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Main Goal

Understand

Study of Sequences and Series of Functions
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Motivation

Consider the function of last hourly

G(x) =

∫ x

0
et2

dt .

Question: How to evaluate G(1) ?

We are going to make use of something we know already

ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+ · · ·

and do lots of reckless arithmetic:
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G(1)
?
=

∫ 1

0
(
∞∑

n=0

(t2)n

n!
)dt

?
=

∞∑
n=0

∫ 1

0

(t2)n

n!
dt

=
∞∑

n=0

∫ 1

0

t2n

n!
dt

=
∞∑

n=0

1
n!(2n + 1)

= ?
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Convergence of Series

Given the series
∞∑

n=0

an = a0 + a1 + a2 + a3 + · · · ?

there are two sequences associated to it
The sequence of terms, (an) and
The sequence of partial sums, (sn),

sn = a0 + a1 + · · ·+ an

We say the series converges to A ∈ R if lim sn = A.We
write this as

∞∑
n=0

an = a0 + a1 + a2 + a3 + · · · = A
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A cautionary tale

We pick the alternating harmonic series–which we know to be
convergent–and carry out arithmetic operations: See what
happens

S = 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · ·

1
2

S =
1
2
− 1

4
+

1
6
− 1

8
+

1
10
− · · ·

S +
1
2

S = 1 +
1
3
− 1

2
+

1
5
− 1

4
+ · · ·

Thus S + 1
2S = 3

2S is just a rearrangement of S! The arithmetic
is saying instead that

3
2

S = S!
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Algebraic Limit Theorem for Series

Theorem

If
∑∞

k=1 ak = A and
∑∞

k=1 bk = B, then:
1
∑∞

k=1 cak = cA for all c ∈ R and
2
∑∞

k=1(ak + bk ) = A + B.

Proof. (i) To show
∑∞

k=1 cak = cA, we consider the sequence
of partial sums

tn = ca1 + ca2 + · · ·+ can.

Since
∑∞

k=1 ak = A, its sequence of partial sums

sn = a1 + a2 + · · ·+ an

converges to A. By the Algebraic Limit Theorem for Sequences,
lim tn = c lim sn = cA.
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(ii) To show that
∑∞

k=1(ak + bk ) = A + B, let rn = a1 + · · ·+ an,
sn = b1 + · · ·+ bn be the partial sum terms of the series. The
partial sum term of the addition of the two series is

tn = (a1+b1)+· · ·+(an+bn) = (a1+· · ·+an)+(b1+· · ·+bn) = rn+sn.

By the Algebraic Limit Theorem for Sequences,

lim tn = lim rn + lim sn = A + B.
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Product of Series

Other operations are harder:
Question: Given two series, a0 + a1 + a2 + · · ·+ an + · · · and
b0 + b1 + b2 + · · ·+ bn + · · · , what is

(a0 + a1 + a2 + · · ·+ an + · · · )(b0 + b1 + b2 + · · ·+ bn + · · · ) =?

Part of the issue arises from the distributive rule. We will offer
a partial fix later.
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Cauchy Criterion for Series

Definition

A sequence (an) is called a Cauchy sequence if, for every
ε > 0, there is an N ∈ N such that whenever m,n ≥ N it follows
that |an − am| < ε.

Recall:

Theorem

A sequence converges if and only if it is a Cauchy sequence.

We apply this criterion to the sequence (sn) of partial sums of a
series

∑∞
k=1 ak . Note that

|sm − sn| = |am+1 + · · ·+ an|
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Cauchy Test for Series

Theorem

The series
∑∞

k=1 ak converges if and only if given ε > 0, there
exists an N ∈ N such that whenever n > m ≥ N it follows that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Just observe

|sn − sm| = |am+1 + am+2 + · · ·+ an| < ε,

and apply the Cauchy’s Criterion for sequences. �

Corollary

If the series
∑∞

k=1 ak converges, then (ak )→ 0.

Proof. Set n = m + 1, then |sn − sm| = |an|.Wolmer Vasconcelos Set 6
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Example

Consider the geometric series (1 > q ≥ 0)

1 + q + q2 + · · ·+ qn + · · ·

The difference of partial sums sn − sm is

sn − sm = qm+1 + · · ·+ qn

= qm+1(1 + q + · · ·+ qn−m)

= qm+1 1− qn−m+1

1− q

≤ qm+1 1
1− q

≤ qN 1
1− q

, n,m ≥ N
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Converse?

Question: Is a series whose sequence of terms an converges
to 0 convergent? This one is easy:

Answer: No. The (harmonic) series

1 + 1/2 + 1/3 + · · ·+ 1/n + · · ·

has 1/n→ 0 but it is divergent.
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Comparisons

Given two series
∑

k≥1 ak and
∑

k≥1 bk that loosely connected
we seek to link their convergence/divergence:

Theorem (Comparison Test)

Assume
∑∞

k=1 ak and
∑∞

k=1 bk are series satisfying
0 ≤ ak ≤ bk for all k ∈ N.

1 If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.
2 If

∑∞
k=1 ak diverges, then

∑∞
k=1 bk diverges.
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Proof. Both follow from Cauchy’s Criterion applied to the partial
sums

|am+1 + am+2 + · · ·+ an| ≤ |bm+1 + am+2 + · · ·+ bn|

If, for instance, given ε > 0 we can find N so that for n,m > N
|bm+1 + am+2 + · · ·+ bn| < ε, then the same condition will apply
to the an.
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Example

1 We know that the harmonic series,
∑∞

n=1
1
n diverges. It is

clear that the same happens if we form the series
∑∞

n=N
1
n

where N is some fixed number N ≥ 1.
2 If a and b are positive numbers, consider the series [called

generalized harmonic series] whose terms are given by the
rule:

1
a
,

1
a + b

,
1

a + 2b
, . . . ,

1
a + nb

, . . .

3 We claim that this series is also divergent: We compare
the terms to a multiple of the harmonic series

1
a + bn

≥ 1
n + bn

=
1

b + 1
1
n
, n ≥ a
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Absolute Convergence Test

If
∑∞

n=1 an is a series of non-negative terms, its partial sums

sn = a1 + a2 + · · ·+ an, sn+1 = sn + an

is a monotone sequence. Therefore, by the criterion, the series
converges exactly when the sequence (sn) is bounded.

We make use of this:

Theorem (Absolute Convergence Test)

If the series
∑∞

k=1 |ak | converges, then
∑∞

k=1 ak converges as
well.
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Proof of the Absolute Convergence Test

1 We make use of Cauchy criterion for series: Let ε > 0.
Since the series

∑∞
k=1 |ak | converges, there exists N so

that

|an+1|+ |an+1|+ · · ·+ |am| < ε m ≥ n > N

2 By the triangle inequality (one that say
|a + b| ≤ |a|+ |b|), we get

|an+1 + an+1 + · · ·+ am| < ε m ≥ n > N

3 Therefore the series
∑∞

k=1 ak satisfies the Cauchy
condition and therefore converges.
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Converse?

The series
1− 1

2
+

1
3
− · · · (−1)n−1 1

n
+ · · ·

is convergent (alternating harmonic series) (the one that won a
Grammy’s Award), but the series of the absolute values is

1 +
1
2

+
1
3

+ · · ·+ 1
n

+ · · · ,

is divergent.
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Alternating Series

An alternating series is one with consecutive terms have
opposite signs. One group of them is easy to study:

Theorem (Alternating Series Test)

Let (an) be a sequence satisfying
1 a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ · · · , and
2 (an)→ 0.

Then the alternating series
∑∞

n=1(−1)n+1an converges.

In other words: If (an) is a decreasing sequence of positive
terms then

∞∑
n=1

(−1)n+1an converges if and only if lim an = 0
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Proof. Observe the odd and even sequences of partial sums

s1 = a1 ≥ s3 = a1 − (a2 − a3) ≥ s5 = s3 − (a4 − a5), . . .

s2 = a1 − a2 ≤ s4 = s2 + (a3 − a4) ≤ s5 = s3 + (a5 − a6), . . .

They are monotone and bounded: Since (an)→ 0, there exists
an ≤ K , s2n = s2n−1 + a2n ≤ s2n−1 + K ≤ a1 + K , therefore the
even sequence is increasing and bounded. Thus it has a limit
`1. Similarly, the other sequence is decreasing and with a lower
bound, so it has a limit `2. Since ±an = sn − sn−1 converges to
0, `1 = `2.

Wolmer Vasconcelos Set 6

Advanced Calculus



Main Goal Properties of Infinite Series Workshop #10 Uniform Convergence and Differentiability Series of Functions Power Series Taylor Series Workshop #11 Old Finals

Rearrangements

Definition

Let
∑

k≥1 ak be a series. A series
∑

k≥1 bk is said to be a
rearrangement of

∑
k≥1 ak if there exists a 1–1, onto function

f : N→ N such that bf(k) = ak for all k ∈ N.

Consider the geometric series of ratio q

1 + q + q2 + q3 + · · ·+ qn + · · ·

Now we shuffle the terms

q + 1 + q3 + q2 + q5 + q4 + · · ·

This is not a geometric series, but we should expect its fate
linked to the first series. The next result says this.

Wolmer Vasconcelos Set 6

Advanced Calculus



Main Goal Properties of Infinite Series Workshop #10 Uniform Convergence and Differentiability Series of Functions Power Series Taylor Series Workshop #11 Old Finals

Series of Positive Terms

Theorem (Dirichlet)

The sum of a series of positive terms [convergence/divergence]
is the same in whatever order [rearrangement] the terms are
taken.

Proof. Let a0 + a1 + a2 + · · ·+ an + · · · be a series of positive
terms of sum s. Then any partial sum of rearrangement
b0 + b1 + b2 + · · ·+ bn + · · · is bounded by s. Thus the second
is convergent and its sum t is bound by s.
We reverse the roles to obtain s ≤ t . �
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Product of Series

Question: Given two series, a0 + a1 + a2 + · · ·+ an + · · · and
b0 + b1 + b2 + · · ·+ bn + · · · , what is

(a0 + a1 + a2 + · · ·+ an + · · · )(b0 + b1 + b2 + · · ·+ bn + · · · ) =?
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The issue is: we have all the poducts ambn that can be
organized into many different series, and then grouped. For
instance, if we list the ambn as the double array, we

• // •

��~~
~~

~~
~

• // •

��~~
~~

~~
~

• // •

��~~
~~

~~
~

· · ·

•

��

•

??~~~~~~~
•

��~~
~~

~~
~

•

??~~~~~~~
•

��~~
~~

~~
~

• · · ·

•

??~~~~~~~
•

��~~
~~

~~
~

•

??~~~~~~~
•

��~~
~~

~~
~

• • · · ·

•

��

•

??~~~~~~~
•

��~~
~~

~~
~

• • • · · ·

•

??~~~~~~~
• • • • • · · ·
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We could try the following: Define the product as the series

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·

Makes sense? [Discuss] Will see another rearrangement soon.

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .
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The partial sums remind us how polynomials are multiplied

(a0 + a1x + a2x2 + · · ·+ anxn)(b0 + b1x + b2x2 + · · ·+ bmxm)

=
m+n∑
k=0

(
∑

0≤i≤k

aibk−i)xk

a0b0,a0b1 + a1b0 , a0b2 + a1b1 + a2b2, . . .
Another aspect of this definition is:

Theorem

If
∑

n≥0 an and
∑

n≥0 bn are two convergent series of positive
terms, and s and t are their respective sums, then the third
series is convergent and has the sum st.
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Out of all products ambn, the ‘product’ above is given in terms
of the diagonals

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .

a0b0,a0b1 + a1b0 , a0b2 + a1b1 + a2b2, . . . whose partial sums
don’t write conveniently:

pn = (a0b0) + (a1b0 + a1b0) + (a2b0 + a1b1 + a0b2) + · · ·
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We want to re-write the terms of the product series differently:

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .

a0b0, (a0 + a1)(a0 + a1)− a0b0 ,
(a0 + a1 + a2)(b0 + b1 + b2)− (a0 + a1)(b0 + b1), . . . whose nth
partial sum is

(a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn),

a sequence that converges to st by the Algebraic Limit
Theorem.

Wolmer Vasconcelos Set 6

Advanced Calculus



Main Goal Properties of Infinite Series Workshop #10 Uniform Convergence and Differentiability Series of Functions Power Series Taylor Series Workshop #11 Old Finals

Observe that

pn = (a0b0) + (a1b0 + a0b1) + · · ·+ (a0bn + · · ·+ anb0) ≤

(a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn)

on one hand and

pn ≥ (a0 + a1 + · · ·+ an/2)(b0 + b1 + · · ·+ bn/2)

Since the terms at the ends converge to st , (pn)→ st as well.
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Theorem

If
∑∞

k=1 ak converges absolutely, then any rearrangement of
this series converges to the same limit.

Proof. Assume
∑

k≥1 ak converges absolutely to A, and let∑
k≥1 bk be an rearrangement of

∑
k≥1 ak . Let

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

and

tn =
n∑

k=1

bk = b1 + b2 + · · ·+ bn

be the corresponding partial sums.
Let ε > 0. Since (sn)→ A, choose N1 such that

|sn − A| < ε/2

for all n ≥ N1.Wolmer Vasconcelos Set 6
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Because the convergence is absolute, we can choose N2 so
that

n∑
k=m+1

|bk | < ε/2

for all n > m ≥ N2. Take N = max{N1,N2}. We know that the
terms {a1,a2, . . . ,aN} must all appear in the rearranged series,
and we move far out enough in the series

∑
k≥1 bk that these

terms are all included. Thus, choose
M = max{f (k) | 1 ≤ k ≤ N}.
It is clear that if m ≥ M, then (tm − sN) consists of a finite
number of terms, the absolute values of which appear in the tail
of
∑∞

k=N+1 |ak |. The earlier choice of N2 guarantees
|tm − sN | < ε/2, and so

|tm − A| = |tm − sN + sN − A|
≤ |tm − sN |+ |sN − A| ≤ ε/2 + ε/2 = ε
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Integral Test

Theorem (Integral Test)

Let
∑

n≥0 an be a series of positive terms. If there is a
decreasing function f(x) such that an ≤ f(n) for large n and∫ ∞

x=1
f(x)dx <∞,

then
∑

n≥0 an converges.

Proof. If an ≤ f(n) for n ≥ n0, since f(x) is decreasing,
an ≤

∫ n
n−1 f(x)dx , n > n0. From this, and the assumption that∫∞

1 f(x)dx <∞, we get that the partial sums of the series∑
n≥0 an are bounded, and therefore converge by the theorem

on bounded monotone sequences. �
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Zeta Function

The series

1 +
1
2p +

1
3p +

1
4p + · · ·+ 1

np + · · · ,

for p > 1 will always converge. Its sum is denoted by ζ(p).

For example, ζ(2) = π2

6 .
This function is actually defined for all complex numbers p
whose real part is > 1. It is known as Riemann zeta function.It
is probably the most famous function of Mathematics.
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Convergence

Let us show that

1 +
1
2p +

1
3p +

1
4p + · · ·+ 1

np + · · · ,

for p > 1 will always converge.

We are going to bound each term 1/np by the terms of another
series, and then argue the new series converges.
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Consider the function f(x) = 1/xp, x ≥ 2. This is a decreasing
function (draw the graph).
Observe

1/np ≤
∫ n

x=n−1
1/xpdx

Therefore its partial sums are bounded by

sn ≤ 1 +

∫ n

x=1

dx
xp = 1 +

1
p − 1

[
1− 1

np−1

]
< 1 +

1
p − 1
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Examples

The series in earlier Workshop satisfies∑
n≥1

1
n(n + 1)

≤
∑
n≥1

1
n2

which is convergent.
In the same manner, if ∑

n≥1

p(n)

q(n)
,

where p(n) and q(n) are positive polynomial expressions with
deg q ≥ 2 + deg p, then the series converges by the same
reason. Do it!
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Exam Type Exercises

1 Show that ∑
n≥0

(−1)n 2n + 3
(n + 1)(n + 2)

= 1.

2 Determine the values of q for which the series

q + 2q2 + 3q3 + · · ·+ nqn + · · ·

is convergent.
3 Show that

∑
n≥2

1
n(ln n)p converges if p > 1, and diverges if

p ≤ 1.
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Ratio Tests

There are very useful tests involving the ratio an+1/an of two
successive terms of a series. Sometimes we compare the ratio
an+1/an to another bn+1/bn. In these we suppose that an and
bn are strictly positive.
Suppose an,bn > 0 and that an+1

an
≤ bn+1

bn
for sufficiently large n,

that is for n ≥ n0.
Then

an =
an0+1

an0

an0+2

an0+1
· · · an

an−1
an0

≤
bn0+1

bn0

bn0+2

bn0+1
· · · bn

bn−1
an0 =

an0

bn0

bn

= Cbn, C = an0/bn0.
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Here are some applications:

Theorem

Let
∑

an and
∑

bn be series of positive terms.
1 If for n ≥ n0

an+1

an
≤ bn+1

bn
,

and the series
∑

bn converges, then
∑

an converges also.
2 If for n ≥ n0

an+1

an
≥ bn+1

bn
,

and the series
∑

an diverges, then
∑

bn diverges also.
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Theorem (d’Alambert Test)

The series
∑

an is convergent if an+1/an ≤ r , where r < 1, for
all sufficiently large n.
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Theorem

Given a series
∑

n≥1 an with an 6= 0, if (an) satisfies

lim
∣∣∣∣an+1

an

∣∣∣∣ = r < 1,

then the series converges absolutely.

Proof.
1 Let r ′ satisfy r < r ′ < 1. For ε = r ′ − r , there is N such that

for n ≥ N |an+1/an| − r | < ε, and therefore

|an+1/an| − r ≤ ||an+1/an| − r | < ε = r ′ − r ,

giving |an+1| ≤ r ′|an| for n ≥ N.
2 The above shows that the series

∑∞
n=N |an| satisfies

|an| ≤ |aN |(r ′)n−N , a geometric series of ratio r ′ < 1, which
converges.
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Exponential

A quick application of the ratio test:
We claim that the series

1 + x +
x2

2!
+

x3

3!
+ · · ·

converges for all values of x .

For the ratio of consecutive terms

an+1

an
=

xn+1/(n + 1)!

xn/n+!
=

x
n + 1

so that for any x , lim an+1/an = 0.

This is a well used technique for power series.
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Examples

1 For the series
∑

n≥1
n
2n we invoke the ratio test:

an+1

an
=

n + 1
2n+1 /

n
2n =

n + 1
n

1
2

which has limit 1/2 < 1. So the series converges.
2 Decide [with justification] whether the series∑

n≥1

n!

nn ,

is convergent or divergent?
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Exercises

1 Show that if an > 0 and lim nan = L, with L 6= 0, then the
series

∑
an diverges.

2 Show that if an > 0 and lim n2an = L, with L 6= 0, then the
series

∑
an converges.

3 Find examples of two series
∑

an and
∑

bn both of which
diverge but for which

∑
min{an,bn} converges. To make it

more difficult, choose examples where (an) and (bn) are
positive and decreasing.
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Root Test

Let
∑

n≥1 an be a series of positive terms. We are going to
examine how the limit

lim
n→∞

n
√

an

is used to decide convergence. We recall one special
calculation of these limits: If x > 0

lim
n→∞

n
√

x = 1

Recall another limit: limn→∞
n
√

n = 1.
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Root Test

Theorem

If
∑

n≥1 an is a series of positive terms and
limn→∞ n

√
an = r < 1, then the series converges.

Proof. Let r < r ′ < 1 and pick ε = r ′ − r . This is the same
subtle point we used above.

1 There is N so that for n > N

| n
√

an − r | < ε

2 This implies that n
√

an < r + ε = r ′ < 1 for n > N. As a
consequence

an < (r ′)n

3 We now compare the series
∑

n ≥ 1an to the geometric
series

∑
n≥1(r

′)n of ratio r ′ < 1. Thus both series
converge.
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Example

Consider the series (for q > 0)

1 + q + 2q2 + · · ·+ nqn + · · ·

We invoke the root test

lim
n→∞

n
√

nqn = q lim
n→∞

n
√

n = q

Therefore it converges if q < 1
Let us calculate the sum of the series. For that we must have
an inkling on how the series arose from the geometric series.
At these times we replace q by x and recall:
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Nice calculation

1 Differentiate the ‘equality’
1

1− x
= 1 + x + x2 + · · ·+ xn + · · ·

2 To get almost our series
1

(1− x)2 = 1 + 2x + 3x2 + · · ·+ nxn−1 + · · ·

3 Now multiply by x and add 1

1 +
x

(1− x)2 = 1 + x + 2x2 + · · ·+ nxn + · · ·

4 Thus for 0 < q < 1 the series sums to 1 + q
(1−q)2 .
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Workshop #10: This page and next

1 If a is a positive integer, prove that the series∑
n≥1

1
n(a + n)

converges. Find its sum.
2 If b > a > 0, do the same for the series∑

n≥1

1
n(a + n)(b + n)

.
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3: Argue by induction that for any sequence of integers
0 < a1 < a2 < . . . < ar , the series∑

n≥1

1
n(a1 + n)(a2 + n) · · · (ar + n)

converges and its sum can be effectively computed.

4: Given the series ∑
n≥0

1
n2 + 1

Prove by comparison and by a direct application of the
integral test that it converges.
Try to find its sum somehow/somewhere.
Google it.
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Sequences of Functions

Let fn : A→ R, n ∈ N, be a set of functions. For each x ∈ A
they define a numerical sequence (fn(x)). If fn(x)→ L, we say
that (fn) converges at x . We are greatly interested in case it
converges to all x ∈ A, as the limit

fn(x)→ f(x)

will define a function f : A→ R.
1 If the fn are continuous, when is f continuous?
2 If the fn are differentiable, when is f differentiable?
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Example

Let fn(x) = xn, n ∈ N, be the sequence of powers of x as
functions on [0,1]. For any x in this interval, we have

lim
n→∞

fn(x) = 0, 0 ≤ x < 1

lim
n→∞

fn(x) = 1, x = 1

Thus limn→∞ fn exists for all x ∈ [0,1], but it is not a continuous
function on the interval.
We need a rule that guarantees that limn→∞ fn is continuous.
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Pointwise and Uniform Convergence

Definition

The sequence of functions (fn(x)) converges pointwise to f(x)
if for every x fn(x) converges to f(x). For a given x , this means
that given ε > 0 there is N = N(x) ∈ N such that for n ≥ N,
|fn(x)− f(x)| < ε.

Another definition of convergence is much more restrictive:

Definition

The sequence of functions (fn(x)) converges uniformly to f(x) if
for every ε > 0 there exists N ∈ N such that for n ≥ N,

|fn(x)− f(x)| < ε.
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Example: Let fn(x) = 1/n(1 + x2). Then
f(x) = limn→∞ fn(x) = 0. Given ε > 0

|fn(x)− f(x)| < 1/n

Thus if N ≥ 1/ε,
|fn(x)− f(x)| < ε

for n ≥ N.
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Cauchy Criterion for Uniform Convergence

Theorem

A sequence of functions (fn(x)) defined on a set A ⊂ R
converges uniformly on A if and only if for every ε > 0 there
exists N ∈ N such that |fn(x)− fm(x)| < ε for all n,m ≥ N and
all x ∈ A.

Proof. ⇒: For each x ∈ A, the numerical Cauchy sequence
(f)n(x)) converges: Call the limit f(x). Now we argue that fn
converges to f uniformly. Let ε > 0 and let N be such that
|fn(x)− fm(x)| < ε for n,m ≥ N.
Now we use the argument used in the numerical case.
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Let ε > 0. Because the sequence fn is Cauchy, there exists N
such that for all n,m ≥ N and all x ∈ A,

|fn(x)− fm(x)| < ε/2.

On the other hand, for each x ∈ A the sequence fn(x)→ f(x),
so there is NK

|fNK (x)− f(x)| < ε/2.

Thus for all x ∈ A and all n ≥ NK

|fn(x)− f(x)| = |fn(x)− fNk (x) + fNk (x)− f(x)|
≤ |fn(x)− fNk (x)|+ |fNk (x)− f(x)| < ε/2 + ε/2 = ε
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Uniform Convergence and Continuity

Theorem

If the sequence of continuous functions (fn(x)) converges
uniformly to f(x), then f(x) is continuous (on the same domain).

Proof. Let x = c be a point in the domain. Given ε > 0, we
must show that there exists δ > 0 such that if 0 < |x − c| < δ,
then |f(x)− f(c)| < ε. The idea is to write

f(x)− f(c) = (f(x)− fn(x)) + (fn(x)− fn(c)) + (fn(c)− f(c))

and use uniform convergence on the first and third terms and
continuity on the second.
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|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|
+ |fn(c)− f(c)|

|f(x)− fn(x)| < ε/3, n ≥ N
|fn(x)− fn(c)| < ε/3, 0 < |x − c| < δ

|f(c)− fn(c)| < ε/3, n ≥ N

Thus, for 0 < |x − c| < δ,

|f(x)− f(c)| < ε.
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Uniform Convergence and Differentiability

Theorem

Let fn → f pointwise on interval [a,b] and assume each fn is
differentiable. If (f′n) converges uniformly on [a,b] to a function
g, then f is differentiable and f′ = g.

Proof. Let ε > 0 and fix c ∈ [a,b]. We will argue that f′(c) exists
and it is equal to g(c). We begin with

f′(c) = lim
x→c

f(x)− f(c)

x − c

and claim we can find δ > 0 so that for 0 < |x − c| < δ∣∣∣∣ f(x)− f(c)

x − c
− g(c)

∣∣∣∣ < ε.
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∣∣∣∣ f(x)− f(c)

x − c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣ f(x)− f(c)

x − c
− fn(x)− fn(c)

x − c

∣∣∣∣
+

∣∣∣∣ fn(x)− fn(c)

x − c
− f′n(c)

∣∣∣∣+ |f′n(c)− g(c)|

We will argue that we can find δ so that each of the three terms
< ε/3.
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Apply the MVT to fn − fm on [c, x ]: there exists α ∈ (c, x) such
that

f′n(α)− f′m(α) =
(fn(x)− fm(x))− (fn(c)− fm(c))

x − c
.

By Cauchy Criterion for Unif Conv, there exists N ∈ N such that
for n,m ≥ N1,

|f′n(α)− f′m(α)| < ε/3

Together we have∣∣∣∣ fn(x)− fm(x)

x − c
− fn(c)− fm(c)

x − c

∣∣∣∣ < ε/3

for all m,n ≥ N1, and all x ∈ [a,b]. If we take the limit fm → f
(making use of the Order Limit Theorem)

Wolmer Vasconcelos Set 6

Advanced Calculus



Main Goal Properties of Infinite Series Workshop #10 Uniform Convergence and Differentiability Series of Functions Power Series Taylor Series Workshop #11 Old Finals

∣∣∣∣ f(x)− f(c)

x − c
− fn(x)− fn(c)

x − c

∣∣∣∣ ≤ ε/3
Finally, choose N2 large enough so that

|f′m(c)− g(c)| < ε/3

for all m ≥ N2, and let N = max{N1,N2} Use that fN is
differentiable to produce δ > 0 for which∣∣∣∣ fN(x)− fN(c)

x − c
− f′N(c)

∣∣∣∣ < ε/3

whenever 0 < |x − c| < δ. Substituting in the original
expression, ∣∣∣∣ f(x)− f(c)

x − c
− g(c)

∣∣∣∣ < ε
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Theorem

Let (fn) be a sequence of differentiable functions defined on the
interval [a,b] and assume that (f′n) converges uniformly on
[a,b] to a function g. If there exists a point x0 ∈ [a,b] where
(fn(x0)) is convergent, then (fn) converges uniformly on [a,b].

Proof. For any x ∈ [a,b], we have

|fn(x)−fm(x)| ≤ |(fn(x)−fm(x))−(fn(x0)−fm(x0))|+|fn(x0)−fm(x0)|

One reduces to the previous proof by applying the MVT to
fn − fm on [x0, x ]: there exists α ∈ (x0, x) such that

f′n(α)− f′m(α) =
(fn(x)− fm(x))− (fn(x0)− fm(x0))

x − x0
.
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Combining the two theorems we get

Theorem

Let (fn) be a sequence of differentiable functions defined on the
interval [a,b] and assume that (f′n) converges uniformly on
[a,b] to a function g. If there exists a point x0 ∈ [a,b] where
(fn(x0)) is convergent, then (fn) converges uniformly on [a,b].
Moreover, the limit function f = lim fn is differentiable and
satisfies f′ = g.
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Basics on Limits and Derivatives

1 Let fn → f pointwise on interval [a,b] and assume each fn
is differentiable. If (f′n) converges uniformly on [a,b] to a
function g, then f is differentiable and f′ = g.

2 Let (fn) be a sequence of differentiable functions defined
on the interval [a,b] and assume that (f′n) converges
uniformly on [a,b] to a function g. If there exists a point
x0 ∈ [a,b] where (fn(x0)) is convergent, then (fn)
converges uniformly on [a,b].

3 Let (fn) be a sequence of differentiable functions defined
on the interval [a,b] and assume that (f′n) converges
uniformly on [a,b] to a function g. If there exists a point
x0 ∈ [a,b] where (fn(x0)) is convergent, then (fn)
converges uniformly on [a,b]. Moreover, the limit function
f = lim fn is differentiable and satisfies f′ = g.
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Series of Functions

Question: What do we see in the Infinite Series
∞∑

n=0

an = a0 + a1 + a2 + a3 + · · · =?

Answer: At least two things
The sequence of terms, (an) and
The sequence of partial sums, (sn),

sn = a0 + a1 + · · ·+ an

We say the series converges to S ∈ R if lim sn = S. By
abuse of notation, we then replace the ? by S.
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Question: What do we see in the Infinite Series of Functions
fn : A→ R

∞∑
n=0

fn = f0 + f1 + f2 + f3 + · · · =?

Answer: At least three things
The sequence of terms, (fn)

The sequence of partial sums, (sn),

sn = f0 + f1 + · · ·+ fn

We say the series converges to f(x) ∈ R if
lim fn(x) = f(x).
Main question: Properties of f ? continuous ? differentiable
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Reasons Why

Two quick reasons why series of functions are widely (and
wildly) used:

1 There are equations for which we do not have explicit
(short) formulas of their solutions, e.g.

x5 + 5x + 6 = 0,

yet we are still able to write the solutions as the limits of
numerical series

x =
∑
n≥0

an.

2 Series gives the means to break down some functions into
basic blocks:

sin x = x − x3

3!
+

x5

5!
+ · · ·
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Noteworthy Examples

1 Geometric series

1 + x + x2 + · · ·+ xn + · · ·

2 Exponential series

ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+ · · ·

3 Arctangent series

x − x3

3
+

x5

5
+ · · ·

It is legitimate to evaluate the last series for x = 1 in order to get

π/4 = 1− 1
3

+
1
5

+ · · ·
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Continuity of Series of Functions

The guiding theorems:

Theorem

Let fn be continuous functions on a set A ⊂ R, and assume∑∞
n=1 fn converges uniformly to a function f. Then, f is

continuous on A.

We need the means to test when the sequence of partial sums

sn(x) = f0(x) + f1(x) + · · ·+ fn(x)

converges uniformly.
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Cauchy Criterion

Theorem

A series
∑∞

n=1 fn converges uniformly on A ⊂ R if for every
ε > 0 there is an N ∈ N such that for all n > m ≥ M,

|fm+1(x) + fm+2(x) + · · ·+ fn(x)| < ε

for all x ∈ A.
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Weierstrass M-Test

Theorem

For each n ∈ N, let fn be a function defined on a set A ⊂ R, and
let Mn be a real number satisfying

|fn(x)| ≤ Mn

for all x ∈ A. If
∑∞

n=1 Mn converges, then
∑∞

n=1 fn(x) converges
uniformly on A.

This reduces to Cauchy’s Criterion since

|fm+1(x) + fm+2(x) + · · ·+ fn(x)| ≤ Mm+1 + · · ·+ Mn,

for all x ∈ A. Now we use the Cauchy Criterion for numerical
series.
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Example

Let
∞∑

n=1

sin nx
n2 ,

whose terms are bounded by the terms of the convergent series∑∞
n=1

1
n2 . It converges uniformly to a continuous function f(x).

The series of derivatives
∞∑

n=1

cos nx
n

,

diverges at x = 0 (becomes the harmonic series).
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Derivative of a Series

The following gives us a criterion of when we can differentiate a
series:

Theorem

Let fn be differentiable functions defined on the interval [a,b],
and assume that

∑∞
n=1 f′n converges uniformly on [a,b] to a

function g on [a,b]. If there exists a point x0 ∈ [a,b] where∑∞
n=1 fn(x0) is convergent, then the series

∑∞
n=1 fn converges

uniformly to a differentiable function f(x) satisfying f′ = g on
[a,b]. In other words,

f(x) =
∞∑

n=1

fn(x), f′(x) =
∞∑

n=1

f′n(x)
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Power Series

A power series is a series of the form

∞∑
n=0

anxn = a0 + a1x + a2x2 + · · ·

Sometimes instead of xn on has (x − a)n.

These series have, unlike more general series, amenable
properties: It will be much simpler to study their convergence,
continuity and differentiability.
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Basic Theorem

Part of the simplicity is grounded on the following:

Theorem

If a power series
∑

n=0 anxn converges at some point x0 ∈ R,
then it converges absolutely for any x satisfying |x | < |x0|.

Proof. If
∑

n=0 anx0
n converges, then the sequence anxn

0 is
bounded (in fact, by Cauchy’s, converges to 0). Let M > 0
satisfy |anxn

0 | ≤ M for all n ∈ N. If |x | < |x0|,

|anxn| = |anxn
0 |
∣∣∣∣ x
x0

∣∣∣∣n ≤ M
∣∣∣∣ x
x0

∣∣∣∣n
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The geometric series
∞∑

n=0

M
∣∣∣∣ x
x0

∣∣∣∣n
converges since its ratio is < 1, so by the Comparison Test, the
series

∑∞
n=0 anxn converges absolutely. �
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Radius of Convergence

Here is a surprising property of power series: If we have a
power series

∞∑
n=0

anxn,

what is like the set of all x (besides x = 0) where it converges?
Here is part of the answer:

Corollary

Let
∑∞

n=0 anxn be a power series. The possible sets of points
where it converges are: 0 only; all of R; or an interval (−R,R),
possibly with one or both of its boundary points.
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R: radius of convergence : the largest nonnegative number
such that

∑∞
n=0 anxn converges for all |x | < R.

Theorem

The radius of convergence of the series
∑

anxn is given by

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ ,
provided the limit exists or is +∞.

Proof. We make use of the Ratio Test: The series converges if
the limit

lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = L|x | < 1

and diverges if L|x | > 1.
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From this we conclude: R = 1/L if L 6= 0. Also, R =∞ if L = 0,
and R = 0 if L =∞.

1 For the exponential series
∑ xn

n! , R = limn→∞
(n+1)!

n! =∞
2 For the geometric series

∑
xn, R = 1

3 For
∑

n!xn, R = 0
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Radius of Convergence and
Differentiation/Integration

Let f(x) =
∑

anxn,
∑

n≥1 nanxn−1, and
∑

n≥1
1

n+1xn+1

Theorem

The three series have the same radii of convergence.

Proof. Suppose R and R′ are the radii of convergence of the
first two series. Suppose |x | < R, and choose |x | < |x0| < R.
Then the first series is convergent with x = x0, and
consequently |anxn

0 | ≤ A for all n.
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Then

nanxn−1 =
n
x0

anxn
0

(
x
x0

)n−1

,

|nanxn−1| ≤ A
|x0|

nrn−1,

where
r =

|x |
|x0|

< 1.

The series
A
|x0|

nrn−1

is convergent, for the limit of the ratio of the terms is

lim
n→∞

n + 1
n

r < 1.

This proves that the series nanxn−1 converges and therefore
R ≤ R′.
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Now we show that R′ > R is impossible. Otherwise, pick x so
that R < |x | < R′. Then the series

∑
nanxn−1 is absolutely

convergent for this x and the first series is divergent. Now

|anxn| = |nanxn−1|
∣∣∣x
n

∣∣∣ < |nanxn−1|

as soon as n > |x |. This comparison shows that the series∑
|anxn| is convergent, a contradiction.
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Root Formula

Exercise: Prove that the radius of convergence of the series
∞∑

n=0

anxn

is given by
1
R

= lim
n→∞

n
√

an.

Note: In some early Workshops we had several examples of
limn∞

n
√

something: n
√

n, n
√

an + bn + cn

Note also the consequence: the series of indefinite integrals
will have the same radius of convergence

∞∑
n=1

an

n + 1
xn+1
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Uniform Convergence

Theorem

If a power series
∑∞

n=0 anxn converges absolutely at a point
|x0|, then it converges uniformly on the closed interval [−c, c],
where c = |x0|.

Proof. We use Cauchy Criterion for Uniform Convergence of
Series.
By assumption,

∑∞
n=0 |anxn| <∞ so that in particular, for any

ε > 0 there exists N ∈ N such that for n > m ≥ N

|am+1cm+1|+ · · · |ancn| < ε

which implies that for all x ∈ [−c, c]

|am+1xm+1 + · · · anxn| ≤ |am+1cm+1|+ · · · |ancn| < ε
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Abel’s Lemma

Lemma

Let bn satisfy b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, and let
∑∞

n=1 an be a
series for which the partial sums are bounded. In other words,
assume there exists A > 0 such that

|a1 + a2 + · · ·+ an| < A

for all n ∈ N. Then, for all n ∈ N

|a1b1 + a2b2 + · · ·+ anbn| ≤ 2A.
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The proof uses a technique called summation by parts. Let
(xn) and (yn) be sequences and let sn = x1 + x2 + · · ·+ xn.
Note that xj = sj − sj−1. Now we verify that

n∑
j=m+1

xjyj = snyn+1 − smym+1 +
n∑

j=m+1

sj(yj − yj+1).

Note that the two sides as sums
∑

ai,jxiyj , where ai,j are
integers. To verify this is an identity, it is enough to check that
for each j in the range m + 1 ≤ i , j ≤ n + 1, taking the partial
derivative relative to xi followed by that of yj we get the same
values:

∂2

∂xi∂yj

∑
ai,jxiyj = ai,j

Wolmer Vasconcelos Set 6

Advanced Calculus



Main Goal Properties of Infinite Series Workshop #10 Uniform Convergence and Differentiability Series of Functions Power Series Taylor Series Workshop #11 Old Finals

Abel’s Theorem

Theorem

Let g(x) =
∑∞

n=1 anxn be a power series that converges at the
point x = R > 0. Then the series converges uniformly on the
interval [0,R]. A similar result holds if the series converges at
x = −R.

Proof. We use Cauchy Criterion for Uniform Convergence of
Series: Set

g(x) =
∞∑

n=1

anxn =
∞∑

n=1

anRn
( x

R

)n
.
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We must show that for any ε > 0 there exists N ∈ N such that
for n > m ≥ N

|am+1Rm+1
( x

R

)m+1
+ · · ·+ anRn

( x
R

)n
| < ε

Because we are assuming that
∑∞

n=1 anRn converges, by
Cauchy Criterion for convergent numerical series there exists
N ∈ N such that

|am+1Rm+1 + · · ·+ anRn| < ε/2

for all n > m ≥ N. By Abel’s Lemma

|am+1Rm+1(x/R)m+1 + · · ·+ anRn(x/R)n| < 2ε/2 = ε
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Taylor Series

Let f(x) be a function defined on a neighborhood of x = a, let
us assume its derivatives of all orders exist at x = a, f(n)(a),
n ≥ 0. We can assemble these derivatives into several series,
the most important being the Taylor series of f at x = a:

∞∑
n=0

f(n)(a)

n!
(x − a)n.

1 For what values of x , in addition to x = a, does the series
converge?

2 When will it converge to f(x)?
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The partial sums of this series are the polynomials

sn(x) =
n∑

i=0

f(i)(a)

i!
(x − a)i .

To see whether sn(x)→ f(x), we must examine the difference

f(x)− sn(x)

This is called the remainder of the Taylor series.
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Note that the series expresses a relationship between values of
f at different points. We recall a basic result of this kind:

1 If f : [a,b]→ R is continuous and f′(x) exists in (a,b), the
MVT says that

f(b) = f(a) + (b − a)f′(c),

for some c ∈ (a,b).

2 If we assume more: Suppose f′(x) is continuous on [a,b]
and f′′(x) exists in (a,b):

f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(c),

for some c ∈ (a,b).
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To prove this, consider the function

g(x) = f(b)−f(x)−(b−x)f′(x)−(b − x)2

(b − a)2 (f(b)−f(a)−(b−a)f′(a)).

Note that it vanishes for x = a and x = b. Since it is
differentiable, by Rolle’s Theorem

g′(c) = 0

for some c ∈ (a,b). Since

g′(x) = −(b − x)f′′(x)− 2(b − x)

(b − a)2 (f(b)− f(a)− (b − a)f′(a)),

and we get: f(b)− f(a)− (b − a)f′(a) = f′′(c)
2! (b − a)2.
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Taylor’s Theorem

This can be proved in all degrees:

Theorem

Suppose that f : [a,b]→ R is n-times differentiable on [a,b] and
f(n) is continuous on [a,b] and differentiable on (a,b). Assume
x0 ∈ [a,b]. Then for each x ∈ [a,b] with x 6= x0, there is c
between x and x0 such that

f(x) = f(x0) +
n∑

k=1

f(k)(x0)

k !
(x − x0)

k +
f(n+1)(c)

(n + 1)!
(x − x0)

n+1.
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Proof of Taylor’s

Define the function

F(t) = f(t) +
n∑

k=1

f(k)(t)
k !

(x − t)k + M(x − t)n+1,

where M is chosen so that F(x0) = f(x). This is possible
because x − x0 6= 0.
F is continuous on [a,b] and differentiable on (a,b), and

F(x) = f(x) = F(x0).

By Rolle’s Theorem,

F′(c) = 0, for c between x and x0
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0 = F′(c) =
f(n+1)(c)

n!
(x − c)n − (n + 1)M(x − c)n.

This gives

M =
f(n+1)(c)

(n + 1)!

and

f(x) = F(x0) = f(x0)+
n∑

k=1

f(k)(x0)

k !
(x−x0)

k +
f(n+1)(c)

(n + 1)!
(x−x0)

n+1.
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f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(a)

+ · · ·+ (b − a)n−1

(n − 1)!
f(n−1)(a) +

(b − a)n

n!
f(n)(c),

for some c ∈ (a,b). To prove this, consider the function

g(x) = Fn(x)−
(

b − x
b − a

)n

Fn(a)

where

Fn(x) = f(b)− f(x)− (b − x)f′(x)− · · · − (b − x)n−1

(n − 1)!
f(n−1)(x).

The function g(x) vanishes at x = a and x = b.
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Its derivative is

n(b − x)n−1

(b − a)n

(
Fn(a)− (b − a)n

n!
f(n)(x)

)
,

which must vanish by Rolle’s Theorem for some a < c < b.

This gives the formula

f(x) =
n−1∑
i=0

f(i)(a)

i!
(x − a)i + Rn(x)

We must control the term (remainder)

Rn(x) =
(b − a)n

n!
f(n)(c), a < c < x

to study Taylor’s.
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Example

Problem: Compute the first 5 decimals of e.
The Taylor series of ex around x0 = 0 is

1 + x + · · ·+ xn

n!
+ · · ·

The remainder term is
f(n+1)(c)

(n + 1)!
(x − c)n+1, c ∈ [0, x ].

We want to find n so that the remainder (for x = 1) is < 10−6.
We know that the derivatives of ex are ex , so ec ≤ e < 4. As
(1− c) ≤ 1, the remainder is smaller than

4
(n + 1)!
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We pick n so that

4
(n + 1)!

< 10−6

That is,

(n + 1)! > 4× 106

7! = 5040
10! = 720× 5040
11! > 4× 106
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Example

Let f(x) = log(1 + x), a = 0: Then

f′(x) =
1

1 + x

f′′(x) =
−1

(1 + x)2

...

f(n)(x) = (−1)n−1 (n − 1)!

(1 + x)n

Thus

|Rn(x)| = 1
n

∣∣∣∣ 1
|1 + x |n

∣∣∣∣ ≤ 1
n
, 0 ≤ x
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Example

Let f(x) = arctan x , a = 0: Then

f′(x) =
1

1 + x2

f′′(x) =
−2x

(1 + x2)2

...
f(n)(x) = ?

We will be tricky: Consider the geometric series

1
1− x

= 1 + x + x2 + · · ·+ xn + · · ·
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Exercises

1 Decide whether the series converges or diverges

∑
n≥1

√
n + 1−

√
n

n

2 Write the Taylor series of ln x using powers of x − 1
3 Prove that ex ≥ 1 + x for all x .
4 Use induction to show that 1 + 1√

2
+ · · ·+ 1√

n ≥
√

n. Which
other way?

5 Chapter 6: 9, 19, 22, 24(a,b), 37, 41b, 42
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Workshop #11

1 Observe that the series

f(x) = x +
x2

2
+

x3

3
+ · · ·

converges for on [0,1) but not when x = 1. For fixed
x0 ∈ (0,1), use the M-test to prove that f is continuous at
x0.

2 Let

f(x) =
∞∑

n=1

1
x2 + n2

1: Show that f is a continuous function defined on all of R.
2: Is f differentiable? If so, is f′ continuous?
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Old Finals

1. (10 pts) State carefully and prove the Mean Value Theorem.

2. (8 pts)
1 What is a countable set? Show that the set of rational

numbers is countable.
2 Show that the set of irrational numbers is not countable.
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3. (8 pts)
1 What is a monotone sequence of real numbers?
2 If (an) is a bounded monotone sequence, prove that it

converges.

4. (8 pts) Let x1 = 1 and xn+1 := 1 + 1
xn

. Show that (xn) is a
convergent sequence and find its limit.
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5. (8 pts) If f : R→ R is a nonzero function satisfying
f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for any x , y ∈ R,
prove:

1 f(m/n) = m/n for every m/n ∈ Q.
2 For a ∈ R, if a > 0 then f(a) > 0. (Note that every positive

number is a square.)
3 Use (2) to prove that if x > y then f(x) > f(y).
4 Use (1), (3), the Density of Q and NIP, to prove that

f(x) = x for every x ∈ R.

6. (8 pts) Let f : [a,b]→ R be continuous and differentiable on
(a,b). If f(a) = f(b) = 0, show that for any k ∈ R there is
c ∈ (a,b) such that

f′(c) = k f(c).

Hint: Consider f(x)e−kx
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7. (8 pts)
1 Describe the Cantor set C.
2 Show that C is uncountable.
3 Show that 1/4 ∈ C.

8. (8 pts) [Topology]

1 What is an open set of R?
2 If A and B are subsets of R,

A + B = {a + b | a ∈ A, b ∈ B}. If A = (1,3) and
B = (2,5), what is A + B?

3 If A and B are open, prove that A + B is also open.
4 Prove (3) assuming only that B is open.
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9. (8 pts) Find the Taylor series of arctan x and determine
where it converges.

10. (8 pts) What is the radius of convergence of a power
series

∑
n≥1 anxn?

If f(x) = x2 + x + 1, and an = f(n) for n ∈ N, find the radius of
convergence of the corresponding series.
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11. (8 pts) Let

f(x) =
∞∑

n=1

sin nx
n3 .

1 Show that f(x) is differentiable and that its derivative f′(x)
is continuous.

2 Can we determine if f is twice differentiable? [Explain]

12. (10 pts) Explain [as in prove] why the Riemann integral,∫ b
a f, of a continuous function f on the closed interval [a,b]

exists.
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