
General Orientation Basic Structures: Groups and Fields Vector Spaces Last Class...and...Today Subspaces Homework #1 HomeQuiz #1 Sample Quiz

Math 350: Linear Algebra

Wolmer V. Vasconcelos

Set 1

Spring 2010



General Orientation Basic Structures: Groups and Fields Vector Spaces Last Class...and...Today Subspaces Homework #1 HomeQuiz #1 Sample Quiz

Outline

1 General Orientation

2 Basic Structures: Groups and Fields

3 Vector Spaces

4 Last Class...and...Today

5 Subspaces

6 Homework #1

7 HomeQuiz #1

8 Sample Quiz



General Orientation Basic Structures: Groups and Fields Vector Spaces Last Class...and...Today Subspaces Homework #1 HomeQuiz #1 Sample Quiz

• Pre-requisites: Calc 4, Math 300,
needs basic linear algebra

• webpage:www.math.rutgers.edu/(tilde)vasconce

• email : vasconce AT math.rutgers.edu

• General Information: Look up in Info page webpage

• Syllabus: See Info page
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What is Linear Algebra?

It is the integrated study of several mathematical structures:
fields, abelian groups, vector spaces, linear transformations.

What is the general nature of a field?
An abelian group?
A vector space?
A linear transformation?
Part of Linear Algebra is called Multilinear Algebra:
determinants, tensors, etc.
Why should we care about Linear Algebra? Because...
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What are we going to learn?

Two examples:

Understand Spectral Theorems:

These are assertions about when an n × n matrix (set n = 3) a11 a12 a13
a21 a22 a23
a31 a32 a33

 −→
 a 0 0

0 b 0
0 0 c


When this can’t be done, what?
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Complex Matrices are put together from Jordan
blocks

Let A be a 8-by-8 matrix with 3 eigenvalues λ1, λ2, λ3 of
multiplicities 3,2,3 resp. Underneath it looks like:

A =

 J1 O O
O J2 O
O O J3

 =



λ1 1 0 0 0 0 0 0
0 λ1 1 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 0 0 λ2 1 0 0 0
0 0 0 0 λ2 0 0 0
0 0 0 0 0 λ3 1 0
0 0 0 0 0 0 λ3 1
0 0 0 0 0 0 0 λ3


The color coded blocks are called Jordan Blocks
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J =

 λ 1 0
0 λ 1
0 0 λ


Part of the usefulness of these blocks is that we can define and
calculate functions such as exp J, sin J, etc and have an
analysis based on them.
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Abelian Group −→ Vector Space

For the next definition, it is helpful to have in mind several sets:
• Integers: Z

• Continuous functions on some interval

• Matrices of a fixed size

• Polynomials in one or several variables

These sets share a common structure which we want to
highlight.

Structure: Means What?
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A composition on a set X is a function assigning to pairs of
elements of X an element of X,

(a,b) 7→ f(a,b).

That is a function of two variables on X with values in X.
It is nicely represented in a composition table

f ∗ b ∗
∗ ∗ ∗ ∗
a ∗ f(a,b) ∗
∗ ∗ ∗ ∗

We represent it also as

X× X f−→ X
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An abelian group is a set G with a composition law denoted ‘+’

G×G→ G,

a,b ∈ G, a + b ∈ G

satisfying the axioms
• associative ∀a,b, c ∈ G, (a + b) + c = a + (b + c)

• commutative ∀a,b ∈ G, a + b = b + a
• existence of O

∃O ∈ G such that ∀a a + O = a

• existence of inverses

∀a ∈ G ∃b ∈ G such that a + b = O

This element is unique and denoted −a.
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For example, if X is the set of real continuous functions on the
interval (−1,1), the fact that the sum of two continuous
functions is continuous says that addition

(f + g)(x) := f (x) + g(x)

is a composition law that makes X into an abelian group.

It is not a good idea to confuse the scalar 0 with the zero
function O: O(x) = 0 ∀x .
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Let us get confused a bit!

A point worthy of discussion: Is it possible for the same set, say
R, to be an abelian group in more than one way? To show this,
let us define a new addition of real numbers. We are going to
call it ‘O plus’ ⊕:

a⊕ b := a + b − 1

Call this set R⊕. It is easy to see that it is an abelian group [e.g.
(a⊕ b)⊕ c = a = b + c − 2 so composition is associative] in
which 0 is 1: a⊕ 1 = a!
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Group of Rotations

Let C be the set of all complex numbers a + bi , with
a2 + b2 = 1. Graphically this is just the unit circle centered ao
the origin of a plane. Ths set has the following properties:

a + bi ∈ C, then (a + bi)−1 ∈ C. This because

(a + bi)−1 = (a− bi) ∈ C

If a + bi , c + di ∈ C then (a + bi)(c + di) ∈ C. This follows
from (a + bi)(c + di) = (ac − bd) + (ad + bc)i and

(ac − bd)2 + (ad + bc)2 = (a2 + b2)(c2 + d2) = 1.

Each element of C can also be written

a + bi = eiθ
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Field

A field F is a set with two composition laws, called ‘addition’ and
‘multiplication’, say + and ×: ∀a,b ∈ F have compositions a + b
and a× b. (The second composition is also written a · b, or
simply ab.)

• (F,+) is an abelian group

• (F,×): multiplication is associative, commutative and
distributive over +, that is ∀a,b, c ∈ F,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity ∃e ∈ F such that

∀a ∈ F a× e = a

• existence of inverses For every a 6= 0, there is b ∈ F

a× b = e.

There is a unique element e, usually we denote it by 1. For
a 6= 0, the element b such that ab = 1 is unique; it is often
denoted by 1/a or a−1.

We can now define scalars: the elements of a field.
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Fields are ubiquotous:
• R: real numbers

• The integers Z is not a field (not all integers have
inverses), but Q, the rational numbers is a field.
• C: complex numbers, z = a + bi , i =

√
−1, with

compositions

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)× (c + di) = (ac − bd) + (ad + bc)i
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The arithmetic here requires a bit more care:

If a + bi 6= 0,

1
a + bi

=
a− bi

a2 + b2 =
a

a2 + b2 −
b

a2 + b2 i
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Exercise: Number fields

Let F be the set of all real numbers of the form

z = a + b
√

2, a,b ∈ Q

prove that F is a field.

Check that F is closed for addition and multiplication

If a + b
√

2 6= 0⇒ (a + b
√

2)−1 = a−b
√

2
a2−2b2 ∈ F

Axioms of a field.
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Z2

A noteworthy example is F2, the set made up by two elements
{0,1} (or (even, odd))with addition defined by the table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by

× 0 1
0 0 0
1 0 1
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Z3

F3 = {0,1,2} with addition defined by the table

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

1 + 2 = 0!

and multiplication by

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

2× 2 = 1!
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Exercise 1: Prove that in any field F the rule minus times
minus is plus holds, that is for any a,b ∈ F,

−(−a) = a, (−a)(−b) = ab.

Solution: The first assertion folllows from

a + (−a) = (−a) + a = O: a is the negative of −a.

Because of the above, we must show that (−a)(−b) is the
negative of −(ab). We first claim (−a)b = −(ab). Note

(−a)b + ab = ((−a) + a)b = Ob = O.

(−a)(−b)−(ab) = (−a)(−b)+(−a)b = (−a)((−b)+b) = (−a)O = O.
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A field is the mathematical structure of choice to do arithmetic.
Given a field F, fractions can defined as follows: If
a,b ∈ F, b 6= 0,

a
b

:= ab−1.

The usual calculus of fractions then follows, for instance

a
b

+
c
d

=
ad + bc

bd
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A vector space is a structured set put together from an abelian
group V and a field F. It is helpful to keep in mind the following
examples.

Let n be a non-negative integer. Rn: the set of all n-tuples of
real numbers, with 2 compositions

v1
v2
...

vn

+


u1
u2
...

un

 =


v1 + u1
v2 + u2

...
vn + un


For c ∈ R,

c


v1
v2
...

vn

 =


cv1
cv2

...
cvn





General Orientation Basic Structures: Groups and Fields Vector Spaces Last Class...and...Today Subspaces Homework #1 HomeQuiz #1 Sample Quiz

Another example is the set of polynomials in one indeterminate
over the field F: F[x ] is the set of polynomials

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, ai ∈ F

Addition is given by

(anxn + · · ·+a1x +a0)+(bmxm + · · ·+b1x +b0) =
∑

i

(ai +bi)x i

and scalar multiplication

cf (x) = canxn + can−1xn−1 + · · ·+ ca1x + ca0

Related examples are the subsets Pn(x) of polynomials of
degree at most n.
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The set of solutions of the differential equation

y (3) − 7y ′′ + 14y ′ − 8y = 0

is also a vector space over R. It is a consequence of the fact
[principle of superposition] that if y1(x) and y2(x) are solutions
then for a,b ∈ R

ay1(x) + by2(x)

is also a solution. From Calc 252, it will follow that any solution
is a combination

aex + be2x + ce4x
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Formally, a vector space over a field F is an abelian group V
admitting a (scalar) multiplication

F× V→ V, c × u 7→ cu ∈ V

with the following properties:
• For c,d ∈ F, u ∈ V, (cd)u = c(du)

• For u ∈ V, 1u = u
• For c,d ∈ F, u ∈ V, (c + d)u = cu + du
• For c ∈ F, u, v ∈ V, c(u + v) = cu + cv

We can now define vectors: the elements of a vector space.
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Theorem (First Theorem)
For u,O ∈ V, 0, c ∈ F

0u = O, cO = O, (−c)u = −(cu)

Proof. For the first claim, observe

0u = (0 + 0)u = 0u + 0u,

so
0u = O

Similarly for the other claims. �
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There are many vector spaces derived from those mentioned
already. We give a very general method to form new vector
spaces. Let V and W be vector spaces over the field F and let
V×W be the set of all ordered pairs (v ,w), v ∈ V, w ∈W. If
we define an addition and a scalar multiplication by

(v1,w1) + (v2,w2) := (v1 + v2,w1 + w2)

c(v ,w) := (cv , cw),

we make V×W into a vector space. It is easy to verify all the
requirements. This is the method used to obtain the vector
spaces of tuples F2 = F× F, F3 = F2 × F, and so on.
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Last Class...and...Today

We introduced and gave the first examples of the following
basic algebraic structures:

Abelian group: Z, complex numbers of magnitude 1,
polynomials in x with coefficients in C
Field: Q, R, Z2

Vector space: Ingredients are an abelian group V, a field F
and a multiplication (r , v)→ r · v , for r ∈ F and v ∈ V with
some properties
Subspace: nonempty subset W ⊂ V of a vector space that
is a vector space for same operations
Quick subspace test
Lots more examples plus ...
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We are now in a position to introduce a basic concept, that of a
subspace of a vector space. [It is a subset but with special
properties, like a child of a vector space, carrying part of its
DNA.]

Definition
A non-empty subset S is a subspace of a vector space V if S is
a vector space for the same operations of V.

Example
Let V be the set of all real polynomials,
f = a0 + a1x + a2x2 + · · · . V is a vector space over R. Let S be
the subset of all polyomials where the coefficients of all odd
powers are zero: a1 = a3 = · · · = 0. Clearly S is also a vector
space over R for the same operations: So S is a subspace of V.
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There is a very simple test to check whether a subset S of a
vector space V over a field F is a subspace:

Proposition (Subspace Test)
S is a subspace iff the following hold: (i) O ∈ S; (ii) if u, v ∈ S,
then u + v ∈ S; (iii) if c ∈ F and u ∈ S, then cu ∈ S.

Note that (i) says that S is non-empty, and (ii) and (iii) say that
we are using the operations of V. The beauty of this criterion is
that it does not asks us to check the axioms of vector spaces: It
was done already in V. We can paraphrase by saying: A
subspace of a vector space is a non-empty subset closed
under addition and scalar multiplication.
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Examples

{O} is always a subspace.

Consider the following subsets of R2:

S1 := {(a,b) | a− b = 0}
S2 := {(a,b) | a,b ≥ 0}
S3 := {(a,b) | a = 0}

S1 and S3 pass the test but S2 is closed under addition but not
scalar multiplication:

(−1)(2,3) = (−2,−3) /∈ S2
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A =

 1 2 3 4 5
3 2 1 2 3
1 0 1 0 1


• row space: subspace of F5

• column space: subspace of F3

• nullspace: all vectors v of F5 such that

Av = O

Let us talk about this last set.
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Nullspace

The nullspace S of this matrix consists of the vectors
v ∈ F5 such that

Av =

 1 2 3 4 5
3 2 1 2 3
1 0 1 0 1




x1
x2
x3
x4
x5

 = O

If v ,u ∈ S, A(v + u) = Av + Au = O + O = O, so v + u ∈ S
If v ∈ S and c ∈ F, A(cv) = cA(v) = cO = O, so cv ∈ S
Conclusion: S passes the subspace test.
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Example

Let V be the vector space Zn
2: This is the set of all n-tuples

(x1, x2, . . . , xn),

with xi = 0,1. This space has many interesting subspaces.

Exercise: Prove that the subset S of V consisting of all such
tuples where an even number of xi are 1 is a subspace.
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Solution

1 u = (x1, . . . , xn) has an even number of entries xi equal to
1 if and only if

x1 + x2 + · · ·+ xn = 0

2 If another tuple v = (y1, y2, . . . , yn) has the same property,
it is clear that u + v = (x1 + y1, . . . , xn + yn) ∈ S. Thus S is
closed under addition.

3 It is clear that S is closed under multiplication, since if
u ∈ S, 1 · u = u and 0 · u = (0, . . . ,0) ∈ S.

4 Thus S passes the subspace test.
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Properties

Proposition
If S1 and S2 are subspaces of the vector space V, then the
following subsets of V are subspaces:

1 S1 ∩ S2.
2 S1 + S2 = {a + b : a ∈ S1, b ∈ S2}.

Class Proof Check that the subsets are closed under addition
and scalar multiplication.
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Question

Example
Can we make a vector space out of the people in this room?
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Vector Spaces of Matrices

Let F be a field. For a fixed pair (m,n) of natural numbers, the
set M of all m × n matrices with entries/coefficients in F a11 · · · a1n

...
. . .

...
am1 · · · amn


with the usual addition and multiplication by elements of F is a
vector space. Note that we might as well say that such objects
are ordinary m · n-tuples organized in a particular way. It is a
fact that opens opportunities.
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Subspaces of Matrices

Let M3(F) be the space of all 3× 3 matrices over the field F.

Consider the sets of matrices of the form [schematically]

D3 :

 a11 0 0
0 a22 0
0 0 a33


D3 are diagonal matrices
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U3 :

 a11 a12 a13
0 a22 a23
0 0 a33


U3 are upper triangular matrices



General Orientation Basic Structures: Groups and Fields Vector Spaces Last Class...and...Today Subspaces Homework #1 HomeQuiz #1 Sample Quiz

L3 :

 a11 0 0
a21 a22 0
a31 a32 a33


L3 are lower triangular matrices
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S3 :

 a11 a12 a13
a12 a22 a23
a13 a23 a33


S3 are symmetric matrices
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K3 :

 0 a12 a13
−a12 0 a23
−a13 −a23 0


K3 are skew-symmetric matrices
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Sequences

Let V be the set of all sequences of real numbers

s = (a1,a2, . . . ,an, . . .).

If we define

(a1,a2, . . .) + (b1,b2, . . .) := (a1 + b1,a2 + b2, . . .),

and scalar multiplication by

c(a1,a2, . . .) = (ca1, ca2, . . .),

V becomes a vector space.

Exercise 2: Let S be the set of all sequences

s = (a1,a2, . . .),
∑
i≥1

a2
i <∞.

show that S is a subspace.
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Solution: We must show that the subset S is closed under
addition and scalar multiplication.

Suppose that
∑

i≥1 a2
i <∞ and

∑
i≥1 b2

i <∞. Then

∑
i≥1

(ai + bi)
2 =

∑
i≥1

a2
i + 2

∑
i≥1

aibi +
∑
i≥1

b2
i

≤ 2
∑
i≥1

a2
i + 2

∑
i≥1

b2
i ,

since 2aibi ≤ a2
i + b2

i .

The scalar condition is immediate.
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Linear combinations

Let A be a set of vectors in a vector space V,

A = {v1, . . . , vm}.

Definition
A linear combination of the vi is a vector

v = c1v1 + · · ·+ cmvm, ci ∈ F.

The set S of all these vectors is the span of {v1, . . . , vm}.
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Note the following observation:

Proposition
S is a subspace of V. S is the smallest subspace that contains
all the vectors vi .

Proof. If v = c1v1 + · · ·+ cmvm and u = d1v1 + · · ·+ dmvm are
two linear combinations,

v + u = (c1 + d1)v1 + · · ·+ (cm + dm)vm

is also a linear combination. For any scalar c, cv is a linear
combination. Thus the span of a set of vectors passes the
subspace test.
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The span of the zero vector is just {O}.

If v is a nonzero vector, its span is the set

L = {cv | c ∈ F}

L is said to be the line determined by v .

If u, v are vectors such that neither is a multiple of the other,
they span a plane.

Recall that the classical vectors, i , j and k span R3.
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The vector space M2(F) is spanned by the 4 matrices[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
but also by the matrices

(a−b)

[
1 0
0 0

]
+(b−c)

[
1 0
1 0

]
+(c−d)

[
1 1
1 0

]
+d

[
1 1
1 1

]
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We can generalize these notions as follows: Let Wi be a family
(finite or infinite) of subspaces of V. The sum of the Wi is the
set of all finite sums

w1 + w2 + · · ·+ wn, wi ∈Wi .

It is denoted ∑
Wi .

Let us look at some interesting examples.
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Let V be the set of all real functions f (t) of the real variable t . V
is a vector space over R. A function f (t) is even if f (−t) = f (t).
Call E the set of all even functions. By the subspace test, E is a
subspace. We define similarly odd functions, f (−t) = −f (t),
and again check that the set O they define is a subspace.

Exercise 3: Prove that V = E + O.

Solution: For any F (t), we write

F (t) =
F (t) + F (−t)

2
+

F (t)− F (−t)
2

Observe that the first summand is even, the second odd.
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Related exercises are the following. Let Mn(R) be the set of
n × n real matrices. Denote by Sn the set of symmetric
matrices and by Kn the set of skew-symmetric real matrices
[i.e. aij = −aji ; in particular aii = 0].

Exercise 4: Prove that Mn(R) = Sn + Kn.
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A matrix is strictly upper triangular if aij = 0 if i ≤ j . Denote by
Un the set [subspace] of all such matrices. Ln is similarly
defined: strictly lower triangular

Exercise 5: Prove that Mn(R) = Sn + Un
You might want to examine the case n = 2 first:[

a11 a12
a21 a22

]
=

[
a11 a21
a21 a22

]
+

[
0 a12 − a21
0 0

]
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Homework #1

1 1.1: 1 (This will be a general rule: always scan the first
problem of a new section as it reviews the topics
discussed.)

2 1.2: 3(a), 12, 18, 21
3 1.3: 5, 8(d), 9, 31 (optional)
4 1.4: 2(a), 3(a), 4(a), 14
5 1.5: 2(d), 6, 10, 16
6 1.6: 1, 5, 7, 9, 15, 30
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Finite Fields

We seen two finite fields: Z2, integers mod 2, and Z3, integers
mod 3. The construction does not work with Z4 as
2× 2 = 4 = 0. Nevertheless there are fields with 4 elements:
Let F be the set of polynomials {0,1, x ,1 + x}, with coefficients
in Z2. So we add x + (1 + x) = 1 + 2x = 1. To multiply we use
the table

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

, x · (x + 1) = 1!
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Prime field

Suppose F is a finite field and let us try to understand pieces of
its structure. F has at least two elements, 0 and 1. What else?
we could try

1
1 + 1
1 + 1 + 1
...
1 + 1 + · · ·+ 1, m 1’s

Because F is finite, there must be repeatitions in this listing.
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This means that we have two sums in F,

1 + 1 + · · ·+ 1 = 1 + 1 + · · ·+ 1,

the first with m 1’s and the second with n 1’s, m 6= n. Say
m > n.

Subtracting, we get a sum 1 + 1 + · · ·+ 1 = 0, with m − n 1’s.

Proposition
The smallest nonzero integer p for which there is a sum
1 + 1 + · · ·+ 1 = 0 of p 1’s is a prime number.
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Proof

1 We prove that p is prime by contradiction. Suppose
p = a · b, a,b > 1.

2 Then

(1 + 1 + · · ·+ 1)(1 + 1 + · · ·+ 1) = (1 + 1 + · · ·+ 1) = 0,

where the first term has a 1′s, the second b 1’s.
3 Since F is a field, one of these terms must be zero.
4 But this is a contradiction since they have fewer 1’s than

the choice of p.

This prime number p is called the characteristic of F.
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Corollary
In a finite field F the subset F0 of sums of 1’s forms a field with
p elements, p prime. F0 is called the prime field of F and there
is a natural identification of F0 to Zp, the integers mod p.

Corollary
F is a vector space over Zp.

It will follow from this corollary that the cardinality of a finite field
F is always a power pn, where p is its characteristic. It is a
theorem of Galois theory that for any prime p and any natural
number n there is a finite field of cardinality pn. (Up to some
equivalence, there is just one such field.)
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HomeQuiz #1

1 Let A =

 1 2 3 4 5
3 2 1 2 3
1 0 1 0 1

 Prove that the set of vectors

a ∈ R3 such that Av = a for some v ∈ R5 is a subspace of
R3.

2 Prove that Mn(R) = Sn + Kn.
3 Give 2 examples of a vector space V that has only 4

vectors.
4 Explain why a vector space cannot have just 6 vectors.
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Answers

1: We apply the subspace test to show that the set S of vectors
a ∈ R3 such that Av = a for some v ∈ R5 is a subspace of R3.

If a1,a2 ∈ S, say Av1 = a1, Av2 = a2, then

a1 + a2 = Av1 + Av2 = A(v1 + v2)⇒ a1 + a2 ∈ S

If a = Av , then any scalar c, ca = Acv , hence ca ∈ S

S passes the test
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2: Must show that any square real matrix A is a sum
A = B + C, where B is symmetric and C is skew-symmetric.
For n = 3: Given A = [aij ] must find B = [bij ] and C = [cij ]

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 b11 b12 b13
b12 b22 b23
b13 b23 b33

+

 0 c12 c13
−c12 0 c23
−c13 −c23 0


Must solve for all bij and all cij .

bii = aii , ∀i
aij = bij + cij ,

ajj = bij − cij ,∀i 6= j

Thus bij = 1/2(aij + aji) and cij = 1/2(aij − aji).
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Cool 2: Consider the equality

A = B + C and take the transposes

At = Bt + Ct . But Bt = B and Ct = −C.

Adding the equalities we get B = 1/2(A + At) and
C = 1/2(A− At)
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3, 4: If a vector space V 6= (O) has only finitely many vectors,
the field F must be finite: Otherwise just the multiples cv of a
nonzero vector v ∈ V would be an infinite set.

V must have a basis, that is there is a set v1, . . . , vn such that
any vector v ∈ V is a unique linear combination

v = c1v1 + · · ·+ cnvn

Any choice of the n-tuple (c1, . . . , cn) gives rise to a vector. If F
has cardinality q, then there are qn n-tuples.

We have already seen the number of elements in a field is a
power a prime, q = pm. Since 6 is not a power of a prime, there
is no field or vectorspace with 6 vectors.
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3:

To get two vector spaces with just 4 vectors:

1 Pick F = Z2, and V = F2 = {(0,0), (0,1), (1,0), (1,1)}

2 For F pick the field with 4 elements given in class. For
V = F itself, or another copy of it. [Any field is also a vector
space over itself.]
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Sample Quiz

• (4 pts) Prove that a vector space V cannot have a basis
with 4 elements and another basis with 3 elements.
• (3 pts) Let f (x) be a real polynomial of degree n. Prove

that f (x) and its higher derivatives form a basis for the
space Rn[x ].
• (3 pts: do one) Give an example of a vector space V that

has only 4 vectors.

(b) Explain why a vector space cannot have just 6 vectors.
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