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A linear system of equations arises as follows: Let v1, . . . , vn be
vectors of a vector space V. Given another vector v ∈ V, is v in
the span of the vi?
The question asks, is v a linear combination of the vi? In other
words, can we solve for scalars xi the equation

v = x1v1 + x2v2 + · · ·+ xnvn

Let us examine some examples.
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Consider the vectors v1 = (1,2,3), v2 = (2,1,4) and
v = (1,5,5) of F3. The condition v = x1v1 + x2v2 can be recast
as the system of linear equations

x1 + 2x2 = 1
2x1 + x2 = 5
3x1 + 4x2 = 5

Applying the Gaussian algorithm

1 2 1
2 1 5
3 4 5

→
1 0 3
0 1 −1
0 0 0

So x1 = 3, x2 = −1.
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Let us show the following: Every polynomial over R of degree at
most two is a linear combination of the polynomials
p1 = 1 + x + x2, p2 = 1 + 2x + 4x2 and p3 = 1 + 3x + 9x2. This
means that we should be able to solve any relation of the form

a + bx + cx2 = x1p1 + x2p2 + x3p3.

Matching coefficients of the powers of x , we must solve

1 1 1 a
1 2 3 b
1 4 9 c

Gaussian elimination will show that the numerical matrix has
rank 3, so the system can be solved for all choices of a,b, c.
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Sometimes problems of this kind cannot be solved in this
manner.

Exercise 1: Show that e3x is not a linear combination of ex and
e2x .

Solution: Suppose otherwise, that is we have real numbers
a,b such that

e3x = aex + be2x .

Setting x = 0, we get the equation 1 = a + b. Taking derivatives
and setting x = 0, we get another equation 3 = a + 2b. Taking
second derivatives and setting x = 0 we get yet another
equation 9 = a + 4b.

The first two equations give a = −1, b = 2, which do not work
for the third equation.
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The following exercise yields to the same trick [but has a much
better approach, using integrals instead]

Exercise 2: Prove that sin 2x is not a linear combination of
sin x , cos x and cos 2x .
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Gaussian algorithm

Consider the system of linear equations

a11x1 + a12x2 + · · ·+ a1mxm = b1
...

an1x1 + an2x2 + · · ·+ anmxm = bn.

over the field F.
The consistency [or existence of solutions] means that b1

...
bn

 = x1

 a11
...

an1

+ · · ·+ xm

 a1m
...

anm


The general method to deal with this issue is Gaussian
elimination. A first step is a representation of the system of
equations by a matrix.
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a11 a12 · · · a1m b1
a21 a22 · · · a2m b2

...
...

. . .
...

...
an1 an2 · · · anm bn

The system is simpler if it has a triangular shape [echelon] like

a11 a12 a13 · · · a1m b′1
0 a22 a23 · · · a2m b′2
...

...
...

. . .
...

...
0 0 · · · 0 anm b′n
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Gaussian moves

That it is possible to pass to another system of linear with these
properties but with the same solutions [an equivalent system] is
a consequence of directed application of three reduction
rules/elementary row operations:
• Interchange the order of two equations
• Multiply one equation by a nonzero scalar
• Add to one equation a scalar multiple of another

Obviously none of these reductions changes the solutions of
the system [each is reversible].
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Row reduced echelon matrix

 1 0 0 a b
0 1 0 c d
0 0 1 e f


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 2 −1 1
4 −1 4
−2 1 5

 −2r1+r2−→

 2 −1 1
0 1 2
−2 1 5

 r1+r3−→

 2 −1 1
0 1 2
0 0 6



 2 −1 1
0 1 2
0 0 1

 r2−2r3−→

 2 −1 1
0 1 0
0 0 1

 r1−r3−→

 2 −1 0
0 1 0
0 0 1

 r1+r2−→

 2 0 0
0 1 0
0 0 1


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Theorem
Any matrix n ×m matrix with entries in a field F

A =


a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m

...
...

...
. . .

...
an1 an2 an3 · · · anm


can, after a finite sequence of Gaussian moves, be transformed
into a [unique] matrix in row reduced echelon form

rref (A) =


1 0 0 · · · a′1m
0 1 0 · · · a′2m
...

...
...

. . .
...

0 0 · · · · · · · · ·


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There are several useful consequences [corollaries]:

• The elementary row operations are linear combinations in
the row space of the matrix A. The nonzero rows of rref(A)
span the row space of A.
• The columns of A where the pivots occur span the column

space of A. [Note that the column space of A and of rref(A)
are usually different.]
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Linear dependence

Definition
A set of vectors v1, . . . , vm of a vector space V is linearly
dependent if there is a relation

c1v1 + c2v2 + · · ·+ cmvm = O,

where one of the scalars ci is 6= 0.

This means simply: If, say, c1 6= 0,

v1 = (−c2/c1)v2 + . . .+ (−cm/c1)vm,

that is, one of the vectors is a linear combination of the other
vectors.
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It is straightforward to set up a procedure to decide whether a
set of vectors of Fn are linearly dependent. Say v1, . . . , vm ∈ Fn;
we must see whether there is a nonzero solution [i.e. one of the
xi is nonzero] for

x1v1 + x2v2 + · · ·+ xmvm = O.

We set it up in matrix form a11 a12 · · · a1m 0
...

...
. . .

...
...

an1 an2 · · · anm 0


and carry out Gaussian elimination.

Summary: If the rank of the matrix is < m, the vectors are
linearly dependent. For instance, if v1, v2, v3, v4 ∈ F3, they are
always linearly dependent since the matrix is 3× 4 and so has
rank at most 3 [at most 3 pivots].
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Linear independence

Definition
A set of vectors v1, . . . , vm of a vector space V is linearly
independent if whenever

c1v1 + c2v2 + · · ·+ cmvm = O,

then all ci = 0.

The method of Gaussian elimination permits us to decide
whether any set of vectors v1, . . . , vm ∈ Fn is linearly
independent or not.

If we set up the vectors as column vectors, it will also tell us
how to express some column vectors [if any] as a linear
combination of the others.

The method will not work in all vector spaces. Let us examine
one exercise.
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Exercise 3: Let r1, . . . , rn be distinct real numbers. Prove that
the functions [vectors!] er1x , . . . ,ernx are linearly independent.

Solution: We solved already a special case. Suppose ci are
real numbers such that

c1er1x + · · ·+ cnernx = 0.

We will argue that all ci = 0.

The trick is the following: We set x = 0 and get a scalar
equation for the ci

c1 + · · ·+ cn = 0,

then take the derivative and set x = 0, all the way to the n − 1
derivative.
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What we get is a system of equations
1 1 · · · 1
r1 r2 · · · rn
...

...
. . .

...
rn−1
1 rn−1

2 · · · rn−1
n




c1
c2
...

cn

 =


0
0
...
0


The matrix of the system is invertible [Vandermonde] so ci = 0.
[This uses that the ri are distinct.] Calculus gives variations to
this approach which is only good to check whether the vectors
are linearly independent.
Recall [n=3]

det

 1 1 1
r1 r2 r3
r2
1 r2

2 r2
3

 = (r2 − r1)(r3 − r2)(r3 − r1)
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We shall discuss distinguished sets of vectors of a vector space
V. It has to do with bringing some efficacy to the calculus of
vectors.

Definition
An ordered set of vectors B = {v1, . . . , vn} is a basis of V if it
meets the two conditions:
• V is spanned by B, that is any vector v of V is a linear

combination
v = a1v1 + · · ·+ anvn.

• The vi are linearly independent.



Systems of Linear Equations Linear Dependence and Independence Bases and Dimension Goodies HomeQuiz #2

Together these two conditions mean that if

v = b1v1 + · · ·+ bnvn,

is another linear combination,

v − v = 0 = (a1 − b1)v1 + · · ·+ (an − bn)vn,

and therefore a1 = b1,a2 = b2, . . . ,an = bn, and v is a UNIQUE
linear combination of the vi .

This implies that the vector v is completely determined by the
basis that the scalars ai : they are often called the coordinates
of v and written

[v ]B = (a1, . . . ,an).
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If u is another vector,

u = b1v1 + · · ·+ bnvn,

then

[v + u]B = (a1 + b1, . . . ,an + bn),

[cv ]B = c(a1, . . . ,an).

Thus: a basis B provides the means for identifying a vector
space V to the vector space Fn.
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A procedure to find a basis of a span

If v1, . . . , vm are vectors of Fn, a basis for their span can be
obtained in two different ways. First, let

A = [v1|v2| · · · |vm]

be a matrix made up of the vi as column vectors. Now find
rref(A) to determine the columns where the pivots are. The vi
of the corresponding columns of A is the desired basis.

Second, set up the matrix B with the vi as row vectors. The
nonzero rows of rref(B) is a basis of the span.
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Dimension of a vector space

We are going to derive several properties of this notion. We
begin with

Theorem
Let B = {v1, . . . , vn} and C = {u1, . . . ,um} be two bases of the
vector space V. Then n = m, that is all bases of V have the
same cardinality. This number is called the dimension of V.

The proof is an elegant argument; it will adapt to all vector
spaces, even those with infinite bases. Let us give a special
proof first.
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Suppose we have two bases, {v1, v2, v3} and {u1,u2}.
1 Consider the set obtained by adding v1 to the front of

u1,u2,→ {v1,u1,u2}:
2 This is not a basis because {u1,u2} spans V and therefore

v1 can be written as v1 = c1u1 + c2u2
3 Say c1 6= 0, so that u1 = (1/c1)v1 + (−c2/c1)u2
4 This shows that since V is spanned by u1 and u2, V is also

spanned by v1 and u2
5 Now consider v2. It can be written v2 = d1v1 + d2u2, since
{v1,u2} spans V

6 d2 cannot be zero as otherwise v2 = d1v1 and {v1, v2}
would be linearly dependent, but {v1, v2} is part of a basis.

7 Thus, if d2 6= 0 we have u2 = (−d1/d2)v1 + (1/d2)v2.
8 Therefore since {v1,u2} spans V, this equation shows that
{v1, v2} spans V, so would be a basis. This is a
conbtradiction since {v1, v2} is not a basis.
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We will argue that n ≤ m. Let us move the first vector of B, v1
to the front of C,

v1,u1,u2, . . . ,um.

Since C is a spanning set of V, v1 is a linear combination

v1 = c1u1 + · · ·+ cmum.

One of the ci 6= 0, say c1 6= 0. We write

u1 = (1/c1)v1 + (−c2/c1)u2 + · · ·+ (−cm/c1)um.

This relation implies that the set v1,u2, . . . ,um, in which we
replaced u1 by v1 will also span V.
Now we are going to insert v2 in this list,

v1, v2,u2,u3, . . . ,um

and argue that we can delete another ui and still get a spanning
set with m elements.
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Since {v1,u2,u3, . . . ,um} is a spanning set,

v2 = c1v1 + c2u2 + · · ·+ cmum.

Since v1 and v2 are part of a same basis, they are linearly
independent and so we must have one of c2, . . . , cm nonzero.
Say c2 6= 0. Then as above we write u2 as a linear combination
of

v1, v2,u3, . . . ,um,

a spanning set of m elements.
We go on like this until all vi have been inserted and an equal
number of ui have been deleted. This shows n ≤ m. Reversing
their roles, woukld give m ≤ n.
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• dim Mn(F) = n2

• dim S =
(n+1

2

)
: symmetric matrices a b c

b d e
c e f


• dim Un =

(n+1
2

)
: upper triangular

• dim Dn = n: diagonal
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• A vector space V of dimension 0 consists of {O} alone.
• A vector space V of dimension 1 is called a line it consists

of all multiples of any of its nonzero elements v ,

V = {cv | c ∈ F}.

• A vector space V of dimension 2 is called a plane it
consists of all linear combinations of any two elements
v1, v2, with neither a multiple of the other,

V = {c1v1 + c2v2 | c1, c2 ∈ F}.
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Theorem
Let V be a vector space of dimension n and let
C = {u1, . . . ,um} be a set of linearly independent vectors. Then
m ≤ n, with equality if and only if the ui form a basis of V.

Proof.
Let {v1, . . . , vn} be a basis of V. If we insert v1 in the other set,

u1, . . . ,um, v1

it may increase the span of C–and we obtain a set of m + 1
linearly independent vectors–or it does not change the span of
C, that is, v1 is a combination of the ui and we delete it. In either
case we proceed with v2 in the same manner. In this way we
end up with a set of linearly independent vectors [all ui plus
some of the vj ] spanning V, that is, with a basis.
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Corollary
Let S be a subspace of a vector space V. Any basis
B = {u1, . . . ,um} of S can be extended to a basis of V. In
particular, dim S ≤ dim V with equality if and only if S = V.

Exercise 4: Let S1 and S2 be subspaces of the vector space V.
Prove that

dim S1 + dim S2 = dim(S1 ∩ S2) + dim(S1 + S2).

Hint: Begin by picking a basis for S1 ∩ S2, and use it [applying
the Corollary] to build bases for S1 and S2. Then ...

Exercise 5: Prove that every vector space has a basis. [Book
gives a discussion.] Note that we only proved this for vector
spaces spanned by a finite number of vectors.
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Spaces of polynomials

Let F be a field and Fn[x ] be the set of all polynomials over F of
degree at most n,

f (x) = a0 + a1x + · · ·+ anxn.

This is a vector space spanned by the polynomials

1, x , x2, . . . , xn.

Since they are linearly independent, dim Fn[x ] = n + 1. This is
a very nice basis but for some applications it is not great.

Let us consider another famous basis.
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Lagrange interpolation polynomials

One of the best known polynomials arises as follows: [assume
F = R] Let P1 = (c1,b1) and P2 = (c2,b2) be two points not on
a vertical line. The first degree polynomial that passes through
them is

f (x) = b1 +
b2 − b1

c2 − c1
(x − c1).

Suppose we ask the question: what is the polynomial, of
degree at most n, whose graph passes through the n + 1 points
Pi = (ci ,bi), where the ci are distinct? That is, we look for a
polynomial such that

f (ci) = bi , i = 1 . . . n + 1.
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Let us define another basis for Fn[x ] which very appropriate
here, the so-called Lagrange polynomials: Set

fi(x) =

∏
j 6=i(x − cj)∏
j 6=i(ci − cj)

.

If n = 1,
f1(x) =

x − c2

c1 − c2
, f2(x) =

x − c1

c2 − c1

Note each fi(x) is a polynomial of degree n. Furthermore,

fi(ci) = 1
fi(cj) = 0, j 6= i .

Proposition
f1(x), f2(x), . . . , fn+1(x) are linearly independent. Therefore they
form a basis of Fn[x ].
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To prove it, suppose there is some relation∑
1≤i≤n+1

ai fi(x) = 0, ai ∈ R.

We claim all ai = 0. To see see, it suffices to evaluate the
summation at each cj :∑

1≤i≤n+1

ai fi(cj) = aj = 0.

This completes the proof.

We can now write the explicit polynomial that passes through
the points (cj ,bj):

f (x) =
∑

1≤i≤n+1

bi fi(x).

Check: f (cj) = bj !
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For those who like to check: Here is the equation of the line
passing through two points

b1 +
b2 − b1

c2 − c1
(x − c1).

and here is the Lagrange polynomial

b1
x − c2

c1 − c2
+ b2

x − c1

c2 − c1

they are the same
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Fancy Vector Spaces

Let us show one powerful method to create vector spaces. We
will consider a very simple setting that contains the main
ingridients of the method.

Let R2 be the usual real plane and let L be a line passing
through the origin. [Carry an example in your mind.] L is a
subspace of R2.

For any vector v ∈ R2, v + L is the set obtained by translating L
by v . It is a line parallel to L. We are going to denote it Lv and
the set of all such such lines we denote by V= all lines parallel
to L.
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A feature of the notation Lv is the following. Suppose u ∈ L.
Then Lu = LO = L. More generally,

Lv = Lv+u

v is said to be a representative of Lv , but the observation says
that v + u is also a representative of Lv . Essentially any vector
in Lv serves as its representative.

This will be cause for confusion!
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Let us define an ‘addition’ for this set of lines. We are going to
use the ordinary ‘+’ when ‘⊕’ or ‘⊗’ might be more cautious.
For any two lines Lv and Lw

Lv + Lw := Lv+w .

For instance Lv + LO = Lv .

Proposition
This composition does not depend of the representatives used,
that is if Lv = Lv ′ and Lw = Lw ′ then

Lv + Lw = Lv ′ + Lw ′ .
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It is obvious now that this composition is commutative and
associative. The line L plays the role of O: Lv + L = Lv , and
L−v is the negative of Lv : Lv + L−v = L.

If we define scalar multiplication by

cLv = Lcv

it will check easily that V is a vector space. It is called the
quotient of R2 by L. The notation V = R2/L is used.
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This method–and we see a tiny window into it–has many other
uses. Let us create a field with 3 elements, the so-called F3.

Start with the set of integers Z and let L denote the set of
multiples of 3. L is closed under addition and multiplication by
integers. For each integer a, denote by La the subset of
integers of the form 3n + a, of multiples of 3 plus a. There are
just three such sets, L = L0, L1 and L2. [Note L = L3, L1 = L4,
for instance.]

We define an ‘addition’ and a ‘multiplication’ on this set of 3
elements by

La + Lb := La+b

La · Lb := Lab

We again can check that these compositions do not depend on
the chosen ‘representatives.’
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If we denote the set of these three subsets simply by 0,1,2,
and table the sums and products we get

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

2 + 2 = 1

and

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

2× 2 = 1

The same construction would work for any prime number p,
and the field Fp [integers mod p] would arise.
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Bases of Vector Spaces

Our aim is to prove the existence of bases in arbitrary vector
spaces, wihout the restriction we used in our early discussion.

Theorem
Every vector space V over a field F has a basis.

The proof uses some elements of set theory [Zorn’s Lemma]
that many of you are already familiar with.
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We are going to examine the set A of subsets B of V of linearly
independent elements.
• If B is maximal [that is, not contained in any other such

subset] then it is a basis. Indeed, let v ∈ V. If v is not in the
span of B, we claim that the [larger] set C = B ∪ {v} is
linearly independent: If not, we would have a relation

cv + c1u1 + · · ·+ cnun = 0,

with some scalar nonzero. In case c 6= 0,

v = (−c1/c)u1 + · · ·+ (−cn/c)un,

and v wolujld be in the span of B, which is again our
hypothesis. So c = 0 and we would have a relation
involving the ui only; but these vectors are linearly
independent so all the ci = 0.
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• A collection L of subsets B in A is linearly ordered if any
two of them are comparable: If Bα,Bβ ∈ L then one
contains the other. We have the following property: The
subset ⋃

Bα

is linearly independent. This is clear because if u1, . . . ,un
are vectors in the union, ui ∈ Bαi , they will belong to larger
of the Bαi .
• The existence of a maximal subset in A is now asserted by

Zorn’s Lemma.
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HomeQuiz #2

1 Let F be a field and let V be the vector space Mn(F). Let W be
the set of all v = [aij ] ∈ V such that a11 + a22 + · · ·+ ann = 0, that
is, the matrices of trace zero. Show that W is a subspace and
describe precisely one of its bases.

2 Prove that the functions sin x , cos x , sin 2x , cos 2x are linearly
independent.

3 Let f (x) be a real polynomial of degree n. Prove that f (x) and its
higher derivatives form a basis for the space Rn[x ] (real
polynomials of degree ≤ n).

4 Let S1 and S2 be subspaces of the vector space V. Prove that

dim S1 + dim S2 = dim(S1 ∩ S2) + dim(S1 + S2).
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Solutions

1: If A = [aij ] and B = [bij ] are two matrices of trace 0, the trace
of A + B is
(a11 + b11) + · · · (ann + bnn) =

∑
i aii +

∑
i bii = 0 + 0 = 0.

There is a similar calculation that the trace of cA is 0. This is
the subspace test for W.

To find the basis [will do here the case n = 2 only]. Just note if
A = [aij ] has trace 0, a11 + a22 = 0, so a11 = a22 is the only
equation to care. Thus

A =

[
−a22 a12

a21 a22

]
= a22

[
−1 0

0 1

]
+a12

[
0 1
0 0

]
+a21

[
0 0
1 0

]
These 3 matrices are linearly independent and span W. Think
how you would do n = 3.
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2: Must show that if a sin x + b cos x + c sin 2x + d cos 2x = 0,
a,b, c,d ∈ R, then a = b = c = d = 0. We convert this
functional equation into numerical equations by picking
convenient values for x :

Setting x = 0, get b + d = 0
Setting x = π/2, get a− d = 0
Take derivative and set x = 0, get a + 2c = 0
Take derivative and set x = π/2, get −b − 2c = 0

Solving these 4 linear equations gives the desired assertion [do
it!]
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3: If f is a polynomial of degree n, it suffices to show that

cf (x) + c1f ′(x) + c2f ′′(x) + · · ·+ cnf (n)(x) = 0

then c = c1 = c2 = · · · = cn = 0. This will show that f (x) and its
n derivatives are linearly in a space of dimension n + 1, so they
will form a basis.

This is clear: Note that if c 6= 0, cf (x) would be a combination
of lower degree polynomials–not possible. So c = 0. Now
argue the same way with f ′(x), a polynomial of degree n − 1.
And so on [i.e. use descending induction].
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4:

Some volunteer will do in class.
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