Math 350: Linear Algebra

Wolmer V. Vasconcelos

Set 7

Spring 2010

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Outline

- **Inner Products Spaces**
- HomeWork #7
- Gram-Schmidt Orthogonalization
- HomeWork#8
- The Adjoint of a Linear Operator
- Least Squares Approximation
- Old Hourly #2 Questions
- HomeQuiz #7
- Normal Operators
- Unitary Operators
- Goodies
- HomeQuiz #8
- 13 HomeWork #9

- Eigenvectors and eigenvalues
- Diagonalization
- Inner products spaces
- Norms

Metric properties of vector spaces

Let **V** be a vector space over the field **F**. We want to develop a geometry for **V**. For that, it is helpful to have a notion of **distance**, or **length**. We will transport and then extend numerous constructions of ordinary geometry and their calculus.

We will restrict ourselves to the cases of $\mathbf{F} = \mathbb{R}$, or $\mathbf{F} = \mathbb{C}$. In the case of \mathbb{C} , we use the standard notation for the **complex conjugate** of the complex number z = a + bi

$$\overline{z} = a - bi$$
.

Some of its properties are:

$$z\overline{z} = a^2 + b^2$$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}}, \quad z \neq 0$$

For certain operations, like solving polynomial equations, the polar representation of complex numbers

$$a + bi = r(\cos \theta + i \sin \theta), \quad r = \sqrt{a^2 + b^2}, \quad \tan \theta = \frac{a}{b}$$

is useful.For instance,

$$\sqrt{i} = \pm (\cos \pi/2 + i \sin \pi/2)^{1/2} = \pm (\cos \pi/4 + i \sin \pi/4) = \pm \frac{\sqrt{2}}{2}(1+i).$$

Inner product space

An inner product vector space V is a V.S. over \mathbb{R} or \mathbb{C} with a mapping

$$\mathbf{V} imes \mathbf{V}
ightarrow \mathbf{F}, \quad (u, v)
ightarrow \langle u, v
angle = u \cdot v \in \mathbf{F}$$

satisfying certain conditions. Let us give an example to guide us in what is needed. Let $\mathbf{V} = \mathbb{R}^n$ and define

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

Note the properties: **bi-additive** ; $v \cdot v$ is a non-negative real number, so we can use $\sqrt{v \cdot v}$ to define the **magnitude** of *v*.

Question: Could we use the same formula to define an inner product for \mathbb{C}^n ? Well... (*i*) \cdot (*i*) would be -1. Of course the formula still defines a nice bilinear mapping but would not meet our need.

Dot product

Definition

An inner product vector space is a vector space with a mapping

$$\mathbf{V} imes \mathbf{V} o \mathbf{F}, \quad (u, v) o u \cdot v \in \mathbf{F}$$

satisfying:

•
$$(u_1 + u_2) \cdot v = u_1 \cdot v + u_2 \cdot v$$

• $(cu) \cdot v = c(u \cdot v)$
• $\overline{u \cdot v} = v \cdot u$
• $u \cdot u > 0 \text{ if } u \neq O$

The better notation for this product is

$$u \cdot v = \langle u, v \rangle$$

Examples

Of course, the example above of \mathbb{R}^n is the grandmother of all examples. Let us modify it a bit to get an example for \mathbb{C}^n :

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 \overline{b_1} + \cdots + a_n \overline{b_n} = \sum_{i=1}^n a_i \overline{b_i}.$$

Note the properties: **additive** ; $v \cdot v$ is a non-negative real number

$$\mathbf{v}\cdot\mathbf{v}=\sum_{i=1}^n a_i\overline{a_i}$$

so we can use $\sqrt{v \cdot v}$ to define the **magnitude** of *v*. Note the lack of full symmetry.

Example of Function Space

Let us give an example from left field: Let **V** be the vector space of all real continuous functions on the interval [a, b], and define for $f(t), g(t) \in \mathbf{V}$,

$$\langle f(t), g(t) \rangle = f(t) \cdot g(t) = \int_a^b f(t)g(t)dt.$$

An important case: If *m*, *n* are integers,

$$\langle \sin nt, \cos mt \rangle = \int_{0}^{2\pi} \sin nt \cos mt \, dt = 0 \langle \sin nt, \sin mt \rangle = \int_{0}^{2\pi} \sin nt \sin mt \, dt = 0, \ m \neq n \langle \cos nt, \cos mt \rangle = \int_{0}^{2\pi} \cos nt \cos mt \, dt = 0, \ m \neq n \langle \sin nt, \sin nt \rangle = \int_{0}^{2\pi} \sin^2 nt \, dt = \pi, \ n \neq 0$$

Wolmer Vasconcelos (Set 7)

Example: $M_n(F)$

Let $\mathbf{V} = \mathbf{M}_n(\mathbf{F})$ be the V.S. of all *n*-by-*n* matrices. For any such matrix $\mathbf{A} = [a_{ij}]$ define the **adjoint** of **A** (unfortunately we have already used the word for a very different notion!) to be the matrix

$$\mathbf{A}^* = [\overline{a_{ji}}],$$

that is, we transpose **A** and take the complex conjugate of each entry. Define the product (Frobenius product)

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{trace}(\mathbf{AB}^*) = \sum_{i} (\mathbf{AB}^*)_{ii}.$$

It is clear that this product has the properties of an inner product. We just check the positivity condition:

$$\langle \mathbf{A}, \mathbf{A} \rangle = \operatorname{trace}(\mathbf{A}\mathbf{A}^*) = \sum_{i} (\mathbf{A}\mathbf{A}^*)_{ii}$$

= $\sum_{i} \sum_{i} a_{ij} \overline{a_{ij}} = \sum_{i} |a_{ij}|^2 \ge 0$

Math 350: Linear Algebra

Proposition

If V is an inner product space, the following hold:

Proof of 1: Note

$$\begin{array}{lll} \langle u, v + w \rangle & = & \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} \\ & = & \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} = \langle u, v \rangle + \langle u, w \rangle \end{array}$$

Wolmer Vasconcelos (Set 7)

Length of a vector

Definition

Let $\mathbf{V}, \langle \cdot, \cdot \rangle$ be an inner product space. If $v \in \mathbf{V}$, the **length** or **norm** of v is the real number $||v|| = \sqrt{\langle v, v \rangle}$.

If
$$\mathbf{V} = \mathbb{C}^n$$
, $\mathbf{v} = (\mathbf{a}, \ldots, \mathbf{a}_n)$,

$$||v|| = \left[\sum_{i=1}^{n} |a_i|^2\right]^{1/2}$$

If V is the space of real continuous functions on [0, 1] and inner product is that we defined previously,

$$||f(t)||^2 = \int_0^1 f(t)^2 dt.$$

Framework for Geometry

The following assertions permits the construction of 'recognizable' objects in any inner product space:

Theorem

If \boldsymbol{V} is an inner product space, then for all $u,v\in\boldsymbol{V}$

[Cauchy-Schwarz Inequality]

 $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$

[Triangle Inequality]

 $||u + v|| \le ||u|| + ||v||.$

The Cauchy-Schwarz Inequality will allow the introduction of **angles** and its **trigonometry** in **V**, while the Triangle Inequality will lead to many constructions extending those we are familiar with in 2- and 3-space.

Proofs of CSI and △-Inequality

To prove Cauchy-Schwarz Inequality: Note that for ANY $c \in \mathbf{F}, v \neq O$

$$0 \le ||u - cv||^2 = \langle u - cv, u - cv \rangle = \langle u, u - cu \rangle - c \langle v, u - cv \rangle$$
$$= \langle u, u \rangle - \overline{c} \langle u, v \rangle - c \langle v, u \rangle + c \overline{c} \langle v, v \rangle$$

If we set $c = \frac{\langle u, v \rangle}{\langle v, v \rangle}$ the inequality becomes

$$0 \leq \langle u, u \rangle - \frac{|\langle u, v \rangle|^2}{||v||^2},$$

which proves the assertion.

For the Δ -inequality: Consider

$$\begin{aligned} ||u + v||^2 &= \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\ &= ||u||^2 + (\langle u, v \rangle + \overline{\langle u, v \rangle}) + ||v||^2 = ||u||^2 + 2\Re \langle u, v \rangle + ||v||^2 \\ &\leq ||u||^2 + 2|\langle u, v \rangle| + ||v||^2 \\ &\leq ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 \quad \text{by C-S inequality} \\ &= (||u|| + ||v||)^2. \end{aligned}$$

We used that for any complex number z = a + bi, its real part $\Re z = a \le |z| = \sqrt{a^2 + b^2}$.

Example

To illustrate the power of the axiomatic method, compare the proof above [which holds for ALL examples] with the work needed to check the inequalities just the case of the following example:

$$\left|\sum_{i=1}^{n} a_{i} \overline{b_{i}}\right| \leq \left[\sum_{i=1}^{n} |a_{i}|^{2}\right]^{1/2} \left[\sum_{i=1}^{n} |b_{i}|^{2}\right]^{1/2}$$
$$\left[\sum_{i=1}^{n} |a_{i} + b_{i}|^{2}\right]^{1/2} \leq \left[\sum_{i=1}^{n} |a_{i}|^{2}\right]^{1/2} + \left[\sum_{i=1}^{n} |b_{i}|^{2}\right]^{1/2}$$

Angles and Distances

Equipped with these results, we can define angles and distances, with many of the usual properties, in any inner product space. For example, for a real inner product space, the Cauchy-Schwarz inequality says that for any two [will assume nonzero] vectors u, v,

$$\langle u, v \rangle \leq ||u|| \cdot ||v||,$$

that is

$$-1 \le \frac{\langle u, v \rangle}{||u|| \cdot ||v||} \le 1$$

This means that the ratio can be identified to the cosine, $\cos \alpha$, of a unique angle $0 \le \alpha \le \pi$: So we can write

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| \cos \alpha$$

and say that α is the angle between the vectors u and v.

An important relationship between two vectors u, v is when $\langle u, v \rangle = 0$: We then say that u and v are orthogonal or perpendicular. One notation for this situation is:

$$u \perp v$$

The **distance** between the vectors *u*, *v* is defined by

dist
$$(u, v) = ||u - v|| = \langle u - v, u - v \rangle^{1/2}$$

One of its properties follow from the triangle inequality: If u, v, w are three vectors

$$dist(u, w) \leq dist(u, v) + dist(v, w).$$

Properties

These notions have numerous consequences. Let us begin with:

Proposition

Let v_1, \ldots, v_n be nonzero vectors of the inner product space V. If $v_i \perp v_j$ for $i \neq j$, then these vectors are linearly independent.

Proof.

Suppose we have a linear combination

$$c_1v_1+c_2v_2+\cdots+c_nv_n=O.$$

We claim all $c_i = 0$. To prove, say $c_1 = 0$, take the inner product of the linear combination with v_1 :

$$c_1\underbrace{\langle v_1, v_1 \rangle}_{\neq 0} + c_2\underbrace{\langle v_2, v_1 \rangle}_{=0} + \cdots + c_n\underbrace{\langle v_n, v_1 \rangle}_{=0} = \langle O, v_1 \rangle = 0.$$

A vector *v* of length ||v|| = 1 is called a **unit** vector. They are easy to find: given a nonzero vector *u*, $v = \frac{u}{||u||}$ is a unit vector.

A set of vectors v_1, \ldots, v_n is said to be **orthonormal** if $v_i \perp v_j$, for $i \neq j$ and $||v_i|| = 1$ for any *i*. Of course, a good example are the ordinary coordinate vectors of 3-space.

Proposition

Let **V** be an inner product space with an orthonormal basis v_1, \ldots, v_n . Then for any $v \in \mathbf{V}$,

$$\mathbf{v}=\mathbf{c}_1\mathbf{v}_1+\cdots+\mathbf{c}_n\mathbf{v}_n,$$

where $c_i = \langle v, v_i \rangle$. The c_i are called the Fourier coefficients of v relative to the basis.

Proof.

To get c_i , it suffices to form the inner product of v with v_i :

$$\langle \mathbf{v}, \mathbf{v}_i \rangle = \mathbf{c}_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \mathbf{c}_i,$$

since $\langle v_i, v_i \rangle = 1$ and all other $\langle v_i, v_i \rangle = 0$.

Matrix representation

Orthonormal bases are also useful in finding the matrix representation of a L.T. $\mathbf{T} : \mathbf{V} \rightarrow \mathbf{V}$:

Let $A = \{v_1, ..., v_n\}$ be such a basis. Then $[\mathbf{T}]_A = [a_{ij}]$ where a_{ij} are the coefficients in the expression

$$\mathbf{T}(\mathbf{v}_j) = \mathbf{a}_{1j}\mathbf{v}_1 + \cdots + \mathbf{a}_{ij}\mathbf{v}_i + \cdots + \mathbf{a}_{nj}\mathbf{v}_n$$

To select a_{ij} it suffices to 'dot' with v_i

$$\langle \mathbf{T}(\mathbf{v}_j), \mathbf{v}_i \rangle = a_{1j} \underbrace{\langle \mathbf{v}_1, \mathbf{v}_i \rangle}_{=0} + \dots + a_{ij} \underbrace{\langle \mathbf{v}_i, \mathbf{v}_i \rangle}_{=1} + \dots + a_{nj} \underbrace{\langle \mathbf{v}_n, \mathbf{v}_i \rangle}_{=0}$$
$$[\mathbf{T}]_{\mathcal{A}} = [\langle \mathbf{T}(\mathbf{v}_j), \mathbf{v}_i \rangle]$$

Parallelogram Law

Exercise: If u, v are vectors of an inner product space **V**, verify the parallelogram law:

$$||u + v||^{2} + ||u - v||^{2} = 2(||u||^{2} + ||v||^{2}).$$

Draw a picture to illustrate this equality.

HomeWork #7

Section 6.1: 2, 5, 9, 10, 11, 18, 27 (challenge)

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Spring 2010 25 / 106

Things to come

- We will prove that every finite-dimensional vector space W of an inner product space V has an orthonormal basis.
- 2 This will allow us to express the distance from a vector $v \in \mathbf{V}$ to the subspace \mathbf{W} . For instance, if

$\mathbf{A}\mathbf{x} = \mathbf{b}$

is a consistent system of linear equations, that is, if there is some solution $Ax_0 = b$, we know that the solution set is the set

$$\mathbf{x}_0 + N(\mathbf{A}),$$

where $N(\mathbf{A})$ is the nullspace of **A**. Now we will be able to find the solution of smallest length, if need be.

Let us show how to obtain an orthonormal basis of a vector space from an arbitrary basis $A = \{u_1, \dots, u_n\}$.

If n = 1, $w_1 = \frac{u_1}{||u_1||}$ is the answer.

Assume now that we have a basis of two vectors u_1 , u_2 . We need to find two nonzero vectors v_1 , v_2 in the span of u_1 , u_2 so that $v_1 \perp v_2$. We use a projection trick: we set $v_1 = u_1$ and look for *c* so that

$$v_2=u_2-cu_1\perp v_1,$$

that is

$$egin{aligned} &\langle v_2, v_1
angle = \langle u_2, v_1
angle - c \langle u_1, v_1
angle = 0 \ & \ c = rac{\langle u_2, v_1
angle}{\langle v_1, v_1
angle} \end{aligned}$$

Observe that v_1 , v_2 have same span as u_1 , u_2 . Now replace v_i by $v_i/||v_i||$.

w = Projection of v along u

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Projection formula

If **L** is a line defined by the vector $u \neq O$ and v is another vector,

$$w = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

is the **projection** of *v* along **L** or *u*.

Proposition

v - w is perpendicular to L and the smallest distance from v to any vector of L is ||v - w||.

Proof.

We have already seen that $v - w \perp v$. If *cu* is a vector of **L**, the square distance from *v* to *cu* is ($v - w \perp L$, so will use Pythagorean Theorem)

$$||v - cu||^2 = ||(v - w) + (w + cu)||^2 = ||v - w||^2 + \underbrace{||w + cu||^2}_{\geq 0}$$

Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another basis [Gram–Schmidt process]:

• Input: $A = \{u_1, \ldots, u_n\}$ given basis

2 Set
$$v_1 = u_1$$

Sompute v_2, \ldots, v_n successively, one at a time, by

Set w_i = v_i/||v_i||
Output: B = {w₁,..., w_n} is an orthonormal basis.

Hadamard's Inequality

Let **A** be a matrix whose columns form a basis $\{u_1, u_2, ..., u_n\}$ of \mathbb{R}^n (put n = 3 for simplicity)

$$\mathbf{A} = [u_1 \mid u_2 \mid u_3]$$

Now consider the matrix

$$\mathbf{B} = [v_1 \mid v_2 \mid v_3] = [u_1 \mid u_2 - a_1u_1 \mid u_3 - b_1u_1 - b_2u_2]$$

where the coefficients are chosen for that the $v'_i s$ are perpendicular to one another. Note that **B** is obtained from **A** by adding scalar multiples of columns to another, so

$$det(\mathbf{A}) = det(\mathbf{B}).$$

Furthermore, for each *i*

$$||\mathbf{v}_i|| \leq ||\mathbf{u}_i||$$

by the projection formula.

Wolmer Vasconcelos (Set 7)

Let us calculate $det(\mathbf{A})^2$:

$$det(\mathbf{A})^2 = det(\mathbf{B})^2 = det(\mathbf{B}) det(\mathbf{B}^t)$$

=
$$det[v_1 \mid v_2 \mid v_3] det[v_1 \mid v_2 \mid v_3]^t$$

=
$$\begin{bmatrix} \langle v_1, v_1 \rangle & 0 & 0 \\ 0 & \langle v_2, v_2 \rangle & 0 \\ 0 & 0 & \langle v_3, v_3 \rangle \end{bmatrix}$$

=
$$\prod \langle v_i, v_i \rangle$$

Theorem (Hadamard)

For any square real matrix $\mathbf{A} = [u_1, \dots, u_n]$,

$$|\det(\mathbf{A})|^2 \leq \prod_{i=1}^n \langle u_i, u_i \rangle.$$

For instance, if **A** is a 4×4 whose entries are 0, 1, -1, its column vectors have length at most 2, so that det(**A**) \leq 16. According to Joe, there is a such a matrix.

General Projection Formula

Proposition

Let **W** be a subspace with an orthonormal basis $A = \{u_1, \ldots, u_n\}$. For any vector *v*, the vector of **W**

$$w = \operatorname{proj}_{W}(v) = \langle v, u_1 \rangle u_1 \cdots + \langle v, u_n \rangle u_n$$

is the projection of v onto W. It has the following properties

- v w is perpendicular to any vector of **W**. (We say that it is perpendicular to **W**)
- **2** ||v w|| is the shortest distance from v to **W**.

The proof is like above.

Orthogonal Complement

If **W** is a subspace of an inner product space **V**, its **orthogonal complement W**^{\perp} is the set of all vectors *v* that are perpendicular to each vector *w* of **W**. In ordinary 3-space \mathbb{R}^3 , the *z*-axis is the orthogonal complement of the *xy*-plane.

Proposition

 \mathbf{W}^{\perp} is a subspace of \mathbf{V} .

Proof.

Clearly $O \in \mathbf{W}^{\perp}$. If $v_1, v_2 \in \mathbf{W}^{\perp}$, for any vector $w \in \mathbf{W}$

$$\langle c_1 v_1 + c_2 v_2, w \rangle = c_1 \langle v_1, w \rangle + c_2 \langle v_2, w \rangle = O,$$

so \mathbf{W}^{\perp} passes the subspace test.

Example

Let **A** be an $m \times n$ real matrix. The nullspace of **A** is the set of all *n*-tuples **x** such that

$$\mathbf{A}\mathbf{x} = \mathbf{0}.$$

This means that the nullspace is the orthogonal complement of the row space of **A**:

$$N(\mathbf{A}) = \text{row space}^{\perp}$$
.

Similarly, the left nullspace of A, left N(A), are the *m*-tuples y such that

$$\mathbf{y}\mathbf{A}=O$$

that is the orthogonal complement of the column space of **A**.

These observations suggest several properties of the \perp operation:

• Let **V** be a vector space with a basis e_1, \ldots, e_n . If **W** is spanned by u_1, \ldots, u_m , **W**^{\perp} is the set of all vectors $x_1e_1 + \cdots + x_ne_n$ such that

$$x_1 \langle e_1, u_i \rangle + \cdots + x_n \langle e_n, u_i \rangle = 0, \quad i = 1, \dots, m.$$

Thus we find **W** by solving a system of linear equations.

$$2 \mathbf{W} \cap \mathbf{W}^{\perp} = (O).$$

$${f 3}$$
 dim W $+$ dim W $^{ot}=$ dim V

 $(\mathbf{W}^{\perp})^{\perp} = \mathbf{W}$

Proposition

 $\dim \mathbf{W} + \dim \mathbf{W}^{\perp} = \dim \mathbf{V}.$

Proof.

Let u_1, \ldots, u_m be an orthonormal basis of **W**. We define a mapping $\mathbf{T} : \mathbf{V} \to \mathbf{V}$ as follows

$$\mathbf{T}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{v}, \mathbf{u}_m \rangle \mathbf{u}_m.$$

T is clearly a linear transformation: This is the orthogonal projection of **V** onto **W**. Its range $R(\mathbf{T})$ is **W**. Its nullspace $N(\mathbf{T})$ is the set of vectors v such that $\langle v, u_i \rangle = 0$ for each u_i . This is precisely \mathbf{W}^{\perp} . From the dimension formula

dim
$$\mathbf{V} = \dim R(\mathbf{T}) + \dim N(\mathbf{T}) = \dim \mathbf{W} + \dim \mathbf{W}^{\perp}$$
.

HomeWork #8

Section 6.2: 2a, 4, 9, 15, 22 (too laborious)

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Spring 2010 39 / 106

If \mathbf{V} is a vector space over the field \mathbf{F} , a linear functional is a linear transformation

 $f:V\longrightarrow F.$

For example, if $\mathbf{V} = \mathbf{F}^n$ and $\mathbf{a} = [a_1, \dots, a_n]$ is a matrix, then for every column vector $\mathbf{v} \in \mathbf{F}^n$, the function

 $v \longrightarrow \mathbf{a} \cdot v$

is a linear functional. In fact, every linear functional **f** has this description.

Inner product spaces, finite/infinite dimensional have a natural method to define linear functionals. Let us exploit it.

Let **V** be an inner product space. If $u \in \mathbf{V}$, the mapping

$$\mathbf{f}: \mathbf{V} \to \mathbf{F}, \quad \mathbf{f}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \rangle$$

is a linear functional. Observe that if $\langle v, u \rangle = \langle v, w \rangle$, for all v, then $\langle v, u - w \rangle = 0$ and therefore u = w.

Proposition

If **V** is a finite-dimensional inner product space, for every linear functional **f** on **V**, there is a unique vector *u* such that $\mathbf{f}(v) = \langle v, u \rangle$ for all $v \in \mathbf{V}$.

Proof.

Let v_1, \ldots, v_n be an orthonormal basis of **V**, and let

$$u = \overline{\mathbf{f}(v_1)}v_1 + \cdots + \overline{\mathbf{f}(v_n)}v_n.$$

Note that for each v_j , $\langle v_j, u \rangle = \overline{\mathbf{f}(v_j)} = \mathbf{f}(v_j)$, so the functionals defined by u and \mathbf{f} agree on each basis vector, so are equal.

Adjoint of a Linear Transformation

Let **T** be a L.T. of the inner product space **V**. We are going to build another L.T. associated to **T**, which will be called the **adjoint** of **T**. It is the parent [or child] of the transpose!

Fix the vector $u \in \mathbf{V}$. Consider the mapping $v \to \langle \mathbf{T}(v), u \rangle$. This is a linear functional. According to the previous Proposition, there is a unique *w* such that

$$\langle \mathbf{T}(\mathbf{v}), \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle, \quad \forall \mathbf{v} \in \mathbf{V}.$$

We set $w = \mathbf{S}(u)$. This gives a function $\mathbf{S} : \mathbf{V} \to \mathbf{V}$. It is routine to check that if $w_1 = \mathbf{S}(u_1)$ and $w_2 = \mathbf{S}(u_2)$, then $\mathbf{S}(u_1 + u_2) = w_1 + w_2$, and also $\mathbf{S}(cu) = c\mathbf{S}(u)$. This L.T. is denoted \mathbf{T}^* and termed the adjoint of \mathbf{T} .

Wolmer Vasconcelos (Set 7)

Proposition

Let **T** be a L.T. and let $\mathbf{A} = [a_{ij}]$ be its matrix representation relative to the orthonormal basis v_1, \ldots, v_n . Then the matrix representation of the adjoint \mathbf{T}^* is $\overline{\mathbf{A}^t} = [\overline{a_{ji}}]$, the conjugate transpose of **A**.

Proof.

To find the matrix representation $[b_{ij}]$ of **T**^{*} we write **T**^{*} $(v_j) = \sum_i b_{ij}v_i$, so that

$$\overline{b_{ij}} = \langle v_i, \mathbf{T}^*(v_j) \rangle = \langle \mathbf{T}(v_i), v_j \rangle = a_{ji},$$

as desired.

Problem

Given 3 (or more) points $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$, $P_3 = (x_3, y_3)$ in \mathbb{R}^2 , find the best fit line (what does this mean?):

$$Y = at + b$$
, $Y_i = at_i + b$, error $= |Y_i - y_i|$

$$\frac{t \mid y \mid Y}{t_1 \mid y_1 \mid Y_1}$$

$$\vdots \quad \vdots \quad \vdots$$

$$t_n \mid y_n \mid Y_n$$

$$\mathbf{E} = \text{Square Error} \quad = \sum_{i=1}^n |Y_i - y_i|^2 = \sum_{i=1}^n |at_i + b - y_i|^2$$

Problem: Find *a* and *b* so that the square error is as small as possible. To answer, we first write the problem in vector notation.

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} t_1 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\mathbf{E} = ||\mathbf{y} - \mathbf{A}\mathbf{x}||^2$$

We are going to do much better: Given a $m \times n$ matrix **A** and a vector $\mathbf{y} \in \mathbf{F}^m$, we are going to find a vector $\mathbf{x}_0 \in \mathbf{F}^n$ such that

$$||\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}_0||^2 \le ||\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}||^2$$

for all $\mathbf{x} \in \mathbf{F}^n$

We know that the answer to this will be affirmative: Let **W** be the range of **A**, that is the set of all vectors Ax, for $x \in F^n$. There is a vector $w \in W$, that is $w = Ax_0$ such that

$$||\mathbf{y} - \mathbf{A}\mathbf{x}_0||^2 \le ||\mathbf{y} - \mathbf{A}\mathbf{x}||^2.$$

The issue is how to find \mathbf{x}_0 more explicitly. For this we use the notion of the adjoint of a linear transformation:

$$\mathbf{T}:\mathbf{F}^n\to\mathbf{F}^m,\quad\mathbf{T}^*:\mathbf{F}^m\to\mathbf{F}^n$$

$$\langle \mathbf{T}(u), v \rangle_m = \langle u, \mathbf{T}^*(v) \rangle_n$$

To derive the desired formula (known as the projection formula) we need two properties of T^* .

Proposition

Let **A** be an $m \times n$ complex matrix and **A**^{*} its adjoint (conjugate transpose). Then

1 rank(
$$\mathbf{A}$$
) = rank($\mathbf{A}^*\mathbf{A}$).

2 If
$$rank(\mathbf{A}) = n$$
 then $\mathbf{A}^*\mathbf{A}$ is invertible.

Proof.

It will suffice to show that **A** and **A**^{*}**A** have the same nullspace. Why? If $\mathbf{A}^*\mathbf{A}(\mathbf{x}) = 0$, then for all $\mathbf{z} \in \mathbf{F}^n$

$$\mathbf{0} = \left< \mathbf{A}^* \mathbf{A}(\mathbf{x}), \mathbf{z} \right>_n = \left< \mathbf{A} \mathbf{x}, (\mathbf{A}^*)^* \mathbf{z} \right>_m = \left< \mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{z} \right>_m =$$

so $\mathbf{A}\mathbf{x} = O$ by choosing $\mathbf{z} = \mathbf{x}$.

The second assertion now follows: Since A^*A is an $n \times n$ matrix of rank *n*, it is invertible.

Projection Formula

Theorem

Let A be an $m \times n$ complex matrix and let $\mathbf{y} \in \mathbf{F}^m$. Then there exists $\mathbf{x}_0 \in \mathbf{F}^n$ such that $\mathbf{A}^* \mathbf{A}(\mathbf{x}_0) = \mathbf{A}^* \mathbf{y}$ and $||\mathbf{A}\mathbf{x}_0 - \mathbf{y}|| \le ||\mathbf{A}\mathbf{x} - \mathbf{y}||$ for all $\mathbf{x} \in \mathbf{F}^n$. If A has rank n then

$$\mathbf{x}_0 = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{y}.$$

Proof.

Since $Ax_0 - y$ is perpendicular to the range of A,

$$0 = \langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x}_0 - \mathbf{y} \rangle_m = \langle \mathbf{x}, \mathbf{A}^* (\mathbf{A}\mathbf{x}_0 - \mathbf{y}) \rangle = \langle \mathbf{x}, ((\mathbf{A}^*\mathbf{A})\mathbf{x}_0 - \mathbf{A}^*\mathbf{y}) \rangle$$

for all $\mathbf{x} \in \mathbf{F}^n$. Thus $(\mathbf{A}^*\mathbf{A})\mathbf{x}_0 - \mathbf{A}^*\mathbf{y} = 0$ and therefore

$$\mathbf{x}_0 = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{y},$$

that completes the proof

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Illustration

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, \quad \operatorname{rank}(\mathbf{A}) = 2, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 3 \\ 5 \\ 7 \end{bmatrix}$$
$$\mathbf{A}^* \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix}$$
$$(\mathbf{A}^* \mathbf{A})^{-1} = \frac{1}{20} \begin{bmatrix} 4 & -10 \\ -10 & 30 \end{bmatrix}$$

Wolmer Vasconcelos (Set 7)

$$\mathbf{x}_{0} = \begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 4 & -10 \\ -10 & 30 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 1.7 \\ 0 \end{bmatrix}$$

Answer: The least squares line is

$$y = 1.7t$$

The error is

$$E = ||Ax_0 - y||^2 = 0.3$$

The method is very general: Suppose we are given a number of points and we want to fit a quadratic polynomial

$$Y = at^2 + bt + c$$

to the data.

$$\mathbf{A} = \begin{bmatrix} t_1^2 & t_1 & 1 \\ \vdots & \vdots & \vdots \\ t_n^2 & t_n & 1 \end{bmatrix} \quad \mathbf{x}_0 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Now rank(\mathbf{A}) = 3 if there are 3 distinct values of *t*.

Shortest solution

We are going to find the **shortest** solution of a consistent system of equations $(m \times n)$

$$Ax = b$$
.

This will be a solution u such that ||u|| is minimal. The argument will also show that u is unique.

Let \mathbf{x}_0 be a special solution and denote by $N(\mathbf{A})$ the **nullspace** of \mathbf{A} . The solution set is

$$\mathbf{x}_0 + N(\mathbf{A}) = \{\mathbf{x}_o + \mathbf{v}, \quad \mathbf{v} \in N(\mathbf{A})\}.$$

To pick out of this set the vector $\mathbf{x}_0 + v$ of smallest length, note that $||\mathbf{x}_0 + v||$ is the distance from \mathbf{x}_0 to -v. So we have our answer: Pick for -v the projection w of \mathbf{x}_0 into $N(\mathbf{A})$. Then $s = \mathbf{x}_0 - w$ is the desired solution:

w = Projection of \mathbf{x}_0 along $N(\mathbf{A})$

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

One algorithm for the shortest solution

- Find an orthonormal basis u_1, \ldots, u_r for $N(\mathbf{A})$
- 2 Determine the projection w of \mathbf{x}_0 onto $N(\mathbf{A})$:

$$w = \sum_{i=1}^r \langle \mathbf{x}_0, u_i \rangle u_i$$

3 $\mathbf{x}_0 - \mathbf{w}$ is the shortest solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

This solution requires the calculation of the projection of \mathbf{x}_0 into $N(\mathbf{A})$. Let us discuss another, more direct, approach. If $v \in N(\mathbf{A})$, $\mathbf{A}(v) = O$,

$$0 = \langle \mathbf{x}, \mathbf{A}(\mathbf{v})
angle = \langle \mathbf{A}^*(\mathbf{x}), u
angle$$

which means $v \perp \mathbf{A}^*(\mathbf{x}) = 0$ for all \mathbf{x} . This means that the range of \mathbf{A}^* , $R(\mathbf{A}^*)$, is contained in the orthogonal complement $N(\mathbf{A})^{\perp}$ of $N(\mathbf{A})$. By the dimension formula we have $N(\mathbf{A})^{\perp} = R(\mathbf{A}^*)$.

Summary: The minimal vector *s* satisfies

$$\mathsf{A}s = \mathsf{b}, \quad s \in R(\mathsf{A}^*)$$

That is, pick any solution of

$$\mathbf{A}\mathbf{A}^*\mathbf{y} = \mathbf{b},$$

and set

$$s = \mathbf{A}^* \mathbf{y}.$$

Old Hourly #2 Questions

1. (20 pts) Give proofs of the following facts:

(a) If the 2 \times 2 matrix *A* has nonzero nullspace and $A^2 = 2A$, then it is diagonalizable.

(b) If the nullspace of a $n \times n$ matrix *B* is nonzero then det B = 0.

2. (20 pts) Let *W* be the subspace of \mathbb{R}^4 spanned by $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 0, 0).$

(a) Find an orthonormal basis for W.

(b) Find the projection of v = (1, 2, 3, 5) onto W.

(c) Explain why the projection is a linear transformation and has determinant zero.

3. (20 pts) Let *T* be the linear transformation of $V = M_{2 \times 2}(\mathbb{C})$

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}c&a\\d&b\end{array}\right]$$

(a) Decide whether T is normal, hermitian, or neither.

(b) If T is diagonalizable, find a basis of eigenvectors.

4. (15 pts) Argue the following:

(a) If the characteristic polynomial of a linear transformation T splits into distinct linear factors then T is diagonalizable.

(b) There are nonzero matrices with some repeated eigenvalues that are diagonalizable [Give example]

5. (10 pts) Explain the meaning of every underlined keyword in the following statement:

Theorem: If T is a normal operator of a complex inner vector space V, then there is an orthonormal basis of eigenvectors of T.

6. (15 pts) If V is an inner product space,

(a) What is the meaning of the **triangle inequality** and of the **Cauchy-Schwarz inequality**?

(b) Give a proof of one of them.

- 1. (15 pts) Let $\mathbf{T} : \mathbf{V} \to \mathbf{V}$ be a L.T. of the vector space \mathbf{V} over the field
- **F**. Respond succinctly:
 - What is an eigenvector of T?
 - What are the eigenspaces of T and what are their roles in deciding whether T is diagonalizable?
 - **③** Prove or disprove: All 2×2 complex matrices are diagonalizable.

2. (15 pts) Let $\mathbf{T} : \mathbf{V} \to \mathbf{V}$ be a L.T. of the vector space \mathbf{V} over the field \mathbf{F} .

- What is a T-invariant subspace W?
- ② If $v \in V$ and **W** is the span of the set of vectors {**T**^{*n*}(v), $n \ge 0$ }, prove that **W** is **T**-invariant.
- Indicate the kind of matrix representation one gets for the restriction map T_w.

3. (12 pts) Let $\mathbf{A}, \mathbf{B} \in M_n(\mathbb{R})$.

- What is e^A? Argue that if A is upper triangular then e^A is also upper triangular.
- 2 Prove that if AB = BA, then $e^{A+B} = e^A e^B$.

3. (12 pts) Find the eigenvalues and corresponding eigenspaces of the linear transformation

$$\mathbf{A} = \left[egin{array}{ccc} 2 & 0 & 0 \ 0 & 10 & 3 \ 0 & 3 & 2 \end{array}
ight].$$

4. (20 pts) Let **V** be the set of all real 2×2 matrices. If **T** is the mapping

$$\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}, \quad \mathbf{T}(\mathbf{A}) = \mathbf{A} - (1/2) \operatorname{trace}(\mathbf{A}) \mathbf{I}$$

- Prove that T is a linear transformation.
- **2** Prove that $\mathbf{T}^2 = \mathbf{T}$.
- Solution S Explain why maps such that $T^2 = T$ are always diagonalizable.
- 5. (13 pts) Let u, v_1 and v_2 be the following vectors of \mathbb{R}^4 , (1,2,3,4), (1,1,1,1) and (2,-3,-3,2).
 - Find an orthonormal basis of the subspace **W** spanned by v_1, v_2 .
 - Pind the vector in W closest to u?

6. (15 pts)

- What is an inner product space?
- Argue that the Pythagorean theorem holds in such spaces.
- Solution If V is the space of real continuous functions on [0, 1], prove that $\int_0^1 f(t) \cdot g(t) dt$ defines an inner product on V.
- 7. (10 pts) Let v_1, v_2, \ldots, v_n a set of pairwise orthogonal vectors of the inner product space **V**.
 - Prove that they are linearly independent.
 - Prove that

$$||v_1 + v_2 + \cdots + v_n|| = \sqrt{\sum_{i=1}^n ||v_i||^2}.$$

3. (12 pts) Find the FULL set of solutions of the system of equations

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 7 & 8 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ -7 \end{bmatrix}$$

3. (12 pts) Let A be a 3×3 matrix with determinant equal to 2. (a) Explain carefully why A is invertible.

(b) If A is diagonalizable, explain carefully why A^{-1} is diagonalizable.

(c) What is the determinant of the matrix of cofactors of A?

8. (6 pts) Let A be a 3×3 matrix with 3 nonzero entries of 2, 3 and 6. The other 6 entries are 0. Find and explain all the possible values for the determinant such matrices.

9. (8 pts) Let A be a 3×3 matrix whose columns are the vectors v_1 , v_2 and v_3 .

(a) If a matrix *B* has for columns the vectors $2v_2 + v_3$, $3v_3 + v_1$ and v_1 , respectively, how are the determinants of *A* and *B* related?

(b) Suppose further that v_1 , v_2 , v_3 are perpendicular to each other and satisfy

$$v_1 \cdot v_1 = 2$$
, $v_2 \cdot v_2 = 6$, $v_3 \cdot v_3 = 3$.

Argue that the determinant of A is ± 6 . (Hint: multiply A by its transpose and take determinants.)

10. (9 pts) If A is a 3×3 matrix and det A = 2, find the determinant of B if

(a) $B = 2A^2$ (careful, this is not $(2A)^2$)

(b) *B* is derived from *A* as follows: The first row of *A* is moved to the second row, the second row to the third row and the third row to the first row.

(c) $B = A^T \cdot A^{-1}$.

HomeQuiz #7

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23

Wolmer Vasconcelos (Set 7)

Math 350: Linear Algebra

Spring 2010 67 / 106

Today

- Normal Operators (TT* = T*T): real symmetric/skew symmetric
- e Hermitian Operator
- Unitary Operator (TT* = I = T*T): Orthogonal
- Spectral Theorem
- Goodies: Applications

Interesting diagonalizable operators

We are going to show a class of linear transformations that are diagonalizable. It will include the class represented by real symmetric matrices.

Let $T : V \rightarrow V$ be a L.T. of a complex inner product space. We have defined the **adjoint T**^{*} of T as the L.T. with the property

$$\langle \mathbf{T}(u), \mathbf{v} \rangle = \langle u, \mathbf{T}^*(\mathbf{v}) \rangle, \quad \forall u, \mathbf{v} \in \mathbf{V}.$$

Let us compare the eigenvalues and eigenvectors of T and T*:

Proposition

If λ is an eigenvalue of **T** then $\overline{\lambda}$ is an eigenvalue of **T**^{*}.

Proof: Suppose $\mathbf{T}(u) = \lambda u$, $u \neq O$. Then for any $v \in \mathbf{V}$,

$$0 = \langle O, v \rangle = \langle (\mathbf{T} - \lambda \mathbf{I})(u), v \rangle = \langle u, (\mathbf{T} - \lambda \mathbf{I})^*(v) \rangle$$
$$= \langle u, (\mathbf{T}^* - \overline{\lambda} \mathbf{I})(v) \rangle$$

This says that $O \neq u \perp \text{range}(\mathbf{T}^* - \overline{\lambda}\mathbf{I})$, so the range of $\mathbf{T}^* - \overline{\lambda}\mathbf{I}$ is not the whole of **V**, which implies nullspace of $\mathbf{T}^* - \overline{\lambda}\mathbf{I} \neq O$. This means that $\overline{\lambda}$ is an eigenvalue of \mathbf{T}^* .

Let us use this result to decide when a L.T. **T** of an inner product space **V** admits a basis \mathcal{A} such that

$$[\mathbf{T}]_{\mathcal{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

that is, **T** admits a matrix representation that is upper triangular.

Note that the characteristic polynomial has all of its roots in the field

$$\det(\mathbf{T} - x\mathbf{I}) = (a_{11} - x)(a_{22} - x) \cdots (a_{nn} - x),$$

that is the characteristic polynomial splits. Recall that this is always the case when the field is \mathbb{C} .

Theorem (Schur)

Let **T** be a L.T. of the inner product space **V**. If the characteristic polynomial of **T** splits, then **V** admits an orthonormal basis \mathcal{A} such that $[\mathbf{T}]_{\mathcal{A}}$ is upper triangular.

Proof: We will argue by induction on dim V = n. If n = 1, the assertion is obvious. Let us assume that the assertion holds for dimension n - 1. By the Proposition above, we know that T^* has one eigenvalue λ . Let u be a unit vector so that $T^*(u) = \lambda u$, and set **W** for the subspace spanned by u. We claim that W^{\perp} is **T**-invariant: If $v \in W^{\perp}$

$$\langle \mathbf{T}(\mathbf{v}), \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{T}^*(\mathbf{u}) \rangle = \langle \mathbf{v}, \lambda \mathbf{u} \rangle$$

= $\overline{\lambda} \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{0}$

So $\mathbf{T}(\mathbf{v}) \in \mathbf{W}^{\perp}$.

We also have dim W + dim W^{\perp} = dim V = n, so dim W^{\perp} = n - 1. Now we apply the induction hypothesis to the restriction of **T** to W^{\perp} : Let v_1, \ldots, v_{n-1} be an orthonormal basis of W^{\perp} for which the restriction of **T** is upper triangular. If we add to the v_i the vector u, we get the orthonormal basis $A = v_1, \ldots, v_{n-1}, u$. The matrix representation

$$[\mathbf{T}]_{\mathcal{A}} = \left[egin{array}{ccc} & & a_{1n} \ & & ec{\mathbf{T}}_{\mathbf{W}^{\perp}} & & ec{ec{\mathbf{H}}} \ & & & ec{ec{ec{\mathbf{H}}}} \ & & ec{ec{\mathbf{H}}} \ & ec{$$

which has the desired form.

Normal operator

Observe that if there is an orthonormal basis \mathcal{A} of eigenvectors of **T**, $[\mathbf{T}]_{\mathcal{A}}$ is a diagonal matrix, and since $[\mathbf{T}^*]_{\mathcal{A}} = [\mathbf{T}]^*_{\mathcal{A}}$, this matrix is also diagonal. Since diagonal matrices commute, we have $\mathbf{TT}^* = \mathbf{T}^*\mathbf{T}$.

Definition

A linear transformation **T** of an inner product space is **normal** if $TT^* = T^*T$.

Example: If **A** is a symmetric real matrix, $\mathbf{A}^* = \mathbf{A}^t = \mathbf{A}$, so **A** commutes with itself! Skew-symmetric real matrices, $\mathbf{A}^* = -\mathbf{A}$, are also normal.

Theorem

If **T** is a normal operator ($TT^* = T^*T$) of a complex inner vector space **V**, then there is an orthonormal basis of eigenvectors of **T**. (The converse was proved already so this is a characterization of normal operators.)

This is an important result, it has many useful consequences. To prove it we shall need some properties of normal operators.

Proposition

Let **T** be a normal operator $(\mathbf{TT}^* = \mathbf{T}^*\mathbf{T})$ of the inner vector space **V**. Then:

- **1** $||\mathbf{T}(u)|| = ||\mathbf{T}^{*}(u)||$ for every $u \in \mathbf{V}$.
- **2** $\mathbf{T} c\mathbf{I}$ is normal for every $c \in \mathbf{F}$.
- 3 If $\mathbf{T}(u) = \lambda u$ then $\mathbf{T}^*(u) = \overline{\lambda} u$.
- If λ₁ and λ₂ are distinct eigenvalues of **T** with corresponding eigenvectors u₁ and u₂, then u₁ ⊥ u₂.

Proof: 1. For any vector $u \in \mathbf{V}$,

$$||\mathbf{T}(u)||^2 = \langle \mathbf{T}(u), \mathbf{T}(u) \rangle = \langle \mathbf{T}^*\mathbf{T}(u), u \rangle = \langle \mathbf{TT}^*(u), u \rangle$$
$$= \langle \mathbf{T}^*(u), \mathbf{T}^*(u) \rangle = ||\mathbf{T}^*(u)||^2$$

2. $(\mathbf{T} - c\mathbf{I})(\mathbf{T}^* - \overline{c}\mathbf{I}) = (\mathbf{T}^* - \overline{c}\mathbf{I})(\mathbf{T} - c\mathbf{I})$: check

3. Suppose $\mathbf{T}(u) = \lambda u$. Let $\mathbf{U} = \mathbf{T} - \lambda \mathbf{I}$. Then $\mathbf{U}(u) = 0$ so by 2. U is normal and by 1. $\mathbf{U}^*(u) = 0$. That is $\mathbf{T}^*(u) = \overline{\lambda} u$.

4. Let λ_1 and λ_2 be distinct eigenvalues of **T** with corresponding eigenvectors u_1 and u_2 . Then by 3.

$$\lambda_1 \langle u_1, u_2 \rangle = \langle \lambda_1 u_1, u_2 \rangle = \langle \mathbf{T}(u_1), u_2 \rangle = \langle u_1, \mathbf{T}^*(u_2) \rangle$$
$$= \langle u_1, \overline{\lambda_2} u_2 \rangle = \lambda_2 \langle u_1, u_2 \rangle.$$

Since $\lambda_1 \neq \lambda_2$, $\langle u_1, u_2 \rangle = 0$.

We are now in position to prove that a normal operator **T** admits an orthonormal basis v_1, v_2, \ldots, v_n of eigenvectors. We already know, by Schur theorem, that there is an orthonormal basis for which the matrix representation is upper triangular

a ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃]
0	a 22	<i>a</i> ₂₃
0	0	<i>a</i> ₃₃]

We want to show that the off-diagonal elements are 0, that is, all the v_i are eigenvectors. [For simplicity we take n = 3] Note that $\mathbf{T}(v_1) = a_{11}v_1$, so v_1 is an eigenvector. To show v_2 is an eigenvector notice that

$$\mathbf{T}(v_2) = a_{12}v_1 + a_{22}v_2$$

We must show $a_{12} = 0$.

$${f T}(v_2)=a_{12}v_1+a_{22}v_2$$

We must show $a_{12} = 0$:

$$a_{12} = \langle \mathbf{T}(v_2), v_1 \rangle = \langle v_2, \mathbf{T}^*(v_1) \rangle = \langle v_2, \overline{a_{11}}v_1 \rangle = a_{11} \langle v_2, v_1 \rangle = 0$$

as desired. Now with v_1 , v_2 eigenvectors, we show that $a_{13} = a_{23} = 0$. We consider

$$\mathbf{T}(v_3) = a_{13}v_1 + a_{23}v_2 + a_{33}v_3$$

The proof is similar: For instance

$$a_{23}=\langle \mathsf{T}(\textit{v}_3),\textit{v}_2
angle=\langle\textit{v}_3,\mathsf{T}^*(\textit{v}_2)
angle=\langle\textit{v}_3,\overline{a_{22}}\textit{v}_2
angle=a_{22}\langle\textit{v}_3,\textit{v}_2
angle=0$$

We have already remarked that real symmetric matrices, $\mathbf{A} = \mathbf{A}^t$, are normal. It turns out that **complex** symmetric matrices are not always normal. Truly the complex cousins of real symmetric matrices are called:

Definition

Let **T** be a linear operator of the inner product space **V**. **T** is called **self-adjoint** (Hermitian) if $T = T^*$.

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 3+5i \\ 3-5i & 6 \end{array} \right]$$

Lemma

Let \mathbf{T} be a self-adjoint linear operator of the inner product space \mathbf{V} . Then

Every eigenvalue is real.

2 If **V** is a real vector space then the characteristic polynomial splits.

Proof: 1. Suppose $\mathbf{T}(u) = \lambda u$, $u \neq O$. By a previous result, $\mathbf{T}^*(u) = \overline{\lambda}u$. Since $\mathbf{T} = \mathbf{T}^*$, λ is real.

2. Let $n = \dim V$, \mathcal{B} an orthonormal basis of V and $A = [T]_{\mathcal{B}}$. Then A is self-adjoint. Let T_A be the linear operator of \mathbb{C}^n defined by $T_A(u) = Au$ for all $u \in \mathbb{C}^n$.

Note that T_A is self-adjoint because $[T_A]_C = A$, where C is the standard (orthonormal) basis of \mathbb{C}^n . So the eigenvalues of T_A are real. Since the characteristic polynomial of T_A is equal to the characteristic polynomial of A, which is equal to the characteristic of T, the characteristic polynomial of T splits.

What we are saying is the following: Let **A** be a $n \times n$ symmetric real matrix and employ it to define a L.T. of the **complex** vector space \mathbb{C}^n

$$\mathbf{T} = \mathbf{T}_{\mathbf{A}} : \mathbb{C}^n \to \mathbb{C}^n, \quad \mathbf{T}(u) = \mathbf{A}(u).$$

Note $det(\mathbf{T} - x\mathbf{I}) = det(\mathbf{A} - x\mathbf{I})$.

First Main Theorem of the Course

Theorem

Let **T** be a linear operator on the finite-dimensional inner product space **V**. Then **T** is self-adjoint if and only if there exists an orthonormal basis of **V** consisting of eigenvectors of **T**.

Unitary Operators

Definition

A linear operator **T** of the inner product space **V** is called **unitary** if $TT^* = T^*T = I$. If **V** is a real inner product space, **T** is called **orthogonal**.

The rotation operator

$$\mathbf{T}(x, y) = (x \cos \alpha + y \sin \alpha, -x \sin \alpha + y \cos \alpha)$$

is a major example.

If **A** is a complex *n*-by-*n* matrix and $\mathbf{A}\mathbf{A}^* = \mathbf{A}^*\mathbf{A} = \mathbf{I}$, the column vectors of **A** form an orthonormal basis of \mathbb{C}^n . We now develop quickly some basic properties of these operators.

Theorem

Let **T** be a linear operator of the finite-dimensional inner product space **V**. TFAE:

- **1** T is an unitary operator: $TT^* = T^*T = I$.
- **2** $\langle \mathbf{T}(u), \mathbf{T}(v) \rangle = \langle u, v \rangle$ for all $u, v \in \mathbf{V}$.
- So For every orthonormal basis $\mathcal{B} = v_1, \ldots, v_n$ of $\mathbf{V}, \mathbf{T}(v_1), \ldots, \mathbf{T}(v_n)$ is also an orthonormal basis of \mathbf{V} .
- For <u>some</u> orthonormal basis $\mathcal{B} = v_1, \ldots, v_n$ of $V, T(v_1), \ldots, T(v_n)$ is also an orthonormal basis of V.

$$||\mathbf{T}(u)|| = ||u|| \text{ for every } u \in \mathbf{V}.$$

Proof. $1 \Rightarrow 2, 3, 4, 5$: (Other \Rightarrow LTR)

$$\langle u, v \rangle = \langle \mathsf{T}^*\mathsf{T}(u), v \rangle = \langle \mathsf{T}(u), (\mathsf{T}^*)^*(v) \rangle = \langle \mathsf{T}(u), \mathsf{T}(v) \rangle.$$

$$\delta_{ij} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \langle \mathbf{T}(\mathbf{v}_i), \mathbf{T}(\mathbf{v}_j) \rangle.$$

Properties of unitary operators

Let T be an unitary operator of the inner product space V.

• The eigenvalues of **T** have length 1: If $\mathbf{T}(u) = \lambda u$,

$$\langle u, u \rangle = \langle \mathsf{T}(u), \mathsf{T}(u) \rangle = \langle \lambda u, \lambda u \rangle = \overline{\lambda} \lambda \langle u, u \rangle$$

and thus $\overline{\lambda}\lambda = 1$.

- 2 If A is a matrix representation of T, $|\det(A)| = 1:\det(A)\det(A^*) = 1$
- If **T** is orthogonal, $det(\mathbf{A}) = \pm 1$.
- If T and U are unitary operators, then T* and T o U are also unitary operators.

Orthogonal operators of \mathbb{R}^2

We have already mentioned rotations, R_{α} . Let us analyze the possibilities. Let

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} v_1 | v_2 \end{bmatrix} \quad ||v_1|| = ||v_2|| = 1, \quad v_1 \perp v_2$$

be an orthogonal matrix. This means

$$a^2 + c^2 = 1$$
, $b^2 + d^2 = 1$, $ab + cd = 0$

We can set $a = \cos \alpha$, $c = \sin \alpha$ and $b = \cos \beta$, $d = \sin \beta$ so that

$$ab + cd = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta) = 0.$$

This means that $\alpha - \beta = \pm \pi/2$. The two possibilities lead to

$$\boldsymbol{R}_{\alpha} = \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right], \quad \mathbf{T} = \left[\begin{array}{cc} \cos \beta & \sin \beta \\ \sin \beta & -\cos \beta \end{array} \right]$$

To analyze

$$\mathbf{T} = \begin{bmatrix} \cos\beta & \sin\beta\\ \sin\beta & -\cos\beta \end{bmatrix}$$

we look at its eigenvalues:

$$det(\mathbf{T} - x\mathbf{I}) = \begin{bmatrix} \cos\beta - x & \sin\beta \\ \sin\beta & -\cos\beta - x \end{bmatrix} = x^2 - 1$$

So $\lambda = \pm 1$. This means we have an orthonormal basis v_1, v_2 , and $\mathbf{T}(v_1) = v_1$, $\mathbf{T}(v_2) = v_2$. Thus the line $\mathbb{R}v_1$ is fixed under \mathbf{T} , and the perpendicular line $\mathbb{R}v_2$ is flipped about $\mathbb{R}v_1$. These transformations are called **reflections**.

Summary: If **A** is an orthogonal 2-by-2 matrix, then if det $\mathbf{A} = 1$, it is a rotation, and if det $\mathbf{A} = -1$, it is a reflection.

Matrix product and dot product

Let *u* and *v* be two vectors of \mathbb{R}^n . Their **dot product**

$$u \cdot v = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

can be expressed as a matrix product

$$u^t v = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Keep in mind

$$u^t v = u \cdot v$$

Spectral Decomposition

Let **A** be a *n*-by-*n* symmetric real matrix, $\mathbf{P} = [v_1|\cdots|v_n]$ a matrix whose columns form an orthonormal basis of eigenvectors of **A**:

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{t} = [\mathbf{v}_{1}|\cdots|\mathbf{v}_{n}] \cdot \begin{bmatrix} \lambda_{1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{1}^{t}\\ \vdots\\ \mathbf{v}_{n}^{t} \end{bmatrix}$$

Instead of this representation of **A** as a product of 3 matrices, we are going to express **A** as a **sum** of simple matrices of rank 1.

Expanding we get

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{t} = [\mathbf{v}_{1}|\cdots|\mathbf{v}_{n}] \cdot \begin{bmatrix} \lambda_{1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{1}^{t}\\ \vdots\\ \mathbf{v}_{n}^{t} \end{bmatrix}$$
$$= [\lambda_{1}\mathbf{v}_{1}|\cdots|\lambda_{n}\mathbf{v}_{n}] \cdot \begin{bmatrix} \underline{\mathbf{v}_{1}^{t}}\\ \vdots\\ \mathbf{v}_{n}^{t} \end{bmatrix}$$
$$= \lambda_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{t} + \cdots + \lambda_{n}\mathbf{v}_{n}\mathbf{v}_{n}^{t}$$
$$= \sum \lambda_{i}\mathbf{P}_{i}, \quad \mathbf{P}_{i} = \mathbf{v}_{i}\mathbf{v}_{i}^{t}.$$

Let us examine the matrices \mathbf{P}_i .

P_i has rank 1 and is symmetric

$$\mathbf{P}_i = \mathbf{v}_i \mathbf{v}_i^t, \quad \mathbf{P}_i^t = (\mathbf{v}_i \mathbf{v}_i^t)^t = (\mathbf{v}_i^t)^t \mathbf{v}_i^t = \mathbf{P}_i$$

2 \mathbf{P}_i is a projection

$$\mathbf{P}_{i}\mathbf{P}_{i} = (v_{i}v_{i}^{t})(v_{i}v_{i}^{t}) = v_{i}(v_{i}^{t}v_{i})v_{i}^{t} = v_{i}v_{i}^{t} = \mathbf{P}_{i}$$
since $v_{i}^{t}v_{i} = \langle v_{i}, v_{i} \rangle = 1$

$$\mathbf{P}_{i}\mathbf{P}_{j} = O \text{ for } i \neq j$$

$$\mathbf{P}_{i}\mathbf{P}_{j} = (v_{i}v_{i}^{t})(v_{j}v_{j}^{t}) = v_{i}(v_{i}^{t}v_{j})v_{j}^{t} = O$$
since $v_{i}^{t}v_{j} = \langle v_{i}, v_{j} \rangle = 0$

The equality

$$\mathbf{A} = \sum \lambda_i \mathbf{P}_i, \mathbf{P}_i = \mathbf{v}_i \mathbf{v}_i^t$$

is called the **spectral decomposition** of **A**.

Example: Let
$$\mathbf{A} = \begin{bmatrix} 3 & -4 \\ -4 & -3 \end{bmatrix}$$

The eigenvalues are 5 and -5, with corresponding [normalized] eigenvectors

$$v_{1} = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1 \end{bmatrix}, \quad v_{2} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$
$$\mathbf{P}_{1} = v_{1}v_{1}^{t} = \begin{bmatrix} 4/5 & -2/5\\-2/5 & 1/5 \end{bmatrix}, \quad \mathbf{P}_{2} = v_{2}v_{2}^{t} = \begin{bmatrix} 1/5 & 2/5\\2/5 & 4/5 \end{bmatrix}$$

Wolmer Vasconcelos (Set 7)

Exercise:

Let **A** be a real symmetric matrix. Prove that there is a symmetric matrix **B** such that $B^3 = A$.

We know that there is an orthonormal basis v_1, \ldots, v_n of eigenvectors of **A**. The matrix $\mathbf{P} = [v_1 | \cdots | v_n]$ is orthogonal [i.e. $\mathbf{P}^{-1} = \mathbf{P}^t$] and

$$P^{-1}AP = D$$

is a real diagonal matrix. Let **E** be a real 'cubic root' of **D** (if a diagonal entry of **D** is d_{ii} , the corresponding entry of **E** is the real root $d_{ii}^{1/3}$). Set **B** = **P**⁻¹**EP**. Note

$$\mathbf{B}^t = (\mathbf{P}^{-1}\mathbf{E}\mathbf{P})^t = \mathbf{P}^t\mathbf{E}^t(\mathbf{P}^{-1})^t = \mathbf{P}^{-1}\mathbf{E}\mathbf{P} = \mathbf{B}, \quad \mathbf{B}^3 = \mathbf{P}^{-1}\mathbf{E}^3\mathbf{P} = \mathbf{A}.$$

Exercise: Let **A** be skew-symmetric matrix. Prove that det $\mathbf{A} \ge 0$. *Hint:* Recall that **A** is normal, then pair up the complex eigenvalues of **A**. Moreover, show that if **A** has integer entries, then det **A** is the square of an integer.

Real quadratic forms

A real quadratic form in n variables is a polynomial

$$\mathbf{q}(\mathbf{x}) = \sum_{i,j} a_{ij} x_i x_j.$$

They occur in the elementary theory of conic sections—e.g. what is $10x^2 + 6xy + 2y^2 = 5$, an ellipse, a parabola, or a hyperbola?— but also in the theory of max and min of functions $f(x_1, ..., x_n)$ of several variables. In both endeavors, a solution arises after an appropriate change of variables, $\mathbf{x} = \mathbf{P}(\mathbf{y})$,

$$\mathbf{q}(\mathbf{x}) = \mathbf{q}(\mathbf{P}(\mathbf{y})) = \sum_{i} d_{i} y_{i}^{2}.$$

Let us see how this comes about:

Goodies

Let us begin with $Ax^2 + Bxy + Cy^2$, which we write as $ax^2 + 2bxy + cy^2$. (For general fields this would require $2 \neq 0$.) Now look:

$$ax^{2} + 2bxy + cy^{2} = x(ax + by) + y(bx + cy)$$
$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \mathbf{x}^{t} \mathbf{Q} \mathbf{x}$$

where
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and \mathbf{Q} is a symmetric matrix.

It is routine to verify that every quadratic form $\mathbf{q}(\mathbf{x})$ has such a representation,

$$\mathbf{q}(\mathbf{x}) = \mathbf{x}^t \mathbf{Q} \mathbf{x}, \quad \mathbf{Q} = \mathbf{Q}^t$$

Now we can apply to **Q** the spectral theorem we have developed.

Since **Q** is (orthogonally) diagonalizable, there is an orthogonal matrix **P** (formed by an orthonormal basis of eigenvectors of **Q**) such that

$$\mathbf{P}^{-1}\mathbf{Q}\mathbf{P} = \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix}$$

This means that in $\mathbf{q}(\mathbf{x}) = \mathbf{x}^t \mathbf{Q} \mathbf{x}$, if we change the variables by the rule $\mathbf{x} = \mathbf{P} \mathbf{y}$,

$$\mathbf{q}(\mathbf{x}) = \mathbf{x}^t \mathbf{Q} \mathbf{x} = \mathbf{y}^t \mathbf{P}^{-1} \mathbf{Q} \mathbf{P} \mathbf{y} = \mathbf{y}^t \mathbf{D} \mathbf{y} = \sum_i \lambda_i y_i^2.$$

Some applications

Among the potential applications, we mentioned the identification of conics. For example, $10x_1^2 + 6x_1x_2 + 2x_2^2 = 5$: The matrix

$$\mathbf{Q} = \left[\begin{array}{rrr} 10 & 3 \\ 3 & 2 \end{array} \right]$$

has for eigenvalues 11, 1 with

$$\mathbf{P} = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 1 & -3\\ 3 & 1 \end{array} \right]$$

The change of variables $\mathbf{x} = \mathbf{P}\mathbf{y}$ gives

$$11y_1^2 + y_2^2 = 5,$$

the equation of an ellipse.

Goodies

Another application, to the theory of max and min appears as follows: If **a** is a critical point of the function $\mathbf{f}(\mathbf{x})$ -that is all the partial derivatives vanish at $\mathbf{x} = \mathbf{a}$, $\frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{a}) = 0$, Taylor's expansion of **f** in a neighborhood of **a** gives

$$f(\mathbf{x}) = f(\mathbf{a}) + q(\mathbf{h}) + error$$

where **q** is a quadratic polynomial on the vector $\mathbf{h} = \mathbf{x} - \mathbf{a}$. The corresponding symmetric matrix is

$$\mathbf{Q} = \left[\frac{\partial^2 \mathbf{f}(\mathbf{x})}{\partial x_i \partial x_j}(\mathbf{a})\right]$$

If all the eigenvalues of **Q** are positive [negative], $q(h) \ge 0$ Then $f(x) \ge f(a)$ in a neighborhood of **a**: local max [local min]. The other cases are saddle points [the higher dimensional analogues of inflection points]

Rigid Motion

A rigid motion on the inner product space V is a mapping

 $\textbf{T}: \textbf{V} \rightarrow \textbf{V}$

with the property

$$||\mathbf{T}(u) - \mathbf{T}(v)|| = ||u - v||, \quad \forall u, v\mathbf{V}.$$

That is, **T** preserves distance of the images. A simple example is a translation: If **a** is a fixed vector, the function

$$\mathbf{T}(\mathbf{v}) := \mathbf{a} + \mathbf{v}$$

is obviously a rigid motion. What else? We have seen that orthogonal transformations **S**, $SS^{t} = I$, preserve distances. Another such motion is obtained by composition: following a translation with an orthogonal mapping. What else? That is it!

Wolmer Vasconcelos (Set 7)

Theorem

Any rigid motion **T** of **V** decomposes into $\mathbf{T} = \mathbf{S} \circ \mathbf{U}$, where **S** is an orthogonal transformation and **U** is a translation.

Proof: Set $\mathbf{a} = \mathbf{T}(O)$. Then the function $\mathbf{F}(u) = \mathbf{T}(u) - \mathbf{a}$ is a rigid motion and $\mathbf{F}(O) = O$. It is enough to prove that \mathbf{F} is orthogonal. Note that

$$||\mathbf{F}(u) - \mathbf{F}(O)|| = ||u - O||,$$

so **F** preserves lengths, which is the key property of orthogonal transformations. BUT we are NOT assuming that **F** is linear, we must prove it.

We first prove that **F** preserves dot products: $\langle F(u), F(v) \rangle = \langle u, v \rangle$: We start from the equality and expand both sides

Goodies

$$||\mathbf{F}(u) - \mathbf{F}(v)||^{2} = ||u - v||^{2}$$

$$(\mathbf{F}(u) - \mathbf{F}(v)) \cdot (\mathbf{F}(u) - \mathbf{F}(v)) = (u - v) \cdot (u - v)$$

$$\underbrace{||\mathbf{F}(u)||^{2}}_{*} - 2\langle \mathbf{F}(u), \mathbf{F}(v) \rangle + \underbrace{||\mathbf{F}(v)||^{2}}_{**} = \underbrace{||u||^{2}}_{*} - 2\langle u, v \rangle + \underbrace{||v||^{2}}_{**}$$

Thus proving

$$\langle \mathbf{F}(u), \mathbf{F}(v) \rangle = \langle u, v \rangle.$$

Now we are going to prove that **F** is a linear function by first showing that it is additive:

Goodies

$$\begin{aligned} ||\mathbf{F}(u+v) - \mathbf{F}(u) - \mathbf{F}(v)||^2 &\stackrel{?}{=} 0 \\ ||\mathbf{F}(u+v)||^2 + ||\mathbf{F}(u)||^2 + ||\mathbf{F}(v)||^2 - &= ||u+v||^2 + ||u||^2 + ||v||^2 - \\ 2\langle \mathbf{F}(u+v), \mathbf{F}(u) \rangle - 2\langle \mathbf{F}(u+v), \mathbf{F}(v) \rangle &= 2\langle (u+v), u \rangle - 2\langle (u+v), v \rangle \\ + 2\langle \mathbf{F}(u), \mathbf{F}(v) \rangle &= +2\langle u, v \rangle \\ &= ||(u+v) - u - v||^2 = 0. \end{aligned}$$

Scaling, that F(cu) = cF(u) for any $c \in \mathbb{R}$, has a similar proof: Expand $||F(cu) - cF(u)||^2$

HomeQuiz #8

Section 6.4: 2f, 4, 6, 12, 13, 15 Section 6.5: 6, 10, 11, 17, 27a

Homework #9

- Section 6.5, Problem 27d
- Let A be a 3 × 3 orthogonal matrix. Prove that A is similar to a matrix of the form

where **R** is a 2×2 orthogonal matrix.

- Section 6.3, Problem 22c
- 3 Let **A** be a skew-symmetric real matrix. If **A** diagonalizable, prove that $\mathbf{A} = O$.