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Big Picture
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Functions on Vector Spaces

Let V and W be two vector spaces over the field F. What are the
functions like between these spaces?:

T : V→W.

V is called the source, and W the target of the function. For example,

suppose V = W = F2. Then T takes for input pairs v = (x1, x2), and
outputs pairs T(v) = (y1, y2):

(x1, x2)→ T → (y1, y2) = (f1(x1, x2), f2(x1, x2))

It can be very varied since functions of two variables come in many
flavors.
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We will be looking at certain type of functions illustrated by the
following examples.

• Let V be the vector space of all real valued functions with
derivatives in [−1,1], and let W be the vector space of real valued
functions on [−1,1]. Define

T(f (t)) = f ′(t),

or
L(f ) = f ′′ − f .

• Here are two other functions

T(f ) =

∫ 1

−1
f (t)dt , T : V→ R

L(f ) =

∫ t

−1
f (t)dt , T : V→W
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• T : R2 → R2

T(x , y) = (y , x)

This is reflection about the [main] diagonal.
• For α fixed,

T(x , y) = (x cosα+ y sinα,−x sinα+ y cosα)

This is a rotation in the plane by α degrees.
• T : R3 → R2

T(x , y , z) = (x , y)

This is projection on the xy -plane.

All these functions share the following property:
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Definition
A function T : V→W is a linear transformation, or linear operator, if it
satisfies:

(i) For any v1, v2 ∈ V,

T(v1 + v2) = T(v1) + T(v2)

[T is additive, that is takes sums to sums]
(ii) For any v ∈ V and c ∈ F,

T(cv) = cT(v)

[T commutes with scaling]
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We can put these two properties together:
A function can be viewed as a factory processing inputs into outputs

input→ f → output

One key property of a linear box is that it can be reverse engineered.
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Proposition
Let T : V →W be a linear transformation of vector spaces. If
v1, . . . , vn ∈ V and c1, . . . , cn ∈ F, then

T(
n∑

i=1

civi) =
n∑

i=1

ciT(vi).

[That is, T commutes with linear combinations.]

Proof.
It uses the conditions (i) and (ii) of the definition and induction: Apply T
to

n∑
i=1

civi = (
n−1∑
i=1

civi) + cnvn

and iterate.
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Recipe for linear transformations

Let V be a vector space with a basis v1, v2, . . .. If W is a vector space,
for each vi choose wi ∈W [the wi do not need to be linearly
independent].

Proposition
The assignment ∑

i

xivi 7→
∑

i

xiwi

defines a linear transformation from V to W.
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One quick way to build a L.T. between spaces of tuples is the following.
Let A be an m × n matrix with entries in the field F. For a n-tuple

v =

 x1
...

xn


define the function LA : Fn → Fm

LA(v) = A · v .

Since multiplication of matrices is distributive and commutes with
scaling, LA is a L.T.
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Let M2(F) be the vector space of all 2-by-2 matrices over the field F.

Fix a matrix, say, A =

[
1 −1
2 3

]
and define the function

B→ T(B) = AB.

T satisfies:

T(B1 + B2) = A(B1 + B2) = AB1 + AB2

= T(B1) + T(B2)

T(cB) = A(cB) = cAB = cT(B).

Point: Lots of freedom to create linear transformations.
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There are several subsets associated to a linear transformation
T : V→W:

• The Nullspace or Kernel of T is the subset

N(T) = {v ∈ V | T(v) = O.}

[The vectors mapped to O]
• The Range or Image of T is the subset

R(T) = {w ∈W | w = T(v), v ∈ V.}
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Examples

If T is the linear transformation

f 7→ f ′′ − f

defined earlier, its nullspace consists of the solutions of y ′′ − y = 0,
that is the linear combinations

aex + be−x , a,b ∈ R.
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Proposition
The Nullspace and the Range of a linear transformation T : V→W are
subspaces of V and W respectively.

Proof.
Let us apply the subspace test to N(T). Suppose v1, v2 ∈ N(T). Then
for any scalars c1, c2,

T(c1v1 + c2v2) = c1T(v1) + c2T(v2) = c1O + c2O = O.

So the linear combination belongs to the Nullspace.
We leave for you the other proof.

The dimension of N(T) is called the nullity and the dimension of R(T)
is called the rank of T.
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Dimension Formula

Theorem
Let T : V→W be a linear transformation of finite dimensional vector
spaces. Then

dim N(T) + dim R(T) = dim V.

That is, nullity + rank = dim V.

Proof. Suppose v1, . . . , vn is a basis of V, and u1, . . . ,ur is a basis of
N(T). We are going to show that R(T) has basis with n − r elements.
Recall that T(

∑n
i=1 civi) =

∑n
i=1 ciT(vi), R(T) is spanned by

T(v1),T(v2), . . . ,T(vj), . . . ,T(vn).

Out of this list we are going to pick a basis for R(T).
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We scan the list and delete the vectors [red] that can be written as
linear combination of the preceding vectors

T(v1),T(v2), . . . ,T(vj), . . . ,T(vn).

For convenience of notation we assume we are left with the first s
vectors

T(v1),T(v2), . . . ,T(vs).

Claim: u1, . . . ,ur , v1, . . . , vs is a basis of V.
Once we have shown this we be done since all bases of V have n
elements. Let us check.
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Claim 1: u1, . . . ,ur , v1, . . . , vs spans V

If v ∈ V, T(v) =
∑s

i=1 aiT(vi), that is

T(v −
s∑

i=1

aivi) = 0

that is v −
∑s

i=1 aivi belongs to the nullspace so

v −
s∑

i=1

aivi =
r∑

j=1

bjuj .

Claim 2: u1, . . . ,ur , v1, . . . , vs are linearly independent.

If
∑

bjuj +
∑

aivi = O, applying T we get
∑

aiT(vi) = 0 since
T(uj) = 0. But the T(vi) are linearly independent [they form a basis of
R(T)] so ai = 0. We have left

∑
bjuj = 0, which implies bj = 0 since

the uj form a basis of N(V)
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Let us recall some general properties of a function f : X→ Y

• f is one-one if f(x1) = f(x2) implies x1 = x2. One also says that f is
injective. If f is a linear transformation, f(x1) = f(x2) means
f(x1 − x2) = O so f is one-one if and only if the nullspace is (O).

• f is onto if its image is Y. One also says that f is surjective.

• f is an isomorphism or invertible when it is both.
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Here are some consequences of the dimension formula applied to a
linear transformation T : V→W

• If dim V > dim W, then T is not one-one

• If dim V < dim W, then T is not onto.

• If dim V = dim W, then T is an isomorphism iff its nullspace is O,
or iff is onto.
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Exercise: If T : V→ V and T2 = 0, show that nullity ≥ rank.

Answer: Clear since all vectors of the range are like T(v), but these
vectors T(T(v)) = T2(v) = O.

Thus the range of T is contained in its nullspace, and therefore

nullity = dim (nullspace) ≥ dim (range) = rank
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Exercise 1a: Section 2.1, 19, 25.
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Let us use these ideas to solve anew an earlier exercise: If S1 and S2
are subspaces of a V.S. V, then
dim S1 + dim S2 = dim(S1 + S2) + dim(S1 ∩S2). Consider the mapping
T : S1 × S2 → V, given by

T(u, v) = u + v .

This clearly a L.T. The range R(T) of T is the subspace S1 + S2. What
is its nullspace N(T)?It consists of the pairs (u, v) with u + v = O. That
is, the elements of the form (u,−u) with u ∈ S1 ∩ S2. This implies that
N(T) is isomorphic to S1 ∩ S2, in particular have the same dimension.
Since dim(S1 × S2) = dim S1 + dim S2, we are done.
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Matrix Representation

We first discuss how to represent some [look at the caveat] linear
transformations T : V→W by matrices. Think of V and W as Rn or Cn.
It is a process akin to representing vectors by coordinates. Recall that
if v ∈ V and B = v1, . . . , vn is a basis of V, we have a unique
expression

v = x1v1 + · · ·+ xnvn.

We say that the xi are the coordinates of v with respect to B. We write
as

[v ]B =

 x1
...

xn

 .
If C = {w1, . . . ,wm} is a basis of W, we would like to find the
coordinates of T(v) in the basis C

[T(v)]C =

 ?

 .
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In other words, if v = x1v1 + · · ·+ xnvn,

T(v) = y1w1 + · · ·+ ymwm,

we want to describe the yi in terms of the xj . The process will be called
a matrix representation. It comes about as follows:∑

yiwi = T (
∑

xjvj) =
∑

xjT(vj)

Thus if we have the coordinates of the T(vj),

T(vj) =

 a1j
...

anj


we have  y1

...
ym

 =
∑

xj

 a1j
...

anj
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More pictorially

[T(v)]C =

 y1
...

ym

 =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 x1

...
xn

 = [T]CB · [v ]B

The n ×m matrix
[T]CB

is called the matrix representation of T relative to the bases B of V and
C of W.
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Quickly: Once bases v1, . . . , vn and w1, . . . ,wm have been chosen, T is

represented by [
aij
]

where the entries come from

T(vj) =
m∑

i=1

aijwi .
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Example

Recall the transpose operation on a square matrix A: if aij is the
(i , j)-entry of A, the (i , j)-entry of At is aji . This is a linear
transformation T on the space Mn(F):

(A + B)t = At + Bt , (cA)t = cAt .

Let us find its matrix representation on M2(F). This space has the
basis

v1 =

[
1 0
0 0

]
, v2 =

[
0 1
0 0

]
, v3 =

[
0 0
1 0

]
, v4 =

[
0 0
0 1

]
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Since

T(v1) = v1, T(v2) = v3, T(v3) = v2, T(v4) = v4,

the matrix representation of transposing is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Example

Let R3[x ] be the space of real polynomials of degree at most 3 and T
the differentiation operator.

A basis here are the polynomials p1 = 1,p2 = x ,p3 = x2,p4 = x3. The
corresponding matrix representation is

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 , T(p4) = 3p3

Note that the coordinates of T(p4), (0,0,3,0) goes into the fourth
column of the natrix representation.
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Exercise

Suppose a linear transformation T : R3 → R2 satisfies

T(

 1
1
1

) =

[
1
−1

]
, T(

 1
2
3

) =

[
−1

2

]
, T(

 1
4
9

) =

[
1
1

]

(a) Show that the three vectors of R3 are linearly independent.
(b) Find the nullspace of this linear transformation.

(c) Find T(

[
1
0

]
).

Exercise 3: Section 2.2: 11.
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Solution
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Blocks

Suppose T is a L.T. of vector space V with a basis
A = v1, . . . , vr , vr+1, . . . , vn. Suppose T(vi) for i ≤ r , is a linear
combination of the first r basis vectors, and T(vi) for i > r , is a linear
combination of the last n − r basis vectors.

To illustrate, suppose A = v1, v2, v3, v4, and
T(v1) = av1 + cv2,T(v2) = bv1 + dv2, and
T(v3) = ev3 + fv4,T(v3) = gv3 + hv4, then the matrix representation of
T for this basis is

[T]A =


a c 0 0
b d 0 0
0 0 e f
0 0 g h
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Claim: The matrix representation has the block format

[T]A =

[
r × r O

O (n − r)× (n − r)

]
This can be refined to more than two blocks. The extreme case is
when all blocks are 1× 1. The representation is then said to be
diagonal. If and when this happens is a major theme of Linear Algebra.
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Addition of linear transformations

We are now going to combine linear transformations in various ways.
Let T and U be two linear transformations of source V and target W.
Consider the operations,

(T + U)(v) := T(v) + U(v)

(cT)(v) := cT(v).

Clearly they define [write the reasons] a vector space on the set
L(V,W) of all such linear transformations.

Theorem
If V has dimension n and W has dimension m, then

dimL(V,W) = m · n.
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We are going to build a basis for this space. Let B = v1, . . . , vn be a
basis of V and C = w1, . . . , vm be a basis of W. Using the basic recipe,
define the linear transformation

Eij(vk ) =

{
0, k 6= i
wj , k = i

There are m · n such [elementary] linear transformations.

Wolmer Vasconcelos (Set 3) Math 350: Linear Algebra Spring 2010 37 / 68



Proposition
The Eij are linearly independent. [Which also follows from the next
assertion.] If T is a linear transformation and

T(vj) =
∑

i

aijwj ,

then
T =

∑
i,j

aijEij .

Proof. Try yourself or look up in book.

Exercise 4: Section 2.3: 11, 13.
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Composition of linear transformations

There is another way to combine certain linear transformations.
Consider composition of functions

V T−→W U−→ Z,

(U ◦ T)(v) := U(T(v))

Proposition
With T and U as above, U ◦ T is a linear transformation from V to Z.
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Proof.
Let us check the basic requirements:

U ◦ T(v1 + v2) := U(T(v1 + v2)) = U(T(v1) + T(v2))

= U(T(v1)) + U(T(v2))

= U ◦ T(v1) + U ◦ T(v2).

It shows composition is additive.

U ◦ T(cv) := U(T(cv)) = U(cT(v))

= cU(T(v)) = c(U ◦ T)(v).

It shows the scaling property.
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Now we are going to explain where multiplication of matrices comes
from and why it is associative.Suppose we have a composition of L.T.’s
[linear transformations]

V T−→W U−→ Z,

and that we have chosen bases B, C D, so that we have matrix
representations

[T]CB, [U]DC .

Theorem
The matrix representation of the composition U ◦ T is

[U ◦ T]DB = [U]DC ◦ [T]CB.
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To prove this we pick the bases B = v1, . . . , vn, C = u1, . . . ,um,
D = w1, . . . ,wp, and look for the coefficient cji of wi in the expression
of (U ◦ T)(vj):

(U ◦ T)(vj) = U(T(vj)) = U(
m∑

k=1

akjuk )

=
m∑

k=1

akjU(uk ) =
m∑

k=1

akj(

p∑
`=1

b`kw`)

=

p∑
`=1

(
m∑

k=1

b`kakj)w`

This gives

cij =
m∑

k=1

bikakj ,

the usual row by column rule of multiplication.
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There is a consequence that is tedious to verify directly, that the
product of matrices is associative:

This follows from the tautology of the composition of functions

(A ◦ B) ◦ C = A(B(C)) = A ◦ (B ◦ C)

and the theorem above.
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Let us solve an exercise that usually gets a shaky argument. Let A and
B be n × n matrices such that A · B = I.

Claim: B · A = I. [The question arises because matrix multiplication is
not commutative.] To argue we consider the L.T.s LA and LB
associated to A and B.

A · B = I implies that
LA ◦ LB = I,

from which it follows that LB is one-one, and therefore it is invertible, so

LA ◦ LB = LB ◦ LA = I.

Thus B · A = I.
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HomeQuiz + Quiz #3

For next week there will be two parts of the HomeQuiz: (1) a typical
class quiz based in the following Homework:

1 Section 1.5: 2(g), 8, 10, 19
2 Section 1.6: 4, 14, 30, 34.
3 Section 2.1: 19, 25.
4 Section 2.2: 11.
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HomeQuiz + Quiz #3, Cont’d

A typical HomeQuiz for the following Problems:

1 Let M2(F) be the vector space of all 2-by-2 matrices over the field

F. Fix a matrix, say, A =

[
1 −1
2 3

]
and define the function

B→ T(B) = AB.

We saw that T is a linear transformation. Find a matrix
representation of T.

2 If F = Z2, find bases of the nullspace and range of T.

3 Find a real polynomial p(x), of degree at most 3, passing through
the points of coordinates (0,1), (1,3), (3,−1), (4,0).
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Invertible linear transformations

Let
T : V→W

be a L.T. that is one-one and onto. This means that for any w ∈W
there is a unique v ∈ V such that T(v) = w . This gives rise to a
function

U : W→ V, U(w) = v iff T(v) = w .

U is the inverse function of T:

U ◦ T = IV the identity of V.

One also checks

T ◦ U = IW the identity of W.

Notation: U = T−1.
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Proposition
If T is a L.T. then U is also a L.T.

Proof.
Let w1,w2 ∈W. Pick v1, v2 ∈ V so that T(v1) = w1 and T(v2) = w2.
Since T is a L.T.,

T(v1 + v2) = T(v1) + T(v2) = w1 + w2.

By the definition of U,

U(w1 + w2) = v1 + v2 = U(w1) + U(w2),

so U is additive. The scaling property is proved in the same way.
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If T : V→W is an invertible L.T., choosing bases B and C for the two
spaces:

Proposition

The matrix representations of T and T−1 are related as follows

[T−1]BC = ([T]CB)
−1.

Proof.
This follows from the equalities

T−1 ◦ T = IV, T ◦ T−1 = IW

and a previous result asserting that the matrix representation of a
composition of two L.T. is the product of the matrices.
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If T is invertible, we also say that it is an isomorphism, and that V and
W are isomorphic vector spaces. For this to happens it requires that
dim V = dim W.

Example: Let P4[x ] be the space of polynomials of degree at most 4
with coefficients in the field F. The mapping

T(a0 + a1x + · · ·+ a4x4) = (a0,a1, . . . ,a4)

is an isomorphism between P4[x ] and F5.

Similarly, it is easy to define isomorphisms between Mn(F) and Fn2
.
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Examples

A linear transformation T : V→ V such that T2 = 0 obviously
cannot be invertible. Note however that I− T is always invertible:

(I− T)(I + T) = I− T2 = I.

Prove the same assertion if T3 = 0 [or any other power Tn = 0].
Let V be the vector space of all sequences (a1,a2,a3, . . .). The
functions right shift and left shift are L.T.

r(a1,a2,a3, . . .) = (0,a1,a2, . . .)

s(a1,a2,a3, . . .) = (a2,a3,a4 . . .)

r is one-one but not an isomorphism, s is onto but not an
isomorphism.
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Exercise 5: Let A be a fixed n × n of rank r . Define the mapping
T : Mn(F)→ Mn(F) by

B 7→ AB.

Show that T is a linear transformation of rank r · n.

Answer: Consider only the case n = 2.

Check T is a L.T.:
T(B1 + B2) = A(B1 + B2) = AB1 + AB2 = T(B1) + T(B2) and
T(cB) = AcB = c(AB) = cT(B)

(n = 2) If rank A = 0, A = O, then T is also the null mapping (so T
has rank 0.
If rank A = 2, A is invertible and have for any matrix B,
T(A−1B) = B, so T is an onto mapping of M2(F), that is has rank
22.

If A has rank 1, it has a form like
[

1 a
0 0

]
. Reader: Your turn to

check rank T is 2
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Exercise 6: Show that there is no square nonzero real matrix A such
that

At = rA, r 6= ±1.

Answer: If At = rA, transposing this we get

A = (At)t = (rA)t = rAt = r2A

Thus (1− r2)A = O, and therefore r = ±1 or A = O.

Exercise 6a: Section 2.3: #15, #19
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Quickly: Changing coordinates permit the solution of many problems.
Here are two:

• To evaluate
∫ 1

0 tet2
dt , one sets y = t2 and the problem becomes∫ 1

0
tet2

dt =

∫ 1

0

1
2

eydy =
1
2
(e − 1).

• What is the graph of the equation 2x2 + 6xy + 10y2 = 100? The
solution requires a change of point-of-view–which a change of
coordinates will bring.
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Example

Let T =

[
1 1
1 −1

]
be a L.T. of R2 in terms of the standard basis,

{i , j}.

The vectors v1 = i and v2 = i + j form another basis of R2. Note
that T(v1) = v2, and T(v2) = (i + j) + (i − j) = 2i = 2v1.

The matrix representation of T is
[

0 2
1 0

]
.
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The change of coordinates issue we will discuss is the following: Let
v ∈ V be a vector of a V.S. If two bases A = v1, . . . , vn and
B = u1, . . . ,un are picked in V, the vector has two representations

[v ]A =

 x1
...

xn

 , [v ]B =

 x ′1
...

x ′n


Question: How are the xi related to the x ′i ? The answer will depend on
how the vi and ui relate.

[v ]A =

 x1
...

xn

 = P[v ]B = Q

 x ′1
...

x ′n
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Change of bases formula

We have

v =
n∑

j=1

xjvj =
n∑

j=1

x ′j uj .

We start from

vj =
n∑

i=1

pijui , uj =
n∑

i=1

qijvi

Note the two [basis changing] matrices

P = [pij ], Q = [qij ]
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If we replace vj =
∑n

i=1 pijui in

v =
n∑

j=1

xjvj =
n∑

j=1

x ′j uj .

we get

v =
n∑

j=1

xj(
n∑

i=1

pijui) =
n∑

i=1

(
n∑

j=1

pijxj)ui =
n∑

i=1

x ′i ui .

x ′i =
n∑

j=1

pijxj ,

the desired formulas.
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In matrix notation: x ′1
...

x ′n

 = P ·

 x1
...

xn

 ,
 x1

...
xn

 = Q ·

 x ′1
...

x ′n


Note

P ·Q = I
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Max and Min of functions of several variables

The need for change of variables occur in the determination of local
maxima and minima of functions of several variables. Recall that the
function f(x , y) has a local maximum at (a,b) if

f(a,b) ≥ f(x , y),

for (x , y) near (a,b). If f has derivatives, this first requires

∂f
∂x

(a,b) =
∂f
∂y

(a,b) = 0

What else? We expand f around (a,b):

f(x , y) = f(a,b) + (fx(a,b)(x − a) + fy (a,b)(y − b) = 0︸ ︷︷ ︸)
+ 1/2(fxx(a,b)(x − a)2 + 2fxy (x − a)(y − b) + fyy (y − b)2) +
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Whether (a,b) is a local maximum will depend on whether the term

1/2(fxx(a,b)(x − a)2 + 2fxy (x − a)(y − b) + fyy (y − b)2)

is always non-positive near (a,b).
Hard to guess when a polynomial

Ax2 + Bxy + Cy2

is always negative near the origin, UNLESS B = 0 when the condition
is A,C ≤ 0. It involves the examination of[

fxx fxy
fyx fyy

]
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Just imagine the size of the problem in 5 or 10 variables! Fortunately,
Linear Algebra comes to the rescue: it involves a certain calculation
with the matrix of second order derivatives. In the case of 3 variables, fxx fxy fxz

fyx fyy fyz
fzx fzy fzz


This is so important that we will have to return to the topic for a serious
treatment.
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Identifying conics

To identify the graph of the equation 2x2 + 6xy + 10y2 = 100, we do
the change of coordinates[

x
y

]
= P ·

[
x ′

y ′

]
=

1√
10

[
1 −3
3 1

] [
x ′

y ′

]
In the new coordinates the equation is

(x ′)2 + 11(y ′)2 = 100,

an ellipse.

Question: How did we find P?

Wolmer Vasconcelos (Set 3) Math 350: Linear Algebra Spring 2010 66 / 68



Proposition
Suppose T : V→ V is a L.T. For each basis A = v1, . . . , vn we have a
matrix representation [T]A = A. Given another basis B = u1, . . . ,un we
have another matrix representation [T]B = B. Then

A = Q−1BQ = PBQ = PBP−1.

Proof.
The matrices A = [aij ] and B = [bij ] appear from the expressions
T(vj) =

∑
aijvi and T(uj) =

∑
bijui and the relationship from:

T(vj) = T(
n∑

r=1

prjur ) =
n∑

r=1

prjT(ur )

=
n∑

r=1

n∑
k=1

prjbkr uk =
n∑

r=1

n∑
k=1

n∑
`=1

prjbkr q`kv`
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Observations

• Two n × n matrices are said to be similar if there is an invertible
matrix S such that A = SBS−1. [This is an equivalence relation.]
• This fact can be interpreted by saying that A and B are matrix

representations of the same L.A. LA but with respect to different
bases.
• It is very important to find matrix representations which are

simple. [Recall: diagonalization.]
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