Math 350: Linear Algebra

Wolmer V. Vasconcelos

Set 8

Spring 2010

Outline

(1) Jordan Blocks
(2) Algebra Interlude
(3) Jordan Canonical Forms

4 Today
(5) Minimal Polynomial
(6) Homework
(7) Quiz \#8
(8) Final Orientation

Past... and Future

A high point recently:

Theorem

Let \mathbf{T} be a linear operator on the finite-dimensional inner product space \mathbf{V}. Then \mathbf{T} is self-adjoint (i.e. $\mathbf{T}=\mathbf{T}^{*}$) if and only if there exists an orthonormal basis of \mathbf{V} consisting of eigenvectors of \mathbf{T}. Alternatively, if \mathbf{T} is self-adjoint, there is an unitary operator \mathbf{U} such that UTU* $=$ Diagonal.

This is a powerful result. It requires very specific hypotheses which fortunately occur in many important problems. These are analytic/algebraic theorems, need \mathbb{R} or \mathbb{C}.

Now...

Jordan blocks

Let \mathbf{A} be a 8-by-8 matrix with 3 eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of multiplicities $3,2,3$ resp. Here is an example:

$$
\mathbf{A}=\left[\begin{array}{ccc}
\boxed{J_{1}} & O & 0 \\
O & \mathbf{J}_{2} & O \\
O & O & J_{3}
\end{array}\right]=\left[\begin{array}{rrrrrrrr}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right]
$$

The color coded blocks are called Jordan Blocks

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \\
\operatorname{det}(\mathbf{J}-x \mathbf{I})=(\lambda-x)^{3}, \quad \text { eigenvalue: } \lambda \text { (triple) } \\
\text { eigenspace: } N(\mathbf{J}-\lambda \mathbf{I}),\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { (single) }
\end{gathered}
$$

Not diagonalizable: Eigenspace too small. We are going to define another subspace.

$$
\mathbb{N}=\mathbf{J}-\lambda \mathbf{I}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Observe:

$$
\mathbb{N}^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbb{N}^{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This show that the nullspace of $(\mathbf{J}-\lambda \mathbf{I})^{3}$ has dimension 3 .
Part of the usefulness of these blocks is that we can define and calculate functions such as $\exp \mathbf{J}, \sin \mathbf{J}$, etc and have an analysis based on them.

A big theorem

Our goal is to prove and illustrate the use of
Theorem
Let \mathbf{T} be a linear operator on the finite-dimensional vector space \mathbf{V}. If the characteristic polynomial of \mathbf{T} splits, then \mathbf{T} has a matrix representation made up of Jordan blocks. Moreover, the number and sizes of the blocks for each eigenvalue are unique.

For example, if \mathbf{A} is a 8-by-8 matrix with 3 eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of multiplicities $3,2,3$ resp. there is an invertible matrix \mathbf{P} such that
$\mathbf{P A P}^{-1}=\left[\begin{array}{ccc} & & \\ \boldsymbol{J}_{1} & O & 0 \\ 0 & \mathbf{J}_{2} & O \\ 0 & O & \boldsymbol{J}_{3}\end{array}\right]=\left[\begin{array}{rrrrrrrr}\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}\end{array}\right]$

We know very well what is need to achieve diagonalization of a matrix A: we need a basis $\mathcal{A}=\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors. This requires that for each eigenvalue λ,

$$
\operatorname{dim} E_{\lambda}=\text { algebraic multiplicity of } \lambda
$$

Diagonalization will not occur if one of the eigenspaces is too small. Let us do something about it.

Generalized eigenspace

Definition

Let \mathbf{T} be a linear operator of the vector space \mathbf{V} and let λ be a scalar. \mathbf{A} nonzero vector $v \in \mathbf{V}$ is a generalized eigenvector of \mathbf{T} if $(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O$ for some positive integer p. We denote this set, together with the vector O, by K_{λ}.

Note that eigenvectors correspond to the case $p=1$. Consider

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$\lambda=1$ is the only eigenvalue. e_{1} is an eigenvector: $(\mathbf{A}-\mathbf{I})\left(e_{1}\right)=0$
e_{2} is not an eigenvector: $(\mathbf{A}-\mathbf{I})\left(e_{2}\right) \neq O$ but $(\mathbf{A}-\mathbf{I})^{2}\left(e_{2}\right)=O$, so e_{2} is a generalized eigenvector.

Proposition

Let \mathbf{T} be a linear operator of the vector space \mathbf{V}, and let λ be an eigenvalue of T .
(1) K_{λ} is a \mathbf{T}-invariant subspace of \mathbf{V} containing the eigenspace E_{λ}.
(2) For any scalar $\mu \neq \lambda$, the restriction of $\mathbf{T}-\mu \mathbf{I}$ to K_{λ} is one-one.

Proof: 1. If $u, v \in K_{\lambda}$,

$$
(\mathbf{T}-\lambda \mathbf{I})^{p}(u)=O, \quad(\mathbf{T}-\lambda \mathbf{I})^{q}(v)=O
$$

If m is the larger of the integers p, q,

$$
(\mathbf{T}-\lambda \mathbf{I})^{m}(u+v)=(\mathbf{T}-\lambda \mathbf{I})^{m}(u)+(\mathbf{T}-\lambda \mathbf{I})^{m}(v)=O+O=O .
$$

The scaling property is also clear. As for \mathbf{T}-invariant assertion, if $u \in K_{\lambda},(\mathbf{T}-\lambda \mathbf{I})^{p}(\mathbf{T}(u))=\mathbf{T}(\mathbf{T}-\lambda \mathbf{I})^{p}(u)=O$, therefore $\mathbf{T}(u) \in K_{\lambda}$.

Part 2. of the Theorem on generalized eigenspaces: That $\mathbf{T}-\mu \mathbf{I}$, $\mu \neq \lambda$, is one-one on K_{λ} :

If $u \in K_{\lambda}$, that is $(\mathbf{T}-\lambda \mathbf{I})^{p}(u)=0$ and $(\mathbf{T}-\mu \mathbf{I}) u=O$ then we claim $u=0$.

Deny. We may assume $v=(\mathbf{T}-\lambda \mathbf{I})^{p-1}(u) \neq 0$. But then

$$
\begin{gathered}
(\mathbf{T}-\mu \mathbf{I}) v=(\mathbf{T}-\mu \mathbf{I})(\mathbf{T}-\lambda \mathbf{I})^{p-1} u=(\mathbf{T}-\lambda \mathbf{I})^{p-1}(\mathbf{T}-\mu \mathbf{I}) u=0 \\
\quad \text { and } \quad(\mathbf{T}-\lambda \mathbf{I}) v=(\mathbf{T}-\lambda \mathbf{I})^{p} u=O
\end{gathered}
$$

so $\mathbf{T}(v)=\lambda v$ and $\mathbf{T}(v)=\mu v, \mu \neq \lambda, v \neq O$, a contradiction.

Corollary

$\operatorname{dim} K_{\lambda} \leq$ algebraic multiplicity of λ.
Proof: Let $f(x)=\prod_{i}\left(x-\lambda_{i}\right)^{m_{i}}$ be the characteristic polynomial of \mathbf{T}.
Part 1 of the Proposition says that K_{λ} is a \mathbf{T}-invariant subspace, while Part 2 says that the restriction of \mathbf{T} to K_{λ} has no eigenvalue $\neq \lambda$. By a previous result, we know that the characteristic polynomial $g(x)$ of this restriction divides $f(x)$.lt follows that $g(x)=(x-\lambda)^{n}$,

$$
n \leq m=\text { algebraic muliplicity of } \lambda
$$

Later we will show that $n=m$.

GCD of polynomials

If $f(x)$ and $g(x)$ are polynomials in $\mathbf{F}[x]$, the greatest common divisor is the monic polynomial of highest degree $h(x)$ that divides $f(x)$ and $g(x)$

$$
\operatorname{gcd}(f(x), g(x))=h(x)
$$

For example,

$$
\operatorname{gcd}\left((x-1)^{3}(x-2)^{2},(x-1)(x-2)^{4}\right)=(x-1)(x-2)^{2} .
$$

An elementary, but very useful fact, is that long division provides an effective method to find gcds.

Proposition

A polynomial $f(x) \in \mathbb{R}[x]$ of degree $f(x) \geq 1$ has multiple roots if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right) \neq 1$.

Thus, while it is hard to find the roots of a polynomial $f(x)$, it is easy to determine whether it has multiple roots!
The explanation is very simple: If $f(x)$ has a root of algebraic multiplicity m,

$$
f(x)=(x-a)^{m} g(x), \quad g(a) \neq 0
$$

its derivative

$$
f^{\prime}(x)=m(x-a)^{m-1} g(x)+(x-a)^{m} g^{\prime}(x)
$$

has a as a root with multiplicity $m-1$. This implies that $(x-a)^{m-1}$ is a common factor of $f(x)$ and $f^{\prime}(x)$, and therefore will be a factor of $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$.
(1) If $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$, then $f(x)$ has no repeated (complex) roots.
(2) Suppose $f(x)$ is the characteristic polynomial of a 3-by-3 complex matrix \mathbf{A}, and we must decide whether it is diagonalizable. What to do?
(1) If $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$, by the discussion above the roots are distinct, and we are done: \mathbf{A} is diagonalizable.
(2) If there is a double root a and a single root b, $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=(x-a)$. We check the dimension of the eigenspace E_{a}, if $\operatorname{dim} E_{a}=2$, ok, otherwise not diagonalizable.
(3) If a is a triple root, $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=(x-a)^{2}$. Again we check whether $\operatorname{dim} E_{a}=3$.

Long division

Recall the long division algorithm for polynomials in $\mathbf{F}[x]$: If $f(x), g(x) \neq 0$ are polynomials, there exist polynomials $q(x), r(x)$ such that

$$
f(x)=q(x) g(x)+r(x), \quad r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

Look at a consequence:

$$
\operatorname{gcd}(f(x), g(x))=\operatorname{gcd}(g(x), r(x))
$$

since any polynomial $p(x)$ that divides (both) $f(x), g(x)$ will divide $g(x), r(x)$, and conversely. Note that the data of $g(x), r(x)$ has lower degrees, so we can turn this into an algorithm:

gcd algorithm

Starting at

$$
f(x)=q(x) g(x)+r(x)
$$

(1) Iterating, if $r(x) \neq 0$ and we divide $g(x)=q_{1}(x) r(x)+r_{1}(x)$, then any polynomial $p(x)$ that divides (both) $f(x), g(x)$ will divide $r(x), r_{1}(x)$, and conversely.
(2) Since $\operatorname{deg} g(x)>\operatorname{deg} r(x)>\operatorname{deg} r_{1}(x)>\cdots$, ultimately we shall have $r_{n-1}(x)=q_{n-1}(x) r_{n}(x), \quad r_{n}(x) \neq 0$.
(3) $r_{n}(x)$ is (a) largest degree polynomial that divides both $f(x)$ and $g(x)$, and any such polynomial will divide $r_{n}(x)$.

Theorem

If $r_{n}(x)$ is the last nonzero remainder in the sequence of long divisions, then $r_{n}(x)$ divides $f(x)$ and $g(x)$. Moreover, there exist polynomials $a(x), b(x)$ such that

$$
r_{n}(x)=a(x) f(x)+b(x) g(x)
$$

$r_{n}(x)$ is called the (a) GCD of $f(x)$ and $g(x)$.
Proof: For simplicity suppose $n=2$, so we have the divisions

$$
\begin{aligned}
f & =q g+r, \quad g=q_{1} r+r_{1}, \quad r=q_{2} r_{1}+r_{2}, \quad, r_{1}=q_{3} r_{2} \\
r_{2} & =r-q_{2} r_{1}=r-q_{2}\left(g-q_{1} r\right)=r\left(1+q_{2} q_{1}\right)-q_{2} g \\
& =(f-q g)\left(1+q_{2} q_{1}\right)-q_{2} g
\end{aligned}
$$

Now we collect the coefficient of f-it will be $a(x)$-and of g-it will be $b(x): \operatorname{gcd}(f, g)=a(x) f(x)+b(x) g(x)$

Jordan Decomposition

We are now going to apply these observations to the characteristic polynomial $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$ of a matrix \mathbf{A}, whose eigenvalues λ_{i} exist in the field \mathbf{F}. Note for $\mathbf{F}=\mathbb{C}$, this is the case for all matrices. Underlying the following discussion is the assumption that

$$
p(x)= \pm \prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{m_{i}}
$$

(1) If $f(x)=(x-\lambda)^{m}, g(x)=(x-\mu)^{n}$ and $\lambda \neq \mu$ are different scalars, then $\operatorname{gcd}(f(x), g(x))=1$, this means that there is a (decomposition) $1=a(x) f(x)+b(x) g(x)$.
(2) Consider now the case of the 3 polynomials,
$f(x)=\left(x-\lambda_{1}\right)^{m}\left(x-\lambda_{2}\right)^{n}, g(x)=\left(x-\lambda_{1}\right)^{m}\left(x-\lambda_{3}\right)^{p}, h(x)=\left(x-\lambda_{2}\right)^{n}\left(x-\lambda_{3}\right)^{p}$
where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct. Note that

$$
\begin{aligned}
\operatorname{gcd}(f, g) & =\left(x-\lambda_{1}\right)^{m} \\
\operatorname{gcd}(f, h) & =\left(x-\lambda_{2}\right)^{n} \\
\operatorname{gcd}(g, h) & =\left(x-\lambda_{3}\right)^{p} \\
\operatorname{gcd}(f, g, h) & =\operatorname{gcd}\left(\left(x-\lambda_{1}\right)^{m}, h\right)=1
\end{aligned}
$$

(3) These equations, will imply that we have an equality

$$
1=a(x) f(x)+b(x) g(x)+c(x) h(x)
$$

Suppose the characteristic polynomial of \mathbf{T} has a decomposition

$$
\operatorname{det}(x \mathbf{I}-\mathbf{T})=(x-a)^{m}(x-b)^{n}(x-c)^{p}
$$

The polynomials $\mathbf{f}(x)=(x-b)^{n}(x-c)^{p}, \mathbf{g}(x)=(x-a)^{m}(x-c)^{p}$, $\mathbf{h}(x)=(x-a)^{m}(x-b)^{n}$, have gcd $=1$ as they have no common divisor. According to the observation above, we have an equality

$$
1=A(x) \mathbf{f}(x)+B(x) \mathbf{g}(x)+C(x) \mathbf{h}(x)
$$

Evaluating $x \rightarrow \mathbf{T}$ gives the equality

$$
\mathbf{I}=A(\mathbf{T}) \mathbf{f}(\mathbf{T})+B(\mathbf{T}) \mathbf{g}(\mathbf{T})+C(\mathbf{T}) \mathbf{h}(\mathbf{T})
$$

Applying to an arbitrary vector \mathbf{v} we have

$$
\begin{aligned}
\mathbf{v}=\mathbf{l}(\mathbf{v}) & =\underbrace{A(\mathbf{T})(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{T}-\mathbf{c})^{p}(\mathbf{v})}_{v_{1}}+\underbrace{B(\mathbf{T})(\mathbf{T}-a \mathbf{l})^{m}(\mathbf{T}-\mathbf{c})^{p}(\mathbf{v})}_{v_{3}} \\
& +\underbrace{C(\mathbf{T})(\mathbf{T}-a \mathbf{l})^{m}(\mathbf{T}-b \mathbf{l})^{n}(\mathbf{v})}_{v_{2}}
\end{aligned}
$$

$$
\mathbf{v}=v_{1}+v_{2}+v_{3}
$$

$(\mathbf{T}-\mathbf{a} \mathbf{l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a} \mathbf{l})^{m}\left(v_{1}\right)=A(\mathbf{T})(\mathbf{T}-\mathbf{a} \mathbf{l})^{m}(\mathbf{T}-\mathbf{b})^{n}(\mathbf{T}-\mathbf{c})^{p}(v)=0$
by Cayley-Hamilton. This says that every vector \mathbf{v} is a sum of vectors in K_{a}, K_{b} and K_{c}. It is also easy to see that v_{1}, v_{2}, v_{3} are linearly independent.

Chinese Remainder Theorem

Theorem

Let $f_{1}(x), \ldots, f_{m}(x)$ be polynomials of $\mathbf{F}[x]$. If
$g(x)=\operatorname{gcd}\left(f_{1}(x), \ldots, f_{m}(x)\right)$ there are polynomials $a_{i}(x)$ such that

$$
g(x)=a_{1}(x) f_{1}(x)+\cdots+a_{m}(x) f_{m}(x)
$$

Let \mathbf{T} be a linear operator on the finite-dimensional vector space \mathbf{V}. Suppose its characteristic polynomial $\operatorname{det}(\mathbf{T}-x \mathbf{I})$ splits:

$$
f(x)= \pm \prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{n_{i}}, \quad \text { distinct } \lambda_{i}
$$

For each i, setting $f_{i}(x)=\frac{f(x)}{\left(x-\lambda_{i}\right)^{n_{i}}}$, gives us a collection $f_{1}(x), \ldots, f_{m}(x)$ of $\operatorname{gcd}=1$: In

$$
1=a_{1}(x) f_{1}(x)+\cdots+a_{m}(x) f_{m}(x)
$$

replace $x \rightarrow \mathbf{T}$

$$
\mathbf{I}=a_{1}(\mathbf{T}) f_{1}(\mathbf{T})+\cdots+a_{m}(\mathbf{T}) f_{m}(\mathbf{T})
$$

Now we are going to make several observations about this decomposition.
(1) The range of $f_{i}(\mathbf{T})$ is contained in the generalized eigenspace $K_{\lambda_{i}}$ If $u=f_{i}(\mathbf{T})(v)$,

$$
\left(\mathbf{T}-\lambda_{i}\right)^{n_{i}} f_{i}(\mathbf{T})(v)=f(\mathbf{T})(v)=0
$$

since by the Cayley-Hamilton theorem $f(\mathbf{T})=0$.
(2) For every $v \in \mathbf{V}$

$$
v=\mathbf{I}(v)=\overbrace{a_{1}(\mathbf{T}) f_{1}(\mathbf{T})(v)}^{\in K_{\lambda_{1}}}+\cdots+\overbrace{a_{m}(\mathbf{T}) f_{m}(\mathbf{T})(v)}^{\in K_{\lambda_{m}}}
$$

Last Class... and Today ...

- Jordan blocks are convenient for computation
- Some high school algebra
- Generalized eigenspaces
- Jordan decomposition

Generalized eigenvectors and eigenspaces

Let $\mathbf{T}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{n}$ be a L.T. with characteristic polynomial

$$
\mathbf{f}(\mathbf{x})=\left(\mathbf{x}-\lambda_{1}\right)^{p}\left(\mathbf{x}-\lambda_{2}\right)^{q}\left(\mathbf{x}-\lambda_{3}\right)^{r}
$$

For each λ we have the subspace of generalized eigenvectors

$$
K_{\lambda}=\left\{v:(\mathbf{T}-\lambda \mathbf{I})^{i}(v)=0\right\}
$$

Unlike the behavior of eigenspaces, we always have

$$
\mathbf{F}^{n}=K_{\lambda_{1}} \oplus K_{\lambda_{2}} \oplus K_{\lambda_{3}},
$$

that is F^{n} has a basis of generalized eigenvectors.

Generalized eigenvectors and eigenspaces

- If \mathbf{T} is a linear operator of the vector space \mathbf{V} and λ is a scalar, a nonzero vector $v \in \mathbf{V}$ is a generalized eigenvector of \mathbf{T} if $(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O$ for some positive integer p. We denote this set, together with the vector O, by $K_{\lambda} . K_{\lambda}$ is usually bigger than the eigenspace E_{λ}.
- In fact,

$$
\mathbf{V}=\bigoplus_{i} K_{\lambda_{i}}
$$

in particular, \mathbf{V} has a basis made up of generalized eigenvectors.

This representation says that every vector $v \in \mathbf{V}$ can be written as

$$
v=v_{1}+\cdots+v_{m}, \quad v_{i} \in K_{\lambda_{i}}
$$

Since we already proved that $\operatorname{dim} K_{\lambda_{i}} \leq n_{i}$, the algebraic multiplicity of λ_{i}, this equality proves equality of the dimensions. It can be written as

$$
\mathbf{V}=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{m}},
$$

and the matrix representation of \mathbf{T} has the block format (after picking bases of the $K_{\lambda_{i}}$'s)

$$
[\mathbf{T}]=\left[\begin{array}{rrr}
{[\mathbf{T}]_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & {[\mathbf{T}]_{m}}
\end{array}\right]
$$

What this does is to allow us to assume that the characteristic polynomial of \mathbf{T} has the form $(x-\lambda)^{n}$. We will argue that such linear operator have a matrix representation made up of Jordan blocks with the same λ. Let us look at one such $p \times p$ block

$$
\mathbf{A}=\left[v_{1}|\cdots| v_{p}\right]=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

$$
\underbrace{\mathbf{A}\left(v_{1}\right)=\lambda v_{1}}_{\text {eigenvector }}, \quad \mathbf{A}\left(v_{2}\right)=v_{1}+\lambda v_{2}, \cdots, \mathbf{A}\left(v_{p}\right)=v_{p-1}+\lambda v_{p}
$$

If we write these equations in the reverse order, we get

Consider the subspace K of the vectors v such that $(\mathbf{A}-\lambda)^{3}(v)=0$. Assume $(\mathbf{A}-\lambda)^{2}(v) \neq 0$ for some vector $v \in K$. Fix such a vector and label it v_{3}.

$$
\begin{aligned}
(\mathbf{A}-\lambda \mathbf{I})\left(v_{3}\right) & =v_{2} \quad \mathbf{A}\left(v_{3}\right)=v_{2}+\lambda v_{3} \\
(\mathbf{A}-\lambda \mathbf{I})^{2}\left(v_{3}\right) & =v_{1} \quad \mathbf{A}\left(v_{2}\right)=v_{1}+\lambda v_{2} \\
(\mathbf{A}-\lambda \mathbf{I})^{3}\left(v_{3}\right) & =0 \quad \mathbf{A}\left(v_{1}\right)=\lambda v_{1}
\end{aligned}
$$

Starting on v_{3} and applying $\mathbf{U}=\mathbf{A}-\lambda \mathbf{I}$ repeatedly we get all the vectors of the basis

$$
v_{3} \rightarrow v_{2} \rightarrow v_{1} \rightarrow 0
$$

We will say that v_{3} is the generator of the basis, and that $\gamma=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a cycle of generalized eigenvectors, v_{1} is the initial and v_{3} the end vectors: They form a so-called dot diagram

$$
\text { generator }=v_{3}=\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet=v_{1}=\text { eigenvector }
$$

$$
\begin{aligned}
(\mathbf{A}-\lambda \mathbf{I})\left(v_{p}\right) & =v_{p-1} \\
(\mathbf{A}-\lambda \mathbf{I})^{2}\left(v_{p}\right) & =v_{p-2} \\
& \vdots \\
(\mathbf{A}-\lambda \mathbf{I})^{p-1}\left(v_{p}\right) & =v_{1} \\
(\mathbf{A}-\lambda \mathbf{I})^{p}\left(v_{p}\right) & =0
\end{aligned}
$$

Starting on v_{p} and applying $\mathbf{U}=\mathbf{A}-\lambda \mathbf{l}$ repeatedly we get all the vectors of the basis

$$
v_{p} \rightarrow v_{p-1} \rightarrow \cdots \rightarrow v_{2} \rightarrow v_{1} \rightarrow 0
$$

We will say that v_{p} is the generator of the basis, and that $\gamma=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a cycle of generalized eigenvectors, v_{1} is the initial and v_{p} the end vectors: They form a so-called dot diagram

$$
\text { generator }=v_{p}=\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet=v_{1}=\text { eigenvector }
$$

Proposition

Let \mathbf{T} be a linear operator on the vector space V. For some scalar λ and some integer p, suppose v is a nonzero vector such that

$$
(\mathbf{T}-\lambda \mathbf{I})^{p}(v)=O, \quad(\mathbf{T}-\lambda \mathbf{I})^{p-1}(v) \neq 0
$$

Then the p vectors $(\mathbf{T}-\lambda \mathbf{I})^{p-1}(v), \ldots,(\mathbf{T}-\lambda \mathbf{I})(v), v$ are linearly independent. They span a \mathbf{T}-invariant subspace \mathbf{W} and the matrix representation of $[\mathrm{T}]_{\mathrm{w}}$ with respect to this basis is a Jordan block.

Proof: Let us denote these vectors by $v_{1}, \ldots, v_{p}=v$, respectively. Suppose we have a linear relation $c_{1} v_{1}+\cdots+c_{p} v_{p}=O$. Let us prove all $c_{i}=0$. Let us argue just one case as the general case is similar. Suppose $c_{p} \neq 0$. Apply the operator $(\mathbf{T}-\lambda I)^{p-1}$ to the relation to obtain

$$
\begin{gathered}
v_{i}=(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v) \\
c_{1}(\mathbf{T}-\lambda \mathbf{I})^{p-1}\left(v_{1}\right)+\cdots+c_{p} \underbrace{(\mathbf{T}-\lambda \mathbf{I})^{p-1}\left(v_{p}\right)}_{=v_{1}}=0
\end{gathered}
$$

Note that all terms vanish, except for the last. This contradicts $c_{p} \neq 0$.
The subspace \mathbf{W} clearly satisfies $\mathbf{T}(\mathbf{W}) \subset \mathbf{W}$. Finally, note that

$$
\begin{aligned}
\mathbf{T}\left(v_{i}\right) & =\mathbf{T}(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v) \\
& =(\mathbf{T}-\lambda \mathbf{I})^{p-i+1}(v)+\lambda(\mathbf{T}-\lambda \mathbf{I})^{p-i}(v)=v_{i-1}+\lambda v_{i}
\end{aligned}
$$

which shows that the matrix representation is

$$
\left[\begin{array}{cccc}
\lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & \lambda
\end{array}\right]
$$

We come now to the crux of the problem: Given a linear operator \mathbf{T} whose characteristic polynomial is $\pm(x-\lambda)^{n}$, to prove that there is a matrix representation made up of λ-Jordan blocks (same λ)

$$
\left[\begin{array}{ccc}
& & \\
\mathrm{J}_{1} & O & 0 \\
0 & \mathbf{J}_{2} & O \\
O & 0 & \mathrm{~J}_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
\lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]
$$

We are going to prove the existence of such representation and the uniqueness of the number and sizes of the blocks.

Situation:

$\mathbf{T}: K_{\lambda} \rightarrow K_{\lambda}, \operatorname{dim} K_{\lambda}=n$, characteristic polynomial of \mathbf{T} is $(x-\lambda)^{n}$. The eigenspace is $E_{\lambda} \subset K_{\lambda}$.

Goal: We will show that K_{λ} has a basis

$$
\mathcal{B}=\bigcup_{i=1}^{m} \gamma_{i}
$$

where each γ_{i} is a cycle of generalized eigenvectors. The Jordan representation comes from the corresponding matrix representation. For example, if $K_{\lambda}=E_{\lambda}$, then a basis of E_{λ} gives the cycles, all of length 1 , and the matrix representation is just $\lambda \mathbf{I}_{n}$.
(1) We are going to argue by induction on $n=\operatorname{dim} K_{\lambda}$. If $n=1$ (or, more generally, $K_{\lambda}=E_{\lambda}$), there is nothing to prove.
(2) Let \mathbf{Z} be the range of $\mathbf{T}-\lambda \mathbf{I}$. For simplicity of notation call this map $\mathbf{U}: K_{\lambda} \rightarrow K_{\lambda}$. Note that E_{λ} is the nullspace of \mathbf{U}, and therefore $\operatorname{dim} E_{\lambda}+\operatorname{dim} \mathbf{Z}=n$, by the dimension formula.
(3) Since $\operatorname{dim} \mathbf{Z}<n$ and the characteristic polynomial of the restriction of \mathbf{T} to \mathbf{Z} divides $(x-\lambda)^{n}$, the induction hypothesis guarantees a basis for \mathbf{Z} :

$$
\begin{gathered}
\gamma^{\prime}: w,(\mathbf{T}-\lambda \mathbf{I})(w), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p-1}(w) \\
\mathcal{B}^{\prime}=\bigcup_{i=1}^{r} \gamma_{i}^{\prime}
\end{gathered}
$$

where each γ_{i}^{\prime} is a cycle of generalized eigenvectors of \mathbf{Z}. Let us consider one of these cycles γ^{\prime} :

$$
\gamma_{i}^{\prime}: w,(\mathbf{T}-\lambda \mathbf{I})(w), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p-1}(w)
$$

But w belongs to the range of $(\mathbf{T}-\lambda \mathbf{I})$, that is $w=(\mathbf{T}-\lambda \mathbf{I})(v)$, for some $v \in \mathbf{V}$. This gives a cycle of \mathbf{V} itself:

$$
\gamma_{i}: v,(\mathbf{T}-\lambda \mathbf{I})(v), \ldots,(\mathbf{T}-\lambda \mathbf{I})^{p}(v)
$$

In this manner, for every γ_{i}^{\prime} of \mathbf{Z} we get a longer cycle (by 1 more vector) of \mathbf{V}.

We recall that vector at the end of the list are the only eigenvectors and that

$$
\bigcup_{i}^{r} \gamma_{i}
$$

contains just r independent eigenvectors, the same set as the basis \mathcal{B}^{\prime} of \mathbf{Z}. If these eigenvectors are u_{1}, \ldots, u_{r}, add (if necessary) u_{r+1}, \ldots, u_{s} to form a basis of the eigenspace E_{λ}. Each of these u_{i} defines a new cycle γ_{i} of length $1, i>r$.

Dot Diagrams and Enlarged Cycles

-: vectors in the set \mathcal{B}^{\prime}

- : vectors added.

$\mathbf{T}-\lambda \mathbf{I}$ maps each dot to dot under. Last row is a basis of E_{λ} : it is mapped to O

Proposition (Very technical, I apologize)

The vectors in the set

$$
\mathcal{B}=\bigcup_{i=1}^{s} \gamma_{i}
$$

form a basis of V .
Proof: First let us count the number of elements of added to pass from the basis \mathcal{B}^{\prime} of \mathbf{Z} to the set \mathcal{B} of \mathbf{V} :
$r\left(1\right.$ for each of the r cycles in $\left.\mathcal{B}^{\prime}\right)+(s-r)=s=\operatorname{dim} E_{\lambda}$

Therefore cardinality of $\mathcal{B}^{\prime}+\boldsymbol{s}=\operatorname{dim} \mathbf{Z}+\boldsymbol{s}=n=\operatorname{dim} \mathbf{V}$
To prove \mathcal{B} is a basis, ETS that it spans \mathbf{V}, as they have already the right number of elements for a basis.

Let $u \in \mathbf{V}$ and consider $(\mathbf{T}-\lambda \mathbf{I})(u) \in \mathbf{Z}$. Since every vector in \mathcal{B}^{\prime} is the image under $\mathbf{T}-\lambda \mathbf{I}$ of some vector in \mathcal{B}, we can write

$$
(\mathbf{T}-\lambda \mathbf{I})(v)=\text { Linear combination of }(\mathbf{T}-\lambda \mathbf{I})\left(v_{i}\right), \quad v_{i} \in \mathcal{B} .
$$

This implies that

$$
(\mathbf{T}-\lambda \mathbf{I}) \underbrace{\left(v-\text { Linear combination of } v_{i}\right)}_{=w}=0
$$

Thus $w \in E_{\lambda}$. Since \mathcal{B} contains a basis of E_{λ}, this implies v lies in the span of \mathcal{B}.

To illustrate the uniqueness of Jordan decomposition, suppose T gives rise to two different cycle decomposition for K_{λ} :

Observe that many things match: $\operatorname{dim} K_{\lambda}=12$ [number of dots, red or black], $\operatorname{dim} E_{\lambda}=5$ (number of piles, columns). Now we are going to observe things that are off:

$$
(\mathbf{T}-\lambda \mathbf{I})^{4}(\text { any } \bullet)=0, \quad(\mathbf{T}-\lambda \mathbf{I})^{4}(\text { top } \bullet) \neq 0
$$

This illustrate the argument: The number of dots at level ℓ is the dimension of the subspace of the vectors v of \mathbf{V} such that

$$
(\mathbf{T}-\lambda \mathbf{I})^{\ell}(v)=0
$$

Level 1: $5=5$
Level 2: $5+3=5+3$
Level 3: $5+3+3>5+3+2$
Level 4: $5+3+3+1>5+3+2+1$
It is clear that the two piles must coincide.
Summary: If the piles are ordered by sizes, they must be identical.

Jordan Decomposition Theorem

Theorem

Any linear operator \mathbf{T} whose characteristic polynomial
$p(x)= \pm \prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{n_{i}}$ splits has a unique matrix representation into blocks

$$
[\mathbf{T}]_{\mathcal{B}}=\left[\begin{array}{ccc}
\mathbf{A}_{1} & \cdots & O \\
\vdots & \ddots & \vdots \\
O & \cdots & \mathbf{A}_{m}
\end{array}\right]
$$

where each \mathbf{A}_{i} has a representation by Jordan λ_{i}-blocks whose number and sizes are uniquely defined

$$
\left[\begin{array}{cccc}
\lambda_{i} & 1 & \cdots & 0 \\
0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{i}
\end{array}\right]
$$

Exercise

Prove: If $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ is diagonalizable and \mathbf{W} is an invariant subspace then T_{W} is also diagonalizable.

- Since W is T-invariant, picking a basis for W and extending to a basis for \mathbf{V} we get a matrix representation for \mathbf{T} of the form

$$
\left[\begin{array}{rr}
\mathrm{T}_{\mathrm{W}} & \mathrm{~B} \\
\mathrm{O} & \mathrm{C}
\end{array}\right]
$$

- It follows that the characteristic polynomial $\mathbf{f}(x)$ of \mathbf{T} is the product of the characteristic polynomials $\mathbf{g}(x)$ and $\mathbf{h}(x)$ of $\mathbf{T}_{\mathbf{W}}$ and \mathbf{C}.
- If λ is an eigenvalue and $\mathbf{f}(x)=(x-\lambda)^{r} F(x)$, $\mathbf{g}(x)=(x-\lambda)^{p} G(x), \mathbf{h}(x)=(x-\lambda)^{q} H(x)$ extracting the roots equal to $\lambda, r=p+q$.
- Since \mathbf{T} is diagonalizable, $\operatorname{dim} E_{\lambda}=r$, while the corresponding eigenspace of \mathbf{W} is $E_{\lambda}^{\prime}=E_{\lambda} \cap \mathbf{W}$. We must show that $\operatorname{dim} E_{\lambda}^{\prime}=p$.
- If v_{1}, \ldots, v_{n} is a basis of E_{λ}^{\prime}, and completing to a basis of E_{λ} $v_{1}, \ldots, v_{n}, v_{n+1}, \ldots, v_{r}$, we get the invariant subspace

$$
\begin{gathered}
\mathbf{L}=\mathbf{W}+\left(v_{n+1}, \ldots, v_{r}\right)=\mathbf{W} \times\left(v_{n+1}, \ldots, v_{r}\right) \\
\mathbf{T}_{\mathbf{L}}=\left[\begin{array}{rr}
\mathbf{T}_{\mathbf{W}} & 0 \\
0 & \lambda \mathbf{I}_{r-n}
\end{array}\right]
\end{gathered}
$$

a matrix whose characteristic polynomial has the factor $(x-\lambda)^{p}(x-\lambda)^{r-n}$, and $p+r-n \leq r$, which is not possible if $p>n$. Thus $\operatorname{dim} E_{\lambda}^{\prime}=p$.

Minimal Polynomial of a Matrix

Given a square matrix \mathbf{A}, there are polynomials $\mathbf{f}(x)$ such that

$$
\mathbf{f}(\mathbf{A})=0
$$

The best known is $\mathbf{f}(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$, the characteristic polynomial: by Cayley-Hamilton:

$$
\mathbf{f}(\mathbf{A})=0
$$

What else?

Definition

Let \mathbf{A} be a n-by- n matrix. The minimal polynomial of \mathbf{A} is the monic polynomial $m(x)=x^{m}+c_{m-1} x^{m-1}+\cdots+c_{0}$ of least degree such that

$$
m(\mathbf{A})=\mathbf{A}^{m}+c_{m-1} \mathbf{A}^{m-1}+\cdots+c_{0} \mathbf{I}=0
$$

(1) If $\mathbf{A}=\mathbf{I}_{n}$, then $m(x)=x-1$.
(2) If $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], m(x)=x^{2}$.
(3) In the case of the Jordan block $\mathbf{J}=\left[\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$, $m(x)=(x-\lambda)^{3}$. For a block of size $n, m(x)=(x-\lambda)^{n}$.

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right], \quad \mathbf{U}=\mathbf{J}-\lambda \mathbf{I}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{U}^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{U}^{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{U}^{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
m(x)=(x-\lambda)^{4}
\end{gathered}
$$

Observe the right drift of the diagonal of 1's until it leaves the matrix!

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{J}_{1} & 0 & 0 \\
\hline \mathbf{O} & \mathbf{J}_{2} & 0 \\
0 & O & \mathrm{~J}_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
\lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]
$$

Note how $\mathbf{A}-\lambda I$ is made up of blocks like $\mathrm{J}_{1}-\lambda I$ whose third (or second in the blue case) power is O : $m(x)=(x-\lambda)^{3}$. (We will make this more precise soon.)

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{J}_{1} & 0 & 0 \\
& \mathbf{J}_{2} & 0 \\
0 & O & \mathbf{J}_{3}
\end{array}\right]=\left[\begin{array}{rrrrrrrr}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right]
$$

If $\lambda_{1}=\lambda_{2} \neq \lambda_{3}$, then $m(x)=\left(x-\lambda_{1}\right)^{3}\left(x-\lambda_{3}\right)^{3}$. This is because $\left(x-\lambda_{1}\right)^{3}$ works for both λ_{1} blocks.

If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct, then $m(x)=\left(x-\lambda_{1}\right)^{3}\left(x-\lambda_{2}\right)^{2}\left(x-\lambda_{3}\right)^{3}$.

Proposition

The minimal polynomial $m(x)$ of \mathbf{A} divides every nonzero polynomial $f(x)$ such that $f(\mathbf{A})=O$. In particular, $m(x)$ divides the characteristic polynomial $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$ of \mathbf{A}.

Proof: To show that $m(x) \mid f(x)$, use long division to write $f(x)=q(x) m(x)+r(x)$, where $\operatorname{deg} r(x)<\operatorname{deg} m(x)$. We claim that $r(x)=0$: We have

$$
\underbrace{f(\mathbf{A})}_{=0}=q(\mathbf{A}) \underbrace{m(\mathbf{A})}_{=0}+r(\mathbf{A}) .
$$

Thus $r(\mathbf{A})=0$. If $r(x) \neq 0$ we can divide it by its leading coefficient and have a monic polynomial $r_{0}(x)$ of degree smaller than deg $m(x)$ such that $r_{0}(\mathbf{A})=O$, a contradiction. The last assertion is the Cayley-Hamilton theorem.

If we have the Jordan decomposition of \mathbf{A}, we can be very explicit about its minimal polynomial.

Proposition

Let \mathbf{A} be linear operator whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{m}$. For each eigenvalue λ_{i}, suppose the largest size of its Jordan blocks is p_{i}. Then the minimal polynomial of \mathbf{A} is

$$
m(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{p_{i}}
$$

In particular, if all eigenvalues of \mathbf{A} are simple, then the minimal and the characteristic polynomials are equal, except possibly by \pm. More generally, the minimal and characteristic polynomials coincide (up to sign) if and only for each eigenvalue λ_{i} there is only one Jordan block.

Let \mathbf{A} be a n-by- n matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ Here is what they should look like:

$$
\mathbf{A}=\left[\begin{array}{cccc}
\boxed{\mathbf{J}_{1}} & 0 & 0 & 0 \\
0 & \boxed{\mathbf{J}_{2}} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \mathbf{J}_{m}
\end{array}\right]
$$

\mathbf{J}_{i} is the single Jordan block corresponding to λ_{i}

Problems

In the following \mathbf{A} is a $n \times n$ matrix.
(1) Prove that \mathbf{A} is diagonalizable if and only if its minimal polynomial $m(x)$ has no repeated root. Discuss how to verify that a polynomial over \mathbb{R} has no repeated roots.
(2) Prove that the minimal and characteristic polynomial of A coincide (up to sign) if and only if there is a vector v such that

$$
\mathbf{V}=\left(v, \mathbf{A}(v), \ldots, \mathbf{A}^{n-1}(v)\right)
$$

These matrices are also known as non-derogatory.
(3) Prove that if \mathbf{A} is non-derogatory, any matrix \mathbf{B} that commutes with \mathbf{A} is a linear combination of $\mathbf{I}, \mathbf{A}, \ldots, \mathbf{A}^{n-1}$, that is $\mathbf{B}=f(\mathbf{A})$ a polynomial in \mathbf{A}.

Homework

Section 7.1: 2a, 3a, 5, 7e

Quiz \#8

(1) Section 7.1: Problem 2a
(2) Section 7.1: Problem 7e
(3) Prove that \mathbf{A} is diagonalizable if and only if its minimal polynomial $m(x)$ has no repeated root. Discuss how to verify that a polynomial over \mathbb{R} has no repeated roots.
(4) Check whether the real matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 2 & -4 \\
4 & 1 & 2
\end{array}\right]
$$

is diagonalizable by examining the gcd of its characteristic polynomial and its derivative.

Final Orientation

Final will be comprehensive but topics will be emphasized according to the following classification:

- VITs: Very Important Topics
- BITs: Basic Important Topics
- LITs: Basic but Less Important Topics

VITs

- Diagonalization of L.T.s
- Normal Operators
- Unitary/Orthogonal Operators
- Hermitian/Symmetric Operators
- Spectral Theorems
- Jordan Canonical Forms

BITs

- Eigenvectors, Eigenvalues
- Characteristic polynomials
- Generalized eigenvectors
- Invariant subspaces
- Cayley-Hamilton theorem
- Minimal polynomial of a linear operator

LITs

- Determinants
- Bases and dimension of vector spaces
- Nullspace and range of a L.T.; dimension formula
- Orthogonality of vectors

