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Partitions and Riemann Sums

Given a

f : [a, b]→ R

bounded, that is, with |f(x)| ≤ M for x ∈ [a,b], what is

∫ b

a
f(x)?
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Partitions

Definition
A partition P of the closed interval [a,b] is the choice of points
xi ∈ [a,b],

a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn = b.

It is denoted by

P = {x0, x1, . . . , xn−1, xn}.

It is just a partitioning of [a,b] as a union of a special sequence
of subintervals

[a,b] =
n⋃

k=1

[xk−1, xk ]
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Regular partition

A very simple partition of [a,b] is P = {a,b}
We get a regular partition by choosing regularly spaced
points:For a positive integer n

P = {x0 = a, x1 = a+(b−a)/n, . . . , xi = a+i(b−a)/n, . . . , xn = b}

We emphasize the ability to pick partitions where the
distance between consecutive points can be as small as
we wish.
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Riemann Sum

Start with the following data
1 f is a bounded function defined on [a,b], that is |f(x)| ≤ M
2 P is a partition of [a,b],

P = {x0, x1, . . . , xn−1, xn}

3 For each [xk−1, xk ] pick a point yk , xk−1 ≤ yk ≤ xk

Definition
Riemann sum of f is an expression of the form

n∑
k=1

f(yk )(xk − xk−1)
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Data for a Riemann sum

Fig. 282. Arbitrary auhdivision in the genoral definition of inbgra 
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Observe the geometric interpretations:
The rectangle of base the interval [xk−1, xk ], and height
f(yk ) has for area

f(yk )(xk − xk−1)

It gives an indication of the area under the graph of f over
the interval. It is actually an algebraic area, that is a signed
area.
The sum

n∑
k=1

f(yk )(xk − xk−1)

can be viewed as an approximation of the area under the
graph over [a,b].
These expressions as called Riemann sums of f. The
textbook writes S(P, f) for them, even as they depend on
the yk .
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Examples

Let f : [a,b]→ R be the constant function f(x) = C. For any
partition P = {x0, x1, . . . , xn}, we have, for any yk ,

S(P, f) =
n∑

k=1

f(yk )(xk − xk−1)

= C
n∑

k=1

(xk − xk−1) = C(b − a)
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Let f : [a,b]→ R be the function f(x) = x . For the partition
P = {xk = a + k(b − a)/n, k = 0, . . . ,n}, and yk = xk ,

S(P, f) =
n∑

k=1

xk (xk − xk−1)

=
n∑

k=1

(a + k(b − a)/n)((b − a)/n)

=
n∑

k=1

a(b − a)/n + ((b − a)/n)2))
n∑

k=1

k

= a(b − a) + ((b − a)/n)2(n(n + 1)/2)

a quantity that approaches (b2 − a2)/2 as n grows.
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Parabolas

Fig. 38.  Area of a h p e w l d .  F~K. a e l  A- under a pmbot. 

Ax = b/n. Since q = j -  Ax and j ( x J  = j3(&)', we obtain for S. the 
expression 

8, = 2 ~ ( ~ A X ) A Z  = [I2. (AX)' + 2'. ( A Z ) ~  + . . . + h 2 ( ~ x ) Z ]  .AX 
j-1 

= ( l a  f 22 + . . + n2)(Ax)'. 

Now we can actually calculate the limit. Using the formula 

n ( n  + + 1) l2 + 22 + . . . + nZ = .-.- .- 
6 

established on page 14, md making the substitution Ax = b/n, wn 
obtain 

This preliminary transformation makes the passage to the limib rill 

easy matter, since l / n  tends to zero as inckase~indefinitel~. 'I'IIIIM 
bS bS we obtain ae limit aimply - 11.2 = - and thereby the result 
6 3 ' 
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Difficulty

Question: How are we to handle the limit

lim
P

S(P, f)

We could consider only regular partition and take finer and finer
meshes, an strategy that Archimedes used already. It is not
good enough. What we are going to do is to define two new
types of Riemann sums associated to P, that have the property

L(P, f) ≤ S(P, f) ≤ U(P, f),

and then define two numbers L(f) and U(f) using the Axiom of
Completeness, and study when they are equal. It will be the
desired limit for the S(P, f).
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Special Riemann Sums

To make this more natural, we are going to make special
choices for yk , or rather of the heights of the basic rectangles.
They will also be called of Riemann sums. Consider a partition

of [a,b]
P = {x0, x1, . . . , xn−1, xn}.

For each subinterval [xk−1, xk ], in addition to yk , let mk be the
greatest lower bound of f on [xk−1, xk ], and Mk be the least
upper bound of f on [xk−1, xk ].

Recall that since |f(x)| ≤ M, both mk and Mk exist by the
Axiom of Completeness. These values determine two
rectangles.
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Upper and Lower Riemann sums

, /" 
Chapter 5 The Riemann Integral 

Figure 5.1 
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Note that from
mk ≤ f(yk ) ≤ Mk ,

we have

mk (xk − xk−1) ≤ f(yk )(xk − xk−1) ≤ Mk (xk − xk−1)

n∑
k=1

mk (xk − xk−1) ≤
n∑

k=1

f(xk )(xk − xk−1) ≤
n∑

k=1

Mk (xk − xk−1)

If we denote the first sum by L(P, f) and the last by U(P, f) we
have a comparison of ‘areas’

L(P, f) ≤
n∑

k=1

f(xk )(xk − xk−1) ≤ U(P, f)
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Key idea

This will permit us to define two real numbers:

L(f) = sup
P

L(P, f)

U(f) = inf
P

U(P, f)

We want to see when these two numbers are the same. This is
so remarkable that it will have a name: The Riemann integral.
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Refinement of Partitions

Now we examine what happens to L(P, f) and U(P, f) when we
change P. By a refinement of

P = {x0, x1, . . . , xn−1, xn}

we mean a partition obtained by further partitioning of the
intervals [xk−1, xk ]:

P ′ = {z0, z1, . . . , zm−1, zm}

where the zi includes the xk .

Let us see what happens when the refinement consists of
adding a single point z, P ′ = P ∪ {z}

xk−1 < z < xk
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If mk is the greatest lower bound for f(x) on [xk−1, xk ], we now
also have numbers m′k the greatest lower bound for f(x) on
[xk−1, z] and m′′k the greatest lower bound for f(x) on [z, xk ]. We
have

mk (xk−xk−1) = mk (xk−z)+mk (z−xk−1) ≤ m′′k (xk−z)+m′k (z−xk−1)

This shows that
L(P, f) ≤ L(P ′, f)

Obviously for a general refinement one can add a point at a
time and obtain the same inequality. In exactly the same
manner, we get the inequality for upper Riemann sums

U(P, f) ≥ U(P ′, f)

Note the reversal.
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This gives the picture:

L(f,P) ≤ L(f,P ′)→? ?← U(f,P ′) ≤ U(f,P)

Thus as we refine the partitions the lower sums don’t decrease
and the upper sums don’t increase. Always L(f,P) ≤ U(f,P ′).
In particular, we

sup L(f,P) = L(f) ≤ U(f) = inf U(f,P)
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Criterion for the equality L(f) = U(f)

The following is our main test to see whether
∫ b

a f(x)dx exists:

Proposition
Let f be a bounded function on the interval [a,b]. Then
L(f) = U(f) if for any ε > 0 there exists a partition Pε so that

U(Pε, f)− L(Pε, f) < ε.

Proof. Suppose L(f) = U(f). By definition there exist partitions
P1 and P2 such that

L(f)− L(P1, f) ≤ ε/2

U(P2, f)− U(f) ≤ ε/2
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Consider the partition Pε = P1 ∪ P2, which refines both
partitions.
The assertion that

U(Pε, f)− L(Pε, f) < ε

follows from the inequalities

U(P2, f) ≥ U(Pε, f) ≥ U(f) = L(f) ≥ L(Pε, f) ≥ L(P1, f).
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Conversely, suppose for each ε > there is a partition Pε so that

U(Pε, f)− L(Pε, f) < ε.

We need to show that L(f) = U(f).

Let us argue by contradiction. If not, for ε = U(f)− L(f), it
suffices to look at the inequalities

U(Pε, f) ≥ U(f) ≥ L(f) ≥ L(Pε, f), .

showing that U(f)− L(f) < ε, a contradiction.
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Riemann Integral

Let f : [a,b]→ R be a bounded function. If P = {x0, x1, . . . , xn}
is a partition of [a,b] consider the lower and upper Riemann
sums L(P, f) and U(P, f).

We will say that the diameter ∆ of P is the largest of the
lengths |xk − xk−1|. We will want to make sense of the limits of
such Riemann sums as ∆→ 0.

Definition

If L(f) = U(f), we denote this value
∫ b

a f, or
∫ b

a f(x)dx , and call it
the Riemann integral of f on [a,b].
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Monotone Functions are Integrable

Let us give an example of a class of functions, not necessarily
continuous, that have Riemann integrals.

Theorem

If f : [a,b]→ R is monotone, then
∫ b

a f(x)dx exists.

Proof. Suppose f is monotone increasing (i.e. if x0 ≤ x1 then
f(x0) ≤ f(x1)). Choose ε > 0. There is a k such that
k(f(b)− f(a)) < ε. Choose a partition P = {x0, x1, . . . , xn} so
that

xi − xi−1 < k , i = 1,2, . . . ,n.
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Since f is increasing, Mi = f(xi) and mi = f(xi−1). Now

U(P, f)− L(P, f) =
n∑

i=1

[f(xi)− f(xi−1)][xi − xi−1]

≤
n∑

i=1

[f(xi)− f(xi−1)]k = k [f(b)− f(a)] < ε

By the criterion,
∫ b

a f exists. The functions for which the integral
exists are called Riemann integrable. The textbook denotes this
set by R[a,b]. There are other types of integral.
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Example

Consider the sequence {xn = 1− 1/n : n ≥ 1} and let us build
a monotone function f on [0,1] as follows:

f(x) = 1/2, 0 ≤ x < 1/2
f(x) = 1− 1/3, 1/2 ≤ x < 1− 1/3

...
f(x) = 1− 1/n, 1− 1/(n − 1) ≤ x < 1− 1/n
f(1) = 1

f is monotone but not continuous: its graph has an infinite
number of breaks.

Exercise: Its Riemann integral is what ?.
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Dirichlet Function

Consider the function

f(x) =

{
0 x ∈ Q
1 x /∈ Q

and let us try to determine its integral on [0,1].
For any partition P = {x0, x1, . . . , xn}, in the interval [xi−1, xk ]
there are rational and non rational points. This implies that
mk = 0 and Mk = 1, and therefore

L(P, f) = 0
U(P, f) = 1

Thus L(f) = 0 6= U(f) = 1, and
∫ 1

0 f does not exist.
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Continuous Functions are Integrable

Theorem

If f is continuous on [a,b] then
∫ b

a f(x)dx exists.

Proof. It will suffice to prove that for given ε > 0 there is a
partition P such that U(P, f)− L(P, f) < ε.
We know that f is uniformly continuous on [a,b]. Thus given
ε > 0 there exists δ > 0 such that for x , y ∈ [a,b],

|x − y | < δ ⇒ |f(x)− f(y)| < ε

b − a
.

Let P = {x0, x1, . . . , xn} be a partition of diameter < δ, that is
|xk − xk−1| < δ. If mk and Mk are the minimum and the
maximum of f on this interval, by the Extreme Value Theorem
there are yk , zk ∈ [xk−1, xk ] so that

mk = f(yk ), Mk = f(zk )



Partitions and Riemann Sums The Riemann Integral Old Hourlies #2 FTC Algebra of Integrable Functions Exercises to be Handed in Workshop #9 The Integral: Applications

Proof cont’d

U(P, f) =
n∑

k=1

f(zk )(xk − xk−1)

L(P, f) =
n∑

k=1

f(yk )(xk − xk−1)

U(P, f)− L(P, f) =
n∑

k=1

(f(zk )− f(yk ))(xk − xk−1)

Since f(zk )− f(yk ) < ε
b−a , we have

U(P, f)− L(P, f) <

n∑
k=1

ε

b − a
(xk − xk−1) =

ε

b − a

n∑
k=1

(xk − xk−1)

=
ε

b − a
(b − a) = ε
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Old Hourlies #2

1 State and prove the Intermediate Value Theorem
theorem.

2 Let f : [0,1]→ R be a continuous function. If f(0) 6= f(1),
prove that the image of f, f([0,1]), is uncountable.

Assume f1(x) ≥ f2(x) for all x in some set A on which f1
and f2 are defined. Show that for any limit point c of A
(what are these, anyway?) we must have

lim
x→c

f1(x) ≥ lim
x→c

f2(x).

Moreover, if f1(x) < f2(x), can equality in the limits occur?
1 If f : A→ R, what does it mean to say that f is uniformly

continuous on A?
2 Which result guarantees that

√
x is uniformly continuous on

[0,1]?
3 Prove that

√
x is uniformly continuous on [0,∞). (Why can’t

use (2) here?).
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Evaluate the following limits. You must state the reasons.
1 limx→∞

ex

x10

2 limx→∞ x ln x+1
x−1

1 State (clearly and completely) the Mean Value Theorem.
2 Show that if f is a function that is differentiable on an

interval with f′(x) 6= 1, then there exists at most one point
where f(c) = c.

Study algebraic limits–read proofs
(Substitute Questions) Chapter 5, Miscellaneous (p. 168):
39, 40, 41
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Study proofs and illustrations of the following:

1 IVT, Darboux
2 EVT
3 Rolle, MVT
4 Uniform continuity of continuous functions
5 Riemann sums, integrals of monotone and continuous

functions
6 L’Hospital rules and the calculation of limits
7 Review your [relevant] workshops
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The Fundamental Theorem of Calculus

It is highly desirable to have the means to actually find the value
of the integral

∫ b
a f(x)dx , not merely to assert that it exists. The

FTC does this for a huge collection of functions in a very
effective manner. It converts the consideration of finding a very
difficult limit process into the task of using a lookup table.

Here it is:
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FTC

Theorem (FTC)

Let f : [a,b]→ R be a function such that
∫ b

a f exists. If F is a
function such that F′(c) = f(c) for all c ∈ [a,b], then∫ b

a
f(x)dx = F(b)− F(a).

Proof. Let P be a partition of [a,b]. By the MVT,

F(xk )−F(xk−1) = F′(yk )(xk−xk−1) = f(yk )(xk−xk−1), yk ∈ [xk−1, xk ].

Adding both sides over the terms of the partition, and taking
into account the telescoping terms on the left, we get

n∑
k=1

F(xk )− F(xk−1) = F(b)− F(a) =
n∑

k=1

f(yk )(xk − xk−1),
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This means that F(b)− F(a) equals a Riemann sum associated
to P. Since

L(P, f) ≤ F(b)− F(a) =
n∑

k=1

f(yk )(xk − xk−1) ≤ U(P, f),

we have
L(P, f) ≤ F(b)− F(a) ≤ U(P, f).

This implies that F(b)− F(a) is arbitrarily close to
∫ b

a f(x)dx
since U(P, f)− L(P, f) can be made arbitrarily small. This
shows

F(b)− F(a) =

∫ b

a
f(x)dx .
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Another Version of FTC

Theorem
If f : [a,b]→ R satisfies |f(x)| ≤ M and is integrable, then

G(x) =

∫ x

a
f(t)dt

is a continuous function on [a,b]. Moreover, if f(x) is
continuous at x = c, then

G′(c) = f(c).

This FTC is about the derivative of the integral. The earlier
version was about the integral of the derivative.
This says that G(x) is a ‘nicer’ function than f(x). Consider the
following example.
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Example
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We need the following result as preparation:

Proposition
Assume that f : [a,b]→ R is bounded. If a < c < b then
f ∈ R[a,b] if and only if f ∈ R[a, c] and f ∈ R[c,b]. In this case,∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

The basic idea is the following: If P1 and P2 are partitions of
[a, c] and [c,b], respectfully, then P = P1 ∪ P2 is a partition of
[a,b]. Conversely, if P is a partition of [a,b], by adding the point
x = c, if needed, and thus obtaining a refinement of P, we can
express it as a union partitions as above.
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The argument is now standard. For example, if
∫ c

a f and
∫ b

c f
exist, given ε > 0, pick partitions partitions P1 and P2 and
select points in the subintervals so that the Riemann sums
S(P1, f) and S(P2, f) satisfy

|S(P1, f)−
∫ c

a
f| < ε/2, |S(P2, f)−

∫ c

a
f| < ε/2
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Now S(P1, f) + S(P2, f) is a Riemannn sum of f over [a,b] that
is closer to

∫ c
a f +

∫ b
c f by less that ε,

|S(P1, f) + S(P2, f)−
∫ c

a
f−
∫ b

c
f| < ε

Together with the earlier note, this implies the equality∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

The converse is similar.
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Another version of FTC

Theorem
If f : [a,b]→ R satisfies |f(x)| ≤ M and is integrable, then

G(x) =

∫ x

a
f(t)dt

is a continuous function on [a,b]. Moreover, if f(x) is
continuous at x = c, then

G′(c) = f(c).

Proof. G is well-defined since f is integrable on [a, c] for
a < c < b, by a previous proposition. Observe that for
x , y ∈ [a,b]

G(x)−G(y) =

∫ x

y
f(t)dt

|G(x)−G(y)| ≤
∫ x

y
|f(t)dt | ≤ M|x − y |,

so G has the Lipschitz property.
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In particular, G is uniformly continuous. Suppose f is
continuous at x = c. Consider

G(x)−G(c)

x − c
=

∫ x
c f(t)dt
x − c

.

G(x)−G(c)

x − c
− f(c) =

∫ x
c (f(t)− f(c))dt

x − c
.

Since f is continuous at x = c, for any ε > 0 there exists a
neighborhood Vδ(c) of c so that |f(t)− f(c)| < ε for t ∈ Vδ(c).
This gives for x ∈ Vδ(c)

|G(x)−G(c)

x − c
− f(c)| ≤

∫ x
c |f(t)− f(c)|dt

x − c
< ε.
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Example

The function

G(x) =

∫ x

0
e−t2

dt

satisfies
G′(x) = e−x2

Note that we did not know much about G(x)!
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Example

For a function F(x), we can define

G(x) =

∫ F(x)

a
f(t)dt ,

which can be interpreted as a composition

g(u) =

∫ u

a
f(t)dt , u = F(x).

If F(x) is differentiable, the chain rule gives

G′(x) = (g ◦ F)′(x) = f(F(x))F′(x).

As an exercise, if F(x) and H(x) are differentiable, find the
derivative of ∫ F(x)

H(x)
f(t)dt
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Algebra of Integrable Functions

The set R[a,b] contains all the continuous functions on [a,b]
but many others. Some operations on these produce other
integrable functions: Clearly

f,g ∈ R[a,b]⇒ f + g ∈ R[a,b]

but it is not so clear that

f,g ∈ R[a,b]⇒ f · g ∈ R[a,b],

or that |f(x)| ∈ R[a,b].
Let us analyze a piece of algebra to see what is needed to
derive those facts. Of course if f(x) is continuous we do not
bother since composites of continuous is continuous.But it is a
fact that the composite of two integrable functions may not be
integrable (see p. 156).
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If f(x) and g(x) are integrable, then both f(x) + g(x) and
f(x)− g(x) are integrable. Suppose we knew that the square of
an integrable function is integrable. This would imply that

(f(x) + g(x))2 − (f(x)− g(x))2 = 4f(x)g(x)

is integrable, giving our goal. What we need is:

Theorem
Suppose f : [a,b]→ S is integrable on [a,b] and ψ : S → R is
continuous with S compact. Then the composite φ ◦ f ∈ R[a,b].

In the argument above, we would use φ(x) = x2, while for
∫ b

a |f|
we would invoke φ(x) = |x |: Both are continuous and since f is
bounded we may assume f[a,b] is contained in a compact set
S.
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Proof

Choose ε > 0, let K = sup{|φ(t)| : t ∈ S}, and let
ε′[b − a + 2K ] ≤ ε.

By Uniform Continuity of φ on S, there is 0 < δ < ε′ such that
s, t ∈ S and |s − t | < δ implies |φ(s)− φ(t)| < ε′.

Since f(x) is integrable on [a,b], there is a partition P of [a,b]
such that

U(P, f)− L(P, f) < δ2.

We want to argue that

U(P, φ ◦ f)− L(P, φ ◦ f) < ε.
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If P = {x0, x1, . . . , xn}, split the indices i ’s into two sets:

A = {i : Mi(f)−mi(f) < δ}
B = {i : Mi(f)−mi(f) ≥ δ}

For i ∈ A and s, t ∈ [xi−1, xi ], |φ(s)− φ(t)| < δ, so

|φ(f(s))− φ(f(t))| < ε′;

that is
Mi(φ ◦ f)−mi(φ ◦ f) ≤ ε′.
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For i ∈ B, Mi(f)−mi(f) ≥ δ, hence

δ
∑
i∈B

(xi − xi−1) ≤
∑
i∈B

[Mi(f)−mi(f)](xi − xi−1)

≤ U(P, f)− L(P, f) ≤ δ2

Thus
∑

i∈B(xi − xi−1) ≤ δ.
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U(P, φ ◦ f)− L(P, φ ◦ f) =
n∑

i=1

[Mi(φ ◦ f)−mi(φ ◦ f)](xi − xi−1)

=
∑
i∈A

[Mi(φ ◦ f)−mi(φ ◦ f)](xi − xi−1)

+
∑
i∈B

[Mi(φ ◦ f)−mi(φ ◦ f)](xi − xi−1)

≤ ε′(b − a) + 2K δ′ ≤ ε′(b − a + 2K ) ≤ ε

Thus φ ◦ f is integrable on [a,b].
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Integration by Parts

Theorem
Suppose f and g are differentiable on [a,b] and f′ and g′ are
integrable on [a,b]. Then fg′ and f′g are integrable on [a,b] and∫ b

a
f′gdx = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′dx .

Proof. f and g being differentiable are also continuous. Since
the product of a continuous function and an integrable function
is integrable, f′g and fg′ are integrable.
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Applying the FTC to the function fg, and using Leibnitz rule we
have

f(b)g(b)− f(a)g(a)
FTC

=

∫ b

a
(fg)′dx

=

∫ b

a
(f′g + fg′)dx

=

∫ b

a
f′gdx +

∫ b

a
fg′dx .
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Exercises to be Handed in

1 Sec. 5.2: 9. Assume f : [a,b]→ R is continuous and
f(x) ≥ 0 for all x ∈ [a,b]. Prove that if

∫ b
a f(x)dx = 0, then

f(x) = 0 for all x ∈ [a,b].
2 Sec. 5.3: 12. Suppose f in integrable on [0,1]. Define

an =
1
n

n∑
k=1

f(k/n)

for all n. Prove that (an) converges to
∫ 1

0 fdx .
3 Sec. 5.5: 20
4 Sec. 5.5: 25
5 Sec. 5.6: 32
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Workshop #9

The goal here is to create ln x and rediscover the number e. Let

L(x) =

∫ x

1

1
t

dt , x > 0.

1 Prove that L is continuous, differentiable and 1− 1.
2 Prove that L is increasing.
3 Prove that L(ab) = L(a) + L(b), for a,b > 0.
4 Prove that L(xn) = nL(x), for n ∈ Z.
5 Prove that L(a/b) = L(a)− L(b), for a,b > 0.
6 Prove that the image of L is R.
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7 We defined e as the limit of the sequence
(1 + 1/n)n, n ≥ 1. Show that L(e) = 1.

8 Let E be the inverse of L (explain why E
exists):E : R→ (0,∞). Prove that E is continuous,
differentiable and increasing.

9 Prove that E(x + y) = E(x)E(y).
10 If x > 0 and y ∈ R, define xy = E(yL(x)), or as usual

xy = ey ln x . Show that xx is differentiable and find f′(x)
(x > 0).
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MVT for Integrals

Theorem
If f : [a,b]→ R is continuous and g is integrable on [a,b] and
g(x) ≥ 0, then there is a c ∈ [a,b] such that∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx .

Proof. Let m = inf{f(x) : x ∈ [a,b]} and
M = sup{f(x) : x ∈ [a,b]}. Since g(x) ≥ 0,

m
∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx ≤ M

∫ b

a
g(x)
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The only case of interest is when
∫ b

a g(x)dx 6= 0. Write the
inequality as

m ≤
∫ b

a f(x)g(x)dx∫ b
a g(x)dx

≤ M.

Now apply the IVT to the function f(x) on [a,b] to get c ∈ [a,d ]
such that

f(c) =

∫ b
a f(x)g(x)dx∫ b

a g(x)dx
.
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Corollary
If f : [a,b]→ R is continuous, then there is c ∈ [a,b] such that∫ b

a
f(x)dx = f(c)(b − a).
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Second MVT for Integrals

Theorem
Suppose f : [a,b]→ R is monotone. Then there c ∈ [a,b] such
that ∫ b

a
f(x)dx = f(a)(c − a) + f(b)(b − c).

Proof. Since f is monotone,
∫ b

a f(x)dx exists. Define the linear
function h : [a,b]→ R, h(x) = f(a)(x − a) + f(b)(b − x). Note
that

∫ b
a f(x)dx lies between h(a) = f(b)(b − a) and

h(b) = f(a)(b − a), since f is monotone. Applying the IVT to
h(x), we have∫ b

a
f(x)dx = f(a)(c − a) + f(b)(b − c), c ∈ [a,b].
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Change of Variables

Theorem
Suppose φ : [a,b]→ R is differentiable and φ′ is continuous.
Further assume that φ([a,b]) = [c,d ] with φ(a) = c and
φ(b) = d. If f : [c,d ]→ R is continuous, then∫ b

a
f(φ(t))φ′(t)dt =

∫ d

c
f(x)dx .

Proof. Define F(u) =
∫ u

c f(x)dx and G(s) =
∫ s

a f(φ(t))φ′(t)dt .
Since f, φ and φ′ are continuous, both F and G are
differentiable and

F′(u) = f(u), u ∈ [c,d ]

G′(s) = f(φ(s))φ′(s), s ∈ [a,b]
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Since F ◦ φ is differentiable, by the Chain Rule,

(F ◦ φ)′(s) = F′(φ(s))φ′(s) = f(φ(s))φ′(s) = G′(s).

This means that there is a constant K such that for s ∈ [a,b]

(F ◦ φ)(s) = G(s) + K .

Setting s = a,

0 = F(c) = F(φ(a)) = G(a) + K = 0 + K , ⇒ K = 0,

as desired.
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Area of the Circle

A simple application gives the area of the (quarter circle):
Equation of the top semicircle: y =

√
r2 − x2, 0 ≤ x ≤ r

Change the variable: x = r cos t , 0 ≤ t ≤ π/2
Evaluate∫ r

0
ydx =

∫ 0

π/2

√
r2 − r2 cos2 t(−r sin t)dt

= −r2
∫ 0

π/2
sin2 tdt = −r2

∫ 0

π/2
1/2(1− cos 2t)dt

=
πr2

4
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Approximations of Integrals

There are several formulas that seek approximations for∫ b

a
f(x)dx

The simplest replaces the area under the graph by the area of
the quadrilateral formed by the points (a,0), (b,0), (a, f(a)),
(b, f(b)):

(b − a)(f(b) + f(a))

2
If f has two derivatives, one can show that the Error is

Error = −(b − a)3f′′(c)

12
, a ≤ c ≤ b.
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Simpson’s Rule

A much better formula is:

Theorem (Simpson’s Rule)
If f(x) has four derivatives, then∫ b

a
f(x)dx =

1
6

(b − a)(f(a) + 4f(
a + b

2
) + f(b)) + Error,

where

Error = − 1
2880

(b − a)5fiv (c), a ≤ c ≤ b.

Proof. Write a = m − h, b = m + h (i.e. m = (a + b)/2 and
h = (b − a)/2),and consider the function



Partitions and Riemann Sums The Riemann Integral Old Hourlies #2 FTC Algebra of Integrable Functions Exercises to be Handed in Workshop #9 The Integral: Applications

φ(t) = ψ(t)− (t/m)5ψ(m),

ψ(t) =

∫ m+t

m−t
f(x)dt − 1

3
t(f(m + t) + 4f(m) + f(m − t)).

Differentiating three times we get:

φ′(t) =
2
3

(f(m + t)− 2f(c) + f(m − t))− 1
3

t(f′(m + t)− f′(m − t))

− 5t4

m5 ψ(m)

φ′′(t) =
1
3

(f′(m + t)− f′(m − t))− 1
3

t(f′′(m + t) + f′′(m − t))

− 20t3

m5 ψ(m)

φ′′′(t) = −1
3

t(f′′′(m + t)− f′′′(m − t))− 60t2

m5 ψ(m)
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One uses the MVT applied to the function f′′′,

f′′′(m + t)− f′′′(m − t) = fiv (θ)((m + t)− (m − t))

= 2tfiv (θ), m − t < θ < m + θ

that gives

φ′′′(t) = −2
3

t2(fiv (θ) +
90
m5ψ(m)), m − t < θ < m + t .

Next, one observes that φ(0) = φ(m) = 0, which by Rolle’s
theorem, φ′(t1) = 0, t1 ∈ (0,m). Also φ′(0) = 0, and therefore
φ′′(t2) = 0, t2 ∈ (0, t1) ⊂ (0,m). Finally, φ′′(0) = 0, and
therefore φ′′′(t3) = 0 for t3 ∈ (0,m). This gives

fiv (c) = − 90
m5ψ(m), c ∈ (m − t3,m + t3)

Some more manipulation...
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Differentiation under the integral

Let f(x , y) be a function of two variables defined on the
rectangle a ≤ x ≤ b, c ≤ y ≤ d . Denote the rectangle by R.
Consider

F(y) =

∫ b

a
f(x , y)dx .

One of its properties is:

Theorem
If f(x , y) is continuous at each point of the rectangle R, then
F(y) is continuous at each point of the interval [c,d ]

This follows because f(x , y) is uniformly continuous.
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Theorem
Suppose f(x , y) is an integrable function of x for each value of
y, and the partial derivative ∂f(x ,y)

∂y exists and is a continuous
function of x and y in the rectangle R. Then

F(y) =

∫ b

a
f(x , y)dx

has a derivative given by

F′(y) =

∫ b

a

∂f(x , y)

∂y
dx .

Proof. We use the notation f2(x , y) for the partial derivative of
f(x , y) with respect to y .
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We must show that

lim
h→0

(
F(y + h)− F(y)

h
−
∫ b

a
f2(x , y)dx

)
= 0.

Since

F(y + h)− F(y) =

∫ b

a
(f(x , y + h)− f(x , y))dx ,

we apply the MVT

f(x , y + h)− f(x , y) = hf2(x , y + θh)

where θ depends on x , y and h and is such that 0 < θ < 1.This
says that

F(y + h)− F(y)

h
−
∫ b

a
f2(x , y)dx =

∫ b

a
(f2(x , y + θh)− f2(x , y))dx .
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Now we make use of the fact that f2 is uniformly continuous
Why Justin? Suppose ε > 0. Pick δ > 0 so that the values of
f2 at different points of R differ by less than ε if the distance
between the points is less than δ. Then

|f2(x , y + θh)− f2(x , y)| < ε, |h| < δ.

This gives∣∣∣∣∣F(y + h)− F(y)

h
−
∫ b

a
f2(x , y)dx

∣∣∣∣∣ < ε(b − a)

if 0 < |h| < δ. Since ε is as small as we please, the proof is
complete.
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Example

Find F′(y) if

F(y) =

∫ 1

0
ln(x2 + y2)dx

Note that this function is well defined if 0 ≤ x ≤ 1 and on any
closed interval not containing y = 0. The theorem asserts

F′(y) =

∫ 1

0

2y
x2 + y2 dx

Therefore

F′(y) = 2 tan−1(
1
y

).
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Exercise: Find F′(y) if

F(y) =

∫ ey

sin y

√
1 + x3dx .

Write

G(u, v) =

∫ v

u

√
1 + x3dx , u = sin y , v = ey

Then make use of

dF
dy

=
∂G
∂u

du
dy

+
∂G
∂v

dv
dy

F′(y) = −
√

1 + sin3 y cos y +
√

1 + e3yey
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