Math 451: Abstract Algebra I

Wolmer V. Vasconcelos
Linear Algebra Support

Fall 2009

Outline

(1) Matrices
(2) Eigenvectors: Motivation
(3) Eigenvectors and Eigenvalues
(4) Diagonalization
(5) Homework \#6
(6) Inner Products Spaces
(7) Gram-Schmidt Orthogonalization
(8) Homework \#7
(9) The Adjoint of a Linear Operator
(10) Least Squares Approximation

11 Homework \#9
(12) Normal Operators

13 Unitary Operators
14 Goodies
(15) Homework \#10
(16) Quiz \#11

Matrix Representation

We first discuss how to represent some [look at the caveat] linear transformations $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ by matrices. Think of \mathbf{V} and \mathbf{W} as \mathbb{R}^{n} or \mathbb{C}^{n}. It is a process akin to representing vectors by coordinates. Recall that if $v \in \mathbf{V}$ and $\mathcal{B}=v_{1}, \ldots, v_{n}$ is a basis of \mathbf{V}, we have a unique expression

$$
v=x_{1} v_{1}+\cdots+x_{n} v_{n} .
$$

We say that the x_{i} are the coordinates of v with respect to \mathcal{B}. We write as

$$
[v]_{\mathcal{B}}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

If $\mathcal{C}=\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis of \mathbf{W}, we would like to find the coordinates of $\mathbf{T}(v)$ in the basis \mathcal{C}

$$
[\mathbf{T}(v)]_{\mathcal{C}}=[?] .
$$

Matrix Representation

In other words, if $v=x_{1} v_{1}+\cdots+x_{n} v_{n}$,

$$
\mathbf{T}(v)=y_{1} w_{1}+\cdots+y_{m} w_{m},
$$

we want to describe the y_{i} in terms of the x_{j}. The process will be called a matrix representation. It comes about as follows:

$$
\sum y_{i} w_{i}=T\left(\sum x_{j} v_{j}\right)=\sum x_{j} \mathbf{T}\left(v_{j}\right)
$$

Thus if we have the coordinates of the $\mathbf{T}\left(v_{j}\right)$,

$$
\mathbf{T}\left(v_{j}\right)=\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right]
$$

we have

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
v_{m}
\end{array}\right]=\sum x_{j}\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
\end{array}\right]
$$

More pictorially

$$
[\mathbf{T}(v)]_{\mathcal{C}}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=[\mathbf{T}]_{\mathcal{B}}^{\mathcal{C}} \cdot[v]_{\mathcal{B}}
$$

The $n \times m$ matrix

$$
[T]_{B}^{C}
$$

is called the matrix representation of \mathbf{T} relative to the bases \mathcal{B} of \mathbf{V} and \mathcal{C} of \mathbf{W}.

Quickly: Once bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} have been chosen, \mathbf{T} is represented by

$$
\left[a_{i j}\right]
$$

where the entries come from

$$
\mathbf{T}\left(v_{j}\right)=\sum_{i=1}^{m} \mathrm{a}_{i j} w_{i}
$$

Example

Recall the transpose operation on a square matrix \mathbf{A} : if $a_{i j}$ is the (i,j)-entry of \mathbf{A}, the (i, j)-entry of \mathbf{A}^{t} is $a_{j j}$. This is a linear transformation \mathbf{T} on the space $\mathbf{M}_{n}(\mathbf{F})$:

$$
(\mathbf{A}+\mathbf{B})^{t}=\mathbf{A}^{t}+\mathbf{B}^{t}, \quad(c \mathbf{A})^{t}=c \mathbf{A}^{t} .
$$

Let us find its matrix representation on $\mathbf{M}_{2}(\mathbf{F})$. This space has the basis

$$
v_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], v_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], v_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], v_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Since

$$
\mathbf{T}\left(v_{1}\right)=v_{1}, \quad \mathbf{T}\left(v_{2}\right)=v_{3}, \quad \mathbf{T}\left(v_{3}\right)=v_{2}, \quad \mathbf{T}\left(v_{4}\right)=v_{4},
$$

the matrix representation of transposing is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let $\mathbb{R}_{3}[x]$ be the space of real polynomials of degree at most 3 and \mathbf{T} the differentiation operator.
A basis here are the polynomials $1, x, x^{2}, x^{3}$. The corresponding matrix representation is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Eigenvalues: Motivation

Consider the following differential equations (or systems of)

$$
\begin{aligned}
y^{\prime} & =a y, \quad a \in \mathbb{R} \\
y^{\prime \prime}+a y^{\prime}+b y & =0, \quad a, b \in \mathbb{R} \\
{\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right] } & =\left[\begin{array}{r}
10 y_{1}+3 y_{2} \\
3 y_{1}+2 y_{2}
\end{array}\right]
\end{aligned}
$$

Question: What are their resemblances? Which ones can we solve directly?
They are equations, or systems, of linear differential equations with constant coefficients.

The first equation, $y^{\prime}=a y$, is the easiest to deal with: $y=c e^{a t}$ is the general solution.

We will argue that the others, with a formulation using vectors and matrices, have the same kind of solution. Let us do the last one first. Set

$$
\mathbf{Y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \quad \mathbf{Y}^{\prime}=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{rr}
10 & 3 \\
3 & 2
\end{array}\right]
$$

Now observe:

$$
\mathbf{Y}^{\prime}=\mathbf{A} \mathbf{Y}
$$

Question: This looks like $y^{\prime}=a y$, which has $y=c e^{a t}$ for solution. You should be tempted to expect the solution to be

$$
\mathbf{Y}=\mathbf{C} e^{t \mathbf{A}}
$$

What is $e^{t \mathbf{A}}$, the exponential of the matrix $t \mathbf{A}$? What could it be?

Let us turn to the second order D.E.

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

If we set $z_{1}=y$ and $z_{2}=y^{\prime}=z_{1}^{\prime}$,
$z_{2}^{\prime}=y^{\prime \prime}=-a y^{\prime}-b y=-b z_{1}-a z_{2}$ which can be written in matrix formulation as

$$
\mathbf{Z}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right], \quad \mathbf{Z}^{\prime}=\left[\begin{array}{l}
z_{1}^{\prime} \\
z_{2}^{\prime}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll}
0 & -b \\
1 & -a
\end{array}\right]
$$

We get

$$
\mathbf{Z}^{\prime}=\mathbf{A Z},
$$

as above $\mathbf{Z}=\mathbf{C} e^{t \mathbf{A}}$ if we could make sense of then exponential of a matrix.

We return to this-promise-for the moment just think the possibility:

The function e^{x} has a power series expansion

$$
e^{x}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

If we replace x by the square matrix \mathbf{A} (and 1 by I), we get

$$
e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2}+\cdots+\frac{\mathbf{A}^{n}}{n!}+\cdots,
$$

We just must make sure that a theory of series of makes sense. The answer will be sure. Think about the adjustments to be made.

Just for fun let us calculate the exponential of $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

$$
\begin{gathered}
\mathbf{A}^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad \mathbf{A}^{3}=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad \mathbf{A}^{n}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
1+1+1 / 2+\cdots+1 / n!+\cdots & 1+\underbrace{1+2 \cdot 1 / 2+\cdots+n \cdot 1 / n!+\cdots}_{=e} \\
0 & 1+1 / 2+\cdots+1 / n!+\cdots
\end{array}\right.}
\end{gathered}
$$

$$
e^{\mathbf{A}}=\left[\begin{array}{ll}
e & e \\
0 & e
\end{array}\right]
$$

Convergence of e^{A}

That

$$
e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2}+\cdots+\frac{\mathbf{A}^{n}}{n!}+\cdots
$$

makes sense is due to the power of $n!$:
Suppose $\mathbf{A}=\left[a_{i j}\right]$ is $m \times m$ and that the absolute value of its entries $\left|a_{i j}\right| \leq r$. This implies that the entries of \mathbf{A}^{2}

$$
\left|\sum_{k=1}^{m} a_{i k} a_{k j}\right| \leq m r^{2}
$$

Similarly one finds that the entries of \mathbf{A}^{n} are bounded by

$$
m^{n-1} r^{n}
$$

This implies that the series in any entry of $e^{\mathbf{A}}$ is bounded by the series

$$
\sum_{n=0}^{\infty} \frac{m^{n-1} r^{n}}{n!}
$$

that is convergent [e.g. use ratio test].
This proves $e^{\mathbf{A}}$ makes sense since the series in each of its entries is absolutely convergent.

Let us show a long application:

$$
\operatorname{det}\left(e^{\mathbf{A}}\right)=e^{\operatorname{Trace}(\mathbf{A})}
$$

This is obvious if \mathbf{A} is a diagonal matrix,
$\mathbf{A}=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right], \quad e^{\mathbf{A}}=\left[\begin{array}{ccc}e^{a} & 0 & 0 \\ 0 & e^{b} & 0 \\ 0 & 0 & e^{c}\end{array}\right], \quad \operatorname{det}\left(e^{\mathbf{A}}\right)=e^{a+b+c}$,
but in general...

Sweet representation of a linear transformation

Let \mathbf{V} be a finite dimensional vector space and

$$
\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}
$$

a linear transformation.
Question: Is there a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{V} so that the matrix representation

$$
[\mathbf{T}]_{\mathcal{B}}
$$

is as 'simple' [e.g. with plenty of 0's] as possible?
Answer: Well... but for the most 'interesting' matrices the answer is YES.

Invariant subspace

Let \mathbf{V} be a finite dimensional vector space and

$$
\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}
$$

a linear transformation.
If $\mathbf{W} \subset \mathbf{V}$ is a subspace, it is of interest to know whether for $w \in \mathbf{W}$ its image $\mathbf{T}(w) \in \mathbf{W}$. Clearly this will not happen often.

Definition

\mathbf{W} is a \mathbf{T}-invariant subspace if $\mathbf{T}(\mathbf{W}) \subset \mathbf{W}$. That is, the restriction of (the function) \mathbf{T} to \mathbf{W} is a linear transformation of it. We denote the restriction of \mathbf{T} to \mathbf{W} by $\mathbf{T}_{\mathbf{W}}$.

Let us see what this implies for the matrix representation of \mathbf{T}. Let $\mathcal{B}=\left\{w_{1}, \ldots, w_{r}\right\}$ be a basis of \mathbf{W}, and complete it to a basis of \mathbf{V}

$$
\mathcal{A}=\left\{w_{1}, \ldots, w_{r}, v_{r+1}, \ldots, v_{n}\right\} .
$$

Since $\mathbf{T}\left(w_{i}\right) \in \mathbf{W}$, it is a linear combination of the first r vectors, the first r columns of the matrix is

$$
\begin{array} { r l }
\left.\begin{array}{rl}
{[\mathbf{T}]_{\mathcal{A}}} & { ={ = [\begin{array}{llll}
\underline{\left[\mathbf{T}_{\mathbf{W}}\right]_{\mathcal{B}}} & * & \cdots & * \\
\end{array}} & * & \cdots & *
\end{array}\right] } \\
{[\mathbf{T}]_{\mathcal{A}}} &{=\left[\begin{array}{lllll}
a & b & * & \cdots & * \\
c & d & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
0 & 0 & * & \cdots & *
\end{array}\right]}
\end{array}
$$

Blocks

Suppose \mathbf{T} is a L.T. of vector space \mathbf{V} with a basis $\mathcal{A}=v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$. Suppose $\mathbf{T}\left(v_{i}\right)$ for $i \leq r$, is a linear combination of the first r basis vectors, and $\mathbf{T}\left(v_{i}\right)$ for $i>r$, is a linear combination of the last $n-r$ basis vectors.
Claim: The matrix representation has the block format

$$
[\mathbf{T}]_{\mathcal{A}}=\left[\begin{array}{cc}
r \times r & O \\
O & (n-r) \times(n-r)
\end{array}\right]
$$

This can be refined to more than two blocks. The extreme case is when all blocks are 1×1. The representation is then said to be diagonal.

Eigenvector

The extreme case of an invariant subspace is one of the top 5 notions of L.A.:

Definition

An eigenvector of the linear transformation \mathbf{T} is a nonzero vector v such that

$$
\mathbf{T}(v)=\lambda \cdot v .
$$

The scalar λ is called the (corresponding) eigenvalue.
Means: The line $\mathbf{F} v$ is an invariant subspace of \mathbf{T}. Note that v must be nonzero, but that λ could be zero. Observe who cames first: eigenvector \rightarrow eigenvalue.

To keep in mind:

$$
v \neq O, \quad \mathbf{T}(v)=\lambda v
$$

Note: Any nonzero multiple of v is also an eigenvector [with the same eigenvalue]

$$
a v \neq 0 \quad \mathbf{T}(a v)=a \mathbf{T}(v)=a \lambda v=\lambda(a v)
$$

The subspace spanned by v is invariant under \mathbf{T}

Examples

- One of the most important L.T. of Mathematics is $\mathbf{T}:=\frac{d}{d t}$. (On the appropriate V.S.) Its eigenvectors are

$$
\frac{d}{d t}(f(t))=\lambda \cdot f(t)
$$

that is $f(t)=e^{\lambda t}$ and its nonzero scalar multiples $c e^{\lambda t}$.

- Let \mathbf{T} be the identity L.T. I. Then any nonzero vector is a eigenvector. Same property for the [null] O mapping.
- For an angle $0<\alpha<\pi$, let

$$
\mathbf{T}(x, y)=(x \cos \alpha+y \sin \alpha,-x \sin \alpha+y \cos \alpha)
$$

This is a rotation in the plane by α degrees. Clearly there is no nonzero vector v in the real plane \mathbb{R}^{2} that is aligned with $\mathbf{T}(v)$.

- Let \mathbf{T} be the L.T.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Its eigenvectors are (and their nonzero multiples)

$$
\mathbf{T}(i)=1 \cdot i, \quad \mathbf{T}(j)=2 \cdot j, \quad \mathbf{T}(k)=0 \cdot k
$$

If \mathbf{T} is a linear transformation of \mathbf{F}^{2} with a matrix representation

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],
$$

we know that

$$
\mathbf{A}^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Thus, if

$$
\mathbf{A}(v)=\lambda v, \quad v \neq 0
$$

$$
\mathbf{A}(\mathbf{A}(v))=\mathbf{A}^{2}(v)=\mathbf{O}=\mathbf{A}(\lambda v)=\lambda(\mathbf{A}(v))=\lambda^{2} v
$$

so $\lambda=0$ since $v \neq 0$.

Let \mathbf{V} be the vector space of all $n \times n$ real matrices, and let \mathbf{T} be the transformation

$$
\mathbf{T}(\mathbf{A})=\mathbf{A}^{t}
$$

\mathbf{T} is a linear transformation. If $\mathbf{A} \neq O$ is one of its eigenvectors,

$$
\mathbf{A}^{t}=\lambda \mathbf{A}
$$

So, transposing again we get

$$
\begin{gathered}
\mathbf{A}=\left(\mathbf{A}^{t}\right)^{t}=\lambda \mathbf{A}^{t}=\lambda^{2} \mathbf{A} \\
\left(\lambda^{2}-1\right) \mathbf{A}=O
\end{gathered}
$$

This means that $\lambda= \pm 1$
If $\lambda=1, \mathbf{A}$ is symmetric
If $\lambda=-1, \mathbf{A}$ is skew-symmetric

Question:

Given a n-by- n matrix \mathbf{A} [usually representing some linear transformation \mathbf{T}], how are the eigenvectors to be found? Although the eigenvalues come after the eigenvectors, in some approaches they will appear first. Look at the following analysis: $\mathbf{A} v=\lambda v$, for $v \neq O$ means that

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right) \boldsymbol{v}=\mathbf{O}
$$

Conclusion: v is a nonzero vector of the nullspace of $\mathbf{A}-\lambda \mathbf{I}_{n}$ and therefore $\operatorname{rank}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)<n$. This in turn means that

$$
\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)=0
$$

Characteristic polynomial of a matrix

Definition

The characteristic polynomial of the n-by- n matrix $\mathbf{A}=\left[a_{i j}\right]$ is the polynomial

$$
p(x)=\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)=\operatorname{det}\left[\begin{array}{ccc}
a_{11}-x & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}-x
\end{array}\right]
$$

The equation $p(x)=0$ is called the characteristic equation.
Observe that $\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)$ is a polynomial of degree n,

$$
\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)=(-1)^{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0} .
$$

The characteristic polynomial of $\mathbf{A}=\left[\begin{array}{rr}10 & 3 \\ 3 & 2\end{array}\right]$ is

$$
\operatorname{det}\left[\begin{array}{cc}
10-x & 3 \\
3 & 2-x
\end{array}\right]=(10-x)(2-x)-9=x^{2}-12 x+11
$$

Its roots are

$$
\lambda=\frac{12 \pm \sqrt{12^{2}-4 \times 11}}{2}=6 \pm 5
$$

With the eigenvalues in hand we solve for the eigenvectors.
$\lambda=11$: Will determine the nullspace of $\mathbf{A}-1 \mathbf{I I}_{2}$

$$
\left[\begin{array}{cc|c}
10-11 & 3 & 0 \\
3 & 2-11 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
-1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \quad v_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

$\lambda=1$: Will determine the nullspace of $\mathbf{A}-\mathbf{I}_{2}$

$$
\left[\begin{array}{cc|c}
10-1 & 3 & 0 \\
3 & 2-1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad v_{2}=\left[\begin{array}{r}
1 \\
-3
\end{array}\right]
$$

Let us Verify that it will work out for any real symmetric matrix
$\mathbf{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
The characteristic polynomial is
$\operatorname{det}\left[\begin{array}{cc}a-x & b \\ b & c-x\end{array}\right]=(a-x)(c-x)-b^{2}=x^{2}-(a+c) x+a c-b^{2}$,
whose roots are

$$
\lambda=\frac{a+c \pm \sqrt{(a+c)^{2}-4\left(a c-b^{2}\right)}}{2}
$$

Incredibly (?) the quantity under the sign is $(a-c)^{2}+4 b^{2} \geq 0$, so either there are two distinct real roots or $a=c, b=0$. In both cases the matrix is diagonalizable.

A different kind is the rotation \mathbf{R}_{α} by α degrees in the plane \mathbb{R}^{2} :
$\left.\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$. Its characteristic polynomial is
$\operatorname{det}\left[\begin{array}{cc}\cos \alpha-x & -\sin \alpha \\ \sin \alpha & \cos \alpha-x\end{array}\right]=(\cos \alpha-x)^{2}+\sin ^{2} \alpha=x^{2}-(2 \cos \alpha) x+$
Its roots are

$$
\lambda=\frac{2 \cos \alpha \pm \sqrt{4 \cos ^{2} \alpha-4}}{2},
$$

which is not real unless $\alpha=0, \pi$.

We already know that rotations $0<\alpha<\pi$ have no real eigenvalues. Let us try $\alpha=\pi / 2$ anyway: $\mathbf{A}=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. The characteristic polynomial is $x^{2}+1$, so the (complex) eigenvalues are $\lambda= \pm i$.
$\lambda=i$: Will determine the nullspace of $\mathbf{A}-\boldsymbol{i}_{\mathbf{2}}$

$$
\left[\begin{array}{rc|l}
-i & 1 & 0 \\
-1 & -i & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
-i & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad v_{1}=\left[\begin{array}{c}
1 \\
i
\end{array}\right]
$$

$\lambda=-i$: Will determine the nullspace of $\mathbf{A}+\mathbf{i l}_{2}$

$$
\left[\begin{array}{rr|r}
i & 1 & 0 \\
-1 & i & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
i & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad V_{2}=\left[\begin{array}{r}
1 \\
-i
\end{array}\right]
$$

Proposition

Let \mathbf{A} be a n-by-n matrix over the field \mathbf{F}. A scalar $\lambda \in \mathbf{F}$ is an eigenvalue for some eigenvector $v \in \mathbf{F}^{n}$ iff λ is a root of the polynomial $\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)$.

Proof.

We have already observed that if $\mathbf{A} v=\lambda v, v \neq 0$, then λ is a root of the char polynomial. Conversely, if $\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)=0$, then $\operatorname{rank}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)<n$. This implies, by the dimension formula, that the nullspace of $\mathbf{A}-\lambda \mathbf{I}_{n} \neq \mathbf{O}$. Any nonzero vector in this nullspace will satisfy

$$
\mathbf{A} v=\lambda v
$$

Corollary

The number of distinct eigenvalues of the n-by-n matrix \mathbf{A} is at most n. (The set of eigenvalues of a matrix-or of a linear transformation is called its spectrum).

Characteristic polynomial of a linear transformation

It seems that we have only defined the characteristic polynomial for matrices. Suppose \mathbf{T} is a L.T. If we have two bases \mathcal{A}, \mathcal{B} of the vector space, we have two representations

$$
\mathbf{A}=[\mathbf{T}]_{\mathcal{A}}, \quad \mathbf{B}=[\mathbf{T}]_{\mathcal{B}}
$$

and therefore we have, apparently, two possibly different polynomials

$$
\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right), \quad \operatorname{det}\left(\mathbf{B}-x \mathbf{I}_{n}\right)
$$

But we proved that \mathbf{A} and \mathbf{B} are related: There is an invertible matrix \mathbf{P} such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$. Now observe

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{B}-x \mathbf{I}_{n}\right) & =\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A P}-x \mathbf{I}_{n}\right)=\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A P}-\mathbf{P}^{-1} x \mathbf{I}_{n} \mathbf{P}\right) \\
& =\operatorname{det}\left(\mathbf{P}^{-1}\left(\mathbf{A}-x \mathbf{I}_{n}\right) \mathbf{P}\right) \\
& =\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right) \operatorname{det}(\mathbf{P}) \\
& =\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)
\end{aligned}
$$

Conclusion: The characteristic polynomial is the same for all representations of \mathbf{T}.

Eigenspaces

Definition

If λ is an eigenvalue of \mathbf{A}, the nullspace of $\mathbf{A}-\lambda \mathbf{I}_{n}$, denoted by E_{λ}, is called the eigenspace associated to λ.

Observe that E_{λ} is invariant under \mathbf{A} : If $v \in E_{\lambda}$ then $\mathbf{A} v \in E_{\lambda}$.

Polynomials and their roots

If $f(x)=a_{n} x^{n}+\cdots+a_{0}$ is a polynomial of degree n, with coefficients in the field \mathbf{F} a root is a scalar r such that $f(r)=0$. It is a hard problem to find r.

Proposition

If $f(x)$ and $g(x)$ are two polynomials, then there exist polynomials $q(x)$ and $r(x)$ where

$$
f(x)=q(x) g(x)+r(x)
$$

where $r(x)=0$ or degree $r(x)<$ degree $g(x)$.
$q(x)$ is called the quotient, and $r(x)$ the remainder of the division of $f(x)$ by $g(x)$. They are found by the long division algorithm.

Corollary

If r is a root of the nonzero polynomial $f(x)$, then $f(x)=(x-r) q(x)$, where $\operatorname{deg} q(x)=\operatorname{deg} f(x)-1$. As a consequence, a polynomial $f(x)$ of degree n has at most n roots.

Proof.

Any other root s of $f(x)$ satisfies

$$
f(s)=q(s)(s-r)=0
$$

so $q(s)=0$ since $s-r \neq 0$.

Algebraic multiplicity of a root

If $f(x)=a_{n} x^{n}+\cdots+a_{0}$ is a nonzero polynomial and r is one of its roots,

$$
f(x)=(x-r) g(x)
$$

It may occur that r is a root of $g(x), g(x)=(x-r) h(x)$. As the degrees of the quotients decrease, we eventually have

$$
f(x)=(x-r)^{s} q(x), \quad q(r) \neq 0 .
$$

Definition

We say that r is a root of $f(x)$ of order or multiplicity s.

Multiplicities of an eigenvalue

Let λ be an eigenvalue of the matrix \mathbf{A}. There are two notions of multiplicity associated to λ :

- If λ is a root of order s of the characteristic polynomial $\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)$, we say that λ has algebraic multiplicity s.
- If the eigenspace E_{λ} has dimension t, we say that λ has geometric multiplicity t.

Proposition

For any eigenvalue λ of a matrix \mathbf{A},

algebraic multiplicity \geq geometric multiplicity.

Proof.

Assume v_{1}, \ldots, v_{t} is a basis of E_{λ}, and we use it as the beginning of a basis for the whole vector space, the representation of the L.T. has the block format

$$
\left[\begin{array}{cc}
\lambda \mathbf{I}_{t} & \mathbf{B} \\
O & \mathbf{C}
\end{array}\right], \quad \operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)=(\lambda-x)^{t} \operatorname{det}\left(\mathbf{C}-x \mathbf{I}_{n-t}\right) .
$$

Properties of eigenvalues

Let \mathbf{A} be a square matrix.
(1) If λ is an eigenvalue of \mathbf{A}, then λ^{2} is an eigenvalue of \mathbf{A}^{2} :

$$
\mathbf{A}^{2}(v)=\mathbf{A}(\mathbf{A}(v))=\mathbf{A}(\lambda v)=\lambda \mathbf{A}(v)=\lambda \lambda v=\lambda^{2} v .
$$

(2) More generally, if $g(x)$ is a polynomial (e.g. $x^{2}-2 x+1$) then

$$
g(\mathbf{A})(v)=g(\lambda) v, \quad\left(\mathbf{A}^{2}-2 \mathbf{A}+\mathbf{I}\right)(v)=\left(\lambda^{2}-2 \lambda+1\right)(v) .
$$

(3) If \mathbf{A} is invertible, $\mathbf{A}^{-1}(v)=\frac{1}{\lambda} v$.
(1) If $p(x)=\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)=(-1)^{n} x^{n}+\cdots+a_{0}$ is the characteristic polynomial of \mathbf{A}, then $a_{0}=\operatorname{det}(\mathbf{A})$. Plug in $x=0$ in $p(x)$.
(2) If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of \mathbf{A}, then

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

In the decomposition of $p(x)$,

$$
p(x)=(-1)^{n}\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)
$$

plug in $x=0$ and use the observation above.

Complex Numbers

(1) If the field is the complex number filed \mathbb{C}, any polynomial $f(x) \in \mathbb{C}[x]$ factors completely

$$
f(x)=a_{n}\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)
$$

As a consequence, the eigenvalues of a complex matrix always exist in the field.
(2) If \mathbf{A} is a real matrix, its characteristic polynomial $p(x)=\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)$ is a real polynomial and always have a full set $\lambda_{1}, \ldots, \lambda_{n}$ of complex eigenvalues, some of which may be real.
(1) If $\lambda=a+b i$, is a complex root of $f(x), f(\lambda)=0$, observe that

$$
f(a+b i)=0 \Rightarrow f(a-b i)=0
$$

because all coefficients of $f(x)$ are real.Let us explain: Say

$$
7(a+b i)^{3}-2(a+b i)^{2}+117(a+b i)+\pi=0
$$

Complex conjugation, $a+b i \rightarrow \overline{a+b i}=a-b i$ has the property: $\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$. But if z_{1}, say, is real (like the coefficients of the polynomial), $\overline{z_{1}}=z_{1}$, so they are not affected by changing all $a+b i$ into $a-b i$. So if one is a root, so will be the other.
(2) Thus the complex conjugate $a-b i$ of an eigenvalue $a+b i$ is also an eigenvalue: So complex eigenvalues of a real matrix occur in pairs.

Groups

Let \mathbf{G} be a finite group. There are many injective homomorphisms

$$
\varphi: \mathbf{G} \rightarrow G L_{n}(\mathbb{C})
$$

Thus we have many ways to view \mathbf{G} as a group of linear transformations. It helps a lot to know

Theorem

Every $\mathbf{T} \in \mathbf{G}$ is diagonalizable.
You should ask how come, when being diagonalizable is kind of dicey.

Linear independence of eigenvectors

Let \mathbf{T} be a L.T. (or matrix). Suppose there is a basis made up of eigenvectors, say $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}, \mathbf{T}\left(v_{i}\right)=\lambda_{i} v_{i}$. The corresponding matrix representation is

$$
[\mathbf{T}]_{\mathcal{B}}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

This is not always possible: Let $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ whose characteristic polynomial is x^{2}. There is just one eigenvalue, $\lambda=0$. But the corresponding eigenspace E_{0} has for basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We do not have a basis of eigenvectors, so \mathbf{A} is not diagonalizable.

Let us explore what is needed to have a basis of eigenvectors.

Proposition

Let \mathbf{T} be a linear transformation and let v_{1}, \ldots, v_{r} be a set of eigenvectors of \mathbf{T}, associated to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$. Then the v_{i} are linearly independent.

Proof. Suppose $c_{1} v_{1}+\cdots+c_{r} v_{r}=O$. Using induction on r, we are going to show that all $c_{i}=0$. We are going to multiply the equation by λ_{1} and apply \mathbf{T} to it to obtain the following two equations:

$$
\begin{aligned}
\lambda_{1}\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right) & =\lambda_{1} c_{1} v_{1}+\cdots+\lambda_{1} c_{r} v_{r}=0 \\
\mathbf{T}\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right) & =\lambda_{1} c_{1} v_{1}+\cdots+\lambda_{r} c_{r} v_{r}=0
\end{aligned}
$$

If we subtract one from the other we get the shorter equation,

$$
\underbrace{\left(\lambda_{2}-\lambda_{1}\right) c_{2}} v_{2}+\cdots+\underbrace{\left(\lambda_{r}-\lambda_{1}\right) c_{r}} v_{r}=0
$$

By the induction hypothesis, all $c_{i}\left(\lambda_{i}-\lambda_{1}\right)=0$, for $i>1$. Since $\lambda_{i} \neq \lambda_{1}$, this means $c_{i}=0$ for $i>1$. Finally, since $v_{1} \neq 0$ this will imply $c_{1}=0$ as well.

Let $\lambda_{1}, \ldots, \lambda_{r}$ be the set of eigenvalues of \mathbf{T}, and let
$E_{\lambda_{1}}, \ldots, E_{\lambda_{r}}$ be the corresponding set of eigenspaces. For each of these we pick a basis \mathcal{B}_{i}. For simplicity, take 3 eigenvalues and assume the bases chosen for the 3 eigenspaces are

$$
\left\{u_{1}, u_{2}, u_{3}\right\},\left\{v_{1}, v_{2}\right\},\left\{w_{1}, w_{2}\right\}
$$

Claim: These 7 vectors are linearly independent. Suppose

$$
\underbrace{a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}}_{u}+\underbrace{b_{1} v_{1}+b_{2} v_{2}}_{v}+\underbrace{c_{1} w_{1}+c_{2} w_{2}}_{w}=0
$$

which we write as $1 \cdot u+1 \cdot v+1 \cdot w=0$. Note that if $u \neq 0$ it is an eigenvector (and v and w as well), by the Proposition, $u=v=w=0$, and then that $a_{1}=\cdots=c_{2}=0$, by the linear independence of the respective bases.

Theorem

Let \mathbf{A} be a n-by-n matrix with n eigenvalues (maybe repeated). Then \mathbf{A} is diagonalizable iff for every eigenvalue its geometric multiplicity is equal to its algebraic multiplicity.

Proof. Let $\lambda_{1}, \ldots, \lambda_{r}$ be the set of DISTINCT eigenvalues of \mathbf{A}, and let $E_{\lambda_{1}}, \ldots, E_{\lambda_{r}}$ be the corresponding set of eigenspaces. We have the equalities

$$
\begin{aligned}
\sum_{i} \text { geom. mult. of } \lambda_{i} & =\sum_{i} \operatorname{dim} E_{\lambda_{i}} \\
\sum_{i} \text { alg. mult. of } \lambda_{i} & =n .
\end{aligned}
$$

Since alg. mult. of $\lambda_{i} \geq$ geom. mult. of λ_{i}, if equality for each i holds, the previous discussion shows that we can have a basis of eigenvectors by collecting bases in the $E_{\lambda_{i}}$. The converse is clear.

Corollary

Let \mathbf{A} be a n-by-n matrix with n distinct eigenvalues. Then \mathbf{A} is diagonalizable.

Theorem

Let \mathbf{A} be a n-by-n matrix. \mathbf{A} is invertible iff $\lambda=0$ is not an eigenvalue.

Proof.

A is invertible iff it is one-one: $\mathbf{A}(v) \neq 0 \cdot v$ if $v \neq 0$.

Let \mathbf{A} be a n-by- n matrix and assume $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis made up of its eigenvectors, $\mathbf{A}\left(v_{i}\right)=\lambda_{i} v_{i}$. The matrix

$$
\mathbf{P}=\left[v_{1}|\cdots| v_{n}\right]
$$

is invertible since the v_{i} form a basis. Claim:

$$
\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\mathbf{D}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

To prove we apply \mathbf{D} to the standard basis e_{1}, \ldots, e_{n}. Note that $\mathbf{P}\left(e_{1}\right)=v_{1}$. For instance
$\mathbf{D}\left(e_{1}\right)=\mathbf{P}^{-1}\left(\mathbf{A}\left(\mathbf{P}\left(e_{1}\right)\right)\right)=\mathbf{P}^{-1}\left(\mathbf{A}\left(v_{1}\right)\right)=\mathbf{P}^{-1}\left(\lambda_{1} v_{1}\right)=\lambda_{1} \mathbf{P}^{-1}\left(v_{1}\right)=\lambda_{1}$

Note that if \mathbf{A} is diagonalizable, that is there is an invertible matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$ (= diagonal), a host of related matrices are also diagonalizable:
(1) Any power of \mathbf{A} is diagonalizable (let us do square):

$$
\mathbf{D}^{2}=\left(\mathbf{P}^{-1} \mathbf{A P}\right)\left(\mathbf{P}^{-1} \mathbf{A P}\right)=\mathbf{P}^{-1} \mathbf{A} \underbrace{\mathbf{P P}^{-1}}_{\mathbf{I}} \mathbf{A P}=\mathbf{P}^{-1} \mathbf{A}^{2} \mathbf{P}
$$

and certainly \mathbf{D}^{2} is diagonal.
(2) If \mathbf{A} is invertible [and diagonalizable!] its inverse \mathbf{A}^{-1} is also diagonalizable:

$$
\mathbf{D}^{-1}=\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)^{-1}=\mathbf{P}^{-1} \mathbf{A}^{-1} \underbrace{\left(\mathbf{P}^{-1}\right)^{-1}}=\mathbf{P}^{-1} \mathbf{A}^{-1} \mathbf{P}
$$

(3) If $g(x)$ is any polynomial and \mathbf{A} is diagonalizable, then $g(\mathbf{A})$ is diagonalizable (check).

Diagonalization Summary

Let \mathbf{A} be a n-by- n matrix for which we want to find a possible diagonalization.
(1) Find the characteristic polynomial $p(x)=\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{n}\right)$. Rating: Routine, if at times long.
(2) Decompose $p(x)$ and collect factors

$$
p(x)=(-1)^{n}\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{r}\right)^{m_{r}}
$$

Rating: Very Hard

(3) For each λ_{i} find $\operatorname{dim} E_{\lambda_{i}}$ and check it is m_{i}. Rating: Gaussian elim

Comment: This is kind of vague. We need predictions. That is: Guarantees that certain kinds of matrices are diagonalizable.

Examples

Example: Let \mathbf{A} be the real matrix

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & c
\end{array}\right]
$$

where c is some number.
(a) What are the eigenvalues of A ?
(b) If $c \neq 1,2$, why is A diagonalizable? What happens when $c=1$ or $c=2$?

Answer: (a) The characteristic polynomial is

$$
\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{3}\right)=(2-x)(1-x)(c-x)
$$

whose roots are the eigenvalues: $1,2, c$.
(b) If $c \neq 1,2$, there are [automatically] 3 independent eigenvectors and therefore the matrix is diagonalizable.

If $c=1$ or $c=2$, it may go either way [diagonalizable or not] so we must check further to see whether the geometric multiplicities are equal or not to the algebraic multiplicities. For $c=1$: The nullspace of $\mathbf{A}-I_{3}$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

is generated by

$$
\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]
$$

and \mathbf{A} is not diagonalizable.
Doing likewise for $c=2$ will again show that \mathbf{A} is not diagonalizable.

Example:

Given the real matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 5
\end{array}\right] \quad \mathbf{A}-x \mathbf{l}_{3}=\left[\begin{array}{ccc}
2-x & 0 & 3 \\
0 & 2-x & 0 \\
3 & 0 & 5-x
\end{array}\right]
$$

(a) Find its characteristic polynomial.
(b) Find its eigenvalues.
(c) Explain why \mathbf{A} is diagonalizable. [You do not have to find the eigenvectors to answer.]
Answer: (a) To find $\operatorname{det}\left(\mathbf{A}-\boldsymbol{I I}_{3}\right)$, we expand along the second column

$$
\operatorname{det}\left(\mathbf{A}-x \mathbf{I}_{3}\right)=(2-x)((2-x)(5-x)-9)=(2-x)\left(x^{2}-7 x+1\right) .
$$

(b) Use the quadratic formula to find the roots of the factor $x^{2}-7 x+1$:

$$
\frac{7 \pm \sqrt{49-4}}{2}=\frac{7 \pm 3 \sqrt{5}}{2}
$$

Together with 2 these roots are the eigenvalues.
(c) Since the 3 eigenvalues are distinct, we have a basis of eigenvectors for \mathbb{R}^{3} and \mathbf{A} is diagonalizable.

Chaos

Let λ be an eigenvalue of the matrix $\mathbf{A}: \mathbf{A} v=\lambda v$. To find $v \neq 0$ we find the nullspace of $\mathbf{A}-\lambda \mathbf{I}_{n}$.
Suppose a mistake was made and instead of λ we have $\lambda+\epsilon$. If this value is not an eigenvalue the nullspace of

$$
\mathbf{A}-(\lambda+\epsilon) \mathbf{I}_{n}
$$

is O, not a vector 'close' to v. What to do?

Some stability

Question: Assume A admits a basis of eigenvectors. How can we find one, or more eigenvectors, if we cannot solve the characteristic equation? Here is a popular technique. Let $u \in \mathbb{R}^{n}$ picked at random [?]. We know that

$$
u=u_{1}+u_{2}+\cdots+u_{r}, \quad \mathbf{A} u_{i}=\lambda_{i} u_{i}
$$

where the u_{i} belong to different eigenspaces. Of course, the right hand of this equality is invisible to us. Let us assume $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|, \quad i>1$. Observe what happens when we apply \mathbf{A} repeatedly to u :

$$
\mathbf{A}^{n}(u)=\underbrace{\lambda_{1}^{n} u_{1}}+\lambda_{2}^{n} u_{2}+\cdots+\lambda_{r}^{n} u_{r}
$$

The growth in the coordinates of $\mathbf{A}^{n}(u)$ is coming from $\lambda_{1}^{n} u_{1}$.

If we compare the two vectors

$$
\begin{gathered}
\mathbf{A}^{n}(u)=\underbrace{\lambda_{1}^{n} u_{1}}+\lambda_{2}^{n} u_{2}+\cdots+\lambda_{r}^{n} u_{r} \\
\mathbf{A}^{n+1}(u)=\underbrace{\lambda_{1}^{n+1} u_{1}}+\lambda_{2}^{n+1} u_{2}+\cdots+\lambda_{r}^{n+1} u_{r}
\end{gathered}
$$

It will follow that

$$
\lim _{n} \frac{\left\|\mathbf{A}^{n+1}(u)\right\|}{\left\|\mathbf{A}^{n}(u)\right\|}=\left|\lambda_{1}\right|
$$

more precisely: If we set $v_{n}=\frac{\mathbf{A}^{n}(u)}{\left\|\mathbf{A}^{n}(u)\right\|}$, then

$$
\mathbf{A}\left(v_{n}\right) \simeq \lambda_{1} v_{n}, \quad n \gg 0
$$

Let us re-visit a problem and solve it in two different ways: It is the system of differential equations

$$
\mathbf{Y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \quad \mathbf{Y}^{\prime}=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{rr}
10 & 3 \\
3 & 2
\end{array}\right], \quad \mathbf{Y}^{\prime}=\mathbf{A} \mathbf{Y} .
$$

Earlier we found the eigenvalues and bases for the eigenspaces:

$$
\lambda=11: \quad v_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \lambda=1: \quad v_{2}=\left[\begin{array}{r}
1 \\
-3
\end{array}\right]
$$

If we change the coordinates

$$
\mathbf{Z}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right], \quad \mathbf{Y}=\underbrace{\left[\begin{array}{rr}
3 & 1 \\
1 & -3
\end{array}\right]}_{\mathbf{P}} \mathbf{Z}
$$

Now observe:

$$
\mathbf{Z}^{\prime}=\mathbf{P}^{-1} \mathbf{Y}^{\prime}=\mathbf{P}^{-1} \mathbf{A} \mathbf{Y}=\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right) \mathbf{Z}=\left[\begin{array}{rr}
11 & 0 \\
0 & 1
\end{array}\right] \mathbf{Z} .
$$

This is a system that is easy to solve

$$
\begin{aligned}
& z_{1}^{\prime}=11 z_{1} \rightarrow z_{1}=c_{1} e^{11 x} \\
& z_{2}^{\prime}=z_{2} \rightarrow z_{2}=c_{2} e^{x}
\end{aligned}
$$

From which we get the solution

$$
\mathbf{Y}=\left[\begin{array}{rr}
3 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{r}
c_{1} e^{11 x} \\
c_{2} e^{x}
\end{array}\right]
$$

Another solution

Let $\mathbf{Y}^{\prime}=\mathbf{A Y}$ be a system of differential equations in the variable t. If it is just $y^{\prime}=a y$, the solution would be $y=c e^{a t}$:

$$
y=c e^{t a}=c\left(1+t a+t^{2} \frac{a^{2}}{2}+\cdots+t^{n} \frac{a^{n}}{n!}+\cdots\right)
$$

Let us try the same with a matrix. If we replace a by the square matrix \mathbf{A} (and 1 by I), we get

$$
e^{t \mathbf{A}}=\mathbf{I}+t \mathbf{A}+t^{2} \frac{\mathbf{A}^{2}}{2}+\cdots+\underbrace{t^{n} \frac{\mathbf{A}^{n}}{n!}}+\cdots
$$

Note that the derivative of the nth term is
$n t^{n-1} \frac{\mathbf{A}^{n}}{n!}=\mathbf{A}\left(t^{n-1} \frac{\mathbf{A}^{n-1}}{(n-1)!}\right)$, and thus if $\mathbf{Y}=e^{t \mathbf{A}}$ then $\mathbf{Y}^{\prime}=\mathbf{A} \mathbf{Y}$.
We just must make sure that a theory of series makes sense and taking derivatives of these expressions makes sense.
At the end we will also put in a constant: $\mathbf{Y}=e^{t A} \mathbf{Y}_{0}$.

The expression we wrote above for $e^{t \mathrm{~A}}$ is actually a set of 2^{2} series, one for each cell (i, j) of the 2 -by-2 matrix. That is, when we consider the sum of the terms

$$
t^{n} \frac{\mathbf{A}^{n}}{n!}
$$

we observe that convergence, for one, comes from the fact that the n ! factor grows much faster than the entries $\mathbf{A}_{(i, j)}^{n}$. Let us give an example. Suppose \mathbf{A} is a 2 -by-2 diagonal matrix with 11 and 1 on the diagonal. \mathbf{A}^{n} is also diagonal with entries 11^{n} nd 1^{n}. Adding the series would give the matrix

$$
\left[\begin{array}{cc}
e^{11 t} & 0 \\
0 & e^{t}
\end{array}\right]=\left[\begin{array}{cc}
1+11 t+1 / 2(11 t)^{2}+\cdots & 0 \\
0 & 1+t+1 / 2 t^{2}+\cdots
\end{array}\right]
$$

Not only this is a nice computation, but tells us the same would work whenever \mathbf{A} is a diagonal matrix. Let us show how it would work when A diagonalizable.

Let us show how compute $e^{t \mathbf{A}}$ if $\mathbf{A}=\mathbf{P D P}^{-1}$, with \mathbf{D} diagonal.
Noting that

$$
\mathbf{A}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}
$$

we have

$$
\begin{aligned}
e^{t \mathbf{A}}=\sum \frac{t^{n}}{n!} \mathbf{A}^{n} & =\sum \frac{t^{n}}{n!} \mathbf{P D}^{n} \mathbf{P}^{-1} \\
& =\mathbf{P}\left(\sum \frac{t^{n}}{n!} \mathbf{D}^{n}\right) \mathbf{P}^{-1} \\
& =\mathbf{P} e^{t \mathbf{D}} \mathbf{P}^{-1}
\end{aligned}
$$

Exercise: $\operatorname{det} e^{A}=e^{\text {Trace (A) }}$. (This is beautiful because while we have a great deal of trouble with $e^{\mathbf{A}}$, its determinant is easy!)

Theorem

The solution of the differential equation $\mathbf{Y}^{\prime}=\mathbf{A Y}$ is

$$
\mathbf{Y}=e^{t \mathbf{A}} \mathbf{C}
$$

for some constant vector \mathbf{C}.
Observe where the constant goes. If you set $t=0, \mathbf{Y}_{0}=\mathbf{C}$, that is the components of \mathbf{C} are the initial condition: $y_{1}(0), y_{2}(0)$.
Clearly the method will work for matrices of any size.
If \mathbf{A} is diagonalizable we know how to compute $e^{t \mathbf{A}}$. If not ... also!

Homework \#6

(1) Let \mathbf{A} be a 3×3 real matrix with entries $0, \pm 1$. Determine how large det \mathbf{A} can be. Care to consider the 4×4 version?
(2) Prove that for any real $n \times n$ matrix $\mathbf{A}, \operatorname{det}\left(e^{\mathbf{A}}\right)=e^{\text {trace }(\mathbf{A})}$: First prove for \mathbf{A} upper triangular, and then use the fact that there are complex matrices P and \mathbf{B} such that $P^{-1} \mathbf{A} P=\mathbf{B}$, where \mathbf{B} is upper triangular.

Metric properties of vector spaces

Let \mathbf{V} be a vector space over the field \mathbf{F}. We want to develop a geometry for \mathbf{V}. For that, it is helpful to have a notion of distance, or length. We will transport and then extend numerous constructions of ordinary geometry and their calculus.

We will restrict ourselves to the cases of $\mathbf{F}=\mathbb{R}$, or $\mathbf{F}=\mathbb{C}$. In the case of \mathbb{C}, we use the standard notation for the complex conjugate of the complex number $z=a+b i$

$$
\bar{z}=a-b i
$$

Some of its properties are:

$$
\begin{array}{rcc}
z \bar{z} & =a^{2}+b^{2} \\
\overline{z_{1}+z_{2}} & =\overline{z_{1}}+\overline{z_{2}} \\
\overline{z_{1} \cdot z_{2}} & = & \overline{z_{1}} \cdot \overline{z_{2}} \\
1 & \bar{z}
\end{array}
$$

For certain operations, like solving polynomial equations, the polar representation of complex numbers

$$
a+b i=r(\cos \theta+i \sin \theta), \quad r=\sqrt{a^{2}+b^{2}}, \quad \tan \theta=\frac{a}{b}
$$

is useful.For instance,
$\sqrt{i}= \pm(\cos \pi / 2+i \sin \pi / 2)^{1 / 2}= \pm(\cos \pi / 4+i \sin \pi / 4)= \pm \frac{\sqrt{2}}{2}(1+i)$.

Inner product space

An inner product vector space \mathbf{V} is a V.S. over \mathbb{R} or \mathbb{C} with a mapping

$$
\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{F}, \quad(u, v) \rightarrow\langle u, v\rangle=u \cdot v \in \mathbf{F}
$$

satisfying certain conditions. Let us give an example to guide us in what is needed. Let $\mathbf{V}=\mathbb{R}^{n}$ and define

$$
\left[\begin{array}{r}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{r}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}
$$

Note the properties: bi-additive ; $v \cdot v$ is a non-negative real number, so we can use $\sqrt{v \cdot v}$ to define the magnitude of v. Question: Could we use the same formula to define an inner product for \mathbb{C}^{n} ? Well... (i) $\cdot(i)$ would be -1 . Of course the formula still defines a nice bilinear mapping but would not meet our need.

Dot product

Definition

An inner product vector space is a vector space with a mapping

$$
\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{F}, \quad(u, v) \rightarrow u \cdot v \in \mathbf{F}
$$

satisfying:
(1) $\left(u_{1}+u_{2}\right) \cdot v=u_{1} \cdot v+u_{2} \cdot v$
(2) $(c u) \cdot v=c(u \cdot v)$
(3) $\overline{u \cdot v}=v \cdot u$
(4) $u \cdot u>0$ if $u \neq 0$

The better notation for this product is

$$
u \cdot v=\langle u, v\rangle
$$

Examples

Of course, the example above of \mathbb{R}^{n} is the grandmother of all examples. Let us modify it a bit to get an example for \mathbb{C}^{n} :

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} \overline{b_{1}}+\cdots+a_{n} \overline{b_{n}}=\sum_{i=1}^{n} a_{i} \overline{b_{i}} .
$$

Note the properties: additive ; v v is a non-negative real number

$$
v \cdot v=\sum_{i=1}^{n} a_{i} \overline{a_{i}}
$$

so we can use $\sqrt{v \cdot v}$ to define the magnitude of v. Note the lack of full symmetry.

Example of Function Space

Let us give an example from left field: Let \mathbf{V} be the vector space of all real continuous functions on the interval $[a, b]$, and define for $f(t), g(t) \in \mathbf{V}$,

$$
\langle f(t), g(t)\rangle=f(t) \cdot g(t)=\int_{a}^{b} f(t) g(t) d t
$$

An important case: If m, n are integers,

$$
\begin{aligned}
\langle\sin n t, \cos m t\rangle & =\int_{0}^{2 \pi} \sin n t \cos m t d t=0 \\
\langle\sin n t, \sin m t\rangle & =\int_{0}^{2 \pi} \sin n t \sin m t d t=0, m \neq n \\
\langle\cos n t, \cos m t\rangle & =\int_{0}^{2 \pi} \cos n t \cos m t d t=0, m \neq n \\
\langle\sin n t, \sin n t\rangle & =\int^{2 \pi} \sin ^{2} n t d t=\pi, n \neq 0
\end{aligned}
$$

Example: $\mathbf{M}_{n}(F)$

Let $\mathbf{V}=\mathbf{M}_{n}(\mathbf{F})$ be the V.S. of all n-by- n matrices. For any such matrix $\mathbf{A}=\left[a_{i j}\right]$ define the adjoint of \mathbf{A} (unfortunately we have already used the word for a very different notion!) to be the matrix

$$
\mathbf{A}^{*}=\left[\overline{a_{j i}}\right],
$$

that is, we transpose \mathbf{A} and take the complex conjugate of each entry. Define the product (Frobenius product)

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A B}^{*}\right)=\sum_{i}\left(\mathbf{A B}^{*}\right)_{i j} .
$$

It is clear that this product has the properties of an inner product. We just check the positivity condition:

$$
\langle\mathbf{A}, \mathbf{A}\rangle=\operatorname{trace}\left(\mathbf{A} \mathbf{A}^{*}\right)=\sum_{i}\left(\mathbf{A} \mathbf{A}^{*}\right)_{i i}
$$

Proposition

If \mathbf{V} is an inner product space, the following hold:
(1) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
(2) $\langle u, c v\rangle=\bar{c}\langle u, v\rangle$
(3) $\langle u, O\rangle=\langle O, v\rangle=0$
(4) $\langle u, u\rangle=0$ iff $u=0$
(5) $\langle u, v\rangle=\langle u, w\rangle$ for all $u \in \mathbf{V}$ then $v=w$

Proof of 1: Note

$$
\begin{aligned}
\langle u, v+w\rangle & =\overline{\langle v+w, u\rangle}=\overline{\langle v, u\rangle+\langle w, u\rangle} \\
& =\overline{\langle v, u\rangle}+\overline{\langle w, u\rangle}=\langle u, v\rangle+\langle u, w\rangle
\end{aligned}
$$

Length of a vector

Definition

Let $\mathbf{V},\langle\cdot, \cdot\rangle$ be an inner product space. If $v \in \mathbf{V}$, the length or norm of v is the real number $\|v\|=\sqrt{\langle v, v\rangle}$.

If $\mathbf{V}=\mathbb{C}^{n}, \boldsymbol{v}=\left(a_{,}, ., a_{n}\right)$,

$$
\|v\|=\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}
$$

If \mathbf{V} is the space of real continuous functions on $[0,1]$ and inner product is that we defined previously,

$$
\|f(t)\|^{2}=\int_{0}^{1} f(t)^{2} d t
$$

Framework for Geometry

The following assertions permits the construction of 'recognizable' objects in any inner product space:

Theorem

If \mathbf{V} is an inner product space, then for all $u, \boldsymbol{v} \in \mathbf{V}$
(1) [Cauchy-Schwarz Inequality]

$$
|\langle u, v\rangle| \leq\|u\| \cdot\|v\|
$$

(2) [Triangle Inequality]

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

The Cauchy-Schwarz Inequality will allow the introduction of angles and its trigonometry in V, while the Triangle Inequality will lead to many constructions extending those we are familiar with in 2- and 3-space.

Proofs of CSI and Δ-Inequality

To prove Cauchy-Schwarz Inequality: Note that for ANY $c \in \mathbf{F}$, $v \neq 0$

$$
\begin{aligned}
0 \leq\|u-c v\|^{2} & =\langle u-c v, u-c v\rangle=\langle u, u-c u\rangle-c\langle v, u-c v\rangle \\
& =\langle u, u\rangle-\bar{c}\langle u, v\rangle-c\langle v, u\rangle+c \bar{c}\langle v, v\rangle
\end{aligned}
$$

If we set $c=\frac{\langle u, v\rangle}{\langle v, v\rangle}$ the inequality becomes

$$
0 \leq\langle u, u\rangle-\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}}
$$

which proves the assertion.

For the Δ-inequality: Consider

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+(\langle u, v\rangle+\overline{\langle u, v\rangle})+\|v\|^{2}=\|u\|^{2}+2 \Re\langle u, v\rangle+\| 1 \\
& \leq\|u\|^{2}+2|\langle u, v\rangle|+\|v\|^{2} \\
& \leq\|u\|^{2}+2\|u\| \cdot\|v\|+\|v\|^{2} \quad \text { by C-S inequality } \\
& =(\|u\|+\|v\|)^{2} .
\end{aligned}
$$

We used that for any complex number $z=a+b i$, its real part $\Re z=a \leq|z|=\sqrt{a^{2}+b^{2}}$.

Example

To illustrate the power of the axiomatic method, compare the proof above [which holds for ALL examples] with the work needed to check the inequalities just the case of the following example:

$$
\begin{aligned}
\left|\sum_{i=1}^{n} a_{i} \overline{b_{i}}\right| & \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2} \\
{\left[\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{2}\right]^{1 / 2} } & \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

Angles and Distances

Equipped with these results, we can define angles and distances, with many of the usual properties, in any inner product space. For example, for a real inner product space, the Cauchy-Schwarz inequality says that for any two [will assume nonzero] vectors u, v,

$$
\langle u, v\rangle \leq\|u\| \cdot\|v\|,
$$

that is

$$
-1 \leq \frac{\langle u, v\rangle}{\|u\| \cdot\|v\|} \leq 1
$$

This means that the ratio can be identified to the cosine, $\cos \alpha$, of a unique angle $0 \leq \alpha \leq \pi$: So we can write

$$
\langle u, v\rangle=\|u\| \cdot\|v\| \cos \alpha
$$

and say that α is the angle between the vectors u and v.

An important relationship between two vectors u, v is when $\langle u, v\rangle=0$: We then say that u and v are orthogonal or perpendicular. One notation for this situation is:

$$
u \perp v
$$

The distance between the vectors u, v is defined by

$$
\operatorname{dist}(u, v)=\|u-v\|=\langle u-v, u-v\rangle^{1 / 2}
$$

One of its properties follow from the triangle inequality: If u, v, w are three vectors

$$
\operatorname{dist}(u, w) \leq \operatorname{dist}(u, v)+\operatorname{dist}(v, w)
$$

Properties

These notions have numerous consequences. Let us begin with:

Proposition

Let v_{1}, \ldots, v_{n} be nonzero vectors of the inner product space \mathbf{V}. If $v_{i} \perp v_{j}$ for $i \neq j$, then these vectors are linearly independent.

Proof.

Suppose we have a linear combination

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=O
$$

We claim all $c_{i}=0$. To prove, say $c_{1}=0$, take the inner product of the linear combination with v_{1} :

$$
c_{1} \underbrace{\left\langle v_{1}, v_{1}\right\rangle}+c_{2} \underbrace{\left\langle v_{2}, v_{1}\right\rangle}+\cdots+c_{n} \underbrace{\left\langle v_{n}, v_{1}\right\rangle}=\left\langle O, v_{1}\right\rangle=0 .
$$

A vector v of length $\|v\|=1$ is called a unit vector. They are easy to find: given a nonzero vector $u, v=\frac{u}{\|u\|}$ is a unit vector.

A set of vectors v_{1}, \ldots, v_{n} is said to be orthonormal if $v_{i} \perp v_{j}$, for $i \neq j$ and $\left\|v_{i}\right\|=1$ for any i. Of course, a good example are the ordinary coordinate vectors of 3-space.

Proposition

Let \mathbf{V} be an inner product space with an orthonormal basis v_{1}, \ldots, v_{n}. Then for any $v \in \mathbf{V}$,

$$
v=c_{1} v_{1}+\cdots+c_{n} v_{n},
$$

where $c_{i}=\left\langle v, v_{i}\right\rangle$. The c_{i} are called the Fourier coefficients of v relative to the basis.

Proof.

To get c_{i}, it suffices to form the inner product of v with v_{i} :

$$
\left\langle v, v_{i}\right\rangle=c_{i}\left\langle v_{i}, v_{i}\right\rangle=c_{i}
$$

since $\left\langle v_{i}, v_{i}\right\rangle=1$ and all other $\left\langle v_{j}, v_{i}\right\rangle=0$.

Matrix representation

Orthonormal bases are also useful in finding the matrix representation of a L.T. T:V $\rightarrow \mathbf{V}$:

Let $\mathcal{A}=\left\{v_{1}, \ldots, v_{n}\right\}$ be such a basis. Then $[\mathbf{T}]_{\mathcal{A}}=\left[a_{i j}\right]$ where $a_{i j}$ are the coefficients in the expression

$$
\mathbf{T}\left(v_{j}\right)=a_{1 j} v_{1}+\cdots+a_{i j} v_{i}+\cdots+a_{n j} v_{n}
$$

To select $a_{i j}$ it suffices to 'dot' with v_{i}

$$
\begin{gathered}
\left\langle\mathbf{T}\left(v_{j}\right), v_{i}\right\rangle=a_{1 j} \underbrace{\left\langle v_{1}, v_{i}\right\rangle}_{=0}+\cdots+a_{i j} \underbrace{\left\langle v_{i}, v_{i}\right\rangle}_{=1}+\cdots+a_{n j} \underbrace{\left\langle v_{n}, v_{i}\right\rangle}_{=0} \\
{[\mathbf{T}]_{\mathcal{A}}=\left[\left\langle\mathbf{T}\left(v_{j}\right), v_{i}\right\rangle\right]}
\end{gathered}
$$

Parallelogram Law

Exercise: If u, v are vectors of an inner product space \mathbf{V}, verify the parallelogram law:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

Draw a picture to illustrate this equality.

Things to come

(1) We will prove that every finite-dimensional vector space W of an inner product space \mathbf{V} has an orthonormal basis.
(2) This will allow us to express the distance from a vector $v \in \mathbf{V}$ to the subspace \mathbf{W}. For instance, if

$$
\mathbf{A x}=\mathbf{b}
$$

is a consistent system of linear equations, that is, if there is some solution $\mathbf{A} \mathbf{x}_{0}=\mathbf{b}$, we know that the solution set is the set

$$
\mathbf{x}_{0}+N(\mathbf{A}),
$$

where $N(\mathbf{A})$ is the nullspace of \mathbf{A}. Now we will be able to find the solution of smallest length, if need be.

Let us show how to obtain an orthonormal basis of a vector space from an arbitrary basis $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$.
If $n=1, w_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}$ is the answer.
Assume now that we have a basis of two vectors u_{1}, u_{2}. We need to find two nonzero vectors v_{1}, v_{2} in the span of u_{1}, u_{2} so that $v_{1} \perp v_{2}$. We use a projection trick: we set $v_{1}=u_{1}$ and look for c so that

$$
v_{2}=u_{2}-c u_{1} \perp v_{1}
$$

that is

$$
\begin{gathered}
\left\langle v_{2}, v_{1}\right\rangle=\left\langle u_{2}, v_{1}\right\rangle-c\left\langle u_{1}, v_{1}\right\rangle=0 \\
c=\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle}
\end{gathered}
$$

Observe that v_{1}, v_{2} have same span as u_{1}, u_{2}. Now replace v_{i} by $v_{i} /\left\|v_{i}\right\|$.

$w=$ Projection of v along u

Projection formula

If L is a line defined by the vector $u \neq O$ and v is another vector,

$$
w=\frac{\langle v, u\rangle}{\langle u, u\rangle} u
$$

is the projection of v along L or u.

Proposition

$v-w$ is perpendicular to \mathbf{L} and the smallest distance from v to any vector of \mathbf{L} is $\|v-w\|$.

Proof.

We have already seen that $v-w \perp v$. If $c u$ is a vector of \mathbf{L}, the square distance from v to $c u$ is $(v-w \perp \mathbf{L}$, so will use Pythagorean Theorem)

$$
\|v-c u\|^{2}=\|(v-w)+(w+c u)\|^{2}=\|v-w\|^{2}+\underbrace{\|w+c u\|^{2}} .
$$

Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another basis [Gram-Schmidt process]:
(1) Input: $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$ given basis
(2) Set $v_{1}=u_{1}$
(3) Compute v_{2}, \ldots, v_{n} successively, one at a time, by

$$
v_{i}=\underbrace{u_{i}-\left(\frac{u_{i} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{u_{i} \cdot v_{2}}{v_{2} \cdot v_{2}}\right) v_{2}-\cdots-\left(\frac{u_{i} \cdot v_{i-1}}{v_{i-1} \cdot v_{i-1}}\right) v_{i-1}}
$$

(4) Set $w_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}$
(5) Output: $\mathcal{B}=\left\{w_{1}, \ldots, w_{n}\right\}$ is an orthonormal basis.

Hadamard's Inequality

Let \mathbf{A} be a matrix whose columns form a basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of \mathbb{R}^{n} (put $n=3$ for simplicity)

$$
\mathbf{A}=\left[u_{1}\left|u_{2}\right| u_{3}\right]
$$

Now consider the matrix

$$
\mathbf{B}=\left[v_{1}\left|v_{2}\right| v_{3}\right]=\left[u_{1}\left|u_{2}-a_{1} u_{1}\right| u_{3}-b_{1} u_{1}-b_{2} u_{2}\right]
$$

where the coefficients are chosen for that the $v_{i}^{\prime} s$ are perpendicular to one another. Note that \mathbf{B} is obtained from \mathbf{A} by adding scalar multiples of columns to another, so

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})
$$

Furthermore, for each i

$$
\left\|v_{i}\right\| \leq\left\|u_{i}\right\|
$$

by the projection formula.

Let us calculate $\operatorname{det}(\mathbf{A})^{2}$:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A})^{2} & =\operatorname{det}(\mathbf{B})^{2}=\operatorname{det}(\mathbf{B}) \operatorname{det}\left(\mathbf{B}^{t}\right) \\
& =\operatorname{det}\left[v_{1}\left|v_{2}\right| v_{3}\right] \operatorname{det}\left[v_{1}\left|v_{2}\right| v_{3}\right]^{t} \\
& =\left[\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & 0 & 0 \\
0 & \left\langle v_{2}, v_{2}\right\rangle & 0 \\
0 & 0 & \left\langle v_{3}, v_{3}\right\rangle
\end{array}\right] \\
& =\prod\left\langle v_{i}, v_{i}\right\rangle
\end{aligned}
$$

Theorem (Hadamard)

For any square real matrix $\mathbf{A}=\left[u_{1}, \ldots, u_{n}\right]$,

$$
|\operatorname{det}(\mathbf{A})|^{2} \leq \prod_{i=1}^{n}\left\langle u_{i}, u_{i}\right\rangle
$$

For instance, if \mathbf{A} is a 4×4 whose entries are $0,1,-1$, its column vectors have length at most 2 , so that $\operatorname{det}(\mathbf{A}) \leq 16$. According to Joe, there is a such a matrix.

General Projection Formula

Proposition

Let \mathbf{W} be a subspace with an orthonormal basis $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$. For any vector v, the vector of \mathbf{W}

$$
w=\operatorname{proj}_{w}(v)=\left\langle v, u_{1}\right\rangle u_{1} \cdots+\left\langle v, u_{n}\right\rangle u_{n}
$$

is the projection of v onto \mathbf{W}. It has the following properties
(1) $v-w$ is perpendicular to any vector of \mathbf{W}. (We say that it is perpendicular to W)
(2) \|v - w \| is the shortest distance from v to \mathbf{W}.

The proof is like above.

Orthogonal Complement

If \mathbf{W} is a subspace of an inner product space \mathbf{V}, its orthogonal complement \mathbf{W}^{\perp} is the set of all vectors v that are perpendicular to each vector w of \mathbf{W}. In ordinary 3 -space \mathbb{R}^{3}, the z-axis is the orthogonal complement of the $x y$-plane.

Proposition

\mathbf{W}^{\perp} is a subspace of \mathbf{V}.

Proof.

Clearly $O \in \mathbf{W}^{\perp}$. If $v_{1}, v_{2} \in \mathbf{W}^{\perp}$, for any vector $w \in \mathbf{W}$

$$
\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle=O
$$

so \mathbf{W}^{\perp} passes the subspace test.

Example

Let \mathbf{A} be an $m \times n$ real matrix. The nullspace of \mathbf{A} is the set of all n-tuples \mathbf{x} such that

$$
\mathbf{A x}=0
$$

This means that the nullspace is the orthogonal complement of the row space of \mathbf{A} :

$$
N(\mathbf{A})=\text { row space }{ }^{\perp}
$$

Similarly, the left nullspace of \mathbf{A}, left $N(\mathbf{A})$, are the m-tuples \mathbf{y} such that

$$
\mathbf{y A}=0
$$

that is the orthogonal complement of the column space of \mathbf{A}.

These observations suggest several properties of the \perp operation:
(1) Let \mathbf{V} be a vector space with a basis e_{1}, \ldots, e_{n}. If \mathbf{W} is spanned by $u_{1}, \ldots, u_{m}, \mathbf{W}^{\perp}$ is the set of all vectors $x_{1} e_{1}+\cdots+x_{n} e_{n}$ such that

$$
x_{1}\left\langle e_{1}, u_{i}\right\rangle+\cdots+x_{n}\left\langle e_{n}, u_{i}\right\rangle=0, \quad i=1, \ldots, m
$$

Thus we find \mathbf{W} by solving a system of linear equations.
(2) $\mathbf{W} \cap \mathbf{W}^{\perp}=(O)$.
(3) $\underbrace{\operatorname{dim} \mathbf{W}+\operatorname{dim} \mathbf{W}^{\perp}=\operatorname{dim} \mathbf{V}}$
(4) $\left(\mathbf{W}^{\perp}\right)^{\perp}=\mathbf{W}$

Proposition

$\operatorname{dim} \mathbf{W}+\operatorname{dim} \mathbf{W}^{\perp}=\operatorname{dim} \mathbf{V}$.

Proof.

Let u_{1}, \ldots, u_{m} be an orthonormal basis of \mathbf{W}. We define a mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ as follows

$$
\mathbf{T}(v)=\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{m}\right\rangle u_{m}
$$

T is clearly a linear transformation: This is the orthogonal projection of \mathbf{V} onto \mathbf{W}. Its range $R(\mathbf{T})$ is \mathbf{W}. Its nullspace $N(\mathbf{T})$ is the set of vectors v such that $\left\langle v, u_{i}\right\rangle=0$ for each u_{i}. This is precisely \mathbf{W}^{\perp}. From the dimension formula

$$
\operatorname{dim} \mathbf{V}=\operatorname{dim} R(\mathbf{T})+\operatorname{dim} N(\mathbf{T})=\operatorname{dim} \mathbf{W}+\operatorname{dim} \mathbf{W}^{\perp} .
$$

Homework \#7

(1) Let \mathbf{G} be a finite subgroup of $G L_{n}(\mathbb{C})$. Prove that every $\mathbf{T} \in \mathbf{G}$ is diagonalizable.
(2)

If \mathbf{V} is a vector space over the field \mathbf{F}, a linear functional is a linear transformation

$$
\mathbf{f}: \mathbf{V} \longrightarrow \mathbf{F}
$$

For example, if $\mathbf{V}=\mathbf{F}^{n}$ and $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]$ is a matrix, then for every column vector $v \in \mathbf{F}^{n}$, the function

$$
v \longrightarrow \mathbf{a} \cdot v
$$

is a linear functional. In fact, every linear functional \mathbf{f} has this description.

Inner product spaces, finite/infinite dimensional have a natural method to define linear functionals. Let us exploit it.

Let \mathbf{V} be an inner product space. If $u \in \mathbf{V}$, the mapping

$$
\mathbf{f}: \mathbf{V} \rightarrow \mathbf{F}, \quad \mathbf{f}(v)=\langle\boldsymbol{v}, u\rangle
$$

is a linear functional. Observe that if $\langle v, u\rangle=\langle v, w\rangle$, for all v, then $\langle v, u-w\rangle=0$ and therefore $u=w$.

Proposition

If \mathbf{V} is a finite-dimensional inner product space, for every linear functional \mathbf{f} on \mathbf{V}, there is a unique vector u such that $\mathbf{f}(v)=\langle v, u\rangle$ for all $v \in \mathbf{V}$.

Proof.

Let v_{1}, \ldots, v_{n} be an orthonormal basis of \mathbf{V}, and let

$$
u=\overline{\mathbf{f}\left(v_{1}\right)} v_{1}+\cdots+\overline{\mathbf{f}\left(v_{n}\right)} v_{n} .
$$

Note that for each $v_{j},\left\langle v_{j}, u\right\rangle=\overline{\overline{\mathbf{f}\left(v_{j}\right)}}=\mathbf{f}\left(v_{j}\right)$, so the functionals defined by u and f agree on each basis vector, so are

Adjoint of a Linear Transformation

Let \mathbf{T} be a L.T. of the inner product space \mathbf{V}. We are going to build another L.T. associated to \mathbf{T}, which will be called the adjoint of \mathbf{T}. It is the parent [or child] of the transpose!

Fix the vector $u \in \mathbf{V}$. Consider the mapping $v \rightarrow\langle\mathbf{T}(v), u\rangle$. This is a linear functional. According to the previous Proposition, there is a unique w such that

$$
\langle\mathbf{T}(v), u\rangle=\langle v, w\rangle, \quad \forall v \in \mathbf{V}
$$

We set $w=\mathbf{S}(u)$. This gives a function $\mathbf{S}: \mathbf{V} \rightarrow \mathbf{V}$. It is routine to check that if $w_{1}=\mathbf{S}\left(u_{1}\right)$ and $w_{2}=\mathbf{S}\left(u_{2}\right)$, then $\mathbf{S}\left(u_{1}+u_{2}\right)=w_{1}+w_{2}$, and also $\mathbf{S}(c u)=c \mathbf{S}(u)$. This L.T. is denoted \mathbf{T}^{*} and termed the adjoint of \mathbf{T}.

Proposition

Let \mathbf{T} be a L.T. and let $\mathbf{A}=\left[a_{i j}\right]$ be its matrix representation relative to the orthonormal basis v_{1}, \ldots, v_{n}. Then the matrix representation of the adjoint \mathbf{T}^{*} is $\overline{\mathbf{A}^{t}}=\left[\overline{a_{j i}}\right]$, the conjugate transpose of \mathbf{A}.

Proof.

To find the matrix representation $\left[b_{i j}\right]$ of \mathbf{T}^{*} we write $\mathbf{T}^{*}\left(v_{j}\right)=\sum_{i} b_{i j} v_{i}$, so that

$$
\overline{b_{i j}}=\left\langle v_{i}, \mathbf{T}^{*}\left(v_{j}\right)\right\rangle=\left\langle\mathbf{T}\left(v_{i}\right), v_{j}\right\rangle=a_{j i},
$$

as desired.

Problem

Given 3 (or more) points $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$,
$P_{3}=\left(x_{3}, y_{3}\right)$ in \mathbb{R}^{2}, find the best fit line (what does this mean?):

$$
\begin{aligned}
& Y=a t+b, \quad Y_{i}=a t_{i}+b, \quad \text { error }=\left|Y_{i}-y_{i}\right| \\
& \begin{array}{c|c|c}
t_{n} & \vdots & \vdots \\
t_{n} & y_{n} & Y_{n}
\end{array} \\
& \mathbf{E}=\text { Square Error }=\sum_{i=1}^{n}\left|Y_{i}-y_{i}\right|^{2}=\sum_{i=1}^{n}\left|a t_{i}+b-y_{i}\right|^{2}
\end{aligned}
$$

Problem: Find a and b so that the square error is as small as possible. To answer, we first write the problem in vector notation.

$$
\begin{aligned}
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cc}
t_{1} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
\mathbf{E}=\|\mathbf{y}-\mathbf{A x}\|^{2}
\end{aligned}
$$

We are going to do much better: Given a $m \times n$ matrix \mathbf{A} and a vector $\mathbf{y} \in \mathbf{F}^{m}$, we are going to find a vector $\mathbf{x}_{0} \in \mathbf{F}^{n}$ such that

$$
\left\|\mathbf{y}-\mathbf{A} \mathbf{x}_{0}\right\|^{2} \leq\|\mathbf{y}-\mathbf{A x}\|^{2}
$$

for all $\mathbf{x} \in \mathbf{F}^{n}$

We know that the answer to this will be affirmative: Let \mathbf{W} be the range of \mathbf{A}, that is the set of all vectors $\mathbf{A x}$, for $\mathbf{x} \in \mathbf{F}^{n}$.
There is a vector $w \in \mathbf{W}$, that is $w=\mathbf{A} \mathbf{x}_{0}$ such that

$$
\left\|\mathbf{y}-\mathbf{A} \mathbf{x}_{0}\right\|^{2} \leq\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2}
$$

The issue is how to find \mathbf{x}_{0} more explicitly. For this we use the notion of the adjoint of a linear transformation:

$$
\begin{gathered}
\mathbf{T}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}, \quad \mathbf{T}^{*}: \mathbf{F}^{m} \rightarrow \mathbf{F}^{n} \\
\langle\mathbf{T}(u), v\rangle_{m}=\left\langle u, \mathbf{T}^{*}(v)\right\rangle_{n}
\end{gathered}
$$

To derive the desired formula (known as the projection formula) we need two properties of \mathbf{T}^{*}.

Proposition

Let \mathbf{A} be an $m \times n$ complex matrix and \mathbf{A}^{*} its adjoint (conjugate transpose). Then
(1) $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{*} \mathbf{A}\right)$.
(2) If $\operatorname{rank}(\mathbf{A})=n$ then $\mathbf{A}^{*} \mathbf{A}$ is invertible.

Proof.

It will suffice to show that \mathbf{A} and $\mathbf{A}^{*} \mathbf{A}$ have the same nullspace.
Why?
If $\mathbf{A}^{*} \mathbf{A}(\mathbf{x})=0$, then for all $\mathbf{z} \in \mathbf{F}^{n}$

$$
0=\left\langle\mathbf{A}^{*} \mathbf{A}(\mathbf{x}), \mathbf{z}\right\rangle_{n}=\left\langle\mathbf{A} \mathbf{x},\left(\mathbf{A}^{*}\right)^{*} \mathbf{z}\right\rangle_{m}=\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{z}\rangle_{m}=
$$

so $\mathbf{A x}=O$ by choosing $\mathbf{z}=\mathbf{x}$.
The second assertion now follows: Since $\mathbf{A}^{*} \mathbf{A}$ is an $n \times n$ matrix of rank n, it is invertible.

Projection Formula

Theorem

Let \mathbf{A} be an $m \times n$ complex matrix and let $\mathbf{y} \in \mathbf{F}^{m}$. Then there exists $\mathbf{x}_{0} \in \mathbf{F}^{n}$ such that $\mathbf{A}^{*} \mathbf{A}\left(\mathbf{x}_{0}\right)=\mathbf{A}^{*} \mathbf{y}$ and
$\left\|\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\| \leq\|\mathbf{A} \mathbf{x}-\mathbf{y}\|$ for all $\mathbf{x} \in \mathbf{F}^{n}$. If \mathbf{A} has rank n then

$$
\mathbf{x}_{0}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{y} .
$$

Proof.

Since $\mathbf{A x}-\mathbf{y}$ is perpendicular to the range of \mathbf{A},

$$
0=\left\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\rangle_{m}=\left\langle\mathbf{x}, \mathbf{A}^{*}\left(\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right)\right\rangle=\left\langle\mathbf{x},\left(\left(\mathbf{A}^{*} \mathbf{A}\right) \mathbf{x}_{0}-\mathbf{A}^{*} \mathbf{y}\right)\right\rangle
$$

for all $\mathbf{x} \in \mathbf{F}^{n}$. Thus $\left(\mathbf{A}^{*} \mathbf{A}\right) \mathbf{x}_{0}-\mathbf{A}^{*} \mathbf{y}=0$ and therefore

$$
\mathbf{x}_{0}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{y}
$$

Illustration

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right], \quad \operatorname{rank}(\mathbf{A})=2, \quad \mathbf{y}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right] \\
\mathbf{A}^{*} \mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]=\left[\begin{array}{rr}
30 & 10 \\
10 & 4
\end{array}\right] \\
\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1}=\frac{1}{20}\left[\begin{array}{rr}
4 & -10 \\
-10 & 30
\end{array}\right]
\end{gathered}
$$

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{20}\left[\begin{array}{rr}
4 & -10 \\
-10 & 30
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{r}
1.7 \\
0
\end{array}\right]
$$

Answer: The least squares line is

$$
y=1.7 t
$$

The error is

$$
\mathbf{E}=\left\|\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\|^{2}=0.3
$$

The method is very general: Suppose we are given a number of points and we want to fit a quadratic polynomial

$$
Y=a t^{2}+b t+c
$$

to the data.

$$
\mathbf{A}=\left[\begin{array}{ccc}
t_{1}^{2} & t_{1} & 1 \\
\vdots & \vdots & \vdots \\
t_{n}^{2} & t_{n} & 1
\end{array}\right] \quad \mathbf{x}_{0}=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Now $\operatorname{rank}(\mathbf{A})=3$ if there are 3 distinct values of t.

Shortest solution

We are going to find the shortest solution of a consistent system of equations ($m \times n$)

$$
\mathbf{A x}=\mathbf{b}
$$

This will be a solution u such that $\|u\|$ is minimal. The argument will also show that u is unique.

Let \mathbf{x}_{0} be a special solution and denote by $N(\mathbf{A})$ the nullspace of \mathbf{A}. The solution set is

$$
\mathbf{x}_{0}+N(\mathbf{A})=\left\{\mathbf{x}_{0}+v, \quad v \in N(\mathbf{A})\right\} .
$$

To pick out of this set the vector $\mathbf{x}_{0}+v$ of smallest length, note that $\left\|\mathbf{x}_{0}+v\right\|$ is the distance from \mathbf{x}_{0} to $-v$. So we have our answer: Pick for $-v$ the projection w of \mathbf{x}_{0} into $N(\mathbf{A})$. Then $s=\mathbf{x}_{0}-w$ is the desired solution:

$w=$ Projection of \mathbf{x}_{0} along $N(\mathbf{A})$

One algorithm for the shortest solution

(1) Find an orthonormal basis u_{1}, \ldots, u_{r} for $N(\mathbf{A})$
(2) Determine the projection w of \mathbf{x}_{0} onto $N(\mathbf{A})$:

$$
w=\sum_{i=1}^{r}\left\langle\mathbf{x}_{0}, u_{i}\right\rangle u_{i}
$$

(3) $\mathbf{x}_{0}-w$ is the shortest solution of $\mathbf{A x}=\mathbf{b}$

This solution requires the calculation of the projection of \mathbf{x}_{0} into $N(\mathbf{A})$. Let us discuss another, more direct, approach. If $v \in N(\mathbf{A}), \mathbf{A}(v)=O$,

$$
0=\langle\mathbf{x}, \mathbf{A}(v)\rangle=\left\langle\mathbf{A}^{*}(\mathbf{x}), u\right\rangle
$$

which means $v \perp \mathbf{A}^{*}(\mathbf{x})=0$ for all \mathbf{x}. This means that the range of $\mathbf{A}^{*}, R\left(\mathbf{A}^{*}\right)$, is contained in the orthogonal complement $N(\mathbf{A})^{\perp}$ of $N(\mathbf{A})$. By the dimension formula we have $N(\mathbf{A})^{\perp}=R\left(\mathbf{A}^{*}\right)$.

Summary: The minimal vector s satisfies

$$
\mathbf{A} \boldsymbol{s}=\mathbf{b}, \quad \boldsymbol{s} \in R\left(\mathbf{A}^{*}\right)
$$

That is, pick any solution of

$$
\mathbf{A} \mathbf{A}^{*} \mathbf{y}=\mathbf{b},
$$

and set

$$
s=\mathbf{A}^{*} \mathbf{y} .
$$

Homework \#9

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23

Today

(1) Normal Operators ($\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$): real symmetric/skew symmetric
(2) Hermitian Operator
(3) Unitary Operator $\left(\mathbf{T T}^{*}=\mathbf{I}=\mathbf{T}^{*} \mathbf{T}\right)$: Orthogonal
(9) Spectral Theorem
(0) Goodies: Applications

Interesting diagonalizable operators

We are going to show a class of linear transformations that are diagonalizable. It will include the class represented by real symmetric matrices.
Let $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ be a L.T. of a complex inner product space. We have defined the adjoint \mathbf{T}^{*} of \mathbf{T} as the L.T. with the property

$$
\langle\mathbf{T}(u), v\rangle=\left\langle u, \mathbf{T}^{*}(v)\right\rangle, \quad \forall u, v \in \mathbf{V} .
$$

Let us compare the eigenvalues and eigenvectors of \mathbf{T} and \mathbf{T}^{*} :

Proposition

If λ is an eigenvalue of \mathbf{T} then $\bar{\lambda}$ is an eigenvalue of \mathbf{T}^{*}.
Proof: Suppose $\mathbf{T}(u)=\lambda u, u \neq O$. Then for any $v \in \mathbf{V}$,

$$
\begin{aligned}
0=\langle O, v\rangle=\langle(\mathbf{T}-\lambda \mathbf{I})(u), v\rangle & =\left\langle u,(\mathbf{T}-\lambda \mathbf{I})^{*}(v)\right\rangle \\
& =\left\langle u,\left(\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}\right)(v)\right\rangle
\end{aligned}
$$

This says that $O \neq u \perp \operatorname{range}\left(\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}\right)$, so the range of $\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}$ is not the whole of \mathbf{V}, which implies nullspace of $\mathbf{T}^{*}-\bar{\lambda} \mathbf{I} \neq 0$. This means that $\bar{\lambda}$ is an eigenvalue of \mathbf{T}^{*}.

Let us use this result to decide when a L.T. T of an inner product space \mathbf{V} admits a basis \mathcal{A} such that

$$
[\mathbf{T}]_{\mathcal{A}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

that is, \mathbf{T} admits a matrix representation that is upper triangular. Note that the characteristic polynomial has all of its roots in the field

$$
\operatorname{det}(\mathbf{T}-x \mathbf{I})=\left(a_{11}-x\right)\left(a_{22}-x\right) \cdots\left(a_{n n}-x\right),
$$

that is the characteristic polynomial splits. Recall that this is always the case when the field is \mathbb{C}.

Theorem (Schur)

Let \mathbf{T} be a L.T. of the inner product space V. If the characteristic polynomial of \mathbf{T} splits, then \mathbf{V} admits an orthonormal basis \mathcal{A} such that $[\mathrm{T}]_{\mathcal{A}}$ is upper triangular.

Proof: We will argue by induction on $\operatorname{dim} \mathbf{V}=n$. If $n=1$, the assertion is obvious. Let us assume that the assertion holds for dimension $n-1$. By the Proposition above, we know that \mathbf{T}^{*} has one eigenvalue λ. Let u be a unit vector so that $\mathbf{T}^{*}(u)=\lambda u$, and set \mathbf{W} for the subspace spanned by u. We claim that \mathbf{W}^{\perp} is \mathbf{T}-invariant: If $v \in \mathbf{W}^{\perp}$

$$
\begin{aligned}
\langle\mathbf{T}(v), u\rangle & =\left\langle v, \mathbf{T}^{*}(u)\right\rangle=\langle v, \lambda u\rangle \\
& =\bar{\lambda}\langle v, u\rangle=0
\end{aligned}
$$

So $\mathbf{T}(v) \in \mathbf{W}^{\perp}$.

We also have $\operatorname{dim} W+\operatorname{dim} \mathbf{W}^{\perp}=\operatorname{dim} \mathbf{V}=n$, so $\operatorname{dim} \mathbf{W}^{\perp}=n-1$. Now we apply the induction hypothesis to the restriction of \mathbf{T} to \mathbf{W}^{\perp} : Let v_{1}, \ldots, v_{n-1} be an orthonormal basis of \mathbf{W}^{\perp} for which the restriction of \mathbf{T} is upper triangular. If we add to the v_{i} the vector u, we get the orthonormal basis $\mathcal{A}=v_{1}, \ldots, v_{n-1}, u$. The matrix representation

$$
[\mathbf{T}]_{\mathcal{A}}=\left[\begin{array}{cccc}
& & & a_{1 n} \\
& {[\mathbf{T}]_{\mathbf{W}^{\perp}}} & & \vdots \\
0 & & & \vdots \\
0 & \cdots & a_{n n}
\end{array}\right]
$$

which has the desired form.

Normal operator

Observe that if there is an orthonormal basis \mathcal{A} of eigenvectors of $\mathbf{T},[\mathbf{T}]_{\mathcal{A}}$ is a diagonal matrix, and since $\left[\mathbf{T}^{*}\right]_{\mathcal{A}}=[\mathbf{T}]_{\mathcal{A}}^{*}$, this matrix is also diagonal. Since diagonal matrices commute, we have $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$.

Definition

A linear transformation \mathbf{T} of an inner product space is normal if $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$.

Example: If \mathbf{A} is a symmetric real matrix, $\mathbf{A}^{*}=\mathbf{A}^{t}=\mathbf{A}$, so \mathbf{A} commutes with itself! Skew-symmetric real matrices, $\mathbf{A}^{*}=-\mathbf{A}$, are also normal.

Theorem

If \mathbf{T} is a normal operator ($\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$) of a complex inner vector space \mathbf{V}, then there is an orthonormal basis of eigenvectors of T. (The converse was proved already so this is a characterization of normal operators.)

This is an important result, it has many useful consequences. To prove it we shall need some properties of normal operators.

Proposition

Let \mathbf{T} be a normal operator $\left(\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}\right)$ of the inner vector space V. Then:
(1) $\mid \mathbf{T}(u)\|=\| \mathbf{T}^{*}(u) \|$ for every $u \in \mathbf{V}$.
(2) \mathbf{T} - cl is normal for every $\mathbf{c} \in \mathbf{F}$.
(3) If $\mathbf{T}(u)=\lambda u$ then $\mathbf{T}^{*}(u)=\bar{\lambda} u$.
(0) If λ_{1} and λ_{2} are distinct eigenvalues of T with corresponding eigenvectors u_{1} and u_{2}, then $u_{1} \perp u_{2}$.

Proof: 1. For any vector $u \in \mathbf{V}$,

$$
\begin{aligned}
\|\mathbf{T}(u)\|^{2} & =\langle\mathbf{T}(u), \mathbf{T}(u)\rangle=\left\langle\mathbf{T}^{*} \mathbf{T}(u), u\right\rangle=\left\langle\mathbf{T T}^{*}(u), u\right\rangle \\
& =\left\langle\mathbf{T}^{*}(u), \mathbf{T}^{*}(u)\right\rangle=\left\|\mathbf{T}^{*}(u)\right\|^{2}
\end{aligned}
$$

2. $(\mathbf{T}-\mathbf{c l})\left(\mathbf{T}^{*}-\overline{\mathbf{c}} \mathbf{I}\right)=\left(\mathbf{T}^{*}-\bar{c} \mathbf{l}\right)(\mathbf{T}-\mathbf{c} \mathbf{I}):$ check
3. Suppose $\mathbf{T}(u)=\lambda u$. Let $\mathbf{U}=\mathbf{T}-\lambda \mathbf{l}$. Then $\mathbf{U}(u)=0$ so by 2 . \mathbf{U} is normal and by $1 . \mathbf{U}^{*}(u)=0$. That is $\mathbf{T}^{*}(u)=\bar{\lambda} u$.
4. Let λ_{1} and λ_{2} be distinct eigenvalues of \mathbf{T} with corresponding eigenvectors u_{1} and u_{2}. Then by 3 .

$$
\begin{aligned}
\lambda_{1}\left\langle u_{1}, u_{2}\right\rangle= & \left\langle\lambda_{1} u_{1}, u_{2}\right\rangle=\left\langle\mathbf{T}\left(u_{1}\right), u_{2}\right\rangle=\left\langle u_{1}, \mathbf{T}^{*}\left(u_{2}\right)\right\rangle \\
& =\left\langle u_{1}, \overline{\lambda_{2}} u_{2}\right\rangle=\lambda_{2}\left\langle u_{1}, u_{2}\right\rangle .
\end{aligned}
$$

Since $\lambda_{1} \neq \lambda_{2},\left\langle u_{1}, u_{2}\right\rangle=0$.

We are now in position to prove that a normal operator \mathbf{T} admits an orthonormal basis $v_{1}, v_{2}, \ldots, v_{n}$ of eigenvectors. We already know, by Schur theorem, that there is an orthonormal basis for which the matrix representation is upper triangular

$$
\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]
$$

We want to show that the off-diagonal elements are 0 , that is, all the v_{i} are eigenvectors. [For simplicity we take $n=3$] Note that $\mathbf{T}\left(v_{1}\right)=a_{11} v_{1}$, so v_{1} is an eigenvector. To show v_{2} is an eigenvector notice that

$$
\mathbf{T}\left(v_{2}\right)=a_{12} v_{1}+a_{22} v_{2}
$$

We must show $a_{12}=0$.

$$
\mathbf{T}\left(v_{2}\right)=a_{12} v_{1}+a_{22} v_{2}
$$

We must show $a_{12}=0$:

$$
a_{12}=\left\langle\mathbf{T}\left(v_{2}\right), v_{1}\right\rangle=\left\langle v_{2}, \mathbf{T}^{*}\left(v_{1}\right)\right\rangle=\left\langle v_{2}, \overline{a_{11}} v_{1}\right\rangle=a_{11}\left\langle v_{2}, v_{1}\right\rangle=0
$$

as desired. Now with v_{1}, v_{2} eigenvectors, we show that $a_{13}=a_{23}=0$. We consider

$$
\mathbf{T}\left(v_{3}\right)=a_{13} v_{1}+a_{23} v_{2}+a_{33} v_{3}
$$

The proof is similar: For instance

$$
a_{23}=\left\langle\mathbf{T}\left(v_{3}\right), v_{2}\right\rangle=\left\langle v_{3}, \mathbf{T}^{*}\left(v_{2}\right)\right\rangle=\left\langle v_{3}, \overline{a_{22}} v_{2}\right\rangle=a_{22}\left\langle v_{3}, v_{2}\right\rangle=0
$$

We have already remarked that real symmetric matrices, $\mathbf{A}=\mathbf{A}^{t}$, are normal. It turns out that complex symmetric matrices are not always normal. Truly the complex cousins of real symmetric matrices are called:

Definition

Let \mathbf{T} be a linear operator of the inner product space \mathbf{V}. \mathbf{T} is called self-adjoint (Hermitian) if $\mathbf{T}=\mathbf{T}^{*}$.

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3+5 i \\
3-5 i & 6
\end{array}\right]
$$

Lemma

Let \mathbf{T} be a self-adjoint linear operator of the inner product space V. Then
(1) Every eigenvalue is real.
(2) If V is a real vector space then the characteristic polynomial splits.

Proof: 1. Suppose $\mathbf{T}(u)=\lambda u, u \neq 0$. By a previous result, $\mathbf{T}^{*}(u)=\bar{\lambda} u$. Since $\mathbf{T}=\mathbf{T}^{*}, \lambda$ is real.
2. Let $n=\operatorname{dim} \mathbf{V}, \mathcal{B}$ an orthonormal basis of \mathbf{V} and $\mathbf{A}=[\mathbf{T}]_{\mathcal{B}}$. Then \mathbf{A} is self-adjoint. Let $\mathbf{T}_{\mathbf{A}}$ be the linear operator of \mathbb{C}^{n} defined by $\mathbf{T}_{\mathbf{A}}(u)=\mathbf{A} u$ for all $u \in \mathbb{C}^{n}$.

Note that $\mathbf{T}_{\mathbf{A}}$ is self-adjoint because $\left[\mathbf{T}_{\mathbf{A}}\right]_{\mathcal{C}}=\mathbf{A}$, where \mathcal{C} is the standard (orthonormal) basis of \mathbb{C}^{n}. So the eigenvalues of T_{A} are real. Since the characteristic polynomial of $\mathbf{T}_{\mathbf{A}}$ is equal to the characteristic polynomial of \mathbf{A}, which is equal to the characteristic of \mathbf{T}, the characteristic polynomial of \mathbf{T} splits. What we are saying is the following: Let \mathbf{A} be a $n \times n$ symmetric real matrix and employ it to define a L.T. of the complex vector space \mathbb{C}^{n}

$$
\mathbf{T}=\mathbf{T}_{\mathbf{A}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \quad \mathbf{T}(u)=\mathbf{A}(u) .
$$

Note $\operatorname{det}(\mathbf{T}-\boldsymbol{x} \mathbf{I})=\operatorname{det}(\mathbf{A}-\boldsymbol{x} \mathbf{I})$.

First Main Theorem of the Course

Theorem

Let \mathbf{T} be a linear operator on the finite-dimensional inner product space \mathbf{V}. Then \mathbf{T} is self-adjoint if and only if there exists an orthonormal basis of \mathbf{V} consisting of eigenvectors of \mathbf{T}.

Unitary Operators

Definition

A linear operator \mathbf{T} of the inner product space \mathbf{V} is called unitary if $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}$. If \mathbf{V} is a real inner product space, \mathbf{T} is called orthogonal.

The rotation operator

$$
\mathbf{T}(x, y)=(x \cos \alpha+y \sin \alpha,-x \sin \alpha+y \cos \alpha)
$$

is a major example.
If \mathbf{A} is a complex n-by- n matrix and $\mathbf{A A}^{*}=\mathbf{A}^{*} \mathbf{A}=\mathbf{I}$, the column vectors of \mathbf{A} form an orthonormal basis of \mathbb{C}^{n}.
We now develop quickly some basic properties of these operators.

Theorem

Let \mathbf{T} be a linear operator of the finite-dimensional inner product space V. TFAE:
(1) \mathbf{T} is an unitary operator: $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}$.
(2) $\langle\mathbf{T}(u), \mathbf{T}(v)\rangle=\langle u, v\rangle$ for all $u, v \in \mathbf{V}$.
(3) For every orthonormal basis $\mathcal{B}=v_{1}, \ldots, v_{n}$ of \mathbf{V}, $\mathbf{T}\left(v_{1}\right), \ldots, \mathbf{T}\left(v_{n}\right)$ is also an orthonormal basis of V .
(4) For some orthonormal basis $\mathcal{B}=v_{1}, \ldots, v_{n}$ of V , $\mathbf{T}\left(v_{1}\right), \ldots, \mathbf{T}\left(v_{n}\right)$ is also an orthonormal basis of V .
(5) $\|\mathbf{T}(u)\|=\|u\|$ for every $u \in \mathbf{V}$.

Proof. $1 \Rightarrow 2,3,4,5$: (Other \Rightarrow LTR)

$$
\begin{gathered}
\langle u, v\rangle=\left\langle\mathbf{T}^{*} \mathbf{T}(u), v\right\rangle=\left\langle\mathbf{T}(u),\left(\mathbf{T}^{*}\right)^{*}(v)\right\rangle=\langle\mathbf{T}(u), \mathbf{T}(v)\rangle . \\
\delta_{i j}=\left\langle v_{i}, v_{j}\right\rangle=\left\langle\mathbf{T}\left(v_{i}\right), \mathbf{T}\left(v_{j}\right)\right\rangle .
\end{gathered}
$$

Properties of unitary operators

Let \mathbf{T} be an unitary operator of the inner product space \mathbf{V}.
(1) The eigenvalues of \mathbf{T} have length 1: If $\mathbf{T}(u)=\lambda u$,

$$
\langle u, u\rangle=\langle\mathbf{T}(u), \mathbf{T}(u)\rangle=\langle\lambda u, \lambda u\rangle=\bar{\lambda} \lambda\langle u, u\rangle
$$

and thus $\bar{\lambda} \lambda=1$.
(2) If \mathbf{A} is a matrix representation of \mathbf{T}, $|\operatorname{det}(\mathbf{A})|=1: \operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{A}^{*}\right)=1$
(3) If \mathbf{T} is orthogonal, $\operatorname{det}(\mathbf{A})= \pm 1$.
(4) If \mathbf{T} and \mathbf{U} are unitary operators, then \mathbf{T}^{*} and $\mathbf{T} \circ \mathbf{U}$ are also unitary operators.

Orthogonal operators of \mathbb{R}^{2}

We have already mentioned rotations, R_{α}. Let us analyze the possibilities. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[v_{1} \mid v_{2}\right] \quad\left\|v_{1}\right\|=\left\|v_{2}\right\|=1, \quad v_{1} \perp v_{2}
$$

be an orthogonal matrix. This means

$$
a^{2}+c^{2}=1, \quad b^{2}+d^{2}=1, \quad a b+c d=0
$$

We can set $a=\cos \alpha, c=\sin \alpha$ and $b=\cos \beta, d=\sin \beta$ so that

$$
a b+c d=\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)=0 .
$$

This means that $\alpha-\beta= \pm \pi / 2$. The two possibilities lead to

$$
\boldsymbol{R}_{\alpha}=\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right], \quad \mathbf{T}=\left[\begin{array}{rr}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right]
$$

To analyze

$$
\mathbf{T}=\left[\begin{array}{rr}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right]
$$

we look at its eigenvalues:

$$
\operatorname{det}(\mathbf{T}-x \mathbf{I})=\left[\begin{array}{cc}
\cos \beta-x & \sin \beta \\
\sin \beta & -\cos \beta-x
\end{array}\right]=x^{2}-1
$$

So $\lambda= \pm 1$. This means we have an orthonormal basis v_{1}, v_{2}, and $\mathbf{T}\left(v_{1}\right)=v_{1}, \mathbf{T}\left(v_{2}\right)=v_{2}$.
Thus the line $\mathbb{R} v_{1}$ is fixed under \mathbf{T}, and the perpendicular line $\mathbb{R} v_{2}$ is flipped about $\mathbb{R} v_{1}$. These transformations are called reflections.

Summary: If \mathbf{A} is an orthogonal 2-by-2 matrix, then if $\operatorname{det} \mathbf{A}=1$, it is a rotation, and if $\operatorname{det} \mathbf{A}=-1$, it is a reflection.

Matrix product and dot product

Let u and v be two vectors of \mathbb{R}^{n}. Their dot product

$$
u \cdot v=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

can be expressed as a matrix product

$$
u^{t} v=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Keep in mind

$$
u^{t} v=u \cdot v
$$

Spectral Decomposition

Let \mathbf{A} be a n-by- n symmetric real matrix, $\mathbf{P}=\left[v_{1}|\cdots| v_{n}\right]$ a matrix whose columns form an orthonormal basis of eigenvectors of \mathbf{A} :

$$
\mathbf{A}=\mathbf{P D P}^{t}=\left[v_{1}|\cdots| v_{n}\right] \cdot\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{1}^{t} \\
\hline \vdots \\
\hline v_{n}^{t}
\end{array}\right]
$$

Instead of this representation of \mathbf{A} as a product of 3 matrices, we are going to express \mathbf{A} as a sum of simple matrices of rank 1.

Expanding we get

$$
\begin{aligned}
\mathbf{A} & =\mathbf{P D P}^{t}=\left[v_{1}|\cdots| v_{n}\right] \cdot\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{1}^{t} \\
\vdots \\
v_{n}^{t}
\end{array}\right] \\
& =\left[\lambda_{1} v_{1}|\cdots| \lambda_{n} v_{n}\right] \cdot\left[\frac{v_{1}^{t}}{\vdots}\left[\frac{v_{n}^{t}}{\vdots}\right]\right. \\
& =\lambda_{1} v_{1} v_{1}^{t}+\cdots+\lambda_{n} v_{n} v_{n}^{t} \\
& =\sum \lambda_{i} \mathbf{P}_{i}, \quad \mathbf{P}_{i}=v_{i} v_{i}^{t}
\end{aligned}
$$

Let us examine the matrices \mathbf{P}_{i}.
(1) \mathbf{P}_{i} has rank 1 and is symmetric

$$
\mathbf{P}_{i}=v_{i} v_{i}^{t}, \quad \mathbf{P}_{i}^{t}=\left(v_{i} v_{i}^{t}\right)^{t}=\left(v_{i}^{t}\right)^{t} v_{i}^{t}=\mathbf{P}_{i}
$$

(2) \mathbf{P}_{i} is a projection

$$
\mathbf{P}_{i} \mathbf{P}_{i}=\left(v_{i} v_{i}^{t}\right)\left(v_{i} v_{i}^{t}\right)=v_{i}\left(v_{i}^{t} v_{i}\right) v_{i}^{t}=v_{i} v_{i}^{t}=\mathbf{P}_{i}
$$

since $v_{i}^{t} v_{i}=\left\langle v_{i}, v_{i}\right\rangle=1$
(3) $\mathbf{P}_{i} \mathbf{P}_{j}=O$ for $i \neq j$

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\left(v_{i} v_{i}^{t}\right)\left(v_{j} v_{j}^{t}\right)=v_{i}\left(v_{i}^{t} v_{j}\right) v_{j}^{t}=0
$$

since $v_{i}^{t} v_{j}=\left\langle v_{i}, v_{j}\right\rangle=0$

The equality

$$
\mathbf{A}=\sum \lambda_{i} \mathbf{P}_{i}, \mathbf{P}_{i}=v_{i} v_{i}^{t}
$$

is called the spectral decomposition of \mathbf{A}.
Example: Let $\mathbf{A}=\left[\begin{array}{rr}3 & -4 \\ -4 & -3\end{array}\right]$
The eigenvalues are 5 and -5 , with corresponding [normalized] eigenvectors

$$
\begin{gathered}
v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \quad v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{P}_{1}=v_{1} v_{1}^{t}=\left[\begin{array}{rr}
4 / 5 & -2 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right], \quad \mathbf{P}_{2}=v_{2} v_{2}^{t}=\left[\begin{array}{ll}
1 / 5 & 2 / 5 \\
2 / 5 & 4 / 5
\end{array}\right]
\end{gathered}
$$

Exercise:

Let \mathbf{A} be a real symmetric matrix. Prove that there is a symmetric matrix \mathbf{B} such that $\mathbf{B}^{3}=\mathbf{A}$.

We know that there is an orthonormal basis v_{1}, \ldots, v_{n} of eigenvectors of \mathbf{A}. The matrix $\mathbf{P}=\left[v_{1}|\cdots| v_{n}\right]$ is orthogonal [i.e. $\mathbf{P}^{-1}=\mathbf{P}^{t}$] and

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

is a real diagonal matrix. Let \mathbf{E} be a real 'cubic root' of \mathbf{D} (if a diagonal entry of \mathbf{D} is $d_{i j}$, the corresponding entry of \mathbf{E} is the real root $d_{i j}^{1 / 3}$).
Set $\mathbf{B}=\mathbf{P}^{-1} \mathbf{E P}$. Note

$$
\mathbf{B}^{t}=\left(\mathbf{P}^{-1} \mathbf{E P}\right)^{t}=\mathbf{P}^{t} \mathbf{E}^{t}\left(\mathbf{P}^{-1}\right)^{t}=\mathbf{P}^{-1} \mathbf{E} \mathbf{P}=\mathbf{B}, \quad \mathbf{B}^{3}=\mathbf{P}^{-1} \mathbf{E}^{3} \mathbf{P}=\mathbf{A} .
$$

Exercise: Let \mathbf{A} be skew-symmetric matrix. Prove that $\operatorname{det} \mathbf{A} \geq 0$. Hint: Recall that \mathbf{A} is normal, then pair up the complex eigenvalues of \mathbf{A}. Moreover, show that if \mathbf{A} has integer entries, then $\operatorname{det} \mathbf{A}$ is the square of an integer.

Real quadratic forms

A real quadratic form in n variables is a polynomial

$$
\mathbf{q}(\mathbf{x})=\sum_{i, j} a_{i j} x_{i} x_{j}
$$

They occur in the elementary theory of conic sections-e.g. what is $10 x^{2}+6 x y+2 y^{2}=5$, an ellipse, a parabola, or a hyperbola?- but also in the theory of max and min of functions $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)$ of several variables. In both endeavors, a solution arises after an appropriate change of variables, $\mathbf{x}=\mathbf{P}(\mathbf{y})$,

$$
\mathbf{q}(\mathbf{x})=\mathbf{q}(\mathbf{P}(\mathbf{y}))=\sum_{i} d_{i} y_{i}^{2} .
$$

Let us see how this comes about:

Let us begin with $A x^{2}+B x y+C y^{2}$, which we write as $a x^{2}+2 b x y+c y^{2}$. (For general fields this would require $2 \neq 0$.) Now look:

$$
\begin{aligned}
a x^{2}+2 b x y+c y^{2} & =x(a x+b y)+y(b x+c y) \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\mathbf{x}^{t} \mathbf{Q} \mathbf{x}
\end{aligned}
$$

where $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and \mathbf{Q} is a symmetric matrix.
It is routine to verify that every quadratic form $\mathbf{q}(\mathbf{x})$ has such a representation,

$$
\mathbf{q}(\mathbf{x})=\mathbf{x}^{t} \mathbf{Q} \mathbf{x}, \quad \mathbf{Q}=\mathbf{Q}^{t}
$$

Now we can apply to \mathbf{Q} the spectral theorem we have developed.

Since \mathbf{Q} is (orthogonally) diagonalizable, there is an orthogonal matrix \mathbf{P} (formed by an orthonormal basis of eigenvectors of \mathbf{Q}) such that

$$
\mathbf{P}^{-1} \mathbf{Q P}=\mathbf{D}=\left[\begin{array}{rrr}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

This means that in $\mathbf{q}(\mathbf{x})=\mathbf{x}^{t} \mathbf{Q x}$, if we change the variables by the rule $\mathbf{x}=\mathbf{P y}$,

$$
\mathbf{q}(\mathbf{x})=\mathbf{x}^{\mathbf{t}} \mathbf{Q} \mathbf{x}=\mathbf{y}^{t} \mathbf{P}^{-1} \mathbf{Q P y}=\mathbf{y}^{t} \mathbf{D} \mathbf{y}=\sum_{i} \lambda_{i} y_{i}^{2} .
$$

Some applications

Among the potential applications, we mentioned the identification of conics. For example, $10 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}=5$: The matrix

$$
\mathbf{Q}=\left[\begin{array}{rr}
10 & 3 \\
3 & 2
\end{array}\right]
$$

has for eigenvalues 11,1 with

$$
\mathbf{P}=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}
1 & -3 \\
3 & 1
\end{array}\right]
$$

The change of variables $\mathbf{x}=\mathbf{P y}$ gives

$$
11 y_{1}^{2}+y_{2}^{2}=5
$$

the equation of an ellipse.

Another application, to the theory of max and min appears as follows: If \mathbf{a} is a critical point of the function $f(\mathbf{x})$-that is all the partial derivatives vanish at $\mathbf{x}=\mathbf{a}, \frac{\partial \mathbf{f}}{\partial x_{i}}(\mathbf{a})=0$, Taylor's expansion of \mathbf{f} in a neighborhood of a gives

$$
\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})+\mathbf{q}(\mathbf{h})+\text { error }
$$

where \mathbf{q} is a quadratic polynomial on the vector $\mathbf{h}=\mathbf{x}-\mathbf{a}$. The corresponding symmetric matrix is

$$
\mathbf{Q}=\left[\frac{\partial^{2} \mathbf{f}(\mathbf{x})}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right]
$$

If all the eigenvalues of \mathbf{Q} are positive [negative], $\mathbf{q}(\mathbf{h}) \geq 0$ Then $f(\mathbf{x}) \geq \mathbf{f}(\mathbf{a})$ in a neighborhood of \mathbf{a} : local max [local min]. The other cases are saddle points [the higher dimensional analogues of inflection points]

Rigid Motion

A rigid motion on the inner product space \mathbf{V} is a mapping

$$
\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}
$$

with the property

$$
\|\mathbf{T}(u)-\mathbf{T}(v)\|=\|u-v\|, \quad \forall u, v \mathbf{V} .
$$

That is, \mathbf{T} preserves distance of the images. A simple example is a translation: If a is a fixed vector, the function

$$
\mathbf{T}(v):=\mathbf{a}+v
$$

is obviously a rigid motion. What else? We have seen that orthogonal transformations $\mathbf{S}, \mathbf{S S}^{t}=\mathbf{I}$, preserve distances. Another such motion is obtained by composition: following a translation with an orthogonal mapping. What else? That is it!

Theorem

Any rigid motion \mathbf{T} of \mathbf{V} decomposes into $\mathbf{T}=\mathbf{S} \circ \mathbf{U}$, where \mathbf{S} is an orthogonal transformation and \mathbf{U} is a translation.

Proof: Set $\mathbf{a}=\mathbf{T}(O)$. Then the function $\mathbf{F}(u)=\mathbf{T}(u)-\mathbf{a}$ is a rigid motion and $F(O)=O$. It is enough to prove that F is orthogonal. Note that

$$
\|F(u)-\mathbf{F}(O)\|=\|u-O\|
$$

so \mathbf{F} preserves lengths, which is the key property of orthogonal transformations. BUT we are NOT assuming that \mathbf{F} is linear, we must prove it.
We first prove that \mathbf{F} preserves dot products:
$\langle\mathbf{F}(u), \mathbf{F}(v)\rangle=\langle u, v\rangle$: We start from the equality and expand both sides

$$
\begin{aligned}
\|\mathbf{F}(u)-\mathbf{F}(v)\|^{2} & =\|u-v\|^{2} \\
(\mathbf{F}(u)-\mathbf{F}(v)) \cdot(\mathbf{F}(u)-\mathbf{F}(v)) & =(u-v) \cdot(u-v) \\
\underbrace{\|\mathbf{F}(u)\|^{2}}_{*}-2\langle\mathbf{F}(u), \mathbf{F}(v)\rangle+\underbrace{\|\mathbf{F}(v)\|^{2}}_{* *} & =\underbrace{\|u\|^{2}}_{*}-2\langle u, v\rangle+\underbrace{\|v\|^{2}}_{* *}
\end{aligned}
$$

Thus proving

$$
\langle\mathbf{F}(u), \mathbf{F}(v)\rangle=\langle u, v\rangle .
$$

Now we are going to prove that \mathbf{F} is a linear function by first showing that it is additive:

$$
\begin{aligned}
\|\mathbf{F}(u+v)-\mathbf{F}(u)-\mathbf{F}(v)\|^{2} & \stackrel{?}{=} 0 \\
\|\mathbf{F}(u+v)\|^{2}+\|\mathbf{F}(u)\|^{2}+\|\mathbf{F}(v)\|^{2}- & =\|u+v\|^{2}+\|u\|^{2}+\|v\|^{2}- \\
2\langle\mathbf{F}(u+v), \mathbf{F}(u)\rangle-2\langle\mathbf{F}(u+v), \mathbf{F}(v)\rangle & =2\langle(u+v), u\rangle-2\langle(u+v), \\
+2\langle\mathbf{F}(u), \mathbf{F}(v)\rangle & =+2\langle u, v\rangle \\
& =\|(u+v)-u-v\|^{2}=0 .
\end{aligned}
$$

Scaling, that $\mathbf{F}(c u)=c \mathbf{F}(u)$ for any $c \in \mathbb{R}$, has a similar proof: Expand

$$
\|\mathbf{F}(c u)-c \mathbf{F}(u)\|^{2}
$$

Homework \#10

Section 6.4: 2f, 4, 6, 12, 13, 15
Section 6.5: 6, 10, 11, 17, 27a

Quiz \#11

(1) Section 6.5, Problem 27d
(2) Let \mathbf{A} be a 3×3 orthogonal matrix. Prove that \mathbf{A} is similar to a matrix of the form

$$
\left[\begin{array}{cc}
\mathbf{R} & O \\
O & \pm 1
\end{array}\right]
$$ where \mathbf{R} is a 2×2 orthogonal matrix.

(3) Section 6.3, Problem 22c
(Let \mathbf{A} be a skew-symmetric real matrix. If A diagonalizable, prove that $\mathbf{A}=0$.

