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Last Class... and Today ...

• Determinants
• Some of its Applications
◦ Invariant subspaces
◦ Eigenvectors and Eigenvalues
◦ Diagonalization
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Motivation

Consider the following differential equations (or systems of)

y ′ = ay , a ∈ R

y ′′ + ay ′ + by = 0, a,b ∈ R

[
y ′1
y ′2

]
=

[
10y1 + 3y2

3y1 + 2y2

]

Question: What are their resemblances? Which ones can we solve
directly?
They are equations, or systems, of linear differential equations with
constant coefficients.
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Motivation

The first equation, y ′ = ay , is the easiest to deal with: y = ceat is the
general solution.

We will argue that the others, with a formulation using vectors and
matrices, have the same kind of solution. Let us do the last one first:[

y ′1
y ′2

]
=

[
10y1 + 3y2

3y1 + 2y2

]
Set

Y =

[
y1
y2

]
, Y′ =

[
y ′1
y ′2

]
, A =

[
10 3
3 2

]
Now observe:

Y′ = AY.
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Motivation

Y′ = AY.

Question: This looks like y ′ = ay , which has y = ceat for solution. You
should be tempted to expect the solution to be

Y = CetA.

What is etA, the exponential of the matrix tA? What could it be?
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Motivation

Let us turn to the second order differential equation

y ′′ + ay ′ + by = 0

If we set z1 = y and z2 = y ′ = z ′1, z ′2 = y ′′ = −ay ′ − by = −bz1 − az2
which can be written in matrix formulation as

Z =

[
z1
z2

]
, Z′ =

[
z ′1
z ′2

]
, A =

[
0 −b
1 −a

]
We get

Z′ = AZ,

as above Z = CetA if we could make sense of then exponential of a
matrix.
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Motivation

We return to this–promise–for the moment just think the possibility:

The function ex has a power series expansion

ex = 1 + x +
x2

2
+ · · ·+ xn

n!
+ · · ·

If we replace x by the square matrix A (and 1 by I), we get

eA = I + A +
A2

2
+ · · ·+ An

n!
+ · · · ,

We just must make sure that a theory of series of makes sense. The
answer will be sure. Think about the adjustments to be made.
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Motivation

Just for fun let us calculate the exponential of A =

[
1 1
0 1

]
.

A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
, An =

[
1 n
0 1

]
 1 + 1 + 1/2 + · · ·+ 1/n! + · · · 1 + 1 + 2 · 1/2 + · · ·+ n · 1/n! + · · ·︸ ︷︷ ︸

=e
0 1 + 1/2 + · · ·+ 1/n! + · · ·


eA =

[
e e
0 e

]
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Motivation

Convergence of eA

That

eA = I + A +
A2

2
+ · · ·+ An

n!
+ · · ·

makes sense is due to the power of n!:
Suppose A = [aij ] is m ×m and that the absolute value of its entries
|aij | ≤ r .This implies that the entries of A2

|
m∑

k=1

aikakj | ≤ mr2

Similarly one finds that the entries of An are bounded by

mn−1rn
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Motivation

This implies that the series in any entry of eA is bounded by the series

∞∑
n=0

mn−1rn

n!

that is convergent [e.g. use ratio test].

This proves eA makes sense since the series in each of its entries is
absolutely convergent.
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Motivation

Let us show a long application:

det(eA) = eTrace(A)

This is obvious if A is a diagonal matrix,

A =

 a 0 0
0 b 0
0 0 c

 , eA =

 ea 0 0
0 eb 0
0 0 ec

 , det(eA) = ea+b+c ,

but in general...
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Eigenvectors and Eigenvalues

Sweet representation of a linear transformation

Let V be a finite dimensional vector space and

T : V→ V

a linear transformation.
Question: Is there a basis B = {v1, . . . , vn} of V so that the matrix
representation

[T]B

is as ‘simple’ [e.g. with plenty of 0’s] as possible?
Answer: Well... but for the most ‘interesting’ matrices the answer is
YES.
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Eigenvectors and Eigenvalues

Invariant subspace

Let V be a finite dimensional vector space and

T : V→ V

a linear transformation.
If W ⊂ V is a subspace, it is of interest to know whether for w ∈W its
image T(w) ∈W. Clearly this will not happen often.

Definition
W is a T-invariant subspace if T(W) ⊂W. That is, the restriction of
(the function) T to W is a linear transformation of it. We denote the
restriction of T to W by TW.
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Eigenvectors and Eigenvalues

Let us see what this implies for the matrix representation of T. Let
B = {w1, . . . ,wr} be a basis of W, and complete it to a basis of V

A = {w1, . . . ,wr , vr+1, . . . , vn}.

Since T(wi) ∈W, it is a linear combination of the first r vectors, the first
r columns of the matrix is

[T]A =

[
[TW]B ∗ · · · ∗

O(n−r)×r ∗ · · · ∗

]

[T]A =


a b ∗ · · · ∗
c d ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 ∗ · · · ∗
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Eigenvectors and Eigenvalues

Blocks

Suppose T is a L.T. of vector space V with a basis
A = v1, . . . , vr , vr+1, . . . , vn. Suppose T(vi) for i ≤ r , is a linear
combination of the first r basis vectors, and T(vi) for i > r , is a linear
combination of the last n − r basis vectors.
Claim: The matrix representation has the block format

[T]A =

[
r × r O

O (n − r)× (n − r)

]
This can be refined to more than two blocks. The extreme case is when
all blocks are 1× 1. The representation is then said to be diagonal.
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Eigenvectors and Eigenvalues

Eigenvector

The extreme case of an invariant subspace is one of the top 5 notions
of L.A.:

Definition
An eigenvector of the linear transformation T is a nonzero vector v
such that

T(v) = λ · v .

The scalar λ is called the (corresponding) eigenvalue.

Means: The line Fv is an invariant subspace of T. Note that v must be
nonzero, but that λ could be zero. Observe who comes first:
eigenvector→ eigenvalue.
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Eigenvectors and Eigenvalues

To keep in mind:

v 6= O, T(v) = λv

Note: Any nonzero multiple of v is also an eigenvector [with the same
eigenvalue]

av 6= 0 T(av) = aT(v) = aλv = λ(av)

The subspace spanned by v is invariant under T
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Eigenvectors and Eigenvalues

Examples

• One of the most important L.T. of Mathematics is T := d
dt . (On the

appropriate V.S.) Its eigenvectors are

d
dt

(f (t)) = λ · f (t),

that is f (t) = eλt and its nonzero scalar multiples ceλt .
• Let T be the identity L.T. I. Then any nonzero vector is a

eigenvector. Same property for the [null] O mapping.
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Eigenvectors and Eigenvalues

• For an angle 0 < α < π, let

T(x , y) = (x cosα+ y sinα,−x sinα+ y cosα)

This is a rotation in the plane by α degrees. Clearly there is no
nonzero vector v in the real plane R2 that is aligned with T(v).
• Let T be the L.T. 

1 0 0

0 2 0

0 0 0


Its eigenvectors are (and their nonzero multiples)

T(i) = 1 · i , T(j) = 2 · j , T(k) = 0 · k
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Eigenvectors and Eigenvalues

If T is a linear transformation of F2 with a matrix representation

A =

[
0 1
0 0

]
,

we know that

A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
Thus, if

A(v) = λv , v 6= 0

A(A(v)) = A2(v) = O = A(λv) = λ(A(v)) = λ2v

so λ = 0 since v 6= O.
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Eigenvectors and Eigenvalues

Let V be the vector space of all n × n real matrices, and let T be the
transformation

T(A) = At

T is a linear transformation. If A 6= O is one of its eigenvectors,

At = λA

So, transposing again we get

A = (At)t = λAt = λ2A

(λ2 − 1)A = O

This means that λ = ±1
If λ = 1, A is symmetric
If λ = −1, A is skew-symmetric
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Eigenvectors and Eigenvalues

Question:

Given a n-by-n matrix A [usually representing some linear
transformation T], how are the eigenvectors to be found?
Although the eigenvalues come after the eigenvectors, in some
approaches they will appear first. Look at the following analysis:
Av = λv , for v 6= O means that

(A− λIn)v = O,

Conclusion: v is a nonzero vector of the nullspace of A− λIn and
therefore rank(A− λIn) < n. This in turn means that

det(A− λIn) = 0.
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Eigenvectors and Eigenvalues

Characteristic polynomial of a matrix

Definition
The characteristic polynomial of the n-by-n matrix A = [aij ] is the
polynomial

p(x) = det(A− x In) = det

 a11 − x · · · a1n
...

. . .
...

an1 · · · ann − x

 .
The equation p(x) = 0 is called the characteristic equation.

Observe that det(A− x In) is a polynomial of degree n,

det(A− x In) = (−1)nxn + cn−1xn−1 + · · ·+ c0.
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Eigenvectors and Eigenvalues

The characteristic polynomial of A =

[
10 3

3 2

]
is

det
[

10− x 3
3 2− x

]
= (10− x)(2− x)− 9 = x2 − 12x + 11

Its roots are

λ =
12±

√
122 − 4× 11

2
= 6± 5
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Eigenvectors and Eigenvalues

With the eigenvalues in hand we solve for the eigenvectors.

λ = 11: Will determine the nullspace of A− 11I2[
10− 11 3 0

3 2− 11 0

]
→
[
−1 3 0
0 0 0

]
v1 =

[
3
1

]
λ = 1: Will determine the nullspace of A− I2[

10− 1 3 0
3 2− 1 0

]
→
[

3 1 0
0 0 0

]
v2 =

[
1
−3

]
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Eigenvectors and Eigenvalues

Let us Verify that it will work out for any real symmetric matrix

A =

[
a b
b c

]
The characteristic polynomial is

det
[

a− x b
b c − x

]
= (a− x)(c − x)− b2 = x2 − (a + c)x + ac − b2,

whose roots are

λ =
a + c ±

√
(a + c)2 − 4(ac − b2)

2

Incredibly (?) the quantity under the sign is (a− c)2 + 4b2 ≥ 0, so
either there are two distinct real roots or a = c, b = 0. In both cases
the matrix is diagonalizable.
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Eigenvectors and Eigenvalues

A different kind is the rotation Rα by α degrees in the plane R2:[
cosα − sinα
sinα cosα

]
. Its characteristic polynomial is

det
[

cosα− x − sinα
sinα cosα− x

]
= (cosα−x)2+sin2 α = x2−(2 cosα)x+1.

Its roots are

λ =
2 cosα±

√
4 cos2 α− 4
2

,

which is not real unless α = 0, π.
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Eigenvectors and Eigenvalues

We already know that rotations 0 < α < π have no real eigenvalues.

Let us try α = π/2 anyway: A =

[
0 1
−1 0

]
. The characteristic

polynomial is x2 + 1, so the (complex) eigenvalues are λ = ±i .

λ = i : Will determine the nullspace of A− i I2[
−i 1 0
−1 −i 0

]
→
[
−i 1 0
0 0 0

]
, v1 =

[
1
i

]
λ = −i : Will determine the nullspace of A + i I2[

i 1 0
−1 i 0

]
→
[

i 1 0
0 0 0

]
, v2 =

[
1
−i

]

Wolmer Vasconcelos (Set 6) Math 350: Linear Algebra Fall 2010 30 / 86



Eigenvectors and Eigenvalues

Proposition
Let A be a n-by-n matrix over the field F. A scalar λ ∈ F is an
eigenvalue for some eigenvector v ∈ Fn iff λ is a root of the polynomial
det(A− x In).

Proof.
We have already observed that if Av = λv , v 6= 0, then λ is a root of
the char polynomial. Conversely, if det(A− λIn) = 0, then
rank(A− λIn) < n. This implies, by the dimension formula, that the
nullspace of A− λIn 6= O. Any nonzero vector in this nullspace will
satisfy

Av = λv .
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Eigenvectors and Eigenvalues

Corollary
The number of distinct eigenvalues of the n-by-n matrix A is at most n.
(The set of eigenvalues of a matrix–or of a linear transformation is
called its spectrum).
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Eigenvectors and Eigenvalues

Characteristic polynomial of a linear
transformation

It seems that we have only defined the characteristic polynomial for
matrices. Suppose T is a L.T. If we have two bases A, B of the vector
space, we have two representations

A = [T]A, B = [T]B

and therefore we have, apparently, two possibly different polynomials

det(A− x In), det(B− x In).

But we proved that A and B are related: There is an invertible matrix P
such that B = P−1AP. Now observe
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Eigenvectors and Eigenvalues

det(B− x In) = det(P−1AP− x In) = det(P−1AP− P−1x InP)

= det(P−1(A− x In)P)

= det(P−1) det(A− x In) det(P)

= det(A− x In)

Conclusion: The characteristic polynomial is the same for all
representations of T.
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Eigenvectors and Eigenvalues

Eigenspaces

Definition
If λ is an eigenvalue of A, the nullspace of A− λIn, denoted by Eλ, is
called the eigenspace associated to λ.

Observe that Eλ is invariant under A: If v ∈ Eλ then Av ∈ Eλ.
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Eigenvectors and Eigenvalues

Polynomials and their roots

If f (x) = anxn + · · ·+ a0 is a polynomial of degree n, with coefficients
in the field F a root is a scalar r such that f (r) = 0. It is a hard problem
to find r .

Proposition
If f (x) and g(x) are two polynomials, then there exist polynomials q(x)
and r(x) where

f (x) = q(x)g(x) + r(x),

where r(x) = 0 or degree r(x) < degree g(x).

q(x) is called the quotient, and r(x) the remainder of the division of
f (x) by g(x). They are found by the long division algorithm.

Corollary
If r is a root of the nonzero polynomial f (x), then f (x) = (x − r)q(x),
where deg q(x) = deg f (x)− 1. As a consequence, a polynomial f (x)
of degree n has at most n roots.
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Eigenvectors and Eigenvalues

Algebraic multiplicity of a root

If f (x) = anxn + · · ·+ a0 is a nonzero polynomial and r is one of its
roots,

f (x) = (x − r)g(x).

It may occur that r is a root of g(x), g(x) = (x − r)h(x). As the
degrees of the quotients decrease, we eventually have

f (x) = (x − r)sq(x), q(r) 6= 0.

Definition
We say that r is a root of f (x) of order or multiplicity s.
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Eigenvectors and Eigenvalues

Multiplicities of an eigenvalue

Let λ be an eigenvalue of the matrix A. There are two notions of
multiplicity associated to λ:

If λ is a root of order s of the characteristic polynomial
det(A− x In), we say that λ has algebraic multiplicity s.
If the eigenspace Eλ has dimension t , we say that λ has
geometric multiplicity t .
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Eigenvectors and Eigenvalues

Proposition
For any eigenvalue λ of a matrix A,

algebraic multiplicity ≥ geometric multiplicity.

Proof.
Assume v1, . . . , vt is a basis of Eλ, and we use it as the beginning of a
basis for the whole vector space, the representation of the L.T. has the
block format[

λIt B
O C

]
, det(A− x In) = (λ− x)t det(C− x In−t).
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Eigenvectors and Eigenvalues

Properties of eigenvalues

Let A be a square matrix.
1 If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2:

A2(v) = A(A(v)) = A(λv) = λA(v) = λλv = λ2v .

2 More generally, if g(x) is a polynomial (e.g. x2 − 2x + 1) then

g(A)(v) = g(λ)v , (A2 − 2A + I)(v) = (λ2 − 2λ+ 1)(v).

3 If A is invertible, A−1(v) = 1
λv .
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Eigenvectors and Eigenvalues

1 If p(x) = det(A− x In) = (−1)nxn + · · ·+ a0 is the characteristic
polynomial of A, then a0 = det(A). Plug in x = 0 in p(x).

2 If λ1, . . . , λn are the eigenvalues of A, then

det(A) = λ1 · λ2 · · ·λn.

In the decomposition of p(x),

p(x) = (−1)n(x − λ1) · · · (x − λn),

plug in x = 0 and use the observation above.
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Eigenvectors and Eigenvalues

Complex Numbers

1 If the field is the complex number filed C, any polynomial
f (x) ∈ C[x ] factors completely

f (x) = an(x − r1) · · · (x − rn)

As a consequence, the eigenvalues of a complex matrix always
exist in the field.

2 If A is a real matrix, its characteristic polynomial
p(x) = det(A− x In) is a real polynomial and always have a full set
λ1, . . . , λn of complex eigenvalues, some of which may be real.
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Eigenvectors and Eigenvalues

1 If λ = a + bi , is a complex root of f (x), f (λ) = 0, observe that

f (a + bi) = 0⇒ f (a− bi) = 0,

because all coefficients of f (x) are real.Let us explain: Say

7(a + bi)3 − 2(a + bi)2 + 117(a + bi) + π = 0.

Complex conjugation, a + bi → a + bi = a− bi has the property:
z1z2 = z1 · z2. But if z1, say, is real (like the coefficients of the
polynomial), z1 = z1, so they are not affected by changing all
a + bi into a− bi . So if one is a root, so will be the other.

2 Thus the complex conjugate a− bi of an eigenvalue a + bi is also
an eigenvalue: So complex eigenvalues of a real matrix occur in
pairs.
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Diagonalization

Linear independence of eigenvectors

Let T be a L.T. (or matrix). Suppose there is a basis made up of
eigenvectors, say B = {v1, . . . , vn}, T(vi) = λivi . The corresponding
matrix representation is

[T]B =

 λ1 · · · 0
...

. . .
...

0 · · · λn


This is not always possible: Let A =

[
0 1
0 0

]
whose characteristic

polynomial is x2. There is just one eigenvalue, λ = 0. But the

corresponding eigenspace E0 has for basis
[

1
0

]
. We do not have a

basis of eigenvectors, so A is not diagonalizable.
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Diagonalization

Let us explore what is needed to have a basis of eigenvectors.

Proposition
Let T be a linear transformation and let v1, . . . , vr be a set of
eigenvectors of T, associated to distinct eigenvalues λ1, . . . , λr . Then
the vi are linearly independent.
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Diagonalization

Proof. Suppose c1v1 + · · ·+ cr vr = O. Using induction on r , we are
going to show that all ci = 0. We are going to multiply the equation by
λ1 and apply T to it to obtain the following two equations:

λ1(c1v1 + · · ·+ cr vr ) = λ1c1v1 + · · ·+ λ1cr vr = 0
T(c1v1 + · · ·+ cr vr ) = λ1c1v1 + · · ·+ λr cr vr = 0

If we subtract one from the other we get the shorter equation,

(λ2 − λ1)c2︸ ︷︷ ︸ v2 + · · ·+ (λr − λ1)cr︸ ︷︷ ︸ vr = 0

By the induction hypothesis, all ci(λi − λ1) = 0, for i > 1. Since
λi 6= λ1, this means ci = 0 for i > 1. Finally, since v1 6= 0 this will imply
c1 = 0 as well.
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Diagonalization

Let λ1, . . . , λr be the set of eigenvalues of T, and let Eλ1 , . . . ,Eλr be the
corresponding set of eigenspaces. For each of these we pick a basis
Bi . For simplicity, take 3 eigenvalues and assume the bases chosen for
the 3 eigenspaces are

{u1,u2,u3}, {v1, v2}, {w1,w2}

Claim: These 7 vectors are linearly independent. Suppose

a1u1 + a2u2 + a3u3︸ ︷︷ ︸
u

+ b1v1 + b2v2︸ ︷︷ ︸
v

+ c1w1 + c2w2︸ ︷︷ ︸
w

= 0,

which we write as 1 · u + 1 · v + 1 · w = 0. Note that if u 6= 0 it is an
eigenvector (and v and w as well), by the Proposition, u = v = w = 0,
and then that a1 = · · · = c2 = 0, by the linear independence of the
respective bases.

Wolmer Vasconcelos (Set 6) Math 350: Linear Algebra Fall 2010 48 / 86



Diagonalization

Theorem
Let A be a n-by-n matrix with n eigenvalues (maybe repeated). Then A
is diagonalizable iff for every eigenvalue its geometric multiplicity is
equal to its algebraic multiplicity.

Proof. Let λ1, . . . , λr be the set of DISTINCT eigenvalues of A, and let
Eλ1 , . . . ,Eλr be the corresponding set of eigenspaces. We have the
equalities ∑

i

geom. mult. of λi =
∑

i

dim Eλi∑
i

alg. mult. of λi = n.

Since alg. mult. of λi ≥ geom. mult. of λi , if equality for each i holds,
the previous discussion shows that we can have a basis of
eigenvectors by collecting bases in the Eλi . The converse is clear.
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Diagonalization

Corollary
Let A be a n-by-n matrix with n distinct eigenvalues. Then A is
diagonalizable.

Theorem
Let A be a n-by-n matrix. A is invertible iff λ = 0 is not an eigenvalue.

Proof.
A is invertible iff it is one-one: A(v) 6= 0 · v if v 6= O.
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Diagonalization

Let A be a n-by-n matrix and assume B = {v1, . . . , vn} is a basis made
up of its eigenvectors, A(vi) = λivi . The matrix

P = [v1| · · · |vn]

is invertible since the vi form a basis. Claim:

P−1AP = D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


To prove we apply D to the standard basis e1, . . . ,en. Note that
P(e1) = v1. For instance

D(e1) = P−1(A(P(e1))) = P−1(A(v1)) = P−1(λ1v1) = λ1P−1(v1) = λ1e1
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Diagonalization

Note that if A is diagonalizable, that is there is an invertible matrix P
such that P−1AP = D (= diagonal), a host of related matrices are also
diagonalizable:

1 Any power of A is diagonalizable (let us do square):

D2 = (P−1AP)(P−1AP) = P−1A PP−1︸ ︷︷ ︸
I

AP = P−1A2P

and certainly D2 is diagonal.
2 If A is invertible [and diagonalizable!] its inverse A−1 is also

diagonalizable:

D−1 = (P−1AP)−1 = P−1A−1 (P−1)
−1︸ ︷︷ ︸ = P−1A−1P

3 If g(x) is any polynomial and A is diagonalizable, then g(A) is
diagonalizable (check).
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Diagonalization

Diagonalization Summary

Let A be a n-by-n matrix for which we want to find a possible
diagonalization.

1 Find the characteristic polynomial p(x) = det(A− x In). Rating:
Routine, if at times long.

2 Decompose p(x) and collect factors

p(x) = (−1)n(x − λ1)
m1 · · · (x − λr )

mr

Rating: Very Hard
3 For each λi find dim Eλi and check it is mi . Rating: Gaussian elim

Comment: This is kind of vague. We need predictions. That is:
Guarantees that certain kinds of matrices are diagonalizable.
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Diagonalization

Examples

Example: Let A be the real matrix 2 1 1
0 1 2
0 0 c

 ,
where c is some number.
(a) What are the eigenvalues of A?
(b) If c 6= 1,2, why is A diagonalizable? What happens when c = 1 or
c = 2?

Answer: (a) The characteristic polynomial is

det(A− x I3) = (2− x)(1− x)(c − x),

whose roots are the eigenvalues: 1,2, c.

(b) If c 6= 1,2, there are [automatically] 3 independent eigenvectors
and therefore the matrix is diagonalizable.
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Diagonalization

If c = 1 or c = 2, it may go either way [diagonalizable or not] so we
must check further to see whether the geometric multiplicities are
equal or not to the algebraic multiplicities. For c = 1: The nullspace of
A− I3  1 1 1

0 0 2
0 0 1


is generated by  −1

1
0


and A is not diagonalizable.
Doing likewise for c = 2 will again show that A is not diagonalizable.
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Diagonalization

Example:

Given the real matrix

A =

 2 0 3
0 2 0
3 0 5

 A− x I3 =

 2− x 0 3
0 2− x 0
3 0 5− x


(a) Find its characteristic polynomial.
(b) Find its eigenvalues.
(c) Explain why A is diagonalizable. [You do not have to find the
eigenvectors to answer.]

Answer: (a) To find det(A− x I3), we expand along the second
column

det(A− x I3) = (2− x)((2− x)(5− x)− 9) = (2− x)(x2 − 7x + 1).
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Diagonalization

(b) Use the quadratic formula to find the roots of the factor x2 − 7x + 1:

7±
√

49− 4
2

=
7± 3

√
5

2

Together with 2 these roots are the eigenvalues.

(c) Since the 3 eigenvalues are distinct, we have a basis of
eigenvectors for R3 and A is diagonalizable.
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Diagonalization

Chaos

Let λ be an eigenvalue of the matrix A: Av = λv . To find v 6= 0 we find
the nullspace of A− λIn.
Suppose a mistake was made and instead of λ we have λ+ ε. If this
value is not an eigenvalue the nullspace of

A− (λ+ ε)In

is O, not a vector ‘close’ to v . What to do?
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Diagonalization

Some stability

Question: Assume A admits a basis of eigenvectors. How can we find
one, or more eigenvectors, if we cannot solve the characteristic
equation? Here is a popular technique. Let u ∈ Rn picked at random
[?]. We know that

u = u1 + u2 + · · ·+ ur , Aui = λiui

where the ui belong to different eigenspaces. Of course, the right hand
of this equality is invisible to us. Let us assume |λ1| > |λi |, i > 1.
Observe what happens when we apply A repeatedly to u:

An(u) = λn
1u1︸︷︷︸+λn

2u2 + · · ·+ λn
r ur

The growth in the coordinates of An(u) is coming from λn
1u1.
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Diagonalization

If we compare the two vectors

An(u) = λn
1u1︸︷︷︸+λn

2u2 + · · ·+ λn
r ur

An+1(u) = λn+1
1 u1︸ ︷︷ ︸+λn+1

2 u2 + · · ·+ λn+1
r ur

It will follow that

lim
n

||An+1(u)||
||An(u)||

= |λ1|,

more precisely: If we set vn = An(u)
||An(u)|| , then

A(vn) ' λ1vn, n� 0.
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Diagonalization

Let us re-visit a problem and solve it in two different ways: It is the
system of differential equations

Y =

[
y1
y2

]
, Y′ =

[
y ′1
y ′2

]
, A =

[
10 3

3 2

]
, Y′ = AY.

Earlier we found the eigenvalues and bases for the eigenspaces:

λ = 11 : v1 =

[
3
1

]
, λ = 1 : v2 =

[
1
−3

]
If we change the coordinates

Z =

[
z1
z2

]
, Y =

[
3 1
1 −3

]
︸ ︷︷ ︸

P

Z

Now observe:

Z′ = P−1Y′ = P−1AY = (P−1AP)Z =

[
11 0
0 1

]
Z.
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Diagonalization

This is a system that is easy to solve

z ′1 = 11z1 → z1 = c1e11x

z ′2 = z2 → z2 = c2ex

From which we get the solution

Y =

[
3 1
1 −3

] [
c1e11x

c2ex

]
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Diagonalization

Another solution

Let Y′ = AY be a system of differential equations in the variable t . If it
is just y ′ = ay , the solution would be y = ceat :

y = ceta = c(1 + ta + t2 a2

2
+ · · ·+ tn an

n!
+ · · · )

Let us try the same with a matrix. If we replace a by the square matrix
A (and 1 by I), we get

etA = I + tA + t2 A2

2
+ · · ·+ tn An

n!︸ ︷︷ ︸+ · · ·

Note that the derivative of the nth term is ntn−1 An

n! = A(tn−1 An−1

(n−1)!), and

thus if Y = etA then Y′ = AY.
We just must make sure that a theory of series makes sense and
taking derivatives of these expressions makes sense.
At the end we will also put in a constant: Y = etAY0.
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Diagonalization

The expression we wrote above for etA is actually a set of 22 series,
one for each cell (i , j) of the 2-by-2 matrix. That is, when we consider
the sum of the terms

tn An

n!

we observe that convergence, for one, comes from the fact that the n!
factor grows much faster than the entries An

(i,j). Let us give an
example. Suppose A is a 2-by-2 diagonal matrix with 11 and 1 on the
diagonal. An is also diagonal with entries 11n nd 1n. Adding the series
would give the matrix[

e11t 0
0 et

]
=

[
1 + 11t + 1/2(11t)2 + · · · 0

0 1 + t + 1/2t2 + · · ·

]

Not only this is a nice computation, but tells us the same would work
whenever A is a diagonal matrix. Let us show how it would work when
A diagonalizable.
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Diagonalization

Let us show how compute etA if A = PDP−1, with D diagonal.

Noting that
An = PDnP−1,

we have

etA =
∑ tn

n!
An =

∑ tn

n!
PDnP−1

= P(
∑ tn

n!
Dn)P−1

= PetDP−1

Exercise: det eA = eTrace (A) . (This is beautiful because while we
have a great deal of trouble with eA, its determinant is easy!)
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Diagonalization

Theorem
The solution of the differential equation Y′ = AY is

Y = etAC,

for some constant vector C.

Observe where the constant goes. If you set t = 0, Y0 = C, that is the
components of C are the initial condition: y1(0), y2(0).

Clearly the method will work for matrices of any size.

If A is diagonalizable we know how to compute etA. If not ... also!
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Homework

Outline

1 Motivation

2 Eigenvectors and Eigenvalues

3 Diagonalization

4 Homework

5 HomeQuiz #6

6 Invariant Subspaces

7 Cayley-Hamilton Theorem
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Homework

Homework

1 Section 5.1: 2d, 3c, 4h, 14, 16, 17, 21

2 Section 5.2: 2g, 8, 12, 13, 19
3 Prove that for any real n × n matrix A, det(eA) = etrace(A): First

prove for A upper triangular, and then use the fact that there are
complex matrices P and B such that P−1AP = B, where B is
upper triangular.
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HomeQuiz #6

Outline

1 Motivation

2 Eigenvectors and Eigenvalues

3 Diagonalization

4 Homework

5 HomeQuiz #6

6 Invariant Subspaces

7 Cayley-Hamilton Theorem
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HomeQuiz #6

HomeQuiz #6

1 Section 5.1: 2d, 3c, 18a

2 Section 5.2: 2g, 12, 19

3 Prove that for any real n × n matrix A, det(eA) = etrace(A): First
prove for A upper triangular, and then use the fact that there are
complex matrices P and B such that P−1AP = B, where B is
upper triangular.
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HomeQuiz #6

Last 2 Classes... and Today ...

• Eigenvectors and Eigenvalues
• Characteristic Polynomials
• Eigenspaces & Multiplicities
• Diagonalization
◦ Invariant subspaces
◦ Cyclic subspaces
◦ Cayley-Hamilton Theorem
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Invariant Subspaces

Outline

1 Motivation

2 Eigenvectors and Eigenvalues

3 Diagonalization

4 Homework

5 HomeQuiz #6

6 Invariant Subspaces

7 Cayley-Hamilton Theorem
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Invariant Subspaces

Let T : V→ V be a linear transformation. A T-invariant subspace is a
subspace W such that T(W) ⊂W. This means that when we restrict
the function T to the subspace we still get a L.T. but on a smaller space

TW : W→W.

1 the nullspace W = N(T): T(N(T)) = (O) ⊂ N(T)

2 the range W = R(T): T(R(T)) ⊂ R(T)

3 for any eigenvector v the line W = Fv : T(v) = λv ∈W

It is easier to study TW, and from there study T. Let us clarify this.
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Invariant Subspaces

Usefulness

Pick a basis w1, . . . ,wr of W and enlarge it to the basis
A = {w1, . . . ,wr , vr+1, . . . , vn} of V. The matrix representation of T,

[T(w1) . . . ,T(wr ),T(vr+1), . . . ,T(vn)]

has the block format [
A B
O C

]
where A is the matrix representation of TW.
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Invariant Subspaces

Note how this gives that the characteristic polynomial of T is the
product

det
[

A− x Ir B
O C− x In−r

]
= det(A− x Ir ) det(C− x In−r )

Theorem
The characteristic polynomial of the restriction TW divides the
characteristic polynomial of T.
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Invariant Subspaces

Cyclic invariant subspace

An effective method to find invariant subspaces for a L.T. T is the
following: Pick a nonzero vector w ∈ V and consider the sequence

w ,T(w),T2(w), . . . ,Tm(w), . . .

If V is finite-dimensional, these vectors cannot be linearly independent,
so for some m (≤ dim V)

Tm(w) = c0w + c1T(w) + c2T2(w) + · · ·+ cm−1Tm−1(w).
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Invariant Subspaces

Example

Let T : F3 → F3 be defined by

T(a,b, c) = (−b + c,a + c,3c), w = e1 = (1,0,0)

T(e1) = (0,1,0) = e2

T2(e1) = T(e2) = (−1,0,0) = −e1

(w ,T(w),T2(w), . . .) = (e1,e2).

T2(w) = −w
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Invariant Subspaces

Proposition
Let m be the smallest integer such that

Tm(w) = c0w + c1T(w) + c2T2(w) + · · ·+ cm−1Tm−1(w).

Then w ,T(w), . . . ,Tm−1(w) are linearly independent and span a
T-invariant subspace W. Moreover, the characteristic polynomial of TW
is (−1)m(xm − cm−1xm−1 − · · · − c0).

Proof: That w , . . . ,Tm−1(w) are lin. ind., follows from the choice of m.
To prove that W is invariant, note

w → T(w)→ T2(w)→ · · · → Tm−1(w)

that the image of Tm−1(w) is Tm(w), which is a linear combination of
Ti(w), i < m.
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Invariant Subspaces

Now we write the matrix representation of TW:
0 0 · · · 0 c0
1 0 · · · 0 c1
...

...
. . .

...
...

0 0 · · · 1 cm−1
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Invariant Subspaces

For m = 4 the matrix is 
0 0 0 c0
1 0 0 c1
0 1 0 c2
0 0 1 c3


whose characteristic polynomial is [expanding along the last column

det


−x 0 0 c0
1 −x 0 c1
0 1 −x c2
0 0 1 c3 − x

 = −c0 − c1x + c2(−x2)− (c3 − x)x3

= x4 − c3x3 − c2x2 − c1x − c0.
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Invariant Subspaces

1 The invariant subspace W = (w ,T(w), . . . ,Tm−1(w)) is called the
cyclic subspace generated by w .

2 The characteristic polynomial of A = TW is
p(x) = (−1)m(xm − cm−1xm−1 − · · · − c0). One of its properties is

p(A) = O,

that is, the matrix A is a ‘zero’ of the polynomial p(x).

To verify, we check that p(A)(v) = O for every vector in W. Since
v is a lin. comb. of the Ai(w), i < m, ETS p(A)(Ai(w)) = O.
For i = 0, p(A)(w) = 0, by the choice of m. For i > 0,

p(A)(Ai(w)) = Ai(p(A)(w)) = O.
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Cayley-Hamilton Theorem

Outline

1 Motivation

2 Eigenvectors and Eigenvalues

3 Diagonalization

4 Homework

5 HomeQuiz #6

6 Invariant Subspaces

7 Cayley-Hamilton Theorem
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem

Let A be an n × n matrix. If we consider a set of powers of A, including
I,

I,A,A2, . . . ,Am

and m is large enough, say m ≥ n2, they cannot be linearly
independent:
Reason: The list has > n2 vectors of the space of n × n matrices
which is of dimension n2. This leads to the linear relation

c0I + c1A + · · ·+ cmAm = 0,

where not all ci are zero. In other words, the nonzero polynomial

f(x) = c0 + c1x + · · ·+ cmxm

has the property
f(A) = 0
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Cayley-Hamilton Theorem

Remark: Suppose c0 6= 0. Then from

c0I + c1A + · · ·+ cmAm = 0

we get
A(−c1

c0
I− · · · − cm

c0
Am−1) = I

that is
A−1 = −(

c1

c0
I + · · ·+ cm

c0
Am−1)

The next theorem is a classic. What the Pythagorean is for triangles,
it is for matrices.
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Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton)
For a matrix A of characteristic polynomial p(x) = det(A− x I),
p(A) = O.

This means that for any vector v , p(A)(v) = O. The proof is now easy:
For v 6= O, consider the cyclic subspace

W = (v ,A(v), . . . ,Am−1(v)).

If g(x) is the characteristic polynomial of the restriction of A on W, we
proved that

1 g(x) divides p(x): p(x) = q(x)g(x)
2 g(A)(v) = O
3 It follows that

p(A)(v) = q(A)(g(A)(v)) = q(A)(O) = O

to prove the assertion.
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Cayley-Hamilton Theorem

What is wrong with the ‘proof’: Plug x = A in

det(A− x In) = (−1)n(xn − an−1xn−1 + · · ·+ (−1)a
0)

det
[

a11 − x a12
a21 a22 − x

]
= x2 − (a11 + a22)x + a11a22 − a12a21
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