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What is Symmetry?

Discuss
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Example

(1 .1 )  Figure. Bilateral symmetry. 
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Example

(1.2) Figure. Rotational symmetry. 
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Example

. . 

(1 .3) Figure. Tkanslational symmetry. 
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Example

(1.4) Figure. Glide symmetry. 
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Example

(1.5) Figure. 
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Example

. . . 
(1.6) Figure. 
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Example

(1.7) Figure. 
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Rigid Motions

A rigid motion on the inner product space V is a mapping

T : V→ V

with the property

||T(u)− T(v)|| = ||u − v ||, ∀u, vV.

That is, T preserves distance of the images. A simple example
is a translation: If a is a fixed vector, the function

T(v) := a + v

is obviously a rigid motion:

T(v)− T(u) = (a + v)− (a + u) = v − u

What else?
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Orthogonal Transformations

Recall what this means:

T · Tt = I

Therefore for any vector v ∈ Rn,

〈T(v),T(v)〉 = v t · Tt · T · v = v t · v = 〈v , v〉

Thus orthogonal transformations T, TTt = I, preserve
distances. Another such motion is obtained by composition:
following a translation with an orthogonal mapping. What else?
That is it!
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Inner product space

An inner product vector space V is a V.S. over R or C with a
mapping

V× V→ F, (u, v)→ 〈u, v〉 = u · v ∈ F

satisfying certain conditions. Let us give an example to guide
us in what is needed. Let V = Rn and define a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi

Note the properties: bi-additive ; v · v is a non-negative real
number, so we can use

√
v · v to define the magnitude of v .

Question: Could we use the same formula to define an inner
product for Cn? Well... (i) · (i) would be −1. Of course the
formula still defines a nice bilinear mapping but would not meet
our need.
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Matrix product and dot product

Let u and v be two vectors of Rn. Their dot product

u · v =

 a1
...

an

 ·
 b1

...
bn


can be expressed as a matrix product

utv =
[

a1 · · · an
]  b1

...
bn


Keep in mind

utv = u · v
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Dot product

Definition
An inner product vector space is a vector space with a mapping

V× V→ F, (u, v)→ u · v ∈ F

satisfying:
1 (u1 + u2) · v = u1 · v + u2 · v
2 (cu) · v = c(u · v)

3 u · v = v · u
4 u · u > 0 if u 6= O

The better notation for this product is

u · v = 〈u, v〉
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Examples

Of course, the example above of Rn is the grandmother of all
examples. Let us modify it a bit to get an example for Cn: a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi .

Note the properties: additive ; v · v is a non-negative real
number

v · v =
n∑

i=1

aiai

so we can use
√

v · v to define the magnitude of v . Note the
lack of full symmetry.
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Example of Function Space

Let us give an example from left field: Let V be the vector space
of all real continuous functions on the interval [a,b], and define
for f (t),g(t) ∈ V,

〈f (t),g(t)〉 = f (t) · g(t) =

∫ b

a
f (t)g(t)dt .

An important case: If m,n are integers,

〈sin nt , cos mt〉 =

∫ 2π

0
sin nt cos mt dt = 0

〈sin nt , sin mt〉 =

∫ 2π

0
sin nt sin mt dt = 0, m 6= n

〈cos nt , cos mt〉 =

∫ 2π

0
cos nt cos mt dt = 0, m 6= n

〈sin nt , sin nt〉 =

∫ 2π

0
sin2 nt dt = π, n 6= 0
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Length of a vector

Definition
Let V, 〈·, ·〉 be an inner product space. If v ∈ V, the length or
norm of v is the real number ||v || =

√
〈v , v〉.

If V = Cn, v = (a, . . . ,an),

||v || =

[
n∑

i=1

|ai |2
]1/2

If V is the space of real continuous functions on [0,1] and inner
product is that we defined previously,

||f (t)||2 =

∫ 1

0
f (t)2dt .
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Framework for Geometry

The following assertions permits the construction of
‘recognizable’ objects in any inner product space:

Theorem
If V is an inner product space, then for all u, v ∈ V

1 [Cauchy-Schwarz Inequality]

|〈u, v〉| ≤ ||u|| · ||v ||

2 [Triangle Inequality]

||u + v || ≤ ||u||+ ||v ||.
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Unitary Operators

Notation: T∗ = Tt conjugate transpose of T

Definition
A linear operator T of the inner product space V is called
unitary if TT∗ = T∗T = I. If V is a real inner product space, T is
called orthogonal.

The rotation operator

T(x , y) = (x cosα + y sinα,−x sinα + y cosα)

is a major example.

If A is a complex n-by-n matrix and AA∗ = A∗A = I, the column
vectors of A form an orthonormal basis of Cn.
We now develop quickly some basic properties of these
operators.
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Theorem
Let T be a linear operator of the finite-dimensional inner product
space V. TFAE:

1 T is an unitary operator: TT∗ = T∗T = I.
2 〈T(u),T(v)〉 = 〈u, v〉 for all u, v ∈ V.
3 For every orthonormal basis B = v1, . . . , vn of V,

T(v1), . . . ,T(vn) is also an orthonormal basis of V.
4 For some orthonormal basis B = v1, . . . , vn of V,

T(v1), . . . ,T(vn) is also an orthonormal basis of V.
5 ||T(u)|| = ||u|| for every u ∈ V.

Proof. 1⇒ 2,3,4,5: (Other⇒ LTR)

〈u, v〉 = 〈T∗T(u), v〉 = 〈T(u), (T∗)∗(v)〉 = 〈T(u),T(v)〉.

δij = 〈vi , vj〉 = 〈T(vi),T(vj)〉.
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Orthogonal Group

T is orthogonal operator of Rn if TTt = TtT = I.

If T1 and T2, then T1T2 is orthogonal: check.

This shows that the set of orthogonal operators form a
subgroup of GLn(R): the orthgonal group O, or On.

det T det Tt = (det T)2 = 1: det T = ±1. The operators with
det T = 1 form a subgroup: orientation preserving.

The operators T with det T = 1 form the subgroup SOn,
called the special orthogonal group
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Orthogonal operators of R2

We have already mentioned rotations, Rα. Let us analyze the
possibilities. Let

A =

[
a b
c d

]
= [v1|v2] ||v1|| = ||v2|| = 1, v1 ⊥ v2

be an orthogonal matrix. This means

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0

We can set a = cosα, c = sinα and b = cosβ,d = sinβ so that

ab + cd = cosα cosβ + sinα sinβ = cos(α− β) = 0.

This means that α− β = ±π/2. The two possibilities lead to

Rα =

[
cosα − sinα
sinα cosα

]
, T =

[
cosβ sinβ
sinβ − cosβ

]
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To analyze

T =

[
cosβ sinβ
sinβ − cosβ

]
we look at its eigenvalues:

det(T− x I) =

[
cosβ − x sinβ

sinβ − cosβ − x

]
= x2 − 1

So λ = ±1. This means we have an orthonormal basis v1, v2,
and T(v1) = v1, T(v2) = −v2.
Thus the line Rv1 is fixed under T, and the perpendicular line
Rv2 is flipped about Rv1. These transformations are called
reflections.

Summary: If A is an orthogonal 2-by-2 matrix, then if
det A = 1, it is a rotation, and if det A = −1, it is a reflection.
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The group SO3

Theorem
Let A ∈ SO3. Then there is a basis change so that

A =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
Review te relevant linear algebra
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Exercise

Exercise: Prove that the set M of rigid motions of Rn is a group.

The only technical point needed is:

Lemma

If F : Rn → Rn is a rigid motion, then F is invertible and F−1 is a
rigid motion.
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Rigid motion: Main Theorem

Theorem
Any rigid motion T of V decomposes into T = S ◦ U, where S is
an orthogonal transformation and U is a translation.

Proof: Set a = T(O). Then the function F(u) = T(u)− a is a
rigid motion and F(O) = O. It is enough to prove that F is
orthogonal. Note that

||F(u)− F(O)|| = ||u −O||,

so F preserves lengths, which is the key property of orthogonal
transformations. BUT we are NOT assuming that F is linear, we
must prove it.
We first prove that F preserves dot products:
〈F(u),F(v)〉 = 〈u, v〉: We start from the equality and expand
both sides
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||F(u)− F(v)||2 = ||u − v ||2

(F(u)− F(v)) · (F(u)− F(v)) = (u − v) · (u − v)

||F(u)||2︸ ︷︷ ︸
∗

−2〈F(u),F(v)〉+ ||F(v)||2︸ ︷︷ ︸
∗∗

= ||u||2︸ ︷︷ ︸
∗

−2〈u, v〉+ ||v ||2︸ ︷︷ ︸
∗∗

Thus proving
〈F(u),F(v)〉 = 〈u, v〉.

Now we are going to prove that F is a linear function by first
showing that it is additive:
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||F(u + v)− F(u)− F(v)||2 ?
= 0

||F(u + v)||2 + ||F(u)||2 + ||F(v)||2− = ||u + v ||2 + ||u||2 + ||v ||2 −
2〈F(u + v),F(u)〉 − 2〈F(u + v),F(v)〉 = 2〈(u + v),u〉 − 2〈(u + v), v〉

+2〈F(u),F(v)〉 = +2〈u, v〉
= ||(u + v)− u − v ||2 = 0.

Scaling, that F(cu) = cF(u) for any c ∈ R, has a similar proof:
Expand

||F(cu)− cF(u)||2
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Rigid Motions in the Plane

Theorem
Any rigid motion T of V decomposes into T = S ◦ U, where S is
an orthogonal transformation and U is a translation.

When V = R2:

Translation by a vector: ta(x) = x + a =

[
x1 + a1
x2 + a2

]
Rotation by an angle about the origin:

ρθ(x) =

[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
Reflection about the x1-axis:

r(x) =

[
1 0
0 −1

] [
x1
x2

]
=

[
x1
−x2

]
Compositions: ρ ◦ r , ρ ◦ r ρ ◦ ta etc.
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Decomposition of rigid motions

We have shown that every rigid motion F : Rn → Rn

decomposes as
F = ρ ◦ ta,

where ρ ∈ O, the group of orthogonal operators, and ta is the
translation by the vector a.
This decomposition has several properties. Let us highlight
some:

The identity ρ ◦ ta = tρ(a) ◦ ρ:

ρ(ta(v)) = ρ(v + a) = ρ(v) + ρ(a) = (tρ(a) ◦ ρ)(v)

In particular, the subgroup of translations is normal.



Symmetry Rigid Motions Rigid Motions in the Plane Homework #4 Finite Groups of Motions Discrete Groups of Motions Abstract Symmetry The Operation on Cosets Homework #5 The Counting Formula Finite Subgroups of the Rotation Group Permutation Representation Symmetric groups

If ρ ◦ ta = ρ′ ◦ tb then ρ = ρ′ and a = b:

ρ ◦ ta(v) = ρ(v + a) = ρ(v) + ρ(a) =

ρ′ ◦ tb(v) = ρ′(v + b) = ρ′(v) + ρ′(b)

Thus
(ρ− ρ′)(v) = ρ′(b)− ρ(a),

an equality that says that the linear transformation ρ− ρ′ is
constant. But O is the only constant linear transformation,
so ρ = ρ′ and ρ(b) = ρ(a) and therefore a = b since ρ is
invertible.
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(ρ ◦ ta) ◦ (ρ′ ◦ tb) = (ρ ◦ ρ′) ◦ tc , c = ρ′(b) + a.

(ρ ◦ ta) ◦ (ρ′ ◦ tb)(v) = ρ(ta(ρ′(tb)))(v)

= ρ(ta(ρ′(v) + ρ′(b)))

= ρ ◦ ρ′(v) + ρ(a) + ρ(ρ′(b))
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The fact that every rigid motion is written uniquely as ρ ◦ ta and

(ρ ◦ ta) ◦ (ρ′ ◦ tb) = (ρ ◦ ρ′) ◦ tc , c = ρ′(b) + a,

gives rise to a mapping:

Theorem
The mapping ϕ from the group M of rigid motions to the
orthogonal group O given by

ϕ(ρ ◦ ta) = ρ

is a group homomorphism.

The kernel is the subgroup of translations.
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Definition

If G is a subgroup of M, the image G ⊂ O of G under ϕ is called
the point group of G.

This is the group of all ρ ∈ O such that there is ta such that
ρ ◦ ta ∈ G.
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Homework #4

1 Prove that a linear operator of R2 is a reflection iff its
eigenvalues are 1 and −1, and its eigenvectors are
orthogonal.

2 Let Dn denote the dihedral group. Express (see 3.6)

x2yx−1y−1x3y3

in the form x iy j .
3 List all subgroups of D4, and determine which are normal.
4 Find all normal subgroups of D13, and determine the

quotient groups of D13.
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Finite Groups of Motions

Theorem (Fixed Point Theorem)
Let G be a finite subgroup of the group of rigid motions M. Then
there is a point p which is left fixed by every element of G, that
is there is a point p such that g(p) = p for all g ∈ G.

This gives us an opportunity to introduce an important notion in
group theory: orbits.
For simplicity suppose that G are linear transformations of R2.
For each x ∈ R2, the set

Gx = {g(x) : g ∈ G}

is the orbit of x . Since G is finite, Gx is a finite set:

Gx = {x1, . . . , xn}
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Proof

Note that for any g ∈ G

{x1, . . . , xn} = {g(x1), . . . ,g(xn)}

Proof.

Let x be any vector of R2 and set

p = x1 + · · ·+ xn

Then for any g ∈ G,

g(p) = g(x1) + · · ·+ g(xn)

= x1 + · · ·+ xn

= p
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Center of Gravity and Rigid Motions

Definition

Let {x1, . . . , xn} be a set of points of R2. Their center of gravity
is the point

p =
1
n

(x1 + · · ·+ xn).

Proposition
If F is a rigid motion then F(p) is the center of gravity
{F(x1), . . . ,F(xn)}.

Proof. Volunteer please!
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Dihedral group

Volunteer please!

Dn group of symmetries of the regular n-gon
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Finite subgroups

Theorem
Let G be a finite subgroup of the group of rigid motions O which
fix the origin. Then G is one of the following groups:

1 G = Cn: the cyclic group of order n, generated by the
rotation ρθ, where θ = 2π/n.

2 G = Dn: the dihedral group of order 2n, generated by two
elements–the rotation ρθ, where θ = 2π/n, and a reflection
r ′ about a line through the origin.
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Proof

If G consists of rotations: May assume G 6= {1}. Among
the rotations in G, let ρθ0 6= 1 with θ0 smallest. For any
other rotation ρθ ∈ G, write

θ = mθ0 + α, 0 ≤ α < θ0,m ∈ Z.

If α 6= 0, we would have

ρα = (ρθ0)−mρθ ∈ G,

which is a contradiction.

This shows G is generated by ρθ0 .
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If G contains refections: Change coordinates and assume
the standard reflection r ∈ G.
Let H be the subgroup of rotations in G. By the argument
above, H is a cyclic group Cn generated by the rotation ρ.
This shows that G contains Dn.
We claim that G = Dn. Let s be any reflection in G. Then
we know that s = rρ′ for some rotation ρ′, which would be
an element of G.
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Dn abstractly

Proposition
The dihedral group Dn is generated by two elements x , y which
satisfy the relations

xn = 1, y2 = 1, yx = x−1y .

Proof. The elements x = ρθ and y = r generate Dn by
definition of the group. The relations y2 = 1 and yx = x−1y are
included in the list of relations for M: They are rr = 1 and
rρθ = ρ−θr . The relation xn = 1 follows from the fact that
θ = 2π/n, which also shows that the elements 1, x , . . . , xn−1

are distinct.
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It follows that the elements y , xy , x2y , . . . , xn−1y are also
distinct and, since they are reflections while the powers of x are
rotations, that there is no repetition in the list of elements.

Finally, the relations can be used to reduce any product of
x , y , x−1, y−1 to the form x iy j , with 0 ≤ i < n, 0 ≤ j < 2.
Therefore the list contains all elements of the group generated
by x , y , and since these elements generate Dn the list is
complete �
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Corollary
The dihedral group D3 and the symmetric group S3 are
isomorphic.

For n > 3, the dihedral and symmetric groups are certainly not
isomorphic, because Dn has order 2n, while Sn has order n!.
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Discrete Groups of Motions of the Plane

The group M of motions of the plane is put together from the
orthogonal group O and the group of translations.

Definition
A subgroup G of the group of motions M is called discrete if it
does not contains arbitrarily small translations or rotations.
More precisely, G is discrete if there is some real number ε > 0
such that

1 if ta is a translation in G, then |a| ≥ ε;
2 if ρθ is a non trivial rotation in G, then |θ| ≥ ε.
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Plane Lattices

The subgroup of translations is isomorphic to R2:

a,b ∈ R2 : ta+b = ta + tb

We are going to study some subgroups of R2, among them are
the subspaces, but these are easy.
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Proposition

Every discrete group L of R2 has one of these forms :
1 L = {0}.
2 L is generated as an additive group by one nonzero vector

a :
L = {ma | m ∈ Z}.

3 L is generated by two linearly independent vectors a,b :

L = {ma + nb | m,n ∈ Z}.

Groups of the third type are called plane lattices,and the
generating set (a,b) is called a lattice basis.
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Example

(4.6) Figure. A lattice in IW'. 
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Proof

We may assume L 6= (0). There are two cases: L contains
maximal sets of either 1 or 2 linearly independent sets of
vectors.
L is contained in a one-dimensional subspace, L ⊂ Rv . We are
going to pick a nonzero element of L of minimal length. For that
we need a Lemma.

Lemma

Let L be a discrete subgroup of R2.

1 A bounded subset S of R2 contains only finitely many
elements of L.

2 If L 6= (0), then L contains a nonzero vector of minimal
length.
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Proof

Proof. Volunteer!
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Proof of Proposition

Let a ∈ L be nonzero, of minimum length. Then L ⊂ Ra.
For v ∈ L, v = ra, for some real number r which we write
as

r = n + r0

where n is an integer and 0 ≤ r0 < 1.
If r0 6= 0, v − na = r0a is an element of L of length less than
the length of a.
The contradiction shows that L = Za.
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Consider the other case, that L contains a set of two
linearly independent vectors a′ and b′.
We are going to replace these by better vectors that
generate L. First, in the line Ra′ pick the nonzero element
of L of least length. By the argument above, L ∩ Ra = Za.
Consider the parallelogram P ′ of vertices {0,a,b′,a + b′}.
P ′ is a bounded set so P ′ ∩ L is a finite set. Choose a point
b in this set whose distance to the line Ra is as small as
possible.
Replace b′ by b and consider the parallelogram P of
vertices {0,a,b,a + b}.
We claim that the only points of L in P are the vertices.
Draw a good picture.
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Lemma
Let a,b be linearly independent vectors which are elements of
a subgroup L of R2. Suppose that the parallelogram P which
they span contains no element of L other than the vertices
0,a,b,a + b. Then L is generated by a and b, that is,

L = {ma + nb | m,n ∈ Z}.

Proof. Let v be an arbitrary element of L. Then since (a,b) is a
basis of R2, v is a linear combination, say v = ra + sb, where
r , s are real numbers. We take out the integer parts of r , s,
writing r = m + r0, s = n + s0, where m,n are integers and
0 ≤ r0, s0 < 1. Let v0 = r0a + s0b = v −ma− nb. Then v0 lies
in the parallelogram P, and v0 ∈ L. Hence v0 is one of the
vertices, and since r0, s0 < 1, it must be the origin. Thus
v = ma + nb. This completes the proof of the lemma and the
Proposition characterizing plane lattices. �
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Proposition
A discrete subgroup of O is a finite group.

This will be a Hourly #1 Question.
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Corollary

The point group G of a discrete group G is cyclic or dihedral.

Recall how the point group G of a group G arises: Every
element of G can be written as a product ρ ◦ ta. The point group
of G is the group formed by these ρ.
In other words, G is the image of the morphism G→ O given by
ρ ◦ ta → ρ.
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Proposition
Let G be a discrete subgroup of M, with translation group
L = LG and point group G. The elements of G carry the group L
to itself. In other words, if g ∈ G and a ∈ L, then g(a) ∈ L.

Proof. To say that a ∈ L means that ta ∈ G. So we have to
show that if ta ∈ G and g ∈ G, then tg(a) ∈ G.
Now by definition of the point group, g is the image of some
element g of the group G: ϕ(g) = g. We will prove the
proposition by showing that tg(a) is the conjugate of ta by g.
We write g = tbρ or tbρr , where ρ = ρθ. Then g = ρ or ρr ,
according to the case. In the first case,

gtag−1 = tbρtaρ−1t−b = tbtρ(a)ρρ
−1t−b = tρ(a),

as required. The computation is similar in the other case. �
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Proposition
Let H ⊂ O be a finite subgroup of the group of symmetries of a
lattice L. Then

1 Every rotation in H has order 1,2,3,4, or 6.
2 H is one of the groups Cn, Dn where n = 1,2,3,4, or 6.
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Proof. The second part of the proposition follows from the first.
Let θ be the smallest nonzero angle of rotation in H, and let a
be a nonzero vector in L of minimal length. Then since H
oprates on L, ρθ(a) is also in L; hence b = ρθ(a)− a ∈ L. Since
a has a minimal length, | b |≥| a |. It follows that θ ≥ 2π/6.
Thus ρθ has order ≤ 6. The case that θ = 2π/5 is also ruled
out, because then the element b′ = ρθ2(a) + a is shorter than a:
This completes the proof. �
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Let L be a lattice in R2. An element v ∈ L is called primitive if it
is not an integer multiple of another vector in L.

Corollary
Let L be a lattice, and let v be a primitive element of L. There is
an element w ∈ L so that the set (v ,w) is a lattice basis.
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Now let us go back to our discrete group of motions G ⊂ M and
consider the rough classification of G accoding to the structure
of its translation group LG. If LG is the trivial group, then the
homomorphism from G to its point group is bijective and G is
finite. We examined this case in Section 3.
The discrete groups G such that LG is inifinite cyclic are the
symmetry groups of frieze patters. The classification of these
groups is left as an exercise.
If LG is a lattice, then G is called a two–dimensional
crystallographic group, or a lattice group. These groups are the
groups of symmetries of wallpaper patterns and of
two–dimensional crystals.
The fact that any wallpaper pattern repeats itself in two different
directions is reflected in the fact that its group of symmetries
will always contain two independent translations, which shows
that LG is a lattice.



Symmetry Rigid Motions Rigid Motions in the Plane Homework #4 Finite Groups of Motions Discrete Groups of Motions Abstract Symmetry The Operation on Cosets Homework #5 The Counting Formula Finite Subgroups of the Rotation Group Permutation Representation Symmetric groups

It may also contain further elements – translations, reflections,
or glides – but the crystallographic groups into 17 types. The
classification takes into account not only the intrinsic structure
of the group, but also the type of motion that each group
element represents. Representative patterns with the various
types of symmetry are illustrated in Figure (4.16).
Proposition (4.11) is useful for determining the point group of a
crystallographic group. For example, the brick pattern shown
below has a rotational symmetry through the angle π about the
centers of the bricks. All of these rotations represent the same
element ρπ of the point group G. The pattern also has glide
symmetry along the dotted line indicated. Therefore the point
group G contains a reflection. By Proposition (4.11), G is a
dihefral group. On the other hand, it is easy to see that the only
nontrivial rotations in the group of G of symmetries are through
the angle π. Therefore G = D2 = {1, ρπ, r , ρπr}.
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Example

(4.16) Figure. Sample patterns for the 17 plane crystallographic groups. 
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Proposition
Let G be a lattice group whose point group contains a rotation ρ
through the angle π/2. Choose coordinates so that the origin is
a point of rotation by π/2 in G. Let a be a shortest vector in
L = LG, let b = ρ(a), and let c = 1

2(a + b). Denote by r the
reflection about the line spanned by a. Then G is generated by
one of the following sets: {ta, ρ}, {ta, ρ, r}, {ta, ρ, tcr}. Thus
there are three such groups.
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Lemma
Let U be the set of vectors u such that tur ∈ G. Then

1 L + U = U.
2 ρU = U.
3 U + rU ⊂ L.

Proof. If v ∈ L and u ∈ U, then tv and tur are in G; hence
tv tur = tv+ur ∈ G. This shows that c + v ∈ U and proves (1).
Next, suppose that u ∈ U. Then ρturρ = tρuρrρ = tρur ∈ G. This
shows that ρu ∈ U and proves (2). Finally, if u, v ∈ U, then
turtv r = tu+rv ∈ G ; hence u + rv ∈ L, which proves (3). �
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Abstract Symmetry

Definition
Let G be a group and S a set. An operation of G on S is a map
G × S → S which satisfies the following axioms :

1 1s = s for all s, 1 is the identity of G.
2 Associative law : (gg′)s = g(g′s) for all g,g′ ∈ G and s ∈ S.

A set S with an operation of G is often called a G–set.
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Example
Let G = M be the group of all rigid motions of the plane. Then M
operates on the set of points of the plane, on the set of lines in the
plane, on the set of triangles in the plane, and so on.

Example

Let G be the cyclic group {1, r} of order 2, with r2 = 1. Then G
operates on the set S of complex numbers, by the rule rα = α.
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Definition
Let S be a G–set. Let s be an element of S. The orbit of s in S is the
set

Os = {s′ ∈ S | s′ = gs for some g ∈ G}.

Example
Let G = M be the group of motions and S the set of triangles in the
plane. The orbit O∆ of a given triangle ∆ is the set of all triangles
congruent to ∆.
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The orbits for a group action are equivalence classes for the
relation

s ∼ s′ if s′ = gs for some g ∈ G.

Being equivalence classes, the orbits partition the set S:

Proposition
S is a union of disjoint orbits.

The group G operates on S by operating independently on
each orbit. In other words, an element g ∈ G permutes the
elements of each orbit and does not carry elements of one orbit
to another orbit.
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Definition
If S consists of just one orbit, we say that G operates transitively on
S.

Definition
The stabilizer of an element s ∈ S is the subgroup Gs of G of
elements leaving s fixed:

Gs = {g ∈ G | gs = s}.
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Example
Consider the action of the group M of rigid motions on the set of
points of the plane. The stabilizer of the origin is the subgroup O of
orthogonal operators.

Example
Consider the action of the group M of rigid motions on the set
of triangles in the plane. Let ∆ be a particular triangle, which
happens to be equilateral. Then the stabilizer of ∆ is its group
of symmetries, a subgroup of M isomorphic to D3.
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The Operation on Cosets

Let H be a subgroup of a group G. The set of left cosets is
called the coset space and denoted by G/H.
Though G/H is not a group unless the subgroup H is
normal, nevertheless G operates on the coset space G/H
in a natural way:
Let g be an element of the group and let C be a coset.
Then gC is defined to be the coset

gC = {gc | c ∈ C}.

Thus if C = aH, then gC is the coset gaH.



Symmetry Rigid Motions Rigid Motions in the Plane Homework #4 Finite Groups of Motions Discrete Groups of Motions Abstract Symmetry The Operation on Cosets Homework #5 The Counting Formula Finite Subgroups of the Rotation Group Permutation Representation Symmetric groups

Proposition
Let S be a G–set, and let s be an element of S. Let H be the
stabilizer of s, and let Os be the orbit of s. There is a natural
bijective map

ϕ : G/H −→ Os

defined by ϕ(aH) = as. This map is compatible with the
operations of G in the sense that ϕ(gC) = gϕ(C) for every
coset C and every element g ∈ G.
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Proof. It is clear that map ϕ, if it exists, will be compatible with
the operation of the group.
What is not so clear is that the rule gH  gs defines a map at
all. Since many symbols gH represent the same coset, we
must show that if a and b are group elements and if aH = bH,
then as = bs too. This is true, because we know that aH = bH
if and only if b = ah for some h ∈ H. And when b = ah, then
bs = ahs = as because h fixes s.
Next, the orbit of s consists of the elements gs, and ϕ carries
gH to gs. Thus ϕ maps G/H onto Os, and ϕ is surjective.
Finally we show that ϕ is injective. Suppose aH and bH have
the same images : as = bs. Then s = a−1bs. Since H was
defined to be the stabilizer of s, this implies that a−1b = h ∈ H.
Thus b = ah ∈ aH, and so aH = bH. This completes the proof.
�
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Proposition

Let S be a G-set, and let s ∈ S. Let s′ be an element in the
orbit of s, say s′ = as. Then
(a) The set of elements g of G such that gs = s′ is the left

coset

aGs = {g ∈ G | g = ah for some h ∈ Gs}.

(b The stabilizer of s′ is a conjugate subgroup of the stabilizer
of s :

Gs′ = aGsa−1 = {g ∈ G | g = aha−1 for some h ∈ Gs}.
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Homework #5: Do 4 Problems

1 Prove that a discrete subgroup of O is a finite group.
2 Let G = D4 be the dihedral group of symmetries of the

square
1 What is the stabilizer of a vertex? of an edge?
2 G acts on the set of two elements consisting of the diagonal

lines. What is the stabilizer of a diagonal?
3 Decompose the set C2×2 of 2× 2 complex matrices for the

operation of left multiplication by GL2(C).
4 Prove that the set of automorphisms of a group is a group.

Determine the group of automorphisms of D4.
5 Prove that if H and K are subgroups of finite index of a

group G, then H ∩ K is also of finite index.
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The Counting Formula

Let H be a subgroup of G. All the cosets of H in G have the
same number of elements : | H |=| aH |. Since G is a union of
nonoverlapping cosets and the number of cosets is the index,
which we write as [G : H] or | G/H |, we have the fundamental
formula for the order | G |of the group G :

| G |=| H || G/H | .

Proposition
(Counting Formula) Let S be a G–set and let s ∈ S. Then

| G |=| Gs· || Os | .

Equivalently, the order of the orbit is equal to the index of the
stabilizer:

| Os |= [G : Gs].
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Another counting formula

Proposition
Let G be a finite group and S a finite G-set. If O1, . . . ,Ok are
the distinct orbits of G,

|S| = |O1|+ · · ·+ |Ok |.

Each |Oi | divides |G|.
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Conjugation

One of the most useful actions of a group G is conjugation. It
acts on itself as follows. Conjugation by a ∈ G

x → a−1xa, x ∈ G.

The orbit of x is the set Ox = {a−1xa : a ∈ G}

The stabilizer of x is the set Cx (G) = {a ∈ G : a−1xa}. This
is the set of all elements of G that commute with x .

The elements x whose orbit Ox have a single element, for
instance 1, form the center of G. It is a subgroup: Z (G).
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The class equation

The counting formula for this action:

Theorem
Let G be a finite group. Then

|G| =
∑
|Ox | = |Z (G)|+

∑
[G : Cx (G)].
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An useful formula

Proposition
Let H and K be subgroups of a group G. Then

[H : H ∩ K] ≤ [G : K].
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Proof. Let S denote the coset space GK, and the coset
1K = s.

|S| = [G : K], and the stabilizer of s is K.
Restrict the action of G on S to an action of H and
decompose S into H-orbits. The stabilizer of s for this
action is H ∩ K.
The H-orbit of s is a subset of S. By the counting formula
|O| = [H : H ∩ K]. Therefore

[H : H ∩ K] = |O| ≤ |S| = [G : K].
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Finite Subgroups of the Rotation Group

Theorem
Every finite subgroup G of SO3 is one of the following:

1 Ck : the cyclic group of rotations by multiplies 2π/k about a
line ;

2 Dk : the dihedral group of symmetries of a regular k–gon ;
3 T : the tetrahedral group of twelve rotations carrying a

regular tetrahedron to itself ;
4 O : the octahedral group of order 24 of rotations of a cube,

or of a regular octahedron;
5 I : the icosahedral group of 60 rotations of a regular

dodecahedron or a regular icosahedron.
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Example
Regular Polyhedra

Regular Polyhedra

also known as Platonic Solids

 

Kaleidotile was used to help create this image. 

There are just five platonic solids.

From equilateral triangles you can make:

with 3 faces at each vertex, a tetrahedron; 

with 4 faces at each vertex, an octahedron; 

http://mathforum.org/sum95/math_and/poly/reg_polyhedra.html (1 of 2) [7/16/2009 7:51:05 PM]
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Permutation Representation

The symmetric group Sn operate on the set S = {1, . . . ,n}. A
permutation representation of a group G is a homomorphism

ϕ : G→ Sn.

Thus, for g ∈ G, ϕ(g) is a permutation of S.

Proposition
There is a bijective correspondence(

operations
of G on S

)
↔
(

homomorphisms
G→ Perm(S)

)
defined by: Given an operation m define ϕ : G→ Perm(S) by
the rule ϕ(g) = mg.
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Let us show that ϕ is a homomorphism. We’ve already noted
that mg is a permutation. So as dfined above, ϕ(g) ∈ Perm(S).
The axiom for a homomorphism is ϕ(xy) = ϕ(x)ϕ(y), or
mxy = mxmy , where multiplication is composition of
permutations. So we have to show that mxy (s) = mx (my (s)) for
every s ∈ S. By definition mxy (s) = (xy)s and
mx (my (s)) = x(ys). The associative law for group operations
shows that (xy)s = x(ys), as required. �
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Proposition
The group GL2(F2) of invertible matrices with mod 2
coefficients is isomorphic to the symmetric group S3.
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Proof. Let us denote the field F2 by F , and the group GL2(F2)
by G. We have listed the six elements of G before. Let V = F 2

be the space of column vectors. This space consists of the
following four vectors : V = {0,e1,e2,e1 + e2}. The group G
operates on V and fixes 0, so it operates on the set of three
nonzero vectors, which form one orbit. This gives us a
permutation representation ϕ : G −→ S3. Now the image of e1
under multiplication by a matrix P ∈ G is the first column of P,
and similarly the image of e2 is the second column of P.
Therefore P can not operate trivially on these two elements
unless it is the identity. This shows that the operation of G is
faithful, and hence that the map ϕ is injective. Since both
groups have order 6, ϕ is an isomorphism. �
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Proposition
The group of automorphism of the cyclic group of order p is
isomorphic to the multiplicative group F×p of nonzero elements
of Fp.
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Proof. The method here is to use the additive group F×p as the
model for a cyclic group of order p. It is generated by the
element 1. Let us denote the multipliative group F×p by G. Then
G operates on F+

p by left multiplication, and this operation
defines an injective homomorphism ϕ : G −→ Perm(Fp) to the
group of permutations of the set Fp of p elements.
Next the group A = Aut(F+

p ) of automorphisms is a subgroup of
Perm(F+

p ). The distributive law shows that multiplication by an
element a ∈ F×p is an automorphism of F+

p . It is bijective, and
a(x + y) = ax + ay . Therefore the image of ϕ : G −→ Perm(F+

p )
is contained in the subgroup A. Finally, an automorphism of F+

p
is determined by where it sends the generator 1, and the image
of 1 can not be zero. Using the operations of G, we can send 1
to any nonzero element. Therefore ϕ is a surjection from G onto
A. Being both injective and surjective, ϕ is an isomorphism. �
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Definition
A group G is said to be simple if G has no proper normal subgroups.

Theorem
The alternating group An is simple if and only if n 6= 4.

The proof we shall give is quite elementary. It will be preceded
by two lemmas. Recall that if τ is a 2-cycle, τ2 = (1) and hence
τ = τ−1.
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Lemma
Let r , s be distinct elements of {1,2, . . . ,n}. Then An ( n ≥ 3 )
is generated by the 3-cycles

{(rsk) | 1 ≤ k ≤ n, k 6= r , s}.
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Proof. Assume n > 3 ( the case n = 3 is trivial). Every element
of An is a product of terms of the form (ab)(cd) or (ab)(ac),
where a,b, c,d are distinct elements of {1,2, . . . ,n}. Since
(ab)(cd) = (acb)(acd) and (ab)(ac) = (acb), An is generated
by the set of all 3-cycles. Any 3-cycle is of the form
(rsa), (ras), (rab), (sab), or (abc), where a,b, c are distinct, and
a,b, c 6= r , s. Since (ras) = (rsa)2, (rab) = (rsb)(rsa)2,
(sab) = (rsb)2(rsa), and (abc) = (rsa)2(rsc)(rsb)2(rsa), An is
generated by

{(rsk) | 1 ≤ k ≤ n, k 6= r , s}.

�
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Lemma
If N is a normal subgroup of An ( n ≥ 3 ) and N contains a
3–cycle, then N = An.
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Proof. If (rsc) ∈ N, then for any k 6= r , s, c,

(rsk) = (rs)(ck)(rsc)2(ck)(rs) = [(rs)(ck)](rsc)2[(rs)(ck)]−1 ∈ N.

Hence N = An.
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Proof. A2 = (1) and A3 is the simple cyclic group of order 3. It
is easy to verfify that

{(1), (12)(34), (13)(24), (14)(23)}

is a normal subgroup of A4. If n ≥ 5 and N is a nontrivial
normal subgroup of An, we shall show N = An by considering
the possible cases.
Case 1. N contains a 3-cycle; hence N = An.
Case 2. N contains an element σ, the product of disjoint cycles,
at least one of which has length r ≥ 4. Thus σ = (a1a2 · · · ar )τ
(disjoint). Let δ = (a1a2a3) ∈ An. Then σ−1(δσδ−1) ∈ N by
normality. But

σ−1(δσδ−1) = τ−1(a1ar ar−1 · · · a2)(a1a2a3)(a1a2 · · · ar )τ(a1a3a2)
= (a1a3ar ) ∈ N.

Hence N = An.



Symmetry Rigid Motions Rigid Motions in the Plane Homework #4 Finite Groups of Motions Discrete Groups of Motions Abstract Symmetry The Operation on Cosets Homework #5 The Counting Formula Finite Subgroups of the Rotation Group Permutation Representation Symmetric groups

Case 3. N contains an element σ, the product of disjoint cycles,
at least two of which have length 3, so that
σ = (a1a2a3)(a4a5a6)τ (disjoint). Let δ = (a1a2a4) ∈ An. Then
as above N contains

σ−1(δσδ−1)
= τ−1(a4a6a5)(a1a3a2)(a1a2a4)(a1a2a3)(a4a5a6)τ(a1a4a2)
= (a1a4a2a6a3).

Hence N = An by case 2.
Case 4. N contains an element σ that is the product of one
3-cycle and some 2-cycles, say σ = (a1a2a3)τ (disjoint), with τ
a product of disjoint 2-cycles. Then σ2 ∈ N and

σ2 = (a1a2a3)τ(a1a2a3)τ = (a1a2a3)2τ2 = (a1a2a3)2 = (a1a3a2),

whence N = An.
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Case 5. Every element of N is the product of (an even number
of) disjoint 2-cycles. Let σ ∈ N, with σ = (a1a2)(a3a4)τ
(disjoint). Let δ = (a1a2a3) ∈ An; then σ−1(δσδ−1) ∈ N as
above. Now

σ−1(δσδ−1) = τ−1(a3a4)(a1a2)(a1a2a3)(a1a2)(a3a4)τ(a1a3a2)
= (a1a3)(a2a4).

Since n ≥ 5, there is an element b ∈ {1,2, . . . ,n} distinct from
a1,a2,a3,a4. Since ζ = (a1a3b) ∈ An and
ξ = (a1a3)(a2a4) ∈ N, ξ(ζξζ−1) ∈ N. But

ξ(ζξζ−1) = (a1a3)(a2a4)(a1a3b)(a1a3)(a2a4)(a1ba3) = (a1a3b) ∈ N.

Hence N = An.
Since the cases listed cover all the possibilities, An has no
proper normal subgroups and hence is simple. �
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