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Real Functions

Our main aim is to study interesting functions of the kind

X→ f → Y

where X and Y are subsets of R.

If f is a function and the sequence

a1,a2,a3, . . . ,an, . . .

lies in the domain of f, then the sequence

f(a1), f(a2), f(a3), . . . , f(an), . . .

is contained in Y.

Wolmer Vasconcelos (Set 3) Advanced Calculus Spring 2010 3 / 33



Basic Topology of R

We want f to have the following property:
If (an) is convergent then (f(an)) convergent.

This requires us to examine some sets of subsets of R:
Open Sets
Closed Sets
Compact Sets
Connected Sets
Strange Sets

These subsets have properties that will explain why continuous
functions act as they do.
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Cantor Set
C0 • •

C1 • • • •

C2 • • • • • • • •
Rule: From each subinterval of Cn remove the inner third, to obtain
Cn+1

Cantor Set: C =
⋂

Cn≥0
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Building the Cantor set in detail

1 C0 = [0,1], C1 = C0 \ (1/3,2/3), that is C1 is obtained by
removing from the interval C0 its mid third (leaving the endpoints):

C1 = [0,1/3] ∪ [2/3,1]

2 Iterate by removing from each closed subinterval above its mid
third (and so on)

C2 = ([0,1/9] ∪ [2/9,1/3]) ∪ ([2/3,7/9] ∪ [8/9,1])

3 This leads to a nested sequence of sets
C0 ⊃ C1 ⊃ C2 ⊃ · · ·Cn ⊃ · · · .

4 C =
⋂

Cn≥0 is called the Cantor set.
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Building the Cantor set–cont’d

Note that C is obtained from [0,1] by repeatedly carving out the heart.
At least, the endpoints of the various subintervals belong to C. What
else?

1 We are going to argue C is very thin by adding the lengths of the
intervals that were removed:

1
3

+ 2
1
32 + 22 1

33 + · · · ,

a geometric series whose first term is 1/3 and whose ratio is 2/3,
so it has for sum

1/3
1− 2/3

= 1!

So from [0,1] we took away a subset of measure 1!
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Q is very thin

Exercise Given ε > 0, argue that any countable set A is contained in a
countable union

⋃
n≥1[an,bn], such that∑

n≥1

|bn − an| < ε.
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Cardinality of C

If C only contained the endpoints [all rational points] of the subintervals
of its construction, it would be countable. Let us show otherwise:

1 We are going to code the elements of C by infinite strings of {0,1}
as follows: If a ∈ C, we set a1 = 0 if a belongs to the leftmost
subinterval of C1, otherwise we set a1 = 1.

2 Once a1 is assigned, we consider the subinterval of C2 that
contains x , and apply the same rule. In this we get a unique
address for x as the string (a1,a2,a3, . . .).

3 Conversely, given any such string we build a nested sequence of
closed intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · : By NIP there is a point in the
intersection. Actually unique why?
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Thinness and Fractal Nature of C

1 We observed two contrasting things about C: (i) it is very thin,
since [0,1] \ C has length 1. (ii) it is uncountable. Can one
compare it in other ways to the unit interval U = [0,1]?

2 Observe that if we expand [0,1] by multiplying each number in it
by 3, we obtain the interval [0,3], that is we get 3 copies of U.
However, if we do the same operation on C, we only get 2 copies
of C! Care to visualize?
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Dimension of a Set

One way to define dimension of subset S of Rn is to compare S
with the set obtained by expanding all points in it by a scale, say 3.
For example, the dimension of [0,1] is 1, because we got
3U = [0,3], while the dimension of a unit square is 2 [9 new
squares], of the unit cube is 3 [27 new cubes].
In all of these examples, we say that the dimension is d if 3d is the
size relative of the new set obtained by scaling the set by 3:
3 = 31 for the unit interval, 9 = 32 for the unit square, and 27 = 33

for the unit cube. So they have dimensions 1,2,3 respectively.
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Dimension of C

1 For the Cantor set C, if we scale scale the set by 3 we get the
union of two Cantor sets

2 This means that
2 = 3d ,

so
dim C =

ln 2
ln 3

!
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Neighborhoods

( | )
a− ε a a + ε

Definition
Given a real number a ∈ R and a positive number ε > 0, the set

Vε(a) = {x ∈ R : |x − a| < ε}

is called the ε-neighborhood of a.

Thus a neighborhood of a point a ∈ R is just an open interval centered
at a.
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Open Sets

Definition (Open Set)
A set O of R is open if for all points a ∈ O there exists an
ε-neighborhood Vε(a) ⊂ O.

1 The entire R is an open set. Th definition also fits the empty
subset ∅ of R.

2 Any interval
(c,d) = {x ∈ R | c < x < d}

is open. For any a ∈ (c,d), if we pick ε = min{a− c,d − a}, then
the interval Vε(a) ⊂ (c,d).

3 The subsets (c,d ], [c,d) or [c,d ] are NOT open: at least one of
the endpoints do not pass the neighborhood test.
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Topology

Theorem (Template for a Topology)
1 The union of an arbitrary collection of open sets is open.
2 The intersection of a finite collection of open sets is open.

Proof.
1 Let {Oλ | λ ∈ Λ} be a collection of open sets of R, and O its union.

If a ∈ O, a ∈ Oλ for some λ. Since Oλ is open, there exists an
ε-neighborhood Vε(a) ⊂ Oλ ⊂ O.

2 Let {O1,O2, . . . ,On} be a finite collection of open subsets of R. If
a ∈ O =

⋂
Oi , for every open set Oi pick an εi -neighborhoods

Vεi (a) ⊂ Oi . Choosing ε = min{ε1, . . . , εn}, we get Vε(a) ⊂ Oi for
each Oi , and therefore Vε(a) ⊂ O. �
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Limit Point of a Set

Definition
A point x is a limit point of a set A if every ε-neighborhood Vε(x) of x
intersects A in some point other than x .

Other terminology for limit point: accumulation point, or cluster
point. It is important to note that a limit point of A does not have to be a
point of A.

Theorem
A point x is a limit point of a set A iff x = lim an for some sequence (an)
contained in A satisfying an 6= x for all n ∈ N.

Proof. By considering a values ε = 1/n, to a limit point x of A, we
select an ∈ A ∩ V1/n(x), an 6= x . Note that an ∈ V1/N(x), for n ≥ N.
This means (an)→ x . The converse is clear. �
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Isolated Point

Definition
A point x ∈ A is an isolated point of A if it is not a limit point of A.

This essentially means that we have an ε-neighborhood Vε(x) that
contains no other point of A.
For example, let

A = {1/n | n ∈ N}

The sequence of points of A, (1/n)→ 0, so 0 is a limit point.

Any point of A is isolated: For example, if x = 1/3, the closest other
point in A is 1/4, so if we choose ε < 1/3− 1/4 = 1/12,
Vε(1/3) ∩ A = {1/3}.
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Example

1
••

1/21/n
•

1/n + 1
•

Let A = {1/n | n ∈ N}. Note that the closest point
to 1/n is 1/(n + 1): So if ε < 1/n − 1/(n + 1)

Vε(1/n) ∩ A = {1/n}
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Closed Set

Definition
A set F ⊂ R is closed if it contains (all) its limit points.

In other words, for any convergent sequence (an)→ x of distinct points
an ∈ F , x ∈ F also.

Closed sets are ubiquotous.

Wolmer Vasconcelos (Set 3) Advanced Calculus Spring 2010 21 / 33



Plenty of Closed Sets

Theorem
Let A be a subset of R. The set L of limit points of A is closed.

Proof.
1 Let x be a limit point of L. To show that x ∈ L we must show that x

is a limit point of A.
2 Let Vε(x) be a neighborhood of x . It contains some y ∈ L. Pick a

(possibly) smaller neighborhood Vε′(y) ⊂ Vε(x).
3 Since y ∈ L, Vε′(y) contains some z ∈ A, as desired.
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Examples

1 The interval A = [c,d ] is a closed set: If x is a limit point of A there
is a sequence (xn) of points of A with (xn)→ x . Applying Order
Theorem to

c ≤ xn ≤ d ,

we get c ≤ lim xn ≤ d , so x ∈ A.
2 Consider the rational numbers: Q ⊂ R. The set of limit points of Q

is R: Given any element y ∈ R, by the Density Theorem there
exists a rational number r 6= y in Vε(y). This can be reformulated
as:

Theorem (Density of Q in R)
Given any y ∈ R, there is a sequence of rational numbers that
converges to y.
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Closure of a Set

Definition
Given a set A ⊂ R, let L be the set of all limit points of A. The closure
of A is the set A = L ∪ A.

1 A consists of A plus its accumulation points.
2 If A = (0,1), its closure A is [0,1].
3 If A = {1/n | n ∈ N}, its limit set is L = {0}, so

A = A ∪ {0}.

4 Q = R
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Closure of a Set

Theorem

For any A ⊂ R, the closure A is a closed set and is the smallest closed
set containing A.

Proof.
1 Let x be a limit point of A, which we assume does not lie in A. Note

that any neighborhood of x must contain an element x 6= y ∈ A.
2 We will show that x is a limit point of L, and since we have already

proved that L is closed this would imply x ∈ L.
3 Let Vε(x) be a neighborhood of x . We want to argue that it

contains some element of A. If not, it would have to contain an
element y ∈ L.

4 Let Vε′(y) ⊂ Vε(x). With y ∈ L, Vε′(y) contains an element of A,
as desired. �

Wolmer Vasconcelos (Set 3) Advanced Calculus Spring 2010 25 / 33



Closed versus Open

Theorem
A set O is open if and only if its complement Oc is closed. Likewise, a
set F is closed if and only if F c is open.

Proof. Let O be an open subset of R. To show that Oc is closed, we
must show that it contains all of its limit points. If x is a limit point of
Oc , then every neighborhood of x contains some point of Oc . If
x /∈ Oc , x ∈ O and since O is open there is a neighborhood of x
contained in O. This contradiction shows that x ∈ Oc .
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For the converse, assume Oc is closed and we argue that O is open.
This means that for every point x ∈ O there must be a neighborhood
Vε(x) ⊂ O. If not, each such neighborhood would intersect Oc , which
is closed. In this case, x would be a limit point of Oc , and thus x ∈ Oc ,
which is a contradiction.
For the second part, just note that for any subset E ⊂ R, (Ec)c = E . �
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Theorem (Template for a Topology)
1 The intersection of an arbitrary collection of closed sets is closed.
2 The union of a finite collection of closed sets is closed.

Corollary
The Cantor set C is closed.
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Definition
A set K ⊂ R is compact if every sequence in K has a subsequence
that converges to a limit that is also in K .

Example: A closed interval [a,b]. The Bolzano-Weirstrass theorem
guarantees that any sequence (an) ⊂ [a,b] admits a convergent
subsequence. Because [a,b] is closed, the limit of this subsequence is
also in [a,b]
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Heine-Borel Theorem

Definition
A set K ⊂ R is bounded if there exists M > 0 such that |x | < M for all
x ∈ K .

Theorem
A set K ⊂ R is compact if and only if it closed and bounded.

Proof. Let K be compact. We first claim K is bounded. Otherwise, for
each n there is xn ∈ K such that |xn| > n. Since K is compact:

1 (xn) has a convergent subsequence (xnk ).
2 But convergent sequences are bounded, while |xnk | > nk , a

contradiction as nk →∞.
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Next we show that K is closed. Let x = lim xn be a limit point of K , that
is xn ∈ K . We must show x ∈ K . From the compactness assumption,
(xn) admits a convergent subsequence (xnk ) converging to a point
y ∈ K . Since (xn) is convergent, all of its subsequences have the
same limit, so x = y as desired.
The converse is left as an exercise.
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Theorem
If K1 ⊇ K2 ⊇ K3 ⊇ · · · is a nested sequence of nonempty compact
sets, then the intersection

⋂∞
n=1 Kn is nonempty.

Proof. The strategy is simple: We pick an element xn ∈ Kn (Kn is
nonempty) and consider the sequence (xn). Since xn ∈ K1, and K1 is
compact, it admits a convergent subsequence (xnk )→ x ∈ K1.
We claim that x ∈ Kn for every n. Given n0, the terms in (xn) are
contained in Kn0 as long as n ≥ n0. This means that the terms of the
subsequence (xnk ) are also in Kn0 for almost all of them. This implies
that its limit lies in Kn0 , as desired. �

Wolmer Vasconcelos (Set 3) Advanced Calculus Spring 2010 33 / 33


	Goals
	Cantor Set
	Open Sets
	Compact Sets

