Math 350: Linear Algebra

Wolmer V. Vasconcelos

Set 1
Spring 2010

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces
(a Last Class...and...Today
(5) Subspaces
© :Homework \#1HomeQuiz \#1Sample Quiz

- Pre-requisites: Calc 4, Math 300, needs basic linear algebra
- webpage:www.math.rutgers.edu/(tilde)vasconce
- email : vasconce AT math.rutgers.edu
- General Information: Look up in Info page webpage
- Syllabus: See Info page

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces

4 Last Class...and...TodaySubspacesHomework \#1HomeQuiz \#1Sample Quiz

What is Linear Algebra?

It is the integrated study of several mathematical structures: fields, abelian groups, vector spaces, linear transformations.

- What is the general nature of a field?
- An abelian group?
- A vector space?
- A linear transformation?
- Part of Linear Algebra is called Multilinear Algebra: determinants, tensors, etc.
- Why should we care about Linear Algebra? Because...

What are we going to learn?

Two examples:
Understand Spectral Theorems:
These are assertions about when an $n \times n$ matrix (set $n=3$)

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

When this can't be done, what?

Complex Matrices are put together from Jordan blocks

Let \mathbf{A} be a 8-by-8 matrix with 3 eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of multiplicities 3, 2 , 3 resp. Underneath it looks like:

$$
\mathbf{A}=\left[\begin{array}{ccc}
& & \\
\hline \boldsymbol{J}_{1} & 0 & 0 \\
0 & \mathbf{J}_{2} & 0 \\
0 & 0 & \mathbf{J}_{3}
\end{array}\right]=\left[\begin{array}{rrrrrrrr}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right]
$$

The color coded blocks are called Jordan Blocks

$$
\mathbf{J}=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Part of the usefulness of these blocks is that we can define and calculate functions such as $\exp \mathbf{J}$, $\sin \mathbf{J}$, etc and have an analysis based on them.

Abelian Group \longrightarrow Vector Space

For the next definition, it is helpful to have in mind several sets:

- Integers: \mathbb{Z}
- Continuous functions on some interval
- Matrices of a fixed size
- Polynomials in one or several variables

These sets share a common structure which we want to highlight.

Structure: Means What?

A composition on a set \mathbb{X} is a function assigning to pairs of elements of \mathbb{X} an element of \mathbb{X},

$$
(a, b) \mapsto f(a, b) .
$$

That is a function of two variables on \mathbb{X} with values in \mathbb{X}. It is nicely represented in a composition table

\mathbf{f}	$*$	b	$*$
$*$	$*$	$*$	$*$
\mathbf{a}	$*$	$\mathbf{f}(a, b)$	$*$
$*$	$*$	$*$	$*$

We represent it also as

$$
\mathbb{X} \times \mathbb{X} \xrightarrow{\mathfrak{f}} \mathbb{X}
$$

An abelian group is a set \mathbf{G} with a composition law denoted '+'

$$
\begin{gathered}
\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G} \\
a, b \in \mathbf{G}, \quad a+b \in \mathbf{G}
\end{gathered}
$$

satisfying the axioms

- associative $\forall a, b, c \in \mathbf{G}, \quad(a+b)+c=a+(b+c)$
- commutative $\forall a, b \in \mathbf{G}, \quad a+b=b+a$
- existence of O

$$
\exists O \in \mathbf{G} \text { such that } \forall a \quad a+O=a
$$

- existence of inverses

$$
\forall a \in \mathbf{G} \quad \exists b \in \mathbf{G} \quad \text { such that } a+b=0
$$

This element is unique and denoted $-a$.

For example, if \mathbb{X} is the set of real continuous functions on the interval $(-1,1)$, the fact that the sum of two continuous functions is continuous says that addition

$$
(f+g)(x):=f(x)+g(x)
$$

is a composition law that makes \mathbb{X} into an abelian group. It is not a good idea to confuse the scalar 0 with the zero function $O: O(x)=0 \quad \forall x$.

Let us get confused a bit!

A point worthy of discussion: Is it possible for the same set, say \mathbb{R}, to be an abelian group in more than one way? To show this, let us define a new addition of real numbers. We are going to call it 'O plus' \oplus :

$$
a \oplus b:=a+b-1
$$

Call this set \mathbb{R}_{\oplus}. It is easy to see that it is an abelian group [e.g. $(a \oplus b) \oplus c=a=b+c-2$ so composition is associative] in which 0 is $1: a \oplus 1=a$!

Group of Rotations

Let C be the set of all complex numbers $a+b i$, with $a^{2}+b^{2}=1$. Graphically this is just the unit circle centered ao the origin of a plane. Ths set has the following properties:
$-a+b i \in C$, then $(a+b i)^{-1} \in C$. This because

$$
(a+b i)^{-1}=(a-b i) \in C
$$

- If $a+b i, c+d i \in C$ then $(a+b i)(c+d i) \in C$. This follows from $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$ and

$$
(a c-b d)^{2}+(a d+b c)^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=1 .
$$

Each element of C can also be written

$$
a+b i=e^{i \theta}
$$

Field

A field \mathbf{F} is a set with two composition laws, called 'addition' and 'multiplication', say + and $\times: \forall a, b \in \mathbf{F}$ have compositions $a+b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply $a b$.)

- $(\mathbf{F},+)$ is an abelian group
- (\mathbf{F}, \times): multiplication is associative, commutative and distributive over + , that is $\forall a, b, c \in \mathbf{F}$,

$$
(a b) c=a(b c), \quad a b=b a, \quad a(b+c)=a b+a c
$$

- existence of identity $\exists \boldsymbol{e} \in \mathbf{F}$ such that

$$
\forall a \in \mathbf{F} \quad a \times e=a
$$

- existence of inverses For every $a \neq 0$, there is $b \in \mathbf{F}$

$$
a \times b=e .
$$

There is a unique element e, usually we denote it by 1 . For $a \neq 0$, the element b such that $a b=1$ is unique; it is often denoted by $1 / a$ or a^{-1}.

We can now define scalars: the elements of a field.

Fields are ubiquotous:

- \mathbb{R} : real numbers
- The integers \mathbb{Z} is not a field (not all integers have inverses), but \mathbb{Q}, the rational numbers is a field.
- \mathbb{C} : complex numbers, $z=a+b i, i=\sqrt{-1}$, with compositions

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i) \times(c+d i)=(a c-b d)+(a d+b c) i
\end{gathered}
$$

The arithmetic here requires a bit more care:
If $a+b i \neq 0$,

$$
\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

Exercise: Number fields

Let \mathbf{F} be the set of all real numbers of the form

$$
z=a+b \sqrt{2}, \quad a, b \in \mathbb{Q}
$$

prove that \mathbf{F} is a field.

- Check that \mathbf{F} is closed for addition and multiplication
- If $a+b \sqrt{2} \neq 0 \Rightarrow(a+b \sqrt{2})^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}} \in \mathbf{F}$
- Axioms of a field.

A noteworthy example is \mathbb{F}_{2}, the set made up by two elements $\{0,1\}$ (or (even, odd))with addition defined by the table

+	0	1
0	0	1
1	1	0

and multiplication by

\times	0	1
0	0	0
1	0	1

$\mathbb{F}_{3}=\{0,1,2\}$ with addition defined by the table

$$
\begin{array}{l|l|l|l}
+ & 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 2 \\
\hline 1 & 1 & 2 & 0
\end{array} \quad 1+2=0!
$$

and multiplication by

\times	0	1	2
0	0	0	0
1	0	1	2

Exercise 1: Prove that in any field \mathbf{F} the rule minus times minus is plus holds, that is for any $a, b \in \mathbf{F}$,

$$
-(-a)=a, \quad(-a)(-b)=a b
$$

Solution: The first assertion folllows from
$a+(-a)=(-a)+a=O$: a is the negative of $-a$.
Because of the above, we must show that $(-a)(-b)$ is the negative of $-(a b)$. We first claim $(-a) b=-(a b)$. Note

$$
(-a) b+a b=((-a)+a) b=O b=0
$$

$(-a)(-b)-(a b)=(-a)(-b)+(-a) b=(-a)((-b)+b)=(-a) O=0$.

A field is the mathematical structure of choice to do arithmetic. Given a field \mathbf{F}, fractions can defined as follows: If $a, b \in \mathbf{F}, \quad b \neq 0$,

$$
\frac{a}{b}:=a b^{-1} .
$$

The usual calculus of fractions then follows, for instance

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Outline

(1) General Orientation

 Basic Structures: Groups and Fields}
(3) Vector Spaces

4) Last Class...and...Today
(5) Subspaces
© :Homework \#1HomeQuiz \#1Sample Quiz

A vector space is a structured set put together from an abelian group V and a field \mathbf{F}. It is helpful to keep in mind the following examples.

Let n be a non-negative integer. \mathbb{R}^{n} : the set of all n-tuples of real numbers, with 2 compositions

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]+\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+u_{1} \\
v_{2}+u_{2} \\
\vdots \\
v_{n}+u_{n}
\end{array}\right]
$$

For $c \in \mathbb{R}$,

$$
c\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
c v_{1} \\
c v_{2} \\
\vdots \\
c v_{n}
\end{array}\right]
$$

Another example is the set of polynomials in one indeterminate over the field $\mathbf{F}: \mathbf{F}[x]$ is the set of polynomials

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in \mathbf{F}
$$

Addition is given by
$\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right)+\left(b_{m} x^{m}+\cdots+b_{1} x+b_{0}\right)=\sum_{i}\left(a_{i}+b_{i}\right) x^{i}$
and scalar multiplication

$$
c f(x)=c a_{n} x^{n}+c a_{n-1} x^{n-1}+\cdots+c a_{1} x+c a_{0}
$$

Related examples are the subsets $\mathbb{P}_{n}(x)$ of polynomials of degree at most n.

The set of solutions of the differential equation

$$
y^{(3)}-7 y^{\prime \prime}+14 y^{\prime}-8 y=0
$$

is also a vector space over \mathbb{R}. It is a consequence of the fact [principle of superposition] that if $y_{1}(x)$ and $y_{2}(x)$ are solutions then for $a, b \in \mathbb{R}$

$$
a y_{1}(x)+b y_{2}(x)
$$

is also a solution. From Calc 252, it will follow that any solution is a combination

$$
a e^{x}+b e^{2 x}+c e^{4 x}
$$

Formally, a vector space over a field \mathbf{F} is an abelian group \mathbf{V} admitting a (scalar) multiplication

$$
\mathbf{F} \times \mathbf{V} \rightarrow \mathbf{V}, \quad c \times u \mapsto c u \in \mathbf{V}
$$

with the following properties:

- For $c, d \in \mathbf{F}, u \in \mathbf{V},(c d) u=c(d u)$
- For $u \in \mathbf{V}, 1 u=u$
- For $c, d \in \mathbf{F}, u \in \mathbf{V},(c+d) u=c u+d u$
- For $c \in \mathbf{F}, u, v \in \mathbf{V}, c(u+v)=c u+c v$

We can now define vectors: the elements of a vector space.

Theorem (First Theorem)

For $u, O \in \mathbf{V}, 0, c \in \mathbf{F}$

$$
0 u=O, \quad c O=O, \quad(-c) u=-(c u)
$$

Proof. For the first claim, observe

$$
0 u=(0+0) u=0 u+0 u
$$

so

$$
0 u=O
$$

Similarly for the other claims.

There are many vector spaces derived from those mentioned already. We give a very general method to form new vector spaces. Let \mathbf{V} and \mathbf{W} be vector spaces over the field \mathbf{F} and let $\mathbf{V} \times \mathbf{W}$ be the set of all ordered pairs $(v, w), v \in \mathbf{V}, \boldsymbol{w} \in \mathbf{W}$. If we define an addition and a scalar multiplication by

$$
\begin{aligned}
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right) & :=\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \\
c(v, w) & :=(c v, c w),
\end{aligned}
$$

we make $\mathbf{V} \times \mathbf{W}$ into a vector space. It is easy to verify all the requirements. This is the method used to obtain the vector spaces of tuples $\mathbf{F}^{2}=\mathbf{F} \times \mathbf{F}, \mathbf{F}^{3}=\mathbf{F}^{2} \times \mathbf{F}$, and so on.

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces

4 Last Class...and...Today
(5) Subspaces

6 Homework \#1
(HomeQuiz \#1
(8) Sample Quiz

Last Class...and...Today

We introduced and gave the first examples of the following basic algebraic structures:

- Abelian group: \mathbb{Z}, complex numbers of magnitude 1 , polynomials in x with coefficients in \mathbb{C}
- Field: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}_{2}$
- Vector space: Ingredients are an abelian group \mathbf{V}, a field \mathbf{F} and a multiplication $(r, v) \rightarrow r \cdot v$, for $r \in \mathbf{F}$ and $v \in \mathbf{V}$ with some properties
- Subspace: nonempty subset $\mathbf{W} \subset \mathbf{V}$ of a vector space that is a vector space for same operations
- Quick subspace test
- Lots more examples plus ...

Outline

(1) General Orientation

(2) Basic Siructures: Groups and Fields
(3) Vector Spaces
? Last Class...and...Today
(5) Subspaces

6 Homework \#1HomeQuiz \#1Sample Quiz

We are now in a position to introduce a basic concept, that of a subspace of a vector space. [It is a subset but with special properties, like a child of a vector space, carrying part of its DNA.]

Definition

A non-empty subset \mathbf{S} is a subspace of a vector space \mathbf{V} if \mathbf{S} is a vector space for the same operations of \mathbf{V}.

Example

Let \mathbf{V} be the set of all real polynomials,
$\mathbf{f}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots . \mathbf{V}$ is a vector space over \mathbb{R}. Let \mathbf{S} be the subset of all polyomials where the coefficients of all odd powers are zero: $a_{1}=a_{3}=\cdots=0$. Clearly \mathbf{S} is also a vector space over \mathbb{R} for the same operations: So \mathbf{S} is a subspace of \mathbf{V}.

There is a very simple test to check whether a subset \mathbf{S} of a vector space \mathbf{V} over a field \mathbf{F} is a subspace:

Proposition (Subspace Test)

\mathbf{S} is a subspace iff the following hold: (i) $O \in \mathbf{S}$; (ii) if $u, v \in \mathbf{S}$, then $u+v \in \mathbf{S}$; (iii) if $c \in \mathbf{F}$ and $u \in \mathbf{S}$, then $c u \in \mathbf{S}$.

Note that (i) says that \mathbf{S} is non-empty, and (ii) and (iii) say that we are using the operations of \mathbf{V}. The beauty of this criterion is that it does not asks us to check the axioms of vector spaces: It was done already in V. We can paraphrase by saying: A subspace of a vector space is a non-empty subset closed under addition and scalar multiplication.

Examples

$\{O\}$ is always a subspace.
Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{aligned}
& \mathbf{S}_{1}:=\{(a, b) \mid a-b=0\} \\
& \mathbf{S}_{2}:=\{(a, b) \mid a, b \geq 0\} \\
& \mathbf{S}_{3}:=\{(a, b) \mid a=0\}
\end{aligned}
$$

\mathbf{S}_{1} and \mathbf{S}_{3} pass the test but \mathbf{S}_{2} is closed under addition but not scalar multiplication:

$$
(-1)(2,3)=(-2,-3) \notin \mathbf{S}_{2}
$$

$$
\mathbf{A}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 2 & 3 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- row space: subspace of \mathbf{F}^{5}
- column space: subspace of \mathbf{F}^{3}
- nullspace: all vectors v of F^{5} such that

$$
A v=O
$$

Let us talk about this last set.

Nullspace

- The nullspace \mathbf{S} of this matrix consists of the vectors $v \in \mathbf{F}^{5}$ such that

$$
\mathbf{A} v=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 2 & 3 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=0
$$

- If $v, u \in \mathbf{S}, \mathbf{A}(v+u)=\mathbf{A} v+\mathbf{A} u=O+O=O$, so $v+u \in \mathbf{S}$
- If $v \in \mathbf{S}$ and $c \in \mathbf{F}, \mathbf{A}(c v)=c \mathbf{A}(v)=c O=O$, so $c v \in \mathbf{S}$
- Conclusion: S passes the subspace test.

Example

Let V be the vector space \mathbb{Z}_{2}^{n} : This is the set of all n-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

with $x_{i}=0,1$. This space has many interesting subspaces.
Exercise: Prove that the subset S of V consisting of all such tuples where an even number of x_{i} are 1 is a subspace.

Solution

(1) $u=\left(x_{1}, \ldots, x_{n}\right)$ has an even number of entries x_{i} equal to 1 if and only if

$$
x_{1}+x_{2}+\cdots+x_{n}=0
$$

(2) If another tuple $v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ has the same property, it is clear that $u+v=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \in S$. Thus S is closed under addition.
(3) It is clear that S is closed under multiplication, since if $u \in S, 1 \cdot u=u$ and $0 \cdot u=(0, \ldots, 0) \in S$.
(9) Thus S passes the subspace test.

Properties

Proposition

If \mathbf{S}_{1} and \mathbf{S}_{2} are subspaces of the vector space \mathbf{V}, then the following subsets of \mathbf{V} are subspaces:
(1) $S_{1} \cap S_{2}$.
(2) $\mathbf{S}_{1}+\mathbf{S}_{2}=\left\{a+b: a \in \mathbf{S}_{1}, \quad b \in \mathbf{S}_{2}\right\}$.

Class Proof Check that the subsets are closed under addition and scalar multiplication.

Question

Example

Can we make a vector space out of the people in this room?

Vector Spaces of Matrices

Let \mathbf{F} be a field. For a fixed pair (m, n) of natural numbers, the set \mathbf{M} of all $m \times n$ matrices with entries/coefficients in \mathbf{F}

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

with the usual addition and multiplication by elements of \mathbf{F} is a vector space. Note that we might as well say that such objects are ordinary $m \cdot n$-tuples organized in a particular way. It is a fact that opens opportunities.

Subspaces of Matrices

Let $\mathbf{M}_{3}(\mathbf{F})$ be the space of all 3×3 matrices over the field \mathbf{F}.
Consider the sets of matrices of the form [schematically]

$$
\mathbf{D}_{3}:\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]
$$

\mathbf{D}_{3} are diagonal matrices

$\mathbf{U}_{3}:\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]$

\mathbf{U}_{3} are upper triangular matrices

$\mathbf{L}_{3}:\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

\mathbf{L}_{3} are lower triangular matrices

$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$

\mathbf{S}_{3} are symmetric matrices

$\mathbf{K}_{3}:\left[\begin{array}{lll}0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0\end{array}\right]$

\mathbf{K}_{3} are skew-symmetric matrices

Sequences

Let \mathbf{V} be the set of all sequences of real numbers

$$
s=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)
$$

If we define

$$
\left(a_{1}, a_{2}, \ldots\right)+\left(b_{1}, b_{2}, \ldots\right):=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right)
$$

and scalar multiplication by

$$
c\left(a_{1}, a_{2}, \ldots\right)=\left(c a_{1}, c a_{2}, \ldots\right)
$$

V becomes a vector space.
Exercise 2: Let \mathbf{S} be the set of all sequences

$$
s=\left(a_{1}, a_{2}, \ldots\right), \quad \sum_{i \geq 1} a_{i}^{2}<\infty .
$$

show that \mathbf{S} is a subspace.

Solution: We must show that the subset \mathbf{S} is closed under addition and scalar multiplication.

Suppose that $\sum_{i \geq 1} a_{i}^{2}<\infty$ and $\sum_{i \geq 1} b_{i}^{2}<\infty$. Then

$$
\begin{aligned}
\sum_{i \geq 1}\left(a_{i}+b_{i}\right)^{2} & =\sum_{i \geq 1} a_{i}^{2}+2 \sum_{i \geq 1} a_{i} b_{i}+\sum_{i \geq 1} b_{i}^{2} \\
& \leq 2 \sum_{i \geq 1} a_{i}^{2}+2 \sum_{i \geq 1} b_{i}^{2}
\end{aligned}
$$

since $2 a_{i} b_{i} \leq a_{i}^{2}+b_{i}^{2}$.
The scalar condition is immediate.

Linear combinations

Let \mathbf{A} be a set of vectors in a vector space \mathbf{V},

$$
\mathbf{A}=\left\{v_{1}, \ldots, v_{m}\right\} .
$$

Definition

A linear combination of the v_{i} is a vector

$$
v=c_{1} v_{1}+\cdots+c_{m} v_{m}, \quad c_{i} \in \mathbf{F}
$$

The set \mathbf{S} of all these vectors is the span of $\left\{v_{1}, \ldots, v_{m}\right\}$.

Note the following observation:

Proposition

\mathbf{S} is a subspace of \mathbf{V}. \mathbf{S} is the smallest subspace that contains all the vectors v_{i}.

Proof. If $v=c_{1} v_{1}+\cdots+c_{m} v_{m}$ and $u=d_{1} v_{1}+\cdots+d_{m} v_{m}$ are two linear combinations,

$$
v+u=\left(c_{1}+d_{1}\right) v_{1}+\cdots+\left(c_{m}+d_{m}\right) v_{m}
$$

is also a linear combination. For any scalar $c, c v$ is a linear combination. Thus the span of a set of vectors passes the subspace test.

The span of the zero vector is just $\{O\}$.
If v is a nonzero vector, its span is the set

$$
\mathbf{L}=\{c v \mid c \in \mathbf{F}\}
$$

\mathbf{L} is said to be the line determined by v.
If u, v are vectors such that neither is a multiple of the other, they span a plane.

Recall that the classical vectors, i, j and k span \mathbb{R}^{3}.

The vector space $\mathbf{M}_{\mathbf{2}}(\mathbf{F})$ is spanned by the 4 matrices
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
but also by the matrices

$$
(a-b)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(b-c)\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]+(c-d)\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

We can generalize these notions as follows: Let \mathbf{W}_{i} be a family (finite or infinite) of subspaces of \mathbf{V}. The sum of the \mathbf{W}_{i} is the set of all finite sums

$$
w_{1}+w_{2}+\cdots+w_{n}, \quad w_{i} \in \mathbf{W}_{i}
$$

It is denoted

$$
\sum \mathbf{W}_{i} .
$$

Let us look at some interesting examples.

Let \mathbf{V} be the set of all real functions $f(t)$ of the real variable t. V is a vector space over \mathbb{R}. A function $f(t)$ is even if $f(-t)=f(t)$. Call \mathbf{E} the set of all even functions. By the subspace test, \mathbf{E} is a subspace. We define similarly odd functions, $f(-t)=-f(t)$, and again check that the set \mathbf{O} they define is a subspace.

Exercise 3: Prove that $\mathbf{V}=\mathbf{E}+\mathbf{O}$.
Solution: For any $F(t)$, we write

$$
F(t)=\frac{F(t)+F(-t)}{2}+\frac{F(t)-F(-t)}{2}
$$

Observe that the first summand is even, the second odd.

Related exercises are the following. Let $M_{n}(\mathbb{R})$ be the set of $n \times n$ real matrices. Denote by \mathbf{S}_{n} the set of symmetric matrices and by \mathbf{K}_{n} the set of skew-symmetric real matrices [i.e. $a_{i j}=-a_{j j}$; in particular $a_{i j}=0$].

Exercise 4: Prove that $\mathbf{M}_{n}(\mathbb{R})=\mathbf{S}_{n}+\mathbf{K}_{n}$.

A matrix is strictly upper triangular if $a_{i j}=0$ if $i \leq j$. Denote by \mathbf{U}_{n} the set [subspace] of all such matrices. \mathbf{L}_{n} is similarly defined: strictly lower triangular

Exercise 5: Prove that $\mathbf{M}_{n}(\mathbb{R})=\mathbf{S}_{n}+\mathbf{U}_{n}$ You might want to examine the case $n=2$ first:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{cc}
0 & a_{12}-a_{21} \\
0 & 0
\end{array}\right]
$$

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces
(7) Last Class...and...Today
(5) Subspaces

6 Homework \#1
(7) HomeQuiz \#1
(Sample Quiz

Homework \#1

(1) 1.1: 1 (This will be a general rule: always scan the first problem of a new section as it reviews the topics discussed.)
(2) 1.2: 3(a), 12, 18, 21
(3) 1.3: 5, 8(d), 9, 31 (optional)
(4) 1.4: 2(a), 3(a), 4(a), 14
(5) 1.5: 2(d), 6, 10, 16
(C) 1.6: $1,5,7,9,15,30$

Finite Fields

We seen two finite fields: \mathbb{Z}_{2}, integers $\bmod 2$, and \mathbb{Z}_{3}, integers $\bmod 3$. The construction does not work with \mathbb{Z}_{4} as $2 \times 2=4=0$. Nevertheless there are fields with 4 elements: Let \mathbf{F} be the set of polynomials $\{0,1, x, 1+x\}$, with coefficients in \mathbb{Z}_{2}. So we add $x+(1+x)=1+2 x=1$. To multiply we use the table

\times	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

$$
x \cdot(x+1)=1!
$$

Prime field

Suppose \mathbf{F} is a finite field and let us try to understand pieces of its structure. \mathbf{F} has at least two elements, 0 and 1. What else? we could try

```
1
1+1
1+1+1
\vdots
1+1+\cdots+1, m 1's
```

Because \mathbf{F} is finite, there must be repeatitions in this listing.

This means that we have two sums in \mathbf{F},

$$
1+1+\cdots+1=1+1+\cdots+1,
$$

the first with m 1's and the second with $n 1$'s, $m \neq n$. Say $m>n$.

Subtracting, we get a sum $1+1+\cdots+1=0$, with $m-n 1$'s.

Proposition

The smallest nonzero integer p for which there is a sum $1+1+\cdots+1=0$ of $p 1$'s is a prime number.

Proof

(1) We prove that p is prime by contradiction. Suppose $p=a \cdot b, a, b>1$.
(2) Then

$$
(1+1+\cdots+1)(1+1+\cdots+1)=(1+1+\cdots+1)=0,
$$

where the first term has a 1 's, the second $b 1$'s.
(3) Since \mathbf{F} is a field, one of these terms must be zero.
(- But this is a contradiction since they have fewer 1's than the choice of p.
This prime number p is called the characteristic of \mathbf{F}.

Corollary

In a finite field \mathbf{F} the subset \mathbf{F}_{0} of sums of 1 's forms a field with p elements, p prime. \mathbf{F}_{0} is called the prime field of \mathbf{F} and there is a natural identification of F_{0} to \mathbb{Z}_{p}, the integers $\bmod p$.

Corollary

\mathbf{F} is a vector space over \mathbb{Z}_{p}.
It will follow from this corollary that the cardinality of a finite field \mathbf{F} is always a power p^{n}, where p is its characteristic. It is a theorem of Galois theory that for any prime p and any natural number n there is a finite field of cardinality p^{n}. (Up to some equivalence, there is just one such field.)

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces
(9) Last Class...and...Today
(5) Subspaces
(${ }^{\text {B }}$ Homework \#1
(7) HomeQuiz \#1
(8) Sample Quiz

HomeQuiz \#1

(1) Let $\mathbf{A}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 2 & 3 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$ Prove that the set of vectors
$\mathbf{a} \in \mathbb{R}^{3}$ such that $\mathbf{A} v=\mathbf{a}$ for some $v \in \mathbb{R}^{5}$ is a subspace of \mathbb{R}^{3}.
(2) Prove that $\mathbf{M}_{n}(\mathbb{R})=\mathbf{S}_{n}+\mathbf{K}_{n}$.
(3) Give 2 examples of a vector space \mathbf{V} that has only 4 vectors.
(4) Explain why a vector space cannot have just 6 vectors.

Answers

1: We apply the subspace test to show that the set \mathbf{S} of vectors a $\in \mathbb{R}^{3}$ such that $\mathbf{A} v=\mathbf{a}$ for some $v \in \mathbb{R}^{5}$ is a subspace of \mathbb{R}^{3}.

- If $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbf{S}$, say $\mathbf{A} v_{1}=\mathbf{a}_{1}, \mathbf{A} v_{2}=\mathbf{a}_{2}$, then

$$
\mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{A} v_{1}+\mathbf{A} v_{2}=\mathbf{A}\left(v_{1}+v_{2}\right) \Rightarrow \mathbf{a}_{1}+\mathbf{a}_{2} \in \mathbf{S}
$$

- If $\mathbf{a}=\mathbf{A} v$, then any scalar $c, c \mathbf{a}=\mathbf{A} c v$, hence $c \mathbf{a} \in \mathbf{S}$
- S passes the test

2: Must show that any square real matrix \mathbf{A} is a sum
$\mathbf{A}=\mathbf{B}+\mathbf{C}$, where \mathbf{B} is symmetric and \mathbf{C} is skew-symmetric.
For $n=3$: Given $\mathbf{A}=\left[a_{i j}\right]$ must find $\mathbf{B}=\left[b_{i j}\right]$ and $\mathbf{C}=\left[c_{i j}\right]$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{12} & b_{22} & b_{23} \\
b_{13} & b_{23} & b_{33}
\end{array}\right]+\left[\begin{array}{rrr}
0 & c_{12} & c_{13} \\
-c_{12} & 0 & c_{23} \\
-c_{13} & -c_{23} & 0
\end{array}\right]
$$

Must solve for all $b_{i j}$ and all $c_{i j}$.

$$
\begin{aligned}
b_{i i} & =a_{i i}, \quad \forall i \\
a_{i j} & =b_{i j}+c_{i j} \\
a_{j j} & =b_{i j}-c_{i j}, \forall i \neq j
\end{aligned}
$$

Thus $b_{i j}=1 / 2\left(a_{i j}+a_{j i}\right)$ and $c_{i j}=1 / 2\left(a_{i j}-a_{j i}\right)$.

Cool 2: Consider the equality

- $\mathbf{A}=\mathbf{B}+\mathbf{C}$ and take the transposes
- $\mathbf{A}^{t}=\mathbf{B}^{t}+\mathbf{C}^{t}$. But $\mathbf{B}^{t}=\mathbf{B}$ and $\mathbf{C}^{t}=-\mathbf{C}$.
- Adding the equalities we get $\mathbf{B}=1 / 2\left(\mathbf{A}+\mathbf{A}^{t}\right)$ and $\mathbf{C}=1 / 2\left(\mathbf{A}-\mathbf{A}^{t}\right)$

3, 4: If a vector space $\mathbf{V} \neq(O)$ has only finitely many vectors, the field \mathbf{F} must be finite: Otherwise just the multiples $c v$ of a nonzero vector $v \in \mathbf{V}$ would be an infinite set.
\mathbf{V} must have a basis, that is there is a set v_{1}, \ldots, v_{n} such that any vector $v \in \mathbf{V}$ is a unique linear combination

$$
v=c_{1} v_{1}+\cdots+c_{n} v_{n}
$$

Any choice of the n-tuple $\left(c_{1}, \ldots, c_{n}\right)$ gives rise to a vector. If \mathbf{F} has cardinality q, then there are $q^{n} n$-tuples.

We have already seen the number of elements in a field is a power a prime, $q=p^{m}$. Since 6 is not a power of a prime, there is no field or vectorspace with 6 vectors.

To get two vector spaces with just 4 vectors:
(1) Pick $\mathbf{F}=\mathbb{Z}_{2}$, and $\mathbf{V}=\mathbf{F}^{2}=\{(0,0),(0,1),(1,0),(1,1)\}$
(2) For \mathbf{F} pick the field with 4 elements given in class. For $\mathbf{V}=\mathbf{F}$ itself, or another copy of it. [Any field is also a vector space over itself.]

Outline

(1) General Orientation

(2) Basic Structures: Groups and Fields
(3) Vector Spaces

A Last Class...and...Today
(5) Subspaces
(2) Homework \#1
(7) HomeQuiz \#1
(8) Sample Quiz

Sample Quiz

- (4 pts) Prove that a vector space \mathbf{V} cannot have a basis with 4 elements and another basis with 3 elements.
- (3 pts) Let $f(x)$ be a real polynomial of degree n. Prove that $f(x)$ and its higher derivatives form a basis for the space $\mathbb{R}_{n}[x]$.
- (3 pts: do one) Give an example of a vector space \mathbf{V} that has only 4 vectors.
(b) Explain why a vector space cannot have just 6 vectors.

