Math 350: Linear Algebra

Wolmer V. Vasconcelos

Set 7
Spring 2010

Outline

(1) Inner Products Spaces

2 HomeWork \#7
(3) Gram-Schmidt Orthogonalization
4) HomeWork\#8
(5) The Adjoint of a Linear Operator

6 Least Squares Approximation
(7) Old Hourly \#2 Questions

8 HomeQuiz \#7
(9) Normal Operators
(10) Unitary Operators

11 Goodies
(12) HomeQuiz \#8

13 HomeWork \#9

Last Class... and Today ...

- Eigenvectors and eigenvalues
- Diagonalization
- Inner products spaces
- Norms

Metric properties of vector spaces

Let \mathbf{V} be a vector space over the field \mathbf{F}. We want to develop a geometry for V. For that, it is helpful to have a notion of distance, or length. We will transport and then extend numerous constructions of ordinary geometry and their calculus.
We will restrict ourselves to the cases of $\mathbf{F}=\mathbb{R}$, or $\mathbf{F}=\mathbb{C}$. In the case of \mathbb{C}, we use the standard notation for the complex conjugate of the complex number $z=a+b i$

$$
\bar{z}=a-b i .
$$

Some of its properties are:

$$
\begin{aligned}
z \bar{z} & =a^{2}+b^{2} \\
\overline{z_{1}+z_{2}} & =\overline{z_{1}}+\overline{z_{2}} \\
\overline{z_{1} \cdot z_{2}} & =\overline{z_{1}} \cdot \overline{z_{2}} \\
\frac{1}{z} & =\frac{\bar{z}}{z \cdot \bar{z}}, \quad z \neq 0
\end{aligned}
$$

For certain operations, like solving polynomial equations, the polar representation of complex numbers

$$
a+b i=r(\cos \theta+i \sin \theta), \quad r=\sqrt{a^{2}+b^{2}}, \quad \tan \theta=\frac{a}{b}
$$

is useful.For instance,
$\sqrt{i}= \pm(\cos \pi / 2+i \sin \pi / 2)^{1 / 2}= \pm(\cos \pi / 4+i \sin \pi / 4)= \pm \frac{\sqrt{2}}{2}(1+i)$.

Inner product space

An inner product vector space \mathbf{V} is a V.S. over \mathbb{R} or \mathbb{C} with a mapping

$$
\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{F}, \quad(u, v) \rightarrow\langle u, v\rangle=u \cdot v \in \mathbf{F}
$$

satisfying certain conditions. Let us give an example to guide us in what is needed. Let $\mathbf{V}=\mathbb{R}^{n}$ and define

$$
\left[\begin{array}{r}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{r}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}
$$

Note the properties: bi-additive ; $v \cdot v$ is a non-negative real number, so we can use $\sqrt{v \cdot v}$ to define the magnitude of v.
Question: Could we use the same formula to define an inner product for \mathbb{C}^{n} ? Well... (i) • (i) would be -1 . Of course the formula still defines a nice bilinear mapping but would not meet our need.

Dot product

Definition

An inner product vector space is a vector space with a mapping

$$
\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{F}, \quad(u, v) \rightarrow u \cdot v \in \mathbf{F}
$$

satisfying:
(1) $\left(u_{1}+u_{2}\right) \cdot v=u_{1} \cdot v+u_{2} \cdot v$
(2) $(c u) \cdot v=c(u \cdot v)$
(3) $\overline{u \cdot v}=v \cdot u$
(4) $u \cdot u>0$ if $u \neq 0$

The better notation for this product is

$$
u \cdot v=\langle u, v\rangle
$$

Examples

Of course, the example above of \mathbb{R}^{n} is the grandmother of all examples. Let us modify it a bit to get an example for \mathbb{C}^{n} :

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} \overline{b_{1}}+\cdots+a_{n} \overline{b_{n}}=\sum_{i=1}^{n} a_{i} \overline{b_{i}}
$$

Note the properties: additive ; $v \cdot v$ is a non-negative real number

$$
v \cdot v=\sum_{i=1}^{n} a_{i} \overline{a_{i}}
$$

so we can use $\sqrt{v \cdot v}$ to define the magnitude of v. Note the lack of full symmetry.

Example of Function Space

Let us give an example from left field: Let \mathbf{V} be the vector space of all real continuous functions on the interval $[a, b]$, and define for $f(t), g(t) \in \mathbf{V}$,

$$
\langle f(t), g(t)\rangle=f(t) \cdot g(t)=\int_{a}^{b} f(t) g(t) d t
$$

An important case: If m, n are integers,

$$
\begin{aligned}
\langle\sin n t, \cos m t\rangle & =\int_{0}^{2 \pi} \sin n t \cos m t d t=0 \\
\langle\sin n t, \sin m t\rangle & =\int_{0}^{2 \pi} \sin n t \sin m t d t=0, m \neq n \\
\langle\cos n t, \cos m t\rangle & =\int_{0}^{2 \pi} \cos n t \cos m t d t=0, m \neq n \\
\langle\sin n t, \sin n t\rangle & =\int_{0}^{2 \pi} \sin ^{2} n t d t=\pi, n \neq 0
\end{aligned}
$$

Example: $\mathbf{M}_{n}(\mathbf{F})$

Let $\mathbf{V}=\mathbf{M}_{n}(\mathbf{F})$ be the V.S. of all n-by- n matrices. For any such matrix $\mathbf{A}=\left[a_{i j}\right]$ define the adjoint of \mathbf{A} (unfortunately we have already used the word for a very different notion!) to be the matrix

$$
\mathbf{A}^{*}=\left[\overline{a_{j i}}\right],
$$

that is, we transpose A and take the complex conjugate of each entry. Define the product (Frobenius product)

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A B}^{*}\right)=\sum_{i}\left(\mathbf{A B}^{*}\right)_{i i} .
$$

It is clear that this product has the properties of an inner product. We just check the positivity condition:

$$
\begin{aligned}
\langle\mathbf{A}, \mathbf{A}\rangle & =\operatorname{trace}\left(\mathbf{A} \mathbf{A}^{*}\right)=\sum_{i}\left(\mathbf{A} \mathbf{A}^{*}\right)_{i i} \\
& =\sum \sum a_{i j} \overline{a_{i j}}=\sum\left|a_{i j}\right|^{2} \geq 0
\end{aligned}
$$

Proposition

If \mathbf{V} is an inner product space, the following hold:
(1) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
(2) $\langle u, c v\rangle=\bar{c}\langle u, v\rangle$
(3) $\langle u, O\rangle=\langle O, v\rangle=0$
(4) $\langle u, u\rangle=0$ iff $u=0$
(5) $\langle u, v\rangle=\langle u, w\rangle$ for all $u \in \mathbf{V}$ then $v=w$

Proof of 1: Note

$$
\begin{aligned}
\langle u, v+w\rangle & =\overline{\langle v+w, u\rangle}=\overline{\langle v, u\rangle+\langle w, u\rangle} \\
& =\overline{\langle v, u\rangle}+\overline{\langle w, u\rangle}=\langle u, v\rangle+\langle u, w\rangle
\end{aligned}
$$

Length of a vector

Definition

Let $\mathbf{V},\langle\cdot, \cdot\rangle$ be an inner product space. If $v \in \mathbf{V}$, the length or norm of v is the real number $\|v\|=\sqrt{\langle v, v\rangle}$.

If $\mathbf{V}=\mathbb{C}^{n}, v=\left(a, \ldots, a_{n}\right)$,

$$
\|v\|=\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}
$$

If \mathbf{V} is the space of real continuous functions on $[0,1]$ and inner product is that we defined previously,

$$
\|f(t)\|^{2}=\int_{0}^{1} f(t)^{2} d t
$$

Framework for Geometry

The following assertions permits the construction of 'recognizable’ objects in any inner product space:

Theorem
If \mathbf{V} is an inner product space, then for all $u, \boldsymbol{v} \in \mathbf{V}$
(1) [Cauchy-Schwarz Inequality]

$$
|\langle u, v\rangle| \leq\|u\| \cdot\|v\|
$$

(2) [Triangle Inequality]

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

The Cauchy-Schwarz Inequality will allow the introduction of angles and its trigonometry in V, while the Triangle Inequality will lead to many constructions extending those we are familiar with in 2- and 3-space.

Proofs of CSI and \triangle-Inequality

To prove Cauchy-Schwarz Inequality: Note that for ANY $c \in \mathbf{F}, v \neq 0$

$$
\begin{aligned}
0 \leq\|u-c v\|^{2} & =\langle u-c v, u-c v\rangle=\langle u, u-c u\rangle-c\langle v, u-c v\rangle \\
& =\langle u, u\rangle-\bar{c}\langle u, v\rangle-c\langle v, u\rangle+c \bar{c}\langle v, v\rangle
\end{aligned}
$$

If we set $c=\frac{\langle u, v\rangle}{\langle v, v\rangle}$ the inequality becomes

$$
0 \leq\langle u, u\rangle-\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}}
$$

which proves the assertion.

For the Δ-inequality: Consider

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+(\langle u, v\rangle+\overline{\langle u, v\rangle})+\|v\|^{2}=\|u\|^{2}+2 \Re\langle u, v\rangle+\|v\|^{2} \\
& \leq\|u\|^{2}+2|\langle u, v\rangle|+\|v\|^{2} \\
& \leq\|u\|^{2}+2\|u\| \cdot\|v\|+\|v\|^{2} \quad \text { by C-S inequality } \\
& =(\|u\|+\|v\|)^{2} .
\end{aligned}
$$

We used that for any complex number $z=a+b i$, its real part $\Re z=a \leq|z|=\sqrt{a^{2}+b^{2}}$.

Example

To illustrate the power of the axiomatic method, compare the proof above [which holds for ALL examples] with the work needed to check the inequalities just the case of the following example:

$$
\begin{aligned}
\left|\sum_{i=1}^{n} a_{i} \overline{b_{i}}\right| & \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2} \\
{\left[\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{2}\right]^{1 / 2} } & \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

Angles and Distances

Equipped with these results, we can define angles and distances, with many of the usual properties, in any inner product space. For example, for a real inner product space, the Cauchy-Schwarz inequality says that for any two [will assume nonzero] vectors u, v,

$$
\langle u, v\rangle \leq\|u\| \cdot\|v\|,
$$

that is

$$
-1 \leq \frac{\langle u, v\rangle}{\|u\| \cdot\|v\|} \leq 1
$$

This means that the ratio can be identified to the cosine, $\cos \alpha$, of a unique angle $0 \leq \alpha \leq \pi$: So we can write

$$
\langle u, v\rangle=\|u\| \cdot\|v\| \cos \alpha
$$

and say that α is the angle between the vectors u and v.

An important relationship between two vectors u, v is when $\langle u, v\rangle=0$: We then say that u and v are orthogonal or perpendicular. One notation for this situation is:

$$
u \perp v
$$

The distance between the vectors u, v is defined by

$$
\operatorname{dist}(u, v)=\|u-v\|=\langle u-v, u-v\rangle^{1 / 2}
$$

One of its properties follow from the triangle inequality: If u, v, w are three vectors

$$
\operatorname{dist}(u, w) \leq \operatorname{dist}(u, v)+\operatorname{dist}(v, w)
$$

Properties

These notions have numerous consequences. Let us begin with:

Proposition

Let v_{1}, \ldots, v_{n} be nonzero vectors of the inner product space \mathbf{V}. If $v_{i} \perp v_{j}$ for $i \neq j$, then these vectors are linearly independent.

Proof.

Suppose we have a linear combination

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=O
$$

We claim all $c_{i}=0$. To prove, say $c_{1}=0$, take the inner product of the linear combination with v_{1} :

$$
c_{1} \underbrace{\left\langle v_{1}, v_{1}\right\rangle}_{\neq 0}+c_{2} \underbrace{\left\langle v_{2}, v_{1}\right\rangle}_{=0}+\cdots+c_{n} \underbrace{\left\langle v_{n}, v_{1}\right\rangle}_{=0}=\left\langle O, v_{1}\right\rangle=0 .
$$

A vector v of length $\|v\|=1$ is called a unit vector. They are easy to find: given a nonzero vector $u, v=\frac{u}{\|u\|}$ is a unit vector.
A set of vectors v_{1}, \ldots, v_{n} is said to be orthonormal if $v_{i} \perp v_{j}$, for $i \neq j$ and $\left\|v_{i}\right\|=1$ for any i. Of course, a good example are the ordinary coordinate vectors of 3-space.

Proposition

Let \mathbf{V} be an inner product space with an orthonormal basis v_{1}, \ldots, v_{n}. Then for any $v \in \mathbf{V}$,

$$
v=c_{1} v_{1}+\cdots+c_{n} v_{n},
$$

where $c_{i}=\left\langle v, v_{i}\right\rangle$. The c_{i} are called the Fourier coefficients of v relative to the basis.

Proof.

To get c_{i}, it suffices to form the inner product of v with v_{i} :

$$
\left\langle v, v_{i}\right\rangle=c_{i}\left\langle v_{i}, v_{i}\right\rangle=c_{i}
$$

since $\left\langle v_{i}, v_{i}\right\rangle=1$ and all other $\left\langle v_{j}, v_{i}\right\rangle=0$.

Matrix representation

Orthonormal bases are also useful in finding the matrix representation of a L.T. $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$:

Let $\mathcal{A}=\left\{v_{1}, \ldots, v_{n}\right\}$ be such a basis. Then $[\mathbf{T}]_{\mathcal{A}}=\left[a_{i j}\right]$ where $a_{i j}$ are the coefficients in the expression

$$
\mathbf{T}\left(v_{j}\right)=a_{1 j} v_{1}+\cdots+a_{i j} v_{i}+\cdots+a_{n j} v_{n}
$$

To select $a_{i j}$ it suffices to 'dot' with v_{i}

$$
\begin{gathered}
\left\langle\mathbf{T}\left(v_{j}\right), v_{i}\right\rangle=a_{1 j} \underbrace{\left\langle v_{1}, v_{i}\right\rangle}_{=0}+\cdots+a_{i j} \underbrace{\left\langle v_{i}, v_{i}\right\rangle}_{=1}+\cdots+a_{n j} \underbrace{\left\langle v_{n}, v_{i}\right\rangle}_{=0} \\
{[\mathbf{T}]_{\mathcal{A}}=\left[\left\langle\mathbf{T}\left(v_{j}\right), v_{i}\right\rangle\right]}
\end{gathered}
$$

Parallelogram Law

Exercise: If u, v are vectors of an inner product space \mathbf{V}, verify the parallelogram law:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

Draw a picture to illustrate this equality.

HomeWork \#7

Section 6.1: $2,5,9,10,11,18,27$ (challenge)

Things to come

(1) We will prove that every finite-dimensional vector space \mathbf{W} of an inner product space \mathbf{V} has an orthonormal basis.
(2) This will allow us to express the distance from a vector $v \in \mathbf{V}$ to the subspace \mathbf{W}. For instance, if

$$
\mathbf{A x}=\mathbf{b}
$$

is a consistent system of linear equations, that is, if there is some solution $\mathbf{A x} \mathbf{x}_{0}=\mathbf{b}$, we know that the solution set is the set

$$
\mathbf{x}_{0}+N(\mathbf{A}),
$$

where $N(\mathbf{A})$ is the nullspace of \mathbf{A}. Now we will be able to find the solution of smallest length, if need be.

Let us show how to obtain an orthonormal basis of a vector space from an arbitrary basis $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$. If $n=1, w_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}$ is the answer.
Assume now that we have a basis of two vectors u_{1}, u_{2}. We need to find two nonzero vectors v_{1}, v_{2} in the span of u_{1}, u_{2} so that $v_{1} \perp v_{2}$. We use a projection trick: we set $v_{1}=u_{1}$ and look for c so that

$$
v_{2}=u_{2}-c u_{1} \perp v_{1}
$$

that is

$$
\begin{gathered}
\left\langle v_{2}, v_{1}\right\rangle=\left\langle u_{2}, v_{1}\right\rangle-c\left\langle u_{1}, v_{1}\right\rangle=0 \\
c=\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle}
\end{gathered}
$$

Observe that v_{1}, v_{2} have same span as u_{1}, u_{2}. Now replace v_{i} by $v_{i} /\left\|v_{i}\right\|$.

$w=$ Projection of v along u

Projection formula

If L is a line defined by the vector $u \neq O$ and v is another vector,

$$
w=\frac{\langle v, u\rangle}{\langle u, u\rangle} u
$$

is the projection of v along L or u.

Proposition

$v-w$ is perpendicular to \mathbf{L} and the smallest distance from v to any vector of \mathbf{L} is $\|v-w\|$.

Proof.

We have already seen that $v-w \perp v$. If $c u$ is a vector of \mathbf{L}, the square distance from v to $c u$ is ($v-w \perp \mathbf{L}$, so will use Pythagorean Theorem)

$$
\|v-c u\|^{2}=\|(v-w)+(w+c u)\|^{2}=\|v-w\|^{2}+\underbrace{\|w+c u\|^{2}}_{\geq 0}
$$

Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another basis [Gram-Schmidt process]:
(1) Input: $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$ given basis
(2) Set $v_{1}=u_{1}$
(3) Compute v_{2}, \ldots, v_{n} successively, one at a time, by

$$
v_{i}=\underbrace{u_{i}-\left(\frac{u_{i} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{u_{i} \cdot v_{2}}{v_{2} \cdot v_{2}}\right) v_{2}-\cdots-\left(\frac{u_{i} \cdot v_{i-1}}{v_{i-1} \cdot v_{i-1}}\right) v_{i-1}}
$$

(4) Set $w_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}$
(5) Output: $\mathcal{B}=\left\{w_{1}, \ldots, w_{n}\right\}$ is an orthonormal basis.

Hadamard's Inequality

Let \mathbf{A} be a matrix whose columns form a basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of \mathbb{R}^{n} (put $n=3$ for simplicity)

$$
\mathbf{A}=\left[u_{1}\left|u_{2}\right| u_{3}\right]
$$

Now consider the matrix

$$
\mathbf{B}=\left[v_{1}\left|v_{2}\right| v_{3}\right]=\left[u_{1}\left|u_{2}-a_{1} u_{1}\right| u_{3}-b_{1} u_{1}-b_{2} u_{2}\right]
$$

where the coefficients are chosen for that the $v_{i}^{\prime} s$ are perpendicular to one another. Note that \mathbf{B} is obtained from \mathbf{A} by adding scalar multiples of columns to another, so

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})
$$

Furthermore, for each i

$$
\left\|v_{i}\right\| \leq\left\|u_{i}\right\|
$$

by the projection formula.

Let us calculate $\operatorname{det}(\mathbf{A})^{2}$:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A})^{2} & =\operatorname{det}(\mathbf{B})^{2}=\operatorname{det}(\mathbf{B}) \operatorname{det}\left(\mathbf{B}^{t}\right) \\
& =\operatorname{det}\left[v_{1}\left|v_{2}\right| v_{3}\right] \operatorname{det}\left[v_{1}\left|v_{2}\right| v_{3}\right]^{t} \\
& =\left[\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & 0 & 0 \\
0 & \left\langle v_{2}, v_{2}\right\rangle & 0 \\
0 & 0 & \left\langle v_{3}, v_{3}\right\rangle
\end{array}\right] \\
& =\prod\left\langle v_{i}, v_{i}\right\rangle
\end{aligned}
$$

Theorem (Hadamard)

For any square real matrix $\mathbf{A}=\left[u_{1}, \ldots, u_{n}\right]$,

$$
|\operatorname{det}(\mathbf{A})|^{2} \leq \prod_{i=1}^{n}\left\langle u_{i}, u_{i}\right\rangle
$$

For instance, if \mathbf{A} is a 4×4 whose entries are $0,1,-1$, its column vectors have length at most 2 , so that $\operatorname{det}(\mathbf{A}) \leq 16$. According to Joe, there is a such a matrix.

General Projection Formula

Proposition

Let \mathbf{W} be a subspace with an orthonormal basis $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$. For any vector v, the vector of W

$$
w=\operatorname{proj}_{\mathbf{w}}(v)=\left\langle v, u_{1}\right\rangle u_{1} \cdots+\left\langle v, u_{n}\right\rangle u_{n}
$$

is the projection of v onto \mathbf{W}. It has the following properties
(1) $v-w$ is perpendicular to any vector of \mathbf{W}. (We say that it is perpendicular to W)
(2) $\|v-w\|$ is the shortest distance from v to \mathbf{W}.

The proof is like above.

Orthogonal Complement

If \mathbf{W} is a subspace of an inner product space \mathbf{V}, its orthogonal complement \mathbf{W}^{\perp} is the set of all vectors v that are perpendicular to each vector w of \mathbf{W}. In ordinary 3 -space \mathbb{R}^{3}, the z-axis is the orthogonal complement of the $x y$-plane.

Proposition

\mathbf{W}^{\perp} is a subspace of \mathbf{V}.

Proof.

Clearly $O \in \mathbf{W}^{\perp}$. If $v_{1}, v_{2} \in \mathbf{W}^{\perp}$, for any vector $w \in \mathbf{W}$

$$
\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle=O
$$

so \mathbf{W}^{\perp} passes the subspace test.

Example

Let \mathbf{A} be an $m \times n$ real matrix. The nullspace of \mathbf{A} is the set of all n-tuples \mathbf{x} such that

$$
\mathbf{A x}=0
$$

This means that the nullspace is the orthogonal complement of the row space of \mathbf{A} :

$$
N(\mathbf{A})=\text { row space }{ }^{\perp}
$$

Similarly, the left nullspace of \mathbf{A}, left $N(\mathbf{A})$, are the m-tuples y such that

$$
\mathbf{y A}=0
$$

that is the orthogonal complement of the column space of \mathbf{A}.

These observations suggest several properties of the \perp operation:
(1) Let \mathbf{V} be a vector space with a basis e_{1}, \ldots, e_{n}. If \mathbf{W} is spanned by $u_{1}, \ldots, u_{m}, \mathbf{W}^{\perp}$ is the set of all vectors $x_{1} e_{1}+\cdots+x_{n} e_{n}$ such that

$$
x_{1}\left\langle e_{1}, u_{i}\right\rangle+\cdots+x_{n}\left\langle e_{n}, u_{i}\right\rangle=0, \quad i=1, \ldots, m
$$

Thus we find \mathbf{W} by solving a system of linear equations.
(2) $\mathbf{W} \cap \mathbf{W}^{\perp}=(O)$.
(3) $\underbrace{\operatorname{dim} \mathbf{W}+\operatorname{dim} \mathbf{W}^{\perp}=\operatorname{dim} \mathbf{V}}$
(4) $\left(\mathbf{W}^{\perp}\right)^{\perp}=\mathbf{W}$

Proposition

```
dim}\mathbf{W}+\operatorname{dim}\mp@subsup{\mathbf{W}}{}{\perp}=\operatorname{dim}\mathbf{V}
```


Proof.

Let u_{1}, \ldots, u_{m} be an orthonormal basis of \mathbf{W}. We define a mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ as follows

$$
\mathbf{T}(v)=\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{m}\right\rangle u_{m}
$$

T is clearly a linear transformation: This is the orthogonal projection of \mathbf{V} onto \mathbf{W}. Its range $R(\mathbf{T})$ is \mathbf{W}. Its nullspace $N(\mathbf{T})$ is the set of vectors v such that $\left\langle v, u_{i}\right\rangle=0$ for each u_{i}. This is precisely \mathbf{W}^{\perp}. From the dimension formula

$$
\operatorname{dim} \mathbf{V}=\operatorname{dim} R(\mathbf{T})+\operatorname{dim} N(\mathbf{T})=\operatorname{dim} \mathbf{W}+\operatorname{dim} \mathbf{W}^{\perp}
$$

HomeWork \#8

Section 6.2: 2a, 4, 9, 15, 22 (too laborious)

If \mathbf{V} is a vector space over the field \mathbf{F}, a linear functional is a linear transformation

$$
\mathbf{f}: \mathbf{V} \longrightarrow \mathbf{F}
$$

For example, if $\mathbf{V}=\mathbf{F}^{n}$ and $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]$ is a matrix, then for every column vector $v \in \mathbf{F}^{n}$, the function

$$
v \longrightarrow \mathbf{a} \cdot v
$$

is a linear functional. In fact, every linear functional \mathbf{f} has this description.

Inner product spaces, finite/infinite dimensional have a natural method to define linear functionals. Let us exploit it.

Let \mathbf{V} be an inner product space. If $u \in \mathbf{V}$, the mapping

$$
\mathbf{f}: \mathbf{V} \rightarrow \mathbf{F}, \quad \mathbf{f}(v)=\langle v, u\rangle
$$

is a linear functional. Observe that if $\langle v, u\rangle=\langle v, w\rangle$, for all v, then $\langle v, u-w\rangle=0$ and therefore $u=w$.

Proposition

If \mathbf{V} is a finite-dimensional inner product space, for every linear functional \mathbf{f} on \mathbf{V}, there is a unique vector u such that $\mathbf{f}(v)=\langle v, u\rangle$ for all $v \in \mathbf{V}$.

Proof.

Let v_{1}, \ldots, v_{n} be an orthonormal basis of \mathbf{V}, and let

$$
u=\overline{\mathbf{f}\left(v_{1}\right)} v_{1}+\cdots+\overline{\mathbf{f}\left(v_{n}\right)} v_{n}
$$

Note that for each $v_{j},\left\langle v_{j}, u\right\rangle=\overline{\bar{f}\left(v_{j}\right)}=\mathbf{f}\left(v_{j}\right)$, so the functionals defined by u and \mathbf{f} agree on each basis vector, so are equal.

Adjoint of a Linear Transformation

Let \mathbf{T} be a L.T. of the inner product space \mathbf{V}. We are going to build another L.T. associated to \mathbf{T}, which will be called the adjoint of \mathbf{T}. It is the parent [or child] of the transpose!

Fix the vector $u \in \mathbf{V}$. Consider the mapping $v \rightarrow\langle\mathbf{T}(v), u\rangle$. This is a linear functional. According to the previous Proposition, there is a unique w such that

$$
\langle\mathbf{T}(v), u\rangle=\langle v, w\rangle, \quad \forall v \in \mathbf{V}
$$

We set $w=\mathbf{S}(u)$. This gives a function $\mathbf{S}: \mathbf{V} \rightarrow \mathbf{V}$. It is routine to check that if $w_{1}=\mathbf{S}\left(u_{1}\right)$ and $w_{2}=\mathbf{S}\left(u_{2}\right)$, then $\mathbf{S}\left(u_{1}+u_{2}\right)=w_{1}+w_{2}$, and also $\mathbf{S}(c u)=c \mathbf{S}(u)$. This L.T. is denoted \mathbf{T}^{*} and termed the adjoint of \mathbf{T}.

Proposition

Let \mathbf{T} be a L.T. and let $\mathbf{A}=\left[a_{i j}\right]$ be its matrix representation relative to the orthonormal basis v_{1}, \ldots, v_{n}. Then the matrix representation of the adjoint \mathbf{T}^{*} is $\overline{\mathbf{A}^{t}}=\left[\overline{a_{j i}}\right]$, the conjugate transpose of \mathbf{A}.

Proof.

To find the matrix representation $\left[b_{i j}\right]$ of \mathbf{T}^{*} we write $\mathbf{T}^{*}\left(v_{j}\right)=\sum_{i} b_{i j} v_{i}$, so that

$$
\overline{b_{i j}}=\left\langle v_{i}, \mathbf{T}^{*}\left(v_{j}\right)\right\rangle=\left\langle\mathbf{T}\left(v_{i}\right), v_{j}\right\rangle=a_{j i},
$$

as desired.

Problem

Given 3 (or more) points $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), P_{3}=\left(x_{3}, y_{3}\right)$ in \mathbb{R}^{2}, find the best fit line (what does this mean?):

$$
\begin{aligned}
& Y=a t+b, \quad Y_{i}=a t_{i}+b, \quad \text { error }=\left|Y_{i}-y_{i}\right| \\
& \begin{array}{c|c|c}
t & y & Y \\
\hline t_{1} & y_{1} & Y_{1}
\end{array} \\
& \vdots \quad \vdots \quad \vdots \\
& t_{n} y_{n} \mid Y_{n} \\
& \mathbf{E}=\text { Square Error }=\sum_{i=1}^{n}\left|Y_{i}-y_{i}\right|^{2}=\sum_{i=1}^{n}\left|a t_{i}+b-y_{i}\right|^{2}
\end{aligned}
$$

Problem: Find a and b so that the square error is as small as possible. To answer, we first write the problem in vector notation.

$$
\begin{aligned}
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cc}
t_{1} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
\mathbf{E}=\|\mathbf{y}-\mathbf{A x}\|^{2}
\end{aligned}
$$

We are going to do much better: Given a $m \times n$ matrix \mathbf{A} and a vector $\mathbf{y} \in \mathbf{F}^{m}$, we are going to find a vector $\mathbf{x}_{0} \in \mathbf{F}^{n}$ such that

$$
\left\|\mathbf{y}-\mathbf{A} \mathbf{x}_{0}\right\|^{2} \leq\|\mathbf{y}-\mathbf{A x}\|^{2}
$$

for all $\mathbf{x} \in \mathbf{F}^{n}$

We know that the answer to this will be affirmative: Let \mathbf{W} be the range of \mathbf{A}, that is the set of all vectors $\mathbf{A x}$, for $\mathbf{x} \in \mathbf{F}^{n}$. There is a vector $w \in \mathbf{W}$, that is $w=\mathbf{A} \mathbf{x}_{0}$ such that

$$
\left\|\mathbf{y}-\mathbf{A} \mathbf{x}_{0}\right\|^{2} \leq\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2}
$$

The issue is how to find \mathbf{x}_{0} more explicitly. For this we use the notion of the adjoint of a linear transformation:

$$
\begin{gathered}
\mathbf{T}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}, \quad \mathbf{T}^{*}: \mathbf{F}^{m} \rightarrow \mathbf{F}^{n} \\
\langle\mathbf{T}(u), v\rangle_{m}=\left\langle u, \mathbf{T}^{*}(v)\right\rangle_{n}
\end{gathered}
$$

To derive the desired formula (known as the projection formula) we need two properties of \mathbf{T}^{*}.

Proposition

Let \mathbf{A} be an $m \times n$ complex matrix and \mathbf{A}^{*} its adjoint (conjugate transpose). Then
(1) $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{*} \mathbf{A}\right)$.
(2) If $\operatorname{rank}(\mathbf{A})=n$ then $\mathbf{A}^{*} \mathbf{A}$ is invertible.

Proof.

It will suffice to show that \mathbf{A} and $\mathbf{A}^{*} \mathbf{A}$ have the same nullspace. Why?
If $\mathbf{A}^{*} \mathbf{A}(\mathbf{x})=0$, then for all $\mathbf{z} \in \mathbf{F}^{n}$

$$
0=\left\langle\mathbf{A}^{*} \mathbf{A}(\mathbf{x}), \mathbf{z}\right\rangle_{n}=\left\langle\mathbf{A} \mathbf{x},\left(\mathbf{A}^{*}\right)^{*} \mathbf{z}\right\rangle_{m}=\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{z}\rangle_{m}=
$$

so $\mathbf{A x}=O$ by choosing $\mathbf{z}=\mathbf{x}$.
The second assertion now follows: Since $\mathbf{A}^{*} \mathbf{A}$ is an $n \times n$ matrix of rank n, it is invertible.

Projection Formula

Theorem

Let \mathbf{A} be an $m \times n$ complex matrix and let $\mathbf{y} \in \mathbf{F}^{m}$. Then there exists $\mathbf{x}_{0} \in \mathbf{F}^{n}$ such that $\mathbf{A}^{*} \mathbf{A}\left(\mathbf{x}_{0}\right)=\mathbf{A}^{*} \mathbf{y}$ and $\left\|\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\| \leq\|\mathbf{A x}-\mathbf{y}\|$ for all $\mathbf{x} \in \mathbf{F}^{n}$. If \mathbf{A} has rank n then

$$
\mathbf{x}_{0}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{y}
$$

Proof.

Since $\mathbf{A} \mathbf{x}_{0}-\mathbf{y}$ is perpendicular to the range of \mathbf{A},

$$
0=\left\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\rangle_{m}=\left\langle\mathbf{x}, \mathbf{A}^{*}\left(\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right)\right\rangle=\left\langle\mathbf{x},\left(\left(\mathbf{A}^{*} \mathbf{A}\right) \mathbf{x}_{0}-\mathbf{A}^{*} \mathbf{y}\right)\right\rangle
$$

for all $\mathbf{x} \in \mathbf{F}^{n}$. Thus $\left(\mathbf{A}^{*} \mathbf{A}\right) \mathbf{x}_{0}-\mathbf{A}^{*} \mathbf{y}=0$ and therefore

$$
\mathbf{x}_{0}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{y}
$$

Illustration

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right], \quad \operatorname{rank}(\mathbf{A})=2, \quad \mathbf{y}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right] \\
\mathbf{A}^{*} \mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]=\left[\begin{array}{rr}
30 & 10 \\
10 & 4
\end{array}\right] \\
\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1}=\frac{1}{20}\left[\begin{array}{rr}
4 & -10 \\
-10 & 30
\end{array}\right]
\end{gathered}
$$

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{20}\left[\begin{array}{rr}
4 & -10 \\
-10 & 30
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{r}
1.7 \\
0
\end{array}\right]
$$

Answer: The least squares line is

$$
y=1.7 t
$$

The error is

$$
\mathbf{E}=\left\|\mathbf{A} \mathbf{x}_{0}-\mathbf{y}\right\|^{2}=0.3
$$

The method is very general: Suppose we are given a number of points and we want to fit a quadratic polynomial

$$
Y=a t^{2}+b t+c
$$

to the data.

$$
\mathbf{A}=\left[\begin{array}{ccc}
t_{1}^{2} & t_{1} & 1 \\
\vdots & \vdots & \vdots \\
t_{n}^{2} & t_{n} & 1
\end{array}\right] \quad \mathbf{x}_{0}=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Now $\operatorname{rank}(\mathbf{A})=3$ if there are 3 distinct values of t.

Shortest solution

We are going to find the shortest solution of a consistent system of equations $(m \times n)$

$$
\mathbf{A x}=\mathbf{b}
$$

This will be a solution u such that $\|u\|$ is minimal. The argument will also show that u is unique.

Let \mathbf{x}_{0} be a special solution and denote by $N(\mathbf{A})$ the nullspace of \mathbf{A}. The solution set is

$$
\mathbf{x}_{0}+N(\mathbf{A})=\left\{\mathbf{x}_{0}+\boldsymbol{v}, \quad v \in N(\mathbf{A})\right\} .
$$

To pick out of this set the vector $\mathbf{x}_{0}+v$ of smallest length, note that $\left\|\mathbf{x}_{0}+v\right\|$ is the distance from \mathbf{x}_{0} to $-v$. So we have our answer: Pick for $-v$ the projection w of \mathbf{x}_{0} into $N(\mathbf{A})$. Then $s=\mathbf{x}_{0}-w$ is the desired solution:

$w=$ Projection of \mathbf{x}_{0} along $N(\mathbf{A})$

One algorithm for the shortest solution

(1) Find an orthonormal basis u_{1}, \ldots, u_{r} for $N(\mathbf{A})$
(2) Determine the projection w of \mathbf{x}_{0} onto $N(\mathbf{A})$:

$$
w=\sum_{i=1}^{r}\left\langle\mathbf{x}_{0}, u_{i}\right\rangle u_{i}
$$

(3) $\mathbf{x}_{0}-w$ is the shortest solution of $\mathbf{A x}=\mathbf{b}$

This solution requires the calculation of the projection of \mathbf{x}_{0} into $N(\mathbf{A})$. Let us discuss another, more direct, approach. If $v \in N(\mathbf{A}), \mathbf{A}(v)=O$,

$$
0=\langle\mathbf{x}, \mathbf{A}(v)\rangle=\left\langle\mathbf{A}^{*}(\mathbf{x}), u\right\rangle
$$

which means $v \perp \mathbf{A}^{*}(\mathbf{x})=0$ for all \mathbf{x}. This means that the range of \mathbf{A}^{*}, $R\left(\mathbf{A}^{*}\right)$, is contained in the orthogonal complement $N(\mathbf{A})^{\perp}$ of $N(\mathbf{A})$. By the dimension formula we have $N(\mathbf{A})^{\perp}=R\left(\mathbf{A}^{*}\right)$.
Summary: The minimal vector s satisfies

$$
\mathbf{A} s=\mathbf{b}, \quad s \in R\left(\mathbf{A}^{*}\right)
$$

That is, pick any solution of

$$
\mathbf{A A}^{*} \mathbf{y}=\mathbf{b}
$$

and set

$$
s=\mathbf{A}^{*} \mathbf{y}
$$

Old Hourly \#2 Questions

1. (20 pts) Give proofs of the following facts:
(a) If the 2×2 matrix A has nonzero nullspace and $A^{2}=2 A$, then it is diagonalizable.
(b) If the nullspace of a $n \times n$ matrix B is nonzero then $\operatorname{det} B=0$.
2. (20 pts) Let W be the subspace of \mathbb{R}^{4} spanned by
$v_{1}=(1,0,1,0), v_{2}=(1,1,0,0)$.
(a) Find an orthonormal basis for W.
(b) Find the projection of $v=(1,2,3,5)$ onto W.
(c) Explain why the projection is a linear transformation and has determinant zero.
3. (20 pts) Let T be the linear transformation of $V=M_{2 \times 2}(\mathbb{C})$

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
c & a \\
d & b
\end{array}\right]
$$

(a) Decide whether T is normal, hermitian, or neither.
(b) If T is diagonalizable, find a basis of eigenvectors.
4. (15 pts) Argue the following:
(a) If the characteristic polynomial of a linear transformation T splits into distinct linear factors then T is diagonalizable.
(b) There are nonzero matrices with some repeated eigenvalues that are diagonalizable [Give example]
5. (10 pts) Explain the meaning of every underlined keyword in the following statement:

Theorem: If T is a normal operator of a complex inner vector space V, then there is an orthonormal basis of eigenvectors of T.
6. (15 pts) If V is an inner product space,
(a) What is the meaning of the triangle inequality and of the Cauchy-Schwarz inequality?
(b) Give a proof of one of them.

1. (15 pts) Let $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ be a L.T. of the vector space \mathbf{V} over the field F. Respond succinctly:
(1) What is an eigenvector of \mathbf{T} ?
(2) What are the eigenspaces of \mathbf{T} and what are their roles in deciding whether \mathbf{T} is diagonalizable?
(3) Prove or disprove: All 2×2 complex matrices are diagonalizable.
2. (15 pts) Let $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ be a L.T. of the vector space \mathbf{V} over the field
F.
(1) What is a \mathbf{T}-invariant subspace \mathbf{W} ?
(2) If $v \in \mathbf{V}$ and \mathbf{W} is the span of the set of vectors $\left\{\mathbf{T}^{n}(v), n \geq 0\right\}$, prove that \mathbf{W} is \mathbf{T}-invariant.
(3) Indicate the kind of matrix representation one gets for the restriction map T_{W}.
3. (12 pts) Let $\mathbf{A}, \mathbf{B} \in M_{n}(\mathbb{R})$.
(1) What is $e^{\mathbf{A}}$? Argue that if \mathbf{A} is upper triangular then $e^{\mathbf{A}}$ is also upper triangular.
(2) Prove that if $\mathbf{A B}=\mathbf{B A}$, then $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}$.
4. (12 pts) Find the eigenvalues and corresponding eigenspaces of the linear transformation

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 10 & 3 \\
0 & 3 & 2
\end{array}\right]
$$

4. (20 pts) Let \mathbf{V} be the set of all real 2×2 matrices. If \mathbf{T} is the mapping

$$
\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}, \quad \mathbf{T}(\mathbf{A})=\mathbf{A}-(1 / 2) \operatorname{trace}(\mathbf{A}) \mathbf{I}
$$

(1) Prove that \mathbf{T} is a linear transformation.
(2) Prove that $\mathbf{T}^{2}=\mathbf{T}$.
(3) Explain why maps such that $\mathbf{T}^{2}=\mathbf{T}$ are always diagonalizable.
5. (13 pts) Let u, v_{1} and v_{2} be the following vectors of \mathbb{R}^{4},
$(1,2,3,4),(1,1,1,1)$ and $(2,-3,-3,2)$.
(1) Find an orthonormal basis of the subspace \mathbf{W} spanned by v_{1}, v_{2}.
(2) Find the vector in \mathbf{W} closest to u ?

6. (15 pts)

(1) What is an inner product space?
(2) Argue that the Pythagorean theorem holds in such spaces.
(3) If \mathbf{V} is the space of real continuous functions on $[0,1]$, prove that $\int_{0}^{1} f(t) \cdot g(t) d t$ defines an inner product on \mathbf{V}.
7. (10 pts) Let $v_{1}, v_{2}, \ldots, v_{n}$ a set of pairwise orthogonal vectors of the inner product space V.
(1) Prove that they are linearly independent.
(2) Prove that

$$
\left\|v_{1}+v_{2}+\cdots+v_{n}\right\|=\sqrt{\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}}
$$

3. (12 pts) Find the FULL set of solutions of the system of equations

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 1 & 1 \\
7 & 8 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-3 \\
1 \\
-7
\end{array}\right] .
$$

3. (12 pts) Let A be a 3×3 matrix with determinant equal to 2 .
(a) Explain carefully why A is invertible.
(b) If A is diagonalizable, explain carefully why A^{-1} is diagonalizable.
(c) What is the determinant of the matrix of cofactors of A ?
4. (6 pts) Let A be a 3×3 matrix with 3 nonzero entries of 2,3 and 6 . The other 6 entries are 0 . Find and explain all the possible values for the determinant such matrices.
5. (8 pts) Let A be a 3×3 matrix whose columns are the vectors v_{1}, v_{2} and v_{3}.
(a) If a matrix B has for columns the vectors $2 v_{2}+v_{3}, 3 v_{3}+v_{1}$ and v_{1}, respectively, how are the determinants of A and B related?
(b) Suppose further that v_{1}, v_{2}, v_{3} are perpendicular to each other and satisfy

$$
v_{1} \cdot v_{1}=2, \quad v_{2} \cdot v_{2}=6, \quad v_{3} \cdot v_{3}=3
$$

Argue that the determinant of A is ± 6. (Hint: multiply A by its transpose and take determinants.)
10. (9 pts) If A is a 3×3 matrix and $\operatorname{det} A=2$, find the determinant of B if
(a) $B=2 A^{2}$ (careful, this is not $(2 A)^{2}$)
(b) B is derived from A as follows: The first row of A is moved to the second row, the second row to the third row and the third row to the first row.
(c) $B=A^{T} \cdot A^{-1}$.

HomeQuiz \#7

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23

Today

(1) Normal Operators (TT* $=\mathbf{T}^{*} \mathbf{T}$): real symmetric/skew symmetric
(2) Hermitian Operator
(3) Unitary Operator $\left(\mathbf{T T}^{*}=\mathbf{I}=\mathbf{T}^{*} \mathbf{T}\right)$: Orthogonal
(4) Spectral Theorem
(5) Goodies: Applications

Interesting diagonalizable operators

We are going to show a class of linear transformations that are diagonalizable. It will include the class represented by real symmetric matrices.
Let $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ be a L.T. of a complex inner product space. We have defined the adjoint \mathbf{T}^{*} of \mathbf{T} as the L.T. with the property

$$
\langle\mathbf{T}(u), v\rangle=\left\langle u, \mathbf{T}^{*}(v)\right\rangle, \quad \forall u, v \in \mathbf{V}
$$

Let us compare the eigenvalues and eigenvectors of \mathbf{T} and \mathbf{T}^{*} :

Proposition

If λ is an eigenvalue of \mathbf{T} then $\bar{\lambda}$ is an eigenvalue of \mathbf{T}^{*}.
Proof: Suppose $\mathbf{T}(u)=\lambda u, u \neq O$. Then for any $v \in \mathbf{V}$,

$$
\begin{aligned}
0=\langle O, v\rangle=\langle(\mathbf{T}-\lambda \mathbf{I})(u), v\rangle & =\left\langle u,(\mathbf{T}-\lambda \mathbf{I})^{*}(v)\right\rangle \\
& =\left\langle u,\left(\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}\right)(v)\right\rangle
\end{aligned}
$$

This says that $O \neq u \perp \operatorname{range}\left(\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}\right)$, so the range of $\mathbf{T}^{*}-\bar{\lambda} \mathbf{I}$ is not the whole of \mathbf{V}, which implies nullspace of $\mathbf{T}^{*}-\bar{\lambda} \mathbf{I} \neq O$. This means that $\bar{\lambda}$ is an eigenvalue of \mathbf{T}^{*}.

Let us use this result to decide when a L.T. T of an inner product space \mathbf{V} admits a basis \mathcal{A} such that

$$
[\mathbf{T}]_{\mathcal{A}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

that is, \mathbf{T} admits a matrix representation that is upper triangular.
Note that the characteristic polynomial has all of its roots in the field

$$
\operatorname{det}(\mathbf{T}-x \mathbf{I})=\left(a_{11}-x\right)\left(a_{22}-x\right) \cdots\left(a_{n n}-x\right)
$$

that is the characteristic polynomial splits. Recall that this is always the case when the field is \mathbb{C}.

Theorem (Schur)

Let \mathbf{T} be a L.T. of the inner product space V. If the characteristic polynomial of \mathbf{T} splits, then \mathbf{V} admits an orthonormal basis \mathcal{A} such that $[\mathbf{T}]_{\mathcal{A}}$ is upper triangular.

Proof: We will argue by induction on $\operatorname{dim} \mathbf{V}=n$. If $n=1$, the assertion is obvious. Let us assume that the assertion holds for dimension $n-1$. By the Proposition above, we know that \mathbf{T}^{*} has one eigenvalue λ. Let u be a unit vector so that $\mathbf{T}^{*}(u)=\lambda u$, and set \mathbf{W} for the subspace spanned by u. We claim that \mathbf{W}^{\perp} is \mathbf{T}-invariant: If $v \in \mathbf{W}^{\perp}$

$$
\begin{aligned}
\langle\mathbf{T}(v), u\rangle & =\left\langle v, \mathbf{T}^{*}(u)\right\rangle=\langle v, \lambda u\rangle \\
& =\bar{\lambda}\langle v, u\rangle=0
\end{aligned}
$$

So $\mathbf{T}(v) \in \mathbf{W}^{\perp}$.

We also have $\operatorname{dim} W+\operatorname{dim} \mathbf{W}^{\perp}=\operatorname{dim} \mathbf{V}=n$, so $\operatorname{dim} \mathbf{W}^{\perp}=n-1$. Now we apply the induction hypothesis to the restriction of \mathbf{T} to \mathbf{W}^{\perp} : Let v_{1}, \ldots, v_{n-1} be an orthonormal basis of \mathbf{W}^{\perp} for which the restriction of \mathbf{T} is upper triangular. If we add to the v_{i} the vector u, we get the orthonormal basis $\mathcal{A}=v_{1}, \ldots, v_{n-1}, u$. The matrix representation

$$
[\mathbf{T}]_{\mathcal{A}}=\left[\begin{array}{cccc}
& & & a_{1 n} \\
& {[\mathbf{T}]_{\mathbf{W}^{\perp}}} & & \vdots \\
0 & & & \vdots \\
0 & \cdots & a_{n n}
\end{array}\right]
$$

which has the desired form.

Normal operator

Observe that if there is an orthonormal basis \mathcal{A} of eigenvectors of \mathbf{T}, $[\mathbf{T}]_{\mathcal{A}}$ is a diagonal matrix, and since $\left[\mathbf{T}^{*}\right]_{\mathcal{A}}=[\mathbf{T}]_{\mathcal{A}}^{*}$, this matrix is also diagonal. Since diagonal matrices commute, we have $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$.

Definition

A linear transformation \mathbf{T} of an inner product space is normal if $\mathbf{T T}{ }^{*}=\mathbf{T}^{*} \mathbf{T}$.

Example: If \mathbf{A} is a symmetric real matrix, $\mathbf{A}^{*}=\mathbf{A}^{t}=\mathbf{A}$, so \mathbf{A} commutes with itself! Skew-symmetric real matrices, $\mathbf{A}^{*}=-\mathbf{A}$, are also normal.

Theorem

If \mathbf{T} is a normal operator ($\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$) of a complex inner vector space \mathbf{V}, then there is an orthonormal basis of eigenvectors of \mathbf{T}. (The converse was proved already so this is a characterization of normal operators.)

This is an important result, it has many useful consequences. To prove it we shall need some properties of normal operators.

Proposition

Let \mathbf{T} be a normal operator $\left(\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}\right)$ of the inner vector space \mathbf{V}.
Then:
(1) $\|\mathbf{T}(u)\|=\left\|\mathbf{T}^{*}(u)\right\|$ for every $u \in \mathbf{V}$.
(2) $\mathbf{T}-\mathrm{cl}$ is normal for every $\mathbf{c} \in \mathbf{F}$.
(3) If $\mathbf{T}(u)=\lambda u$ then $\mathbf{T}^{*}(u)=\bar{\lambda} u$.
(4) If λ_{1} and λ_{2} are distinct eigenvalues of \mathbf{T} with corresponding eigenvectors u_{1} and u_{2}, then $u_{1} \perp u_{2}$.

Proof: 1. For any vector $u \in \mathbf{V}$,

$$
\begin{aligned}
\|\mathbf{T}(u)\|^{2} & =\langle\mathbf{T}(u), \mathbf{T}(u)\rangle=\left\langle\mathbf{T}^{*} \mathbf{T}(u), u\right\rangle=\left\langle\mathbf{T T}^{*}(u), u\right\rangle \\
& =\left\langle\mathbf{T}^{*}(u), \mathbf{T}^{*}(u)\right\rangle=\left\|\mathbf{T}^{*}(u)\right\|^{2}
\end{aligned}
$$

2. $(\mathbf{T}-\mathbf{c l})\left(\mathbf{T}^{*}-\overline{\mathbf{c}} \mathbf{I}\right)=\left(\mathbf{T}^{*}-\overline{\mathbf{c}} \mathbf{l}\right)(\mathbf{T}-\mathbf{c l}):$ check
3. Suppose $\mathbf{T}(u)=\lambda u$. Let $\mathbf{U}=\mathbf{T}-\lambda \mathbf{I}$. Then $\mathbf{U}(u)=0$ so by 2 . \mathbf{U} is normal and by $1 . \mathbf{U}^{*}(u)=0$. That is $\mathbf{T}^{*}(u)=\bar{\lambda} u$.
4. Let λ_{1} and λ_{2} be distinct eigenvalues of \mathbf{T} with corresponding eigenvectors u_{1} and u_{2}. Then by 3 .

$$
\begin{gathered}
\lambda_{1}\left\langle u_{1}, u_{2}\right\rangle=\left\langle\lambda_{1} u_{1}, u_{2}\right\rangle=\left\langle\mathbf{T}\left(u_{1}\right), u_{2}\right\rangle=\left\langle u_{1}, \mathbf{T}^{*}\left(u_{2}\right)\right\rangle \\
=\left\langle u_{1}, \overline{\lambda_{2}} u_{2}\right\rangle=\lambda_{2}\left\langle u_{1}, u_{2}\right\rangle
\end{gathered}
$$

Since $\lambda_{1} \neq \lambda_{2},\left\langle u_{1}, u_{2}\right\rangle=0$.

We are now in position to prove that a normal operator \mathbf{T} admits an orthonormal basis $v_{1}, v_{2}, \ldots, v_{n}$ of eigenvectors. We already know, by Schur theorem, that there is an orthonormal basis for which the matrix representation is upper triangular

$$
\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]
$$

We want to show that the off-diagonal elements are 0 , that is, all the v_{i} are eigenvectors. [For simplicity we take $n=3$] Note that
$\mathbf{T}\left(v_{1}\right)=a_{11} v_{1}$, so v_{1} is an eigenvector. To show v_{2} is an eigenvector notice that

$$
\mathbf{T}\left(v_{2}\right)=a_{12} v_{1}+a_{22} v_{2}
$$

We must show $a_{12}=0$.

$$
\mathbf{T}\left(v_{2}\right)=a_{12} v_{1}+a_{22} v_{2}
$$

We must show $a_{12}=0$:

$$
a_{12}=\left\langle\mathbf{T}\left(v_{2}\right), v_{1}\right\rangle=\left\langle v_{2}, \mathbf{T}^{*}\left(v_{1}\right)\right\rangle=\left\langle v_{2}, \overline{a_{11}} v_{1}\right\rangle=a_{11}\left\langle v_{2}, v_{1}\right\rangle=0
$$

as desired. Now with v_{1}, v_{2} eigenvectors, we show that $a_{13}=a_{23}=0$. We consider

$$
\mathbf{T}\left(v_{3}\right)=a_{13} v_{1}+a_{23} v_{2}+a_{33} v_{3}
$$

The proof is similar: For instance

$$
a_{23}=\left\langle\mathbf{T}\left(v_{3}\right), v_{2}\right\rangle=\left\langle v_{3}, \mathbf{T}^{*}\left(v_{2}\right)\right\rangle=\left\langle v_{3}, \overline{a_{22}} v_{2}\right\rangle=a_{22}\left\langle v_{3}, v_{2}\right\rangle=0
$$

We have already remarked that real symmetric matrices, $\mathbf{A}=\mathbf{A}^{t}$, are normal. It turns out that complex symmetric matrices are not always normal. Truly the complex cousins of real symmetric matrices are called:

Definition

Let \mathbf{T} be a linear operator of the inner product space \mathbf{V}. \mathbf{T} is called self-adjoint (Hermitian) if $\mathbf{T}=\mathbf{T}^{*}$.

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3+5 i \\
3-5 i & 6
\end{array}\right]
$$

Lemma

Let \mathbf{T} be a self-adjoint linear operator of the inner product space \mathbf{V}.
Then
(1) Every eigenvalue is real.
(2) If \mathbf{V} is a real vector space then the characteristic polynomial splits.

Proof: 1. Suppose $\mathbf{T}(u)=\lambda u, u \neq O$. By a previous result, $\mathbf{T}^{*}(u)=\bar{\lambda} u$. Since $\mathbf{T}=\mathbf{T}^{*}, \lambda$ is real.
2. Let $n=\operatorname{dim} \mathbf{V}, \mathcal{B}$ an orthonormal basis of \mathbf{V} and $\mathbf{A}=[\mathbf{T}]_{\mathcal{B}}$. Then \mathbf{A} is self-adjoint. Let $\mathbf{T}_{\mathbf{A}}$ be the linear operator of \mathbb{C}^{n} defined by $\mathbf{T}_{\mathbf{A}}(u)=\mathbf{A} u$ for all $u \in \mathbb{C}^{n}$.

Note that $\mathbf{T}_{\mathbf{A}}$ is self-adjoint because $\left[\mathbf{T}_{\mathbf{A}}\right]_{\mathcal{C}}=\mathbf{A}$, where \mathcal{C} is the standard (orthonormal) basis of \mathbb{C}^{n}. So the eigenvalues of T_{A} are real. Since the characteristic polynomial of $\mathbf{T}_{\mathbf{A}}$ is equal to the characteristic polynomial of \mathbf{A}, which is equal to the characteristic of \mathbf{T}, the characteristic polynomial of \mathbf{T} splits.
What we are saying is the following: Let \mathbf{A} be a $n \times n$ symmetric real matrix and employ it to define a L.T. of the complex vector space \mathbb{C}^{n}

$$
\mathbf{T}=\mathbf{T}_{\mathbf{A}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \quad \mathbf{T}(u)=\mathbf{A}(u)
$$

Note $\operatorname{det}(\mathbf{T}-x \mathbf{I})=\operatorname{det}(\mathbf{A}-x \mathbf{I})$.

First Main Theorem of the Course

Theorem

Let \mathbf{T} be a linear operator on the finite-dimensional inner product space \mathbf{V}. Then \mathbf{T} is self-adjoint if and only if there exists an orthonormal basis of \mathbf{V} consisting of eigenvectors of \mathbf{T}.

Unitary Operators

Definition

A linear operator \mathbf{T} of the inner product space \mathbf{V} is called unitary if $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}$. If \mathbf{V} is a real inner product space, \mathbf{T} is called orthogonal.

The rotation operator

$$
\mathbf{T}(x, y)=(x \cos \alpha+y \sin \alpha,-x \sin \alpha+y \cos \alpha)
$$

is a major example.
If \mathbf{A} is a complex n-by- n matrix and $\mathbf{A A}^{*}=\mathbf{A}^{*} \mathbf{A}=\mathbf{I}$, the column vectors of \mathbf{A} form an orthonormal basis of \mathbb{C}^{n}.
We now develop quickly some basic properties of these operators.

Theorem

Let \mathbf{T} be a linear operator of the finite-dimensional inner product space V. TFAE:
(1) \mathbf{T} is an unitary operator: $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}$.
(2) $\langle\mathbf{T}(u), \mathbf{T}(v)\rangle=\langle u, v\rangle$ for all $u, v \in \mathbf{V}$.
(3) For every orthonormal basis $\mathcal{B}=v_{1}, \ldots, v_{n}$ of $\mathbf{V}, \mathbf{T}\left(v_{1}\right), \ldots, \mathbf{T}\left(v_{n}\right)$ is also an orthonormal basis of V .
(4) For some orthonormal basis $\mathcal{B}=v_{1}, \ldots, v_{n}$ of $\mathbf{V}, \mathbf{T}\left(v_{1}\right), \ldots, \mathbf{T}\left(v_{n}\right)$ is also an orthonormal basis of V .
(5) $\|\mathbf{T}(u)\|=\|u\|$ for every $u \in \mathbf{V}$.

Proof. $1 \Rightarrow 2,3,4,5$: (Other \Rightarrow LTR)

$$
\begin{gathered}
\langle u, v\rangle=\left\langle\mathbf{T}^{*} \mathbf{T}(u), v\right\rangle=\left\langle\mathbf{T}(u),\left(\mathbf{T}^{*}\right)^{*}(v)\right\rangle=\langle\mathbf{T}(u), \mathbf{T}(v)\rangle . \\
\delta_{i j}=\left\langle v_{i}, v_{j}\right\rangle=\left\langle\mathbf{T}\left(v_{i}\right), \mathbf{T}\left(v_{j}\right)\right\rangle .
\end{gathered}
$$

Properties of unitary operators

Let \mathbf{T} be an unitary operator of the inner product space \mathbf{V}.
(1) The eigenvalues of \mathbf{T} have length 1: If $\mathbf{T}(u)=\lambda u$,

$$
\langle u, u\rangle=\langle\mathbf{T}(u), \mathbf{T}(u)\rangle=\langle\lambda u, \lambda u\rangle=\bar{\lambda} \lambda\langle u, u\rangle
$$

and thus $\bar{\lambda} \lambda=1$.
(2) If \mathbf{A} is a matrix representation of \mathbf{T}, $|\operatorname{det}(\mathbf{A})|=1: \operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{A}^{*}\right)=1$
(3) If \mathbf{T} is orthogonal, $\operatorname{det}(\mathbf{A})= \pm 1$.
(4) If \mathbf{T} and \mathbf{U} are unitary operators, then \mathbf{T}^{*} and $\mathbf{T} \circ \mathbf{U}$ are also unitary operators.

Orthogonal operators of \mathbb{R}^{2}

We have already mentioned rotations, R_{α}. Let us analyze the possibilities. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[v_{1} \mid v_{2}\right] \quad\left\|v_{1}\right\|=\left\|v_{2}\right\|=1, \quad v_{1} \perp v_{2}
$$

be an orthogonal matrix. This means

$$
a^{2}+c^{2}=1, \quad b^{2}+d^{2}=1, \quad a b+c d=0
$$

We can set $a=\cos \alpha, \boldsymbol{c}=\sin \alpha$ and $b=\cos \beta, d=\sin \beta$ so that

$$
a b+c d=\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)=0
$$

This means that $\alpha-\beta= \pm \pi / 2$. The two possibilities lead to

$$
\boldsymbol{R}_{\alpha}=\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right], \quad \mathbf{T}=\left[\begin{array}{rr}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right]
$$

To analyze

$$
\mathbf{T}=\left[\begin{array}{rr}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right]
$$

we look at its eigenvalues:

$$
\operatorname{det}(\mathbf{T}-x \mathbf{I})=\left[\begin{array}{cc}
\cos \beta-x & \sin \beta \\
\sin \beta & -\cos \beta-x
\end{array}\right]=x^{2}-1
$$

So $\lambda= \pm 1$. This means we have an orthonormal basis v_{1}, v_{2}, and $\mathbf{T}\left(v_{1}\right)=v_{1}, \mathbf{T}\left(v_{2}\right)=v_{2}$.
Thus the line $\mathbb{R} v_{1}$ is fixed under \mathbf{T}, and the perpendicular line $\mathbb{R} v_{2}$ is flipped about $\mathbb{R} v_{1}$. These transformations are called reflections.

Summary: If \mathbf{A} is an orthogonal 2 -by- 2 matrix, then if $\operatorname{det} \mathbf{A}=1$, it is a rotation, and if $\operatorname{det} \mathbf{A}=-1$, it is a reflection.

Matrix product and dot product

Let u and v be two vectors of \mathbb{R}^{n}. Their dot product

$$
u \cdot v=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

can be expressed as a matrix product

$$
u^{t} v=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Keep in mind

$$
u^{t} v=u \cdot v
$$

Spectral Decomposition

Let \mathbf{A} be a n-by- n symmetric real matrix, $\mathbf{P}=\left[v_{1}|\cdots| v_{n}\right]$ a matrix whose columns form an orthonormal basis of eigenvectors of \mathbf{A} :

$$
\mathbf{A}=\mathbf{P D P}^{t}=\left[v_{1}|\cdots| v_{n}\right] \cdot\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{1}^{t} \\
\hline \vdots \\
\hline v_{n}^{t}
\end{array}\right]
$$

Instead of this representation of \mathbf{A} as a product of 3 matrices, we are going to express \mathbf{A} as a sum of simple matrices of rank 1.

Expanding we get

$$
\begin{aligned}
\mathbf{A} & =\mathbf{P D P}^{t}=\left[v_{1}|\cdots| v_{n}\right] \cdot\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{1}^{t} \\
\vdots \\
v_{n}^{t}
\end{array}\right] \\
& =\left[\lambda_{1} v_{1}|\cdots| \lambda_{n} v_{n}\right] \cdot\left[\begin{array}{c}
v_{1}^{t} \\
\vdots \\
\frac{v_{n}^{t}}{}
\end{array}\right] \\
& =\lambda_{1} v_{1} v_{1}^{t}+\cdots+\lambda_{n} v_{n} v_{n}^{t} \\
& =\sum \lambda_{i} \mathbf{P}_{i}, \quad \mathbf{P}_{i}=v_{i} v_{i}^{t}
\end{aligned}
$$

Let us examine the matrices \mathbf{P}_{i}.
(1) \mathbf{P}_{i} has rank 1 and is symmetric

$$
\mathbf{P}_{i}=v_{i} v_{i}^{t}, \quad \mathbf{P}_{i}^{t}=\left(v_{i} v_{i}^{t}\right)^{t}=\left(v_{i}^{t}\right)^{t} v_{i}^{t}=\mathbf{P}_{i}
$$

(2) \mathbf{P}_{i} is a projection

$$
\mathbf{P}_{i} \mathbf{P}_{i}=\left(v_{i} v_{i}^{t}\right)\left(v_{i} v_{i}^{t}\right)=v_{i}\left(v_{i}^{t} v_{i}\right) v_{i}^{t}=v_{i} v_{i}^{t}=\mathbf{P}_{i}
$$

since $v_{i}^{t} v_{i}=\left\langle v_{i}, v_{i}\right\rangle=1$
(3) $\mathbf{P}_{i} \mathbf{P}_{j}=O$ for $i \neq j$

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\left(v_{i} v_{i}^{t}\right)\left(v_{j} v_{j}^{t}\right)=v_{i}\left(v_{i}^{t} v_{j}\right) v_{j}^{t}=0
$$

since $v_{i}^{t} v_{j}=\left\langle v_{i}, v_{j}\right\rangle=0$

The equality

$$
\mathbf{A}=\sum \lambda_{i} \mathbf{P}_{i}, \mathbf{P}_{i}=v_{i} v_{i}^{t}
$$

is called the spectral decomposition of \mathbf{A}.
Example: Let $\mathbf{A}=\left[\begin{array}{rr}3 & -4 \\ -4 & -3\end{array}\right]$
The eigenvalues are 5 and -5 , with corresponding [normalized] eigenvectors

$$
\begin{gathered}
v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \quad v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{P}_{1}=v_{1} v_{1}^{t}=\left[\begin{array}{rr}
4 / 5 & -2 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right], \quad \mathbf{P}_{2}=v_{2} v_{2}^{t}=\left[\begin{array}{ll}
1 / 5 & 2 / 5 \\
2 / 5 & 4 / 5
\end{array}\right]
\end{gathered}
$$

Exercise:

Let \mathbf{A} be a real symmetric matrix. Prove that there is a symmetric matrix \mathbf{B} such that $\mathbf{B}^{3}=\mathbf{A}$.

We know that there is an orthonormal basis v_{1}, \ldots, v_{n} of eigenvectors of \mathbf{A}. The matrix $\mathbf{P}=\left[v_{1}|\cdots| v_{n}\right]$ is orthogonal [i.e. $\left.\mathbf{P}^{-1}=\mathbf{P}^{t}\right]$ and

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

is a real diagonal matrix. Let \mathbf{E} be a real 'cubic root' of \mathbf{D} (if a diagonal entry of \mathbf{D} is $d_{i j}$, the corresponding entry of \mathbf{E} is the real root $d_{i j}{ }^{1 / 3}$). Set $\mathbf{B}=\mathbf{P}^{-1} \mathbf{E P}$. Note

$$
\mathbf{B}^{t}=\left(\mathbf{P}^{-1} \mathbf{E P}\right)^{t}=\mathbf{P}^{t} \mathbf{E}^{t}\left(\mathbf{P}^{-1}\right)^{t}=\mathbf{P}^{-1} \mathbf{E P}=\mathbf{B}, \quad \mathbf{B}^{3}=\mathbf{P}^{-1} \mathbf{E}^{3} \mathbf{P}=\mathbf{A}
$$

Exercise: Let \mathbf{A} be skew-symmetric matrix. Prove that $\operatorname{det} \mathbf{A} \geq 0$. Hint: Recall that \mathbf{A} is normal, then pair up the complex eigenvalues of \mathbf{A}. Moreover, show that if \mathbf{A} has integer entries, then $\operatorname{det} \mathbf{A}$ is the square of an integer.

Real quadratic forms

A real quadratic form in n variables is a polynomial

$$
\mathbf{q}(\mathbf{x})=\sum_{i, j} a_{i j} x_{i} x_{j}
$$

They occur in the elementary theory of conic sections-e.g. what is $10 x^{2}+6 x y+2 y^{2}=5$, an ellipse, a parabola, or a hyperbola?- but also in the theory of max and min of functions $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)$ of several variables. In both endeavors, a solution arises after an appropriate change of variables, $\mathbf{x}=\mathbf{P}(\mathbf{y})$,

$$
\mathbf{q}(\mathbf{x})=\mathbf{q}(\mathbf{P}(\mathbf{y}))=\sum_{i} d_{i} y_{i}^{2}
$$

Let us see how this comes about:

Let us begin with $A x^{2}+B x y+C y^{2}$, which we write as $a x^{2}+2 b x y+c y^{2}$. (For general fields this would require $2 \neq 0$.) Now look:

$$
\begin{aligned}
a x^{2}+2 b x y+c y^{2} & =x(a x+b y)+y(b x+c y) \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\mathbf{x}^{t} \mathbf{Q} \mathbf{x}
\end{aligned}
$$

where $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and \mathbf{Q} is a symmetric matrix.
It is routine to verify that every quadratic form $\mathbf{q}(\mathbf{x})$ has such a representation,

$$
\mathbf{q}(\mathbf{x})=\mathbf{x}^{t} \mathbf{Q} \mathbf{x}, \quad \mathbf{Q}=\mathbf{Q}^{t}
$$

Now we can apply to \mathbf{Q} the spectral theorem we have developed.

Since \mathbf{Q} is (orthogonally) diagonalizable, there is an orthogonal matrix \mathbf{P} (formed by an orthonormal basis of eigenvectors of \mathbf{Q}) such that

$$
\mathbf{P}^{-1} \mathbf{Q P}=\mathbf{D}=\left[\begin{array}{rrr}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

This means that in $\mathbf{q}(\mathbf{x})=\mathbf{x}^{t} \mathbf{Q x}$, if we change the variables by the rule $\mathbf{x}=\mathbf{P y}$,

$$
\mathbf{q}(\mathbf{x})=\mathbf{x}^{t} \mathbf{Q} \mathbf{x}=\mathbf{y}^{t} \mathbf{P}^{-1} \mathbf{Q P} \mathbf{y}=\mathbf{y}^{t} \mathbf{D} \mathbf{y}=\sum_{i} \lambda_{i} y_{i}^{2}
$$

Some applications

Among the potential applications, we mentioned the identification of conics. For example, $10 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}=5$: The matrix

$$
\mathbf{Q}=\left[\begin{array}{rr}
10 & 3 \\
3 & 2
\end{array}\right]
$$

has for eigenvalues 11,1 with

$$
\mathbf{P}=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}
1 & -3 \\
3 & 1
\end{array}\right]
$$

The change of variables $\mathbf{x}=\mathbf{P y}$ gives

$$
11 y_{1}^{2}+y_{2}^{2}=5
$$

the equation of an ellipse.

Another application, to the theory of max and min appears as follows: If \mathbf{a} is a critical point of the function $\mathbf{f}(\mathbf{x})$-that is all the partial derivatives vanish at $\mathbf{x}=\mathbf{a}, \frac{\partial \mathbf{f}}{\partial x_{i}}(\mathbf{a})=0$, Taylor's expansion of \mathbf{f} in a neighborhood of a gives

$$
\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})+\mathbf{q}(\mathbf{h})+\text { error }
$$

where \mathbf{q} is a quadratic polynomial on the vector $\mathbf{h}=\mathbf{x}-\mathbf{a}$. The corresponding symmetric matrix is

$$
\mathbf{Q}=\left[\frac{\partial^{2} \mathbf{f}(\mathbf{x})}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right]
$$

If all the eigenvalues of \mathbf{Q} are positive [negative], $\mathbf{q}(\mathbf{h}) \geq 0$ Then $\mathbf{f}(\mathbf{x}) \geq \mathbf{f}(\mathbf{a})$ in a neighborhood of \mathbf{a} : local max [local min]. The other cases are saddle points [the higher dimensional analogues of inflection points]

Rigid Motion

A rigid motion on the inner product space \mathbf{V} is a mapping

$$
\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}
$$

with the property

$$
\|\mathbf{T}(u)-\mathbf{T}(v)\|=\|u-v\|, \quad \forall u, v \mathbf{V} .
$$

That is, \mathbf{T} preserves distance of the images. A simple example is a translation: If \mathbf{a} is a fixed vector, the function

$$
\mathbf{T}(v):=\mathbf{a}+v
$$

is obviously a rigid motion. What else? We have seen that orthogonal transformations $\mathbf{S}, \mathbf{S S}^{t}=\mathbf{I}$, preserve distances. Another such motion is obtained by composition: following a translation with an orthogonal mapping. What else? That is it!

Theorem

Any rigid motion \mathbf{T} of \mathbf{V} decomposes into $\mathbf{T}=\mathbf{S} \circ \mathbf{U}$, where \mathbf{S} is an orthogonal transformation and \mathbf{U} is a translation.

Proof: Set $\mathbf{a}=\mathbf{T}(O)$. Then the function $\mathbf{F}(u)=\mathbf{T}(u)-\mathbf{a}$ is a rigid motion and $\mathbf{F}(O)=O$. It is enough to prove that \mathbf{F} is orthogonal. Note that

$$
\|\mathbf{F}(u)-\mathbf{F}(O)\|=\|u-O\|
$$

so F preserves lengths, which is the key property of orthogonal transformations. BUT we are NOT assuming that \mathbf{F} is linear, we must prove it.
We first prove that \mathbf{F} preserves dot products: $\langle\mathbf{F}(u), \mathbf{F}(v)\rangle=\langle u, v\rangle$: We start from the equality and expand both sides

$$
\begin{aligned}
\|\mathbf{F}(u)-\mathbf{F}(v)\|^{2} & =\|u-v\|^{2} \\
(\mathbf{F}(u)-\mathbf{F}(v)) \cdot(\mathbf{F}(u)-\mathbf{F}(v)) & =(u-v) \cdot(u-v) \\
\underbrace{\|\mathbf{F}(u)\|^{2}}_{*}-2\langle\mathbf{F}(u), \mathbf{F}(v)\rangle+\underbrace{\|\mathbf{F}(v)\|^{2}}_{* *} & =\underbrace{\|u\|^{2}}_{*}-2\langle u, v\rangle+\underbrace{\|v\|^{2}}_{* *}
\end{aligned}
$$

Thus proving

$$
\langle\mathbf{F}(u), \mathbf{F}(v)\rangle=\langle u, v\rangle
$$

Now we are going to prove that \mathbf{F} is a linear function by first showing that it is additive:

$$
\begin{aligned}
\|\mathbf{F}(u+v)-\mathbf{F}(u)-\mathbf{F}(v)\|^{2} & \stackrel{?}{=} 0 \\
\|\mathbf{F}(u+v)\|^{2}+\|\mathbf{F}(u)\|^{2}+\|\mathbf{F}(v)\|^{2}- & =\|u+v\|^{2}+\|u\|^{2}+\|v\|^{2}- \\
2\langle\mathbf{F}(u+v), \mathbf{F}(u)\rangle-2\langle\mathbf{F}(u+v), \mathbf{F}(v)\rangle & =2\langle(u+v), u\rangle-2\langle(u+v), v\rangle \\
+2\langle\mathbf{F}(u), \mathbf{F}(v)\rangle & =+2\langle u, v\rangle \\
& =\|(u+v)-u-v\|^{2}=0 .
\end{aligned}
$$

Scaling, that $\mathbf{F}(c u)=c \mathbf{F}(u)$ for any $c \in \mathbb{R}$, has a similar proof: Expand

$$
\|\mathbf{F}(c u)-c \mathbf{F}(u)\|^{2}
$$

HomeQuiz \#8

Section 6.4: 2f, 4, 6, 12, 13, 15
Section 6.5: 6, 10, 11, 17, 27a

Homework \#9

(1) Section 6.5, Problem 27d
(2) Let \mathbf{A} be a 3×3 orthogonal matrix. Prove that \mathbf{A} is similar to a matrix of the form

$$
\left[\begin{array}{cc}
\mathbf{R} & O \\
O & \pm 1
\end{array}\right]
$$

where \mathbf{R} is a 2×2 orthogonal matrix.
(3) Section 6.3, Problem 22c
(9) Let \mathbf{A} be a skew-symmetric real matrix. If \mathbf{A} diagonalizable, prove that $\mathbf{A}=0$.

