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• Pre-requisites: By permission only

• Textbook: See Syllabus

• webpage:www.math.rutgers.edu/(tilde)vasconce

• email : vasconce AT math.rutgers.edu

• Office hours [H228]: TF 2:4, or by arrangement
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General Syllabus

• Composition Laws
• Groups, Subgroups, Homomorphisms
• Quotient Groups
• Groups of Symmetry
• Group Actions on Sets
• Representation Theory
• Basics of Rings
• The X-Topic
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Syllabus

Text: Michael Artin’s Algebra, Prentice Hall, 1991, ISBN
0-13-004763-5. Note: Students may be able to obtain used
copies online through addall.com or other websites.
Prerequisites: By permission only. Typically requires an
introductory abstract algebra course (very comfortable with
complex numbers, for one), solid linear algebra (e.g.
Math350) and appreciate the joys of proofs (Math300).
Meeting times: MTh 3rd period (12:00–1:20), ARC-105,
Busch Campus
Final Exam: TBA
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Topics

1 We will cover selections from the first 10 chapters of Artin’s
Algebra.

2 We will cover most or all of chapters 2 (basic group
theory), 5 (groups and symmetry), 6 (more group theory
including the Sylow theorems), 9 (group representation
theory), and 10 (basics of rings).

3 Although we will be focusing on group theory, we may treat
the chapters on linear algebra (1, 3, 4, and 7) as needed.

4 The term grade will be based on the results of the
examinations, homework problems, and class participation.
We will have 2 midterm (80 minute) exams and a final
exam. Homework sets will be assigned approximately once
per week. Weights: HW=100, H1=100, H2=100, F=200.
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Composition Laws

The basic notion of the course is that of a composition law on a
set X.

A composition on a set X is a function assigning to ordered
pairs of elements of X an element of X,

(a,b) 7→ f(a,b).

That is a function of two variables on X with values in X.

The interesting composition laws gives rise to the algebraic
structures denoted by the set {X, f(·, ·)}.
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It is nicely represented in a composition table

f ∗ b ∗
∗ ∗ ∗ ∗
a ∗ f(a,b) ∗
∗ ∗ ∗ ∗

We represent it also as

X× X f−→ X
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The functional notation f(a,b) is often replaced by more
suggestive or familiar notations:

f(a,b)→ a · b,a + b,a ◦ b,a× b,ab

Of course, attention must be paid to the fact that f(a,b) may be
different from f(b,a).
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Example

Let A be a nonempty set and let X be the set of all maps
α : A→ A,

X = Maps(A,A).

Composition gets its name from

(α, β) ∈ X× X→ α ◦ β ∈ X,

(α ◦ β)(a) = α(β(a)), a ∈ A
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Exxample

A set A with two elements, say A = {0,1}, has X = {i , τ, α, β},
with i the identity map, τ the transposition map, that is τ(0) = 1,
τ(1) = 0. α and β are the constant maps: α(1) = α(0) = 0 and
β(1) = β(0) = 1.
The composition table is

◦ i τ α β

i i τ α β
τ τ i β α
α α α α α
β β β β β
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Properties of Compositions

Let f be a composition on the set X.

f is associative if f(f(a,b), c) = f(a, f(b, c)) for all
a,b, c ∈ X. In the more standard notation:

a(bc) = (ab)c, ∀a,b, c ∈ X

f is commutative if f(a,b) = f(b,a) for all a,b ∈ X,

ab = ba, ∀a,b ∈ X

Note that the composition table of a commutative
composition law is symmetric.
For the composition law (natural?) defined above on
X = Maps(A,A), we have

α ◦ (β ◦ γ) = (α ◦ β) ◦ γ

since, as maps, they both equal α(β(γ(a))), ∀a ∈ A.
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Properties of Compositions

An identity of a composition f is an element e ∈ X such that

f(a,e) = f(e,a) = a, ∀a ∈ X

If an identity for f exists, it is unique: e′ = ee′ = e′e = e.
For a compostion f with identity e, an inverse of an element
a ∈ X is an element b ∈ X such that

f(a,b) = f(b,a) = e

If f is associative, inverses, when they exist, are unique.
If f is associative with identity, c is the inverse of a and d is
the inverse of b, then f(d , c) = dc is the inverse of
f(a,b) = ab.
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Properties of Compositions

If f is associative, we may define powers: a1 = a, and for
n > 1 an = an−1a. Moreover, if e is an identity, a0 = e.

If a has an inverse, n < 0, an = (a−1)n.

These definitions lead to the rule: aman = am+n ∀m,n ∈ Z.
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Groups

Definition
A group is a set G with a composition law that is associative,
has an identity element, and such that every element of G has
an inverse.

A group G is abelian (or commutative) if the composition law is
commutative.

The preferred notation for a group law is (a,b)→ ab in general
and (a,b)→ a + b for abelian groups.
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Abelian group

An abelian group is a set G with a composition law denoted ‘+’

G×G→ G,

a,b ∈ G, a + b ∈ G

satisfying the axioms
• associative ∀a,b, c ∈ G, (a + b) + c = a + (b + c)

• commutative ∀a,b ∈ G, a + b = b + a
• existence of O

∃O ∈ G such that ∀a a + O = a

• existence of inverses

∀a ∈ G ∃b ∈ G such that a + b = O

This element is unique and denoted −a.
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Examples of abelian groups

Z+: the integers, with addition;

R+: the real numbers, with addition;

R×: the nonzero real numbers, with multiplication;

C, C×: analogous groups of complex numbers.
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Let us get confused a bit!

A point worthy of discussion: Is it possible for the same set, say
R, to be an abelian group in more than one way? To show this,
let us define a new addition of real numbers. We are going to
call it ‘O plus’ ⊕:

a⊕ b := a + b − 1

Call this set R⊕. It is easy to see that it is an abelian group [e.g.
(a⊕ b)⊕ c = a = b + c − 2 so composition is associative] in
which 0 is 1: a⊕ 1 = a!
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Group of Rotations

Let C be the set of all complex numbers a + bi , with
a2 + b2 = 1. Graphically this is just the unit circle centered at
the origin of a plane. Ths set has the following properties:

a + bi ∈ C, then (a + bi)−1 ∈ C. This because

(a + bi)−1 = (a− bi) ∈ C

If a + bi , c + di ∈ C then (a + bi)(c + di) ∈ C. This follows
from (a + bi)(c + di) = (ac − bd) + (ad + bc)i and

(ac − bd)2 + (ad + bc)2 = (a2 + b2)(c2 + d2) = 1.

Each element of C can also be written

a + bi = eiθ
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Cancellation Laws

Proposition
Let a,b, c be elements of the group G. If ac = bc, then a = b.

Proof.

Multiply both sides of ac = bc by c−1 on the right

a = acc−1 = bcc−1 = b.

Note the importance of the associative law.
There is a similar cancellation law: If ca = cb, then a = b.
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Groups: Main Examples

For a positive integer n, let G be the set of invertible n × n
matrices with entries in R. If α, β ∈ G, multiplication yields
a group structure on G. A notation for this group is GLn(R)
and a characterization is

GLn(R) = {α ∈ Matn(R) : detα 6= 0}

Similar examples occur when other fields are used instead
of R.
If A is a nonempty set, let G be the subset of bijective
elements of Maps(A,A). That is, the mapping α : A→ A is
an element of G if α is one-one and onto. Such maps are
also called of permutations of A. If A is a set of cardinality
n > 0, G is denoted by Sn.
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Examples

Consider the following two examples of groups:
The set G of complex numbers of the form

G = {z = cos(2π/4)n + i sin(2π/4)n : n = 0,1,2,3}.
Under multiplication G is a group with four elements.
The set Z4 of residues of division by 4 of the integers,
Z4 = {0,1,2,3}. An addition can be given that defines a
group law on Z4:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Comment: Except for the notation, it is hard to tell the
difference between G and Z4. One feels tempted...
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Isomorphisms

Definition
Let G and G′ be two groups and ϕ : G→ G′ a mapping that is
bijective. ϕ is a group isomorphism if

ϕ(ab) = ϕ(a)ϕ(b), ∀a,b ∈ G.

In the groups above, the function

ϕ : n ∈ Z4 → cos(2π/4)n + i sin(2π/4)n ∈ G

defines an isomorphism of the two groups. Another
isomorphism would be the mapping

ϕ : n ∈ Z4 → cos(2π/4)3n + i sin(2π/4)3n ∈ G



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Example

Let G be the multiplicative group of positive real numbers,
and G′ the additive group R.

The log function (in any base) gives a mapping

log : G→ G′

with the property

log(ab) = log(a) + log(b), ∀a,b ∈ G

is an isomorphism between the two groups.

The corresponding exponential function gives the inverse
isomorphism.
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Subgroups

Definition
A subset H of a group G is a subgroup if it has the following
three properties:

1 Closure: If a,b ∈ H, then ab ∈ H.
2 Identity: 1 ∈ H.
3 Inverses: If a ∈ H, then a−1 ∈ H.

Equivalently:
H is a non-empty subset of G such that if a,b ∈ H then
ab−1 ∈ H.

It follows that H is a group for the restriction of the composition
law of G.
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Quaternions

Let H be the set of all 2× 2 complex matrices of the form

A =

[
z1 z2
−z2 z1

]
,

where z1 and z2 are complex numbers and z1 and z2 are their
complex conjugates. These matrices satisfy:

The product of two such matrices has the same format.
If z1 or z2 is nonzero,

det A = z1z1 + z2z2 6= 0,

so A is invertible, and A−1 has the same format.
Thus the set of nonzero matrices of H form a group. (H is
even grander!)
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Example

The matrices of H

1 =

[
1 0
0 1

]
, I =

[
i 0
0 i

]

J =

[
0 1
−1 0

]
, K =

[
0 i
i 0

]
satisfy

IJ = −JI = K, JK = −KJ = I, KI = −IK = J

so the 8 elements {±1,±I,±J,±K} form a subgroup.
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The subgroups of Z+

Theorem
If a is an integer, the set

H = {na : n ∈ Z}

is a subgroup of Z. It is usually denoted by Za.

Conversely, if H is a subgroup of Z, then there is an integer
a ≥ 0 such that H consists of all multiples of a.

Proof. It is clear that Za is a subgroup: If na,ma ∈ H,

na±ma = (n ±m)a ∈ H.
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Converse

For the converse, if H is the subgroup {0}, then H = Z0. If not,
H contains positive integers: if b ∈ H and b < 0, −b ∈ H.
Let a be the smallest nonzero positive integer in H. We claim
that H = Za. For b ∈ H, by the Euclidean algorithm, there is a
relation

b = qa + r , 0 ≤ r < a.

If r = 0, b ∈ Za. If not, r = b − qa ∈ H, which is a contradiction
since 0 < r < a.
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Application

Let a and b be two integers. The set

H = {ma + nb : m,n ∈ Z}

has the required properties of a subgroup of Z: closure, identity,
negatives.
According to the Proposition, H = Zc for some integer c. Let us
examine the properties of c:

1 Since a,b ∈ H, a and b are divisible by c.
2 Any integer d that divides a and b, will divide a

combination ma + nb, in particular will divide c.
3 This shows that c = gcd(a,b).
4 As extra we obtain that the gcd of a and b is a linear

combination ma + nb for appropriate m,n ∈ Z.
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Cyclic Groups

One of the most natural ways to create groups is the following:
Let G a group. Let x be a fixed element of G and set

〈x〉 = {xn : n ∈ Z}.

This is the set of all powers of x . Recall that x0 = 1 and if n < 0
xn = (x−1)−n. 〈x〉 is clearly a subgroup of G: has closure,
identity and inverse properties.

Definition
〈x〉 is called a cyclic group and x is called a generator.

Z is cyclic, and ±1 are its generators: any integer is a multiple
of any of them.
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Properties of Cyclic Groups

The following is elementary but very important:

Proposition
Let G = 〈x〉 be a cyclic group.

1 If G is infinite then G is isomorphic to Z.

2 Every subgroup H of a cyclic group is cyclic.

3 Two cyclic groups of the same cardinality are isomorphic.
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Proof

Proof. One volunteer please!
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Order of a group

Definition
The order of a group G is its cardinality: |G|.
If a ∈ G, its order is the smallest integer n(or infinity if n does
not exist) such that an = 1. Thus the order of a is the order of
the cyclic subgroup generated by a: |〈a〉|

Example: |Sn| = n!
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Homomorphisms

Definition
Let G and G′ be groups. A homomorphism ϕ : G→ G′ is any
mapping satisfying rule

ϕ(ab) = ϕ(a)ϕ(b), ∀a,b ∈ G.

Example

the determinant function det : GLn(R)→ R×;
the logarithm log : R×+ → R;
the exponential...
the mapping ϕ : Z→ G, ϕ(n) = an, where a is a fixed
element of G;
the inclusion map i : H→ G where H is a subgroup of G
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Conjugation

Definition
Let G be a group and a ∈ G. The conjugation defined by a is
the mapping ϕ : G→ G

ϕ(b) = aba−1, b ∈ G.

Proposition
ϕ is a homomorphism.

Proof.

a(bc)a−1 = (aba−1)(aca−1).
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Properties of Homomorphisms

Proposition

If ϕ : G→ G′ is a group homomorphism, then it carries the
identity to the identity, and inverses to inverses. In other words,
ϕ(1) = 1′ and ϕ(a−1) = (ϕ(a))−1.

Proof. (a) ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1), so by cancellation
ϕ(1) = 1′.

(b) 1 = a · a−1 → ϕ(a)ϕ(a−1) = ϕ(1) = 1′. Thus ϕ(a−1) is the
inverse of ϕ(a).
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Properties of Homomorphisms

Definition
Let ϕ : G→ G′ be a group homomorphism.

1 The kernel of ϕ is the set

H = {a ∈ G : ϕ(a) = 1′}.

2 The range, or image of ϕ is the set

L = {ϕ(x) : x ∈ G}.
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Proposition

Let ϕ : G→ G′ be a group homomorphism. Then the kernel of
ϕ is a subgroup of G and its image is a subgroup of G′.

Proof. A volunteer please!

Another volunteer to discuss:

ϕ : C× → C×, ϕ(z) = z4
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Normal Subgroups

A super important type of subgroup are normal sybgroups.
They were [introduced and] extensively used by Galois in his
analysis of the solvability of equations by radicals.

Definition
A subgroup H of a group G is a normal subgroup if it has the
following property: For every a ∈ H and every b ∈ G, the
conjugate bab−1 is in H.
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Evariste Galois (1811-1832)

Galois Portraits

Evariste Galois

   

A drawing done in 1848 from memory by 
Evariste's brother 

  

A bigger picture 

 

http://www-history.mcs.st-and.ac.uk/PictDisplay/Galois.html (1 of 2) [11/23/2008 11:17:09 AM]
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David Hilbert (1862-1943)

David Hilbert

David Hilbert 
(1862 - 1943) 
Mathematician 

Algebraist 

Topologist 

Geometrist 

Number Theorist 

Physicist 

Analyst 

Philosopher 

Genius 

And modest too... 

 

"Physics is much too hard for physicists." - Hilbert, 1912

This site is dedicated to David Hilbert, the funkiest mathematician alive.  
(Well, at least the funkiest when  he was alive. He's dead now, but he's still pretty 
funky. I don't mean funky like he smells funky, but I'm sure he does since he's been dead for 
over half a century. Of course, he was German, so the term probably wouldn't be applied to 
him. It would probably be more like funkisch. Hey, there's five years of German classes well 
spent. And he was born way before disco was king, so the term funky or funkisch probably 
wasn't used at all back then. I'm not saying that Davey wouldn't like disco. He was known to 
be a very good dancer in his time. That was mostly big band music hall stuff, but I'm sure he 
could manage to do the Hustle. And that's pretty hip for a mathematician. Not that all 
mathematicians aren't hip, mind you. I know one that even had a beer party recently. Of 
course, he did take that opportunity to gather beer tasting data in the form a block design 
using random permutations of 4-subsets of a 6-set. I'll stop now.) 

"Every boy in the streets of Gottingen understands more about four-dimensional geometry 
than Einstein. Yet, in spite of that, Einstein did the work and not the mathematicians." - 
Hilbert, 1915

http://www.math.umn.edu/~wittman/hilbert.html (1 of 2) [11/28/2008 3:43:37 PM]
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Examples

If G is abelian, then every subgroup is normal.

If ϕ : G→ G′ is a group homomorphism, then its kernel H
is normal: If ϕ(a) = 1′ then for any b ∈ G,

ϕ(bab−1) = ϕ(b)ϕ(a)ϕ(b−1) = ϕ(b) · 1′ · ϕ(b)−1 = 1′.

The subgroup SLn(R) ⊂ GLn(R) real matrices of
determinant 1 is normal: It is the kernel of
det : GLn(R)→ R×.

If H is a subgroup of a group G and [G : H] = 2, then H is
normal: G = H ∪ aH = H ∪ Ha, thus aH = Ha.
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Normalizer of a Subgroup

Let H be a subgroup of a group G. The set

N(H) = {x ∈ G : xH = Hx}

is a subgroup. H is a normal subgroup of N(H).

Definition
N(H) is the normalizer of H.

Given a subgroup H of a group G, N(H) is the largest subgroup
K such that H is a normal subgroup of...
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Quick Review: Vector Spaces

A vector space is a structured set put together from an abelian
group V and a field F. It is helpful to keep in mind the following
examples.

Let n be a non-negative integer. Rn: the set of all n-tuples of
real numbers, with 2 compositions

v1
v2
...

vn

+


u1
u2
...

un

 =


v1 + u1
v2 + u2

...
vn + un


For c ∈ R,

c


v1
v2
...

vn

 =


cv1
cv2

...
cvn


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Another example is the set of polynomials in one indeterminate
over the field F: F[x ] is the set of polynomials

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, ai ∈ F

Addition is given by

(anxn + · · ·+ a1x + a0) + (bmxm + · · ·+ b1x + b0) =
∑

i

(ai + bi)x i

and scalar multiplication

cf (x) = canxn + can−1xn−1 + · · ·+ ca1x + ca0

Related examples are the subsets Pn(x) of polynomials of
degree at most n.
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The set of solutions of the differential equation

y (3) − 7y ′′ + 14y ′ − 8y = 0

is also a vector space over R. It is a consequence of the fact
[principle of superposition] that if y1(x) and y2(x) are solutions
then for a,b ∈ R

ay1(x) + by2(x)

is also a solution. From Calc 252, it will follow that any solution
is a combination

aex + be2x + ce4x
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Formally, a vector space over a field F is an abelian group V
admitting a (scalar) multiplication

F× V→ V, c × u 7→ cu ∈ V

with the following properties:
• For c,d ∈ F, u ∈ V, (cd)u = c(du)

• For u ∈ V, 1u = u
• For c,d ∈ F, u ∈ V, (c + d)u = cu + du
• For c ∈ F, u, v ∈ V, c(u + v) = cu + cv

We can now define vectors: the elements of a vector space.
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Theorem (First Theorem)
For u,O ∈ V, 0, c ∈ F

0u = O, cO = O, (−c)u = −(cu)

Proof. For the first claim, observe

0u = (0 + 0)u = 0u + 0u,

so
0u = O

Similarly for the other claims. �
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There are many vector spaces derived from those mentioned
already. We give a very general method to form new vector
spaces. Let V and W be vector spaces over the field F and let
V×W be the set of all ordered pairs (v ,w), v ∈ V, w ∈W. If
we define an addition and a scalar multiplication by

(v1,w1) + (v2,w2) := (v1 + v2,w1 + w2)

c(v ,w) := (cv , cw),

we make V×W into a vector space. It is easy to verify all the
requirements. This is the method used to obtain the vector
spaces of tuples F2 = F× F, F3 = F2 × F, and so on.
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Functions on Vector Spaces

Let V and W be two vector spaces over the field F. What are
the functions like between these spaces?:

T : V→W.

V is called the source, and W the target of the function. For

example, suppose V = W = F2. Then T takes for input pairs
v = (x1, x2), and outputs pairs T(v) = (y1, y2):

(x1, x2)→ T → (y1, y2) = (f1(x1, x2), f2(x1, x2))

It can be very varied since functions of two variables come in
many flavors.
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We will be looking at certain type of functions illustrated by the
following examples.

• Let V be the vector space of all real valued functions with
derivatives in [−1,1], and let W be the vector space of real
valued functions on [−1,1]. Define

T(f (t)) = f ′(t),

or
L(f ) = f ′′ − f .

• Here are two other functions

T(f ) =

∫ 1

−1
f (t)dt , T : V→ R

L(f ) =

∫ t

−1
f (t)dt , T : V→W
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• T : R2 → R2

T(x , y) = (y , x)

This is reflection about the [main] diagonal.
• For α fixed,

T(x , y) = (x cosα + y sinα,−x sinα + y cosα)

This is a rotation in the plane by α degrees.
• T : R3 → R2

T(x , y , z) = (x , y)

This is projection on the xy -plane.

All these functions share the following property:
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Definition
A function T : V→W is a linear transformation, or linear
operator, if it satisfies:

(i) For any v1, v2 ∈ V,

T(v1 + v2) = T(v1) + T(v2)

[T is additive, that is takes sums to sums]
(ii) For any v ∈ V and c ∈ F,

T(cv) = cT(v)

[T commutes with scaling]
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We can put these two properties together:
A function can be viewed as a factory processing inputs into
outputs

input→ f → output

One key property of a linear box is that it can be reverse
engineered.
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Proposition
Let T : V →W be a linear transformation of vector spaces. If
v1, . . . , vn ∈ V and c1, . . . , cn ∈ F, then

T(
n∑

i=1

civi) =
n∑

i=1

ciT(vi).

[That is, T commutes with linear combinations.]

Proof.
It uses the conditions (i) and (ii) of the definition and induction:
Apply T to

n∑
i=1

civi = (
n−1∑
i=1

civi) + cnvn

and iterate.
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Recipe for linear transformations

Let V be a vector space with a basis v1, v2, . . .. If W is a vector
space, for each vi choose wi ∈W [the wi do not need to be
linearly independent].

Proposition
The assignment ∑

i

xivi 7→
∑

i

xiwi

defines a linear transformation from V to W.
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One quick way to build a L.T. between spaces of tuples is the
following. Let A be an m × n matrix with entries in the field F.
For a n-tuple

v =

 x1
...

xn


define the function LA : Fn → Fm

LA(v) = A · v .

Since multiplication of matrices is distributive and commutes
with scaling, LA is a L.T.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Let M2(F) be the vector space of all 2-by-2 matrices over the

field F. Fix a matrix, say, A =

[
1 −1
2 3

]
and define the

function
B→ T(B) = AB.

T satisfies:

T(B1 + B2) = A(B1 + B2) = AB1 + AB2

= T(B1) + T(B2)

T(cB) = A(cB) = cAB = cT(B).

Point: Lots of freedom to create linear transformations.
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There are several subsets associated to a linear transformation
T : V→W:

• The Nullspace or Kernel of T is the subset

N(T) = {v ∈ V | T(v) = O.}

[The vectors mapped to O]
• The Range or Image of T is the subset

R(T) = {w ∈W | w = T(v), v ∈ V.}
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Examples

If T is the linear transformation

f 7→ f ′′ − f

defined earlier, its nullspace consists of the solutions of
y ′′ − y = 0, that is the linear combinations

aex + be−x , a,b ∈ R.
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Proposition
The Nullspace and the Range of a linear transformation
T : V→W are subspaces of V and W respectively.

Proof.
Let us apply the subspace test to N(T). Suppose v1, v2 ∈ N(T).
Then for any scalars c1, c2,

T(c1v1 + c2v2) = c1T(v1) + c2T(v2) = c1O + c2O = O.

So the linear combination belongs to the Nullspace.
We leave for you the other proof.

The dimension of N(T) is called the nullity and the dimension of
R(T) is called the rank of T.
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Dimension Formula

Theorem
Let T : V→W be a linear transformation of finite dimensional
vector spaces. Then

dim N(T) + dim R(T) = dim V.

That is, nullity + rank = dim V.

Proof. Suppose v1, . . . , vn is a basis of V, and u1, . . . ,ur is a
basis of N(T). We are going to show that R(T) has basis with
n − r elements.
Recall that T(

∑n
i=1 civi) =

∑n
i=1 ciT(vi), R(T) is spanned by

T(v1),T(v2), . . . ,T(vj), . . . ,T(vn).

Out of this list we are going to pick a basis for R(T).
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We scan the list and delete the vectors [red] that can be written
as linear combination of the preceding vectors

T(v1),T(v2), . . . ,T(vj), . . . ,T(vn).

For convenience of notation we assume we are left with the first
s vectors

T(v1),T(v2), . . . ,T(vs).

Claim: u1, . . . ,ur , v1, . . . , vs is a basis of V.
Once we have shown this we be done since all bases of V have
n elements. Let us check.
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Claim 1: u1, . . . ,ur , v1, . . . , vs spans V

If v ∈ V, T(v) =
∑s

i=1 aiT(vi), that is

T(v −
s∑

i=1

aivi) = 0

that is v −
∑s

i=1 aivi belongs to the nullspace so

v −
s∑

i=1

aivi =
r∑

j=1

bjuj .

Claim 2: u1, . . . ,ur , v1, . . . , vs are linearly independent.

If
∑

bjuj +
∑

aivi = O, applying T we get
∑

aiT(vi) = 0 since
T(uj) = 0. But the T(vi) are linearly independent [they form a
basis of R(T)] so ai = 0. We have left

∑
bjuj = 0, which implies

bj = 0 since the uj form a basis of N(V)
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Let us recall some general properties of a function f : X→ Y

• f is one-one if f(x1) = f(x2) implies x1 = x2. One also says
that f is injective. If f is a linear transformation, f(x1) = f(x2)
means f(x1 − x2) = O so f is one-one if and only if the
nullspace is (O).

• f is onto if its image is Y. One also says that f is surjective.

• f is an isomorphism or invertible when it is both.
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Here are some consequences of the dimension formula applied
to a linear transformation T : V→W

• If dim V > dim W, then T is not one-one

• If dim V < dim W, then T is not onto.

• If dim V = dim W, then T is an isomorphism iff its
nullspace is O, or iff is onto.
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We shall now discuss how to represent some [look at the
caveat] linear transformations T : V→W by matrices. It is a
process akin to representing vectors by coordinates. Recall that
if v ∈ V and B = v1, . . . , vn is a basis of V, we have a unique
expression

v = x1v1 + · · ·+ xnvn.

We say that the xi are the coordinates of v with respect to B.
We write as

[v ]B =

 x1
...

xn

 .
If C = w1, . . . ,wm we would like to find the coordinates of T(v)
in the basis C

[T(v)]C =

 ?

 .
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In other words, if v = x1v1 + · · ·+ xnvn,

T(v) = y1w1 + · · ·+ ymwm,

we want to describe the yi in terms of the xj . The process will
be called a matrix representation. It comes about as follows:∑

yiwi = T (
∑

xjvj) =
∑

xjT(vj)

Thus if we have the coordinates of the T(vj),

T(vj) =

 a1j
...

anj


we have  y1

...
ym

 =
∑

xj

 a1j
...

anj


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More pictorially

[T(v)]C =

 y1
...

ym

 =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 x1

...
xn

 = [T]CB · [v ]B

The n ×m matrix
[T]CB

is called the matrix representation of T relative to the bases B
of V and C of W.
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Quickly: Once bases v1, . . . , vn and w1, . . . ,wm have been

chosen, T is represented by[
aij
]

where the entries come from

T(vj) =
m∑

i=1

aijwi .
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Example

Recall the transpose operation on a square matrix A: if aij is the
(i , j)-entry of A, the (i , j)-entry of At is aji . This is a linear
transformation T on the space Mn(F):

(A + B)t = At + Bt , (cA)t = cAt .

Let us find its matrix representation on M2(F). This space has
the basis

v1 =

[
1 0
0 0

]
, v2 =

[
0 1
0 0

]
, v3 =

[
0 0
1 0

]
, v4 =

[
0 0
0 1

]
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Since

T(v1) = v1, T(v2) = v3, T(v3) = v2, T(v4) = v4,

the matrix representation of transposing is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Let R3[x ] be the space of real polynomials of degree at most 3
and T the differentiation operator.

A basis here are the polynomials 1, x , x2, x3. The
corresponding matrix representation is

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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Exercise 2: Suppose a linear transformation T : R3 → R2

satisfies

T(

 1
1
1

) =

[
1
−1

]
, T(

 1
2
3

) =

[
−1

2

]
, T(

 1
4
9

) =

[
1
1

]

(a) Show that the three vectors of R3 are linearly independent.
(b) Find the nullspace of this linear transformation.

(c) Find T(

 1
1
0

).
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Let us solve an exercise that usually gets a shaky argument.
Let A and B be n × n matrices such that A · B = I.

Claim: B · A = I. [The question arises because matrix
multiplication is not commutative.] To argue we consider the
L.T.s LA and LB associated to A and B.

A · B = I implies that
LA ◦ LB = I,

from which it follows that LB is one-one, and therefore it is
invertible, so

LA ◦ LB = LB ◦ LA = I.

Thus B · A = I.
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Blocks

Suppose T is a L.T. of vector space V with a basis
A = v1, . . . , vr , vr+1, . . . , vn. Suppose T(vi) for i ≤ r , is a linear
combination of the first r basis vectors, and T(vi) for i > r , is a
linear combination of the last n − r basis vectors.
Claim: The matrix representation has the block format

[T]A =

[
r × r O

O (n − r)× (n − r)

]
This can be refined to more than two blocks. The extreme case
is when all blocks are 1× 1. The representation is then said to
be diagonal. If and when this happens is a major theme of
Linear Algebra.
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Addition of linear transformations

We are now going to combine linear transformations in various
ways.
Let T and U be two linear transformations of source V and
target W. Consider the operations,

(T + U)(v) := T(v) + U(v)

(cT)(v) := cT(v).

Clearly they define [write the reasons] a vector space on the set
L(V,W) of all such linear transformations.

Theorem
If V has dimension n and W has dimension m, then

dimL(V,W) = m · n.
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We are going to build a basis for this space. Let B = v1, . . . , vn
be a basis of V and C = w1, . . . , vm be a basis of W. Using the
basic recipe, define the linear transformation

Eij(vk ) =

{
0, k 6= i
wj , k = i

There are m · n such [elementary] linear transformations.
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Proposition
The Eij are linearly independent. [Which also follows from the
next assertion.] If T is a linear transformation and

T(vj) =
∑

i

aijwj ,

then
T =

∑
i,j

aijEij .

Proof. Try yourself or look up in book.
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Composition of linear transformations

There is another way to combine certain linear transformations.
Consider composition of functions

V T−→W U−→ Z,

(U ◦ T)(v) := U(T(v))

Proposition
With T and U as above, U ◦ T is a linear transformation from V
to Z.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Proof.
Let us check the basic requirements:

U ◦ T(v1 + v2) := U(T(v1 + v2)) = U(T(v1) + T(v2))

= U(T(v1)) + U(T(v2))

= U ◦ T(v1) + U ◦ T(v2).

It shows composition is additive.

U ◦ T(cv) := U(T(cv)) = U(cT(v))

= cU(T(v)) = c(U ◦ T)(v).

It shows the scaling property.
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Now we are going to explain where multiplication of matrices
comes from and why it is associative.Suppose we have a
composition of L.T.’s [linear transformations]

V T−→W U−→ Z,

and that we have chosen bases B, C D, so that we have matrix
representations

[T]CB, [U]DC .

Theorem
The matrix representation of the composition U ◦ T is

[U ◦ T]DB = [U]DC ◦ [T]CB.
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To prove this we pick the bases B = v1, . . . , vn, C = u1, . . . ,um,
D = w1, . . . ,wp, and look for the coefficient cji of wi in the
expression of (U ◦ T)(vj):

(U ◦ T)(vj) = U(T(vj)) = U(
m∑

k=1

akjuk )

=
m∑

k=1

akjU(uk ) =
m∑

k=1

akj(

p∑
`=1

b`kw`)

=

p∑
`=1

(
m∑

k=1

b`kakj)w`

This gives

cij =
m∑

k=1

bikakj ,

the usual row by column rule of multiplication.
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There is a consequence that is tedious to verify directly, that the
product of matrices is associative:

This follows from the tautology of the composition of functions

(A ◦ B) ◦ C = A(B(C)) = A ◦ (B ◦ C)

and the theorem above.
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Invertible linear transformations

Let
T : V→W

be a L.T. that is one-one and onto. This means that for any
w ∈W there is a unique v ∈ V such that T(v) = w . This gives
rise to a function

U : W→ V, U(w) = v iff T(v) = w .

U is the inverse function of T:

U ◦ T = IV the identity of V.

One also checks

T ◦ U = IW the identity of W.

Notation: U = T−1.
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Proposition
If T is a L.T. then U is also a L.T.

Proof.
Let w1,w2 ∈W. Pick v1, v2 ∈ V so that T(v1) = w1 and
T(v2) = w2. Since T is a L.T.,

T(v1 + v2) = T(v1) + T(v2) = w1 + w2.

By the definition of U,

U(w1 + w2) = v1 + v2 = U(w1) + U(w2),

so U is additive. The scaling property is proved in the same
way.
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If T : V→W is an invertible L.T., choosing bases B and C for
the two spaces:

Proposition

The matrix representations of T and T−1 are related as follows

[T−1]BC = ([T]CB)−1.

Proof.
This follows from the equalities

T−1 ◦ T = IV, T ◦ T−1 = IW

and a previous result asserting that the matrix representation of
a composition of two L.T. is the product of the matrices.
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If T is invertible, we also say that it is an isomorphism, and that
V and W are isomorphic vector spaces. For this to happens it
requires that dim V = dim W.

Example: Let P4[x ] be the space of polynomials of degree at
most 4 with coefficients in the field F. The mapping

T(a0 + a1x + · · ·+ a4x4) = (a0,a1, . . . ,a4)

is an isomorphism between P4[x ] and F5.

Similarly, it is easy to define isomorphisms between Mn(F) and
Fn2

.
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Examples

A linear transformation T : V→ V such that T2 = 0
obviously cannot be invertible. Note however that I− T is
always invertible:

(I− T)(I + T) = I− T2 = I.

Prove the same assertion if T3 = 0 [or any other power
Tn = 0].
Let V be the vector space of all sequences (a1,a2,a3, . . .).
The functions right shift and left shift are L.T.

r(a1,a2,a3, . . .) = (0,a1,a2, . . .)

s(a1,a2,a3, . . .) = (a2,a3,a4 . . .)

r is one-one but not an isomorphism, s is onto but not an
isomorphism.
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Exercise 5: Let A be a n × n of rank r . Define the mapping
T : Mn(F)→ Mn(F) by

B 7→ AB.

Show that T is a linear transformation of rank r · n.

Exercise 6: Show that there is no square nonzero real matrix A
such that

At = rA, r 6= ±1.
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Change of coordinates

Quickly: Changing coordinates permit the solution of many
problems. Here are two:

• To evaluate
∫ 1

0 tet2
dt , one sets y = t2 and the problem

becomes ∫ 1

0
tet2

dt =

∫ 1

0

1
2

eydy =
1
2

(e − 1).

• What is the graph of the equation
2x2 + 6xy + 10y2 = 100? The solution requires a change
of point-of-view–which a change of coordinates will bring.
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The change of coordinates issue we will discuss is the
following: Let v ∈ V be a vector of a V.S. If two bases
A = v1, . . . , vn and B = u1, . . . ,un are picked in V, the vector
has two representations

[v ]A =

 x1
...

xn

 , [v ]B =

 x ′1
...

x ′n


Question: How are the xi related to the x ′i ? The answer will
depend on how the vi and ui relate.
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Change of bases formula

We have

v =
n∑

j=1

xjvj =
n∑

j=1

x ′j uj .

We start from

vj =
n∑

i=1

pijui , uj =
n∑

i=1

qijvi

Note the two [basis changing] matrices

P = [pij ], Q = [qij ]
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If we replace vj =
∑n

i=1 pijui in

v =
n∑

j=1

xjvj =
n∑

j=1

x ′j uj .

we get

v =
n∑

j=1

xj(
n∑

i=1

pijui) =
n∑

i=1

(
n∑

j=1

pijxj)ui =
n∑

i=1

x ′i ui .

xi =
n∑

j=1

pijx ′j ,

the desired formulas.
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In matrix notation: x ′1
...

x ′n

 = Q ·

 x1
...

xn

 ,
 x1

...
xn

 = P ·

 x ′1
...

x ′n


Note

P ·Q = I
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Max and Min of functions of several variables

The need for change of variables occur in the determination of
local maxima and minima of functions of several variables.
Recall that the function f(x , y) has a local maximum at (a,b) if

f(a,b) ≥ f(x , y),

for (x , y) near (a,b). If f has derivatives, this first requires

∂f
∂x

(a,b) =
∂f
∂y

(a,b) = 0

What else? We expand f around (a,b):

f(x , y) = f(a,b) + (fx (a,b)(x − a) + fy (a,b)(y − b) = 0︸ ︷︷ ︸)
+ 1/2(fxx (a,b)(x − a)2 + 2fxy (x − a)(y − b) + fyy (y − b)2) +
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Whether (a,b) is a local maximum will depend on whether the
term

1/2(fxx (a,b)(x − a)2 + 2fxy (x − a)(y − b) + fyy (y − b)2)

is always non-positive near (a,b).
Hard to guess when a polynomial

Ax2 + Bxy + Cy2

is always negative near the origin, UNLESS B = 0 when the
condition is A,C ≤ 0. It involves the examination of[

fxx fxy
fyx fyy

]
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Just imagine the size of the problem in 5 or 10 variables!
Fortunately, Linear Algebra comes to the rescue: it involves a
certain calculation with the matrix of second order derivatives.
In the case of 3 variables, fxx fxy fxz

fyx fyy fyz
fzx fzy fzz


This is so important that we will have to return to the topic for a
serious treatment.
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Rings

A ring R is a set with two composition laws, called ‘addition’
and ‘multiplication’, say + and ×: ∀a,b ∈ R have compositions
a + b and a× b. (The second composition is also written a · b,
or simply ab.)

• (R,+) is an abelian group

• (R,×): multiplication is associative, and distributive over +,
that is ∀a,b, c ∈ R,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity: ∃e ∈ R such that

∀a ∈ R e × a = a× e = a

• If ab = ba for all a,b ∈ R, the ring is called commutative

There is a unique identity element e, usually we denote it by 1:

e = ee′ = e′e = e′
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Field

A field F is a set with two composition laws, called ‘addition’ and
‘multiplication’, say + and ×: ∀a,b ∈ F have compositions a + b
and a× b. (The second composition is also written a · b, or
simply ab.)

• (F,+) is an abelian group

• (F,×): multiplication is associative, commutative and
distributive over +, that is ∀a,b, c ∈ F,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity ∃e ∈ F such that

∀a ∈ F a× e = a

• existence of inverses For every a 6= 0, there is b ∈ F

a× b = e.

There is a unique element e, usually we denote it by 1. For
a 6= 0, the element b such that ab = 1 is unique; it is often
denoted by 1/a or a−1.

We can now define scalars: the elements of a field.
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Fields are ubiquotous:
• R: real numbers

• The integers Z is not a field (not all integers have
inverses), but Q, the rational numbers is a field.
• C: complex numbers, z = a + bi , i =

√
−1, with

compositions

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)× (c + di) = (ac − bd) + (ad + bc)i
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The arithmetic here requires a bit more care:

If a + bi 6= 0,

1
a + bi

=
a− bi

a2 + b2 =
a

a2 + b2 −
b

a2 + b2 i
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Exercise: Number fields

Let F be the set of all real numbers of the form

z = a + b
√

2, a,b ∈ Q

prove that F is a field.

Query: How to prove a subset F of the field R is a field?
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Another noteworthy example is F2, the set made up by two
elements {0,1} (or (even, odd))with addition defined by the
table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by

× 0 1
0 0 0
1 0 1
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Exercise 1: Prove that in any field F the rule minus times
minus is plus holds, that is for any a,b ∈ F,

−(−a) = a, (−a)(−b) = ab.

Solution: The first assertion folllows from

a + (−a) = (−a) + a = O.

Because of the above, we must show that (−a)(−b) is the
negative of −(ab). We first claim (−a)b = −(ab). Note

(−a)b + ab = ((−a) + a)b = Ob = O.

(−a)(−b)−(ab) = (−a)(−b)+(−a)b = (−a)((−b)+b) = (−a)O = O.
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A field is the mathematical structure of choice to do arithmetic.
Given a field F, fractions can defined as follows: If
a,b ∈ F, b 6= 0,

a
b

:= ab−1.

The usual calculus of fractions then follows, for instance

a
b

+
c
d

=
ad + bc

bd
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Homework #1

1 Let G be a group such that x2 = 1 for all x ∈ G. Prove that
G is abelian.

2 Prove that in any group the orders of ab and of ba are
equal.

3 Prove that the set of elements of finite order in an abelian
group is a subgroup.

4 An nth root of unity is a complex z such that zn = 1. Prove
that the nth roots of unity form a cyclic subgroup of C× of
order n. If n = 12, determine the number of generators of
this subgroup.
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Exercise

Let G be the group of 3× 3 invertible matrices with entries in
Z2. What is the order of G?
Every A ∈ G is a matrix

A = [v1|v2|v3]

whose column vectors are linearly independent. Let us count:

v1 can be any nonzero vector of Z3
2: 23 − 1 choices

v2 can be any vector which is not a multiple of v1: 23 − 2
choices
v3 can be any vector which is not a linear combination of
v1, v2: 23 − 22 choices

|G| = 7 · 6 · 4
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Word processing

Let G be a group and X = {a,b, c, . . .} a subset. Using X as an
alphabet, consider the set of all products

a1 · a2 · · · an

where ai ∈ X or a−1
i ∈ X.

This set, 〈X〉, is group, the group generated by X.
Word prcessing in groups is ...
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Homework #1 extra

Describe all groups of order 4.

How many groups of order 8 can you name?

How many groups of order 6 can you name?
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Relations

Definition
Let A and B be sets. R is a relation from A to B iff R is a
subset of A× B,

R ⊂ A× B.

If (a,b) ∈ R we write a R b and say that a is R-related to b. If
(a,b) /∈ R, we write a 6 R b. A relation R from A to A is called a
relation of A: R ⊂ A× A.

There are many notations for relations: familiar ones are a ' b,
a ≥ b, a | b, etc.
Example: IA (identity) of A is the relation a ' b iff a = b.
Another: a R b for all a,b ∈ A.
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Equivalence Relations

Definition
Let A be a set and R a relation on A.

R is reflexive iff for all x ∈ A, x R x .
R is symmetric iff for all x ∈ A and y ∈ A, if x R y , then
y R x .
R is transitive iff for all x , y and z in A, if x R y and y R z,
then x R z.
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Example

Let R be the set of all (x , y) ∈ N× N such that x + y is divisible
by 3. Is this relation symmetric? reflexive? transitive?

1 If (x , y) ∈ R, x + y = 3m, for some m. Then y + x = 3m
also, so (y , x) ∈ R: Symmetric

2 (1,1) /∈ R: Not Reflexive
3 (1,2), (2,1) ∈ R but (1,1) /∈ R: Not Transitive
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Equivalence Relation

Definition
A relation R on a set A is an equivalence relation on A iff R is
reflexive, symmetric, and transitive.
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Let R be a relation on the set A.
R Reflexive: a→ a ∀a ∈ A
R Symmetric: a→ b ⇒ b → a
R Transitive: a→ b and b → c ⇒ a→ c
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Equivalence Class

Definition
Let R be an equivalence relation on the set A. For x ∈ A, the
equivalence class of x determined by R is the set

x/R = {y ∈ A : x R y}.

This is read “the class of x modulo R.” The set of all equivalence
classes of R is called A modulo R and denoted
A/R = {x/R : x ∈ A}.

Example: Two integers have the same parity if they are both
even or both odd. Let
R = {(x , y) ∈ Z× Z : x and y have the same parity.} R is an
equivalence relation with two equivalence classes: the even
integers E and the odd integers D. Z/R = {E ,D}.
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Big Example

Let m be a fixed, nonzero integer. Let ≡m be the relation on Z,

x ≡m y iff m divides x − y .

This is also written x ≡ y (mod m) or even x = y (mod m).
It is easy to see that Z/ ≡2= {E ,D}. This set is also denoted
by Z2 and called the set of integers modulo 2. For m = 3, ≡3 is
also an equivalence relation and there are three distinct
equivalence classes.

Theorem
The relation ≡m is an equivalence relation on the integers. The
set of equivalence relations is called Zm and has m distinct
elements 0,1,2, . . . ,m − 1.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Partitions

Definition
Let A be a nonempty set. A partition of A is a set A of subsets
of A such that

1 If X ∈ A, then X 6= ∅.
2 If X ∈ A and Y ∈ A, X 6= Y , then X ∩ Y = ∅.
3
⋃

X∈A X = A.

How do partitions arise? It will be a pretty straight answer.
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Example

Let A = {a,b, c}–the following are partitions of A:
{{a,b, c}}
{{a}, {b}, {c}},
{{a}, {b, c}},
{{b}, {a, c}}
{{c}, {a,b}}

Are they all?
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Partitions versus Equivalence Classes

Theorem
Let B be a partition of the nonempty set A. For x and y in A,
define x Q y iff there exists C ∈ B such that x ∈ C and y ∈ C.
Then

1 Q is an equivalence relation on A.
2 A/Q = B.

Example: Define the following sets of Z:

A0 = {3k : k ∈ Z} = {. . . ,−6,−3,0,3,6, . . .}
A1 = {3k + 1 : k ∈ Z} = {. . . ,−5,−2,1,4,7, . . .}
A2 = {3k + 2 : k ∈ Z} = {. . . ,−4,−1,2,5,8, . . .}

The partition defines the relation we denoted ≡3.
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How Partitions arise

Theorem
Let R be an equivalence relation on a nonempty set A. Then

1 For all x ∈ A, x/R ⊆ A and x ∈ x/R. (Thus x/R 6= ∅.
2
⋃

x∈A x/R = A.
3 x R y iff x/R = y/R.
4 x 6 R y iff x/R ∩ y/R = ∅.

Thus, the set {x/R : x ∈ A} of equivalence classes is a
partition of A.

In words: An equivalence relation on the set A gives rise to a
partition of A and vice-versa.
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Cosets

Definition
Let H be a subgroup of the group G. A left coset of H is a
subset of the form

aH = {ah : h ∈ H}.

Proposition
The left cosets of H are the equivalence classes for the
congruence relation:

a ≡ b : if b = ah, for some h ∈ H.

Proof. Volunteers please!

Corollary
The left cosets of a subgroup partition the group.
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Index of a subgroup

Among the properties of this construction:

The correspondence

H→ aH : h→ ah

is 1− 1 onto, so the cardinality of H and of the coset aH
are equal.

The partition of G defined by the coset decomposition

G =
⋃

aH

gives rise to important numerical relationships.

The number of cosets is denoted [G : H] and called the
index of the subgroup.
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Lagrange Theorem

Theorem (Counting Formula)
If H is a subgroup of the finite group G,

|G| = |H| · [G : H].

Theorem (Lagrange Theorem)
Let G be a finite group, and let H be a subgroup of G. Then the
order of H divides the order of G.

Corollary
If G is a group of order p, a prime, then any a 6= 1 has order p.
In particular, all groups of order p are isomorphic.

Proof. If a 6= 1, the order of the subgroup 〈a〉 is p.
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Example

Lagrange formula is helpful when we seek the list the
subgroups of a group.
Let G = S3, the symmetric group of three letters. Since G has
order 6, the intermediate subgroups have order 2 or 3.

1 Order 1: (1)

2 Order 6: S3

3 Order 2: 3 subgroups: 〈(1,2)〉, 〈(1,3)〉, 〈(2,3)〉
4 Order 3: The subgroup generated by the permutation:

1→ 2→ 3→ 1
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Example

In the case S4, its order, 24, has many divisors. With more
technology, we will be able do describe them. This is a promise!
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Example
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Dimension Formula

Recall:

Theorem
Let T : V→W be a linear transformation of finite dimensional
vector spaces. Then

dim N(T) + dim R(T) = dim V.

That is, nullity + rank = dim V.

A group theoretic version:

Theorem
Let ϕ : G→ G′ be a homomorphism of finite groups. Then

|G| = |kerϕ| · |imϕ|.

Proof. Just observe the 1− 1 onto correspondence

akerϕ↔ ϕ(a),

so the index of kerϕ is the order of imϕ.
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Right cosets

Definition
Let H be a subgroup of the group G. A right coset of H is a
subset of the form

Ha = {ha : h ∈ H}.

Proposition
The right cosets of H are the equivalence classes for the
congruence relation:

a ≡ b : if b = ha, for some h ∈ H.
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Normal subgroups

Proposition
A subgroup H of a group G is normal if and only if every left
coset is also a right coset. If H is normal, then aH = Ha for
every a ∈ G.

Proof. Volunteer!
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Example

Definition
Let G be a group. The commutator of a,b ∈ G is the element

aba−1b−1.

It is denoted [a,b].

[a,b]−1 = [b,a]

Achtung: The product of two commutators may not be a
commutator.
If φ : G→ H is a group homomorphism and H is an abelian
group, then all [a,b] ∈ kerφ.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Definition/Exercise

Let G be a group, and G(1) the set of all finite products of
commutators,

[a1,b1][a2,b2] · · · [an,bn].

Prove that G(1) is a normal subgroup of G. G(1) is called
the commutator subgroup of G.
If G = S3, determine G(1).
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Homework #2

1 Find all the subgroups of S3, and determine which are
normal. [If you need a challenge, do same for S4.]

2 Find all the subgroups of the quaternion group, and
determine which are normal.

3 Prove that the center of a group is a normal subgroup.
4 Let ϕ, φ : G→ G′ be two group homomorphisms, and let

H ⊂ G be the subset

{x ∈ G : ϕ(x) = φ(x)}

Prove or disprove: H is a subgroup.
5 If H is a subgroup of G of index 2, prove that H is normal.
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Products of Groups

Definition
Let G and G′ be two groups and G×G′ the product set. The
composition

(a,a′), (b,b′) 7→ (ab,a′b′)

is a group law on G×G′ called the product group of G and G′.

Example

Let G and G′ be two copies of Z2. The group V that Jonathan
discussed in last class was obtained as

V = {(a,b) : a,b ∈ Z2} = G×G′.
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Properties

It is defined by the inclusion and projection homomorphisms

G
i

##GGGGGGGGG G

G×G′

p
;;wwwwwwwww

p′
##GG

GG
GG

GG
G

G′
i ′

;;wwwwwwwww
G′

i(x) = (x ,1′)
i ′(x ′) = (1, x ′)
p(x , x ′) = x
p′(x , x ′) = x ′

(1,1′) is the identity of G×G′

(a,b)−1 = (a−1,b−1)
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Mapping Property of Products

Proposition

Let H be any group. The homomorphisms Φ : H→ G×G′ are in
bijective correspondence with pairs (φ, φ′) of homomorphisms

φ : H→ G, φ′ : H→ G′.

The kernel of Φ is kerφ ∩ kerφ′.

Proof. Given a pair (φ, φ′) of homomorpisms, the mapping

Φ(a) = (φ(a), φ′(a)) ∈ G×G′, a ∈ H

is clearly a homomorphism.

Conversely, given Φ, define the homomorphisms φ = p ◦ Φ and
φ′ = p′ ◦ Φ.
Finally, note that Φ(h) = (1,1′) if and only if φ(h) = 1 and
φ′(h) = 1′. Thus the kernel of Φ is kerφ ∩ kerφ′.
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Example

If C6 is a cyclic group of order 6, C6 = {1, x , x2, x3, x4, x5}, and
G = {1, x3} and G′ = {1, x2, x4} then

C6 ' C2 × C3

Discussion:
C2 × C3 is a group of order 6.

The element z = (x3, x2) has order 6: The powers
1, z, z2, z3, z4, z5 are distinct.

Thus C2 × C3 is cyclic so it isomorphic to C6.
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General example...

Proposition
Let r , s be integers with no common (±1) factor. Then a cyclic
group of order rs is isomorphic to the direct product of a cyclic
group of order r and a cyclic group of order s.

Discussion: Reminds you of another proof? Note:

Crs = 〈x〉, Cr = 〈xs〉, Cs = 〈x r 〉

cconsider z = (xs, x r )

Find its order, that is the smallest integer n such that
zn = (1,1). Do it!
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Product Groups

Definition
Let A and B be subsets of a group G. Then

AB = {ab : a ∈ A,b ∈ B}.

Proposition
Let H and K be subgroups of a group G.

1 If H ∩ K = {1}, the product p : H× K→ G defined by
p(h, k) = hk is injective. Its image is the subset HK.

2 If either H or K is a normal subgroup of G, then HK = KH
and HK is a subgroup of G.

3 If H and K are normal subgroups, H ∩ K = {1}, and
HK = G, then G is isomorphic to the product.
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Proof

Let (a1,b1) and (a2,b2) elements of H× K such that
a1b1 = a2b2. Rewrite the equation as a−1

2 a1 = b2b−1
1 .

Since H ∩K = {1}, a−1
2 a1 = b2b−1

1 = 1, hence a1 = a2 and
b1 = b2. This shows that p is injective.
Suppose H is a normal subgroup of G. Suppose that a ∈ H
and b ∈ K. Then bab−1 ∈ H, so

ba = bab−1b ∈ HK.

This shows that KH ⊂ HK. The reverse inclusion has
similar proof. That HK is a group follows quickly: do in
class.
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Proof cont’d

Suppose both H and K are normal subgroups of G and
H ∩ K = {1}. If a ∈ H and b ∈ K, consider

(aba−1)b−1 = a(ba−1b−1).

The first term lies in H, the second in K. This proves that
ab = ba.
It follows by direct verification that the product mapping
p : H× K→ G is an injective homomorphism.
The assumption that HK = G implies that H× K ' G.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Outline
1 General Orientation
2 Syllabus
3 Composition Laws
4 Groups
5 Subgroups
6 Vector Spaces and Linear Transformations
7 Matrices
8 Rings
9 Relations

10 Cosets
11 Homework #2
12 Products of Groups
13 Modular Arithmetic
14 Homework #3
15 Last Class ... and ...Today
16 Quotient Groups



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Modular Arithmetic

Let n be a fixed positive integer. Let us describe an invention of
Gauss. Recall:

Definition
Two integers, a,b are said to be congruent modulo n,

a ≡ b, modulo n,

if n divides b − a.

This is an equivalence relation, and the equivalence classes
are called congruence classes modulo n, or residue classes
modulo n.
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The congruence class of the integer a is denoted a (or [a])

a = {. . . ,a− 2n,a− n,a,a + n,a + 2n, . . .}.

The congruence class of 0 is the subgroup nZ,

0 = {. . . ,−2n,−n,0,n,2n, . . .}.

Note that the congruence classes modulo n are the cosets of
the subgroup nZ of Z.

Proposition
There are n congruence classes modulo n,

0,1, . . . ,n − 1.

Or, the index [Z : nZ] of the subgroup nZ in Z is n.
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Carl Friedrich Gauss (1777-1855)
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New Composition Laws

Pseudo definition!

Definition

Let a and b be two congruence classes modulo n.

a + b := a + b
ab := ab

To justify:

Lemma
If a ≡ a′ and b ≡ b′ (modulo n), then a + b ≡ a′ + b′ (modulo n)
and ab ≡ a′b′ (modulo n).
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Proof.
Assume a′ ≡ a and b′ ≡ b (modulo n). Then a′ = a + rn and
b′ = b + sn for some integers r , s. Then

a′ + b′ = (a + rn) + (b + sn) = a + b + (r + s)n,
a′b′ = (a + rn)(b + sn) = ab + (rb + sa + sn)n.

The associative, commutative and distributive laws will hold,
that makes the congruence classes modulo n a ring: Z/nZ, or
Z2.
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Example

Perhaps the noteworthy example is F2, the set made up by two
elements {0,1} (or (even, odd))with addition given by the table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by

× 0 1
0 0 0
1 0 1
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Z/(p)

Let p be a prime number. The ring Z/(p) is a group for the
addition operation and the subset F of cosets

{1,2, . . . ,p − 1}

is a group for the multiplication operation.

Theorem (Wilson’s Theorem)
The integer p is a prime if and only if

(p − 1)! = −1 mod p.

Proof. Note that (p− 1)! mod p is the product of all elements of
the group F. If x 6= −1 in F, both x and its inverse occur as
factors. Thus (p − 1)! = −1 in F.
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If p is composite, p = ab and a < b, then ab divides
(p − 1)!.

If a = b, then p = a2. If a = 2, then

(a2 − 1)! = 6 ≡ 2mod 4

but 2 6≡ −1 mod 4.

If 2 < a, then 2a < a2 and so a and 2a are factors of
(a2 − 1)!; therefore (a2 − 1)! ≡ 0 mod a2, and the proof is
complete.
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Homework #3

1 Let G be a group containing normal subgroups of order 3
and 5. Prove that G contains a normal subgroup of order
15.

2 Determine the integers n for which the congruences
x + y ≡ 2, 2x − 3y ≡ 3 (modulo n) have a solution.

3 Let H = {±1,±i} be the subgroup of G = C∗ of fourth
roots of the unity. Describe the cosets of H in G explicitly,
and prove that G/H is isomorphic to G. Generalize (means
what?).

4 Prove that the groups R+/Z+ and R+/2πZ+ are
isomorphic.
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Last Class ... and ... Today

Product Groups: Last Time

Quotient Groups: Today
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Quotient Groups

Let us begin with the discussion of a nice example.

Let R2 be the usual real plane and let L be a line passing
through the origin. [Carry an example in your mind.] L is a
subspace of R2.

For any vector v ∈ R2, v + L is the set obtained by translating L
by v . It is a line parallel to L. We are going to denote it Lv and
the set of all such such lines we denote by V= all lines parallel
to L.
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A feature of the notation Lv is the following. Suppose u ∈ L.
Then Lu = LO = L. More generally,

Lv = Lv+u

v is said to be a representative of Lv , but the observation says
that v + u is also a representative of Lv . Essentially any vector
in Lv serves as its representative.

This will be cause for confusion!
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Let us define an ‘addition’ for this set of lines. We are going to
use the ordinary ‘+’ when ‘⊕’ or ‘⊗’ might be more cautious.
For any two lines Lv and Lw

Lv + Lw := Lv+w .

For instance Lv + LO = Lv .

Proposition
This composition does not depend of the representatives used,
that is if Lv = Lv ′ and Lw = Lw ′ then

Lv + Lw = Lv ′ + Lw ′ .
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It is obvious now that this composition is commutative and
associative. The line L plays the role of O: Lv + L = Lv , and
L−v is the negative of Lv : Lv + L−v = L.

If we define scalar multiplication by

cLv = Lcv

it will check easily that V is a vector space. It is called the
quotient of R2 by L. The notation V = R2/L is used.
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Quotient Groups

The following observation gives a composition law on the
cosets of a normal subgroup of a group.

Lemma
Let N be a normal subgroup of a group G. Then the product of
two cosets aN and bN is a coset, in fact

(aN)(bN) = abN.

Proof. Recall that aN = Na. Then

(aN)(bN) = a(Nb)N = a(bN)N = ab(NN) = abN.

We denote the set of cosets by G/N.
The coset (N) acts as the identity:
(aN)(N) = (N)(aN) = (aN).
The inverse of (aN) is (a−1N).
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Quotient Group

The assignment a ∈ G→ aN ∈ G/H is denoted π : G→ G/N.
These observations are summarized in:

Theorem

G = G/N is a group and π : G→ G/N is a group
homomorphsm whose kernel is N. The order of G is the index
[G : N] of N in G.

Proof.
Verify that G is a group.

Verify that π is a group homomorphism of kernel N.
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First Isomorphism Theorem

Theorem (First Isomorphism Theorem)

Let ϕ : G→ G′ be a surjective homomorphism, and let
N = kerϕ. Then the mapping

ϕ : G/N→ G′

defined by ϕ(aN) = ϕ(a) is group isomorphism.

Proof. Main points:
Verify ϕ is well defined. If aN = bN, then ϕ(a) = ϕ(b): For
any c ∈ N, ϕ(ac) = ϕ(a) because ϕ(c) = 1′.

Verify that ϕ is an injective homomorphism: If ϕ(aN) = 1′,
a ∈ N.
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Finitely Generated Abelian Groups

Definition
A group G is finitely generated if there is a finite set of elements
in G, {a1, . . . ,an}, such that every element z ∈ G is a product
of the ai and/or of their inverses. {a1, . . . ,an} is called a set of
generators of G. (A cyclic group 〈x〉 is an example.)

Notation: G = 〈a1, . . . ,an〉.
Major example is the group

Zn = Z× · · · × Z︸ ︷︷ ︸
n copies

Zn is generated by e1 = (1,0, . . . ,0), ..., en = (0,0, . . . ,1).
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Proposition
Every finitely generated abelian group G, say G = 〈a1, . . . ,an〉,
is isomorphic to a quotient group of Zn,

G ' Zn/H

for some subgroup H.

Proof. Class discussion.

Define a surjective homomorphism ϕ : Zn → G. Use
additive notation for the groups here.
Use the theorem above to give answer.
What is the kernel like?
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Subgroups of Quotient Groups

Proposition
Let G be a group and N a normal subgroup. Then

1 The subgroups of G/N are the quotient groups K/N, where
K is a subgroup of G containing N.

2 Moreover, K/N is a normal subgroup of G/N if and only if
K is a normal subgroup of G.



General Orientation Syllabus Composition Laws Groups Subgroups Vector Spaces and Linear Transformations Matrices Rings Relations Cosets Homework #2 Products of Groups Modular Arithmetic Homework #3 Last Class ... and ...Today Quotient Groups

Third Isomorphism Theorem

Theorem (Third Isomorphism Theorem)
Let G be a group and N ⊂ K be normal subgroups of G. Then

(G/N)/(K/N) ' G/K.
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Second Isomorphism Theorem

There is also a so-called second isomorphism theorem:

Theorem
Let H and K be subgroups of the group G. If H is a normal
subgroup, the product HK is a group and there is an
isomorphim

K/K ∩ H→ HK/H.

Proof.
Define a mapping π : K→ HK/HH by π(k) = kH.

It is easy to verify that π is a group homomorphism:
kH · k ′H = kk ′H.

π(k) = H if and only if k ∈ K ∩ H.

Since π is surjective, π : K/K ∩ Hn→ KH/H is an
isomorphism.
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Subgroups
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G

π
��

φ // H

π′

��
G/G(1)

φ′
// H/H(1)

where π and π′ are the natural homomorphisms to the quotient
groups.
Discuss: natural, functorial
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