Math 451: Abstract Algebra I

Wolmer V. Vasconcelos

Set 5: Rings

Fall 2009

Outline

(1) Rings
(2) Integers and Polynomials

3 Homomorphisms
4. Quotient rinas and relations in a ring
(5) Integral Domains and Rings of Fractions

6 Homework \#10Maximal Ideals
8 Noetherian Rings
(9) Algebraic Geometry

10 Diagonalization
(11) Diagonalization and Minimal Polynomials

12 Homework \#11

Rings

A ring R is a set with two composition laws, called 'addition' and 'multiplication', say + and $\times: \forall a, b \in R$ have compositions $a+b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply $a b$.)

- $(R,+)$ is an abelian group
- (R, \times) : multiplication is associative, and distributive over + , that is $\forall a, b, c \in R$,

$$
(a b) c=a(b c), \quad a b=b a, \quad a(b+c)=a b+a c
$$

- existence of identity: $\exists e \in R$ such that

$$
\forall a \in R \quad e \times a=a \times e=a
$$

- If $a b=b$ for all $a, b \in R$, the ring is called commutative

There is a unique identity element e, usually we denote it by 1 :

$$
e=e e^{\prime}=e^{\prime} e=e^{\prime}
$$

Some terminology in studying a commutative ring

Let R be a commutative ring

- $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- $a \in R$ is a zero divisor if there is $0 \neq b \in R$ such that $a b=0: \overline{2} \cdot \overline{3}=0$ in \mathbb{Z}_{6}.
- $a \in R$ is nilpotent if there is $n \in \mathbb{N}$ such that $a^{n}=0: \overline{2}^{3}=0$ in \mathbb{Z}_{8}.
- R is an integral domain if 0 is the only zero divisor, in other words, if $a, b \in R$ are not zero, then $a b \neq 0$.

Field

A field \mathbf{F} is a set with two composition laws, called 'addition' and 'multiplication', say + and $\times: \forall a, b \in \mathbf{F}$ have compositions $a+b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply ab.)

- $(\mathbf{F},+)$ is an abelian group
- (\mathbf{F}, \times): multiplication is associative, commutative and distributive over + , that is $\forall a, b, c \in \mathbf{F}$,

$$
(a b) c=a(b c), \quad a b=b a, \quad a(b+c)=a b+a c
$$

- existence of identity $\exists \boldsymbol{e} \in \mathbf{F}$ such that

$$
\forall a \in \mathbf{F} \quad a \times e=a
$$

- existence of inverses For every $a \neq 0$, there is $b \in \mathbf{F}$

$$
a \times b=e .
$$

There is a unique element e, usually we denote it by 1 . For $a \neq 0$, the element b such that $a b=1$ is unique; it is often denoted by $1 / a$ or a^{-1}.

We can now define scalars: the elements of a field.

Fields are ubiquotous:

- \mathbb{R} : real numbers
- The integers \mathbb{Z} is not a field (not all integers have inverses), but \mathbb{Q}, the rational numbers is a field.
- \mathbb{C} : complex numbers, $z=a+b i, i=\sqrt{-1}$, with compositions

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i) \times(c+d i)=(a c-b d)+(a d+b c) i
\end{gathered}
$$

The arithmetic here requires a bit more care:
If $a+b i \neq 0$,

$$
\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

Exercise: Number fields

Let \mathbf{F} be the set of all real numbers of the form

$$
z=a+b \sqrt{2}, \quad a, b \in \mathbb{Q}
$$

prove that \mathbf{F} is a field.
Query: How to prove a subset \mathbf{F} of the field \mathbb{R} is a field?
Suffices to check that \mathbf{F} is closed under addition, product and inverse of nonzero element.
For instance, if $a+b \sqrt{2} \neq 0$,

$$
\frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}} \in \mathbf{F}
$$

Another noteworthy example is \mathbb{F}_{2}, the set made up by two elements $\{0,1\}$ (or (even, odd)) with addition defined by the table

$$
\begin{array}{l|l|l}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array} \quad 1+1=0!
$$

and multiplication by

\times	0	1
0	0	0
1	0	1

Exercise 1: Prove that in any field \mathbf{F} the rule minus times minus is plus holds, that is for any $a, b \in \mathbf{F}$,

$$
-(-a)=a, \quad(-a)(-b)=a b .
$$

Solution: The first assertion folllows from
$a+(-a)=(-a)+a=0$.
Because of the above, we must show that $(-a)(-b)$ is the negative of $-(a b)$. We first claim $(-a) b=-(a b)$. Note

$$
(-a) b+a b=((-a)+a) b=O b=0 .
$$

$(-a)(-b)-(a b)=(-a)(-b)+(-a) b=(-a)((-b)+b)=(-a) O=O$.

A field is the mathematical structure of choice to do arithmetic. Given a field \mathbf{F}, fractions can defined as follows: If $a, b \in \mathbf{F}, \quad b \neq 0$,

$$
\frac{a}{b}:=a b^{-1} .
$$

The usual calculus of fractions then follows, for instance

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Rings of Functions

Let \mathbf{R} be a ring, S a nonempty set and \mathcal{S} the set of all functions $\mathbf{f}: S \rightarrow \mathbf{R}$.

Proposition

We endow \mathcal{R} with a ring structure by defining two operations: For all $s \in S$,

$$
\begin{aligned}
(\mathbf{f}+\mathbf{g})(s) & :=\mathbf{f}(s)+\mathbf{g}(s) \\
(\mathbf{f} \cdot \mathbf{g})(s) & :=\mathbf{f}(s) \cdot \mathbf{g}(s)
\end{aligned}
$$

Proof. It is clear that \mathcal{R} inherits all the ring axioms from \mathbf{R}.

- If $1 \in \mathbf{R}$, the function $\mathbf{I}(s)=1$ is the identity of \mathcal{R}.
- If \mathbf{R} is commutative, \mathcal{R} is also commutative.
- Major examples: If $S=\mathbb{R}$, and \mathbf{f} are continuous.

Rings of Matrices

Let $R=M_{n}(\mathbb{R})$ be the set of all $n \times n$ matrices (n fixed), with the ordinary matrix addition and multiplication.
R is a ring, but it is not commutative if $n>1$.

Subrings

Definition

A subring of a ring R is a subset S that satisfies:
(1) S is a subgroup of R^{+};
(2) $1_{R} \in S$;
(3) If $a, b \in S$, then $a b \in S$. (This product is the product of R.)

Example

$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ is a tower of rings/subrings. Later, when we have more examples of rings, we will give various methods to construct subrings.

Outline

(2) Integers and PolynomialsHomomorphismsQuotient rings and relations in a ring
5. Integral Domains and Rings of Fractions

Rational Numbers

At the outset of our journey are the natural numbers

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

Its 'modern' construction [e.g. Peano's] is a paradigm of beauty. It is enlarged by the integers

$$
\mathbb{N} \subset \mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

and the rational numbers

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}=\left\{\frac{m}{n}, \quad m, n \in \mathbb{Z}, n \neq 0\right\}
$$

These sets exhibit different structures: of a monoid, of a ring and of a field, respectively.

Peano

The construction by Peano of the set \mathbb{N} is grounded on two ingredients: The set \mathbb{N} contains a particular element 1.

- [Successor Function] There is a function $s: \mathbb{N} \rightarrow \mathbb{N}$ that is injective, and for every $n \in \mathbb{N} s(n) \neq 1$.
- [Induction Axiom] If the subset $S \subset \mathbb{N}$ has the properties
$1 \in S \quad \& \quad$ whenever $\quad n \in S \Rightarrow s(n) \in S$
then $S=\mathbb{N}$

Given these definitions, we can define several operations/compositions and structures on \mathbb{N} :

- $a+b:=$?

$$
\begin{aligned}
a+1 & :=s(a) \\
a+s(n) & :=s(a+n)
\end{aligned}
$$

- $a \times b:=$?

$$
\begin{aligned}
a \times 1 & :=a \\
a \times s(n) & :=a \times n+a
\end{aligned}
$$

Ordering

Out of these notions, addition and multiplication are defined in \mathbb{N}, and then extended to \mathbb{Z} and \mathbb{Q}. An interesting consequence that arises is a notion of order: $\forall a, b \in \mathbb{Q}$, exactly one of the following holds

$$
a<b, \quad a>b, \quad a=b
$$

It has the properties: If $a>b$ then

$$
\begin{aligned}
\forall c & \Rightarrow a+c>b+c \\
\forall c>0 & \Rightarrow a c>b c
\end{aligned}
$$

Significance: This leads to metric properties: lengths, angles, etc.

Peano and Mathematical Induction

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg

Induction

The set $\mathbb{N}=\{1,2,3, \ldots\}$ of natural numbers arises logically from the following construction of Peano.
\mathbb{Z} and Peano's Axioms

- \mathbb{N} contains a particular element 1.
- Successor function: There is an injective [one-one] function $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$, for each $n \in \mathbb{N}, \sigma(n) \neq 1$. [Another notation: $\sigma(n)=n^{\prime}$]
- Induction axiom: Suppose that $S \subset \mathbb{N}$ satisfies
(1) $1 \in S$;
(2) if $n \in S$ then $\sigma(n) \in S$. Then $S=\mathbb{N}$.

The second axiom means 3 things [there are 5 axioms in all]: (1) every natural number has a successor; (2) no two natural numbers have the same successor; (3) 1 is not the successor of any natural number.

Defining Operations + and

Operations

-Addition:

$$
m+1=m^{\prime}, \quad m+n^{\prime}=(m+n)^{\prime}
$$

-Multiplication:

$$
m \cdot 1=m, \quad m \cdot n^{\prime}=m \cdot n+m
$$

With these operations, \mathbb{N} satisfies:

- Associativity properties: For all x, y and z in \mathbb{N},

$$
\begin{aligned}
x+(y+z) & =(x+y)+z \\
x(y z) & =(x y) z
\end{aligned}
$$

- Commutativity properties: For all x and y in \mathbb{N},

$$
\begin{aligned}
x+y & =y+x . \\
x y & =y x .
\end{aligned}
$$

- Distributivity properties: For all x, y and z in \mathbb{N},

$$
\begin{aligned}
& x(y+z)=x y+x z . \\
& (y+z) x=y x+z x .
\end{aligned}
$$

- Order properties: For all x, y and z in $\mathbb{N}, x<y$ if there is $w \in \mathbb{N}$ such that $x+w=y$. Several properties arise: e.g. If $x<y$ then $\forall z \in \mathbb{N} x+z<y+z$.
\mathbb{N} can extended by 0 and 'negatives': \mathbb{Z}. Operations also. Then all the ordinary properties of addition and multiplication are verified:

Let us illustrate with:
Proof of the associative law of addition for \mathbb{N} :

$$
(a+b)+n=a+(b+n) \quad \forall a, b, n \in \mathbb{N}
$$

From the definitions check $n=1$:

$$
(a+b)+1=(a+b)^{\prime}=a+b^{\prime}=a+(b+1)
$$

Assume axiom holds for n and let us check for n^{\prime} (induction hypothesis):

$$
\begin{aligned}
(a+b)+n^{\prime} & =(a+b)+(n+1)(\text { definition }) \\
& =((a+b)+n)+1 \text { (case } n=1) \\
& =(a+(b+n))+1 \text { (ind. hypothesis) } \\
& =a+((b+n)+1)(\text { case } n=1) \\
& =a+(b+(n+1))(\text { case } n=1) \\
& =a+\left(b+n^{\prime}\right)(\text { definition })
\end{aligned}
$$

Principle of Mathematical Induction

Let us state Peano's 5th Axiom again:

Definition (PMI)

If S is a subset of \mathbb{N} and
(1) $1 \in S$,
(2) for all $n \in \mathbb{N}$, if $n \in S$, then $n+1 \in S$, then $S=\mathbb{N}$.

A set with Property (2) is called an inductive set. Examples, besides \mathbb{N} are $\emptyset, S=\{x: x \in \mathbb{N}, x \geq 10\} . \mathbb{N}$ is the only inductive set containing 1: This is PMI.

The PMI is used to define mathematical objects and in proofs galore.

We are discussing the Principle of Mathematical Induction (PMI for short). It is a mechanism to study (i.e. prove) certain open sentences $P(n)$ that depend on $n \in \mathbb{N}$ when we seek to verify that it is true for all values.

The method is rooted in the following property of the natural numbers \mathbb{N} :

If S is a subset of \mathbb{N} and
(1) $1 \in S$,
(2) for all $n \in \mathbb{N}$, if $n \in S$, then $n+1 \in S$, then $S=\mathbb{N}$.

Verifying $P(n)$

To verify whether $S=\{n: P(n)\}$ is equal to \mathbb{N}, we follow the template:
(1) (Base step) $P(1)$ is true;
(2) (Inductive step) If for some $n, P(n)$ is true then $P(n+1)$ is also true.

PMI guarantees that $S=\mathbb{N}$.

Sequences

Definition

A sequence is a function \mathbf{f} whose domain is \mathbb{N}.
It can be represented as

$$
\begin{gathered}
\{\mathbf{f}(1), \mathbf{f}(2), \mathbf{f}(3), \ldots\} \\
\{\mathbf{f}(0), \mathbf{f}(1), f(2), f(3), \ldots\}
\end{gathered}
$$

Or

$$
\left\{\mathbf{f}(n), \ldots, \quad n \geq n_{0}\right\}
$$

We will first examine sequences of real numbers, $\mathbf{f}: \mathbb{N} \rightarrow \mathbb{R}$.

Sequences with values in a ring

Let \mathbf{R} be a ring and \mathcal{R} the set [actually a ring] of all sequences $\mathbf{f}: \mathbb{N} \rightarrow \mathbf{R}$. The operations are:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{3}, \ldots\right)+\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \ldots\right) \\
& \left(a_{1}, a_{2}, a_{3}, \ldots\right) \times\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, a_{3} \cdot b_{3}, \ldots\right)
\end{aligned}
$$

This ring, sometimes denoted by $\mathbf{R}^{\mathbb{N}}$, is a direct product of copies of R.

Note that we have also the operation

$$
r\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(r a_{1}, r a_{2}, r a_{3}, \ldots\right)
$$

Rings of Polynomials

Let us endow the set of sequences above with a different multiplication. For convenience we label the sequence as:

$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right), \quad a_{i} \in \mathbf{R}
$$

$\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right) \times\left(b_{0}, b_{1}, b_{2}, b_{3}, \ldots\right)=\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right)$

$$
\begin{aligned}
c_{0} & =a_{0} b_{0} \\
c_{1} & =a_{0} b_{1}+a_{1} b_{0} \\
& \vdots \\
c_{n} & =\sum_{i+j=n} a_{i} b_{j}=a_{0} b_{n}+\cdots+a_{n} b_{0}
\end{aligned}
$$

Special Sequences

$$
\begin{aligned}
\mathbf{I} & =(1,0,0,0, \ldots) \\
x & =(0,1,0,0, \ldots) \\
x & =(0,1,0,0, \ldots) \\
x^{2} & =(0,0,1,0, \ldots) \\
x^{3} & =(0,0,0,1, \ldots)
\end{aligned}
$$

And most importantly

$$
\left(r_{0}, r_{1}, r_{2}, r_{3}, \ldots\right)=r_{0} \mathbf{I}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}+\cdots
$$

Polynomials

Proposition

With the composition above:
(1) The set of all sequences with values in \mathbf{R} is a ring, denoted $\mathbf{R}[[x]]$.
(2) The subset of all sequences \mathbf{f} such that $\mathbf{f}(n)=0$ for all $n \gg 0$ is also a ring, called the ring of polynomials of \mathbf{R}, and is denoted by $\mathbf{R}[x]$.

As abelian groups:
(1) $R[[x]] \simeq R^{\mathbb{N}}$
(2) $R[x] \simeq R^{\oplus \mathbb{N}}$

Rings of Polynomials

Rings of polynomials in n indeterminates, $n>1$, can be built on a similar construction: Let \mathbf{R} be a ring

- Set $\mathbf{N}=\{0,1,2, \ldots\}$ and $\mathbf{M}=\mathbb{N}^{n}$ be the set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We refer to deg $\alpha=\alpha_{1}+\cdots+\alpha_{n}$ as the total degree of α (referred to as a multi-index.
- Let $\mathcal{P}(n)$ the set of functions

$$
\mathbf{f}: \mathbf{M} \rightarrow \mathbf{R}
$$

- Addition in $\mathcal{P}(n)$ is defined by $(\mathbf{f}+\mathbf{g})(\alpha)=\mathbf{f}(\alpha)+\mathbf{g}(\alpha)$
- Multiplication in $\mathcal{P}(n)$ is defined by the convolution rule: Note that for each $\gamma \in \mathbf{M}$ there are only finitely many pairs (α, β) such that

$$
\gamma=\alpha+\beta
$$

- Define multiplication by

$$
(\mathbf{f} \cdot \mathbf{g})(\gamma)=\sum_{\alpha+\beta=\gamma} \mathbf{f}(\alpha) \cdot \mathbf{g}(\beta)
$$

Proposition

$\mathcal{P}(n)$ is a ring with these operations.

- The elements of $\mathcal{P}(n)$ are called polynomials in n indeterminates
- For a given multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, the function \mathbf{f} such that $\mathbf{f}(\alpha)=1$ and $\mathbf{f}(\beta)=0$ for $\beta \neq \alpha$, is written

$$
\mathbf{f}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

or simply \mathbf{x}^{α}. These functions are called monomials.

- Every \mathbf{f} can be written as a finite sum

$$
\mathbf{f}=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}
$$

where c_{α} is a constant function.

- Typically \mathbf{f} is a sum of several terms. It is called a binomial, trinomial etc if If \mathbf{f} has few terms it is called a fewnomial...

The ring $\mathcal{P}(2)$ is noteworthy.

- The set of functions $\mathbf{f}: \mathbf{M} \rightarrow R$ such that $\mathbf{f}(m)=0$ for almost all $m \in \mathbf{M}$ that we used to get $\mathcal{P}(2)$ can be realized another way.
- Let $\mathbf{F}: \mathbb{N} \rightarrow R[x]$ which is zero for almost all $r \in \mathbb{N}$. For each $r \in \mathbb{N}, \mathbf{F}(r) \in R[x]$ means that $\mathbf{F}(r): \mathbb{N} \rightarrow R$ which is zero for almost all $s \in \mathbb{N}$, that is

$$
\mathbf{F}(r)(s)=0
$$

for almost all $(r, s) \in \mathbb{N}^{2}$. These are the functions used to define $\mathcal{P}(2)$.

- This shows that $\mathcal{P}(2)=R[x, y]$. More precisely, we must still verify that the two products coincide-which is easy.

Outline

Rings2. Integers and Polynomials
(3) Homomorphisms
(4) Quotient rings and relations in a ringIntegral Domains and Rings of Fractions
6
Homework \#10Maximal IdealsNoetherian Rings
(9) Algebraic GeometryDiagonalizationDiagonalization and Minimal PolynomialsHomework \#11

Homomorphisms

Definition

A homomorphism $\varphi: R \rightarrow R^{\prime}$ from one ring to another is a map which is compatible with the laws of composiiton and which carries 1 to 1 , that is, a map such that

$$
\varphi(a+b)=\varphi(a)+\varphi(b), \varphi(a b)=\varphi(a) \varphi(b), \varphi\left(1_{R}\right)=1_{R^{\prime}},
$$

for all $a, b \in R$. An isomorphism of rings is bijective homomorphism. If there is an isomorphism $R \rightarrow R^{\prime}$, the two rings are said to be isomorphic.

Example

Let $R=\mathbb{C}$. complex conjugation, $a+b i \rightarrow a-b i$ is an isomorphism of \mathbb{C}.

Matrix Rings

Let $R=M_{n}(\mathbb{R})$ be the ring of $n \times n$ real matrices, and let \mathbf{A} be an invertible matrix. Define

$$
\varphi: R \rightarrow R, \quad \varphi(\mathbf{X})=\mathbf{A X A}^{-1}
$$

$$
\begin{aligned}
\varphi(\mathbf{I}) & =\mathbf{A I A}^{-1}=\mathbf{I} \\
\varphi(\mathbf{X}+\mathbf{Y}) & =\mathbf{A}(\mathbf{X}+\mathbf{Y}) \mathbf{A}^{-1}=\mathbf{A X A}^{-1}+\mathbf{A Y A}^{-1}=\varphi(\mathbf{X})+\varphi(\mathbf{Y}) \\
\varphi(\mathbf{X Y}) & =\mathbf{A}(\mathbf{X Y}) \mathbf{A}^{-1}=\mathbf{A X A}^{-1} \mathbf{A Y A}^{-1}=\varphi(\mathbf{X}) \varphi(\mathbf{Y})
\end{aligned}
$$

Thus conjugation by \mathbf{A} is an isomorphism of R.

The Substitution Principle

Proposition

Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism.
(a) Given an element $\alpha \in R^{\prime}$, there is a unique homomorphism $\Phi: R[x] \rightarrow R^{\prime}$ which agrees with the map φ on constant polynomials and which sends $x \rightsquigarrow \alpha$.
(b) More generally, given elements $\alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}$, there is a unique homomorphism $\Phi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{\prime}$ from the polynomial ring in n variables to R^{\prime}, which agrees with φ on constant polynomials and which sends $X_{\nu} \rightsquigarrow \alpha_{\nu}$, for $\nu=1, \ldots, n$.

Proof. If Φ exists,
$\Phi\left(a_{n} x^{n}+\cdots+a_{0}\right)=\Phi\left(a_{n}\right) \Phi\left(x^{n}\right)+\cdots+\Phi\left(a_{0}\right)=\varphi\left(a_{n}\right) \alpha^{n}+\cdots+\varphi\left(a_{0}\right)$
Thus Φ is uniquely defined by φ and $\Phi(x)=\alpha$.
To prove the existence, we define Φ by the formula above, and check that
$\Phi(f(x)+g(x))=\Phi(f(x))+\Phi(g(x)), \quad \Phi(f(x) g(x))=\Phi(f(x)) \Phi(g(x))$
Having done this so many times in Calculus, we believe.

Corollary

Let $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ denote sets of variables. There is a unique isomorphism $R[x, y] \rightarrow R[x][y]$ which is the identity on R and which sends the variables to themselves.

Proposition

Let \mathcal{R} denote the ring of continuous real-valued functions on \mathbb{R}^{n}. The map $\varphi: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathcal{R}$ sending a polynomial to its associated polynomial function is an injective homomorphism.

Proposition

There is exactly one homomorphism

$$
\varphi: \mathbb{Z} \rightarrow R
$$

from the ring of integers to an arbitary ring R. It is the map defined by $\varphi(n)=1_{R}+\cdots+1_{R}$ (n times) if $n>0$, and $\varphi(-n)=-\varphi(n)$.

Ideals

The property of the kernel of a ring homomorphism - that it is closed under multiplication by arbitrary elements of the ring - is abstracted in the concept of an ideal.

Definition

An ideal I of a ring R is a subset of R with these properties :
(i) I is a subgroup of R^{+};
(ii) If $a \in I$ and $r \in R$, then $r a \in I$.

Example

Let R be a commutative ring and $x \in R$. The set of multiples of $x, R x=\{r a ; r \in R\}$, is an ideal. It is called a principal, or one-generated ideal.

Example

If R is a ring and $S=\left\{a_{1}, \ldots, a_{n}\right\}$ is a set of elements of R, the set of all combinations

$$
r_{1} a_{1}+\cdots+r_{n} a_{n}, \quad r_{i} \in R
$$

is an ideal. It is called the ideal generated, or spanned, by S.
If R is not commutative, there are other notions of ideals:

- I is a left ideal if I is a subgroup of R^{+}, and for every $a \in I$, $r \in R, r a \in I$.
- I is a right ideal if I is a subgroup of R^{+}, and for every $a \in I, r \in R, a r \in I$.
- I is a two-sided ideal if I is a subgroup of R^{+}, and for every $a \in I, r, s \in R$, ras $\in I$.

Ideals of Fields

Proposition

(a) Let F be a field. The only ideals of F are the zero ideal and the unit ideal.
(b) Conversely, if a ring R has exactly two ideals, then R is a field.

Proof.

(a) Let I be a nonzero ideal. If $0 \neq a \in I$, since F is a field, $a^{-1} \in F \Rightarrow 1=a^{-1} a \in I$. Thus $I=R$.
(b) If $0 \neq a$, Ra is a nonzero ideal, so $R a=R$, which means there $r \in R$ such that $r a=1$.

Corollary

Let F be a field and let R^{\prime} be a nonzero ring. Every homomorphism $\varphi: F \rightarrow R^{\prime}$ is injective.

Proof.

Let I be $\operatorname{ker} \varphi$. Since $\varphi\left(1_{F}\right)=1_{R}, \varphi$ is not the null mapping, and thus its kernel $\neq F$. But the only other ideal of F is (0).

The ideals of \mathbb{Z}

Proposition

Every ideal in the ring \mathbb{Z} of integers is a principal ideal.

Proof.

Every ideal $/$ of \mathbb{Z} is a subgroup of \mathbb{Z}^{+}. But we have already seen that the subgroups of \mathbb{Z} are cyclic, that is $I=\mathbb{Z} a$, for some integer a. Note $\mathbb{Z} a$ is also closed multiplication by elements of \mathbb{Z}.

Long Division Algorithm

Proposition

Let R be a ring and let f, g be polynomials in $R[x]$. Assume that the leading coefficient of f is a unit in R. (This is true, for instance, if f is a monic polynomial.) Then there are polynomials $q, r \in R[x]$ such that

$$
g(x)=f(x) q(x)+r(x)
$$

and such that the degree of the remainder r is less than the degree of f or else $r=0$.

Proof. We may assume that $\operatorname{deg} g(x) \geq \operatorname{deg} f(x)$, as otherwise there is nothing to prove. We are going to induction on $\operatorname{deg} g(x)$ assuming that the assertion is true for polynomials of lesser degree.

$$
\begin{aligned}
g(x) & =b_{m} x^{m}+\text { lower degree } \\
f(x) & =a_{n} x^{n}+\text { lower degree }
\end{aligned}
$$

By assumption $u=a_{n}$ is invertible. Note that

$$
h(x)=g(x)-b_{m} u^{-1} x^{m-n} f(x)
$$

satisfies $\operatorname{deg} h(x)<\operatorname{deg} g(x)$.

By induction we have

$$
h(x)=f(x) q^{\prime}(x)+r(x), \quad \operatorname{deg} r(x)<\operatorname{deg} f(x)
$$

and therefore

$$
g(x)=f(x)\left(q^{\prime}(x)+b_{m} u^{-1} x^{m-n}\right)+r(x), \quad \operatorname{deg} r(x)<\operatorname{deg} f(x)
$$

Corollary

Let $g(x)$ be a monic polynomial in $R[x]$, and let α be an element of R such that $g(\alpha)=0$. Then $x-\alpha$ divides g in $R[x]$.

Euclidean Ring

Proposition

Let F be a field. Every ideal in the ring $F[x]$ of polynomials in a single variable x is a principal ideal.

Proof. Let $/$ be an ideal of $F[x]$. If $I=(0)$ there is nothing to prove.
If $I \neq(0)$, let $f(x)$ be a nonzero polynomial of least degree. We claim that every element $g(x)$ of I is a multiple of $f(x)$. If $g(x)=0$, there is nothing to do, so assume $g(x) \neq 0$. Since the leading coefficient of $f(x)$ is invertible, by the Long Division Algorithm there are polynomials $q(x)$ and $r(x)$ such that

$$
g(x)=f(x) q(x)+r(x), \quad \operatorname{deg} r(x)<\operatorname{deg} f(x)
$$

But $r(x)=g(x)-f(x) q(x)$ is an element of I, so must be 0 by the choice of $f(x)$.

Corollary

Let F be a field, and let f and g be polynomials which are not both zero. There is a unique monic polynomial $d(x)$ called the greatest common divisor of f and g, with the following properties:
(1) d generates the ideal (f, g) of $F[x]$ generated by the two polynomials f, g.
(2) divides f and g.
(3) If h is any divisor of f and g, then h divides d.
(4) There are polynomials $p, q \in F[x]$ such that $d=p f+q g$.

Recall: The ideal (f, g) is made up of all combinations

$$
a(x) f(x)+b(x) g(x)
$$

Radical of an Ideal

Definition

Let I be an ideal of the commutative ring R. The radical of I is the set

$$
\sqrt{I}=\left\{x \in R: x^{n} \in I \quad \text { some } n=n(x)\right\} .
$$

Proposition

\sqrt{I} is an ideal.

Proof.

If $a, b \in \sqrt{I}, a^{m} \in I, b^{n} \in I$, then

$$
(a+b)^{m+n-1}=\sum_{i+j=m+n-1}\binom{m+n-1}{i} a^{i} b^{j} \in I
$$

since $i \geq m$ or $j \geq n$.

Principal Ideal Ring

Definition

A ring \mathbf{R} is a principal ideal ring if every ideal I is generated by one element, $I=\{r a: r \in \mathbf{R}\}$.

- \mathbb{Z} and $\mathbf{F}[x]$ where \mathbf{F} is a field are principal ideal rings.
- $\mathbf{R}=\mathbf{F}[x, y]$ is not: The ideal I generated by x, y cannot be generated by 1 element.

Idempotents

Let $\mathbf{R}=\mathbb{Z}_{6}$ and consider the element $z=\overline{3}$. Note $z^{2}=\overline{9}=\overline{3}=z$. These elements are called:

Definition

The element $e \in \mathbf{R}$ is called idempotent if $e^{2}=\boldsymbol{e}$.

Definition

\mathbf{R} is a Boolean ring if $z^{2}=z$ for all $z \in \mathbf{R}$.

Proposition

If \mathbf{R} is a Boolean ring, then
(1) $2 z=0$ for $z \in \mathbf{R}$;
(2) If $a, b \in \mathbf{R}$, then a, b are multiples of $a+b-a b$.

Class proof

Example: Boolean ring

Example

For a non-empty set \mathbf{X} let \mathbf{R} the set of all functions $\mathbf{f}: \mathbf{X} \rightarrow \mathbb{Z}_{2}$.

- $(\mathbf{f}+\mathbf{g})(s)=\mathbf{f}(s)+\mathbf{g}(s)$, and
- $(\mathbf{f} \cdot \mathbf{g})(s)=\mathbf{f}(s) \cdot \mathbf{g}(s)$, define a ring structure on \mathbf{R}.
- $\mathbf{f}^{2}(s)=\mathbf{f}(s) \cdot \mathbf{f}(s)=\mathbf{f}(s)$, so \mathbf{R} is Boolean.

Outline

Rings(2) Integers and Polynomials
(3) Homomorphisms
4) Quotient rings and relations in a ringIntegral Domains and Rings of FractionsIMaximal Ideals

Quotient rings

The most effective method to build new rings is the following:
Let / be a two-sided proper ideal of the \mathbf{R} and denote by
$\overline{\mathbf{R}}=\mathbf{R} / I$ the corresponding cosets $\{a+I: a \in R\}$. It defines on
\bar{R} an abelian group structure called the quotient ring R / I :

$$
(a+l)+(b+l)=(a+b)+l
$$

We claim that this operation and

$$
(a+l) \times(b+I)=a b+I
$$

defines a ring structure. Let us verify that if $a^{\prime}+I=a+I$ and $b+I=b^{\prime}+I$, then $a b+I=a^{\prime} b^{\prime}+I$: Since $a^{\prime}=a+r$, $b^{\prime}=b+s$, with $r, s \in I$

$$
a^{\prime} b^{\prime}=(a+r)(b+s)=a b+(r b+s a+r s)
$$

and thus $a^{\prime} b^{\prime}$ and $a b$ live in the same coset.
The axioms of associativity and distributivity are easily verified.
This is a source to many new rings

Example

Let $R=\mathbb{Z}$ and $I=\mathbb{Z} n$. Then R / I is the ring of integers modulo n.

Examples: Quotient rings

$$
\begin{aligned}
(2) \subset \mathbb{Z} & \Rightarrow \mathbb{Z}_{2}=\mathbb{Z} /(2) \\
\left(x^{2}+x+1\right) \subset \mathbb{Z}_{2}[x] & \Rightarrow \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)=\mathbf{F}_{4} \\
\left(x^{2}+1\right) \subset \mathbb{R}[x] & \Rightarrow \mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right) \\
(1+3 i) \subset \mathbb{Z}[i] & \Rightarrow \mathbb{Z}_{10}=R=\mathbb{Z}[i] /(1+3 i)
\end{aligned}
$$

Will check out some of these soon.

Theorem

Let I be an ideal of a ring R.
(a) There is a unique ring structure on the set of cosets $\bar{R}=R / I$ such that the canonical map $\pi: R \rightarrow \bar{R}$ sending $a \rightsquigarrow \bar{a}=a+l$ is a homomorphism.
(b) The kernel of π is l.

Mapping property of quotient rings

Proposition

Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism with kernel I and let J be an ideal which is contained in I. Denote the residue ring R / J by \bar{R}.
(a) There is a unique homomorphism $\bar{f}: \bar{R} \rightarrow R^{\prime}$ such that $\bar{f} \pi=f$:

(b) (First Isomorphism Theorem) If $J=I$, then \bar{f} maps \bar{R} isomorphically to the image of f.

Correspondence Theorem

Proposition

Let $\bar{R}=R / J$, and let π denote the canonical map $R \rightarrow \bar{R}$.
(a) There is a bijective correspondence between the set of ideals of R which contain J and the set of all ideals of \bar{R}, given by

$$
I \rightsquigarrow \pi(I), \text { and } \pi^{-1}(I) \rightsquigarrow \bar{I} .
$$

(b) If $I \subset R$ corresponds to $\bar{I} \subset \bar{R}$, then R / I and \bar{R} / \bar{I} are isomorphic rings.

$\mathbb{Z}[i] /(1+3 i) \simeq \mathbb{Z} /(10)$

Proposition

The ring $\mathbb{Z}[i] /(1+3 i)$ is isomorphic to the ring $\mathbb{Z} / 10 \mathbb{Z}$ of integers modulo 10.

Proof. Consider the homomorphism
$\varphi: \mathbb{Z} \rightarrow \mathbb{Z}[i] \rightarrow R=\mathbb{Z}[i] /(1+3 i)$ induced by the embedding of \mathbb{Z} in $\mathbb{Z}[i]$.We claim that φ is a surjection of kernel $10 \mathbb{Z}$:

$$
\begin{gathered}
1+3 i \equiv 0 \Rightarrow i(1+3 i) \equiv 0 \Rightarrow i-3 \equiv 0 \Rightarrow i \equiv 3 \\
a+b i \equiv a+3 b \Rightarrow \varphi \text { is surjection }
\end{gathered}
$$

For n in kernel of φ,

$$
\begin{aligned}
n & =z(1+3 i)=(a+b i)(1+31) \\
& =(a-3 b)+\underbrace{(3 a+b) i}_{=0} \Rightarrow b=-3 a \quad \Rightarrow n=10 a
\end{aligned}
$$

The Circle Ring

Proposition

$\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right) \simeq \mathbb{R}[\cos t, \sin t]$.
The ring $R=\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$: known as the circle ring

- Consider the natural homomorphism

$$
\mathbf{f}: \mathbb{R}[x, y] \longrightarrow \mathbb{R}[\cos t, \sin t], \quad \mathbf{f}(x)=\cos t, \mathbf{f}(y)=\sin t
$$

$\mathbb{R}[\cos t, \sin t]$ is the ring of trigonometric polynomials.

- $\mathbf{f}\left(x^{2}+y^{2}-1\right)=0$ so there is an induced surjection $\varphi: \mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right) \rightarrow \mathbb{R}[\cos t, \sin t]$
- φ is an isomorphism because: (i) $\mathbb{R}[\cos t, \sin t]$ is an infinite dimensional \mathbb{R}-vector space (why?); for any ideal L larger than $\left(x^{2}+y^{2}-1\right), \mathbb{R}[x, y] / L$ is a finite dimensional \mathbb{R}-vector space (whv?).

$\mathbb{R}[x, y] /(x y)$

Proposition

The ring $\mathbb{R}[x, y] /(x y)$ is isomorphic to the subring of the product ring $\mathbb{R}[x] \times \mathbb{R}[y]$ consisting of the pairs $(p(x), q(y))$ such that $p(0)=q(0)$.

Proof. Let us sketch the proof, leaving the details to reader:

$$
\mathbb{R}[x, y] /(x y) \simeq\{(p(x), q(y)): p(0)=q(0))\}
$$

Consider the homomorphism

$$
\begin{gathered}
\varphi: \mathbb{R}[x, y] /(x y) \rightarrow \mathbb{R}[x, y] /(y) \times \mathbb{R}[x, y] /(x) \\
\varphi(a+(x y))=(a+(y), a+(x))
\end{gathered}
$$

Check that φ is one-one and determine its image.

Outline

Rings(2) Integers and PolynomialsHomomorphisms
(4) Quotient rings and relations in a ring
(5) Integral Domains and Rings of Fractions
6. Homework \#10Maximal IdealsNoetherian Rings
9 Algebraic GeometryDiagonalizationDiagonalization and INinimal PolynomialsHomework \#11

Integral Domains and Rings of Fractions

Definition

An integral domain \mathbf{R} is a nonzero ring having no zero divisors. That is, if $a b=0$, then $a=0$ or $b=0$.

Example

Any subring \mathbf{R} of a field \mathbf{F} is an integral doimain.

Properties

Proposition

(1) If \mathbf{R} is an integral domain then the polynomial ring $\mathbf{R}[x]$ is also an integral domain.
(2) An integral domain with finitely many elements is a field.

Proof. Class proof.

Embedding

Theorem

Let \mathbf{R} be an integral domain. There exists an embedding of \mathbf{R} into a field, meaning an injective homomorphism $\varphi: \mathbf{R} \rightarrow \mathbf{F}$, where \mathbf{F} is a field.

Proof. We are going to build fractions with the elements of \mathbf{R}.

- Let S be the set of all ordered pairs $(a, b), a, b \in \mathbf{R}, b \neq 0$. Define the following relation on S :

$$
(a, b) \simeq(c, d) \Leftrightarrow a d=b c
$$

- Claim: \simeq is an equivalence relation. reflexive: $(a, b) \simeq(a, b)$ clear symmetric: $(a, b) \simeq(c, d) \Leftrightarrow(c, d) \simeq(a, b)$ transitive: $(a, b) \simeq(c, d) \simeq(e, f) \Rightarrow$

$$
a d=b c, c f=d e \Rightarrow a d f=b c f b c f=b d e \Rightarrow a f=b e
$$

Field of fractions

Let \mathbf{F} be the set of equivalence classes. We denote the equivalence of (a, b) by a / b.

- We define a field structure on \mathbf{F} by the rules:

$$
(a / b)(c / d)=a c / b d, \quad a / b+c / d=\frac{a d+b c}{c d}
$$

- It must be verified that these definitions do not depend on the representative taken, for instance, if $a / b=a^{\prime} / b^{\prime}$, then $(a / b)(c / d)=\left(a / b^{\prime}\right)(c / d)$. We believe!
- With these rules, \mathbf{F} is a field. For instance, if a / b is such that $a \neq 0$, then $(a / b)^{-1}=(b / a)$.
- Finally, define $\varphi: \mathbf{R} \rightarrow \mathbf{F}$ by the rule $\varphi(a)=a / 1$. It is easy to verify that φ is an injective homomorphism.

Examples

- What are fractions in \mathbb{Q} ?
- $\mathbb{Z} \rightarrow \mathbb{Q}$
- $\mathbb{R}[x] \rightarrow \mathbb{R}(x): \frac{p(x)}{q(x)}$

Class Exercise

Proposition

Let \mathbf{R} be an integral domain, with field of fractions \mathbf{F}, and let $\varphi: \mathbf{R} \rightarrow \mathbf{K}$ be an injective homomorphism of \mathbf{R} to the field \mathbf{K}.
Then the rule

$$
\Phi(a / b)=\varphi(a) \varphi(b)^{-1}
$$

defines the unique extension of φ to a homomorphism $\Phi: \mathbf{F} \rightarrow \mathbf{K}$.

Outline

Rings(2) Integers and Polynomials
(3) Homomorphisms
(4) Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions

6 Homework \#10Maximal Ideals
8 Noetherian Rings
(9) Alaebraic Geometry
(10) Diagonalization
(11) Diagonalization and Minimal Polynomials

12 Homework \#11

Homework \#10

(1) If \mathbf{R} is a Boolean ring, prove that every finitely generated ideal $/$ is generated by one element.
(2) If \mathbf{R} is a finite Boolean ring, $|\mathbf{R}|=2^{n}$, for some integer n. Hint: For each $\boldsymbol{e} \in \mathbf{R}$, show that $\mathbf{R}=\mathbf{R e} \times \mathbf{R}(1-e)$. Note that $\mathbf{R e}$ is a Boolean ring with identity e.
(3) Prove that if \mathbf{R} is a finite integral domain then:

- \mathbf{R} is a field;
- \mathbf{R} contains a subfield \mathbb{Z}_{p}, for some prime p;
- $|\mathbf{R}|=p^{n}$
(4) Let $\mathbf{R}_{1}, \mathbf{R}_{2}$ be two rings. Describe the ideals of $\mathbf{R}_{1} \times \mathbf{R}_{2}$ in terms of the ideals of \mathbf{R}_{1} and \mathbf{R}_{2}.

Outline

Rings(2) Integers and Polynomials

3 Homomorphisms
(4) Quotient rings and relations in a ring
(5) Integral Domains and Rings of Fractions
6. Homework \#10
(7) Maximal Ideals

8 Noetherian Rings
(9) Algebraic Geometry

10 Diagonalization
(11) Diagonalization and Minimal Polynomials
(12 Homework \#11

Maximal Ideals

Definition

An ideal M is maximal if $M \neq \mathbf{R}$ but M is not contained in any ideals other than M or \mathbf{R}.

Proposition

(1) An ideal M of a ring \mathbf{R} is maximal iff $\overline{\mathbf{R}}=\mathbf{R} / M$ is a field.
(2) The zero ideal of \mathbf{R} is maximal iff \mathbf{R} is a field.

Examples

Proposition

The maximal ideals of \mathbb{Z} are the ideals (p), where p is a nonzero prime number.

Proposition

The maximal ideals of the ring $\mathbb{C}[x]$ of complex polynomials are the ideals $(\mathbf{f}(x))$ where $\mathbf{f}(x)=x-\mathbf{c}$, were $\mathbf{c} \in \mathbb{C}$.

Proof.

Let M be a maximal ideal; clearly $M \neq(0)$. We know that $\mathbb{C}[x]$ is a principal ideal ring that every ideal is generated by a single polynomial, $M=(\mathbf{f}(x))$. If $\operatorname{deg}(\mathbf{f}(x))>1$, and \mathbf{c} is a root, $\mathbf{f}(x)=(x-\mathbf{c}) \mathbf{g}(x)$.
It follows that $M \subset(x-\mathbf{c})$. Since M is maximal, $M=(x-\mathbf{c})$.

Example

Let $\mathbf{R}=\mathbb{R}[x, y]$, the ring of polynomials in two indeterminates over \mathbb{R}. Define a homomorphism

$$
\varphi: \mathbf{R} \rightarrow \mathbb{C}, \quad x \rightarrow i, y \rightarrow i
$$

Let M be the kernel. Note that $x-y \rightarrow 0$ and $x^{2}+1 \rightarrow 0$, and $r \rightarrow r$ if $r \in \mathbb{R}$

Note that φ is surjective, so $\mathbf{R} / M \simeq \mathbb{C}$. Therefore M is maximal. Claim: $M=\left(x-y, x^{2}+1\right)$.

Example from Analysis

Let \mathbf{R} be the ring of real continuous functions on the interval $\mathbf{I}=[0,1]$. For each $\mathbf{a} \in \mathbf{I}$, the evaluation $\mathbf{f}(x) \rightarrow \mathbf{f}(\mathbf{a})$ defines a surjective homomorphism

$$
\varphi: \mathbf{R} \rightarrow \mathbb{R}
$$

The kernel is $M=\{\mathbf{f}(x): \mathbf{f}(\mathbf{a})=0\}$. Since $\mathbf{R} / M \simeq \mathbb{R}, M$ is a maximal ideal.

Now we are going to use hard analysis to prove the converse. We are going to use the fact that the interval I is compact: any covering

$$
\mathbf{I} \subset \bigcup\left(a_{i}, b_{i}\right)
$$

has a finite subcover.

Example

Theorem

For maximal ideal M of the ring \mathbf{R} of continous functions on $\mathbf{I}=[0,1]$ there is $\mathbf{a} \in \mathbf{I}$ such that $M=\{\mathbf{f}(x): \mathbf{f}(\mathbf{a})=0\}$.

Proof. Deny it. This means that for each $\mathbf{a} \in \mathbf{I}$ there is $\mathbf{f}(x) \in M$ such that $\mathbf{f}(\mathbf{a}) \neq 0$. Since $\mathbf{f}(x)$ is continuous with $\mathbf{f}(\mathbf{a}) \neq 0$, in a small interval (c, d) about $\mathbf{a}, \mathbf{f}(x) \neq 0$ for $x \in(c, d)$.

This gives rise to a covering

$$
\mathbf{I} \subset \bigcup_{i=1}^{n}\left(c_{i}, d_{i}\right)
$$

by such intervals (actually a finite collection) and functions $\mathbf{f}_{i}(x) \in M$ nonvanishing on $\left(c_{i}, d_{i}\right)$.

Consider the function

$$
\mathbf{f}(x)=\sum_{i=1}^{n} \mathbf{f}_{i}(x)^{2}
$$

$\mathbf{f} \in M$ and does not vanish anywhere in \mathbf{I}. This implies that
$1 / \mathbf{f}(x) \in \mathbf{R}$, and therefore $1=(1 / \mathbf{f}(x)) \mathbf{f}(x) \in M$, a contradiction.

Prime Ideals

Definition

Let R be a commutative ring. An ideal P of R is prime if $P \neq R$ and whenever $a \cdot b \in P$ then $a \in P$ or $b \in P$.

Equivalently:

- R / P is an integral domain
- If I and J are ideals and $I \cdot J \subset P$ then $I \subset P$ or $J \subset P$

Prime ideals and homomorphisms

Prime ideals arise in issues of factorization and very importantly:

Proposition

Let $\varphi: R \rightarrow S$ be a homomorphism of commutative ring. If S is an integral domain, then $P=\operatorname{ker}(\varphi)$ is a prime ideal. More generally, if S is an arbitrary commutative ring and Q is a prime ideal, then $P=\varphi^{-1}(Q)$ is a prime ideal of R.

Proof. Inspect the diagram

Exercise

Consider the homomorphism of rings

$$
\begin{aligned}
\varphi: k[x, y, z] & \rightarrow k[t] \\
x & \rightarrow t^{3} \\
y & \rightarrow t^{4} \\
z & \rightarrow t^{5}
\end{aligned}
$$

Let P be the kernel of this morphism. Note that $x^{3}-y z, y^{2}-x z$ and $z^{2}-x^{2} y$ lie in P.

Task: Prove that P is generated by these 3 polynomials.
Task: Describe the prime ideals of the ring

$$
R=\mathbb{C}[x, y] /\left(y^{2}-x(x-1)(x-2)\right) .
$$

Significance: Prime and Maximal Ideals

These ideals give rise to new interesting rings:

- Prime ideals are significant because: R / P is a domain
- Maximal ideals are significant because: R / P is a field
- In particular maximal ideals are prime

Prospecting for prime ideals

Let \mathbf{R} be a ring. Given a proper ideal I, how to add something to it an still get a proper ideal?

- If $a \notin I$, add a to I, which means form all $r a+s, r \in \mathbf{R}, s \in I$.
- This ideal, (a, l), may be improper, $(a, l)=\mathbf{R}$, that is we have a term $r a+s=1$. Hard to predict.

A theorem for believers

Theorem

Let \mathbf{R} be a ring. Every ideal I of \mathbf{R} which is not the unit ideal is contained in a maximal ideal.

How we are going to do this?
Proof. [?]

- Let / be an ideal. If / is maximal, we are done.
- If not, there is a larger proper ideal $I \subset l_{1}$. If l_{1} is maximal,...
- In this manner we get a chain of proper ideals $I \subset I_{1} \subset \cdots \subset I_{n} \subset$
- Observation: $\bigcup_{n} I_{n}$ is a proper ideal-obviously closed under addition, multiplication and 1 is not in the union. What else can we do?

Zorn Lemma

This is an extra axiom which when added to the more common common axioms of mathematics asserts:

Any subset \mathbf{Y} of a partially ordered set \mathbf{X} such the chains of elements of \mathbf{Y} have a supremum has maximal elements

Outline

Rings(2) Integers and Polynomials
Homomorphisms
Quotient rings and relations in a ring
(5) Integral Domains and Rings of FractionsHomework \#10Maximal Ideals
(8) Noetherian Rings
(9) Algebraic GeometryDiagonalization
(1) Diagonalization and Minimal Polynomials
(12) Homework \#11

Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg

Noetherian Rings

Definition

\mathbf{R} is a Noetherian if every ascending chain of ideals is stationary, that is $A_{n}=A_{n+1}=\ldots$ from a certain point on.

Definition

The ring \mathbf{R} has the Maximal Condition if every subset S of the X (set of ideals ordered by inclusion) contains a maximum submodule

Example

Let $\mathbf{R}=\mathbb{Z}$: a chain of ideals

$$
\left(a_{1}\right) \subset\left(a_{2}\right) \subset \cdots \subset\left(a_{n}\right)
$$

means a sequenc of integers $a_{2}\left|a_{1}, a_{3}\right| a_{2}, \ldots$, each dividing the preceding, in a process that must stop. The same argument applies of the ring $\mathbf{R}=\mathbf{F}[x]$, where \mathbf{F} is a field.

Proposition

\mathbf{R} is a Noetherian ring iff \mathbf{R} has the Maximal Condition.
Proof. Let S be a set of ideals of \mathbf{R}. If S contains no maximal element, we can build an ascending chain

$$
A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{n} \subsetneq \cdots
$$

contradicting the assumption that \mathbf{R} is Noetherian. The converse has a similar proof.

Proposition

\mathbf{R} is Noetherian iff every ideal is finitely generated.
Proof. Suppose R is Noetherian. Let us deny. Let A be an ideal of \mathbf{R} and assume it is not finitely generated. It would permit the construction of an increasing sequence of submodules of A,

$$
\left(a_{1}\right) \subset\left(a_{1}, a_{2}\right) \subset \cdots \subset\left(a_{1}, a_{2}, \ldots, a_{n}\right) \subset \cdots,
$$

$a_{n+1} \in A \backslash\left(a_{1}, \ldots, a_{n}\right)$.
Conversely if $A_{1} \subseteq A_{2} \subseteq \cdots$ is an increasing sequence of ideals, let $B=\cup_{i \geq 1} A_{i}$ is an ideal and therefore $B=\left(b_{1}, \ldots, b_{m}\right)$. Each $b_{i} \in A_{n_{i}}$ for some n_{i}. If $n=\max \left\{n_{i}\right\}, A_{n}=A_{n+1}=\cdots$.

Hilbert Basis Theorem

Theorem (HBT)

If R is Noetherian then $R[x]$ is Noetherian.
(1) If R is Noetherian and x_{1}, \ldots, x_{n} is a set of independent indeterminates, then $R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.
(2) $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.
(3) If k is a field, then $k\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.

Proof of the HBT

Suppose the $R[x]$-ideal / is not finitely generated. Let $0 \neq f_{1}(x) \in I$ be a polynomial of smallest degree,

$$
f_{1}(x)=a_{1} x^{d_{1}}+\text { lower degree terms. }
$$

Since $I \neq\left(f_{1}(x)\right)$, let $f_{2}(x) \in \backslash\left(f_{1}(x)\right)$ of least degree. In this manner we get a sequence of polynomials

$$
\begin{gathered}
f_{i}(x)=a_{i} x^{d_{i}}+\text { lower degree terms }, \\
f_{i}(x) \in ハ \backslash\left(f_{1}(x), \ldots, f_{i-1}(x)\right), \quad d_{1} \leq d_{2} \leq d_{3} \leq \ldots
\end{gathered}
$$

Set $J=\left(a_{1}, a_{2}, \ldots,\right)=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \subseteq R$

Let $f_{m+1}(x)=a_{m+1} x^{d_{m+1}}+$ lower degree terms. Then

$$
a_{m+1}=\sum_{i=1}^{m} s_{i} a_{i}, \quad s_{i} \in R .
$$

Consider

$$
\mathbf{g}(x)=f_{m+1}-\sum_{i=1}^{m} s_{i} x^{d_{m+1}-d_{i}} f_{i}(x)
$$

$\mathbf{g}(x) \in I \backslash\left(f_{1}(x), \ldots, f_{m}(x)\right)$, but $\operatorname{deg} \mathbf{g}(x)<\operatorname{deg} f_{m+1}(x)$, which is a contradiction.

Examples

- \mathbb{Z} is Noetherian, so is $\mathbf{R}=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- A field \mathbf{F} is Noetherian, so is $\mathbf{R}=\mathbf{F}\left[x_{1}, \ldots, x_{n}\right]$
- \mathbf{A} is Noetherian, so is $\mathbf{R}=\mathbf{A}\left[x_{1}, \ldots, x_{n}\right] /$ I

Power Series Rings

Another construction over a ring R is that of the power series ring $R[[x]]$:

$$
\mathbf{f}(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \mathbf{g}(x)=\sum_{n \geq 0} b_{n} x^{n}
$$

with addition component wise and multiplication the Cauchy operation

$$
\begin{aligned}
\mathbf{f}(x) \mathbf{g}(x)=\mathbf{h}(x) & =\mathbf{h}(x)=\sum_{n \geq 0} c_{n} x^{n} \\
c_{n} & =\sum_{i+j=n} a_{i} b_{n-i}
\end{aligned}
$$

Theorem

If R is Noetherian then $R[[x]]$ is Noetherian.

Proposition

A commutative ring R is Noetherian iff every prime ideal is finitely generated.

Proof. If R is not Noetherian, there is an ideal I maximum with the property of not being finitely generated (Zorn's Lemma). We assume I is not prime, that is there exist $a, b \notin I$ such that $a b \in I$.

The ideals (I, a) and I : a are both larger than I and therefore are finitely generated:

$$
\begin{aligned}
(I: a) & =\left(a_{1}, \ldots, a_{n}\right) \\
(I, a) & =\left(b_{1}, \ldots, b_{m}, a\right), \quad b_{i} \in I
\end{aligned}
$$

Claim: $I=\left(b_{1}, \ldots, b_{m}, a a_{1}, \ldots, a a_{n}\right)$
If $c \in I$,

$$
c=\sum_{i=1}^{m} c_{i} b_{i}+r a, \quad r \in I: a
$$

$R[[x]]$ is Noetherian

Proof. Let P be a prime ideal of $R[[x]]$. Set $\mathfrak{p}=P \cap R$. \mathfrak{p} is a prime ideal of R and therefore it is finitely generated.

Denote by $\mathfrak{p}[[x]]=\mathfrak{p} R[[x]]$ the ideal of $R[[x]]$ generated by the elements of \mathfrak{p}. It consists of the power series with coefficients in \mathfrak{p} and $R[[x]] / \mathfrak{p}[[x]]$ is the power series ring $R / \mathfrak{p}[[x]]$.
We have the embedding

$$
P^{\prime}=P / \mathfrak{p}[[x]] \hookrightarrow(R / \mathfrak{p})[[x]]
$$

P^{\prime} is a prime ideal of $R / \mathfrak{p}[[x]]$ and $P^{\prime} \cap R / \mathfrak{p}=0$. It will suffice to show that P^{\prime} is finitely generated.

We have reduced the proof to the case of a prime ideal $P \subset R[[x]]$ and $P \cap R=(0)$.

If $x \in P, P=(x)$ and we are done.
For $\mathbf{f}(x)=a_{0}+a_{1} x+\cdots \in P$, let $J=\left(b_{1}, \ldots, b_{m}\right) \subset R$ be the ideal generated by all a_{0},

$$
\mathbf{f}_{i}=b_{i}+\text { higher terms } \in P
$$

Claim: $P=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$.
From $a_{0}=\sum_{i} s_{i}^{(0)} b_{i}$, we write

$$
\mathbf{f}(x)-\sum_{i} s_{i}^{(0)} \mathbf{f}_{i}=x \mathbf{h} \quad \Rightarrow \mathbf{h} \in P .
$$

We repeat with \mathbf{h} and write

$$
\mathbf{f}(x)=\sum_{i} s_{i}^{(0)} \mathbf{f}_{i}+x \sum_{i} s_{i}^{(1)} \mathbf{f}_{i}+x^{2} \mathbf{g}, \quad \mathbf{g} \in P
$$

Iterating we obtain

$$
\mathbf{f}(x)=\sum_{i}\left(s_{i}^{(0)}+s_{i}^{(1)} x+s_{i}^{(2)} x^{2}+\cdots\right) \mathbf{f}_{i} .
$$

Outline

Rings(2) Integers and Polynomials
Homomorphisms
Quotient rings and relations in a ringIntegral Domains and Rings of FractionsHomework \#10Maximal Ideals
(Noetherian Rings
(9) Algebraic GeometryDiagonalization
(11) Diagonalization and Minimal Polynomials

12 Homework \#11

What is Algebraic Geometry?

Needs lots of space [it is, in fact, about Space] to describe all it is about.

David Hilbert (1862-1943)

And modest too...
"Physics is much too hard for physicists." - Hilbert, 1912

Do polynomials have roots?

Let $\mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)$ be a nonconstant polynomial of $R=\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], n>1$.

Fact: There is $\mathbf{c} \in \mathbb{C}^{n}$ such that $\mathbf{f}(\mathbf{c})=0$.
The answer is easy when

$$
\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=x_{n}^{d}+\mathbf{g}\left(x_{1}, \ldots, x_{n}\right),
$$

where $\mathbf{g}(\mathbf{x})$ is a polynomial of degree $<d$ in the variable x_{n}. For example: Discuss

$$
x^{6}+y x^{5}+y^{8}+1
$$

More generally, let $\mathbf{f}_{1}(\mathbf{x}), \ldots, \mathbf{f}_{m}(\mathbf{x})$ be a set of elements of $R=\mathbb{C}[\mathbf{x}]$.

Question: What are the obstructions to finding $\mathbf{c} \in \mathbb{C}^{n}$ such that

$$
\mathbf{f}_{1}(\mathbf{c})=\mathbf{f}_{2}(\mathbf{c})=\cdots=\mathbf{f}_{m}(\mathbf{c})=0 \text { ? }
$$

Obviously one is: there exist $\mathbf{g}_{1}(\mathbf{x}), \ldots, \mathbf{g}_{m}(\mathbf{x})$ such that

$$
\mathbf{g}_{1}(\mathbf{x}) \mathbf{f}_{1}(\mathbf{x})+\cdots+\mathbf{g}_{m}(\mathbf{x}) \mathbf{f}_{m}(\mathbf{x})=1
$$

What else?

Volunteer!

- Sketch the graph of the equation

$$
y^{2}=x(x-1)(x-2)
$$

- Can you see a group in the graph?

Hilbert Nullstellensatz

Let k be a field and denote by \bar{k} its algebraic closure. (What are these? Like \mathbb{R} and \mathbb{C}) We stay with \mathbb{C}.
The Hilbert Nullstellensatz is about qualitative results on systems of polynomial equations.
Let $\mathbf{f}_{i}\left(x_{1}, \ldots, x_{n}\right) \in R=k\left[x_{1}, \ldots, x_{n}\right], 1 \leq i \leq m$, be a set of polynomials.

Definition

The algebraic variety defined by the \mathbf{f}_{i} is the set of zeros

$$
V\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)=\left\{\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}: \mathbf{f}_{i}(\mathbf{c})=0, \quad 1 \leq i \leq m\right\} .
$$

A hypersurface is a variety defined by a single equation $V(\mathbf{f})$. If l is the ideal generated by the f_{i}, then the variety defined by I is $V(I)=V\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$.

Notes about \mathbb{C}

- \mathbb{C} is a two-dimensional vector space over \mathbb{R}
- If $\mathbb{C} \subset \mathbf{F}$ is a field that is of finite dimension over \mathbb{C}, obviously it is of (double) finite dimension over \mathbb{R}
- This means that if $u \in \mathbf{F}$, the vector subspace spanned by the powers of u,

$$
1, u, u^{2}, \ldots,
$$

is finite dimensional over \mathbb{R} and thus there must be a polyonomial $\mathbf{f}(x) \in \mathbb{R}[x]$ such that $\mathbf{f}(u)=0$. This will imply $u \in \mathbb{C}$-that is \mathbb{C} is algebraically closed

The field extensions of \mathbb{C},

$$
\mathbb{C} \rightarrow \mathbf{F}
$$

have the property

- If $u \in \mathbf{F}$ satisfies an equation

$$
\mathbf{f}(u)=0,
$$

$u \in \mathbb{C}$

- Otherwise u said to be transcendental over \mathbb{C}. This is the case for every nonconstant

$$
u=\frac{\mathbf{f}(x)}{\mathbf{g}(x)} \in \mathbb{C}(x)
$$

Hilbert Nullstellensatz

Theorem

If the ideal $I \subset R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is proper, i.e. $I \neq R$, then $V(I) \neq \emptyset$-that is, if $I \neq R$, there is \mathbf{c} such that $\mathbf{f}(\mathbf{c})=0$ for all $\mathbf{f} \in I$.

Proof. We make two reductions.
(1) Let \mathfrak{m} be a maximal ideal of R containing I. Since $V(\mathfrak{m}) \subset V(I)$, ETA that I is maximal.
(2) Indeed, if $\mathbf{c} \in \mathbb{C}^{n}$ is such that $\mathbf{f}(\mathbf{c})=0$ for all $\mathbf{f}(\mathbf{x}) \in \mathfrak{m}$, then $\mathbf{g}(\mathbf{c})=0$ for all $\mathbf{g} \in I \subset \mathfrak{m}$.

Nullstellensatz

After these reductions the assertion is:

Theorem

If M is a maximal ideal of $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, then there is

$$
\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}
$$

such that

$$
\mathbf{f}(\mathbf{c})=0 \quad \forall \mathbf{f}(\mathbf{x}) \in M .
$$

Special case: \mathbb{C}

Consider the field $\mathbf{F}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M$.

Proposition

It is ETS that \mathbf{F} is isomorphic to \mathbb{C}.

Proof. Indeed, if $\mathbf{F} \simeq \mathbb{C}$, for each indeterminate x_{i} its equivalence class in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M$ contains some element c_{i} of \mathbb{C}, that is $x_{i}-c_{i} \in M$. this means that

$$
\left(x_{1}-c_{1}, \ldots, x_{n}-c_{n}\right) \subset M .
$$

But $\left(x_{1}-c_{1}, \ldots, x_{n}-c_{n}\right)$ is also a maximal ideal, therefore it is equal to M. Clearly every polynomial of M vanishes at $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$.

Proof of $\mathbb{C}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M$

(1) ETS that the extension $\mathbb{C} \rightarrow \mathbf{F}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M$ is algebraic.
(2) Observe that $[\mathbf{F}: \mathbb{C}]$, the dimension of \mathbf{F} as a vector space over \mathbb{C}, is countable, \mathbf{F} being a homomorphic image of the countably generated vector space $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(3) If \mathbf{F} is not algebraic over \mathbb{C}, suppose $t \in \mathbf{F}$ is transcendental over \mathbb{C}.
(4) Consider the uncountable set $\{1 /(t-c), c \in \mathbb{C}\}$.

Since they cannot be linearly independent, there are distinct c_{i}, $1 \leq i \leq m$ and nonzero $r_{i} \in \mathbb{C}$ such that

$$
r_{1} \frac{1}{t-c_{1}}+\cdots+r_{m} \frac{1}{t-c_{m}}=0 .
$$

Clearing denominators gives the equality of two polynomials of $\mathbb{C}[t]$:

$$
r_{1}\left(t-c_{2}\right)\left(t-c_{3}\right) \cdots\left(t-c_{m}\right)=\left(t-c_{1}\right) \mathbf{g}(t),
$$

which is a contradiction as the c_{i} are distinct.

Comaximal ideals

Definition

Two ideals I and J of a ring \mathbf{R} are comaximal if

$$
I+J=\mathbf{R} .
$$

Example

$\mathbf{R}=\mathbb{Z}, I=(6), J=(35)$, then $I+J=\mathbb{Z}$.

Partition of the Unity

If \mathbf{R} is a commutative ring, a partition of the unity is an special decomposition of the form

$$
R=J_{1}+\cdots+J_{n}, \quad J_{i} \text { ideals of } R
$$

Suppose I_{1}, \ldots, I_{n} is a set of a ideals that is pairwise co-maximal, meaning $I_{i}+l_{j}=R$, for $i \neq j$. This obviously is a partition of the unity.

Another arises from it [check!] if we set $J_{i}=\prod_{j \neq i} I_{j}$

$$
R=J_{1}+\cdots+J_{n}, \quad J_{i} \text { ideals of } R
$$

Chinese Remainder Theorem

Theorem

If $I_{i}, i \leq n$, is a family of ideals that is pairwise co-maximal, then for $I=I_{1} \cap I_{2} \cap \cdots \cap I_{n}$ there is an isomorphism

$$
R / I \approx R / I_{1} \times \cdots \times R / I_{n} .
$$

Proof. Set $J_{i}=\prod_{j \neq i} l_{j}$. Note that $I_{i}+J_{i}=R$. Since $J_{1}+\cdots+J_{n}=R$, there is an equation

$$
1=a_{1}+\cdots+a_{n}, \quad a_{i} \in J_{i}
$$

Note that for each $i, a_{i} \cong 1 \bmod I_{i}$. Define a mapping \mathbf{h} from R to $R / I_{1} \times \cdots \times R / I_{n}$, by $\mathbf{h}(x)=\left(\overline{x a_{1}}, \ldots, \overline{x a_{n}}\right)$. We claim that \mathbf{h} is a surjective homomorphism of kernel l.

Proof Cont’d

(1) Since $a_{i} \cong 1 \bmod l_{i}$,

$$
\mathbf{h}(x)=\left(\overline{x a_{1}}, \ldots, \overline{x a_{n}}\right)=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

which is clearly a homomorphism.
(2) The kernel consists of the x such that $\bar{x}_{i}=0$ for each i, that is $x \in l_{i}$ for each i-that is, $x \in I$.
(3) To prove \mathbf{h} surjective, for $u=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$, setting

$$
x=x_{1} a_{1}+\cdots+x_{n} a_{n}
$$

gives $\mathbf{h}(x)=u$.

Example

How ancient astronomers calculated 1° : That is, how to divide the circle by 360.

- $360=8 \times 9 \times 5$: primary decomposition.
- The numbers 72,40 and 45 have no common factor, so form a partition of the 1 :

$$
1=5 \times 45-2 \times 72-2 \times 40
$$

$$
\frac{1}{360}=\frac{5}{8}-\frac{2}{5}-\frac{2}{9}
$$

Outline

Rings(2) Integers and Polynomials
(4) Quotient rings and relations in a ringIntegral Domains and Rings of FractionsHomework \#10Maximal Ideals
8 Noetherian Rings
(9) Algebraic Geometry
(10) Diagonalization
(11) Diagonalization and Minimal Polynomials
(12 Homework \#11

GCD of polynomials

If $f(x)$ and $g(x)$ are polynomials in $\mathbf{F}[x]$, the greatest common divisor is the monic polynomial of highest degree $h(x)$ that divides $f(x)$ and $g(x)$

$$
\operatorname{gcd}(f(x), g(x))=h(x)
$$

For example,

$$
\operatorname{gcd}\left((x-1)^{3}(x-2)^{2},(x-1)(x-2)^{4}\right)=(x-1)(x-2)^{2} .
$$

An elementary, but very useful fact, is that long division provides an effective method to find gcds.

Proposition

A polynomial $f(x) \in \mathbb{R}[x]$ of degree $f(x) \geq 1$ has multiple roots if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right) \neq 1$.

Thus, while it is hard to find the roots of a polynomial $f(x)$, it is easy to determine whether it has multiple roots!
The explanation is very simple: If $f(x)$ has a root of algebraic multiplicity m,

$$
f(x)=(x-a)^{m} g(x), \quad g(a) \neq 0
$$

its derivative

$$
f^{\prime}(x)=m(x-a)^{m-1} g(x)+(x-a)^{m} g^{\prime}(x)
$$

has a as a root with multiplicity $m-1$. This implies that $(x-a)^{m-1}$ is a common factor of $f(x)$ and $f^{\prime}(x)$, and therefore will be a factor of $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$.
(1) If $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$, then $f(x)$ has no repeated (complex) roots.
(2) Suppose $f(x)$ is the characteristic polynomial of a 3-by-3 complex matrix \mathbf{A}, and we must decide whether it is diagonalizable.What to do?
(1) If $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$, by the discussion above the roots are distinct, and we are done: \mathbf{A} is diagonalizable.
(2) If there is a double root a and a single root b, $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=(x-a)$. We check the dimension of the eigenspace E_{a}, if $\operatorname{dim} E_{a}=2$, ok, otherwise not diagonalizable.
(3) If a is a triple root, $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=(x-a)^{2}$. Again we check whether $\operatorname{dim} E_{a}=3$.

Long division

Recall the long division algorithm for polynomials in $\mathbf{F}[x]$: If $f(x), g(x) \neq 0$ are polynomials, there exist polynomials $q(x), r(x)$ such that

$$
f(x)=q(x) g(x)+r(x), \quad r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

Look at a consequence:

$$
\operatorname{gcd}(f(x), g(x))=\operatorname{gcd}(g(x), r(x))
$$

since any polynomial $p(x)$ that divides (both) $f(x), g(x)$ will divide $g(x), r(x)$, and conversely. Note that the data of $g(x), r(x)$ has lower degrees, so we can turn this into an algorithm:

gcd algorithm

Starting at

$$
f(x)=q(x) g(x)+r(x)
$$

(1) Iterating, if $r(x) \neq 0$ and we divide $g(x)=q_{1}(x) r(x)+r_{1}(x)$, then any polynomial $p(x)$ that divides (both) $f(x), g(x)$ will divide $r(x), r_{1}(x)$, and conversely.
(2) Since deg $g(x)>\operatorname{deg} r(x)>\operatorname{deg} r_{1}(x)>\cdots$, ultimately we shall have $r_{n-1}(x)=q_{n-1}(x) r_{n}(x), \quad r_{n}(x) \neq 0$.
(3) $r_{n}(x)$ is (a) largest degree polynomial that divides both $f(x)$ and $g(x)$, and any such polynomial will divide $r_{n}(x)$.

Theorem

If $r_{n}(x)$ is the last nonzero remainder in the sequence of long divisions, then $r_{n}(x)$ divides $f(x)$ and $g(x)$. Moreover, there exist polynomials $a(x), b(x)$ such that

$$
r_{n}(x)=a(x) f(x)+b(x) g(x)
$$

$r_{n}(x)$ is called the (a) GCD of $f(x)$ and $g(x)$.
Proof: For simplicity suppose $n=2$, so we have the divisions

$$
\begin{aligned}
f & =q g+r, \quad g=q_{1} r+r_{1}, \quad r=q_{2} r_{1}+r_{2}, \quad, r_{1}=q_{3} r_{2} \\
r_{2} & =r-q_{2} r_{1}=r-q_{2}\left(g-q_{1} r\right)=r\left(1+q_{2} q_{1}\right)-q_{2} g \\
& =(f-q g)\left(1+q_{2} q_{1}\right)-q_{2} g
\end{aligned}
$$

Now we collect the coefficient of f-it will be $a(x)$-and of g-it will be $b(x): \operatorname{gcd}(f, g)=a(x) f(x)+b(x) g(x)$

We are now going to apply these observations to the characteristic polynomial $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$ of a matrix \mathbf{A}, whose eigenvalues λ_{i} exist in the field \mathbf{F}. Note for $\mathbf{F}=\mathbb{C}$, this is the case for all matrices.
Underlying the following discussion is the assumption that

$$
p(x)= \pm \prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{m_{i}}
$$

(1) If $f(x)=(x-\lambda)^{m}, g(x)=(x-\mu)^{n}$ and $\lambda \neq \mu$ are different scalars, then $\operatorname{gcd}(f(x), g(x))=1$, this means that there is a (decomposition) $1=a(x) f(x)+b(x) g(x)$.
(2) Consider now the case of the 3 polynomials,
$f(x)=\left(x-\lambda_{1}\right)^{m}\left(x-\lambda_{2}\right)^{n}, g(x)=\left(x-\lambda_{1}\right)^{m}\left(x-\lambda_{3}\right)^{p}, h(x)=\left(x-\lambda_{2}\right)^{n}(x-\lambda$
where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct. Note that

$$
\begin{aligned}
\operatorname{gcd}(f, g) & =\left(x-\lambda_{1}\right)^{m} \\
\operatorname{gcd}(f, h) & =\left(x-\lambda_{2}\right)^{n} \\
\operatorname{gcd}(g, h) & =\left(x-\lambda_{3}\right)^{p} \\
\operatorname{gcd}(f, g, h) & =\operatorname{gcd}\left(\left(x-\lambda_{1}\right)^{m}, h\right)=1
\end{aligned}
$$

(3) These equations, will imply that we have an equality

$$
1=a(x) f(x)+b(x) g(x)+c(x) h(x)
$$

Suppose the characteristic polynomial of \mathbf{T} has a decomposition

$$
\operatorname{det}(x \mathbf{I}-\mathbf{T})=(x-a)^{m}(x-b)^{n}(x-c)^{p} .
$$

The polynomials $\mathbf{f}(x)=(x-b)^{n}(x-c)^{p}$, $\mathbf{g}(x)=(x-a)^{m}(x-c)^{p}, \mathbf{h}(x)=(x-a)^{m}(x-b)^{n}$, have $\mathrm{gcd}=1$ as they have no common divisor. According to the observation above, we have an equality

$$
1=A(x) \mathbf{f}(x)+B(x) \mathbf{g}(x)+C(x) \mathbf{h}(x)
$$

Evaluating $x \rightarrow \mathbf{T}$ gives the equality

$$
\mathbf{I}=A(\mathbf{T}) \mathbf{f}(\mathbf{T})+B(\mathbf{T}) \mathbf{g}(\mathbf{T})+C(\mathbf{T}) \mathbf{h}(\mathbf{T})
$$

Applying to an arbitrary vector \mathbf{v} we have

$$
\begin{gathered}
\mathbf{v}=\mathbf{l}(\mathbf{v})=\underbrace{A(\mathbf{T})(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{T}-\mathbf{l})^{p}(\mathbf{v})}_{v_{1}}+\underbrace{B(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}(\mathbf{T}-c \mathbf{l})^{p}(\mathbf{v})}_{v_{2}} \\
+\underbrace{C(\mathbf{T})(\mathbf{T}-\mathrm{al})^{m}(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{v})}_{v_{3}} \\
\quad \mathbf{v}=v_{1}+v_{2}+v_{3}
\end{gathered}
$$

$$
(\mathbf{T}-\mathbf{a l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{T}-c \mathbf{l})^{p}(v)=0
$$

by Cayley-Hamilton. This says that every vector \mathbf{v} is a sum of vectors in K_{a}, K_{b} and K_{c}. It is also easy to see that v_{1}, v_{2}, v_{3} are linearly independent.

Chinese Remainder Theorem

Theorem

Let $f_{1}(x), \ldots, f_{m}(x)$ be polynomials of $\mathbf{F}[x]$. If $g(x)=\operatorname{gcd}\left(f_{1}(x), \ldots, f_{m}(x)\right)$ there are polynomials $a_{i}(x)$ such that

$$
g(x)=a_{1}(x) f_{1}(x)+\cdots+a_{m}(x) f_{m}(x) .
$$

Let \mathbf{T} be a linear operator on the finite-dimensional vector space V. Suppose its characteristic polynomial $\operatorname{det}(\mathbf{T}-x \mathbf{I})$ splits:

$$
f(x)= \pm \prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{n_{i}}, \quad \text { distinct } \lambda_{i} .
$$

For each i, setting $f_{i}(x)=\frac{f(x)}{\left(x-\lambda_{i}\right)^{n_{i}}}$, gives us a collection $f_{1}(x), \ldots, f_{m}(x)$ of $\operatorname{gcd}=1: \ln$

$$
1=a_{1}(x) f_{1}(x)+\cdots+a_{m}(x) f_{m}(x)
$$

$$
\mathbf{I}=a_{1}(\mathbf{T}) f_{1}(\mathbf{T})+\cdots+a_{m}(\mathbf{T}) f_{m}(\mathbf{T})
$$

Now we are going to make several observations about this decomposition.
(1) The range of $f_{i}(\mathbf{T})$ is contained in the generalized eigenspace $K_{\lambda_{i}}$:If $u=f_{i}(\mathbf{T})(v)$,

$$
\left(\mathbf{T}-\lambda_{i}\right)^{n_{i}} f_{i}(\mathbf{T})(v)=f(\mathbf{T})(v)=0
$$

since by the Cayley-Hamilton theorem $f(\mathbf{T})=0$.
(2) For every $v \in \mathbf{V}$

$$
v=\mathbf{I}(v)=\overbrace{a_{1}(\mathbf{T}) f_{1}(\mathbf{T})(v)}^{\epsilon K_{\lambda_{1}}}+\cdots+\overbrace{a_{m}(\mathbf{T}) f_{m}(\mathbf{T})(v)}^{\in K_{\lambda_{m}}}
$$

Generalized eigenvectors and eigenspaces

- If \mathbf{T} is a linear operator of the vector space \mathbf{V} and λ is a scalar, a nonzero vector $v \in \mathbf{V}$ is a generalized eigenvector of \mathbf{T} if $(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O$ for some positive integer p. We denote this set, together with the vector O, by $K_{\lambda} . K_{\lambda}$ is usually bigger than the eigenspace E_{λ}.
- In fact,

$$
\mathbf{V}=\bigoplus_{i} K_{\lambda_{i}},
$$

in particular, \mathbf{V} has a basis made up of generalized eigenvectors.

This representation says that every vector $v \in \mathbf{V}$ can be written as

$$
v=v_{1}+\cdots+v_{m}, \quad v_{i} \in K_{\lambda_{i}}
$$

Since we already proved that $\operatorname{dim} K_{\lambda_{i}} \leq n_{i}$, the algebraic multiplicity of λ_{i}, this equality proves equality of the dimensions. It can be written as

$$
\mathbf{V}=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{m}},
$$

and the matrix representation of \mathbf{T} has the block format (after picking bases of the $K_{\lambda_{i}}$'s)

$$
[\mathbf{T}]=\left[\begin{array}{rrr}
{[\mathbf{T}]_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & {[\mathbf{T}]_{m}}
\end{array}\right]
$$

What this does is to allow us to assume that the characteristic polynomial of \mathbf{T} has the form $(x-\lambda)^{n}$. We will argue that such linear operator have a matrix representation made up of Jordan blocks with the same λ. Let us look at one such $p \times p$ block

$$
\begin{gathered}
\mathbf{A}=\left[v_{1}|\cdots| v_{p}\right]=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right] \\
\underbrace{\mathbf{A}\left(v_{1}\right)=\lambda v_{1}}_{\text {eigenvector }}, \quad \mathbf{A}\left(v_{2}\right)=v_{1}+\lambda v_{2}, \cdots, \mathbf{A}\left(v_{p}\right)=v_{p-1}+\lambda v_{p}
\end{gathered}
$$

If we write these equations in the reverse order, we get

$$
\begin{aligned}
(\mathbf{A}-\lambda \mathbf{I})\left(v_{p}\right) & =v_{p-1} \\
(\mathbf{A}-\lambda \mathbf{I})^{2}\left(v_{p}\right) & =v_{p-2} \\
& \vdots \\
(\mathbf{A}-\lambda \mathbf{I})^{p-1}\left(v_{p}\right) & =v_{1} \\
(\mathbf{A}-\lambda \mathbf{I})^{p}\left(v_{p}\right) & =0
\end{aligned}
$$

Starting on v_{p} and applying $\mathbf{U}=\mathbf{A}-\lambda \mathbf{I}$ repeatedly we get all the vectors of the basis

$$
v_{p} \rightarrow v_{p-1} \rightarrow \cdots \rightarrow v_{2} \rightarrow v_{1} \rightarrow 0
$$

We will say that v_{p} is the generator of the basis, and that $\gamma=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a cycle of generalized eigenvectors, v_{1} is the initial and v_{p} the end vectors: They form a so-called dot diagram

Proposition

Let \mathbf{T} be a linear operator on the vector space V. For some scalar λ and some integer p, suppose v is a nonzero vector such that

$$
(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O, \quad(\mathbf{T}-\lambda \mathbf{I})^{p-1}(v) \neq 0 .
$$

Then the p vectors $(\mathbf{T}-\lambda \mathbf{I})^{p-1}(v), \ldots,(\mathbf{T}-\lambda \mathbf{I})(v), v$ are linearly independent. They span a T-invariant subspace W and the matrix representation of $[\mathbf{T}]_{\mathrm{w}}$ with respect to this basis is a Jordan block.

Proof: Let us denote these vectors by $v_{1}, \ldots, v_{p}=v$, respectively. Suppose we have a linear relation $c_{1} v_{1}+\cdots+c_{p} v_{p}=O$. Let us prove all $c_{i}=0$. Let us argue just one case as the general case is similar. Suppose $c_{p} \neq 0$. Apply the operator $(\mathbf{T}-\lambda \mathbf{I})^{p-1}$ to the relation to obtain

$$
\begin{gathered}
v_{i}=(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v) \\
c_{1}(\mathbf{T}-\lambda \mathbf{I})^{p-1}\left(v_{1}\right)+\cdots+c_{p} \underbrace{(\mathbf{T}-\lambda \mathbf{I})^{p-1}\left(v_{p}\right)}_{=v_{1}}=0
\end{gathered}
$$

Note that all terms vanish, except for the last. This contradicts $c_{p} \neq 0$.

The subspace \mathbf{W} clearly satisfies $\mathbf{T}(\mathbf{W}) \subset \mathbf{W}$. Finally, note that

$$
\begin{aligned}
\mathbf{T}\left(v_{i}\right) & =\mathbf{T}(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v) \\
& =(\mathbf{T}-\lambda \mathbf{I})^{p-i+1}(v)+\lambda(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v)=v_{i-1}+\lambda v_{i}
\end{aligned}
$$

which shows that the matrix representation is

$$
\left[\begin{array}{cccc}
\lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & \lambda
\end{array}\right]
$$

We come now to the crux of the problem: Given a linear operator \mathbf{T} whose characteristic polynomial is $\pm(x-\lambda)^{n}$, to prove that there is a matrix representation made up of λ-Jordan blocks (same λ)

We are going to prove the existence of such representation and the uniqueness of the number and sizes of the blocks.

Situation:

$\mathbf{T}: K_{\lambda} \rightarrow K_{\lambda}, \operatorname{dim} K_{\lambda}=n$, characteristic polynomial of \mathbf{T} is $(x-\lambda)^{n}$. The eigenspace is $E_{\lambda} \subset K_{\lambda}$.

Goal: We will show that K_{λ} has a basis

$$
\mathcal{B}=\bigcup_{i=1}^{m} \gamma_{i}
$$

where each γ_{i} is a cycle of generalized eigenvectors. The Jordan representation comes from the corresponding matrix representation. For example, if $K_{\lambda}=E_{\lambda}$, then a basis of E_{λ} gives the cycles, all of length 1, and the matrix representation is just $\lambda \mathbf{I}_{n}$.
(1) We are going to argue by induction on $n=\operatorname{dim} K_{\lambda}$. If $n=1$ (or, more generally, $K_{\lambda}=E_{\lambda}$), there is nothing to prove.
(2) Let \mathbf{Z} be the range of $\mathbf{T}-\lambda \mathbf{I}$. For simplicity of notation call this map $\mathbf{U}: K_{\lambda} \rightarrow K_{\lambda}$. Note that E_{λ} is the nullspace of \mathbf{U}, and therefore $\operatorname{dim} E_{\lambda}+\operatorname{dim} \mathbf{Z}=n$, by the dimension formula.
(3) Since $\operatorname{dim} \mathbf{Z}<n$ and the characteristic polynomial of the restriction of \mathbf{T} to \mathbf{Z} divides $(x-\lambda)^{n}$, the induction hypothesis guarantees a basis for \mathbf{Z} :

$$
\gamma^{\prime}: w,(\mathbf{T}-\lambda \mathbf{I})(w), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p-1}(w)
$$

$$
\mathcal{B}^{\prime}=\bigcup_{i=1}^{r} \gamma_{i}^{\prime}
$$

where each γ_{i}^{\prime} is a cycle of generalized eigenvectors of \mathbf{Z}. Let us consider one of these cycles γ^{\prime} :

$$
\gamma_{i}^{\prime}: w,(\mathbf{T}-\lambda \mathbf{I})(w), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p-1}(w)
$$

But w belongs to the range of $(\mathbf{T}-\lambda \mathbf{I})$, that is $w=(\mathbf{T}-\lambda \mathbf{I})(v)$, for some $v \in \mathbf{V}$. This gives a cycle of \mathbf{V} itself:

$$
\gamma_{i}: v,(\mathbf{T}-\lambda \mathbf{I})(v), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p}(v)
$$

In this manner, for every γ_{i}^{\prime} of \mathbf{Z} we get a longer cycle (by 1 more vector) of \mathbf{V}.

We recall that vector at the end of the list are the only eigenvectors and that

$$
\bigcup_{i=1}^{r} \gamma_{i}
$$

contains just r independent eigenvectors, the same set as the basis \mathcal{B}^{\prime} of \mathbf{Z}. If these eigenvectors are u_{1}, \ldots, u_{r}, add (if necessary) u_{r+1}, \ldots, u_{s} to form a basis of the eigenspace E_{λ}. Each of these u_{i} defines a new cycle γ_{i} of length $1, i>r$.

Dot Diagrams and Enlarged Cycles

- : vectors in the set \mathcal{B}^{\prime}
- : vectors added.

$\mathbf{T}-\lambda \mathbf{I}$ maps each dot to dot under. Last row is a basis of E_{λ} : it is mapped to O

Proposition (Very technical, I apologize)

The vectors in the set

$$
\mathcal{B}=\bigcup_{i=1}^{s} \gamma_{i}
$$

form a basis of V .
Proof: First let us count the number of elements of added to pass from the basis \mathcal{B}^{\prime} of \mathbf{Z} to the set \mathcal{B} of \mathbf{V} :
$r\left(1\right.$ for each of the r cycles in $\left.\mathcal{B}^{\prime}\right)+(s-r)=s=\operatorname{dim} E_{\lambda}$

Therefore cardinality of $\mathcal{B}^{\prime}+\boldsymbol{s}=\operatorname{dim} \mathbf{Z}+\boldsymbol{s}=n=\operatorname{dim} \mathbf{V}$
To prove \mathcal{B} is a basis, ETS that it spans \mathbf{V}, as they have already the right number of elements for a basis.

Let $u \in \mathbf{V}$ and consider $(\mathbf{T}-\lambda \mathbf{I})(u) \in \mathbf{Z}$. Since every vector in \mathcal{B}^{\prime} is the image under $\mathbf{T}-\lambda \mathbf{I}$ of some vector in \mathcal{B}, we can write

$$
(\mathbf{T}-\lambda \mathbf{I})(v)=\text { Linear combination of }(\mathbf{T}-\lambda \mathbf{I})\left(v_{i}\right), \quad v_{i} \in \mathcal{B} .
$$

This implies that

$$
(\mathbf{T}-\lambda \mathbf{I}) \underbrace{\left(v-\text { Linear combination of } v_{i}\right)}_{=w}=0
$$

Thus $w \in E_{\lambda}$. Since \mathcal{B} contains a basis of E_{λ}, this implies v lies in the span of \mathcal{B}.

To illustrate the uniqueness of Jordan decomposition, suppose \mathbf{T} gives rise to two different cycle decomposition for K_{λ} :

Observe that many things match: $\operatorname{dim} K_{\lambda}=12$ [number of dots, red or black], dim $E_{\lambda}=5$ (number of piles, columns). Now we are going to observe things that are off:

$$
(\mathbf{T}-\lambda \mathbf{I})^{4}(\text { any } \bullet)=0, \quad(\mathbf{T}-\lambda \mathbf{I})^{4}(\operatorname{top} \bullet) \neq 0
$$

This illustrate the argument: The number of dots at level ℓ is the dimension of the subspace of the vectors v of \mathbf{V} such that

$$
(\mathbf{T}-\lambda \mathbf{I})^{\ell}(v)=0
$$

Outline

Rings(2) Integers and Polynomials
Homomorphisms
Quotient rings and relations in a ringIntegral Domains and Rings of FractionsHomework \#10Maximal IdealsNoetherian Rings
(2) Algebraic GeometryDiagonalization
(11) Diagonalization and Minimal Polynomials
(12) Homework \#11

Diagonalization and Minimal Polynomials

Let S be the ring of $n \times n$ matrices and $\mathbf{A} \in S$. We look at \mathbf{A} as a linear transformation $\mathbf{A}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{n}$. S is a ring which as a F-vector space has dimension n^{2}.
Consider the ring homomorphism defined by the evaluation

$$
\varphi: R=\mathbf{F}[x] \rightarrow S, \quad \varphi(x)=\mathbf{A}
$$

Proposition

 $\operatorname{ker} \varphi \neq(0)$.
Proof.

φ cannot be injective since it maps the infinite dimensional vector space $\mathbf{F}[x]$ into the finite dimensional vector space S.

Minimal Polynomial

By the theorem about the ideals of $\mathbf{F}[x], \operatorname{ker}(\varphi)=(m(x))$. For convenience we pick $m(x)$ as monic.
Thus, given a square matrix \mathbf{A}, there are polynomials $\mathbf{f}(x)$ such that

$$
\mathbf{f}(\mathbf{A})=0
$$

The best known is $\mathbf{f}(x)=\operatorname{det}(\mathbf{A}-\boldsymbol{x} \mathbf{I})$, the characteristic polynomial: by Cayley-Hamilton:

$$
\mathbf{f}(\mathbf{A})=0
$$

What else?

Definition

Let \mathbf{A} be a n-by- n matrix. The minimal polynomial of \mathbf{A} is the monic polynomial $m(x)=x^{m}+c_{m-1} x^{m-1}+\cdots+c_{0}$ of least degree such that

$$
m(\mathbf{A})=\mathbf{A}^{m}+c_{m-1} \mathbf{A}^{m-1}+\cdots+c_{0} \mathbf{I}=\mathbf{O}
$$

(1) If $\mathbf{A}=\mathbf{I}_{n}$, then $m(x)=x-1$.
(2) If $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], m(x)=x^{2}$.
(3) In the case of [the Jordan block] $\mathbf{J}=\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$, $m(x)=(x-\lambda)^{3}$. For a block of size $n, m(x)=(x-\lambda)^{n}$.

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right], \quad \mathbf{U}=\mathbf{J}-\lambda \mathbf{I}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{U}^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{U}^{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{U}^{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
m(x)=(x-\lambda)^{4}
\end{gathered}
$$

Observe the right drift of the diagonal of 1 's until it leaves the matrix!

Corollary

The minimal polynomial $m(x)$ of A divides the characteristic polynomial $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$ of \mathbf{A}. In particular $\operatorname{deg} m(x) \leq n$.

Diagonalization

Theorem

A is diagonalizable if and only if its minimal polynomial $m(x)$ has no repeated root.

Proof. In the forward direction, the assertion is clear: If \mathbf{A} is made up of diagonal blocks

$$
\mathbf{A}=\left[\begin{array}{cccc}
\lambda_{1} \mathbf{I}_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} \mathbf{I}_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & 0 \\
0 & 0 & \cdots & \lambda_{r} \mathbf{I}_{r}
\end{array}\right]
$$

with λ_{i} distinct, its minimal polynomial is

$$
m(x)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)
$$

For the converse, suppose the characteristic polynomial of \mathbf{T} has a decomposition

$$
\operatorname{det}(x \mathbf{I}-\mathbf{T})=(x-a)^{m}(x-b)^{n}(x-c)^{p}
$$

The polynomials $\mathbf{f}(x)=(x-b)^{n}(x-c)^{p}$, $\mathbf{g}(x)=(x-a)^{m}(x-c)^{p}, \mathbf{h}(x)=(x-a)^{m}(x-b)^{n}$, their gcd $=1$ as they have no common divisor. According to earlier observations, above we have an equality

$$
1=A(x) \mathbf{f}(x)+B(x) \mathbf{g}(x)+C(x) \mathbf{h}(x)
$$

Evaluating $x \rightarrow \mathbf{T}$ gives the equality

$$
\mathbf{I}=A(\mathbf{T}) \mathbf{f}(\mathbf{T})+B(\mathbf{T}) \mathbf{g}(\mathbf{T})+C(\mathbf{T}) \mathbf{h}(\mathbf{T})
$$

Applying to an arbitrary vector \mathbf{v} we have

$$
\begin{gathered}
\mathbf{v}=\mathbf{l}(\mathbf{v})=\underbrace{A(\mathbf{T})(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{T}-\mathbf{l})^{p}(\mathbf{v})}_{v_{1}}+\underbrace{B(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}(\mathbf{T}-c \mathbf{l})^{p}(\mathbf{v})}_{v_{2}} \\
+\underbrace{C(\mathbf{T})(\mathbf{T}-\mathrm{al})^{m}(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{v})}_{v_{3}} \\
\quad \mathbf{v}=v_{1}+v_{2}+v_{3}
\end{gathered}
$$

$$
(\mathbf{T}-\mathbf{a l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a l})^{m}(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{T}-c \mathbf{l})^{p}(v)=0
$$

by Cayley-Hamilton. This says that every vector \mathbf{v} is a sum of vectors in K_{a}, K_{b} and K_{c}. It is also easy to see that v_{1}, v_{2}, v_{3} are linearly independent.

Now we are going to make several observations about this decomposition.
(1) The range of $f_{i}(\mathbf{T})$ is contained in the generalized eigenspace $K_{\lambda_{i}}$:If $u=f_{i}(\mathbf{T})(v)$,

$$
\left(\mathbf{T}-\lambda_{i}\right)^{n_{i}} f_{i}(\mathbf{T})(v)=f(\mathbf{T})(v)=0
$$

since by the Cayley-Hamilton theorem $f(\mathbf{T})=0$.
(2) For every $v \in \mathbf{V}$

$$
v=\mathbf{I}(v)=\overbrace{a_{1}(\mathbf{T}) f_{1}(\mathbf{T})(v)}^{\in K_{\lambda_{1}}}+\cdots+\overbrace{a_{m}(\mathbf{T}) f_{m}(\mathbf{T})(v)}^{\in K_{\lambda_{m}}}
$$

Generalized eigenvectors and eigenspaces

- If \mathbf{T} is a linear operator of the vector space \mathbf{V} and λ is a scalar, a nonzero vector $v \in \mathbf{V}$ is a generalized eigenvector of \mathbf{T} if $(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O$ for some positive integer p. We denote this set, together with the vector O, by $K_{\lambda} . K_{\lambda}$ is usually bigger than the eigenspace E_{λ}.
- In fact,

$$
\mathbf{V}=\bigoplus_{i} K_{\lambda_{i}},
$$

in particular, \mathbf{V} has a basis made up of generalized eigenvectors.

This representation says that every vector $v \in \mathbf{V}$ can be written as

$$
v=v_{1}+\cdots+v_{m}, \quad v_{i} \in K_{\lambda_{i}}
$$

Since we already proved that $\operatorname{dim} K_{\lambda_{i}} \leq n_{i}$, the algebraic multiplicity of λ_{i}, this equality proves equality of the dimensions. It can be written as

$$
\mathbf{V}=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{m}},
$$

and the matrix representation of \mathbf{T} has the block format (after picking bases of the $K_{\lambda_{i}}$'s)

$$
[\mathbf{T}]=\left[\begin{array}{rrr}
{[\mathbf{T}]_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & {[\mathbf{T}]_{m}}
\end{array}\right]
$$

Conclusion:

- This block decomposition says that the minimal polynomial $f(x)$ of \mathbf{T} is the product of the minimal polynomials of the restrictions on $K_{\lambda_{i}}$

$$
f(x)=p_{1}(x) \cdots p_{m}(x)
$$

- If some \mathbf{T}_{i} is not diagonalizable, its minimal polynomial has a factor $(x-a)^{2}$, and $f(x)$ will have some multiple root.

Group Representations

Theorem

Let \mathbf{G} be a finite subgroup of $G L_{n}(\mathbb{C})$. Then any element $\mathbf{A} \in \mathbf{G}$ is diagonalizable.

Proof.

- Since G is finite, \mathbf{A} has finite order, that is $\mathbf{A}^{r}=\mathbf{I}$ for some integer r.
- This implies that $x^{r}-1$ lies in the ideal $(m(x))$ generated by the minimal polynomial of \mathbf{A}, and therefore $x^{r}-1=m(x) p(x)$.
- It follows that every root of $m(x)$ is a root of $x^{r}-1$. But the roots of $x^{r}-1$ are distinct (the derivative is $r x^{r-1}$, whose roots are zero). Therefore the roots of $m(x)$ are distinct.

Corollary

If \mathbf{G} is a finite subgroup of $G L_{n}(\mathbb{C})$, then the order of every element $\mathbf{A} \in \mathbf{G}$ is at most n.

Outline

Rings(2) Integers and Polynomials
(3) Homomorphisms
(4) Quotient rings and relations in a ring
(5) Integral Domains and Rings of FractionsHomework \#10Maximal Ideals
8 Noetherian Rings
(9) Algebraic Geometry
(10) Diagonalization
(11) Diagonalization and Minimal Polynomials
(12 Homework \#11

Homework \#11

Do 5 Problems.
(1) Prove that the kernel of the homomorphism $\varphi: \mathbb{C}[x, y] \rightarrow \mathbb{C}[t]$ defined by $x \mapsto t^{2}, y \mapsto t^{3}$ is the principal ideal generated by $x^{3}-y^{2}$.
(2) The nilradical N of a ring \mathbf{R} is the set of nilpotent elements. Prove that N is an ideal. Find N when $\mathbf{R}=\mathbb{Z}_{72}$.
(3) Prove that $\mathbb{Z}[i] /(i+2)$ is isomorphic to $\mathbb{Z} /(m)$ for some m. Determine m.
(9) Determine the maximal ideals of $\mathbb{R}[x] /\left(x^{2}-3 x+2\right)$.
(9) Prove that the ring $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$ is a field but $\mathbb{Z}_{3}[x] /\left[x^{3}+x+1\right)$ is not.
(- Find an isomorphic direct product of cyclic groups for the group:

- V is generated by the elements x, y, z;
- These elements satisfy the relations $7 x+5 y+2 z=0$, $3 x+3 y=0,13 x+11 y+2 z=0$.

