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General Orientation

Pre-requisites: Calc 4, Math 300,
needs basic linear algebra

webpage:www.math.rutgers.edu/(tilde)vasconce

email : vasconce AT math.rutgers.edu

General Information: Look up in Info page webpage

Syllabus: See Info page
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Basic Structures: Groups and Fields

What is Linear Algebra?

It is the integrated study of several mathematical structures:
fields, abelian groups, vector spaces, linear transformations.
@ What is the general nature of a field?
@ An abelian group?
@ A vector space?
@ A linear transformation?

@ Part of Linear Algebra is called Multilinear Algebra:
determinants, tensors, etc.

@ Why should we care about Linear Algebra? Because...



Basic Structures: Groups and Fields

What are we going to learn?

Two examples:
Understand Spectral Theorems:

These are assertions about when an n x n matrix (set n = 3)
apr a2 ais a oo
Ay a2 a3 |— |0 b O
a3y az ass 0 0c

When this can’t be done, what?



Basic Structures: Groups and Fields

Complex Matrices are put together from Jordan
blocks

Let A be a 8-by-8 matrix with 3 eigenvalues Aq, Ao, A3 of
multiplicities 3, 2, 3 resp. Underneath it looks like:

"X 1 0 0 0 0 0 07
0 A 1 0 0 0 0 0
OENINER N EREE

_ _ 2
A_Oo_ooooxzooo
o 0 Js 00 0 0 0 1 0
00 0 0 0 0 ) f
L0 0 0 0 0 0 0 ).

The color coded blocks are called Jordan Blocks



Basic Structures: Groups and Fields
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Part of the usefulness of these blocks is that we can define and
calculate functions such as exp J, sind, etc and have an
analysis based on them.



Basic Structures: Groups and Fields

Abelian Group — Vector Space

For the next definition, it is helpful to have in mind several sets:
e Integers: Z

e Continuous functions on some interval
e Matrices of a fixed size
e Polynomials in one or several variables

These sets share a common structure which we want to
highlight.

Structure: Means What?



Basic Structures: Groups and Fields

A composition on a set X is a function assigning to pairs of
elements of X an element of X,

(a,b) — f(a,b).

That is a function of two variables on X with values in X.
It is nicely represented in a composition table

f|« b *
* | * * *
alx|f(ab)| =
* | % * *

We represent it also as

X x X - X



Basic Structures: Groups and Fields

An abelian group is a set G with a composition law denoted ‘+’
GxG— G,

abeG, a+beG

satisfying the axioms
e associative Va,b,ce G, (a+b)+c=a+(b+0¢)
e commutative Va,be G, a+b=b+a
e existence of O

30 € G suchthatVa a+O=a

e existence of inverses
YVaeG IbeG suchthata+b=0

This element is unique and denoted —a.



Basic Structures: Groups and Fields

For example, if X is the set of real continuous functions on the
interval (—1, 1), the fact that the sum of two continuous
functions is continuous says that addition

(f+9)(x) := f(x) + 9(x)
is a composition law that makes X into an abelian group.

It is not a good idea to confuse the scalar 0 with the zero
function O: O(x) =0 Vx.



Basic Structures: Groups and Fields

Let us get confused a bit!

A point worthy of discussion: Is it possible for the same set, say
R, to be an abelian group in more than one way? To show this,
let us define a new addition of real numbers. We are going to
call it ‘O plus’ @:

aeob:=a+b-1
Call this set Rg,. It is easy to see that it is an abelian group [e.g.

(a® b) ® c = a= b+ c— 2 so composition is associative] in
which0Ois1: a& 1 = al



Basic Structures: Groups and Fields

Group of Rotations

Let C be the set of all complex numbers a + bi, with
a + b® = 1. Graphically this is just the unit circle centered ao
the origin of a plane. Ths set has the following properties:

@ a+ bi e C,then (a+ bi)~" € C. This because
(a+bi)"'=(a-bi)eC

@ Ifa+ bi,c+ di € Cthen (a+ bi)(c+ di) € C. This follows
from (a+ bi)(c + di) = (ac — bd) + (ad + bc)i and

(ac — bd)? + (ad + bc)? = (& + b?)(6® + d?) = 1.
Each element of C can also be written

a+ bi = e"



Basic Structures: Groups and Fields

A field F is a set with two composition laws, called ‘addition’ and
‘multiplication’, say + and x: Va, b € F have compositions a+ b
and a x b. (The second composition is also written a- b, or
simply ab.)

e (F,+) is an abelian group

e (F, x): multiplication is associative, commutative and
distributive over +, thatis Va, b, ¢ € F,

(ab)c = a(bc), ab=ba, a(b+c)=ab+ac



Basic Structures: Groups and Fields

e existence of identity de € F such that

VaecF axe=a

e existence of inverses For every a # 0, thereis b € F

axb=e.

There is a unique element e, usually we denote it by 1. For
a # 0, the element b such that ab = 1 is unique; it is often
denoted by 1/aor a—'.

We can now define scalars: the elements of a field.



Basic Structures: Groups and Fields

Fields are ubiquotous:
e R: real numbers

e The integers Z is not a field (not all integers have
inverses), but Q, the rational numbers is a field.

e C: complex numbers, z=a+ bi, i = v/—1, with
compositions

(a+bi)+(c+d)=(a+c)+(b+d)i

(a+ bi) x (c+ di) = (ac — bd) + (ad + bc)i



Basic Structures: Groups and Fields

The arithmetic here requires a bit more care:
If a-+ bi # 0,

1T _a-b _a b ;
at+bi a&+b2 a+b2 a2+b?




Basic Structures: Groups and Fields

Exercise: Number fields

Let F be the set of all real numbers of the form
z=a+bV2, abeQ
prove that F is a field.
@ Check that F is closed for addition and multiplication

olfatbV2#0= (a+bv2) ' =252 cF
@ Axioms of a field.




Basic Structures: Groups and Fields

A noteworthy example is F», the set made up by two elements
{0, 1} (or (even, odd))with addition defined by the table

+1]0(1
0/0({1 1+1=0!
111]0
and multiplication by
x [0]1
0

—
o
—




Basic Structures: Groups and Fields

F3 = {0, 1,2} with addition defined by the table

+(0]12
0/0|12

= 0!
111210 14+2=0!
22|01

and multiplication by

x|0l1]2
0/0{0|0

=11
BIIERE: 2x2=1I
2021




Basic Structures: Groups and Fields

Exercise 1: Prove that in any field F the rule minus times
minus is plus holds, that is for any a, b € F,

Solution: The first assertion folllows from
a+(—a)=(—a)+a= O: ais the negative of —a.

Because of the above, we must show that (—a)(—b) is the
negative of —(ab). We first claim (—a)b = —(ab). Note

(—a)b+ab=((-a)+a)b=Ob= 0.

(—a)(=b)—(ab) = (-a)(-b)+(-a)b = (-a)((-b)+b) = (-a)O = O.



Basic Structures: Groups and Fields

A field is the mathematical structure of choice to do arithmetic.
Given a field F, fractions can defined as follows: If
abeF, b#0,

a 1
b._ab .

The usual calculus of fractions then follows, for instance

¢ _ad+bc

a
b d bd
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Vector Spaces

A vector space is a structured set put together from an abelian
group V and a field F. It is helpful to keep in mind the following
examples.

Let n be a non-negative integer. R": the set of all n-tuples of
real numbers, with 2 compositions

4 o Vi + Uy
Vo Us Vo + Up
+ . = .
Vn Un Vn+ Un
For c € R,
V1 CcVq
Vo CVo
C =

Vi CVp



Vector Spaces

Another example is the set of polynomials in one indeterminate
over the field F: F[x] is the set of polynomials

f(x)=apnx"+ap_1x" "+ +a;x+a, acF
Addition is given by

(anxn_|_..._|_a1x—|-ao)+(bmxm+--'+b1X+bo) :Z(ai+bi)xi

]

and scalar multiplication
cf(x) = canx" + can_1x" ' + .. + cajx + cap

Related examples are the subsets P,(x) of polynomials of
degree at most n.



Vector Spaces

The set of solutions of the differential equation

y® _7y" 114y’ —8y =0

is also a vector space over R. It is a consequence of the fact
[principle of superposition] that if y1(x) and y»(x) are solutions
thenfora, b e R

ay1(x) + by2(x)

is also a solution. From Calc 252, it will follow that any solution
is a combination
ae* + be® + ce™



Vector Spaces

Formally, a vector space over a field F is an abelian group V
admitting a (scalar) multiplication

FxV—-V, c¢cxu—cueV

with the following properties:
Forc,d e F,ueV, (cd)u = c(du)
ForueV,1u=u
Forc,deF,ueV,(c+d)u=cu+du
e ForceF,uveV,clu+v)=cu+cv
We can now define vectors: the elements of a vector space.



Vector Spaces

Theorem (First Theorem)
Foru,0e€V,0,ccF

Ou=0, cO=0, (—c)u=—(cu)

Proof. For the first claim, observe
Ou=(0+0)u=0u+0u,

o)
ou=0

Similarly for the other claims. 0



Vector Spaces

There are many vector spaces derived from those mentioned
already. We give a very general method to form new vector
spaces. Let V and W be vector spaces over the field F and let
V x W be the set of all ordered pairs (v,w), v e V, w € W. If
we define an addition and a scalar multiplication by

(vi,w1) + (o, W) = (V4 + Vo, Wy + Wa)
c(v,w) = (cv,cw),

we make V x W into a vector space. It is easy to verify all the
requirements. This is the method used to obtain the vector
spaces of tuples F2 = F x F, F3 = F? x F, and so on.
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Last Class...and...Today

Last Class...and...Today

We introduced and gave the first examples of the following
basic algebraic structures:

@ Abelian group: Z, complex numbers of magnitude 1,
polynomials in x with coefficients in C
@ Field: Q, R, Z»

@ Vector space: Ingredients are an abelian group V, a field F
and a multiplication (r,v) — r- v, forr € Fand v € V with
some properties

@ Subspace: nonempty subset W C V of a vector space that
is a vector space for same operations

@ Quick subspace test
@ Lots more examples plus ...



Subspaces
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We are now in a position to introduce a basic concept, that of a
subspace of a vector space. [It is a subset but with special
properties, like a child of a vector space, carrying part of its
DNA]

Definition
A non-empty subset S is a subspace of a vector space Vif S is
a vector space for the same operations of V.

Let V be the set of all real polynomials,

f=ay+ a;x + ax®>+ ---. Vis a vector space over R. Let S be
the subset of all polyomials where the coefficients of all odd
powers are zero: a; = az = --- = 0. Clearly S is also a vector
space over R for the same operations: So S is a subspace of V.




There is a very simple test to check whether a subset S of a
vector space V over a field F is a subspace:

Proposition (Subspace Test)

S is a subspace iff the following hold: (i) O € S; (ii) ifu,v € S,
thenu+v esS; (ii)ifce Fandu €S, thencu € S.

Note that (i) says that S is non-empty, and (ii) and (iii) say that
we are using the operations of V. The beauty of this criterion is
that it does not asks us to check the axioms of vector spaces: It
was done already in V. We can paraphrase by saying: A
subspace of a vector space is a hon-empty subset closed
under addition and scalar multiplication.



Subspaces

Examples

{O} is always a subspace.

Consider the following subsets of R?:

S; = {(ab)|a—b=0)
S, = {(ab)|ab>0}
S; = {(ab)|a=0}

S; and S3 pass the test but S, is closed under addition but not
scalar multiplication:

(=1)(2,3)=(-2,-3) ¢S



—_ W =
(@2 \CJ \V)
- 2w
onN b

—- W O,
I |

e row space: subspace of F°
e column space: subspace of F3
e nullspace: all vectors v of F° such that

Avr=0

Let us talk about this last set.



Subspaces

Nullspace

@ The nullspace S of this matrix consists of the vectors
v € F° such that

X4

X2
X3 =0

—_ W —=
o NN
—_ - W

onN A~
- W o

X4
X5

o lfv,ueS Alv+u)=Av+Au=0+0=0,so0v+uecsS
@ lfveSandceF,A(cv)=cA(v)=cO=0,socveS
@ Conclusion: S passes the subspace test.



Subspaces

Let V be the vector space Z3: This is the set of all n-tuples
(X1 s X2, . 7Xn)7
with x; = 0, 1. This space has many interesting subspaces.

Exercise: Prove that the subset S of V consisting of all such
tuples where an even number of x; are 1 is a subspace.



Subspaces

Solution

Q@ u=(x1,...,x,) has an even number of entries x; equal to
1 if and only if
Xx+xo+--+x,=0

@ If another tuple v = ()1, yo, - . ., ¥n) has the same property,
itisclearthatu+v = (xy +y1,....,Xn+yYn) € S. Thus S'is
closed under addition.

© ltis clear that S is closed under multiplication, since if
ue S, 1-u=vand0-u=(0,...,0) e S.
© Thus S passes the subspace test.



Subspaces

Properties

Proposition

IfS¢{ and S, are subspaces of the vector space V, then the
following subsets of V are subspaces:

Q S:NSs.
Q Si+S>,={a+b:a€8y, beSy}.

Class Proof Check that the subsets are closed under addition
and scalar multiplication.



Subspaces

Question

Can we make a vector space out of the people in this room?




Subspaces

Vector Spaces of Matrices

Let F be a field. For a fixed pair (m, n) of natural numbers, the
set M of all m x n matrices with entries/coefficients in F

ayn - Ain

am - amn

with the usual addition and multiplication by elements of F is a
vector space. Note that we might as well say that such objects
are ordinary m - n-tuples organized in a particular way. It is a
fact that opens opportunities.



Subspaces

Subspaces of Matrices

Let M3(F) be the space of all 3 x 3 matrices over the field F.

Consider the sets of matrices of the form [schematically]

I a1 O O |
D3 : 0O a» O
i 0O 0 ass |

D5 are diagonal matrices



[ a11 a2 aisz
Us: | 0 ax ax
i 0O O 333_

U3 are upper triangular matrices



_811 0 0 |
Ls: | @y a2 O
| d31 d32 das3

L3 are lower triangular matrices



ay1 a2 aig
S3: | @12 a2 a3
| di3 do3 das3

S3 are symmetric matrices



0 a2 a3 |
Ks: | —ai2 0 an3
| —ai3 —ax3 0

K3 are skew-symmetric matrices



Subspaces

Sequences

Let V be the set of all sequences of real numbers
s=(ay,as,...,an,...).
If we define
(a1,a2,...)+ (b1,bo,...) == (a1 + by,ax + b, ...),
and scalar multiplication by
c(ay,a,...)=(cay,cap,...),
V becomes a vector space.

Exercise 2: Let S be the set of all sequences

s=(a,a,...), Y a& <ox.
i>1

show that S is a subspace.



Solution: We must show that the subset S is closed under
addition and scalar multiplication.

Suppose that 3.4 & < oo and Y4 bZ < co. Then

Z(a,-+b,-)2 = Za,?JrZZa,-b;Jer,?

i>1 i>1 i>1 i>1
< 2 &+2) b,
i>1 i>1

since 2a;b; < a + b?.

The scalar condition is immediate.



Subspaces

Linear combinations

Let A be a set of vectors in a vector space V,

Definition
A linear combination of the v; is a vector

Vv=ciVi+---+CmVm, Cj€F.

The set S of all these vectors is the span of {vq, ..., vin}.




Note the following observation:

Proposition

S is a subspace of V. S is the smallest subspace that contains
all the vectors v;.

Proof. If v=civy + -+ CmVmand u=djvy + - -- + dnVm are
two linear combinations,

V+u=(c+di)vi+ -+ (Cm+ dm)Vm

is also a linear combination. For any scalar c, cv is a linear
combination. Thus the span of a set of vectors passes the
subspace test.



The span of the zero vector is just {O}.

If v is a nonzero vector, its span is the set
L={cv|cecF}

L is said to be the line determined by v.

If u, v are vectors such that neither is a multiple of the other,
they span a plane.

Recall that the classical vectors, i,j and k span R3.



The vector space My (F) is spanned by the 4 matrices

Calmaloolrelo o] ve[T o] elg

but also by the matrices

- O
[

(a—b)[; 8]+(b—c)“ 8]+(c—d)“ H+d“ ”



We can generalize these notions as follows: Let W; be a family
(finite or infinite) of subspaces of V. The sum of the W; is the
set of all finite sums

Wi+ wo+---+wy weW,.

It is denoted
> ow;

Let us look at some interesting examples.



Let V be the set of all real functions f(t) of the real variable t. V
is a vector space over R. A function f(t) is even if f(—t) = f(f).
Call E the set of all even functions. By the subspace test, E is a
subspace. We define similarly odd functions, f(—t) = —f(t),
and again check that the set O they define is a subspace.

Exercise 3: Prove that V = E + O.

Solution: For any F(t), we write

F(t)+ F(-t) n F(t) — F(—t)

F(t) = 5 5

Observe that the first summand is even, the second odd.



Related exercises are the following. Let M,(R) be the set of
n x nreal matrices. Denote by S, the set of symmetric
matrices and by K, the set of skew-symmetric real matrices
[i.e. a; = —a; in particular a; = 0].

Exercise 4: Prove that M,(R) = S, + K.



A matrix is strictly upper triangular if @; = 0 if i < j. Denote by
U, the set [subspace] of all such matrices. L, is similarly
defined: strictly lower triangular

Exercise 5: Prove that M,(R) =S, + U,
You might want to examine the case n = 2 first:

[311 312}:[311 a1 | 0 a2 — an
a1 a2 a1 a2 0 0
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Homewo

Homework #1

@ 1.1: 1 (This will be a general rule: always scan the first
problem of a new section as it reviews the topics
discussed.)

Q 1.2: 3(a), 12, 18, 21

© 1.3: 5, 8(d), 9, 31 (optional)
Q 1.4: 2(a), 3(a), 4(a), 14

Q 1.5:2(d), 6, 10, 16

Q 16:1,5,7,9,15,30



Finite Fields

We seen two finite fields: Z,, integers mod 2, and Z3, integers
mod 3. The construction does not work with Z4 as

2 x 2 =4 = 0. Nevertheless there are fields with 4 elements:
Let F be the set of polynomials {0, 1, x, 1 + x}, with coefficients
in Zp. Sowe add x + (1 + x) = 1+ 2x = 1. To multiply we use

the table
X 0 1 X X+1
0 0 0 0 0
1 0| 1 X |[x+1, x-(x+1)=1!
X 0 X X+ 1 1
X+1]0| x+1 1 X

Homewo



Homewo

Prime field

Suppose F is a finite field and let us try to understand pieces of
its structure. F has at least two elements, 0 and 1. What else?
we could try

1
141
14+14+1

14+14--+1, mls

Because F is finite, there must be repeatitions in this listing.



This means that we have two sums in F,
1T+1 4+ 1 =1+14+-+1,

the first with m 1’s and the second with n 1’'s, m £ n. Say
m > n.

Subtracting, we getasum1+1+---+1=0,withm—n1’s.

Proposition

The smallest nonzero integer p for which there is a sum
1+1+---4+1=0ofp1’sisaprime number.




Proof

@ We prove that p is prime by contradiction. Suppose
p=a-b,ab>1.
Q@ Then

A+1+-+NA+1+-+1)=1+1+---+1)=0,

where the first term has a 1’s, the second b 1’s.

© Since F is a field, one of these terms must be zero.

© But this is a contradiction since they have fewer 1’s than
the choice of p.

This prime number p is called the characteristic of F.

Homewo



In a finite field F the subset Fy of sums of 1'’s forms a field with
p elements, p prime. Fq is called the prime field of F and there
is a natural identification of Fy to Zp, the integers mod p.

F is a vector space over Zp.

It will follow from this corollary that the cardinality of a finite field
F is always a power p", where p is its characteristic. It is a
theorem of Galois theory that for any prime p and any natural
number n there is a finite field of cardinality p”. (Up to some
equivalence, there is just one such field.)
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HomeQuiz #1

1 2
Q LetA=| 3 2
10

3 45
1 2 3 | Prove that the set of vectors
1 0 1
a € R3 such that A
RRS.
© Prove that M,(R) =S, + K.

© Give 2 examples of a vector space V that has only 4
vectors.

© Explain why a vector space cannot have just 6 vectors.

v = a for some v € RS is a subspace of



1: We apply the subspace test to show that the set S of vectors
a c R3 such that Av = a for some v € RS is a subspace of R3.

@ Ifaj,a, €S, say Avy = a, Avo, = ay, then
ai+a=Avy +Aw, :A(V1 +V2) =ajt+a <8
@ Ifa = Av, then any scalar ¢, ca = Acv, hence ca € S

@ S passes the test



2: Must show that any square real matrix A is a sum
A = B + C, where B is symmetric and C is skew-symmetric.
For n = 3: Given A = [a;] must find B = [b;] and C = [¢;]

b1 bi2 bi3 0 c¢i2 C13
= | b2 b boz |+| —Ci2 0 o3
biz boz ba3 —Ci3 —C3 0

Must solve for all b; and all ¢;.

an a2 a3
a1 dr2 ao3
as1 as2 ass

bij = aj, Vi
aj = b,‘j =+ Cjj;
ajj = b,'j — C,'j,Vi 75]

Thus bj = 1/2(a; + a;) and ¢; = 1/2(a; — a).



Cool 2: Consider the equality

@ A = B + C and take the transposes
e Al =B!+C! ButB!=Band C! = —C.

@ Adding the equalities we get B = 1/2(A + A!) and
C=1/2(A - A



3, 4: If a vector space V # (O) has only finitely many vectors,
the field F must be finite: Otherwise just the multiples cv of a
nonzero vector v € V would be an infinite set.

V must have a basis, that is there is a set v4, ..., v, such that
any vector v € V is a unique linear combination

Any choice of the n-tuple (¢, ..., cy) gives rise to a vector. If F
has cardinality g, then there are " n-tuples.

We have already seen the number of elements in a field is a
power a prime, g = p™. Since 6 is not a power of a prime, there
is no field or vectorspace with 6 vectors.



To get two vector spaces with just 4 vectors:

© Pick F =7y, and V = F?2 = {(0,0),(0,1),(1,0),(1,1)}

© For F pick the field with 4 elements given in class. For
V = F itself, or another copy of it. [Any field is also a vector
space over itself.]



e Sample Quiz



Sample Quiz

e (4 pts) Prove that a vector space V cannot have a basis
with 4 elements and another basis with 3 elements.

e (3 pts) Let f(x) be a real polynomial of degree n. Prove
that f(x) and its higher derivatives form a basis for the
space Rp[x].

e (3 pts: do one) Give an example of a vector space V that
has only 4 vectors.

(b) Explain why a vector space cannot have just 6 vectors.
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