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Some Goals

Understand useful functions

f : A ⊂ R→ R
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Building Blocks

After building the real number set R, we treated various notions
that will be used intensively:

1 Sequences (an) and their limits (or lack of) (an)→ a
2 Distinguished subsets of R: neighborhoods, open sets etc
3 If f : R→ R and (an) is a sequence then (f(an)) is also a

sequence:

an → f → f(an)

If (an) is an interesting sequence (what does this mean?) ,
for what types of functions f will (f(an)) be interesting?
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Dirichlet Function

It might be a good idea to have wonderful functions at hand:

1 (Dirichlet Function)

f(x) =

{
0 x ∈ Q
1 x /∈ Q

2

f(x) =

{
x sin(1/x) x 6= 0
0 x = 0

3 Let f(x) be your favorite function: polynomials, rational
functions, trig functions, ζ(x)?
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Functional Limit

Now we look at a notion at the root of Calc:

Definition
Let f : A→ R, and let c be a limit point of the domain A. We say
limx→c f(x) = L provided that, for all ε > 0, there exists δ > 0
such that whenever 0 < |x − c| < δ (and x ∈ A) it follows that
|f(x)− L| < ε.

Let us walk through the functional limit template:
1 Let f : A→ R, c limit point of A
2 Given ε > 0 that is, ε arbitrary
3 There is δ > 0 that is, δ is a function of ε and c
4 Such that

0 < |x − c| < δ ⇒ |f(x)− L| < ε
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Example

f(x) =

{
x sin(1/x) x 6= 0
0 x = 0

Let us examine its continuity at c = 0: Let ε > 0

|f(x)− f(0)| = |x sin(1/x)− 0| ≤ |x |

Thus if we choose δ = ε, whenever |x − 0| = |x | < δ,

|f(x)− f(0)| < ε.

Thus f(x) is continuous at x = 0.
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Example

Let f(x) = 2x + 1.
lim
x→3

f(x) = 7

Let ε > 0. We must produce δ > 0 so that for 0 < |x − 3| < δ we
have |f(x)− 7| < ε.

|f(x)− 7| = |2x + 1− 7| = |2x − 6| = 2|x − 3|

Thus if we choose δ = min{ε/2,1}, then |x − 3| < δ implies
|f(x)− 7| < ε.
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Example

Let f(x) = x2.
lim
x→3

f(x) = 9

Let ε > 0. We must produce δ > 0 so that for 0 < |x − 3| < δ we
have |f(x)− 9| < ε.

|f(x)− 9| = |x2 − 9| = |x − 3||x + 3|

To choose |x − 3| small, we need to bound |x + 3|. Since we
are interested in neighborhoods of x = 3, we may restrict
ourselves to 2 < x < 4, so that |x + 3| ≤ 7.

|f(x)− 9| = |x2 − 9| = |x − 3||x + 3| ≤ 7|x − 3|, |x | ≤ 4

Thus if we choose δ = ε/7, then |x − 3| < δ implies
|f(x)− 9| < ε.
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Functional Limit Template

These examples illustrate the functional limit template:

1 Let f : A→ R, c limit point of A
2 Given ε > 0 that is, ε arbitrary

3 There is δ > 0 that is, δ is a function of ε and c

4 Such that

0 < |x − c| < δ ⇒ |f(x)− L| < ε

5 Note who comes first: the value for δ comes in response to
the requirement on ε. Thus δ is a function of ε (and of c
and f as well)
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Topological Version

Definition
Let f : A→ R, and let c be a limit point of the domain A. We say
limx→c f(x) = L provided that for every ε-neighborhood Vε(L)
there exists a δ-neighborhood Vδ(c) such that for all x ∈ Vδ(c)
different from c (and x ∈ A) it follows that f(x) ∈ Vε(L).

Definition
Let f : A→ R, and let c be a limit point of the domain A. We say
limx→c f(x) = L provided that, for all ε > 0, there exists δ > 0
such that whenever 0 < |x − c| < δ (and x ∈ A) it follows that
|f(x)− L| < ε.
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Sequential Criteria

Theorem
Given f : A→ R and a limit point c of A, the following
statements are equivalent:

(i) limx→c f(x) = L;
(ii) For all sequences (xn) ⊂ A satisfying xn 6= c and xn → c, it

follows that f(xn)→ L.

Proof. (i)⇒ (ii): Consider one arbitrary sequence (xn), xn 6= c,
converging to c.

Let ε > 0. By (i), there exists Vδ(c) such that f(x) ∈ Vε(L) for all
x ∈ Vδ(c), x 6= c. Since xn → c, there is a point xN such that
xn ∈ Vδ(c) for n ≥ N. It follows that f(xn) ∈ Vε(L) for n ≥ N.
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(ii)⇒ (i): We are going to argue by contradiction that if
limx→c f(x) 6= L, then there is a sequence xn → c such that
(f(xn)) does not converge to L.

This assumption is that there is an ε > 0 for which no δ > 0 will
work in (i).

Let δn = 1/n. Then there is xn ∈ Vδn(c), xn 6= c, such that
f(xn) /∈ Vε(L).
This creates a sequence (xn)→ c, xn 6= c, such that f(xn) does
not converge to L. �
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Example: Dirichlet Function

f(x) =

{
0 x ∈ Q
1 x /∈ Q

Composing (an), a sequence of elements of A, with f : A→ R,
gives another sequence (f(an)).

1 Consider the two convergent sequences an = 1
n and

bn =
√

2
n , both converging to 0

2 If f is Dirichlet function, f(an) and f(bn) are also convergent
but to different limits.

3 f is not continuous.
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Algebraic Limit Theorem for Functional Limits

Theorem
Let f and g be functions on a domain A ⊂ R, and assume
limx→c f(x) = L and limx→c g(x) = M for some limit point of A.
Then

1 limx→c k f(x) = kL for all k ∈ R;
2 limx→c[f(x) + g(x)] = L + M;
3 limx→c[f(x)g(x)] = LM;
4 limx→c[f(x)/g(x)] = L/M, provided M 6= 0.

Let us prove one of these statements,

lim
x→c

[f(x)g(x)] = LM
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Algebraic Limit Theorem for Sequences

Recall the following result about sequences:

Theorem
Let lim an = a and lim bn = b. Then

(i) lim can = ca, for all c ∈ R;
(ii) lim(an + bn) = a + b;

(iii) lim(anbn) = ab;
(iv) lim(an/bn) = a/b provided bn 6= 0 and b 6= 0.
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Proof that lim f(x)g(x) = lim f(x) lim g(x)

Since limx→c f(x) = L and limx→c g(x) = M, by the sequential
criterion for functional limits, for any sequence (xn)→ c,
xn ∈ A, limn→∞ f(xn) = L and limn→∞ g(xn) = M. Now we use
the Algebraic Limit Theorem for Sequences,

lim
n→∞

f(xn)g(xn) = lim
n→∞

f(xn) lim
n→∞

g(xn)

= LM

Because we used an arbitrary sequence, by the Sequential
Criterion for Functional Limits,

lim
x→c

(fg)(x) = LM.
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Example

Let f : (0,1)→ R defined by f(x) =
√

4+x−2
x . Note that f is not

defined at x = 0, but this is a limit point of (0,1). Let us
determine limx→0 f(x):

f(x) =

√
4 + x − 2

x
=

(
√

4 + x − 2)(
√

4 + x + 2)

x(
√

4 + x + 2)

=
4 + x − 4

x(
√

4 + x + 2)
=

1√
4 + x + 2

Both numerator and denominator of this expression of f have a
limit when x → 0. By the Algebraic Limit Theorem for
Functional Limits, limx→0 f(x) = 1

4 .
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Exercises to be handed in

1 Section 2.1: 5, 7
2 Section 2.3: 17
3 Miscellaneous: 26
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Continuous Functions

Finally, here it is the jewel of the crown:

Definition
A function f : A→ R is continuous at a point c ∈ A if, for all
ε > 0, there exists a δ > 0 such that whenever |x − c| < δ (and
x ∈ A) it follows that |f(x)− f(c)| < ε. If f is continuous at every
point of A, then f is said to be continuous on A.

Note that the limit point c is now required to belong to the
domain of f
Shorthand for the definition is

lim
x→c

f(x) = f(c)
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Examples

If f is the constant function f(x) = K , then for ε > 0 ANY δ > 0
works:

|x − c| < δ ⇒ |f(x)− f(c)| = 0 < ε

If f is the identity function f(x) = x , then for any ε > 0, δ = ε
works:

|x − c| < δ = ε⇒ |f(x)− f(c)| = |x − c| < ε
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Noteworthy Example

f(x) = sin x is continuous at any c ∈ R: Write x = c + h, so give
ε > 0 we must find δ > 0 (may depend on c) so that

|h| < δ ⇒ | sin(c + h)− sin c| < ε

| sin(c + h)− sin c| = | sin c cos h + cos c sin h − sin c|
≤ | sin c|| cos h − 1|+ | cos c|| sin h|

We use the formulas (h in radians): | sin h| ≤ |h| and
1− cos h = 2 sin2(h/2) to get (we assume |h| ≤ 1)

| sin(c + h)− sin c| ≤ |h|+ 2(h/2)2 ≤ 2|h|
so if we take δ = min{1, ε/2}

|x − c| < δ ⇒ |f(x)− f(c)| < ε
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The other Trig functions could also be approached directly, but
that can be avoided: For example, cos x is the composite

x → π/2− x → sin(π/2− x)

where the first arrow is continuous (obviously) and the
observation we will be making soon that the composite of
continuous functions is continuous.
The other functions arise from basic algebraic operations on
sin x and cos x , which are also covered by general
observations later.
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Characterizations of Continuity

There are many different ways to express the notion:

Theorem
Let f : A→ R, and let c ∈ A be a limit point of A. The function f
is continuous at c if and only if any of the following conditions is
met:

1 [Basic] For all ε > 0, there exists a δ > 0 such that
|x − c| < δ (and x ∈ A) implies |f(x)− f(c)| < ε;

2 [Shorthand] limx→c f(x) = f(c);
3 [Topological] For all Vε(f(c)), there exists Vδ(c) with the

property that x ∈ Vδ(c) (and x ∈ A) implies f(x) ∈ Vε(f(c));
4 [Sequential] If (xn)→ c (with xn ∈ A), then f(xn)→ f(c).
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Algebra of Continuous Functions

The following assembles some tools to build continuous
functions:

Theorem
Assume f : A→ R and g : A→ R are continuous functions at a
point c ∈ A. Then,

1 k f(x) is continuous at c for all k ∈ R;
2 f(x) + g(x) is continuous at c;
3 f(x)g(x) is continuous at c;
4 f(x)/g(x) is continuous at c, provided the quotient is

defined.
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A refinement of Part (iv)

The assertion that f(x)/g(x) is continuous at c does not require
that f(x)/g(x) be always defined, but only that g(c) 6= 0. This
follows from the following:

Lemma
If g(x) is a continuous function at c and g(c) 6= 0 then there are
δ > 0 and α > 0 such that |g(x)| ≥ α for x ∈ Vδ(c).

Proof. Choose ε = α = |g(c)|
2 > 0. By hypothesis, there is δ > 0

such that for |x − c| < δ, x ∈ A, we have |g(x)− g(c)| < α.
Thus

|g(x)| ≥ |g(c)| − |g(x)− g(c)| ≥ |g(c)| − α = α.
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Polynomials

The fact that constant functions and f(x) = x are continuous
this leads immediately to: polynomials

f(x) = anxn + · · ·+ a0,

are continuous functions (everywhere). For example,

4x3 + 5x = [4][x ][x ][x ] + [5][x ]

Similar argument applies to rational functions

f(x) =
anxn + · · ·+ a0

bmxm + · · ·+ b0
,

are continuous at all c which are not roots of the denominator.
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x sin(1/x)

g(x) =

{
x sin(1/x) if x 6= 0
0 if x = 0.

Let us examine the continuity at x = 0.

|g(x)− g(0)| = |x sin(1/x)− 0| ≤ |x |

Given ε > 0, set δ = ε so that |x − 0| = |x | < δ implies
|g(x)− g(0)| < ε
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√
x

Let f(x) =
√

x defined on A = {x ∈ R | x ≥ 0}.
1 If c = 0, |

√
x −
√

0| = |
√

x | < ε if x < ε2, so choose δ = ε2.
2 For c > 0,

|
√

x−
√

c| = |
√

x−
√

c|
(
|
√

x +
√

c|
|
√

x +
√

c|

)
=
|x − c|
|
√

x +
√

c|
≤ |x − c|√

c

Let δ = ε
√

c. Then |x − c| < δ implies

|
√

x −
√

c| < ε
√

c√
c

= ε
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Composition of Continuous Functions

Theorem
Given f : A→ R and g : B → R, assume that f(A) ⊂ B, so that
the composition g ◦ f is defined. If f is continuous at c ∈ A, and
g is continuous at f(c) ∈ B, then g ◦ f is continuous at c.

Proof. From the continuity of g at the point f(c) ∈ B, given
ε > 0 there is a α > 0 neighorhood such that

g : Vα(f(c))→ Vε(g(f(c))).

From the continuity of f at the point c ∈ A, for α > 0 there is a
δ > 0 neighorhood such that

Vδ(c)
f→ Vα(f(c))

g→ Vε(g(f(c))).
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Examples

The function f(x) =
√

sin x , 0 ≤ x ≤ π, is continuous: To show
this from the Definition would be irritating, but observe that f(x)
is the composite of sine followed by the square root,

x → sin x →
√

sin x

both of which we have proved are continuous.
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Continuous Functions and Topology

Let f : A→ R be a continuous function on all points of A. We
are going to cast this entirely in topological terms.
Recall that an open set O of R is a set such that for any a ∈ O
there is a neighborhood Vε(a) ⊂ O. This implies that

O =
⋃

(b,d),

for all open intervals contained in O. Note that (b,d) = Vε(c),
where c is the center of (b,d) and ε is 1/2|b − d |

We can also consider neighborhoods made up of points of A:
Vε(a) ∩ A, and corresponding open sets (this is called the
induced topology of A).
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Theorem
The function f : A→ R is continuous iff for every open set
O ⊂ R the set

f−1(O) = {x ∈ A | f(x) ∈ O}

is open.

Proof. If O is open, O is a union of neighborhoods,
O =

⋃
(b,d), and f−1(O) =

⋃
f−1((b,d)). If f is continuous,

every f−1(b,d) contains a neighborhood because of the
property

|x − c| < δ ⇒ |f(x)− f(c)| < ε.

We leave the remaining details as a stretching exercise.
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Workshop #5

A: Prove that the function f(x) = 3
√

x is continuous at each
c ∈ R. You can assume, for simplicity, that c = 2 and ε = 1/100.

B: Decide whether the following statements are true or false.
Provide counterexamples to those that are false, and supply
proofs for those that are true.

1 If a set has an isolated point, it cannot be open.
2 A set A is closed if and only if A = A.
3 If A is a bounded set, then s = sup A is a limit point of A.
4 Every finite set is closed.
5 R and ∅ are the only sets that are BOTH open and closed.
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Decide whether the following statements are true or false.
Provide counterexamples to those that are false, and supply
proofs for those that are true.

1 An arbitrary intersection of compact sets is compact.
2 Let A ⊂ R be arbitrary, and let K ⊂ R be compact. Then

the intersection A ∩ K is compact.
3 If F1 ⊇ F2 ⊇ F3 ⊇ · · · is a nested sequence of nonempty

closed sets, then ∩Fn 6= ∅.
4 A finite set is always compact.
5 A countable set is always compact.
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Let C be the Cantor set. Define

f(x) =

{
1 if x ∈ C
0 if x /∈ C.

Show that f is NOT continuous at any x ∈ C, but f is continuous
at any x /∈ C.
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Compact Sets

Definition
A set K ⊂ R is compact if every sequence in K has a
subsequence that converges to a limit that is also in K .

Example: A closed interval [a,b]. The Bolzano-Weirstrass
theorem guarantees that any sequence (an) ⊂ [a,b] admits a
convergent subsequence. Because [a,b] is closed, the limit of
this subsequence is also in [a,b]
This is the fundamental example of a compact subset of R, and
the Bolzano-Weierstrass theorem is the key result. It helps if
when you read compact, these facts jump to the mind.
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Characterizing Compact Sets

Definition
A set K ⊂ R is bounded if there exists M > 0 such that |x | < M
for all x ∈ K .

Theorem (Heine-Borel Theorem)
A set K ⊂ R is compact if and only if it closed and bounded.

Proof. Let K be compact. We first claim K is bounded.
Otherwise, for each n there is xn ∈ K such that |xn| > n. Since
K is compact:

1 (xn) has a convergent subsequence (xnk ).
2 But convergent sequences are bounded, while |xnk | > nk ,

a contradiction as nk →∞.
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Proof cont’d

Next we show that K is closed. Let x = lim xn be a limit point of
K , that is xn ∈ K . We must show x ∈ K . From the compactness
assumption, (xn) admits a convergent subsequence (xnk )
converging to a point y ∈ K . Since (xn) is convergent, all of its
subsequences have the same limit, so x = y as desired.
The converse is left as an exercise.
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The following is a super version of the nested intervals
property:

Theorem
If K1 ⊇ K2 ⊇ K3 ⊇ · · · is a nested sequence of nonempty
compact sets, then the intersection

⋂∞
n=1 Kn is nonempty.

Proof. The strategy is simple: We pick an element xn ∈ Kn (Kn
is nonempty) and consider the sequence (xn). Since xn ∈ K1,
and K1 is compact, it admits a convergent subsequence
(xnk )→ x ∈ K1.
We claim that x ∈ Kn for every n. Given n0, the terms in (xn)
are contained in Kn0 as long as n ≥ n0. This means that the
terms of the subsequence (xnk ) are also in Kn0 for almost all of
them. This implies that its limit lies in Kn0 , as desired. �
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Topological Properties of Continuous Functions

We know what is a continuous fuction f : A→ R, and
understand its various formulations
(ε, δ)-definition and the topological formulation [involves
open sets]
Sequential formulation: If xn → c, then f(xn)→ f(c)

Let f : A→ R be a continuous function. Want to know about:
Let K be a closed, resp. open, compact set.
Is f(K ) closed, resp. open, compact set?

Studying these will lead to: Extreme Value Theorem,
Intermediate Value Theorem, and a bunch of other great stuff.
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Preservation of Compact Sets

Theorem
Let f : A→ R be continuous on A. If K ⊂ A is compact, then
f(K ) is compact as well.

Proof. Recall that a set K is compact if it is both bounded and
closed–e.g. a set like

K =
n⋃

i=1

[ai ,bi ].

It was proved that a set K ⊂ R is compact if every sequence
(xn) in K has a subsequence that converges to a limit that is
also in K

(xnk )→ x ∈ K

Let us use this criterion.
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Proof

1 Let (yn) be a sequence in f(K ). To prove the assertion we
must find a subsequence (ynk ), which converges to a limit
also in f(K ).

2 For each yn, choose xn ∈ K so that yn = f(xn). This gives a
sequence (xn) in K

3 Since K is compact, there is a subsequence (xnk )
converging to a limit x ∈ K .

4 Since f is continuous, (xnk )→ x implies
(ynk ) = (f(xnk ))→ f(x), as desired. �
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EVT

Theorem (Extreme Value Theorem)
If f : K → R is continuous on a compact set K ⊂ R, then f
attains a maximum and minimum value. In other words, there
exist x0, x1 ∈ K such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ K .

The function defined by

f(x) = 1/x , A = (0,1)

is continuous, but has no extreme value. Why? The domain A
is not compact.
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Proof of the Extreme Value Theorem

1 Hypothesis: K compact: (that is closed and bounded)
2 f(K ) is also compact by a previous theorem
3 Let L be greatest lower bound of f(K ) and let U be the

least upper bound of f(K ). Let us show that there is x1 ∈ K
such that f(x1) = U (similarly for L)

4 There is a sequence in f(K ), (yn)→ U. Pick xn ∈ K with
f(xn) = yn. Since K is compact, there is a convergent
subsequence (xnk )→ x1, with x1 ∈ K since the set is
closed.

5 lim xnk = x1 implies lim f(xnk ) = f(x1), that is
lim yn = U = f(x1)
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Uniform Continuity

In the definition of continuous function f : A→ R at the point
c ∈ A we have
Given ε > 0 there exists δ > 0 such that

x ∈ Vδ(c)⇒ f(x) ∈ Vε(f(c))

ACHTUNG: δ may depend on c. If we go to another point c′,
we may have to use a different δ′. An important issue is when
we can use the same value of δ at all points.

Examples: 2x + 1 and x2: In the first, δ = ε/2 will work for all c.
The same will not hold for x2. Soon we will work out examples
in detail.
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Limit of Sequences/Series of Functions

Let fn(x) : A→ R be a series of functions. For each x , we have
two important mathematical objects, the sequence (fn(x)) and
the series

∑
fn(x).

Suppose (fn(x))→ L: If we change x , we may have a different
limit, that is the limit may define a function L(x).
It is clear that the study of L(x) is not going to be easy:Why
(discuss)
Recall

lim fn(x) = L if∀ε > 0 there is N such that |L− fn(x)| < ε

for n ≥ N
The difficulty is that N may depend on x .
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Uniformly Continuous Function

Definition
A function f : A→ R is uniformly continuous on A if for every
ε > 0 there exists δ > 0 such that |x − y | < δ implies
|f(x)− f(y)| < ε.

1 In the definition of continuous at c, the |x − c| < δ implies
|f(x)− f(c)| < ε, will require δ depending on ε and c.

2 In the uniform version, one must get δ independent of c.
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Example: The function f(x) = 1/x2 is uniformly continuous on
the set [1,∞) but not on the set (0,1].

|f(x)− f(c)| =
∣∣∣∣(c − x)(c + x)

c2x2

∣∣∣∣ = |c − x |c + x
c2x2

c + x
c2x2 =

1
cx2 +

1
c2x
≤ 1 + 1 = 2

|f(x)− f(c)| ≤ 2|c − x |

δ = ε/2 will work on [1,∞)

Leaving other part of the problem as Exercise.
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There is a large number of functions

f : A→ R

that satisfy
|f(x)− f(y)| ≤ M|x − y |

for some fixed M > 0. This is called Lipschitz’s condition.
Such functions are obviously uniformly continuous: For ε > 0
pick δ = ε/M

|x−y | < δ = ε/M ⇒ |f(x)−f(y)| < M|x−y | ≤ Mδ = M ·ε/M = ε
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Cauchy Sequences and Continuous Functions

1 A sequence (xn) is called a Cauchy sequence if, for every
α > 0, there is an N ∈ N such that whenever m,n ≥ N it
follows that |xn − xm| < α.

2 If f is a continuous function and the xn lie in the domain of
f, the sequence (f(xn)) may fail to be Cauchy.

3 Consider: xn = 1/(nπ + π/2) is a Cauchy sequence, but
f(xn) = sin(1/xn) is not: |f(xn)− f(xn+1)| = 2.

4 However, if f is uniformly continuous, from the condition

|x − y | < δ ⇒ |f(x)− f(y)| < ε

we get
|xn − xm| < δ ⇒ |f(xn)− f(ym)| < ε
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Contractions

Definition
A function f : A→ R is a contraction if

|f(x)− f(y)| ≤ c|x − y | < |x − y |,

for some fixed c, 0 < c < 1.

These functions have remarkable properties. Suppose f
actually has range ⊂ A so that we can iterate it: f(x), f2(x), . . .
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Contractions and Fixed Points

Definition
If f : A→ A, a fixed point of f is an x0 ∈ A such that f(x0) = x0.

If f is a contraction

|f(x)− f(y)| < |x − y |,

obviously it cannot have TWO fixed points.
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Theorem
If A is closed and if f : A→ A is a contraction, for any x ∈ A the
sequence of iterates (fn(x)) converges to a (unique!) fixed point
of f.

Proof. We first claim that (fn(x)) is a Cauchy sequence. For
any n > 1

|fn(x)− fn−1(x)| < c|fn−1(x)− fn−2(x)|

by the contraction condition.
Now look at the magic: For n > m
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|fn(x)− fm(x)| = |(fn(x)− fn−1(x)) + (fn−1(x)− fn−2(x))

+ · · ·+ (fm+1(x)− fm(x))|
≤ |fn(x)− fn−1(x)|+ |fn−1(x)− fn−2(x)|
+ · · ·+ |fm+1(x)− fm(x)|
≤ cn−1|f(x)− x |+ cn−2|f(x)− x |
+ · · ·+ cm|f(x)− x |
≤ (cn−1 + cn−2 + · · ·+ cm)|f(x)− x |

≤
(

cm

1− c

)
|f(x)− x |

Since lim cm = 0, we can make the RHS < ε arbitrary for
m ≥ N.
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We are now in position to prove the theorem:
1 The sequence (xn = fn(x)) is Cauchy, by the argument

above. Say of limit x0 ∈ A (A is closed)
2 If we apply f we get

lim f(xn) = f(x0).

3 But (fn+1(x)) is a subsequence of (xn = fn(x)) with the
same limit, so

x0 = f(x0)
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Sequential Criterion for Nonuniform Continuity

Theorem
A function f : A→ R fails to be uniformly continuous on A if and
only if there exists a particular ε0 > 0 and two sequences (xn)
and (yn) in A satisfying

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.

Proof. Suppose there exists an ε for which for no value of δ
|x − y | < δ implies |f(x)− f(y)| < ε. Pick δn = 1/n and choose
xn, yn so that

|xn − yn| < 1/n but |f(xn)− f(yn)| > ε.

This defines the required sequences. The converse is clear. �
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Example

f(x) = sin(1/x), x ∈ (0,1)

is continuous on (0,1). However, near x = 0 it swings very
rapidly between −1 and 1.
For example, consider the two sequences xn = 1/(2nπ + π/2)
and yn = 1/(2nπ − π/2), both converging to 0, but

|f(xn)− f(yn)| = |1− (−1)| = 2
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Theorem
A function that is continuous on a compact set K is uniformly
continuous on K .

Proof. Assume f : K → R is continuous on the compact set K .
We argue by contradiction.
By the criterion of nonuniform continuity, there exists ε > 0 and
two sequences (xn) and (yn) such that

lim |xn − yn| = 0 but |f(xn)− f(yn)| > ε.

Because K is compact, the sequence (xn) contains a
convergent subsequence (xnk ) with x = lim xnk also in K .
Let (ynk ) be the corresponding subsequence of (yn) and
observe



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

1 By the Algebraic Limit Theorem

lim ynk = lim(ynk − xnk ) + lim xnk = x

2 Thus both (xnk ) and (ynk ) have the same limit, so by the
Sequential Criterion of Continuity

lim f(xnk ) = lim f(ynk ),

which contradicts

|f(xnk )− f(ynk )| > ε
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Example

1 f(x) = x3: continuous (polynomials are put together from
the identity function I(x) = x and the Algebraic Continuity
Theorem)

2 It is not uniformly continuous: The sequences xn = n + 1/n
and yn = n have the properties

|xn − yn| → 0 but |xn
3 − yn

3|

= |(n + 1/n)3 − n3| = 3n + 3/n + 1/n3 →∞

3 It is uniformly continuous on any bounded set A: A is a
subset of an interval [a,b]. Since [a,b] is compact, x3 is
uniformly continuous on it and therefore on any of its
subsets.
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Properties of Continuous Functions

Let f : A→ R be a continuous function.

1 If A is compact, then f(A) is compact.
2 (Extreme Value Theorem) If A is compact f attains a

maximum and minimum value. In other words, there exist
x0, x1 ∈ A such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ A.

3 If A = [a,b], then f is uniformly continuous, that is, given
ε > 0 there is δ > 0 such that

|x − y | < δ ⇒ |f(x)− f(y)| < ε

for all x , y ∈ [a,b].
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The Intermediate Value Theorem

Theorem (IVT)
If f : [a,b]→ R is continuous, and if L is any real number
satisfying f(a) < L < f(b) or f(a) > L > f(b), then there exists a
point c ∈ (a,b) where f(c) = L. In particular, if f(a) < 0 and
f(b) > 0, there exists a point c ∈ (a,b) such that f(c) = 0.

This is due to Bolzano. Before we give a proof, let us explore
some of its non-traditional uses. We need two volunteers!
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Bisections of Regions

We are going to discuss the following problems:

Given a plane region R, prove that there is a line L
bisecting it, that is, cutting R into two regions of equal
areas.
Given 2 plane regions R1 and R1, prove that there is a
line L simultaneously cutting R1 and R2 into two regions of
equal areas.
Given a plane region R, prove that there are two
perpendicular lines L1 and L2 cutting R into four regions of
equal areas.
What else can we expect?
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Before we prove this theorem, let us highlight an elementary
property of continuous functions.

Lemma
Let f : [a,b]→ R be a continuous function and c ∈ [a,b] be a
point such that f(c) 6= 0. Then there is a subinterval containing
c throughout which f(x) has the same sign as f(c).

Proof. Suppose f(c) > 0. The theorem asserts that we can find
δ > 0 such that if |c − x | < δ then f(x) > 0. Let ε = f(c). Since f
is continuous, there is δ > 0 such that if |c − x | < δ then

|f(x)− f(c)| < |f(c)|

Obviously this forces f(x) > 0. The case of f(c) < 0 is similar.
(Or simply consider the continuous function −f(x).)
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Here is a simple application:

Corollary
If f : [a,b]→ R, a < b, is continuous and f(x) = 2 for all rational
numbers (in [a,b]) then f(x) = 2 for all x ∈ [a,b].

Proof. Consider f(x)− 2...
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Proof of IVT

1 Assume that f(a) < 0 < f(b). Let us construct c ∈ (a,b)
such that f(c) = 0. We will use the AoC property of R.

2 Define the following set

K = {x ∈ [a,b] | f(x) < 0}

a ∈ K and b bounds all the points of K . By AoC, K has a
least upper bound c ∈ [a,b].

3 We have the possibilities: f(c) < 0, f(c) > 0 or f(c) = 0:
Let us exclude the first two possibilities.



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

Suppose f(c) < 0 This means that c ∈ K . Since f is continuous
at c, by the lemma, there exists a neighborhood of c where f(x)
is negative. But then all of these points would be in K and
some of them are larger than c: This means that c is not the
least upper bound of K .
A similar argument works if f(c) > 0: Now there would be an
entire neighborhood of c made up of upper bounds of K , so c is
not the least upper bound.
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Another Proof of IVT

We consider the special case L = 0 and f(a) < 0 < f(b).
Why can we just consider this case? Let I0 = [a,b], and
consider its midpoint

z =
(a + b)

2
.

If f(z) = 0, we are done.If f(z) > 0, then set a1 = a and
b1 = z. If f(z) < 0, then set a1 = z and b1 = b, so the
interval I1 = [a1,b1] has the property that f changes signs
at its endpoints. This defines a nested sequence of
intervals whose intersection is a unique point c ∈ (a,b).
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If f(c) = 0, done. We have not used the assumption that f
is continuous, we do so now. Suppose f(c) = 2ε > 0.
Since f is continuous at c, for this ε there exists δ > 0 such
that for |x − c| < δ

|f(x)− f(c)| < ε.

By the triangle inequality, we have f(x) > ε for all
x ∈ Vδ(c). But in the construction of the nested sequence
of intervals, the nth interval will have length (b−a)/2n, so it
will be contained in the (c − δ, c + δ) for large n. But this is
a contradiction, since f(x) changes signs on the interval. �
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Warmups

1 Explain why
x2 + 1
x + 2

+
x4 + 1
x − 3

= 0

has at least one root between −2 and 3.

Look for an interval where function is continuous and
changes sign

2 Let
f(x) = anxn + an−1xn−1 + · · ·+ a0

be a real polynomial of odd degree. Prove that f(x) has a
real root.

Look for an interval where function is continuous and
changes sign
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Workshop #6

Need:

1 Continuity: Basic formulation

2 Continuity: Topological formulation

3 Uniform continuity

4 EVT: Extremum Value Theoorem



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

Workshop #6

1 Show that if f(x) is continuous on [a,b] with f(x) > 0 for all
x ∈ [a,b] then 1/f is bounded on [a,b].

2 Show that f(x) =
√

x is uniformly continuous on [0,∞)

3 Build a continuous function f : A→ R, with A an open set,
such that f(A) is not open. Do the similar question, but with
the change ‘open’→ ‘closed’.

4 Given that f : R→ R is continuous at x = 0, and that for all
x and y , f(x + y) = f(x) + f(y), show that f is continuous
for all values of x . (For fun, prove that f(x) = ax , for some
constant a.)
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The derivative of a function

Let f : A→ R be a function. The following is one of the two
most important instances of the notion of limit:

Definition
The derivative of f at c ∈ A is the limit (if it exists)

lim
x→c

f(x)− f(c)

x − c
.

This value is denoted f′(c).

The function f(x)−f(c)
x−c is the slope of the secant at the graph of

f(x), so its limit is naturally the slope of the tangent of the graph
at x = c. If the limit exists, we say that f is differentiable at
x = c.



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

Example

g(x) =

{
x sin(1/x) if x 6= 0
0 if x = 0.

g′(0) = lim
x→0

x sin(1/x)− 0
x − 0

= lim
x→0

sin(1/x)

does not exist.

If g2(x) = xg(x),

g′2(0) = lim
x2→0

x2 sin(1/x)− 0
x − 0

= lim
x→0

x sin(1/x) = 0
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Derivative and Continuity

Theorem
If f : A→ R is differentiable at c ∈ A, then f is continuous at c.

Proof. We are assuming that

f′(c) = lim
x→c

f(x)− f(c)

x − c

exists, and we claim limx→c f(x) = f(c). It suffices to apply the
Algebraic Limit Theorem

lim
x→c

(f(x)− f(c)) = lim
x→c

(
f(x)− f(c)

x − c

)
(x − c) = f′(c) · 0 = 0.

It follows limx→c f(x) = f(c). �
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1 f(x) differentiable⇒ f(x) continuous: theorem above
2 f(x) continuous 6⇒ f(x) differentiable: f(x) = |x |
3 f(x) differentiable 6⇒ f′(x) continuous: f(x) = x sin(1/x)

4 f(x) differentiable means really what?
5 What are the properties of a derivative? In other words, if

g = f′ for some f, what can we say about g?
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Combinations

Theorem
Let f and g be functions defined on an interval A, and assume
both are differentiable at a point c ∈ A. Then,

1 (f + g)′(c) = f′(c) + g′(c),
2 (k f)′(c) = k f′(c), for all k ∈ R,
3 (fg)′(c) = f′(c)g(c) + f(c)g′(c), and
4 (f/g)′(c) = g(c)f′(c)−f(c)g′(c)

[g(c)]2
, provided g(c) 6= 0.

The first two rules are easy to prove, and we only deal with rule
3, known as Leibnitz’s rule (rule 4 follows from it).
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(fg)(x)− (fg)(c)

x − c
=

f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x − c

= f(x)

[
g(x)− g(c)

x − c

]
+ g(c)

[
f(x)− f(c)

x − c

]
Since f(x) is differentiable at c, limx→c f(x) = f(c), so

lim
x→c

(fg)(x)− (fg)(c)

x − c
= f(c)g′(c) + f′(c)g(c).
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The quotient rule can be obtained by applying the product rule
to

f′(c) = (g(f/g))′(c) = g′(c)(f/g)(c) + g(c)(f/g)′(c)

and therefore

(f/g)′(c) =
f′(c)− g′(c)(f/g)(c)

g(c)

=
f′(c)g(c)− g′(c)f(c)

[g(c)]2
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Derivative of Composite Functions

Theorem (Chain Rule)
Let f : A→ R and g : B → R satisfy f(A) ⊂ B so that the
composition g ◦ f is well-defined. If f is differentiable at c ∈ A
and if g is differentiable at f(c) ∈ B, then g ◦ f is differentiable at
c with (g ◦ f)′(c) = g′(f(c))f′(c).

Proof. Since g is differentiable at f(c),

g′(f(c)) = lim
y→f(c)

g(y)− g(f(c))

y − f(c)
,

which we recast as a function of y [not defined at y = f(c)]

d(y) =
g(y)− g(f(c))

y − f(c)
− g′(f(c))f′(c)

which has the property limy→f(c) d(y) = 0.
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If we declare d(f(c)) = 0, the extension d(y) becomes a
continuous function at f(c). We rewrite the equation defining
d(y) in form of an identity

g(y)− g(f(c)) = [g′(f(c))− d(y)](y − f(c)).

Now we replace y by f(t) for t ∈ A (it is legitimate). If t 6= c, we
can divide this equation by t − c to get

g(f(t))− g(f(c))

t − c
= [g′(f(c))− d(f(t))]

f(t)− f(c)

t − c
,

for all t 6= c. Now apply the Algebraic Limit Theorem, taking into
account that limt→c d(f(t)) = 0.
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Interior Extremum Theorem

Theorem
Let f be differentiable on an open interval (a,b). If f attains a
maximum value at some point c ∈ (a,b) (i.e. f(c) ≥ f(x) for all
x ∈ (a,b)), then f′(c) = 0. The same is true if f(c) is a minimum
value.

This is the anchor of most methods to find max and min of
functions. It is due to Fermat.
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Proof. Consider the case of a maximum. Because c is an
interior point of (a,b), we can find two sequences (xn), (yn),
satisfying xn < c < yn

xn → c ← yn.

That is, (xn) converges to c from the left, the other sequence
from the rigtht. By the Order Limit Theorem, since f(xn) ≤ f(c)
and xn < c

f ′(c) = lim
xn→c

f(c)− f(xn)

c − xn
≥ 0

Similarly, since f(yn) ≤ f(c) and yn > c

f ′(c) = lim
yn→c

f(c)− f(yn)

c − yn
≤ 0

It follows f′(c) = 0. �
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Darboux Theorem: IVT for derivatives

The Intermediate Value Theorem asserts that if f(x) is
continuous on [a,b], then it assumes all values between f(a)
and f(b): If

f(a) < α < f(b)

there is
a < c < b, f(c) = α

There are other functions with this property, noteworthy those
which are derivatives (which may be not continuous):

Theorem
If f is differentiable on the interval [a,b], and α satisfies
f′(a) < α < f′(b) (or f′(a) > α > f′(b)), then there is c ∈ (a,b)
where f′(c) = α.

That is, any f′ on [a,b] satisfies the [IVT].
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Proof. Let
g(x) = f(x)− αx

This is a continuous function on [a,b], and therefore attains its
infimum at some c ∈ [a,b].
We claim that c ∈ (a,b), that is, it is an interior point, so that we
may be able to apply the IVT (Interior Extremum Theorem)
that asserts: There is c ∈ (a,b) such that

0 = g′(c) = f′(c)− α
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1 g′(a) = f′(a)− α < 0 and g′(b) = f′(b)− α > 0
2 We claim that there is x ∈ (a,b) such that g(a) > g(x): If

not
g′(a) = lim

x→a

g(a)− g(x)

a− x
≥ 0.

3 Similarly there is y ∈ (a,b) such that g(b) > g(y)

4 These two observations prove that neither g(a) nor g(b) is
the minimum of g(x).

5 Thus c ∈ (a,b), that is g′(c) = 0, which means

f′(c) = α.
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Last Time & Today

• The Derivative: continuity, chain rule

• IET: Interior Extremum Theorem–the heart of max/min
problems

• Darboux Theorem: IVT for derivatives

� MVT: Mean Value Theorem
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Mean Value Theorem

Let f be a differentiable function on the interval [a,b]. Probably
the most useful assertion of the differential calculus is the
relationship between the value of the slope of the secant to the
graph of f(x),

f(b)− f(a)

b − a
,

and values of the derivative. Even the so-called Fundamental
Theorem of Calculus will be seen as one of its consequences.
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Quantum Derivative

One issues that arises in the application of derivatives to
Physics is the following: Suppose f(x) is a function of the
variable x which is either length or time.In the definition

f′(x) = lim
h→0

f(x + h)− f(x)

h
,

if h is length (or time), there is a minimal value below which it is
not ‘relevant’ (? measurable), so the limit makes no sense!
One could take h = Planck’s length, and define the h-derivative
of f(x) as

Dhf(x) =
f(x + h)− f(x)

h
,
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Rolle’s Theorem

Theorem
Let f : [a,b]→ R be a continuous function on [a,b] and
differentiable on (a,b). If f(a) = f(b), then there exists a point
c ∈ (a,b) where f′(c) = 0.

Proof. Since f is continuous on a compact set, it attains a
maximum and a minimum. If both are reached at the endpoints,
f(x) must be constant, and f′(x) = 0 on (a,b). On the other
hand, if a minimum or a maximum occur at an interior point c,
we would have f′(c) = 0 by the IET. �
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Mean Value Theorem

Theorem
Let f : [a,b]→ R be a continuous function on [a,b] and
differentiable on (a,b). If f(a) 6= f(b), then there exists a point
c ∈ (a,b)

f′(c) =
f(b)− f(a)

b − a
.

Proof. We reduce the proof to Rolle’s Theorem: Let g(x) be the
equation of the line through the endpoints of the graph of f(x):

g(x) = f(a) +
f(b)− f(a)

b − a
(x − a).

Consider
d(x) = f(x)− g(x).

Observe that
d(a) = d(b) = 0
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Note
d ′(x) = f′(x)− f(b)− f(a)

b − a
and by Rolle’s theorem d ′(c) = 0 for some c ∈ (a,b),

f′(c) =
f(b)− f(a)

b − a
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Workshop #7

Need:

IVT: Intermediate Value Theorem

Rolle: Special case of MVT

MVT: Mean Value Theorem

Darboux: IVT for derivatives
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Workshop #7

Let h be a differentiable function on the interval [0,3], an
assume h(0) = 1, h(1) = 2, and h(3) = 2.

1 Argue that there is a point d ∈ [0,3] where h(d) = d .
Apply IVT to the continuous function f(x) = h(x)− x :
f(0) = 1− 0 = 1, f(3) = 2− 3 = −1.

2 Argue that there is a point c ∈ [0,3] where h′(c) = 1/3.
(h(3)− h(0))(3− 0) = (2− 1)/3: Apply MVT

3 Argue that h′(x) = 1/4 at some point in the domain.
Since h(1) = h(3) = 2, there must be d ∈ (2,3) such that
h′(d) = 0 by Rolle’s Theorem. Since
h′(d) = 0 < 1/4 < 1/3 = h′(c),by Darboux’s Theorem
there is x such that h′(x) = 1/4.
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Workshop #7, Cont’d

4: If h : [a,b]→ R is a continuous function, prove that
h([a,b]) = [c,d ]. Begin by describing c and d . If h′(x) 6= 0,
what are the possible values of c,d?

5: If h′ is not constant, then h′ must take some irrational values.
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Naive but useful fact

Theorem
Let f(x) be differentiable at any open interval (a,b), and
suppose that f′(x) = 0 at each such point. Then the value of
the function is constant in the interval.

Proof. We know that f(x) is continuous at each point in (a,b).
Consider any pair of distinct points x0 and x1 of (a,b). We are
going to prove that

f(x0) = f(x1).

Let us apply the MVT to the points:

f(x1)− f(x0) = f′(c)(x1 − x0) = 0,

since c ∈ (a,b).
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Exercise

Use the MVT to prove that

1
9
<
√

66− 8 <
1
8

Let us apply the MVT to the function f(x) =
√

x on the interval
[64,66]:

√
66−

√
64

66− 64
=

1
2
√

c

for c ∈ (64,66). But the function 1√
x is decreasing so

1√
81

<
1√
c
<

1√
64
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Exercise

Prove that f(x) = xn + ax + b = 0 (a,b ∈ R) has at most two
distinct real roots if n is even, and at most three if n is odd.

Between any pair of roots, f(x0) = f(x1), by the MVT,

0 = f(x1)− f(x0) = f′(c)(x1 − x0),

we must have a root for f′(x) = nxn−1 + a,

c = n−1

√
−a
n

But if n is even, there is at most one such c. If n is odd, n − 1 is
even and we shall have at most 2 such c.
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Uniform Continuity

We proved that if f : A→ R is continuous and A is compact,
then f is uniformly continuous. Let us prove a more precise
version of this result if A = [a,b] and f′(x) is continuous.
Let M be the maximum value of the the continuous function
|f′(x)| on the interval [a,b]. If x , y are any two points in the
interval, by the MVT

f(x)− f(y) = f′(c)(x − y)

for some c in [x , y ] ⊂ [a,b]. Taking absolute values, since
|f′(c)| ≤ M, we get

|f(x)− f(y)| ≤ M|x − y |,

that is, f(x) has Lipschitz’s condition and therefore is uniformly
continuous.
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Higher Degrees Mean Value Theorems

If f : [a,b]→ R is continuous and f′(x) exists in (a,b), the MVT
says that

f(b) = f(a) + (b − a)f′(c),

for some c ∈ (a,b).

Let us assume more: Suppose f′(x) is continuous on [a,b] and
f′′(x) exists in (a,b). We claim that

f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(c),

for some c ∈ (a,b).
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To prove this, consider the function

g(x) = f(b)−f(x)−(b−x)f′(x)−(b − x)2

(b − a)2 (f(b)−f(a)−(b−a)f′(a)).

Note that it vanishes for x = a and x = b. Since it is
differentiable, by Rolle’s Theorem

g′(c) = 0

for some c ∈ (a,b). Since

g′(x) = −(b − x)f′′(x)− 2(b − x)

(b − a)2 (f(b)− f(a)− (b − a)f′(a)),

we get the desired formula.
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An application of the formula is the second derivative test in
the theory of max/min. Apply the formula to two points, a,b, in
its domain where a is an interior extremum point:

f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(c), c ∈ (a,b).

Since f′(a) = 0, this gives

f(b) = f(a) +
(b − a)2

2
f′′(c)

and therefore

f(b) ≥ f(a), if f′′(c) > 0
f(b) ≤ f(a), if f′′(c) < 0

If f′′ is continuous at a, f′′(c) has the same sign as f′′(a) for c
near a.
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Second derivative test for max/min

Test: If f(x) is a function with an extremum interior point at
x = a and f′′(x) is continuous at this point, then:

If f′′(a) < 0, x = a is a local maximum of f(x) ;
If f′′(a) > 0, x = a is a local minimum of f(x) ;
If f′′(a) = 0, no conclusion.

Question: Are with stuck in the third possibility? Not realy, we
need more information from the MVT. Let us get it.
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There are versions of the MVT in all degrees:

f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(a)

+ · · ·+ (b − a)n

n!
f(n)(a) +

(b − a)n+1

(n + 1)!
f(n+1)(c),

for some c ∈ (a,b).
The proof is analogous to the degree 2 case.
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Third derivative test for max/min

Let us use the degree 3 of this formula to study the case of
extremum point x = a, when f′(a) = f′′(a) = 0:

f(b) = f(a) + (b − a)f′(a) +
(b − a)2

2
f′′(a) +

(b − a)3

3!
f(3)(c)

f(b) = f(a) +
(b − a)3

3!
f(3)(c)

Note now that the factor (b − a)3 changes sign, depending on
the side of a that b lies. This means that if f(3)(c) 6= 0, then f(b)
is larger that f(a) on one side and smaller on the other: x = a is
an inflection point.
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If f(3)(a) = 0, we go to the next formula of the MVT and develop
a fourth derivative test for max/min. And so on ...
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Generalized Mean Value Theorem

Theorem
Let f,g : [a,b]→ R are continuous functions on [a,b] and
differentiable on (a,b). If f(a) 6= f(b), then there exists a point
c ∈ (a,b) where

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f′(c).

If g′ is never zero on (a,b), the assertion can be stated as

f′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Proof. It is enough to apply the MVT to the function

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x)
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h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x)

h(a) = [f(b)− f(a)]g(a)− [g(b)− g(a)]f(a) = f(b)g(a)− f(a)g(b)

h(b) = [f(b)− f(a)]g(b)− [g(b)− g(a)]f(b) = f(b)g(a)− f(a)g(b)

h(a) = h(b)

Hence by the Mean Value Theorem there is c ∈ [a,b]

h′(c) = [f(b)− f(a)]g′(c)− [g(b)− g(a)]f′(c) = 0
f′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
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Improper limits

1 What is limx→0
sin 2x
sin x ? If we remember the double angle

formula sin 2x = 2 sin x cos x , the answer is easy

sin 2x
sin x

=
2 sin x cos x

sin x
= 2 cos x → 2

as x → 0. Another way?
2 How about limx→0 x ln x? The answer is going to be 0.

Why?
3 How about

lim
x→∞

ex

P(x)
, P(x) some nonzero polynomial

Different animal.
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L’Hospital Rule: 0/0

Theorem
Assume f and g are continuous functions defined on an interval
containing a, and assume that f and g are differentiable on this
interval, with the possible exception of the point a. If f(a) = 0
and g(a) = 0, then

lim
x→a

f′(x)

g′(x)
= L ⇒ lim

x→a

f(x)

g(x)
= L.

Proof. By the Generalized MVT, for x 6= a in the interval,

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f′(c)

g′(c)

for some c ∈ (a, x).
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If (xn) is a sequence in the interval converging to a, the
corresponding sequence (cn) will converge to a as well.
We then have

lim
xn→a

f(xn)

g(xn)
= lim

cn→a

f′(cn)

g′(cn)
= L.

Example:

lim
x→0

x2 sin(1/x)

sin x
= lim

x→0

x sin(1/x)

sin x/x
= 0/1 = 0,

since
lim
x→0

sin x
x

= lim
x→0

cos x
1

= 1.

Comment: Circular argument!
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Examples

1 What is limx→0
sin 2x
sin x ?

lim
x→0

sin 2x
sin x

= lim
x→0

2 cos 2x
cos x

=
2
1

= 2.

2 How about limx→1
ln x

log x ?

lim
x→1

ln x
log x

= lim
x→1

1/x
1/(x ln 10)

= ln 10,

since log x = ln x
ln 10 . (So we would not need l’Hospital’s

here.)
3 How about

lim
x→∞

ex

P(x)
, P(x) some nonzero polynomial

Need a different technique.
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L’Hospital Rule: ∞/∞

Theorem
Assume f and g are differentiable on (a,b), and that
limx→a g(x) =∞ (or −∞). Then

lim
x→a

f′(x)

g′(x)
= L ⇒ lim

x→a

f(x)

g(x)
= L.

The proof is very different in this case. To begin, one must
clarify the meaning of limx→a g(x) =∞:

Definition
Given g : A→ R and a limit point a of A, we say
limx→a g(x) =∞ if, for every M > 0, there exists a δ > 0 such
that whenever 0 < |x − a| < δ it follows that g(x) > M.
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Proof. Because limx→a
f′(x)
g′(x) = L, for any ε > 0 there is δ1 so

that

L− ε/2 < f′(x)

g′(x)
< L + ε/2

for all a < x < a + δ1 = t .
On the other hand, by Generalized MVT on [a, t ]

f(x)− f(t)
g(x)− g(t)

=
f′(c)

g′(c)

for c ∈ (a, t).

We must isolate f(x)/g(x) in first expression. To begin we
multiply it by (g(x)− g(t))/g(x). To preserve inequalities this
factor must be positive, which is assured as follows.
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Because limx→a g(x) =∞, there is a δ2 > 0 such that for
a < x < a + δ2 g(x) ≥ g(t).

(L− ε/2)

(
1− g(t)

g(x)

)
<

f(x)− f(t)
g(x)

< (L + ε/2)

(
1− g(t)

g(x)

)

Recall that t is fixed and we could here x → a, but to get a
more honest proof we clean out:
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L− ε/2 + A(x) <
f(x)

g(x)
< L + ε/2 + B(x)

where

A(x) =
−Lg(t) + ε/2g(t) + f(t)

g(x)

B(x) =
Lg(t)− ε/2g(t) + f(t)

g(x)

Since limx→a g(x) =∞, we can find δ3 > 0 so that both A(x)
and B(x) are less than ε/2 for a < x < a + δ3. Now we pick
δ = min{δ1, δ2, δ3} and get

L− ε < f(x)

g(x)
< L + ε,

for a < x < a + δ.
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Example

lim
x→π/2

(x − π/2) tan x

The function can be written in several ways as a quotient

(x − π/2) tan x =
tan x

1/(x − π/2)
=

sin x
cos x/(x − π/2)

Take your choice.
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Examples

Evaluate the limit limx→∞
(ln x)n

x : ∞∞ case

lim
x→∞

(ln x)n

x
= lim

x→∞

(n(ln x)n−1/x
x ′

= n lim
x→∞

(ln x)n−1

x
= 0

using induction on n will get the limit is 0.
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Example

Sometimes the function has the form f(x)− g(x) and both
become∞ as x approaches c. A good practice is to try to
convert the difference into a quotient:

lim
x→0

(
1
x
− 1

sin x
) = lim

x→0

sin x − x
x sin x

= lim
x→0

cos x − 1
x cos x + sin x

= lim
x→0

− sin x
x sin x + 2 cos x

=
0
2

= 0



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

Example

Sometimes the function has the form y = (f(x))g(x) and one or
the other approaches 0 or∞ as x approaches c. For instance,

f(x)→ 1 and g(x)→∞;
f(x)→∞ and g(x)→ 0;
f(x)→ 0 and g(x)→ 0;

The trick is usually to look for the limit of ln y

ln y = g(x) ln f(x) =
ln f(x)

1
g(x
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Consider limx→0 xx :

lim
x→0

ln xx = lim
x→0

x ln x = lim
x→0

ln x
1/x

= lim
x→0

1/x
−1/x2

= lim
x→0
−x = 0

This implies
lim
x→0

xx = 1
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Exercises

Show that if f is a function that is differentiable on an
interval with f′(x) 6= 1, then there exists at most one point
where f(c) = c.

Solution: If there are two such points (called fixed points)
x0, x1, MVT requires c ∈ [x0, x1]

f(x1)− f(x0)

x1 − x0
=

x1 − x0

x1 − x0
= f′(c) = 1

which is impossible since f′(c) 6= 1.
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Evaluate limx→∞
ex

x10 and limx→∞ x ln x+1
x−1 .
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Let f : [0,1]→ R be a continuous function. If f(0) 6= f(1),
prove that the image of f, f([0,1]), is uncountable.

Solution: By the Intermediate Value Theorem, any
number y ∈ [f(0), f(1)] is equal to some x ∈ [0,1]. Since
[f(0), f(1)] is a non-trivial interval, it is uncountable.
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Let f be a nontrivia real valued function (i.e. f is not the null
function) such that f(xy) = f(x) + f(y) for all x , y ∈ R+.
Prove the following properties of f: (i) If f is continuous at
c = 1, then it is continuous at all c ∈ R+. (ii) Describe all
possible f’s.
Solution: (i) Let c be a point of R+ = (0,∞). From
f(x · 1) = f(x) + f(1), we get f(1) = 0. We can write any
other point x as x = c · h. Note that x → c is equivalent to
h→ 1. We have

lim
x→c

f(x) = lim
h→1

f(ch) = f(c) + lim
h→1

f(h) = f(c),

since f is continuous at x = 1 and f(1) = 0.

By assumption, there is x0 with f(x0) 6= 0. Note that
because

f(1) = f(x0 ·
1
x0

) = f(x0) + f(
1
x0

),

either f(x0) or f(1/x0) is > 0.



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

We may assume f(x0) > 0 (otherwise use 1/x0). Since
f(xn

0 ) = nf(x0), f(x) is not bounded so its image contains, by the
IVT, the interval [0,∞].

Let a > 0 be such that f(a) = 1.

Claim: f(x) = loga x

1 Prove that f(ap/q) = p/q; for that check f(ap) = p and
qf(a1/q) = 1.

2 Argue that f(ax) = x for all x ∈ R+ by considering the
continuous function f(ax)− x , where the first is a
composite of ax and f(x).
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Inverse Function Theorem

If f : A→ R is a 1–1 function, one can define the inverse
function

f−1 : f(A)→ A ⊂ R
by the rule:

f−1(y) = x ⇔ f(x) = y .

Theorem
If f : A→ f(A) is continuous and 1–1 with A compact, then
f−1 : f(A)→ A is continuous.

Proof. Let (yn) be any sequence in f(A) converging to
y0 ∈ f(A). We will show that (f−1(yn)) converges to f−1(y0).
Write xn = f−1(yn) for convenience. Since A is compact, (xn) is
bounded and by Bolzano-Weierstrass admits convergent
subsequences. Consider a convergent subsequence (xnk ), of
limit, say, z0.
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Now z0 ∈ A since A is closed, and so f is continuous at z0.
Thus (f(xnk )) converges to f(z0). But (f(xnk )) = (ynk ) is a
subsequence of (yn), hence it converges to y0 = f(x0). Since f
is 1–1 and f(z0) = f(x0), z0 = x0.

This says that all convergent subsequences of (xn) have the
same limit, from which we get that (xn) has for limit x0, in other
words (f−1(yn)) converges to f−1(y0). Thus f−1 is continuous at
y0.
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Inverse Function Theorem

Theorem
Suppose f : [a,b]→ R is continuous and differentiable with
f′(x) 6= 0 for all x ∈ [a,b]. Then f is 1− 1, f−1 is continuous and
differentiable on f([a,b]) and

(f−1)′(f(x)) =
1

f′(x)

for all x ∈ [a,b].

Proof. Since f′(x) 6= 0, by the MVT f is 1–1: For any distinct
points x0, x1, recall the formula

f(x1)− f(x0) = f′(c)(x1 − x0), f′(c) 6= 0.



Introduction Functional Limits Continuous Functions Workshop #5 Compact Sets Properties of Continuous functions Uniform Continuity The Intermediate Value Theorem Warmups Workshop #6 The Derivative Mean Value Theorem Workshop #7 MVT: Applications Inverse Functions Workshop #8

Assume that f([a,b]) = [c,d ] (This is actually the case!).
Choose y0 ∈ [c,d ] and let (yn) be a sequence in [c,d ], yn 6= y0,
converging to y0. Let xn = f−1(yn); note that xn 6= x0 since f is
1–1.
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By the differentiability of f, the sequence of terms

f(xn)− f(x0)

xn − x0

converges to f′(x0). By hypothesis f′(x0) 6= 0. Since
f(xn)− f(x0) 6= 0, we can flip the limit and write

lim
f−1(yn)− f−1(y0)

yn − y0
=

1
f′(x0)

.

Thus f−1 is differentiable and

(f−1)′(f(x)) =
1

f′(x)
.
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Example

Let f(x) = tan x , x ∈ (−π/2, π/2). Using the definition,
tan x = sin x

cos x , a quick calculation gives (tan x)′ = sec2 x , a
function that is always ≥ 1. We can apply the theorem to find
the derivative of its inverse function,

f−1(x) = tan−1(x) :

Write g(x) = tan−1(x).

g′(x) =
1

f′(g(x))
=

1
sec2(g(x))

=
1

1 + tan2(g(x))

=
1

1 + (f(g(x)))2

=
1

1 + x2
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Workshop #8

For each statement below give a proof or provide a
counterexample.

1 If f′ exists on an open interval, then both f and f′ are
continuous on that interval.

2 If f′ exists on an open interval, and there is some point c
where f′(c) > 0, then there exists a δ-neighborhood Vδ(c)
around c in which f′(x) > 0 for all x ∈ Vδ(c).

3 If f is differentiable on an interval containing zero and
limx→0 f′(x) = L then it must be that L = f′(0).

4 Repeat (3) but drop the assumption that f′(0) necessarily
exists. If f′(x) exists for all x 6= 0 and limx→0 f′(x) = L, then
f′(0) exists and equals L. (Hint: Use the MVT)

5 If f and h are real continuous functions on [0,1], then
{x ∈ [0,1] : f(x) = h(x)} is a closed set.
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