Review

Math 350-Section \#01 Final Exam

Name: \qquad

1. (10 pts) Let A be an orthogonal (real) matrix
(a) Show that $\operatorname{det}(A)= \pm 1$. Given an example that is not the identity matrix.
(b) If A is 2×2, and $\operatorname{det}(A)=-1$, prove that A is diagonalizable.

Answer:
Orthogonal: real square mat $n \dot{x}$

$$
\begin{aligned}
& A \cdot A^{t}=I \\
& \operatorname{det}(A F)=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{\top}\right)=(\operatorname{det}(A))^{2}=1 \\
& \operatorname{dxt}(\Lambda) \\
& \therefore \operatorname{det} A= \pm 1 \\
& \text { Example: } \\
& \operatorname{det} A=-1 \\
& \operatorname{det}(A-t I)=t^{2}-1=(t-1)(t+1) \\
& \text { distinct eigen } \\
& \therefore \text { liar } 1 \text { blue }
\end{aligned}
$$

Quiz 井 7
A ortlogonal $3 x^{3}$, then A is similar to

$$
\left[\begin{array}{ccc}
a_{41} & a_{12} & 0 \\
\sigma_{21} & 2_{22} & 0 \\
0 & 0 & \pm 1
\end{array}\right]
$$

Froof. The eigenrolues are

$$
\lambda, \overline{\operatorname{cond}}|\lambda|=1
$$

So there is $r e a b$ ei gen ralue

$$
(\lambda= \pm 1)
$$

$$
A v=x v
$$

But a property of n remal oper s: If $A v=\lambda v \Rightarrow A^{n} v=\bar{\lambda} v$
So v is an eigenvedor of A^{*} Let $U=v^{\frac{1}{1}}: v \cdot w=0$

$$
\begin{aligned}
& \text { Let } U=v i: v \cdot w: A v: \omega=0 \\
& \Rightarrow v \cdot A w=A v: \omega=\lambda i a r t \text { undu A: }
\end{aligned}
$$

So W is invariart under H:

$$
A(W) \subset W
$$

So the block decoursobitin η A

$$
\left[\begin{array}{cc}
{[A]_{W}} & 0 \\
0 & \pm 1
\end{array}\right]
$$

But the retriction of an orthegonal oper is orthogand (why? ortho means

$$
\|u\|=\|A u\| \text { fr all vectws }
$$ so of A is retricted to a subtrace, it will still preserve lenjth.

2. (10 pts) Given the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 5
\end{array}\right]
$$

(a) Find its characteristic polynomial.
(b) Find its eigenvalues.
(c) Explain why symmetric real matrices are diagonalizable. [It will be graded on the mathematical quality of the explanation.]
Answer:

are normal

3. (10 pts) Let T be the linear transformation of $V=M_{2 \times 2}(\mathbb{C})$

$$
T(A)=2 A+3 A^{t}
$$

(a) Find a matrix representation of T (it will be a 4×4 matrix).
(b) Describe its eigenspaces.

$$
\text { Answer: Done in Hourly } \quad \text { H }
$$

$2 \cdot 9$.

$$
\begin{aligned}
& \text { eigenvectors } \\
& T(A)=2 A+3 A=\lambda A \\
& \Rightarrow 3 A^{t}=(\lambda-2) A \\
& \Rightarrow \quad 3 A=(\lambda+2) \quad t
\end{aligned}
$$

$$
\begin{aligned}
& \text { A: sym } \\
& A=\text { shew - som } \quad-3 A=(\lambda \cdot 2) A \quad \lambda=-1
\end{aligned}
$$

4. (10 pts) (a) Given that the 3×3 matrix $A=\left[c_{1}\left|c_{2}\right| c_{3}\right]$ has determinant 5 , find the determinant of the matrix

$$
B=\left[c_{2}+c_{3}\left|c_{3}+c_{1}\right| c_{1}+c_{2}+c_{3}\right]
$$

(b) Given that the 5×5 matrix $A=\left[c_{1}\left|c_{2}\right| c_{3}\left|c_{4}\right| c_{5}\right]$ has determinant d, find the determinant of the matrix

$$
B=\left[c_{2}+c_{3}\left|c_{3}+c_{4}\right| c_{4}+c_{5}\left|c_{5}+c_{1}\right| c_{1}+c_{2}\right]
$$

Answer:

5. (10 pts) (a) Find an orthogonal matrix S such that $S^{-1} A S$ is diagonal, where

$$
A=\left[\begin{array}{rr}
10 & 3 \\
3 & 2
\end{array}\right] .
$$

(b) Use Part (a) to decide whether the equation $10 x^{2}+6 x y+2 y^{2}=18$ represents an ellipse, a parabola or a hyperbola.
Answer:

6. (10 pts) Let V be an inner product space.
(a) If W is a subspace of V, what is the orthogonal complement W^{\perp} ? Prove that W^{\perp} is a subspace.
(b) If $T=p_{W}$ is the projection mapping defined by W, prove that W and W^{\perp} are the eigenspaces of T and that T is diagonalizable.

Answer:

$$
(a) \quad l o o k
$$

7. (10 pts) (a) What is the Cayley-Hamilton Theorem?
(b) Verify it for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(c) Prove the (full) theorem.

Answer:

8. (10 pts) Given the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
-4 & 2 & 3 & 1 \\
1 & -1 & -1 & 0 \\
1 & -1 & -1 & 3 \\
2 & -1 & -2 & 1
\end{array}\right]
$$

(a) Find its reduced echelon form R of A.
(b) Argue that $R=E_{m} \cdots E_{1} A$, where the E_{i} are elementary matrices.
(c) What are the rank and the nullity of A. Explain why these two numbers always add to the number of columns.
(d) Argue that the rows of R with pivots are linearly independent.
(e) Argue that the columns of A with pivots are linearly independent.

Answer:
9. [10 pts] Let V be the vector space of all continuous real functions on $[-1,1]$. For $f(t), g(t) \in V$, define the product

$$
\langle f(t), g(t)\rangle=\int_{-1}^{1} f(t) g(t) d t .
$$

(a) Prove that this defines an inner product on V.
(b) Find an orthonormal basis for the subspace spanned by $e^{t}, e^{2 t}$.

Answer:
10. [10 pts] About Jordan canonical forms:
(a) What are they and explain some of its uses.
(b) What are the ideas that were introduced to enable the decomposition.
(c) Find [give all the steps] the Jordan decomposition of the complex matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.

Answer:

Questions to Think

Why the eigenvalues "U real som matrices are real?
Why the determinant of real skews if mm matres are ≥ 0
Exponential of a
Sylla Lis

- Ur to 7.1
- Mainly topics fro Hours \# 1 About 12 questions
- Diagonalization of Normal opens
- Jordan decomposition
wore th main results: you will be asked about one of them

