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Multilinear functions

What is this? We have been studying linear functions on vector spaces

T : V→W,

T(au + bv) = aT(u) + bT(v).
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A bilinear function is an extension of the product operation

(x, y)→ xy.

Note that it is additive in ‘each variable’, e.g.

x(y1 + y2) = xy1 + xy2

(x1 + x2)y = x1y + x2y

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 5 / 64



We want to examine functions like these whose sources and targets
are vector spaces. For example, the function B is bilinear if

B : V× V→W,

is linear in each variable

B(u1 + u2, v) = B(u1, v) + B(u2, v), B(au, v) = aB(u, v)

B(u, v1 + v2) = B(u, v1) + B(u, v2), B(u, av) = aB(u, v)

You can define trilinear, and generally multilinear in the same manner:
B(v1, v2, . . . , vn), linear in each variable.
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Let us begin with a beautiful example: Let V = F2 be a plane. For
every pair of vectors u = (a, b), v = (c, d), define

B(u, v) = ad − bc.

You can check easily that B is a bilinear function from F2 into F. For
example, B(u, v1 + v2) = B(u, v1) + B(u, v2).

This particular function is called the 2-by-2 determinant: det(u, v) It
has many uses in Mathematics.
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Another example, on this same space, is

C(u, v) = ac + bd .

This one is called a dot or scalar product.

B(u, v) and C(u, v) read different info about the pair of vectors u, v as
we shall see.
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Another well-known bilinear transformation F3 × F3 → F3 is the
following: For u = (a, b, c), v = (d , e, f ),

(u, v)→ u ∧ v = (bf − ce,−af + cd , ae − bd)

This function is called the exterior, or vector product of F3.

When F = R, it has many useful properties geometric used in Physics
[in Mechanics, Electricity, Magnetism]. Partly this arises because

u ∧ v ⊥ u & ⊥ v

and its magnitude says something about the parallelogram defined by
u and v .
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There are two main classes of multilinear functions. Say B is n-linear,
that is it has n input cells and is linear in each separately: B(v1, . . . , vn).
B is symmetric: If you exchange the contents of two cells

B(v1, . . . , vi , . . . , vj , . . . , vn) = B(v1, . . . , vj , . . . , vi , . . . , vn)

causes no change. Like the dot product above.

B is skew-symmetric or alternating: If

B(v1, . . . , vi = v , . . . , vj = v , . . . , vn) = 0

whenever two cells have the same content. Like the determinant
above.
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Let Mn(F) be the vector space of all n × n matrices over the field F.
Consider the trace function on A ∈ Mn(F), A = [aij ]:

trace([aij ]) =
n∑

i=1

aii

Now define the function

T(A, B) = trace(AB)

T is clearly a bilinear function. It is a good exercise (do it) to show that

trace(AB) = trace(BA)

so T is symmetric
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Here is a variation that will appear later

T(A, B) = trace(ABt),

where Bt denotes the transpose of B.
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Question: On the same space Mn(F), define

total([aij ]) =
∑
i,j

aij

It is clear that
S(A, B) = total(AB)

is a bilinear function.

Is it symmetric?
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Proposition
If B is an alternating multilinear function, then

B(v1, . . . , vi , . . . , vj , . . . , vn) = −B(v1, . . . , vj , . . . , vi , . . . , vn),

that is, switching two variables changes the sign of the function.

Proof.
For convenience we assume B(u, v) has two variables. We must show
that B(v , u) = −B(u, v). By definition, we have

B(u + v , u + v) = 0, which we expand

= B(u, u) + B(u, v) + B(v , u) + B(v , v)

Notice that the first and fourth summands are zero. Thus
B(u, v) + B(v , u) = 0, as desired.
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Here are some additional properties.

Proposition
The set M of all n–linear functions on the vector space V with values in
W is a vector space. The subsets S and K of symmetric and
alternating functions are subspaces.

Proof.
If B1 and B2 are (say) symmetric bilinear functions,

(c1B1+c2B2)(u, v) = c1B1(u, v)+c2B2(u, v) = c1B1(v , u)+c2B2(v , u),

which shows that any linear combination of B1 and B2 is symmetric.
The argument is similar for alternating functions.
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If B is bilinear and 2 6= 0, we could do as in an early exercise:

B(u, v) =
B(u, v) + B(v , u)

2
+

B(u, v)− B(v , u)

2
that shows that every bilinear function is a [unique] sum of a symmetric
and an alternating bilinear function.
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It is very easy to create multilinear functions, at least general functions
and symmetric ones. Here are a couple of approaches:

Let f1, f2 and f3 be linear functions on V = F3. Now define

T : V3 → F, T(v1, v2, v3) := f1(v1)f2(v2)f3(v3).

T is clearly trilinear
Let T be a trilinear function on F3. We get a symmetric function S
by ‘mixing up’ [symmetrizing] T:

S(v1, v2, v3) := T(v1, v2, v3) + T(v2, v1, v3) + T(v1, v3, v2)

+ T(v3, v1, v2) + T(v2, v3, v1) + T(v3, v2, v1)

If T is already symmetric, S = 6T.
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Let us begin to see what makes the determinant important:

Proposition

The vector space K of all skew-symmetric bilinear functions on F2 with
values in F has a basis which is the 2-by-2 determinant function.

Proof.
1 Let e1 = (1, 0), e2 = (0, 1) be the standard basis of F2.
2 Given any two vectors u, v ∈ F2, we can write u = ae1 + be2,

v = ce1 + de2.
3 If B ∈ K, expand B(u, v) = B(ae1 + be2, ce1 + de2):

acB(e1, e1) + adB(e1, e2) + bcB(e2, e1) + bdB(e2, e2)

4 Note that the first and fourth terms are zero and
B(e1, e2) = −B(e2, e1). It gives

5 B(u, v) = (ad − bc)B(e1, e2) = B(e1, e2) det(u, v)
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u=(c,d)

v=(a,b)

v+u=(a+c,b+d)

Area of parallelogram defined by u and v is det(v , u) = ad − bc
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Exercise 1: Prove that the space of all symmetric bilinear functions of
F2 has dimension 3. Note that the space of linear functions

T : F2 × F2 → F

has dimension 4. [This is the dual space of F2 × F2 = F4]. Since
bilinear functions are linear, the space of symmetric bilinear functions
is a subspace and therefore has dimension at most 4. You must show
that it has a basis of 3 functions.
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Exercise 2:

If V is a vector space of dimension n, and S and K are the spaces of
symmetric and skew-symmetric bilinear functions, prove that

dim S =

(
n + 1

2

)
dim K =

(
n
2

)
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Out of order remarks

A quick way to get new multilinear functions from old ones is the
following:

If B : V× V→W is a bilinear transformation, and T : W→ Z is a linear
transformation, the composite

T ◦ B : V× V→ Z

T ◦ B(u, v) = T(B(u, v))

is a bilinear transformation.
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The most famous bilinear (multi also) is called the tensor product,

B : V× V→ V⊗ V,

(u, v)→ u ⊗ v

Mention [but don’t write!] some crazy things about this function.
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3-by-3 determinants

Let us explore ‘bigger’ multilinear functions, like for instance 3-linear
ones on F3. This means that the input is an ordered triple (v1, v2, v3) of
vectors. If we pick a basis {e1, e2, e3}, each of the vectors can be
represented in row or column format and the triple can be represented
as a matrix

[v1 | v2 | v3] =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The point: A 3-linear function M on F3 is really a function on 3-by-3
matrices:

M : A→ M(A).
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Proposition

The vector space K of all skew-symmetric 3-linear functions on F3 with
values in F has a basis which is the 3-by-3 determinant function.

Proof.
1 Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) be the standard

basis of F3.
2 Given any three vectors v1, v2, v3 ∈ F3, we can write

vi = a1ie1 + a2ie2 + a3ie3.
3 If M ∈ K, expand M(v1, v2, v3): Note that in all there are 27 terms

[fortunately most are zero] of the form

M(aj1ej , ak2ek , a`3e`) = aj1ak2a`3M(ej , ek , e`)

4 Note that M(ej , ek , e`) = 0 when two of the ej , ek , e` are equal.
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1 This leaves 6 possible nonzero terms, the coefficients of the
scalar M(e1, e2, e3). They are

det(v1, v2, v3) = (a11a22a33 + a12a23a31 + a13a21a32)

− (a11a23a32 + a12a21a33 + a13a22a31)

2 Thus
M(v1, v2, v3) = M(e1, e2, e3) · det(v1, v2, v3).

3 This shows that M is a multiple of det, so dim K ≤ 1
4 This still requires to check that det is 3-linear and skew-symmetric.

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 27 / 64



To track the correct sign for the products will require some analysis. In
special cases, there are simple rules: To find

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

repeat the first two columns

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

and form the products of the lines

a11 a12 a13
a22 a23 a21

a33 a31 a32

a13 a11 a12
a22 a23 a21

a31 a32 a33

Adding the 6 terms, the first 3 are positive, the others negative, gives
the determinant.
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Questions

1 How to define ‘larger’ determinant functions?
2 What are their properties and the rules of computation?
3 Applications?
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To answer the first question, we look at what we got in evaluating det A,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The answer was a sum of terms

±a1ja2ka3`,

with j , k , ` distinct, preceded by a ± sign. The sign is determined as
follows: Compare

{1, 2, 3} ↔ {j , k , `}

and count the number of transpositions required to sort the second
list into the first.This number is called the parity of the ordered list:
even→ 1, odd→ −1.
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For example
{2, 3, 1} → {1, 3, 2} → {1, 2, 3}

took 2 transpositions so its is an even permutation. This mean that in
the determinant formula a12a23a31 appears with +.
Quick question: What is the parity of {2, 3, 4, 5, 6, 1}?
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This would be one path to define n-by-n determinants

det

 a11 · · · a1n
...

. . .
...

an1 · · · ann


Add all products

signature a1j1a2j2 · · · anjn ,

where {j1, j2, . . . , jn} is a permutation of {1, 2, . . . , n}, where its
signature is +1 if the permutation is even, or −1 if it is odd.
This is a very explicit formula but it is long, it has n! [n factorial] terms,
a function that grows very fast. [For n = 100 our universe has not
enough atoms to code the determinant formula, one atom per term!]. If
you forgot the signature, and set they all +1, you get another function,
the permanent of the matrix.
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Let us try a recursive construction: Given a n-by-n matrix A, For each
cell (i , j) consider the submatrix Aij obtained by deleting the row i and
the column j of A. Aij is an (n − 1)-by-(n − 1) matrix. We will assume
that we already have a working definition for determinants in this size,
that is det Aij is known [it is called the (i , j)-minor]. We also say that the
sign, or signature, of the cell (i , j) is (−1)i+j . Let us display this data in
two arrays [3× 3 case for simplicity]: a11 a12 a13

a21 a22 a23
a31 a32 a33

  A11 A12 A13
A21 A22 A23
A31 A32 A33

  + − +
− + −
+ − +


Finally define the (i , j)-cofactor:

cij = (−1)i+j det Aij
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If A is a 2-by-2 matrix,

A =

[
a11 a12
a21 a22

]
,

the matrix of cofactors is

B =

[
a22 −a21
−a12 a11

]
.

Just for the future, observe what you get by multiplying A by Bt :

ABt =

[
a11 a12
a21 a22

] [
a22 −a12
−a21 a11

]
=

[
a11a22 − a12a21 0

0 a11a22 − a12a21

]
= det(A)I2

Curious!
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Determinant of a matrix

Definition
The determinant of the n × n matrix A = [aij ] is the scalar

det A = a11c11 + · · ·+ a1nc1n =
n∑

i=1

a1ic1i .

cofactors expansion along row 1:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣

a11
a22 a23
a32 a33

∣∣∣∣∣∣−
∣∣∣∣∣∣

a12
a21 a23
a31 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣

a13
a21 a22
a31 a32

∣∣∣∣∣∣
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Let us see how this works: Given A =

 2 1 3
4 0 5
2 6 1

 the matrix of

minors and the matrix of cofactors are −30 −6 24
−17 −4 10

5 −2 −4

  −30 +6 24
∗ ∗ ∗
∗ ∗ ∗

  −30 +6 24
17 −4 −10
5 2 −4


det A = 2× (−30) + 1× 6 + 3× 24 = 18
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Here are two important calculations:

det(In) = det

 1 · · · 0
...

. . .
...

0 · · · 1

 = 1× det(In−1) + 0× c12 + · · · 0× c1n = 1.

More generally, if A is lower triangular

det


a11 0 · · · 0
a21 a22 · · · 0

...
...

. . .
...

an1 an2 · · · ann

 = a11a22 · · · ann.
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Exercise 3: A is a 4-by-4 matrix with only 4 nonzero entries (may
assume them to be 1, 2, 3, 4), what are the possible values for det A?

(Challenge part:) What is the probability that det A = 24?
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Determinant as a volume function

We know already that if u and v are vectors in R2, defining a
parallelogram P, det[u, v ] = area(P).
If we have 3 vectors v1, v2, v3 in R3, they [usually] define a
parallelepiped P [usually: means what here?]. One can show that

vol(P) = |det[v1, v2, v3]|.

Vector Calculus produces the same formula for the higher dimensional
analogs.
Question: Do you like Calculus? Define a ball of radius R in Rn and
find its volume and surface areas. [Or ask your other teacher!]
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How clever have we been?

We are considering alternating n-linear functions on Fn, i.e. functions
T that take as inputs n − tuples (v, . . . , vn) of vectors of Fn. Obviously
this is the same as

[v1 | · · · | vn] = [aij ],

an n × n matrix.

We have also proved that the set of all these functions is a vector
space of dimension at most 1. It is forced on us to find one of them
[nonzero] to have them all. The function T such that T(In) = 1 will be
called DETERMINANT.
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Since we defined (a CANDIDATE) determinant recursively,

det A =
n∑

j=1

(−1)1+ja1j det A1j ,

we can easily use induction on the size of the matrices to check
that this function is n-linear and skew-symmetric.
There is an apparent drawback in this definition, we are using the
cofactors of the first row of the matrix, so legitimate concern is
what if we used a different row in this expansion, say row i

det A =
n∑

j=1

(−1)i+jaij det Aij ,
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If we call the first function det and the second DET, we proved that
the space of all such functions has dimension 1, so one is a scalar
multiple of the other

det(A) = c · DET(A).

But if we evaluate them at In, det(In) = 1 = DET(In), so c = 1.
We could also define in terms of the cofactors along a column

det A =
n∑

i=1

(−1)i+jaij det Aij .

Applying to matrices that are upper triangular [such as the rref of
matrices] would be easy

det


a11 a12 · · · a1n
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 = a11a22 · · · ann.
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Determinant of elementary matrices

det

 0 0 1
0 1 0
1 0 0

 = −1 1 transposition

det

 1 0 0
0 1 0
a 0 1

 = 1 triangular

det

 b 0 0
0 1 0
0 0 1

 = b expand along row 1
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Proposition
If E is an elementary n × n matrix and A is also n × n,

det(E · A) = det(E) det(A)

det(A · E) = det(E) det(A).

This looks innocuous, surely. But look at the consequence:
We know that given a matrix A there exists a sequence E1, . . . , Er such
that Er · · ·E1A = R = rref(A). So apply the rule repeatedly, [like in
det(E2E1A) = det(E2) det(E1A) = det(E2) det(E1) det(A) we get

det(Er ) · · · det(E1) det(A) = det(R)

Since R is triangular, its determinant is easy to find, we can get det(A).

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 45 / 64



The argument gives the following:

Corollary
If A is a n-by-n matrix, det(A) = 0 if and only if rank (A) < n. In other
words, A is invertible if and only det(A) 6= 0. Moreover, if A is
invertible, det(A−1) = (det(A))−1.
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To prove it, we examine the effect of each of the 3 types E of
elementary matrices: For convenience of [my] writing, we consider
column operations: .

Let A = [v1|v2|v3] and E1 =

 1 0 0
0 0 1
0 1 0

 , det(E1) = −1. Then

AE1 = [v1|v3|v2], so

det(AE1) = −det(A) = det(A) det(E1)

E2 =

 a 0 0
0 1 0
0 0 1

 , det(E2) = a. Then AE1 = [av1|v2|v3], so

det(AE2) = a det(A) = det(A) det(E2)

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 47 / 64



E3 =

 1 0 b
0 1 0
0 0 1

 , det(E3) = 1. Then AE3 = [v1|v2|v3 + bv1],

so

det(AE3) = det[v1|v2|v3] + b det[v1|v2|v1]︸ ︷︷ ︸
=0

= det(E3) det(A).
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Example: Given that the 4× 4 matrix A = [c1|c2|c3|c4] has
determinant 3, find the determinant of the matrix

B = [c2 + c3|c3 + c4|c4 + c1|c1 + c2].

Answer: (a) det(B) = 0 Explanation: If you subtract the first from the
second column of B, and the third column from the fourth we get
[without changing determinants)

B = [c2 +c3|c3 +c4|c4 +c1|c1 +c2]→ [c2 +c3|−c2 +c4|c4 +c1|c2−c4].

But the last matrix has two linearly independent columns (one is the
negative of the other), so its determinant is 0
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Product rule

Theorem
If A and B are n-by-n matrices, det(AB) = det(A) det(B).

Proof.
1 We already know that this rule is valid if A is an elementary matrix

E. We also know that there exists a sequence E1, . . . , Er of
elementary matrices such that

Er · · ·E1A = R = rref(A)

2 If rank (A) < n, we have seen that rank (AB) < n also, so both
det(AB) and det(A) are 0 and the formula is fine.

3 Thus we may assume rank (A) = n. But then R = In and A is a
product of elementary

A = E−1
1 · · ·E

−1
r ,

when the product formula is fine.
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Exercise 1:

Evaluate the determinant of the following matrix:

A =


0 0 a b
0 0 c d
e f 0 0
g h 0 0


Exercise 2: If the 4× 4 matrix C = [c1|c2|c3|c4] has determinant 1,
find the determinant of the matrix

B = [c2 + c3|c3 + c4|c4 + 2c1|c1 + 2c2].

Hint: The columns of B are combinations of the columns of C so we
look for a matrix D such that B = CD. [There were several
approaches.] Then use that det B = det C det D.
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Exercise 3:

Let A be the 4-by-4 matrix
1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3


Show [Vandermonde] that
det(A) = (d − a)(d − b)(d − c)(c − a)(c − b)(b − a).

Exercise 4: Let A be a 3-by-3 matrix with entries 0, 1 or −1. How big
can det A be? What if A is 4-by-4?
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Cramer’s rule

Consider the system of equations Ax = b:

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

If the system is consistent, the column vector b of RHS entries can be
written as a linear combination of the columns ai of the system matrix

b = x1a1 + x2a2.

Let us replace, for example, the first column of A by the vector b and
calculate the determinant

det[b|a2] = det[x1a1 + x2a2|a2] = x1 det[a1|a2] + x2 det[a2|a2]︸ ︷︷ ︸
=0

and therefore
x1 =

det[b|a2]

det[a1|a2]

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 54 / 64



Consider the system of equations Ax = b:

a11x1 + · · · + a1nxn = b1
... +

. . . +
...

...
an1x1 + · · · + annxn = bn

If the system is consistent, the column vector b of RHS entries can be
written as a linear combination of the columns ai of the system matrix

b = x1a1 + · · ·+ xnan.

Let us replace, for example, the first column of A by the vector b and
calculate the determinant

det[b|a2| · · · |an] =
n∑

i=1

xi det[ai |a2| · · · |an]︸ ︷︷ ︸
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Observe that
det[ai |a2| · · · |an] = 0

if i = 2, 3, . . . , n, since the corresponding matrix would have two equal
columns. We are left with the term

x1 det[a1|a2| · · · |an] = x1 det(A).

Theorem (Cramer’s Rule)
Let Ax = b be a n-by-n system of equations. If det A 6= 0,

xi =
det Ai

det A
,

where Ai is the matrix obtained by replacing the ith column of A with
the b column.
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Example:

Solve the system of equations
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 1




x
y
z
w

 =


1
0
0
1


for the variable x ONLY.

Answer: We use Cramer’s rule: The determinant of the matrix A of the
system is 1. By Cramer’s

x =
det(A1)

det(A)
,

where A1 is the matrix obtained by replacing column 1 of A by the data
vector. Note that A1 has two identical columns, so det(A1) = 0. Thus
x = 0.
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Adjoint and Inverses

Let A be a matrix 
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 .

We defined the cofactors of A as cij = (−1)i+j det Aij , where Aij is the
matrix gotten by removing the row i and the column j of A. We can
form the cofactors matrix

cofactor(A) = [cij ].

We introduce one additional terminology: The adjoint matrix of A is

adj (A) = [cij ]
t = transpose of cofactor mat

Wolmer Vasconcelos (Set 5) Math 350: Linear Algebra Fall 2010 58 / 64



Theorem
Let A be a n-by-n matrix. Then

A · adj(A) = adj(A) · A = det(A)In.

In particular, if det(A) 6= 0,

A−1 =
1

det(A)
adj(A).

Proof. Let us inspect the entries pij of the product Aadj(A). For
instance [keeping in mind that we flipped the matrix of cofactors]

p11 = a11c11 + a12c12 + · · ·+ a1nc1n,

which is just the formula for det(A).
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Let us try another entry:

p12 = a11c21 + a12c22 + · · ·+ a1nc2n,

This time we are multiplying the elements of row 1 of A by the
cofactors of the row 2 of A. What is this? We argue that is 0: Suppose
B is the matrix formed as follows: rows 1, 3, 4, . . . , n are the same as in
A, but row 2 is row 1 repeated

B =


a11 a12 · · · a1n
a11 a12 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

 .

Of course, det(B) = 0. If we apply the determinant formula for B the
along the second row we would get p12. Thus p12 = 0. In a similar way,
we get pij = 0 if i 6= j , and pii = det(A).
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Homework

Exercise 6: If det A = 1, show that adj (adj (A)) = A.

Exercise 7: 4.2: 22, 26

Exercise 8: 4.3: 9 − > 15, 21, 27, 28
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HomeQuiz #5

1 Evaluate the determinant of the following matrix:

A =


0 0 a b
0 0 c d
e f 0 0
g h 0 0


If det A 6= 0, what is A−1?

2 If the 4× 4 matrix C = [c1|c2|c3|c4] has determinant 1, find the
determinant of the matrix

B = [c2 + c3|c3 + c4|c4 + 2c1|c1 + 2c2].

3 Let A be a 3-by-3 matrix with entries 0, 1 or −1. How big can det A
be? Do same if A is 4-by-4. (Google Hadamard’s Inequality.)
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