

[
cosα − sinα
sinα cosα

]
, T =

[
cosβ sinβ
sinβ − cosβ

]
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To analyze

T =

[
cosβ sinβ
sinβ − cosβ

]
we look at its eigenvalues:

det(T− x I) =

[
cosβ − x sinβ

sinβ − cosβ − x

]
= x2 − 1

So λ = ±1. This means we have an orthonormal basis v1, v2,
and T(v1) = v1, T(v2) = v2.
Thus the line Rv1 is fixed under T, and the perpendicular line
Rv2 is flipped about Rv1. These transformations are called
reflections.

Summary: If A is an orthogonal 2-by-2 matrix, then if
det A = 1, it is a rotation, and if det A = −1, it is a reflection.
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Matrix product and dot product

Let u and v be two vectors of Rn. Their dot product

u · v =

 a1
...

an

 ·
 b1

...
bn


can be expressed as a matrix product

utv =
[

a1 · · · an
]  b1

...
bn


Keep in mind

utv = u · v



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

Spectral Decomposition

Let A be a n-by-n symmetric real matrix, P = [v1| · · · |vn] a
matrix whose columns form an orthonormal basis of
eigenvectors of A:

A = PDPt = [v1| · · · |vn] ·

 λ1 · · · 0
...

. . .
...

0 · · · λn

 ·
 v t

1
...

v t
n



Instead of this representation of A as a product of 3 matrices,
we are going to express A as a sum of simple matrices of rank
1.
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Expanding we get

A = PDPt = [v1| · · · |vn] ·

 λ1 · · · 0
...

. . .
...

0 · · · λn

 ·
 v t

1
...

v t
n


= [λ1v1| · · · |λnvn] ·

 v t
1
...

v t
n


= λ1v1v t

1 + · · ·+ λnvnv t
n

=
∑

λiPi , Pi = viv t
i .

Let us examine the matrices Pi .
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1 Pi has rank 1 and is symmetric

Pi = viv t
i , Pt

i = (viv t
i )t = (v t

i )tv t
i = Pi

2 Pi is a projection

PiPi = (viv t
i )(viv t

i ) = vi(v t
i vi)v t

i = viv t
i = Pi

since v t
i vi = 〈vi , vi〉 = 1

3 PiPj = O for i 6= j

PiPj = (viv t
i )(vjv t

j ) = vi(v t
i vj)v t

j = O

since v t
i vj = 〈vi , vj〉 = 0
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The equality
A =

∑
λiPi ,Pi = viv t

i

is called the spectral decomposition of A.

Example: Let A =

[
3 −4
−4 −3

]
The eigenvalues are 5 and −5, with corresponding [normalized]
eigenvectors

v1 =
1√
5

[
−2

1

]
, v2 =

1√
5

[
1
2

]

P1 = v1v t
1 =

[
4/5 −2/5
−2/5 1/5

]
, P2 = v2v t

2 =

[
1/5 2/5
2/5 4/5

]
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Exercise:

Let A be a real symmetric matrix. Prove that there is a
symmetric matrix B such that B3 = A.

We know that there is an orthonormal basis v1, . . . , vn of
eigenvectors of A. The matrix P = [v1| · · · |vn] is orthogonal [i.e.
P−1 = Pt ] and

P−1AP = D

is a real diagonal matrix. Let E be a real ‘cubic root’ of D (if a
diagonal entry of D is dii , the corresponding entry of E is the
real root dii

1/3).
Set B = P−1EP. Note

Bt = (P−1EP)t = PtEt (P−1)t = P−1EP = B, B3 = P−1E3P = A.
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Exercise: Let A be skew-symmetric matrix. Prove that
det A ≥ 0. Hint: Recall that A is normal, then pair up the
complex eigenvalues of A. Moreover, show that if A has integer
entries, then det A is the square of an integer.
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Real quadratic forms

A real quadratic form in n variables is a polynomial

q(x) =
∑
i,j

aijxixj .

They occur in the elementary theory of conic sections–e.g.
what is 10x2 + 6xy + 2y2 = 5, an ellipse, a parabola, or a
hyperbola?– but also in the theory of max and min of functions
f(x1, . . . , xn) of several variables. In both endeavors, a solution
arises after an appropriate change of variables, x = P(y),

q(x) = q(P(y)) =
∑

i

diy2
i .

Let us see how this comes about:
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Let us begin with Ax2 + Bxy + Cy2, which we write as
ax2 + 2bxy + cy2. (For general fields this would require 2 6= 0.)
Now look:

ax2 + 2bxy + cy2 = x(ax + by) + y(bx + cy)

=
[

x y
] [ a b

b c

] [
x
y

]
= xtQx

where x =

[
x
y

]
and Q is a symmetric matrix.

It is routine to verify that every quadratic form q(x) has such a
representation,

q(x) = xtQx, Q = Qt

Now we can apply to Q the spectral theorem we have
developed.
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Since Q is (orthogonally) diagonalizable, there is an orthogonal
matrix P (formed by an orthonormal basis of eigenvectors of Q)
such that

P−1QP = D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


This means that in q(x) = xtQx, if we change the variables by
the rule x = Py,

q(x) = xtQx = ytP−1QPy = ytDy =
∑

i

λiy2
i .
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Some applications

Among the potential applications, we mentioned the
identification of conics. For example, 10x2

1 + 6x1x2 + 2x2
2 = 5:

The matrix

Q =

[
10 3

3 2

]
has for eigenvalues 11,1 with

P =
1√
10

[
1 −3
3 1

]
The change of variables x = Py gives

11y2
1 + y2

2 = 5,

the equation of an ellipse.
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Another application, to the theory of max and min appears as
follows: If a is a critical point of the function f(x)–that is all the
partial derivatives vanish at x = a, ∂f

∂xi
(a) = 0, Taylor’s

expansion of f in a neighborhood of a gives

f(x) = f(a) + q(h) + error

where q is a quadratic polynomial on the vector h = x− a.The
corresponding symmetric matrix is

Q =

[
∂2f(x)

∂xi∂xj
(a)

]

If all the eigenvalues of Q are positive [negative], q(h) ≥ 0
Then f(x) ≥ f(a) in a neighborhood of a: local max [local min] .
The other cases are saddle points [the higher dimensional
analogues of inflection points]
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Rigid Motion

A rigid motion on the inner product space V is a mapping

T : V→ V

with the property

||T(u)− T(v)|| = ||u − v ||, ∀u, vV.

That is, T preserves distance of the images. A simple example
is a translation: If a is a fixed vector, the function

T(v) := a + v

is obviously a rigid motion. What else? We have seen that
orthogonal transformations S, SSt = I, preserve distances.
Another such motion is obtained by composition: following a
translation with an orthogonal mapping. What else? That is it!
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Theorem
Any rigid motion T of V decomposes into T = S ◦ U, where S is
an orthogonal transformation and U is a translation.

Proof: Set a = T(O). Then the function F(u) = T(u)− a is a
rigid motion and F(O) = O. It is enough to prove that F is
orthogonal. Note that

||F(u)− F(O)|| = ||u −O||,

so F preserves lengths, which is the key property of orthogonal
transformations. BUT we are NOT assuming that F is linear, we
must prove it.
We first prove that F preserves dot products:
〈F(u),F(v)〉 = 〈u, v〉: We start from the equality and expand
both sides
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||F(u)− F(v)||2 = ||u − v ||2

(F(u)− F(v)) · (F(u)− F(v)) = (u − v) · (u − v)

||F(u)||2︸ ︷︷ ︸
∗

−2〈F(u),F(v)〉+ ||F(v)||2︸ ︷︷ ︸
∗∗

= ||u||2︸ ︷︷ ︸
∗

−2〈u, v〉+ ||v ||2︸ ︷︷ ︸
∗∗

Thus proving
〈F(u),F(v)〉 = 〈u, v〉.

Now we are going to prove that F is a linear function by first
showing that it is additive:



Matrices Eigenvectors: Motivation Eigenvectors and Eigenvalues Diagonalization Homework #6 Inner Products Spaces Gram-Schmidt Orthogonalization Homework #7 The Adjoint of a Linear Operator Least Squares Approximation Homework #9 Normal Operators Unitary Operators Goodies Homework #10 Quiz #11

||F(u + v)− F(u)− F(v)||2 ?
= 0

||F(u + v)||2 + ||F(u)||2 + ||F(v)||2− = ||u + v ||2 + ||u||2 + ||v ||2 −
2〈F(u + v),F(u)〉 − 2〈F(u + v),F(v)〉 = 2〈(u + v),u〉 − 2〈(u + v), v〉

+2〈F(u),F(v)〉 = +2〈u, v〉
= ||(u + v)− u − v ||2 = 0.

Scaling, that F(cu) = cF(u) for any c ∈ R, has a similar proof:
Expand

||F(cu)− cF(u)||2
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Homework #10

Section 6.4: 2f, 4, 6, 12, 13, 15

Section 6.5: 6, 10, 11, 17, 27a
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Quiz #11

1 Section 6.5, Problem 27d
2 Let A be a 3× 3 orthogonal matrix. Prove that A is similar

to a matrix of the form [
R O
O ±1

]
where R is a 2× 2 orthogonal matrix.

3 Section 6.3, Problem 22c
4 Let A be a skew-symmetric real matrix. If A diagonalizable,

prove that A = O.
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