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Rings

A ring R is a set with two composition laws, called ‘addition’
and ‘multiplication’, say + and ×: ∀a,b ∈ R have compositions
a + b and a× b. (The second composition is also written a · b,
or simply ab.)

• (R,+) is an abelian group

• (R,×): multiplication is associative, and distributive over +,
that is ∀a,b, c ∈ R,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity: ∃e ∈ R such that

∀a ∈ R e × a = a× e = a

• If ab = ba for all a,b ∈ R, the ring is called commutative

There is a unique identity element e, usually we denote it by 1:

e = ee′ = e′e = e′
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Some terminology in studying a commutative ring

Let R be a commutative ring

u ∈ R is a unit if there is v ∈ R such that uv = 1
a ∈ R is a zero divisor if there is 0 6= b ∈ R such that
ab = 0: 2 · 3 = 0 in Z6.

a ∈ R is nilpotent if there is n ∈ N such that an = 0: 23
= 0

in Z8.
R is an integral domain if 0 is the only zero divisor, in other
words, if a,b ∈ R are not zero, then ab 6= 0.
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Field

A field F is a set with two composition laws, called ‘addition’ and
‘multiplication’, say + and ×: ∀a,b ∈ F have compositions a + b
and a× b. (The second composition is also written a · b, or
simply ab.)

• (F,+) is an abelian group

• (F,×): multiplication is associative, commutative and
distributive over +, that is ∀a,b, c ∈ F,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity ∃e ∈ F such that

∀a ∈ F a× e = a

• existence of inverses For every a 6= 0, there is b ∈ F

a× b = e.

There is a unique element e, usually we denote it by 1. For
a 6= 0, the element b such that ab = 1 is unique; it is often
denoted by 1/a or a−1.

We can now define scalars: the elements of a field.
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Fields are ubiquotous:
• R: real numbers

• The integers Z is not a field (not all integers have
inverses), but Q, the rational numbers is a field.
• C: complex numbers, z = a + bi , i =

√
−1, with

compositions

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)× (c + di) = (ac − bd) + (ad + bc)i
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The arithmetic here requires a bit more care:

If a + bi 6= 0,

1
a + bi

=
a− bi

a2 + b2 =
a

a2 + b2 −
b

a2 + b2 i
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Exercise: Number fields

Let F be the set of all real numbers of the form

z = a + b
√

2, a,b ∈ Q

prove that F is a field.

Query: How to prove a subset F of the field R is a field?
Suffices to check that F is closed under addition, product and
inverse of nonzero element.
For instance, if a + b

√
2 6= 0,

1
a + b

√
2

=
a− b

√
2

a2 − 2b2 ∈ F
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Another noteworthy example is F2, the set made up by two
elements {0,1} (or (even, odd))with addition defined by the
table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by

× 0 1
0 0 0
1 0 1
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Exercise 1: Prove that in any field F the rule minus times
minus is plus holds, that is for any a,b ∈ F,

−(−a) = a, (−a)(−b) = ab.

Solution: The first assertion folllows from

a + (−a) = (−a) + a = O.

Because of the above, we must show that (−a)(−b) is the
negative of −(ab). We first claim (−a)b = −(ab). Note

(−a)b + ab = ((−a) + a)b = Ob = O.

(−a)(−b)−(ab) = (−a)(−b)+(−a)b = (−a)((−b)+b) = (−a)O = O.
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A field is the mathematical structure of choice to do arithmetic.
Given a field F, fractions can defined as follows: If
a,b ∈ F, b 6= 0,

a
b

:= ab−1.

The usual calculus of fractions then follows, for instance

a
b

+
c
d

=
ad + bc

bd



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

Rings of Functions

Let R be a ring, S a nonempty set and S the set of all functions
f : S → R.

Proposition
We endow R with a ring structure by defining two operations:
For all s ∈ S,

(f + g)(s) := f(s) + g(s)

(f · g)(s) := f(s) · g(s)

Proof. It is clear that R inherits all the ring axioms from R.

If 1 ∈ R, the function I(s) = 1 is the identity of R.
If R is commutative, R is also commutative.
Major examples: If S = R, and f are continuous.
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Rings of Matrices

Let R = Mn(R) be the set of all n× n matrices (n fixed), with the
ordinary matrix addition and multiplication.

R is a ring, but it is not commutative if n > 1.
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Subrings

Definition
A subring of a ring R is a subset S that satisfies:

1 S is a subgroup of R+;
2 1R ∈ S;
3 If a,b ∈ S, then ab ∈ S. (This product is the product of R.)

Example
Z ⊂ Q ⊂ R ⊂ C is a tower of rings/subrings. Later, when we
have more examples of rings, we will give various methods to
construct subrings.
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Rational Numbers

At the outset of our journey are the natural numbers

N = {1,2,3,4, . . .}

Its ‘modern’ construction [e.g. Peano’s] is a paradigm of beauty.
It is enlarged by the integers

N ⊂ Z = {. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .}

and the rational numbers

N ⊂ Z ⊂ Q =
{m

n
, m,n ∈ Z,n 6= 0

}
These sets exhibit different structures: of a monoid, of a ring
and of a field, respectively.
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Peano

The construction by Peano of the set N is grounded on two
ingredients: The set N contains a particular element 1.

• [Successor Function] There is a function s : N→ N that
is injective, and for every n ∈ N s(n) 6= 1.
• [Induction Axiom] If the subset S ⊂ N has the properties

1 ∈ S & whenever n ∈ S ⇒ s(n) ∈ S

then S = N
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Given these definitions, we can define several
operations/compositions and structures on N:

a + b :=?

a + 1 := s(a)

a + s(n) := s(a + n)

a× b :=?

a× 1 := a
a× s(n) := a× n + a
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Ordering

Out of these notions, addition and multiplication are defined in
N, and then extended to Z and Q. An interesting consequence
that arises is a notion of order: ∀a,b ∈ Q, exactly one of the
following holds

a < b, a > b, a = b

It has the properties: If a > b then

∀c ⇒ a + c > b + c
∀c > 0 ⇒ ac > bc

Significance: This leads to metric properties: lengths, angles,
etc.
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Peano and Mathematical Induction

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg7/25/2008 2:45:16 PM
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Induction

The set N = {1,2,3, . . .} of natural numbers arises logically
from the following construction of Peano.

Z and Peano’s Axioms

• N contains a particular element 1.
• Successor function: There is an injective [one-one]

function σ : N −→ N, for each n ∈ N, σ(n) 6= 1. [Another
notation: σ(n) = n′]
• Induction axiom: Suppose that S ⊂ N satisfies

1 1 ∈ S;
2 if n ∈ S then σ(n) ∈ S. Then S = N.

The second axiom means 3 things [there are 5 axioms in all]:
(1) every natural number has a successor; (2) no two natural
numbers have the same successor; (3) 1 is not the successor
of any natural number.
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Defining Operations + and ×

Operations

•Addition:
m + 1 = m′, m + n′ = (m + n)′

•Multiplication:

m · 1 = m, m · n′ = m · n + m
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With these operations, N satisfies:
Associativity properties: For all x , y and z in N,

x + (y + z) = (x + y) + z.
x(yz) = (xy)z.

Commutativity properties: For all x and y in N,

x + y = y + x .
xy = yx .

Distributivity properties: For all x , y and z in N,

x(y + z) = xy + xz.
(y + z)x = yx + zx .
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Order properties: For all x , y and z in N, x < y if there is
w ∈ N such that x + w = y . Several properties arise: e.g.
If x < y then ∀z ∈ N x + z < y + z.



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

N can extended by 0 and ‘negatives’: Z. Operations also. Then
all the ordinary properties of addition and multiplication are
verified:

Let us illustrate with:

Proof of the associative law of addition for N:

(a + b) + n = a + (b + n) ∀a,b,n ∈ N

From the definitions check n = 1:

(a + b) + 1 = (a + b)′ = a + b′ = a + (b + 1)
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Assume axiom holds for n and let us check for n′ (induction
hypothesis):

(a + b) + n′ = (a + b) + (n + 1) (definition)

= ((a + b) + n) + 1 (case n = 1)

= (a + (b + n)) + 1 (ind. hypothesis)

= a + ((b + n) + 1) (case n = 1)

= a + (b + (n + 1)) (case n = 1)

= a + (b + n′) (definition)
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Principle of Mathematical Induction

Let us state Peano’s 5th Axiom again:

Definition (PMI)
If S is a subset of N and

1 1 ∈ S,
2 for all n ∈ N, if n ∈ S, then n + 1 ∈ S,

then S = N.

A set with Property (2) is called an inductive set. Examples,
besides N are ∅, S = {x : x ∈ N, x ≥ 10}.N is the only inductive
set containing 1: This is PMI.

The PMI is used to define mathematical objects and in proofs
galore.
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We are discussing the Principle of Mathematical Induction (PMI
for short). It is a mechanism to study (i.e. prove) certain open
sentences P(n) that depend on n ∈ N when we seek to verify
that it is true for all values.

The method is rooted in the following property of the natural
numbers N:

If S is a subset of N and
1 1 ∈ S,
2 for all n ∈ N, if n ∈ S, then n + 1 ∈ S,

then S = N.
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Verifying P(n)

To verify whether S = {n : P(n)} is equal to N, we follow the
template:

1 (Base step) P(1) is true;
2 (Inductive step) If for some n, P(n) is true then P(n + 1) is

also true.

PMI guarantees that S = N.
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Sequences

Definition
A sequence is a function f whose domain is N.

It can be represented as

{f(1), f(2), f(3), . . .}

{f(0), f(1), f(2), f(3), . . .}

or

{f(n), . . . , n ≥ n0}

We will first examine sequences of real numbers, f : N→ R.
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Sequences with values in a ring

Let R be a ring and R the set [actually a ring] of all sequences
f : N→ R. The operations are:

(a1,a2,a3, . . .) + (b1,b2,b3, . . .) = (a1 + b1,a2 + b2,a3 + b3, . . .)

(a1,a2,a3, . . .)× (b1,b2,b3, . . .) = (a1 · b1,a2 · b2,a3 · b3, . . .)

This ring, sometimes denoted by RN, is a direct product of
copies of R.

Note that we have also the operation

r(a1,a2,a3, . . .) = (ra1, ra2, ra3, . . .)
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Rings of Polynomials

Let us endow the set of sequences above with a different
multiplication. For convenience we label the sequence as:

(a0,a1,a2,a3, . . .), ai ∈ R

(a0,a1,a2,a3, . . .)× (b0,b1,b2,b3, . . .) = (c0, c1, c2, c3, . . .)

c0 = a0b0

c1 = a0b1 + a1b0
...

cn =
∑

i+j=n

aibj = a0bn + · · ·+ anb0
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Special Sequences

I = (1,0,0,0, . . .)
x = (0,1,0,0, . . .)

x = (0,1,0,0, . . .)
x2 = (0,0,1,0, . . .)
x3 = (0,0,0,1, . . .)

And most importantly

(r0, r1, r2, r3, . . .) = r0I + r1x + r2x2 + r3x3 + · · ·
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Polynomials

Proposition
With the composition above:

1 The set of all sequences with values in R is a ring, denoted
R[[x ]].

2 The subset of all sequences f such that f(n) = 0 for all
n� 0 is also a ring, called the ring of polynomials of R,
and is denoted by R[x ].

As abelian groups:
1 R[[x ]] ' RN

2 R[x ] ' R⊕N



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

Rings of Polynomials

Rings of polynomials in n indeterminates, n > 1, can be built on
a similar construction: Let R be a ring

Set N = {0,1,2, . . .} and M = Nn be the set
α = (α1, . . . , αn). We refer to degα = α1 + · · ·+ αn as the
total degree of α (referred to as a multi-index.
Let P(n) the set of functions

f : M→ R

Addition in P(n) is defined by (f + g)(α) = f(α) + g(α)
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Multiplication in P(n) is defined by the convolution rule:
Note that for each γ ∈ M there are only finitely many pairs
(α, β) such that

γ = α + β

Define multiplication by

(f · g)(γ) =
∑

α+β=γ

f(α) · g(β)

Proposition
P(n) is a ring with these operations.
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P(n)

The elements of P(n) are called polynomials in n
indeterminates
For a given multi-index α = (α1, . . . , αn), the function f
such that f(α) = 1 and f(β) = 0 for β 6= α, is written

f = xα1
1 · · · x

αn
n

or simply xα. These functions are called monomials.
Every f can be written as a finite sum

f =
∑
α

cαxα,

where cα is a constant function.
Typically f is a sum of several terms. It is called a binomial,
trinomial etc if .... If f has few terms it is called a
fewnomial...
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R[x , y ]

The ring P(2) is noteworthy.

The set of functions f : M→ R such that f(m) = 0 for
almost all m ∈ M that we used to get P(2) can be realized
another way.
Let F : N→ R[x ] which is zero for almost all r ∈ N. For
each r ∈ N, F(r) ∈ R[x ] means that F(r) : N→ R which is
zero for almost all s ∈ N, that is

F(r)(s) = 0

for almost all (r , s) ∈ N2. These are the functions used to
define P(2).
This shows that P(2) = R[x , y ]. More precisely, we must
still verify that the two products coincide–which is easy.
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Homomorphisms

Definition
A homomorphism ϕ : R → R′ from one ring to another is a map
which is compatible with the laws of composiiton and which carries 1
to 1, that is, a map such that

ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), ϕ(1R) = 1R′ ,

for all a,b ∈ R. An isomorphism of rings is bijective
homomorphism. If there is an isomorphism R → R′, the two rings
are said to be isomorphic.

Example
Let R = C. complex conjugation, a + bi → a− bi is an
isomorphism of C.
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Matrix Rings

Let R = Mn(R) be the ring of n × n real matrices, and let A be
an invertible matrix. Define

ϕ : R → R, ϕ(X) = AXA−1

ϕ(I) = AIA−1 = I
ϕ(X + Y) = A(X + Y)A−1 = AXA−1 + AYA−1 = ϕ(X) + ϕ(Y)

ϕ(XY) = A(XY)A−1 = AXA−1AYA−1 = ϕ(X)ϕ(Y)

Thus conjugation by A is an isomorphism of R.
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The Substitution Principle

Proposition

Let ϕ : R → R′ be a ring homomorphism.
(a) Given an element α ∈ R′, there is a unique homomorphism

Φ : R[x ]→ R′ which agrees with the map ϕ on constant
polynomials and which sends x  α.

(b) More generally, given elements α1, . . . , αn ∈ R′, there is a
unique homomorphism Φ : R[x1, . . . , xn]→ R′ from the
polynomial ring in n variables to R′, which agrees with ϕ on
constant polynomials and which sends xν  αν , for
ν = 1, . . . ,n.
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Proof. If Φ exists,

Φ(anxn+· · ·+a0) = Φ(an)Φ(xn)+· · ·+Φ(a0) = ϕ(an)αn+· · ·+ϕ(a0)

Thus Φ is uniquely defined by ϕ and Φ(x) = α.

To prove the existence, we define Φ by the formula above, and
check that

Φ(f (x)+g(x)) = Φ(f (x))+Φ(g(x)), Φ(f (x)g(x)) = Φ(f (x))Φ(g(x))

Having done this so many times in Calculus, we believe.
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Corollary
Let x = (x1, . . . , xm) and y = (y1, . . . , yn) denote sets of
variables. There is a unique isomorphism R[x , y ]→ R[x ][y ]
which is the identity on R and which sends the variables to
themselves.
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Proposition
Let R denote the ring of continuous real-valued functions on
Rn. The map ϕ : R[x1, . . . , xn]→ R sending a polynomial to its
associated polynomial function is an injective homomorphism.
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Proposition
There is exactly one homomorphism

ϕ : Z→ R

from the ring of integers to an arbitary ring R. It is the map
defined by ϕ(n) = 1R + · · ·+ 1R (n times) if n > 0, and
ϕ(−n) = −ϕ(n).
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Ideals

The property of the kernel of a ring homomorphism – that it is
closed under multiplication by arbitrary elements of the ring – is
abstracted in the concept of an ideal.

Definition
An ideal I of a ring R is a subset of R with these properties :

(i) I is a subgroup of R+ ;

(ii) If a ∈ I and r ∈ R, then ra ∈ I.

Example
Let R be a commutative ring and x ∈ R. The set of multiples of
x , Rx = {ra; r ∈ R}, is an ideal. It is called a principal, or
one-generated ideal.
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Example

If R is a ring and S = {a1, . . . ,an} is a set of elements of R, the
set of all combinations

r1a1 + · · ·+ rnan, ri ∈ R

is an ideal. It is called the ideal generated, or spanned, by S.

If R is not commutative, there are other notions of ideals:

I is a left ideal if I is a subgroup of R+, and for every a ∈ I,
r ∈ R, ra ∈ I.
I is a right ideal if I is a subgroup of R+, and for every
a ∈ I, r ∈ R, ar ∈ I.
I is a two-sided ideal if I is a subgroup of R+, and for every
a ∈ I, r , s ∈ R, ras ∈ I.
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Ideals of Fields

Proposition
(a) Let F be a field. The only ideals of F are the zero ideal and

the unit ideal.
(b) Conversely, if a ring R has exactly two ideals, then R is a

field.

Proof.
(a) Let I be a nonzero ideal. If 0 6= a ∈ I, since F is a field,

a−1 ∈ F ⇒ 1 = a−1a ∈ I. Thus I = R.
(b) If 0 6= a, Ra is a nonzero ideal, so Ra = R, which means

there r ∈ R such that ra = 1.
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Corollary

Let F be a field and let R′ be a nonzero ring. Every
homomorphism ϕ : F → R′ is injective.

Proof.
Let I be kerϕ. Since ϕ(1F ) = 1R, ϕ is not the null mapping, and
thus its kernel 6= F . But the only other ideal of F is (0).
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The ideals of Z

Proposition
Every ideal in the ring Z of integers is a principal ideal.

Proof.
Every ideal I of Z is a subgroup of Z+. But we have already
seen that the subgroups of Z are cyclic, that is I = Za, for some
integer a. Note Za is also closed multiplication by elements of
Z.
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Long Division Algorithm

Proposition
Let R be a ring and let f ,g be polynomials in R[x ]. Assume that
the leading coefficient of f is a unit in R. (This is true, for
instance, if f is a monic polynomial.) Then there are
polynomials q, r ∈ R[x ] such that

g(x) = f (x)q(x) + r(x),

and such that the degree of the remainder r is less than the
degree of f or else r = 0.

Proof. We may assume that deg g(x) ≥ deg f (x), as otherwise
there is nothing to prove. We are going to induction on deg g(x)
assuming that the assertion is true for polynomials of lesser
degree.
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g(x) = bmxm + lower degree

f (x) = anxn + lower degree

By assumption u = an is invertible. Note that

h(x) = g(x)− bmu−1xm−nf (x)

satisfies deg h(x) < deg g(x).
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By induction we have

h(x) = f (x)q′(x) + r(x), deg r(x) < deg f (x)

and therefore

g(x) = f (x)(q′(x) + bmu−1xm−n) + r(x), deg r(x) < deg f (x)

Corollary
Let g(x) be a monic polynomial in R[x ], and let α be an
element of R such that g(α) = 0. Then x − α divides g in R[x ].
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Euclidean Ring

Proposition
Let F be a field. Every ideal in the ring F [x ] of polynomials in a
single variable x is a principal ideal.

Proof. Let I be an ideal of F [x ]. If I = (0) there is nothing to
prove.

If I 6= (0), let f (x) be a nonzero polynomial of least degree.
We claim that every element g(x) of I is a multiple of f (x). If
g(x) = 0, there is nothing to do, so assume g(x) 6= 0. Since the
leading coefficient of f (x) is invertible, by the Long Division
Algorithm there are polynomials q(x) and r(x) such that

g(x) = f (x)q(x) + r(x), deg r(x) < deg f (x)

But r(x) = g(x)− f (x)q(x) is an element of I, so must be 0 by
the choice of f (x).
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Corollary
Let F be a field, and let f and g be polynomials which are not
both zero. There is a unique monic polynomial d(x) called the
greatest common divisor of f and g, with the following
properties:

1 d generates the ideal (f ,g) of F [x ] generated by the two
polynomials f ,g.

2 d divides f and g.
3 If h is any divisor of f and g, then h divides d.
4 There are polynomials p,q ∈ F [x ] such that d = pf + qg.

Recall: The ideal (f ,g) is made up of all combinations

a(x)f (x) + b(x)g(x)
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Radical of an Ideal

Definition
Let I be an ideal of the commutative ring R. The radical of I is
the set √

I = {x ∈ R : xn ∈ I some n = n(x)}.

Proposition
√

I is an ideal.

Proof.

If a,b ∈
√

I, am ∈ I, bn ∈ I, then

(a + b)m+n−1 =
∑

i+j=m+n−1

(
m + n − 1

i

)
aibj ∈ I,

since i ≥ m or j ≥ n.
Clearly ra ∈

√
I for any r ∈ R.
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Principal Ideal Ring

Definition
A ring R is a principal ideal ring if every ideal I is generated by
one element, I = {ra : r ∈ R}.

Z and F[x ] where F is a field are principal ideal rings.

R = F[x , y ] is not: The ideal I generated by x , y cannot be
generated by 1 element.
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Idempotents

Let R = Z6 and consider the element z = 3. Note
z2 = 9 = 3 = z. These elements are called:

Definition

The element e ∈ R is called idempotent if e2 = e.

Definition

R is a Boolean ring if z2 = z for all z ∈ R.

Proposition
If R is a Boolean ring, then

1 2z = 0 for z ∈ R;
2 If a,b ∈ R, then a,b are multiples of a + b − ab.

Class proof
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Example: Boolean ring

Example
For a non-empty set X let R the set of all functions f : X→ Z2.

(f + g)(s) = f(s) + g(s), and
(f · g)(s) = f(s) · g(s), define a ring structure on R.
f2(s) = f(s) · f(s) = f(s), so R is Boolean.
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Quotient rings

The most effective method to build new rings is the following:

Let I be a two-sided proper ideal of the R and denote by
R = R/I the corresponding cosets {a + I : a ∈ R}. It defines on
R an abelian group structure called the quotient ring R/I:

(a + I) + (b + I) = (a + b) + I
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We claim that this operation and

(a + I)× (b + I) = ab + I

defines a ring structure. Let us verify that if a′ + I = a + I and
b + I = b′ + I, then ab + I = a′b′ + I: Since a′ = a + r ,
b′ = b + s, with r , s ∈ I

a′b′ = (a + r)(b + s) = ab + (rb + sa + rs)

and thus a′b′ and ab live in the same coset.

The axioms of associativity and distributivity are easily verified.

This is a source to many new rings
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Zn

Example
Let R = Z and I = Zn. Then R/I is the ring of integers modulo
n.
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Examples: Quotient rings

(2) ⊂ Z ⇒ Z2 = Z/(2)

(x2 + x + 1) ⊂ Z2[x ] ⇒ Z2[x ]/(x2 + x + 1) = F4

(x2 + 1) ⊂ R[x ] ⇒ C = R[x ]/(x2 + 1)

(1 + 3i) ⊂ Z[i] ⇒ Z10 = R = Z[i]/(1 + 3i)

Will check out some of these soon.
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Theorem
Let I be an ideal of a ring R.
(a) There is a unique ring structure on the set of cosets

R = R/I such that the canonical map π : R → R sending
a a = a + I is a homomorphism.

(b) The kernel of π is I.
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Mapping property of quotient rings

Proposition

Let f : R → R′ be a ring homomorphism with kernel I and let J
be an ideal which is contained in I. Denote the residue ring R/J
by R.
(a) There is a unique homomorphism f : R → R′ such that

fπ = f :
R

π ##HHHHHHHHH
f // R′

fzzvvvvvvvvv

R = R/J

(b) (First Isomorphism Theorem) If J = I, then f maps R
isomorphically to the image of f .
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Correspondence Theorem

Proposition

Let R = R/J, and let π denote the canonical map R → R.
(a) There is a bijective correspondence between the set of

ideals of R which contain J and the set of all ideals of R,
given by

I  π(I), and π−1(I) I.

(b) If I ⊂ R corresponds to I ⊂ R, then R/I and R/I are
isomorphic rings.
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Z[i ]/(1 + 3i) ' Z/(10)

Proposition
The ring Z[i]/(1 + 3i) is isomorphic to the ring Z/10Z of
integers modulo 10.

Proof. Consider the homomorphism
ϕ : Z→ Z[i]→ R = Z[i]/(1 + 3i) induced by the embedding of
Z in Z[i].We claim that ϕ is a surjection of kernel 10Z:

1 + 3i ≡ 0⇒ i(1 + 3i) ≡ 0⇒ i − 3 ≡ 0⇒ i ≡ 3

a + bi ≡ a + 3b ⇒ ϕ is surjection

For n in kernel of ϕ,

n = z(1 + 3i) = (a + bi)(1 + 31)

= (a− 3b) + (3a + b)i︸ ︷︷ ︸
=0

⇒ b = −3a ⇒ n = 10a
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The Circle Ring

Proposition

R[x , y ]/(x2 + y2 − 1) ' R[cos t , sin t ].

The ring R = R[x , y ]/(x2 + y2 − 1): known as the circle ring
Consider the natural homomorphism

f : R[x , y ] −→ R[cos t , sin t ], f(x) = cos t , f(y) = sin t

R[cos t , sin t ] is the ring of trigonometric polynomials.
f(x2 + y2 − 1) = 0 so there is an induced surjection

ϕ : R[x , y ]/(x2 + y2 − 1)→ R[cos t , sin t ]

ϕ is an isomorphism because: (i) R[cos t , sin t ] is an infinite
dimensional R-vector space (why?); for any ideal L larger
than (x2 + y2 − 1), R[x , y ]/L is a finite dimensional
R-vector space (why?).
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R[x , y ]/(xy)

Proposition
The ring R[x , y ]/(xy) is isomorphic to the subring of the product
ring R[x ]× R[y ] consisting of the pairs (p(x),q(y)) such that
p(0) = q(0).

Proof. Let us sketch the proof, leaving the details to reader:

R[x , y ]/(xy) ' {(p(x),q(y)) : p(0) = q(0))}

Consider the homomorphism

ϕ : R[x , y ]/(xy)→ R[x , y ]/(y)× R[x , y ]/(x)

ϕ(a + (xy)) = (a + (y),a + (x))

Check that ϕ is one-one and determine its image.
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Integral Domains and Rings of Fractions

Definition
An integral domain R is a nonzero ring having no zero divisors.
That is, if ab = 0, then a = 0 or b = 0.

Example
Any subring R of a field F is an integral doimain.
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Properties

Proposition
1 If R is an integral domain then the polynomial ring R[x ] is

also an integral domain.
2 An integral domain with finitely many elements is a field.

Proof. Class proof.



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

Embedding

Theorem
Let R be an integral domain. There exists an embedding of R
into a field, meaning an injective homomorphism ϕ : R→ F,
where F is a field.

Proof. We are going to build fractions with the elements of R.
Let S be the set of all ordered pairs (a,b), a,b ∈ R, b 6= 0.
Define the following relation on S:

(a,b) ' (c,d)⇔ ad = bc

Claim: ' is an equivalence relation.
reflexive: (a,b) ' (a,b) clear
symmetric: (a,b) ' (c,d)⇔ (c,d) ' (a,b)
transitive: (a,b) ' (c,d) ' (e, f )⇒

ad = bc, cf = de⇒ adf = bcfbcf = bde⇒ af = be
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Field of fractions

Let F be the set of equivalence classes. We denote the
equivalence of (a,b) by a/b.

We define a field structure on F by the rules:

(a/b)(c/d) = ac/bd , a/b + c/d =
ad + bc

cd

It must be verified that these definitions do not depend on
the representative taken, for instance, if a/b = a′/b′, then
(a/b)(c/d) = (a/b′)(c/d). We believe!
With these rules, F is a field. For instance, if a/b is such
that a 6= 0, then (a/b)−1 = (b/a).
Finally, define ϕ : R→ F by the rule ϕ(a) = a/1. It is easy
to verify that ϕ is an injective homomorphism.
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Examples

What are fractions in Q?

Z→ Q

R[x ]→ R(x): p(x)
q(x)
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Class Exercise

Proposition
Let R be an integral domain, with field of fractions F, and let
ϕ : R→ K be an injective homomorphism of R to the field K.
Then the rule

Φ(a/b) = ϕ(a)ϕ(b)−1

defines the unique extension of ϕ to a homomorphism
Φ : F→ K.
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Homework #10

1 If R is a Boolean ring, prove that every finitely generated
ideal I is generated by one element.

2 If R is a finite Boolean ring, |R| = 2n, for some integer n.
Hint: For each e ∈ R, show that R = Re × R(1− e). Note
that Re is a Boolean ring with identity e.

3 Prove that if R is a finite integral domain then:
R is a field;
R contains a subfield Zp, for some prime p;
|R| = pn

4 Let R1,R2 be two rings. Describe the ideals of R1 × R2 in
terms of the ideals of R1 and R2.
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Maximal Ideals

Definition
An ideal M is maximal if M 6= R but M is not contained in any
ideals other than M or R.

Proposition
1 An ideal M of a ring R is maximal iff R = R/M is a field.
2 The zero ideal of R is maximal iff R is a field.
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Examples

Proposition
The maximal ideals of Z are the ideals (p), where p is a
nonzero prime number.

Proposition
The maximal ideals of the ring C[x ] of complex polynomials are
the ideals (f(x)) where f(x) = x − c, were c ∈ C.

Proof.
Let M be a maximal ideal; clearly M 6= (0). We know that C[x ]
is a principal ideal ring that every ideal is generated by a single
polynomial, M = (f(x)). If deg(f(x)) > 1, and c is a root,
f(x) = (x − c)g(x).
It follows that M ⊂ (x − c). Since M is maximal,
M = (x − c).
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Example

Let R = R[x , y ], the ring of polynomials in two indeterminates
over R. Define a homomorphism

ϕ : R→ C, x → i , y → i

Let M be the kernel. Note that x − y → 0 and x2 + 1→ 0, and
r → r if r ∈ R

Note that ϕ is surjective, so R/M ' C. Therefore M is maximal.
Claim: M = (x − y , x2 + 1).
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Example from Analysis

Let R be the ring of real continuous functions on the interval
I = [0,1]. For each a ∈ I, the evaluation f(x)→ f(a) defines a
surjective homomorphism

ϕ : R→ R

The kernel is M = {f(x) : f(a) = 0}. Since R/M ' R, M is a
maximal ideal.

Now we are going to use hard analysis to prove the converse.
We are going to use the fact that the interval I is compact: any
covering

I ⊂
⋃

(ai ,bi)

has a finite subcover.
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Example

Theorem
For maximal ideal M of the ring R of continous functions on
I = [0,1] there is a ∈ I such that M = {f(x) : f(a) = 0}.

Proof. Deny it. This means that for each a ∈ I there is f(x) ∈ M
such that f(a) 6= 0. Since f(x) is continuous with f(a) 6= 0, in a
small interval (c,d) about a, f(x) 6= 0 for x ∈ (c,d).

This gives rise to a covering

I ⊂
n⋃

i=1

(ci ,di)

by such intervals (actually a finite collection) and functions
fi(x) ∈ M nonvanishing on (ci ,di).
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Consider the function

f(x) =
n∑

i=1

fi(x)2

f ∈ M and does not vanish anywhere in I. This implies that
1/f(x) ∈ R, and therefore 1 = (1/f(x))f(x) ∈ M, a contradiction.
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Prime Ideals

Definition
Let R be a commutative ring. An ideal P of R is prime if P 6= R
and whenever a · b ∈ P then a ∈ P or b ∈ P.

Equivalently:

R/P is an integral domain
If I and J are ideals and I · J ⊂ P then I ⊂ P or J ⊂ P
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Prime ideals and homomorphisms

R

wwpppppppppppp

((PPPPPPPPPPPPPP

prime ideals of R morphisms ϕ : R → S
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Prime ideals arise in issues of factorization and very
importantly:

Proposition
Let ϕ : R → S be a homomorphism of commutative ring. If S is
an integral domain, then P = ker (ϕ) is a prime ideal. More
generally, if S is an arbitrary commutative ring and Q is a prime
ideal, then P = ϕ−1(Q) is a prime ideal of R.

Proof. Inspect the diagram

R

��

ϕ−→ S

��
R/P ↪→ S/Q
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Exercise

Consider the homomorphism of rings

ϕ : k [x , y , z] → k [t ]
x → t3

y → t4

z → t5

Let P be the kernel of this morphism. Note that x3− yz, y2− xz
and z2 − x2y lie in P.

Task: Prove that P is generated by these 3 polynomials.

Task: Describe the prime ideals of the ring

R = C[x , y ]/(y2 − x(x − 1)(x − 2)).
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Significance: Prime and Maximal Ideals

These ideals give rise to new interesting rings:

Prime ideals are significant because: R/P is a domain

Maximal ideals are significant because: R/P is a field

In particular maximal ideals are prime
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Prospecting for prime ideals

Let R be a ring. Given a proper ideal I, how to add something
to it an still get a proper ideal?

If a /∈ I, add a to I, which means form all ra + s, r ∈ R, s ∈ I.

This ideal, (a, I), may be improper, (a, I) = R, that is we
have a term ra + s = 1. Hard to predict.
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A theorem for believers

Theorem
Let R be a ring. Every ideal I of R which is not the unit ideal is
contained in a maximal ideal.

How we are going to do this?

Proof. [?]
Let I be an ideal. If I is maximal, we are done.

If not, there is a larger proper ideal I ⊂ I1. If I1 is maximal,...

In this manner we get a chain of proper ideals
I ⊂ I1 ⊂ · · · ⊂ In ⊂
Observation:

⋃
n In is a proper ideal–obviously closed

under addition, multiplication and 1 is not in the union.
What else can we do?
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Zorn Lemma

This is an extra axiom which when added to the more common
common axioms of mathematics asserts:

Any subset Y of a partially ordered set X such the chains of
elements of Y have a supremum has maximal elements
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Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg [11/27/2008 11:52:38 AM]
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Noetherian Rings

Definition
R is a Noetherian if every ascending chain of ideals is
stationary, that is An = An+1 = . . . from a certain point on.

Definition
The ring R has the Maximal Condition if every subset S of the
X (set of ideals ordered by inclusion) contains a maximum
submodule
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Example
Let R = Z: a chain of ideals

(a1) ⊂ (a2) ⊂ · · · ⊂ (an)

means a sequenc of integers a2|a1, a3|a2, . . ., each dividing the
preceding, in a process that must stop.
The same argument applies of the ring R = F[x ], where F is a
field.
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Proposition
R is a Noetherian ring iff R has the Maximal Condition.

Proof. Let S be a set of ideals of R. If S contains no maximal
element, we can build an ascending chain

A1 ( A2 ( · · · ( An ( · · ·

contradicting the assumption that R is Noetherian. The
converse has a similar proof.
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Proposition
R is Noetherian iff every ideal is finitely generated.

Proof. Suppose R is Noetherian. Let us deny. Let A be an ideal
of R and assume it is not finitely generated. It would permit the
construction of an increasing sequence of submodules of A,

(a1) ⊂ (a1,a2) ⊂ · · · ⊂ (a1,a2, . . . ,an) ⊂ · · · ,

an+1 ∈ A \ (a1, . . . ,an).
Conversely if A1 ⊆ A2 ⊆ · · · is an increasing sequence of
ideals, let B = ∪i≥1Ai is an ideal and therefore B = (b1, . . . ,bm).
Each bi ∈ Ani for some ni . If n = max{ni}, An = An+1 = · · · .
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Hilbert Basis Theorem

Theorem (HBT)
If R is Noetherian then R[x ] is Noetherian.

1 If R is Noetherian and x1, . . . , xn is a set of independent
indeterminates, then R[x1, . . . , xn] is Noetherian.

2 Z[x1, . . . , xn] is Noetherian.
3 If k is a field, then k [x1, . . . , xn] is Noetherian.
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Proof of the HBT

Suppose the R[x ]-ideal I is not finitely generated. Let
0 6= f1(x) ∈ I be a polynomial of smallest degree,

f1(x) = a1xd1 + lower degree terms.

Since I 6= (f1(x)), let f2(x) ∈ I \ (f1(x)) of least degree. In this
manner we get a sequence of polynomials

fi(x) = aixdi + lower degree terms,

fi(x) ∈ I \ (f1(x), . . . , fi−1(x)), d1 ≤ d2 ≤ d3 ≤ · · ·

Set J = (a1,a2, . . . , ) = (a1,a2, . . . ,am) ⊆ R
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Let fm+1(x) = am+1xdm+1 + lower degree terms. Then

am+1 =
m∑

i=1

siai , si ∈ R.

Consider

g(x) = fm+1 −
m∑

i=1

sixdm+1−di fi(x).

g(x) ∈ I \ (f1(x), . . . , fm(x)), but deg g(x) < deg fm+1(x), which
is a contradiction.
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Examples

Z is Noetherian, so is R = Z[x1, . . . , xn]

A field F is Noetherian, so is R = F[x1, . . . , xn]

A is Noetherian, so is R = A[x1, . . . , xn]/I
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Power Series Rings

Another construction over a ring R is that of the power series
ring R[[x ]]:

f(x) =
∑
n≥0

anxn, g(x) =
∑
n≥0

bnxn

with addition component wise and multiplication the Cauchy
operation

f(x)g(x) = h(x) = h(x) =
∑
n≥0

cnxn

cn =
∑

i+j=n

aibn−i

Theorem
If R is Noetherian then R[[x ]] is Noetherian.
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Proposition
A commutative ring R is Noetherian iff every prime ideal is
finitely generated.

Proof. If R is not Noetherian, there is an ideal I maximum with
the property of not being finitely generated (Zorn’s Lemma).
We assume I is not prime, that is there exist a,b /∈ I such that
ab ∈ I.
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The ideals (I,a) and I : a are both larger than I and therefore
are finitely generated:

(I : a) = (a1, . . . ,an)

(I,a) = (b1, . . . ,bm,a), bi ∈ I

Claim: I = (b1, . . . ,bm,aa1, . . . ,aan)

If c ∈ I,

c =
m∑

i=1

cibi + ra, r ∈ I : a
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R[[x ]] is Noetherian

Proof. Let P be a prime ideal of R[[x ]]. Set p = P ∩ R. p is a
prime ideal of R and therefore it is finitely generated.

Denote by p[[x ]] = pR[[x ]] the ideal of R[[x ]] generated by the
elements of p. It consists of the power series with coefficients in
p and R[[x ]]/p[[x ]] is the power series ring R/p[[x ]].

We have the embedding

P ′ = P/p[[x ]] ↪→ (R/p)[[x ]]

P ′ is a prime ideal of R/p[[x ]] and P ′ ∩ R/p = 0. It will suffice to
show that P ′ is finitely generated.
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We have reduced the proof to the case of a prime ideal
P ⊂ R[[x ]] and P ∩ R = (0).

If x ∈ P, P = (x) and we are done.
For f(x) = a0 + a1x + · · · ∈ P, let J = (b1, . . . ,bm) ⊂ R be the
ideal generated by all a0,

fi = bi + higher terms ∈ P.

Claim: P = (f1, . . . , fm).

From a0 =
∑

i s(0)
i bi , we write

f(x)−
∑

i

s(0)
i fi = xh ⇒ h ∈ P.
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We repeat with h and write

f(x) =
∑

i

s(0)
i fi + x

∑
i

s(1)
i fi + x2g, g ∈ P.

Iterating we obtain

f(x) =
∑

i

(s(0)
i + s(1)

i x + s(2)
i x2 + · · · )fi .
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What is Algebraic Geometry?

Needs lots of space [it is, in fact, about Space] to describe all it
is about.
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David Hilbert (1862-1943)

David Hilbert

David Hilbert 
(1862 - 1943) 
Mathematician 

Algebraist 

Topologist 

Geometrist 

Number Theorist 

Physicist 

Analyst 

Philosopher 

Genius 

And modest too... 

 

"Physics is much too hard for physicists." - Hilbert, 1912

This site is dedicated to David Hilbert, the funkiest mathematician alive.  
(Well, at least the funkiest when  he was alive. He's dead now, but he's still pretty 
funky. I don't mean funky like he smells funky, but I'm sure he does since he's been dead for 
over half a century. Of course, he was German, so the term probably wouldn't be applied to 
him. It would probably be more like funkisch. Hey, there's five years of German classes well 
spent. And he was born way before disco was king, so the term funky or funkisch probably 
wasn't used at all back then. I'm not saying that Davey wouldn't like disco. He was known to 
be a very good dancer in his time. That was mostly big band music hall stuff, but I'm sure he 
could manage to do the Hustle. And that's pretty hip for a mathematician. Not that all 
mathematicians aren't hip, mind you. I know one that even had a beer party recently. Of 
course, he did take that opportunity to gather beer tasting data in the form a block design 
using random permutations of 4-subsets of a 6-set. I'll stop now.) 

"Every boy in the streets of Gottingen understands more about four-dimensional geometry 
than Einstein. Yet, in spite of that, Einstein did the work and not the mathematicians." - 
Hilbert, 1915

http://www.math.umn.edu/~wittman/hilbert.html (1 of 2) [11/28/2008 3:43:37 PM]
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Do polynomials have roots?

Let f(x) = f(x1, . . . , xn) be a nonconstant polynomial of
R = C[x] = C[x1, . . . , xn], n > 1.

Fact: There is c ∈ Cn such that f(c) = 0.
The answer is easy when

f(x1, . . . , xn) = xd
n + g(x1, . . . , xn),

where g(x) is a polynomial of degree < d in the variable xn.
For example: Discuss

x6 + yx5 + y8 + 1
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More generally, let f1(x), . . . , fm(x) be a set of elements of
R = C[x].

Question: What are the obstructions to finding c ∈ Cn such
that

f1(c) = f2(c) = · · · = fm(c) = 0 ?

Obviously one is: there exist g1(x), . . . ,gm(x) such that

g1(x)f1(x) + · · ·+ gm(x)fm(x) = 1

What else?
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Volunteer!

Sketch the graph of the equation

y2 = x(x − 1)(x − 2)

Can you see a group in the graph?
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Hilbert Nullstellensatz

Let k be a field and denote by k its algebraic closure. (What are
these? Like R and C) We stay with C.

The Hilbert Nullstellensatz is about qualitative results on
systems of polynomial equations.

Let fi(x1, . . . , xn) ∈ R = k [x1, . . . , xn], 1 ≤ i ≤ m, be a set of
polynomials.

Definition
The algebraic variety defined by the fi is the set of zeros

V (f1, . . . , fm) = {c = (c1, . . . , cn) ∈ Cn : fi(c) = 0, 1 ≤ i ≤ m}.

A hypersurface is a variety defined by a single equation V (f). If
I is the ideal generated by the fi , then the variety defined by I is
V (I) = V (f1, . . . , fm).
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Notes about C

C is a two-dimensional vector space over R

If C ⊂ F is a field that is of finite dimension over C,
obviously it is of (double) finite dimension over R

This means that if u ∈ F, the vector subspace spanned by
the powers of u,

1,u,u2, . . . ,

is finite dimensional over R and thus there must be a
polyonomial f(x) ∈ R[x ] such that f(u) = 0. This will imply
u ∈ C–that is C is algebraically closed
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The field extensions of C,

C→ F

have the property
If u ∈ F satisfies an equation

f(u) = 0,

u ∈ C

Otherwise u said to be transcendental over C. This is the
case for every nonconstant

u =
f(x)

g(x)
∈ C(x)
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Hilbert Nullstellensatz

Theorem
If the ideal I ⊂ R = C[x1, . . . , xn] is proper, i.e. I 6= R, then
V (I) 6= ∅–that is, if I 6= R, there is c such that f(c) = 0 for all
f ∈ I.

Proof. We make two reductions.
1 Let m be a maximal ideal of R containing I. Since

V (m) ⊂ V (I), ETA that I is maximal.

2 Indeed, if c ∈ Cn is such that f(c) = 0 for all f(x) ∈ m, then
g(c) = 0 for all g ∈ I ⊂ m.
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Nullstellensatz

After these reductions the assertion is:

Theorem
If M is a maximal ideal of R = C[x1, . . . , xn], then there is

c = (c1, . . . , cn) ∈ Cn

such that
f(c) = 0 ∀f(x) ∈ M.
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Special case: C

Consider the field F = C[x1, . . . , xn]/M.

Proposition
It is ETS that F is isomorphic to C.

Proof. Indeed, if F ' C, for each indeterminate xi its
equivalence class in C[x1, . . . , xn]/M contains some element ci
of C, that is xi − ci ∈ M. this means that

(x1 − c1, . . . , xn − cn) ⊂ M.

But (x1 − c1, . . . , xn − cn) is also a maximal ideal, therefore it is
equal to M. Clearly every polynomial of M vanishes at
c = (c1, . . . , cn). �
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Proof of C = C[x1, . . . , xn]/M

1 ETS that the extension C→ F = C[x1, . . . , xn]/M is
algebraic.

2 Observe that [F : C], the dimension of F as a vector space
over C, is countable, F being a homomorphic image of the
countably generated vector space C[x1, . . . , xn].

3 If F is not algebraic over C, suppose t ∈ F is
transcendental over C.

4 Consider the uncountable set {1/(t − c), c ∈ C}.
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Since they cannot be linearly independent, there are distinct ci ,
1 ≤ i ≤ m and nonzero ri ∈ C such that

r1
1

t − c1
+ · · ·+ rm

1
t − cm

= 0.

Clearing denominators gives the equality of two polynomials of
C[t ]:

r1(t − c2)(t − c3) · · · (t − cm) = (t − c1)g(t),

which is a contradiction as the ci are distinct.
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Comaximal ideals

Definition
Two ideals I and J of a ring R are comaximal if

I + J = R.

Example
R = Z, I = (6), J = (35), then I + J = Z.
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Partition of the Unity

If R is a commutative ring, a partition of the unity is an special
decomposition of the form

R = J1 + · · ·+ Jn, Ji ideals of R

Suppose I1, . . . , In is a set of a ideals that is pairwise
co-maximal, meaning Ii + Ij = R, for i 6= j . This obviously is a
partition of the unity.

Another arises from it [check!] if we set Ji =
∏

j 6=i Ij

R = J1 + · · ·+ Jn, Ji ideals of R
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Chinese Remainder Theorem

Theorem
If Ii , i ≤ n, is a family of ideals that is pairwise co-maximal, then
for I = I1 ∩ I2 ∩ · · · ∩ In there is an isomorphism

R/I ≈ R/I1 × · · · × R/In.

Proof. Set Ji =
∏

j 6=i Ij . Note that Ii + Ji = R. Since
J1 + · · ·+ Jn = R, there is an equation

1 = a1 + · · ·+ an, ai ∈ Ji

Note that for each i , ai
∼= 1 mod Ii . Define a mapping h from R

to R/I1 × · · · × R/In, by h(x) = (xa1, . . . , xan). We claim that h
is a surjective homomorphism of kernel I.
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Proof Cont’d

1 Since ai
∼= 1 mod Ii ,

h(x) = (xa1, . . . , xan) = (x1, . . . , xn)

which is clearly a homomorphism.
2 The kernel consists of the x such that x i = 0 for each i ,

that is x ∈ Ii for each i–that is, x ∈ I.
3 To prove h surjective, for u = (x1, . . . , xn), setting

x = x1a1 + · · ·+ xnan

gives h(x) = u.
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Example

How ancient astronomers calculated 1o: That is, how to divide
the circle by 360.

360 = 8× 9× 5: primary decomposition.
The numbers 72, 40 and 45 have no common factor, so
form a partition of the 1:

1 = 5× 45− 2× 72− 2× 40

1
360

=
5
8
− 2

5
− 2

9
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GCD of polynomials

If f (x) and g(x) are polynomials in F[x ], the greatest common
divisor is the monic polynomial of highest degree h(x) that
divides f (x) and g(x)

gcd(f (x),g(x)) = h(x)

For example,

gcd((x − 1)3(x − 2)2, (x − 1)(x − 2)4) = (x − 1)(x − 2)2.

An elementary, but very useful fact, is that long division
provides an effective method to find gcds.
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Proposition
A polynomial f (x) ∈ R[x ] of degree f (x) ≥ 1 has multiple roots
if and only if gcd(f (x), f ′(x)) 6= 1.

Thus, while it is hard to find the roots of a polynomial f (x), it is
easy to determine whether it has multiple roots!
The explanation is very simple: If f (x) has a root of algebraic
multiplicity m,

f (x) = (x − a)mg(x), g(a) 6= 0,

its derivative

f ′(x) = m(x − a)m−1g(x) + (x − a)mg′(x)

has a as a root with multiplicity m − 1. This implies that
(x − a)m−1 is a common factor of f (x) and f ′(x), and therefore
will be a factor of gcd(f (x), f ′(x)).
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1 If gcd(f (x), f ′(x)) = 1, then f (x) has no repeated (complex)
roots.

2 Suppose f (x) is the characteristic polynomial of a 3-by-3
complex matrix A, and we must decide whether it is
diagonalizable.What to do?

1 If gcd(f (x), f ′(x)) = 1, by the discussion above the roots
are distinct, and we are done: A is diagonalizable.

2 If there is a double root a and a single root b,
gcd(f (x), f ′(x)) = (x − a). We check the dimension of the
eigenspace Ea, if dim Ea = 2, ok, otherwise not
diagonalizable.

3 If a is a triple root, gcd(f (x), f ′(x)) = (x − a)2. Again we
check whether dim Ea = 3.
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Long division

Recall the long division algorithm for polynomials in F[x ]: If
f (x),g(x) 6= 0 are polynomials, there exist polynomials
q(x), r(x) such that

f (x) = q(x)g(x) + r(x), r(x) = 0 or deg r(x) < deg g(x)

Look at a consequence:

gcd(f (x),g(x)) = gcd(g(x), r(x))

since any polynomial p(x) that divides (both) f (x),g(x) will
divide g(x), r(x), and conversely. Note that the data of
g(x), r(x) has lower degrees, so we can turn this into an
algorithm:
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gcd algorithm

Starting at

f (x) = q(x)g(x) + r(x),

1 Iterating, if r(x) 6= 0 and we divide
g(x) = q1(x)r(x) + r1(x), then any polynomial p(x) that
divides (both) f (x),g(x) will divide r(x), r1(x), and
conversely.

2 Since deg g(x) > deg r(x) > deg r1(x) > · · · , ultimately we
shall have rn−1(x) = qn−1(x)rn(x), rn(x) 6= O.

3 rn(x) is (a) largest degree polynomial that divides both f (x)
and g(x), and any such polynomial will divide rn(x).
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Theorem
If rn(x) is the last nonzero remainder in the sequence of long
divisions, then rn(x) divides f (x) and g(x). Moreover, there
exist polynomials a(x),b(x) such that

rn(x) = a(x)f (x) + b(x)g(x).

rn(x) is called the (a) GCD of f (x) and g(x).

Proof: For simplicity suppose n = 2, so we have the divisions

f = qg + r , g = q1r + r1, r = q2r1 + r2, , r1 = q3r2

r2 = r − q2r1 = r − q2(g − q1r) = r(1 + q2q1)− q2g
= (f − qg)(1 + q2q1)− q2g

Now we collect the coefficient of f–it will be a(x)–and of g–it will
be b(x): gcd(f ,g) = a(x)f (x) + b(x)g(x)
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We are now going to apply these observations to the
characteristic polynomial p(x) = det(A− x I) of a matrix A,
whose eigenvalues λi exist in the field F. Note for F = C, this is
the case for all matrices.
Underlying the following discussion is the assumption that

p(x) = ±
m∏

i=1

(x − λi)
mi .
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1 If f (x) = (x − λ)m, g(x) = (x − µ)n and λ 6= µ are different
scalars, then gcd(f (x),g(x)) = 1, this means that there is
a (decomposition) 1 = a(x)f (x) + b(x)g(x).

2 Consider now the case of the 3 polynomials,

f (x) = (x−λ1)m(x−λ2)n,g(x) = (x−λ1)m(x−λ3)p,h(x) = (x−λ2)n(x−λ3)p

where λ1, λ2, λ3 are distinct. Note that

gcd(f ,g) = (x − λ1)m

gcd(f ,h) = (x − λ2)n

gcd(g,h) = (x − λ3)p

gcd(f ,g,h) = gcd((x − λ1)m,h) = 1

3 These equations, will imply that we have an equality

1 = a(x)f (x) + b(x)g(x) + c(x)h(x).
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Suppose the characteristic polynomial of T has a
decomposition

det(x I− T) = (x − a)m(x − b)n(x − c)p.

The polynomials f(x) = (x − b)n(x − c)p,
g(x) = (x − a)m(x − c)p, h(x) = (x − a)m(x − b)n, have
gcd = 1 as they have no common divisor. According to the
observation above, we have an equality

1 = A(x)f(x) + B(x)g(x) + C(x)h(x)

Evaluating x → T gives the equality

I = A(T)f(T) + B(T)g(T) + C(T)h(T)
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Applying to an arbitrary vector v we have

v = I(v) = A(T)(T− bI)n(T− cI)p(v)︸ ︷︷ ︸
v1

+ B(T)(T− aI)m(T− cI)p(v)︸ ︷︷ ︸
v2

+ C(T)(T− aI)m(T− bI)n(v)︸ ︷︷ ︸
v3

v = v1 + v2 + v3

(T−aI)m(v1) = A(T)(T−aI)m(v1) = A(T)(T−aI)m(T−bI)n(T−cI)p(v) = 0

by Cayley-Hamilton. This says that every vector v is a sum of
vectors in Ka, Kb and Kc . It is also easy to see that v1, v2, v3 are
linearly independent.
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Chinese Remainder Theorem

Theorem
Let f1(x), . . . , fm(x) be polynomials of F[x ]. If
g(x) = gcd(f1(x), . . . , fm(x)) there are polynomials ai(x) such
that

g(x) = a1(x)f1(x) + · · ·+ am(x)fm(x).

Let T be a linear operator on the finite-dimensional vector space
V. Suppose its characteristic polynomial det(T− x I) splits:

f (x) = ±
m∏

i=1

(x − λi)
ni , distinct λi .

For each i , setting fi(x) = f (x)
(x−λi )

ni , gives us a collection
f1(x), . . . , fm(x) of gcd = 1: In

1 = a1(x)f1(x) + · · ·+ am(x)fm(x)

replace x → T
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I = a1(T)f1(T) + · · ·+ am(T)fm(T)

Now we are going to make several observations about this
decomposition.

1 The range of fi(T) is contained in the generalized
eigenspace Kλi :If u = fi(T)(v),

(T− λi)
ni fi(T)(v) = f (T)(v) = 0,

since by the Cayley-Hamilton theorem f (T) = 0.
2 For every v ∈ V

v = I(v) =

∈Kλ1︷ ︸︸ ︷
a1(T)f1(T)(v) + · · ·+

∈Kλm︷ ︸︸ ︷
am(T)fm(T)(v)
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Generalized eigenvectors and eigenspaces

• If T is a linear operator of the vector space V and λ is a
scalar, a nonzero vector v ∈ V is a generalized
eigenvector of T if (T− λI)p(v) = O for some positive
integer p. We denote this set, together with the vector O,
by Kλ. Kλ is usually bigger than the eigenspace Eλ.
• In fact,

V =
⊕

i

Kλi ,

in particular, V has a basis made up of generalized
eigenvectors.
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This representation says that every vector v ∈ V can be written
as

v = v1 + · · ·+ vm, vi ∈ Kλi

Since we already proved that dim Kλi ≤ ni , the algebraic
multiplicity of λi , this equality proves equality of the dimensions.
It can be written as

V = Kλ1 ⊕ · · · ⊕ Kλm ,

and the matrix representation of T has the block format (after
picking bases of the Kλi ’s)

[T] =

 [T]1 · · · O
...

. . .
...

O · · · [T]m


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What this does is to allow us to assume that the characteristic
polynomial of T has the form (x − λ)n. We will argue that such
linear operator have a matrix representation made up of Jordan
blocks with the same λ. Let us look at one such p × p block

A = [v1| · · · |vp] =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


A(v1) = λv1︸ ︷︷ ︸
eigenvector

, A(v2) = v1 + λv2, · · · ,A(vp) = vp−1 + λvp

If we write these equations in the reverse order, we get
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(A− λI)(vp) = vp−1

(A− λI)2(vp) = vp−2

...
(A− λI)p−1(vp) = v1

(A− λI)p(vp) = 0

Starting on vp and applying U = A− λI repeatedly we get all
the vectors of the basis

vp → vp−1 → · · · → v2 → v1 → O

We will say that vp is the generator of the basis, and that
γ = {v1, v2, . . . , vp} is a cycle of generalized eigenvectors, v1 is
the initial and vp the end vectors: They form a so-called dot
diagram

generator = vp = • → • → · · · → • = v1 = eigenvector

Let us prove a working property of this notion.
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Proposition
Let T be a linear operator on the vector space V. For some
scalar λ and some integer p, suppose v is a nonzero vector
such that

(T− λI)p(v) = O, (T− λI)p−1(v) 6= O.

Then the p vectors (T− λI)p−1(v), . . . , (T− λI)(v), v are linearly
independent. They span a T-invariant subspace W and the
matrix representation of [T]W with respect to this basis is a
Jordan block.

Proof: Let us denote these vectors by v1, . . . , vp = v ,
respectively. Suppose we have a linear relation
c1v1 + · · ·+ cpvp = O. Let us prove all ci = 0. Let us argue just
one case as the general case is similar. Suppose cp 6= 0. Apply
the operator (T− λI)p−1 to the relation to obtain
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vi = (T− λI)p−i(v)

c1(T− λI)p−1(v1) + · · ·+ cp (T− λI)p−1(vp)︸ ︷︷ ︸
=v1

= O

Note that all terms vanish, except for the last. This contradicts
cp 6= 0.

The subspace W clearly satisfies T(W) ⊂W. Finally, note that

T(vi) = T(T− λI)p−i(v)

= (T− λI)p−i+1(v) + λ(T− λI)p−i(v) = vi−1 + λvi ,

which shows that the matrix representation is
λ 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · λ


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We come now to the crux of the problem: Given a linear
operator T whose characteristic polynomial is ±(x − λ)n, to
prove that there is a matrix representation made up of λ-Jordan
blocks (same λ)

 J1 O O
O J2 O
O O J3

 =



λ 1 0 0 0 0 0 0
0 λ 1 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 1 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 1 0
0 0 0 0 0 0 λ 1
0 0 0 0 0 0 0 λ


We are going to prove the existence of such representation and
the uniqueness of the number and sizes of the blocks.
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Situation:

T : Kλ → Kλ, dim Kλ = n, characteristic polynomial of T is
(x − λ)n. The eigenspace is Eλ ⊂ Kλ.

Goal: We will show that Kλ has a basis

B =
m⋃

i=1

γi

where each γi is a cycle of generalized eigenvectors. The
Jordan representation comes from the corresponding matrix
representation. For example, if Kλ = Eλ, then a basis of Eλ

gives the cycles, all of length 1, and the matrix representation is
just λIn.
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1 We are going to argue by induction on n = dim Kλ. If n = 1
(or, more generally, Kλ = Eλ), there is nothing to prove.

2 Let Z be the range of T− λI. For simplicity of notation call
this map U : Kλ → Kλ. Note that Eλ is the nullspace of U,
and therefore dim Eλ + dim Z = n, by the dimension
formula.

3 Since dim Z < n and the characteristic polynomial of the
restriction of T to Z divides (x − λ)n, the induction
hypothesis guarantees a basis for Z:

γ′ : w , (T− λI)(w), . . . , (T− λI)p−1(w)

B′ =
r⋃

i=1

γ′i

where each γ′i is a cycle of generalized eigenvectors of Z.
Let us consider one of these cycles γ′:
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γ′i : w , (T− λI)(w), . . . , (T− λI)p−1(w)

But w belongs to the range of (T− λI), that is w = (T− λI)(v),
for some v ∈ V. This gives a cycle of V itself:

γi : v , (T− λI)(v), . . . , (T− λI)p(v)

In this manner, for every γ′i of Z we get a longer cycle (by 1
more vector) of V.

We recall that vector at the end of the list are the only
eigenvectors and that

r⋃
i=1

γi

contains just r independent eigenvectors, the same set as the
basis B′ of Z. If these eigenvectors are u1, . . . ,ur , add (if
necessary) ur+1, . . . ,us to form a basis of the eigenspace Eλ.
Each of these ui defines a new cycle γi of length 1, i > r .
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Dot Diagrams and Enlarged Cycles

•: vectors in the set B′
•: vectors added.

•
• • •
• • •
...

...
...

...
• • • • · · · •
• • • • · · · • • · · · •

T− λI maps each dot to dot under. Last row is a basis of Eλ: it
is mapped to O



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

Proposition (Very technical, I apologize)
The vectors in the set

B =
s⋃

i=1

γi

form a basis of V.

Proof: First let us count the number of elements of added to
pass from the basis B′ of Z to the set B of V:

r (1 for each of the r cycles in B′) + (s − r) = s = dim Eλ

Therefore cardinality of B′ + s = dim Z + s = n = dim V

To prove B is a basis, ETS that it spans V, as they have already
the right number of elements for a basis.
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Let u ∈ V and consider (T− λI)(u) ∈ Z. Since every vector in B′
is the image under T− λI of some vector in B, we can write

(T− λI)(v) = Linear combination of (T− λI)(vi), vi ∈ B.

This implies that

(T− λI) (v − Linear combination of vi)︸ ︷︷ ︸
=w

= O

Thus w ∈ Eλ. Since B contains a basis of Eλ, this implies v lies
in the span of B.
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To illustrate the uniqueness of Jordan decomposition, suppose
T gives rise to two different cycle decomposition for Kλ:

•
• • •
• • •
• • • • •

,

•
•
• •
• • •
• • • • •

Observe that many things match: dim Kλ = 12 [number of dots,
red or black], dim Eλ = 5 (number of piles, columns). Now we
are going to observe things that are off:

(T− λI)4(any •) = 0, (T− λI)4(top •) 6= 0
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This illustrate the argument: The number of dots at level ` is the
dimension of the subspace of the vectors v of V such that

(T− λI)`(v) = 0
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Diagonalization and Minimal Polynomials

Let S be the ring of n × n matrices and A ∈ S. We look at A as
a linear transformation A : Fn → Fn. S is a ring which as a
F-vector space has dimension n2.
Consider the ring homomorphism defined by the evaluation

ϕ : R = F[x ]→ S, ϕ(x) = A

Proposition
kerϕ 6= (0).

Proof.
ϕ cannot be injective since it maps the infinite dimensional
vector space F[x ] into the finite dimensional vector space S.
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Minimal Polynomial

By the theorem about the ideals of F[x ], ker (ϕ) = (m(x)). For
convenience we pick m(x) as monic.
Thus, given a square matrix A, there are polynomials f(x) such
that

f(A) = 0.

The best known is f(x) = det(A− x I), the characteristic
polynomial: by Cayley-Hamilton:

f(A) = 0.

What else?
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Definition
Let A be a n-by-n matrix. The minimal polynomial of A is the
monic polynomial m(x) = xm + cm−1xm−1 + · · ·+ c0 of least
degree such that

m(A) = Am + cm−1Am−1 + · · ·+ c0I = O.

1 If A = In, then m(x) = x − 1.

2 If A =

[
0 1
0 0

]
, m(x) = x2.

3 In the case of [the Jordan block] J =

 λ 1 0
0 λ 1
0 0 λ

,

m(x) = (x − λ)3. For a block of size n, m(x) = (x − λ)n.
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J =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 , U = J− λI =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



U2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , U3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , U4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



m(x) = (x − λ)4

Observe the right drift of the diagonal of 1’s until it leaves the
matrix!



Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of Fractions Homework #10 Maximal Ideals Noetherian Rings Algebraic Geometry Diagonalization Diagonalization and Minimal Polynomials Homework #11

Corollary
The minimal polynomial m(x) of A divides the characteristic
polynomial p(x) = det(A− x I) of A. In particular deg m(x) ≤ n.
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Diagonalization

Theorem
A is diagonalizable if and only if its minimal polynomial m(x)
has no repeated root.

Proof. In the forward direction, the assertion is clear: If A is
made up of diagonal blocks

A =


λ1I1 0 · · · 0

0 λ2I2 · · · 0
...

... · · · 0
0 0 · · · λr Ir

 ,
with λi distinct, its minimal polynomial is

m(x) =
r∏

i=1

(x − λi)
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For the converse, suppose the characteristic polynomial of T
has a decomposition

det(x I− T) = (x − a)m(x − b)n(x − c)p.

The polynomials f(x) = (x − b)n(x − c)p,
g(x) = (x − a)m(x − c)p, h(x) = (x − a)m(x − b)n, their gcd = 1
as they have no common divisor. According to earlier
observations, above we have an equality

1 = A(x)f(x) + B(x)g(x) + C(x)h(x)

Evaluating x → T gives the equality

I = A(T)f(T) + B(T)g(T) + C(T)h(T)
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Applying to an arbitrary vector v we have

v = I(v) = A(T)(T− bI)n(T− cI)p(v)︸ ︷︷ ︸
v1

+ B(T)(T− aI)m(T− cI)p(v)︸ ︷︷ ︸
v2

+ C(T)(T− aI)m(T− bI)n(v)︸ ︷︷ ︸
v3

v = v1 + v2 + v3

(T−aI)m(v1) = A(T)(T−aI)m(v1) = A(T)(T−aI)m(T−bI)n(T−cI)p(v) = 0

by Cayley-Hamilton. This says that every vector v is a sum of
vectors in Ka, Kb and Kc . It is also easy to see that v1, v2, v3 are
linearly independent.
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Now we are going to make several observations about this
decomposition.

1 The range of fi(T) is contained in the generalized
eigenspace Kλi :If u = fi(T)(v),

(T− λi)
ni fi(T)(v) = f (T)(v) = 0,

since by the Cayley-Hamilton theorem f (T) = 0.
2 For every v ∈ V

v = I(v) =

∈Kλ1︷ ︸︸ ︷
a1(T)f1(T)(v) + · · ·+

∈Kλm︷ ︸︸ ︷
am(T)fm(T)(v)
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Generalized eigenvectors and eigenspaces

• If T is a linear operator of the vector space V and λ is a
scalar, a nonzero vector v ∈ V is a generalized
eigenvector of T if (T− λI)p(v) = O for some positive
integer p. We denote this set, together with the vector O,
by Kλ. Kλ is usually bigger than the eigenspace Eλ.
• In fact,

V =
⊕

i

Kλi ,

in particular, V has a basis made up of generalized
eigenvectors.
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This representation says that every vector v ∈ V can be written
as

v = v1 + · · ·+ vm, vi ∈ Kλi

Since we already proved that dim Kλi ≤ ni , the algebraic
multiplicity of λi , this equality proves equality of the dimensions.
It can be written as

V = Kλ1 ⊕ · · · ⊕ Kλm ,

and the matrix representation of T has the block format (after
picking bases of the Kλi ’s)

[T] =

 [T]1 · · · O
...

. . .
...

O · · · [T]m


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Conclusion:
This block decomposition says that the minimal polynomial
f (x) of T is the product of the minimal polynomials of the
restrictions on Kλi

f (x) = p1(x) · · · pm(x)

If some Ti is not diagonalizable, its minimal polynomial has
a factor (x − a)2, and f (x) will have some multiple root.
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Group Representations

Theorem
Let G be a finite subgroup of GLn(C). Then any element A ∈ G
is diagonalizable.

Proof.
Since G is finite, A has finite order, that is Ar = I for some
integer r .
This implies that x r − 1 lies in the ideal (m(x)) generated
by the minimal polynomial of A, and therefore
x r − 1 = m(x)p(x).
It follows that every root of m(x) is a root of x r − 1. But the
roots of x r − 1 are distinct (the derivative is rx r−1, whose
roots are zero). Therefore the roots of m(x) are distinct.
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Corollary
If G is a finite subgroup of GLn(C), then the order of every
element A ∈ G is at most n.
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Homework #11

Do 5 Problems.

1 Prove that the kernel of the homomorphism
ϕ : C[x , y ]→ C[t ] defined by x 7→ t2, y 7→ t3 is the principal
ideal generated by x3 − y2.

2 The nilradical N of a ring R is the set of nilpotent elements.
Prove that N is an ideal. Find N when R = Z72.

3 Prove that Z[i]/(i + 2) is isomorphic to Z/(m) for some m.
Determine m.

4 Determine the maximal ideals of R[x ]/(x2 − 3x + 2).
5 Prove that the ring Z2[x ]/(x3 + x + 1) is a field but

Z3[x ]/[x3 + x + 1) is not.
6 Find an isomorphic direct product of cyclic groups for the

group:
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V is generated by the elements x , y , z;
These elements satisfy the relations 7x + 5y + 2z = 0,
3x + 3y = 0, 13x + 11y + 2z = 0.
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