Math 311: Advanced Calculus

Wolmer V. Vasconcelos

Set 3

Spring 2010

Wolmer Vasconcelos (Set 3)

Advanced Calculus

1 Goals

3 Open Sets

Compact Sets

Wolmer Vasconcelos (Set 3)

Real Functions

Our main aim is to study interesting functions of the kind

$$X \rightarrow \boxed{f} \rightarrow Y$$

where **X** and **Y** are subsets of \mathbb{R} .

If **f** is a function and the sequence

 $a_1, a_2, a_3, \ldots, a_n, \ldots$

lies in the domain of **f**, then the sequence

$$f(a_1), f(a_2), f(a_3), \ldots, f(a_n), \ldots$$

is contained in **Y**.

We want **f** to have the following property:

• If (a_n) is convergent then $(\mathbf{f}(a_n))$ convergent.

This requires us to examine some sets of subsets of \mathbb{R} :

- Open Sets
- Closed Sets
- Compact Sets
- Connected Sets
- Strange Sets

These subsets have properties that will explain why *continuous* functions act as they do.

Outline

3 Open Sets

Compact Sets

Wolmer Vasconcelos (Set 3)

 C_2 C_2

Cantor Set: $C = \bigcap C_{n \ge 0}$

Building the Cantor set in detail

• $C_0 = [0, 1], C_1 = C_0 \setminus (1/3, 2/3)$, that is C_1 is obtained by removing from the interval C_0 its mid third (leaving the endpoints):

$$C_1 = [0, 1/3] \cup [2/3, 1]$$

Iterate by removing from each closed subinterval above its mid third (and so on)

$$C_2 = ([0, 1/9] \cup [2/9, 1/3]) \cup ([2/3, 7/9] \cup [8/9, 1])$$

3 This leads to a nested sequence of sets
$$C_0 \supset C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$$
.

• $C = \bigcap C_{n \ge 0}$ is called the **Cantor** set.

Note that *C* is obtained from [0, 1] by repeatedly carving out the heart. At least, the endpoints of the various subintervals belong to *C*. What else?

• We are going to argue *C* is very thin by adding the lengths of the intervals that were removed:

$$\frac{1}{3}+2\frac{1}{3^2}+2^2\frac{1}{3^3}+\cdots\,,$$

a geometric series whose first term is 1/3 and whose ratio is 2/3, so it has for sum

$$\frac{1/3}{1-2/3} = 1!$$

So from [0, 1] we took away a subset of measure 1!

Exercise Given $\epsilon > 0$, argue that any countable set *A* is contained in a countable union $\bigcup_{n \ge 1} [a_n, b_n]$, such that

$$\sum_{n\geq 1} |b_n - a_n| < \epsilon.$$

If *C* only contained the endpoints [all rational points] of the subintervals of its construction, it would be countable. Let us show otherwise:

- We are going to code the elements of *C* by infinite strings of {0, 1} as follows: If *a* ∈ *C*, we set *a*₁ = 0 if *a* belongs to the leftmost subinterval of *C*₁, otherwise we set *a*₁ = 1.
- Once a_1 is assigned, we consider the subinterval of C_2 that contains x, and apply the same rule. In this we get a unique address for x as the string (a_1, a_2, a_3, \ldots) .
- Solution Conversely, given any such string we build a nested sequence of closed intervals *l*₁ ⊃ *l*₂ ⊃ *l*₃ ⊃ · · · : By NIP there is a point in the intersection. Actually unique why?

- We observed two contrasting things about *C*: (i) it is very thin, since [0, 1] \ *C* has length 1. (ii) it is uncountable. Can one compare it in other ways to the unit interval *U* = [0, 1]?
- Observe that if we expand [0, 1] by multiplying each number in it by 3, we obtain the interval [0, 3], that is we get 3 copies of U. However, if we do the same operation on C, we only get 2 copies of C! Care to visualize?

- One way to define dimension of subset S of ℝⁿ is to compare S with the set obtained by expanding all points in it by a scale, say 3.
- For example, the dimension of [0, 1] is 1, because we got 3U = [0, 3], while the dimension of a unit square is 2 [9 new squares], of the unit cube is 3 [27 new cubes].
- In all of these examples, we say that the dimension is d if 3^d is the size relative of the new set obtained by scaling the set by 3:
 3 = 3¹ for the unit interval, 9 = 3² for the unit square, and 27 = 3³ for the unit cube. So they have dimensions 1,2,3 respectively.

- For the Cantor set *C*, if we scale scale the set by 3 we get the union of two Cantor sets
- 2 This means that

$$2 = 3^{d}$$
,

so

$$\dim C = \frac{\ln 2}{\ln 3}!$$

Outline

Compact Sets

Wolmer Vasconcelos (Set 3)

Neighborhoods

Definition

Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon > 0$, the set

$$V_{\epsilon}(a) = \{x \in \mathbb{R} \colon |x - a| < \epsilon\}$$

is called the ϵ -neighborhood of *a*.

Thus a neighborhood of a point $a \in \mathbb{R}$ is just an **open** interval centered at *a*.

Definition (Open Set)

A set *O* of \mathbb{R} is open if for all points $a \in O$ there exists an ϵ -neighborhood $V_{\epsilon}(a) \subset O$.

The entire ℝ is an open set. Th definition also fits the empty subset Ø of ℝ.

2 Any interval

$$(c,d) = \{x \in \mathbb{R} \mid c < x < d\}$$

is open. For any $a \in (c, d)$, if we pick $\epsilon = \min\{a - c, d - a\}$, then the interval $V_{\epsilon}(a) \subset (c, d)$.

The subsets (c, d], [c, d) or [c, d] are NOT open: at least one of the endpoints do not pass the neighborhood test.

Theorem (Template for a Topology)

- The union of an arbitrary collection of open sets is open.
- 2 The intersection of a finite collection of open sets is open.

Proof.

- Let $\{O_{\lambda} \mid \lambda \in \Lambda\}$ be a collection of open sets of \mathbb{R} , and O its union. If $a \in O$, $a \in O_{\lambda}$ for some λ . Since O_{λ} is open, there exists an ϵ -neighborhood $V_{\epsilon}(a) \subset O_{\lambda} \subset O$.
- Let {O₁, O₂,..., O_n} be a finite collection of open subsets of ℝ. If a ∈ O = ∩ O_i, for every open set O_i pick an ε_i-neighborhoods V_{εi}(a) ⊂ O_i. Choosing ε = min{ε₁,..., ε_n}, we get V_ε(a) ⊂ O_i for each O_i, and therefore V_ε(a) ⊂ O.

Definition

A point *x* is a **limit** point of a set *A* if every ϵ -neighborhood $V_{\epsilon}(x)$ of *x* intersects *A* in some point other than *x*.

Other terminology for **limit** point: **accumulation** point, or **cluster** point. It is important to note that a limit point of *A* does not have to be a point of *A*.

Theorem

A point x is a limit point of a set A iff $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Proof. By considering a values $\epsilon = 1/n$, to a limit point *x* of *A*, we select $a_n \in A \cap V_{1/n}(x)$, $a_n \neq x$. Note that $a_n \in V_{1/N}(x)$, for $n \ge N$. This means $(a_n) \to x$. The converse is clear.

Definition

A point $x \in A$ is an **isolated** point of A if it is not a limit point of A.

This essentially means that we have an ϵ -neighborhood $V_{\epsilon}(x)$ that contains no other point of A. For example, let

$$A = \{1/n \mid n \in \mathbb{N}\}$$

The sequence of points of A, $(1/n) \rightarrow 0$, so 0 is a limit point.

Any point of *A* is isolated: For example, if x = 1/3, the closest other point in *A* is 1/4, so if we choose $\epsilon < 1/3 - 1/4 = 1/12$, $V_{\epsilon}(1/3) \cap A = \{1/3\}$.

$$\frac{1}{n+1}$$
 1/n 1/2 1

Let $A = \{1/n \mid n \in \mathbb{N}\}$. Note that the closest point to 1/n is 1/(n+1): So if $\epsilon < 1/n - 1/(n+1)$

 $V_{\epsilon}(1/n) \cap A = \{1/n\}$

Definition

A set $F \subset \mathbb{R}$ is **closed** if it contains (all) its limit points.

In other words, for any convergent sequence $(a_n) \rightarrow x$ of distinct points $a_n \in F$, $x \in F$ also.

Closed sets are ubiquotous.

Theorem

Let A be a subset of \mathbb{R} . The set L of limit points of A is closed.

Proof.

- Let x be a limit point of L. To show that $x \in L$ we must show that x is a limit point of A.
- ② Let $V_{\epsilon}(x)$ be a neighborhood of *x*. It contains some *y* ∈ *L*. Pick a (possibly) smaller neighborhood $V_{\epsilon'}(y) \subset V_{\epsilon}(x)$.
- Since $y \in L$, $V_{\epsilon'}(y)$ contains some $z \in A$, as desired.

Examples

The interval A = [c, d] is a closed set: If x is a limit point of A there is a sequence (x_n) of points of A with (x_n) → x. Applying Order Theorem to

$$c \leq x_n \leq d$$
,

we get $c \leq \lim x_n \leq d$, so $x \in A$.

Consider the rational numbers: Q ⊂ ℝ. The set of limit points of Q is ℝ: Given any element y ∈ ℝ, by the Density Theorem there exists a rational number r ≠ y in V_ϵ(y). This can be reformulated as:

Theorem (Density of ${\mathbb Q}$ in ${\mathbb R}$)

Given any $y \in \mathbb{R}$, there is a sequence of rational numbers that converges to y.

Definition

Given a set $A \subset \mathbb{R}$, let *L* be the set of all limit points of *A*. The **closure** of *A* is the set $\overline{A} = L \cup A$.

- \overline{A} consists of A plus its accumulation points.
- If A = (0, 1), its closure \overline{A} is [0, 1].
- If $A = \{1/n \mid n \in \mathbb{N}\}$, its limit set is $L = \{0\}$, so

$$\overline{A} = A \cup \{0\}.$$

Theorem

For any $A \subset \mathbb{R}$, the closure \overline{A} is a closed set and is the smallest closed set containing A.

Proof.

- Let x be a limit point of \overline{A} , which we assume does not lie in \overline{A} . Note that any neighborhood of x must contain an element $x \neq y \in \overline{A}$.
- **2** We will show that *x* is a limit point of *L*, and since we have already proved that *L* is closed this would imply $x \in L$.
- Solution Let V_e(x) be a neighborhood of x. We want to argue that it contains some element of A. If not, it would have to contain an element y ∈ L.
- Let $V_{\epsilon'}(y) \subset V_{\epsilon}(x)$. With $y \in L$, $V_{\epsilon'}(y)$ contains an element of *A*, as desired.

Theorem

A set O is open if and only if its complement O^c is closed. Likewise, a set F is closed if and only if F^c is open.

Proof. Let *O* be an open subset of \mathbb{R} . To show that O^c is closed, we must show that it contains all of its limit points. If *x* is a limit point of O^c , then every neighborhood of *x* contains some point of O^c . If $x \notin O^c$, $x \in O$ and since *O* is open there is a neighborhood of *x* contained in *O*. This contradiction shows that $x \in O^c$.

For the converse, assume O^c is closed and we argue that O is open. This means that for every point $x \in O$ there must be a neighborhood $V_{\epsilon}(x) \subset O$. If not, each such neighborhood would intersect O^c , which is closed. In this case, x would be a limit point of O^c , and thus $x \in O^c$, which is a contradiction.

For the second part, just note that for any subset $E \subset \mathbb{R}$, $(E^c)^c = E$. \Box

Theorem (Template for a Topology)

- The intersection of an arbitrary collection of closed sets is closed.
- 2 The union of a finite collection of closed sets is closed.

Corollary

The Cantor set C is closed.

3 Open Sets

Definition

A set $K \subset \mathbb{R}$ is **compact** if every sequence in *K* has a subsequence that converges to a limit that is also in *K*.

Example: A closed interval [a, b]. The Bolzano-Weirstrass theorem guarantees that any sequence $(a_n) \subset [a, b]$ admits a convergent subsequence. Because [a, b] is closed, the limit of this subsequence is also in [a, b]

Definition

A set $K \subset \mathbb{R}$ is **bounded** if there exists M > 0 such that |x| < M for all $x \in K$.

Theorem

A set $K \subset \mathbb{R}$ is compact if and only if it closed and bounded.

Proof. Let *K* be compact. We first claim *K* is bounded. Otherwise, for each *n* there is $x_n \in K$ such that $|x_n| > n$. Since *K* is compact:

- **(** x_n) has a convergent subsequence (x_{n_k}) .
- 2 But convergent sequences are bounded, while $|x_{n_k}| > n_k$, a contradiction as $n_k \to \infty$.

Next we show that *K* is closed. Let $x = \lim x_n$ be a limit point of *K*, that is $x_n \in K$. We must show $x \in K$. From the compactness assumption, (x_n) admits a convergent subsequence (x_{n_k}) converging to a point $y \in K$. Since (x_n) is convergent, all of its subsequences have the same limit, so x = y as desired. The converse is left as an exercise

Theorem

If $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is nonempty.

Proof. The strategy is simple: We pick an element $x_n \in K_n$ (K_n is nonempty) and consider the sequence (x_n) . Since $x_n \in K_1$, and K_1 is compact, it admits a convergent subsequence $(x_{n_k}) \rightarrow x \in K_1$. We claim that $x \in K_n$ for every n. Given n_0 , the terms in (x_n) are contained in K_{n_0} as long as $n \ge n_0$. This means that the terms of the subsequence (x_{n_k}) are also in K_{n_0} for almost all of them. This implies that its limit lies in K_{n_0} , as desired.