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Last Class... and Today ...

• Eigenvectors and eigenvalues
• Diagonalization
◦ Inner products spaces
◦ Norms
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Inner Products Spaces

Metric properties of vector spaces

Let V be a vector space over the field F. We want to develop a
geometry for V. For that, it is helpful to have a notion of distance, or
length. We will transport and then extend numerous constructions of
ordinary geometry and their calculus.

We will restrict ourselves to the cases of F = R, or F = C. In the case
of C, we use the standard notation for the complex conjugate of the
complex number z = a + bi

z = a− bi .

Some of its properties are:

zz = a2 + b2

z1 + z2 = z1 + z2

z1 · z2 = z1 · z2
1
z

=
z

z · z
, z 6= 0
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Inner Products Spaces

For certain operations, like solving polynomial equations, the polar
representation of complex numbers

a + bi = r(cos θ + i sin θ), r =
√

a2 + b2, tan θ =
a
b

is useful.For instance,

√
i = ±(cosπ/2 + i sinπ/2)1/2 = ±(cosπ/4 + i sinπ/4) = ±

√
2

2
(1 + i).
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Inner Products Spaces

Inner product space

An inner product vector space V is a V.S. over R or C with a mapping

V× V→ F, (u, v)→ 〈u, v〉 = u · v ∈ F

satisfying certain conditions. Let us give an example to guide us in
what is needed. Let V = Rn and define a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi

Note the properties: bi-additive ; v · v is a non-negative real number,
so we can use

√
v · v to define the magnitude of v .

Question: Could we use the same formula to define an inner product
for Cn? Well... (i) · (i) would be −1. Of course the formula still defines
a nice bilinear mapping but would not meet our need.
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Inner Products Spaces

Dot product

Definition
An inner product vector space is a vector space with a mapping

V× V→ F, (u, v)→ u · v ∈ F

satisfying:
1 (u1 + u2) · v = u1 · v + u2 · v
2 (cu) · v = c(u · v)

3 u · v = v · u
4 u · u > 0 if u 6= O

The better notation for this product is

u · v = 〈u, v〉

Wolmer Vasconcelos (Set 7) Math 350: Linear Algebra Spring 2010 7 / 106



Inner Products Spaces

Examples

Of course, the example above of Rn is the grandmother of all
examples. Let us modify it a bit to get an example for Cn: a1

...
an

 ·
 b1

...
bn

 = a1b1 + · · ·+ anbn =
n∑

i=1

aibi .

Note the properties: additive ; v · v is a non-negative real number

v · v =
n∑

i=1

aiai

so we can use
√

v · v to define the magnitude of v . Note the lack of
full symmetry.
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Inner Products Spaces

Example of Function Space

Let us give an example from left field: Let V be the vector space of all
real continuous functions on the interval [a,b], and define for
f (t),g(t) ∈ V,

〈f (t),g(t)〉 = f (t) · g(t) =

∫ b

a
f (t)g(t)dt .

An important case: If m,n are integers,

〈sin nt , cos mt〉 =

∫ 2π

0
sin nt cos mt dt = 0

〈sin nt , sin mt〉 =

∫ 2π

0
sin nt sin mt dt = 0, m 6= n

〈cos nt , cos mt〉 =

∫ 2π

0
cos nt cos mt dt = 0, m 6= n

〈sin nt , sin nt〉 =

∫ 2π

0
sin2 nt dt = π, n 6= 0
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Inner Products Spaces

Example: Mn(F)

Let V = Mn(F) be the V.S. of all n-by-n matrices. For any such matrix
A = [aij ] define the adjoint of A (unfortunately we have already used
the word for a very different notion!) to be the matrix

A∗ = [aji ],

that is, we transpose A and take the complex conjugate of each entry.
Define the product (Frobenius product)

〈A,B〉 = trace(AB∗) =
∑

i

(AB∗)ii .

It is clear that this product has the properties of an inner product. We
just check the positivity condition:

〈A,A〉 = trace(AA∗) =
∑

i

(AA∗)ii

=
∑

i

∑
j

aijaij =
∑
i,j

|aij |2 ≥ 0
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Inner Products Spaces

Proposition
If V is an inner product space, the following hold:

1 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉
2 〈u, cv〉 = c〈u, v〉
3 〈u,O〉 = 〈O, v〉 = 0
4 〈u,u〉 = 0 iff u = O
5 〈u, v〉 = 〈u,w〉 for all u ∈ V then v = w

Proof of 1: Note

〈u, v + w〉 = 〈v + w ,u〉 = 〈v ,u〉+ 〈w ,u〉
= 〈v ,u〉+ 〈w ,u〉 = 〈u, v〉+ 〈u,w〉
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Inner Products Spaces

Length of a vector

Definition
Let V, 〈·, ·〉 be an inner product space. If v ∈ V, the length or norm of
v is the real number ||v || =

√
〈v , v〉.

If V = Cn, v = (a, . . . ,an),

||v || =

[
n∑

i=1

|ai |2
]1/2

If V is the space of real continuous functions on [0,1] and inner
product is that we defined previously,

||f (t)||2 =

∫ 1

0
f (t)2dt .
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Inner Products Spaces

Framework for Geometry

The following assertions permits the construction of ‘recognizable’
objects in any inner product space:

Theorem
If V is an inner product space, then for all u, v ∈ V

1 [Cauchy-Schwarz Inequality]

|〈u, v〉| ≤ ||u|| · ||v ||

2 [Triangle Inequality]

||u + v || ≤ ||u||+ ||v ||.
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Inner Products Spaces

The Cauchy-Schwarz Inequality will allow the introduction of angles
and its trigonometry in V, while the Triangle Inequality will lead to
many constructions extending those we are familiar with in 2- and
3-space.
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Inner Products Spaces

Proofs of CSI and ∆-Inequality

To prove Cauchy-Schwarz Inequality: Note that for ANY c ∈ F, v 6= O

0 ≤ ||u − cv ||2 = 〈u − cv ,u − cv〉 = 〈u,u − cu〉 − c〈v ,u − cv〉
= 〈u,u〉 − c〈u, v〉 − c〈v ,u〉+ cc〈v , v〉

If we set c = 〈u,v〉
〈v ,v〉 the inequality becomes

0 ≤ 〈u,u〉 − |〈u, v〉|
2

||v ||2
,

which proves the assertion.
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Inner Products Spaces

For the ∆-inequality: Consider

||u + v ||2 = 〈u + v ,u + v〉 = 〈u,u〉+ 〈u, v〉+ 〈v ,u〉+ 〈v , v〉
= ||u||2 + (〈u, v〉+ 〈u, v〉) + ||v ||2 = ||u||2 + 2<〈u, v〉+ ||v ||2

≤ ||u||2 + 2|〈u, v〉|+ ||v ||2

≤ ||u||2 + 2||u|| · ||v ||+ ||v ||2 by C-S inequality

= (||u||+ ||v ||)2.

We used that for any complex number z = a + bi , its real part
<z = a ≤ |z| =

√
a2 + b2.
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Inner Products Spaces

Example

To illustrate the power of the axiomatic method, compare the proof
above [which holds for ALL examples] with the work needed to check
the inequalities just the case of the following example:∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
[

n∑
i=1

|ai |2
]1/2 [ n∑

i=1

|bi |2
]1/2

[
n∑

i=1

|ai + bi |2
]1/2

≤

[
n∑

i=1

|ai |2
]1/2

+

[
n∑

i=1

|bi |2
]1/2
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Inner Products Spaces

Angles and Distances

Equipped with these results, we can define angles and distances, with
many of the usual properties, in any inner product space. For example,
for a real inner product space, the Cauchy-Schwarz inequality says
that for any two [will assume nonzero] vectors u, v ,

〈u, v〉 ≤ ||u|| · ||v ||,

that is
−1 ≤ 〈u, v〉

||u|| · ||v ||
≤ 1

This means that the ratio can be identified to the cosine, cosα, of a
unique angle 0 ≤ α ≤ π: So we can write

〈u, v〉 = ||u|| · ||v || cosα

and say that α is the angle between the vectors u and v .
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Inner Products Spaces

An important relationship between two vectors u, v is when 〈u, v〉 = 0:
We then say that u and v are orthogonal or perpendicular. One
notation for this situation is:

u ⊥ v

The distance between the vectors u, v is defined by

dist(u, v) = ||u − v || = 〈u − v ,u − v〉1/2

One of its properties follow from the triangle inequality: If u, v ,w are
three vectors

dist(u,w) ≤ dist(u, v) + dist(v ,w).
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Inner Products Spaces

Properties

These notions have numerous consequences. Let us begin with:

Proposition
Let v1, . . . , vn be nonzero vectors of the inner product space V. If
vi ⊥ vj for i 6= j , then these vectors are linearly independent.

Proof.
Suppose we have a linear combination

c1v1 + c2v2 + · · ·+ cnvn = O.

We claim all ci = 0. To prove, say c1 = 0, take the inner product of the
linear combination with v1:

c1 〈v1, v1〉︸ ︷︷ ︸
6=0

+c2 〈v2, v1〉︸ ︷︷ ︸
=0

+ · · ·+ cn 〈vn, v1〉︸ ︷︷ ︸
=0

= 〈O, v1〉 = 0.

This shows that c1 = 0. A similar argument would show ci = 0 for any
i .
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Inner Products Spaces

A vector v of length ||v || = 1 is called a unit vector. They are easy to
find: given a nonzero vector u, v = u

||u|| is a unit vector.

A set of vectors v1, . . . , vn is said to be orthonormal if vi ⊥ vj , for i 6= j
and ||vi || = 1 for any i . Of course, a good example are the ordinary
coordinate vectors of 3-space.
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Inner Products Spaces

Proposition
Let V be an inner product space with an orthonormal basis v1, . . . , vn.
Then for any v ∈ V,

v = c1v1 + · · ·+ cnvn,

where ci = 〈v , vi〉. The ci are called the Fourier coefficients of v
relative to the basis.

Proof.
To get ci , it suffices to form the inner product of v with vi :

〈v , vi〉 = ci〈vi , vi〉 = ci ,

since 〈vi , vi〉 = 1 and all other 〈vj , vi〉 = 0.
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Inner Products Spaces

Matrix representation

Orthonormal bases are also useful in finding the matrix representation
of a L.T. T : V→ V:

Let A = {v1, . . . , vn} be such a basis. Then [T]A = [aij ] where aij are
the coefficients in the expression

T(vj) = a1jv1 + · · ·+ aijvi + · · ·+ anjvn

To select aij it suffices to ‘dot’ with vi

〈T(vj), vi〉 = a1j 〈v1, vi〉︸ ︷︷ ︸
=0

+ · · ·+ aij 〈vi , vi〉︸ ︷︷ ︸
=1

+ · · ·+ anj 〈vn, vi〉︸ ︷︷ ︸
=0

[T]A = [〈T(vj), vi〉]
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Inner Products Spaces

Parallelogram Law

Exercise: If u, v are vectors of an inner product space V, verify the
parallelogram law:

||u + v ||2 + ||u − v ||2 = 2(||u||2 + ||v ||2).

Draw a picture to illustrate this equality.
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HomeWork #7

HomeWork #7

Section 6.1: 2, 5, 9, 10, 11, 18, 27 (challenge)
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Gram-Schmidt Orthogonalization

Things to come

1 We will prove that every finite-dimensional vector space W of an
inner product space V has an orthonormal basis.

2 This will allow us to express the distance from a vector v ∈ V to
the subspace W. For instance, if

Ax = b

is a consistent system of linear equations, that is, if there is some
solution Ax0 = b, we know that the solution set is the set

x0 + N(A),

where N(A) is the nullspace of A. Now we will be able to find the
solution of smallest length, if need be.
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Gram-Schmidt Orthogonalization

Let us show how to obtain an orthonormal basis of a vector space from
an arbitrary basis A = {u1, . . . ,un}.

If n = 1, w1 = u1
||u1|| is the answer.

Assume now that we have a basis of two vectors u1,u2. We need to
find two nonzero vectors v1, v2 in the span of u1,u2 so that v1 ⊥ v2. We
use a projection trick: we set v1 = u1 and look for c so that

v2 = u2 − cu1 ⊥ v1,

that is
〈v2, v1〉 = 〈u2, v1〉 − c〈u1, v1〉 = 0

c =
〈u2, v1〉
〈v1, v1〉

Observe that v1, v2 have same span as u1,u2. Now replace vi by
vi/||vi ||.
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Gram-Schmidt Orthogonalization

--�
�
�
�
�
�
�
�
��6

uw

v

v − w ⊥ u

w = Projection of v along u
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Gram-Schmidt Orthogonalization

Projection formula

If L is a line defined by the vector u 6= O and v is another vector,

w =
〈v ,u〉
〈u,u〉

u

is the projection of v along L or u.

Proposition
v − w is perpendicular to L and the smallest distance from v to any
vector of L is ||v − w ||.

Proof.
We have already seen that v −w ⊥ v . If cu is a vector of L, the square
distance from v to cu is (v −w ⊥ L, so will use Pythagorean Theorem)

||v − cu||2 = ||(v − w) + (w + cu)||2 = ||v − w ||2 + ||w + cu||2︸ ︷︷ ︸
≥0

.
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Gram-Schmidt Orthogonalization

Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another basis
[Gram–Schmidt process]:

1 Input: A = {u1, . . . ,un} given basis
2 Set v1 = u1

3 Compute v2, . . . , vn successively, one at a time, by

vi = ui −
( ui · v1

v1 · v1

)
v1 −

( ui · v2

v2 · v2

)
v2 − · · · −

( ui · vi−1

vi−1 · vi−1

)
vi−1︸ ︷︷ ︸

4 Set wi = vi
||vi ||

5 Output: B = {w1, . . . ,wn} is an orthonormal basis.
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Gram-Schmidt Orthogonalization

Hadamard’s Inequality

Let A be a matrix whose columns form a basis {u1,u2, . . . ,un} of Rn

(put n = 3 for simplicity)

A = [u1 | u2 | u3]

Now consider the matrix

B = [v1 | v2 | v3] = [u1 | u2 − a1u1 | u3 − b1u1 − b2u2]

where the coefficients are chosen for that the v ′i s are perpendicular to
one another. Note that B is obtained from A by adding scalar multiples
of columns to another, so

det(A) = det(B).

Furthermore, for each i
||vi || ≤ ||ui ||

by the projection formula.
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Gram-Schmidt Orthogonalization

Let us calculate det(A)2:

det(A)2 = det(B)2 = det(B) det(Bt )

= det[v1 | v2 | v3] det[v1 | v2 | v3]t

=

 〈v1, v1〉 0 0
0 〈v2, v2〉 0
0 0 〈v3, v3〉


=

∏
〈vi , vi〉
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Gram-Schmidt Orthogonalization

Theorem (Hadamard)
For any square real matrix A = [u1, . . . ,un],

|det(A)|2 ≤
n∏

i=1

〈ui ,ui〉.

For instance, if A is a 4× 4 whose entries are 0,1,−1, its column
vectors have length at most 2, so that det(A) ≤ 16. According to Joe,
there is a such a matrix.
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Gram-Schmidt Orthogonalization

General Projection Formula

Proposition
Let W be a subspace with an orthonormal basis A = {u1, . . . ,un}. For
any vector v, the vector of W

w = projW(v) = 〈v ,u1〉u1 · · ·+ 〈v ,un〉un

is the projection of v onto W. It has the following properties
1 v − w is perpendicular to any vector of W. (We say that it is

perpendicular to W)
2 ||v − w || is the shortest distance from v to W.

The proof is like above.
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Gram-Schmidt Orthogonalization

Orthogonal Complement

If W is a subspace of an inner product space V, its orthogonal
complement W⊥ is the set of all vectors v that are perpendicular to
each vector w of W. In ordinary 3-space R3, the z-axis is the
orthogonal complement of the xy -plane.

Proposition

W⊥ is a subspace of V.

Proof.

Clearly O ∈W⊥. If v1, v2 ∈W⊥, for any vector w ∈W

〈c1v1 + c2v2,w〉 = c1〈v1,w〉+ c2〈v2,w〉 = O,

so W⊥ passes the subspace test.
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Gram-Schmidt Orthogonalization

Example

Let A be an m × n real matrix. The nullspace of A is the set of all
n-tuples x such that

Ax = 0.

This means that the nullspace is the orthogonal complement of the row
space of A:

N(A) = row space⊥.

Similarly, the left nullspace of A, left N(A), are the m-tuples y such that

yA = O

that is the orthogonal complement of the column space of A.
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Gram-Schmidt Orthogonalization

These observations suggest several properties of the ⊥ operation:
1 Let V be a vector space with a basis e1, . . . ,en. If W is spanned by

u1, . . . ,um, W⊥ is the set of all vectors x1e1 + · · ·+ xnen such that

x1〈e1,ui〉+ · · ·+ xn〈en,ui〉 = 0, i = 1, . . . ,m.

Thus we find W by solving a system of linear equations.
2 W ∩W⊥ = (O).
3 dim W + dim W⊥ = dim V︸ ︷︷ ︸
4 (W⊥)⊥ = W
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Gram-Schmidt Orthogonalization

Proposition

dim W + dim W⊥ = dim V.

Proof.
Let u1, . . . ,um be an orthonormal basis of W. We define a mapping
T : V→ V as follows

T(v) = 〈v ,u1〉u1 + · · ·+ 〈v ,um〉um.

T is clearly a linear transformation: This is the orthogonal projection of
V onto W. Its range R(T) is W. Its nullspace N(T) is the set of vectors
v such that 〈v ,ui〉 = 0 for each ui . This is precisely W⊥. From the
dimension formula

dim V = dim R(T) + dim N(T) = dim W + dim W⊥.
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HomeWork#8

HomeWork #8

Section 6.2: 2a, 4, 9, 15, 22 (too laborious)
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The Adjoint of a Linear Operator

If V is a vector space over the field F, a linear functional is a linear
transformation

f : V −→ F.

For example, if V = Fn and a = [a1, . . . ,an] is a matrix, then for every
column vector v ∈ Fn, the function

v −→ a · v

is a linear functional. In fact, every linear functional f has this
description.

Inner product spaces, finite/infinite dimensional have a natural method
to define linear functionals. Let us exploit it.
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The Adjoint of a Linear Operator

Let V be an inner product space. If u ∈ V, the mapping

f : V→ F, f(v) = 〈v ,u〉

is a linear functional. Observe that if 〈v ,u〉 = 〈v ,w〉, for all v , then
〈v ,u − w〉 = 0 and therefore u = w .

Proposition
If V is a finite-dimensional inner product space, for every linear
functional f on V, there is a unique vector u such that f(v) = 〈v ,u〉 for
all v ∈ V.

Proof.
Let v1, . . . , vn be an orthonormal basis of V, and let

u = f(v1)v1 + · · ·+ f(vn)vn.

Note that for each vj , 〈vj ,u〉 = f(vj) = f(vj), so the functionals defined
by u and f agree on each basis vector, so are equal.
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The Adjoint of a Linear Operator

Adjoint of a Linear Transformation

Let T be a L.T. of the inner product space V. We are going to build
another L.T. associated to T, which will be called the adjoint of T. It is
the parent [or child] of the transpose!

Fix the vector u ∈ V. Consider the mapping v → 〈T(v),u〉. This is a
linear functional. According to the previous Proposition, there is a
unique w such that

〈T(v),u〉 = 〈v ,w〉, ∀v ∈ V.

We set w = S(u). This gives a function S : V→ V. It is routine to check
that if w1 = S(u1) and w2 = S(u2), then S(u1 + u2) = w1 + w2, and also
S(cu) = cS(u). This L.T. is denoted T∗ and termed the adjoint of T.
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The Adjoint of a Linear Operator

Proposition
Let T be a L.T. and let A = [aij ] be its matrix representation relative to
the orthonormal basis v1, . . . , vn. Then the matrix representation of the
adjoint T∗ is At = [aji ], the conjugate transpose of A.

Proof.
To find the matrix representation [bij ] of T∗ we write T∗(vj) =

∑
i bijvi ,

so that
bij = 〈vi ,T∗(vj)〉 = 〈T(vi), vj〉 = aji ,

as desired.
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Least Squares Approximation

Problem

Given 3 (or more) points P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) in
R2, find the best fit line (what does this mean?):

�
�
�
�
�
�
�
�
�
�
�
�3

rP1

r
P2

P3r
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Least Squares Approximation

Y = at + b, Yi = ati + b, error = |Yi − yi |

t y Y
t1 y1 Y1
...

...
...

tn yn Yn

E = Square Error =
n∑

i=1

|Yi − yi |2 =
n∑

i=1

|ati + b − yi |2

Problem: Find a and b so that the square error is as small as possible.
To answer, we first write the problem in vector notation.
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Least Squares Approximation

y =

 y1
...

ym

 , A =

 t1 1
...

...
tm 1

 , x =

[
a
b

]

E = ||y− Ax||2

We are going to do much better: Given a m × n matrix A and a vector
y ∈ Fm, we are going to find a vector x0 ∈ Fn such that

||y− Ax0||2 ≤ ||y− Ax||2

for all x ∈ Fn
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Least Squares Approximation

We know that the answer to this will be affirmative: Let W be the range
of A, that is the set of all vectors Ax, for x ∈ Fn. There is a vector
w ∈W, that is w = Ax0 such that

||y− Ax0||2 ≤ ||y− Ax||2.

The issue is how to find x0 more explicitly. For this we use the notion of
the adjoint of a linear transformation:

T : Fn → Fm, T∗ : Fm → Fn

〈T(u), v〉m = 〈u,T∗(v)〉n
To derive the desired formula (known as the projection formula) we
need two properties of T∗.
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Least Squares Approximation

Proposition
Let A be an m × n complex matrix and A∗ its adjoint (conjugate
transpose). Then

1 rank(A) = rank(A∗A).
2 If rank(A) = n then A∗A is invertible.

Proof.
It will suffice to show that A and A∗A have the same nullspace. Why?
If A∗A(x) = 0, then for all z ∈ Fn

0 = 〈A∗A(x), z〉n = 〈Ax, (A∗)∗z〉m = 〈Ax,Az〉m =

so Ax = O by choosing z = x.

The second assertion now follows: Since A∗A is an n × n matrix of
rank n, it is invertible.
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Least Squares Approximation

Projection Formula

Theorem
Let A be an m × n complex matrix and let y ∈ Fm. Then there exists
x0 ∈ Fn such that A∗A(x0) = A∗y and ||Ax0 − y|| ≤ ||Ax− y|| for all
x ∈ Fn. If A has rank n then

x0 = (A∗A)−1A∗y.

Proof.
Since Ax0 − y is perpendicular to the range of A,

0 = 〈Ax,Ax0 − y〉m = 〈x,A∗(Ax0 − y)〉 = 〈x, ((A∗A)x0 − A∗y)〉

for all x ∈ Fn. Thus (A∗A)x0 − A∗y = 0 and therefore

x0 = (A∗A)−1A∗y,

that completes the proof.
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Least Squares Approximation

Illustration

A =


1 1
2 1
3 1
4 1

 , rank(A) = 2, y =


2
3
5
7



A∗A =

[
1 2 3 4
1 1 1 1

]
1 1
2 1
3 1
4 1

 =

[
30 10
10 4

]

(A∗A)−1 =
1
20

[
4 −10

−10 30

]
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Least Squares Approximation

x0 =

[
a
b

]
=

1
20

[
4 −10

−10 30

] [
1 2 3 4
1 1 1 1

]
2
3
5
7

 =

[
1.7

0

]

Answer: The least squares line is

y = 1.7t

The error is
E = ||Ax0 − y||2 = 0.3
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Least Squares Approximation

The method is very general: Suppose we are given a number of points
and we want to fit a quadratic polynomial

Y = at2 + bt + c

to the data.

A =

 t2
1 t1 1
...

...
...

t2
n tn 1

 x0 =

 a
b
c

 , y =

 y1
...

yn


Now rank(A) = 3 if there are 3 distinct values of t .
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Least Squares Approximation

Shortest solution

We are going to find the shortest solution of a consistent system of
equations (m × n)

Ax = b.

This will be a solution u such that ||u|| is minimal. The argument will
also show that u is unique.

Let x0 be a special solution and denote by N(A) the nullspace of A.
The solution set is

x0 + N(A) = {xo + v , v ∈ N(A)}.

To pick out of this set the vector x0 + v of smallest length, note that
||x0 + v || is the distance from x0 to −v . So we have our answer: Pick
for −v the projection w of x0 into N(A). Then s = x0 −w is the desired
solution:
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Least Squares Approximation

--�
�
�
�
�
�
�
�
��6

N(A)w

x0

x0 − w ⊥ N(A)

w = Projection of x0 along N(A)
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Least Squares Approximation

One algorithm for the shortest solution

1 Find an orthonormal basis u1, . . . ,ur for N(A)

2 Determine the projection w of x0 onto N(A):

w =
r∑

i=1

〈x0,ui〉ui

3 x0 − w is the shortest solution of Ax = b
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Least Squares Approximation

This solution requires the calculation of the projection of x0 into N(A).
Let us discuss another, more direct, approach. If v ∈ N(A), A(v) = O,

0 = 〈x,A(v)〉 = 〈A∗(x),u〉

which means v ⊥ A∗(x) = 0 for all x. This means that the range of A∗,
R(A∗), is contained in the orthogonal complement N(A)⊥ of N(A). By
the dimension formula we have N(A)⊥ = R(A∗).

Summary: The minimal vector s satisfies

As = b, s ∈ R(A∗)

That is, pick any solution of

AA∗y = b,

and set
s = A∗y.
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Old Hourly #2 Questions

Old Hourly #2 Questions

1. (20 pts) Give proofs of the following facts:

(a) If the 2× 2 matrix A has nonzero nullspace and A2 = 2A, then it is
diagonalizable.

(b) If the nullspace of a n × n matrix B is nonzero then det B = 0.

2. (20 pts) Let W be the subspace of R4 spanned by
v1 = (1,0,1,0), v2 = (1,1,0,0).

(a) Find an orthonormal basis for W .

(b) Find the projection of v = (1,2,3,5) onto W .

(c) Explain why the projection is a linear transformation and has
determinant zero.

Wolmer Vasconcelos (Set 7) Math 350: Linear Algebra Spring 2010 57 / 106



Old Hourly #2 Questions

3. (20 pts) Let T be the linear transformation of V = M2×2(C)

T
([

a b
c d

])
=

[
c a
d b

]
(a) Decide whether T is normal, hermitian, or neither.

(b) If T is diagonalizable, find a basis of eigenvectors.

4. (15 pts) Argue the following:
(a) If the characteristic polynomial of a linear transformation T splits
into distinct linear factors then T is diagonalizable.

(b) There are nonzero matrices with some repeated eigenvalues that
are diagonalizable [Give example]
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Old Hourly #2 Questions

5. (10 pts) Explain the meaning of every underlined keyword in the
following statement:

Theorem: If T is a normal operator of a complex inner vector space V ,
then there is an orthonormal basis of eigenvectors of T .

6. (15 pts) If V is an inner product space,

(a) What is the meaning of the triangle inequality and of the
Cauchy-Schwarz inequality?

(b) Give a proof of one of them.
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Old Hourly #2 Questions

1. (15 pts) Let T : V→ V be a L.T. of the vector space V over the field
F. Respond succinctly:

1 What is an eigenvector of T?
2 What are the eigenspaces of T and what are their roles in

deciding whether T is diagonalizable?
3 Prove or disprove: All 2× 2 complex matrices are diagonalizable.

2. (15 pts) Let T : V→ V be a L.T. of the vector space V over the field
F.

1 What is a T-invariant subspace W?
2 If v ∈ V and W is the span of the set of vectors {Tn(v),n ≥ 0},

prove that W is T-invariant.
3 Indicate the kind of matrix representation one gets for the

restriction map TW.
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Old Hourly #2 Questions

3. (12 pts) Let A,B ∈ Mn(R).

1 What is eA? Argue that if A is upper triangular then eA is also
upper triangular.

2 Prove that if AB = BA, then eA+B = eAeB.

3. (12 pts) Find the eigenvalues and corresponding eigenspaces of the
linear transformation

A =

 2 0 0
0 10 3
0 3 2

 .
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Old Hourly #2 Questions

4. (20 pts) Let V be the set of all real 2×2 matrices. If T is the mapping

T : V→ V, T(A) = A− (1/2)trace(A)I

1 Prove that T is a linear transformation.
2 Prove that T2 = T.
3 Explain why maps such that T2 = T are always diagonalizable.

5. (13 pts) Let u, v1 and v2 be the following vectors of R4,
(1,2,3,4), (1,1,1,1) and (2,−3,−3,2).

1 Find an orthonormal basis of the subspace W spanned by v1, v2.
2 Find the vector in W closest to u?
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Old Hourly #2 Questions

6. (15 pts)
1 What is an inner product space?
2 Argue that the Pythagorean theorem holds in such spaces.
3 If V is the space of real continuous functions on [0,1], prove that∫ 1

0 f (t) · g(t)dt defines an inner product on V.

7. (10 pts) Let v1, v2, . . . , vn a set of pairwise orthogonal vectors of the
inner product space V.

1 Prove that they are linearly independent.
2 Prove that

||v1 + v2 + · · ·+ vn|| =

√√√√ n∑
i=1

||vi ||2.
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Old Hourly #2 Questions

3. (12 pts) Find the FULL set of solutions of the system of equations 1 2 −1
2 1 1
7 8 −1

 x
y
z

 =

 −3
1
−7

 .
3. (12 pts) Let A be a 3× 3 matrix with determinant equal to 2.
(a) Explain carefully why A is invertible.
(b) If A is diagonalizable, explain carefully why A−1 is diagonalizable.
(c) What is the determinant of the matrix of cofactors of A?
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Old Hourly #2 Questions

8. (6 pts) Let A be a 3× 3 matrix with 3 nonzero entries of 2, 3 and 6.
The other 6 entries are 0. Find and explain all the possible values for
the determinant such matrices.

9. (8 pts) Let A be a 3× 3 matrix whose columns are the vectors v1, v2
and v3.
(a) If a matrix B has for columns the vectors 2v2 + v3, 3v3 + v1 and v1,
respectively, how are the determinants of A and B related?
(b) Suppose further that v1, v2, v3 are perpendicular to each other and
satisfy

v1 · v1 = 2, v2 · v2 = 6, v3 · v3 = 3.

Argue that the determinant of A is ±6. (Hint: multiply A by its
transpose and take determinants.)
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Old Hourly #2 Questions

10. (9 pts) If A is a 3× 3 matrix and det A = 2, find the determinant of
B if
(a) B = 2A2 (careful, this is not (2A)2)
(b) B is derived from A as follows: The first row of A is moved to the
second row, the second row to the third row and the third row to the
first row.
(c) B = AT · A−1.
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HomeQuiz #7

HomeQuiz #7

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23
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Normal Operators

Today

1 Normal Operators (TT∗ = T∗T): real symmetric/skew symmetric
2 Hermitian Operator
3 Unitary Operator (TT∗ = I = T∗T): Orthogonal
4 Spectral Theorem
5 Goodies: Applications
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Normal Operators

Interesting diagonalizable operators

We are going to show a class of linear transformations that are
diagonalizable. It will include the class represented by real symmetric
matrices.
Let T : V→ V be a L.T. of a complex inner product space. We have
defined the adjoint T∗ of T as the L.T. with the property

〈T(u), v〉 = 〈u,T∗(v)〉, ∀u, v ∈ V.

Let us compare the eigenvalues and eigenvectors of T and T∗:
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Normal Operators

Proposition

If λ is an eigenvalue of T then λ is an eigenvalue of T∗.

Proof: Suppose T(u) = λu, u 6= O. Then for any v ∈ V,

0 = 〈O, v〉 = 〈(T− λI)(u), v〉 = 〈u, (T− λI)∗(v)〉
= 〈u, (T∗ − λI)(v)〉

This says that O 6= u ⊥ range(T∗ − λI), so the range of T∗ − λI is not
the whole of V, which implies nullspace of T∗ − λI 6= O. This means
that λ is an eigenvalue of T∗.
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Normal Operators

Let us use this result to decide when a L.T. T of an inner product space
V admits a basis A such that

[T]A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 ,
that is, T admits a matrix representation that is upper triangular.

Note that the characteristic polynomial has all of its roots in the field

det(T− x I) = (a11 − x)(a22 − x) · · · (ann − x),

that is the characteristic polynomial splits. Recall that this is always the
case when the field is C.
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Normal Operators

Theorem (Schur)
Let T be a L.T. of the inner product space V. If the characteristic
polynomial of T splits, then V admits an orthonormal basis A such that
[T]A is upper triangular.

Proof: We will argue by induction on dim V = n. If n = 1, the assertion
is obvious. Let us assume that the assertion holds for dimension n− 1.
By the Proposition above, we know that T∗ has one eigenvalue λ. Let
u be a unit vector so that T∗(u) = λu, and set W for the subspace
spanned by u. We claim that W⊥ is T-invariant: If v ∈W⊥

〈T(v),u〉 = 〈v ,T∗(u)〉 = 〈v , λu〉
= λ〈v ,u〉 = 0

So T(v) ∈W⊥.
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Normal Operators

We also have dim W + dim W⊥ = dim V = n, so dim W⊥ = n − 1. Now
we apply the induction hypothesis to the restriction of T to W⊥: Let
v1, . . . , vn−1 be an orthonormal basis of W⊥ for which the restriction of
T is upper triangular. If we add to the vi the vector u, we get the
orthonormal basis A = v1, . . . , vn−1,u. The matrix representation

[T]A =


a1n

[T]W⊥
...
...

0 0 · · · ann

 ,
which has the desired form.

Wolmer Vasconcelos (Set 7) Math 350: Linear Algebra Spring 2010 73 / 106



Normal Operators

Normal operator

Observe that if there is an orthonormal basis A of eigenvectors of T,
[T]A is a diagonal matrix, and since [T∗]A = [T]∗A, this matrix is also
diagonal. Since diagonal matrices commute, we have TT∗ = T∗T.

Definition
A linear transformation T of an inner product space is normal if
TT∗ = T∗T.

Example: If A is a symmetric real matrix, A∗ = At = A, so A
commutes with itself! Skew-symmetric real matrices, A∗ = −A, are
also normal.
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Normal Operators

Theorem
If T is a normal operator (TT∗ = T∗T) of a complex inner vector space
V, then there is an orthonormal basis of eigenvectors of T. (The
converse was proved already so this is a characterization of normal
operators.)

This is an important result, it has many useful consequences. To prove
it we shall need some properties of normal operators.
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Normal Operators

Proposition
Let T be a normal operator (TT∗ = T∗T) of the inner vector space V.
Then:

1 ||T(u)|| = ||T∗(u)|| for every u ∈ V.
2 T− cI is normal for every c ∈ F.
3 If T(u) = λu then T∗(u) = λu.
4 If λ1 and λ2 are distinct eigenvalues of T with corresponding

eigenvectors u1 and u2, then u1 ⊥ u2.

Proof: 1. For any vector u ∈ V,

||T(u)||2 = 〈T(u),T(u)〉 = 〈T∗T(u),u〉 = 〈TT∗(u),u〉
= 〈T∗(u),T∗(u)〉 = ||T∗(u)||2

2. (T− cI)(T∗ − cI) = (T∗ − cI)(T− cI) : check
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Normal Operators

3. Suppose T(u) = λu. Let U = T− λI. Then U(u) = 0 so by 2. U is
normal and by 1. U∗(u) = 0. That is T∗(u) = λu.

4. Let λ1 and λ2 be distinct eigenvalues of T with corresponding
eigenvectors u1 and u2. Then by 3.

λ1〈u1,u2〉 = 〈λ1u1,u2〉 = 〈T(u1),u2〉 = 〈u1,T∗(u2)〉

= 〈u1, λ2u2〉 = λ2〈u1,u2〉.

Since λ1 6= λ2, 〈u1,u2〉 = 0.
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Normal Operators

We are now in position to prove that a normal operator T admits an
orthonormal basis v1, v2, . . . , vn of eigenvectors. We already know, by
Schur theorem, that there is an orthonormal basis for which the matrix
representation is upper triangular a11 a12 a13

0 a22 a23
0 0 a33


We want to show that the off-diagonal elements are 0, that is, all the vi
are eigenvectors. [For simplicity we take n = 3] Note that
T(v1) = a11v1, so v1 is an eigenvector. To show v2 is an eigenvector
notice that

T(v2) = a12v1 + a22v2

We must show a12 = 0.

Wolmer Vasconcelos (Set 7) Math 350: Linear Algebra Spring 2010 78 / 106



Normal Operators

T(v2) = a12v1 + a22v2

We must show a12 = 0:

a12 = 〈T(v2), v1〉 = 〈v2,T∗(v1)〉 = 〈v2,a11v1〉 = a11〈v2, v1〉 = 0

as desired. Now with v1, v2 eigenvectors, we show that a13 = a23 = 0.
We consider

T(v3) = a13v1 + a23v2 + a33v3

The proof is similar: For instance

a23 = 〈T(v3), v2〉 = 〈v3,T∗(v2)〉 = 〈v3,a22v2〉 = a22〈v3, v2〉 = 0
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Normal Operators

We have already remarked that real symmetric matrices, A = At , are
normal. It turns out that complex symmetric matrices are not always
normal. Truly the complex cousins of real symmetric matrices are
called:

Definition
Let T be a linear operator of the inner product space V. T is called
self-adjoint (Hermitian) if T = T∗.

A =

[
2 3 + 5i

3− 5i 6

]
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Normal Operators

Lemma
Let T be a self-adjoint linear operator of the inner product space V.
Then

1 Every eigenvalue is real.
2 If V is a real vector space then the characteristic polynomial splits.

Proof: 1. Suppose T(u) = λu, u 6= O. By a previous result,
T∗(u) = λu. Since T = T∗, λ is real.

2. Let n = dim V, B an orthonormal basis of V and A = [T]B. Then A is
self-adjoint. Let TA be the linear operator of Cn defined by TA(u) = Au
for all u ∈ Cn.
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Normal Operators

Note that TA is self-adjoint because [TA]C = A, where C is the standard
(orthonormal) basis of Cn. So the eigenvalues of TA are real. Since the
characteristic polynomial of TA is equal to the characteristic polynomial
of A, which is equal to the characteristic of T, the characteristic
polynomial of T splits.
What we are saying is the following: Let A be a n × n symmetric real
matrix and employ it to define a L.T. of the complex vector space Cn

T = TA : Cn → Cn, T(u) = A(u).

Note det(T− x I) = det(A− x I).
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Normal Operators

First Main Theorem of the Course

Theorem
Let T be a linear operator on the finite-dimensional inner product
space V. Then T is self-adjoint if and only if there exists an
orthonormal basis of V consisting of eigenvectors of T.
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Unitary Operators

Unitary Operators

Definition
A linear operator T of the inner product space V is called unitary if
TT∗ = T∗T = I. If V is a real inner product space, T is called
orthogonal.

The rotation operator

T(x , y) = (x cosα + y sinα,−x sinα + y cosα)

is a major example.

If A is a complex n-by-n matrix and AA∗ = A∗A = I, the column vectors
of A form an orthonormal basis of Cn.
We now develop quickly some basic properties of these operators.
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Unitary Operators

Theorem
Let T be a linear operator of the finite-dimensional inner product space
V. TFAE:

1 T is an unitary operator: TT∗ = T∗T = I.
2 〈T(u),T(v)〉 = 〈u, v〉 for all u, v ∈ V.
3 For every orthonormal basis B = v1, . . . , vn of V, T(v1), . . . ,T(vn)

is also an orthonormal basis of V.
4 For some orthonormal basis B = v1, . . . , vn of V, T(v1), . . . ,T(vn)

is also an orthonormal basis of V.
5 ||T(u)|| = ||u|| for every u ∈ V.

Proof. 1⇒ 2,3,4,5: (Other⇒ LTR)

〈u, v〉 = 〈T∗T(u), v〉 = 〈T(u), (T∗)∗(v)〉 = 〈T(u),T(v)〉.

δij = 〈vi , vj〉 = 〈T(vi),T(vj)〉.
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Unitary Operators

Properties of unitary operators

Let T be an unitary operator of the inner product space V.
1 The eigenvalues of T have length 1: If T(u) = λu,

〈u,u〉 = 〈T(u),T(u)〉 = 〈λu, λu〉 = λλ〈u,u〉

and thus λλ = 1.
2 If A is a matrix representation of T,
|det(A)| = 1:det(A) det(A∗) = 1

3 If T is orthogonal, det(A) = ±1.
4 If T and U are unitary operators, then T∗ and T ◦U are also unitary

operators.
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Unitary Operators

Orthogonal operators of R2

We have already mentioned rotations, Rα. Let us analyze the
possibilities. Let

A =

[
a b
c d

]
= [v1|v2] ||v1|| = ||v2|| = 1, v1 ⊥ v2

be an orthogonal matrix. This means

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0

We can set a = cosα, c = sinα and b = cosβ,d = sinβ so that

ab + cd = cosα cosβ + sinα sinβ = cos(α− β) = 0.

This means that α− β = ±π/2. The two possibilities lead to

Rα =

[
cosα − sinα
sinα cosα

]
, T =

[
cosβ sinβ
sinβ − cosβ

]
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Unitary Operators

To analyze

T =

[
cosβ sinβ
sinβ − cosβ

]
we look at its eigenvalues:

det(T− x I) =

[
cosβ − x sinβ

sinβ − cosβ − x

]
= x2 − 1

So λ = ±1. This means we have an orthonormal basis v1, v2, and
T(v1) = v1, T(v2) = v2.
Thus the line Rv1 is fixed under T, and the perpendicular line Rv2 is
flipped about Rv1. These transformations are called reflections.

Summary: If A is an orthogonal 2-by-2 matrix, then if det A = 1, it is a
rotation, and if det A = −1, it is a reflection.
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Unitary Operators

Matrix product and dot product

Let u and v be two vectors of Rn. Their dot product

u · v =

 a1
...

an

 ·
 b1

...
bn


can be expressed as a matrix product

utv =
[

a1 · · · an
]  b1

...
bn


Keep in mind

utv = u · v
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Unitary Operators

Spectral Decomposition

Let A be a n-by-n symmetric real matrix, P = [v1| · · · |vn] a matrix
whose columns form an orthonormal basis of eigenvectors of A:

A = PDPt = [v1| · · · |vn] ·

 λ1 · · · 0
...

. . .
...

0 · · · λn

 ·
 v t

1
...

v t
n



Instead of this representation of A as a product of 3 matrices, we are
going to express A as a sum of simple matrices of rank 1.
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Unitary Operators

Expanding we get

A = PDPt = [v1| · · · |vn] ·

 λ1 · · · 0
...

. . .
...

0 · · · λn

 ·
 v t

1
...

v t
n


= [λ1v1| · · · |λnvn] ·

 v t
1
...

v t
n


= λ1v1v t

1 + · · ·+ λnvnv t
n

=
∑

λiPi , Pi = viv t
i .

Let us examine the matrices Pi .
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Unitary Operators

1 Pi has rank 1 and is symmetric

Pi = viv t
i , Pt

i = (viv t
i )t = (v t

i )tv t
i = Pi

2 Pi is a projection

PiPi = (viv t
i )(viv t

i ) = vi(v t
i vi)v t

i = viv t
i = Pi

since v t
i vi = 〈vi , vi〉 = 1

3 PiPj = O for i 6= j

PiPj = (viv t
i )(vjv t

j ) = vi(v t
i vj)v t

j = O

since v t
i vj = 〈vi , vj〉 = 0
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Unitary Operators

The equality
A =

∑
λiPi ,Pi = viv t

i

is called the spectral decomposition of A.

Example: Let A =

[
3 −4
−4 −3

]
The eigenvalues are 5 and −5, with corresponding [normalized]
eigenvectors

v1 =
1√
5

[
−2

1

]
, v2 =

1√
5

[
1
2

]

P1 = v1v t
1 =

[
4/5 −2/5
−2/5 1/5

]
, P2 = v2v t

2 =

[
1/5 2/5
2/5 4/5

]
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Unitary Operators

Exercise:

Let A be a real symmetric matrix. Prove that there is a symmetric
matrix B such that B3 = A.

We know that there is an orthonormal basis v1, . . . , vn of eigenvectors
of A. The matrix P = [v1| · · · |vn] is orthogonal [i.e. P−1 = Pt ] and

P−1AP = D

is a real diagonal matrix. Let E be a real ‘cubic root’ of D (if a diagonal
entry of D is dii , the corresponding entry of E is the real root dii

1/3).
Set B = P−1EP. Note

Bt = (P−1EP)t = PtEt (P−1)t = P−1EP = B, B3 = P−1E3P = A.
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Unitary Operators

Exercise: Let A be skew-symmetric matrix. Prove that det A ≥ 0. Hint:
Recall that A is normal, then pair up the complex eigenvalues of A.
Moreover, show that if A has integer entries, then det A is the square
of an integer.
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Goodies

Real quadratic forms

A real quadratic form in n variables is a polynomial

q(x) =
∑
i,j

aijxixj .

They occur in the elementary theory of conic sections–e.g. what is
10x2 + 6xy + 2y2 = 5, an ellipse, a parabola, or a hyperbola?– but
also in the theory of max and min of functions f(x1, . . . , xn) of several
variables. In both endeavors, a solution arises after an appropriate
change of variables, x = P(y),

q(x) = q(P(y)) =
∑

i

diy2
i .

Let us see how this comes about:
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Goodies

Let us begin with Ax2 + Bxy + Cy2, which we write as
ax2 + 2bxy + cy2. (For general fields this would require 2 6= 0.) Now
look:

ax2 + 2bxy + cy2 = x(ax + by) + y(bx + cy)

=
[

x y
] [ a b

b c

] [
x
y

]
= xtQx

where x =

[
x
y

]
and Q is a symmetric matrix.

It is routine to verify that every quadratic form q(x) has such a
representation,

q(x) = xtQx, Q = Qt

Now we can apply to Q the spectral theorem we have developed.
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Goodies

Since Q is (orthogonally) diagonalizable, there is an orthogonal matrix
P (formed by an orthonormal basis of eigenvectors of Q) such that

P−1QP = D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


This means that in q(x) = xtQx, if we change the variables by the rule
x = Py,

q(x) = xtQx = ytP−1QPy = ytDy =
∑

i

λiy2
i .
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Goodies

Some applications

Among the potential applications, we mentioned the identification of
conics. For example, 10x2

1 + 6x1x2 + 2x2
2 = 5: The matrix

Q =

[
10 3

3 2

]
has for eigenvalues 11,1 with

P =
1√
10

[
1 −3
3 1

]
The change of variables x = Py gives

11y2
1 + y2

2 = 5,

the equation of an ellipse.
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Goodies

Another application, to the theory of max and min appears as follows:
If a is a critical point of the function f(x)–that is all the partial
derivatives vanish at x = a, ∂f

∂xi
(a) = 0, Taylor’s expansion of f in a

neighborhood of a gives

f(x) = f(a) + q(h) + error

where q is a quadratic polynomial on the vector h = x− a.The
corresponding symmetric matrix is

Q =

[
∂2f(x)

∂xi∂xj
(a)

]

If all the eigenvalues of Q are positive [negative], q(h) ≥ 0 Then
f(x) ≥ f(a) in a neighborhood of a: local max [local min] . The other
cases are saddle points [the higher dimensional analogues of inflection
points]
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Goodies

Rigid Motion

A rigid motion on the inner product space V is a mapping

T : V→ V

with the property

||T(u)− T(v)|| = ||u − v ||, ∀u, vV.

That is, T preserves distance of the images. A simple example is a
translation: If a is a fixed vector, the function

T(v) := a + v

is obviously a rigid motion. What else? We have seen that orthogonal
transformations S, SSt = I, preserve distances. Another such motion
is obtained by composition: following a translation with an orthogonal
mapping. What else? That is it!
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Goodies

Theorem
Any rigid motion T of V decomposes into T = S ◦ U, where S is an
orthogonal transformation and U is a translation.

Proof: Set a = T(O). Then the function F(u) = T(u)− a is a rigid
motion and F(O) = O. It is enough to prove that F is orthogonal. Note
that

||F(u)− F(O)|| = ||u −O||,

so F preserves lengths, which is the key property of orthogonal
transformations. BUT we are NOT assuming that F is linear, we must
prove it.
We first prove that F preserves dot products: 〈F(u),F(v)〉 = 〈u, v〉: We
start from the equality and expand both sides
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Goodies

||F(u)− F(v)||2 = ||u − v ||2

(F(u)− F(v)) · (F(u)− F(v)) = (u − v) · (u − v)

||F(u)||2︸ ︷︷ ︸
∗

−2〈F(u),F(v)〉+ ||F(v)||2︸ ︷︷ ︸
∗∗

= ||u||2︸ ︷︷ ︸
∗

−2〈u, v〉+ ||v ||2︸ ︷︷ ︸
∗∗

Thus proving
〈F(u),F(v)〉 = 〈u, v〉.

Now we are going to prove that F is a linear function by first showing
that it is additive:
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Goodies

||F(u + v)− F(u)− F(v)||2 ?
= 0

||F(u + v)||2 + ||F(u)||2 + ||F(v)||2− = ||u + v ||2 + ||u||2 + ||v ||2 −
2〈F(u + v),F(u)〉 − 2〈F(u + v),F(v)〉 = 2〈(u + v),u〉 − 2〈(u + v), v〉

+2〈F(u),F(v)〉 = +2〈u, v〉
= ||(u + v)− u − v ||2 = 0.

Scaling, that F(cu) = cF(u) for any c ∈ R, has a similar proof: Expand

||F(cu)− cF(u)||2
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HomeQuiz #8

HomeQuiz #8

Section 6.4: 2f, 4, 6, 12, 13, 15

Section 6.5: 6, 10, 11, 17, 27a
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HomeWork #9

Homework #9

1 Section 6.5, Problem 27d
2 Let A be a 3× 3 orthogonal matrix. Prove that A is similar to a

matrix of the form [
R O
O ±1

]
where R is a 2× 2 orthogonal matrix.

3 Section 6.3, Problem 22c
4 Let A be a skew-symmetric real matrix. If A diagonalizable, prove

that A = O.
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